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Abstract Social choice rules (SCRs) aggregate individual preferences to social preferences. By

Arrow’s (1951) impossibility theorem there does not exist a non-dictatorial SCR satisfying three

desirable properties. Considering this negative axiomatic result, in this paper we determine

distances of SCRs from the dictatorial rules to rank common SCRs. In particular, we apply

the Kendall τ , the Spearman rank correlation and the Spearman footrule metrics. We find that

from the investigated SCRs the Borda, the Copeland and the Kemény-Young SCRs stand out.

Furthermore, we show that anonymous SCRs approach the constant rule when the number of

alternatives is fixed and the number of voters tends to infinity.
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1 Introduction

The debate between Borda and Condorcet at the end of the 18th century demonstrated well

the challenge in choosing a widely accepted voting rule. Arrow (1951) settled the problem by

terminating the search for an ‘ideal’ voting rule or even for generally appealing social choice

rules (SCRs). In his famous impossibility theorem he showed that if there are at least three

alternatives (or candidates), there does not exist an SCR that fulfills all of the following four

natural requirements.

• It is defined on the so-called universal domain, i.e. every combination of ranking alterna-

tives is admitted.
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• It satisfies the Pareto property, i.e. if an alternative is preferred by everybody to another

alternative, then the former one should be preferred to the latter one by the SCR.

• It guarantees the independence of irrelevant alternatives, i.e. if in two combinations of

preferences each voter individually orders two alternatives in the same way, then the SCR

should rank these two alternatives in both combinations of preferences in the same way.

• It is non-dictatorial, i.e. it cannot happen that in all combinations of preferences the

choice of a distinguished voter and the SCR are the same.

For social choice functions (SCFs), also called voting rules, which select an alternative instead

of a social preference, Gibbard (1973) and Satterthwaite (1975) independently proved an im-

possibility theorem by showing in case of at least three alternatives that for SCFs, which are

onto (i.e. for each alternative there exists a combination of preferences such that the SCF selects

it, or put it otherwise the SCF is surjective), the properties of non-manipulability (none of the

voters can benefit from misreporting its ranking) and non-dictatorship are incompatible.

Clearly, this was not the end of the story and by relaxing some of the properties researchers

could find possibility results. For instance, by restricting the universal domain to the set of

single-peaked preferences, Moulin (1981) proved a possibility result. Furthermore, following the

axiomatic route many voting rules could be characterized by a set of properties. For instance,

the Borda rule (Smith, 1973; Young, 1974; Saari, 2000), the Copeland method (Henriet, 1985)

and the Kemény-Young method (Young and Levenglick, 1978) were successfully characterized.

These and further axiomatic results highlighted the benefits and shortcomings of certain voting

rules, and therefore, moved the problem of selecting directly the ‘right voting rule’ to the

question of which properties are more adequate under certain circumstances.

In this paper we follow an alternative route to the axiomatic one, the ‘operations research

approach’, which strives for selecting voting rules as solutions to appropriately defined distance

minimization problems. When treating each voter equally it makes sense to minimize the sum

of distances to the dictators, which leads to frequently applied voting rules. The later approach

is either equivalent to the definitions of certain rules, like the Kemény-Young method (Kemény,

1959), or results in known voting rules, like the Borda count (Dwork et al., 2002). Other voting

rules defined directly as solutions of optimization problems are Slater’s and Dogson’s rules both

using the Kendall τ distance (see Eckert and Klammer, 2011).

There is a quite extensive literature on deriving voting rules as solutions of optimization

problems related to desired properties. Farkas and Nitzan (1979) derived the Borda count

as the solution of an optimization problem on the set of SCFs by minimizing the distance

from the unanimity principle. Taking other metrics, Nitzan (1981) obtained the plurality rule

among other rules. However, the obtained voting rules are functions of the respective distance

function and principle(s). Lehrer and Nitzan (1985) and Campbell and Nitzan (1986) showed
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that basically any voting rule can be distance rationalized. The approach of minimizing the

distance from a set of profiles with a clear winner such as the unanimous winner, the majority

winner, or the Condorcet winner has been developed further by Elkind et al. (2015), Andiga et

al. (2014) and Mahajne et al. (2015), and Zwicker (2014) among others. Bednay et al. (2017)

offered a ‘dual’ approach based on distance maximization from the closest dictator in which

the dictatorial rules are taken as the benchmark and the distances of SCFs from them are

determined. When looking at voting rules being farthest away from the closest dictatorial rule,

very undesirable voting rules were obtained, which would lead intuitively to the largest level

of dissimilarity. Continuing this approach, Bednay et al. (2019) introduced a non-dictatorship

index and compared SCFs based on it. In addition, in Bednay et al. (2022) the limiting behavior

of the non-dictatorship index has been determined. Above the set of alternatives there is less

structure, and therefore in this paper we consider the richer framework of SCRs, which allows

for a set of reasonable distance functions on the set of preferences. However, in contrast to the

axiomatic approach we have to choose between distance functions instead of properties.

In this paper, when ordering SCRs, we investigate three prominent distance functions used in

operations research, which are meaningful in the social choice context. These distance functions

are well-know in mathematics and statistics. Diaconis and Graham (1977) considered them as

distances on permutations and in statistics they are used as measures of association for ordinal

data (for more on historical notes we refer to Monjardet, 1997). For two of them (the Kendall

τ1 and the Spearman rank correlation rule) the optimal voting rule is known. For the third one

(the Spearman footrule) the MedRank algorithm is usually mentioned as its solution,2 however

as it will be clear from our results this is only true on a small set of possible combinations

of rankings. Furthermore, we would like to find out how close other voting rules are to the

optimal one. It is also interesting to know whether in all our investigated cases the same

rules are the second or third closest to the optimal one. This question is also of importance

because some rules are difficult to calculate, like the Kemény-Young method, and therefore the

best approximating polynomial time rule can serve as a replacement. We find for the three

selected distance functions in our paper that the Borda, the Copeland and the Kemény-Young

SCRs are the best performing ones, while the plurality rule performs the worst. Burka et

al. (2022) obtained a similar ordering of these voting rules through employing neural networks.

In addition, we show that for a given number of alternatives when the number of voters tends

to infinity all rules tend to the constant rule. Qualitatively, it also implies that for a large

number of voters any SCR performs almost equally well. We can interpret this result in favor

of the very simple plurality rule, which is the most frequently employed one in elections, while

based on its axiomatic properties it is the most widely criticized rule.

1According to Knuth (1973) the basic idea behind the Kendall τ distance was already used by Cramer in
1750.

2This only holds true if the median ranks of the alternatives form a permutation.
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We would like to emphasize that SCRs are used besides voting situations in the collective

selection of rankings in many areas. In general, aggregating rankings can be also regarded as

combining inputs from multiple sources like in automated decision making, machine learning

(e.g. Volkovs and Zemel, 2014) or database middleware (e.g. Masthoff, 2004), or determining

the results in sport competitions (e.g. Csató, 2022). The problem also arises in coding theory

since the alternatives can be regarded as letters and the rankings as strings, and the distance

function can be utilized in error detection (Bortolussi et al., 2012). Nowadays, the problem

of aggregating rankings also emerges in the link analysis in networks like the world wide web,

which lie at the heart of web search algorithms (Borodin et al., 2005). Therefore, a partially

parallel literature emerged, which sometimes uses different names for the procedures known

in the theory of voting and more importantly it pursues frequently a different goal so that,

for instance, the appropriate choice of a distance can be determined in the framework of a

given problem. From another point of view in the social choice context the number of voters is

usually significantly larger than the number of candidates, while in the applications in computer

science and operations research the number of alternatives is frequently larger than the number

of experts (or voters).

The structure of the paper is as follows. Section 2 introduces the basic notations, the

employed metrics on the set of SCRs and the indices to measure the degree of dictatorship of

SCRs. Section 3 presents the SCRs under study. Section 4 explains the computational scheme,

presents and discusses the results obtained by simulations. Section 5 proves the limiting results

for the introduced indices. Finally, Section 6 concludes. Additional figures are relegated to the

Appendix.

2 The Framework

Let A = {a1, . . . , am} be the set of alternatives, where m ≥ 2, and N = {1, . . . , n} be the set of

voters. We shall denote by P the set of all linear (or preference) orderings (irreflexive, transitive

and total binary relations) on A and by Pn the set of all preference profiles. If �∈ Pn and

i ∈ N , then �i is the preference ordering of voter i over A. We write �−i if we drop voter i’s

preference ordering from profile �. Then �= (�i,�−i). Moreover, let rk[a,�] denote the rank

of alternative a in the ordering �∈ P (i.e. rk[a,�] = 1 if a is the top alternative in the ranking

�, rk[a,�] = 2 if a is second-best, and so on).

Definition 1. A mapping f : Pn → P that selects the linear ordering is called a social choice

rule, henceforth, SCR.

As our definition of an SCR does not allow for possible ties, while the formulas defining

the well-known voting rules just determine weak orderings, we employ fixed anonymous3 tie-

3The linear ordering selected by an anonymous tie-breaking is invariant to the ordering of voters’ preferences.
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breaking rules to break ties. A tie-breaking rule τ : Pn → P maps preference profiles to linear

orderings on A, which will be only employed when a formula leaves alternatives indifferent. If

there are more tied alternatives at a certain position based on a formula ‘almost’ specifying

an SCR, then the tied alternatives follow the ordering given by the tie-breaking rule. When

determining our non-dictatorship indices for the SCRs under study, we employ the fixed (also

called the lexicographic) tie-breaking rule a1 τ(�) a2 τ(�) . . . τ(�) am for each profile �∈ Pn,

which is anonymous and does not depend on the actual preference profile �∈ Pn. Henceforth,

we will briefly write a1 τ a2 τ . . . τ am for the ordering of the alternatives by this tie-breaking

rule.

Let F = PPn
be the set of SCRs and Fan ⊂ F be the set of anonymous SCRs. The subset

of F consisting of the dictatorial rules will be denoted by D = {D1, . . . , Dn}, where Di is the

dictatorial rule with voter i as the dictator. We will consider three metrics on F which for any

F,G ∈ F are defined by

ρ1(F,G) =
∑
�∈Pn

m∑
i=1

|rk[ai, F (�)]− rk[ai, G(�)]| (2.1)

ρ2(F,G) =
∑
�∈Pn

m∑
i=1

(rk[ai, F (�)]− rk[ai, G(�)])2 (2.2)

ρK(F,G) =
∑
�∈Pn

#{(ai, aj) ∈ A2 | i < j, ai F (�) aj and aj G(�) ai} (2.3)

Note that usually these types of metrics are defined for profiles, and thus the outer sum is

missing in the above equations when the metrics are defined for preferences or permutations.

Since we are interested in the comparison of SCRs we added the outer sums. For two voters of a

given profile (that is considering the distance of two linear orderings) the metrics defined by the

inner sums of (2.1), (2.2) and (2.3) are known in the literature as the Spearman footrule, the

Spearman rank correlation and the Kendall τ (or Kemény) distances. Clearly, other weighting

schemes are possible, however here we give equal weight to each profile if we estimate the

distances by random sampling as in our simulations in Section 4.

It will be helpful for us that Diaconis and Graham (1977) provide the maximum values for

the Kendall τ , the Spearman footrule and the Spearman rank correlation distances between

two linear orderings, which equal (m−1)m/2, bm2/2c and (m3−m)/3, respectively. Therefore,

in the forthcoming Definition 2 for normalization purposes we let

CK = (m− 1)m/2, C1 = bm2/2c and C2 = (m3 −m)/3.

In defining our first set of normalized indices we consider the distance to all dictatorial rules
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by treating each of them equally, which means that we take the sum of the distances to obtain

the indices.

Definition 2. The balancedness indices (BII) are given by

BII(F ) =
1

n

∑
i∈N ρI(F,Di)

(m!)nCI
,

where I ∈ {1, 2,K}.

In defining the set of balanced SCRs we try to get close to all dictatorial rules by minimizing

the sum of the distances to obtain the respective optimal SCR, where we restrict ourselves in

our analysis to anonymous SCRs.

Definition 3. We define the set of (anonymous) balanced rules by

Fanb = arg min
F∈Fan

∑
i∈N

ρ(F,Di) = arg min
F∈Fan

BI(F )

over the set of anonymous SCRs.

Some of the famous voting rules are defined in this way, like the Kemény-Young method and

the Spearman footrule. The former one uses the Kendall-τ distance, which is also called the

Kemény distance. Others like the Spearman’s rank correlation can be shown to result in the

Borda count (see Dwork et al., 2002).4

We define our non-dictatorship index (NDI) by taking the distance to the closest dictator.

Definition 4. The non-dictatorship indices (NDII) are given by

NDII(F ) =
mini∈N ρI(F,Di)

(m!)nCI
,

where I ∈ {1, 2,K}.

As an alternative approach we specify the set of least dictatorial rules as those ones which

are the furthest away from the closest dictatorial rule, which means that we are maximizing

the minimum of the distances to the dictatorial rules.

Definition 5. We define the set of (anonymous) least dictatorial rules by

Fanld = arg max
F∈Fan

min
i∈N

ρ(F,Di) = arg max
F∈Fan

NDI(F )

over the set of anonymous SCRs.

4More precisely, they show this for those profiles for which the Borda count determines a linear ordering. As
we show in Section 5 this does not pose a severe restriction since for large n the set of profiles on which the
Borda count has tied alternatives becomes negligible.
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From another point of view the least dictatorial rules are getting far away from each individ-

ual, and therefore not surprisingly result in undesirable rules as it will become clear from our

simulations in Section 4.

For any anonymous SCR F we have ρI(F,Di) = ρI(F,Dj) for any i, j = 1, . . . , n and any

I ∈ {1, 2,K}, and therefore it follows that

min
i∈N

ρ(F,Di) =
1

n

n∑
i=1

ρ(F,Di),

which in turn implies that for anonymous SCRs the BII and NDII indices equal each other.

3 Social Choice Rules

We consider the following seven common voting rules, a trivial rule and four derived SCRs. To

introduce these SCRs we pick a profile with 5 alternatives and 7 voters given in Table 1. Since

Rank �1 �2 �3 �4 �5 �6 �7

1 e d a e d c c
2 a a d b a e e
3 d b c d e d d
4 b e b c b b a
5 c c e a c a b

Table 1: A profile with 5 alternatives and 7 voters

they can be tied alternatives based on the formula partially defining an SCR we use the fixed

tie-breaking rule a τ b τ c τ d τ e to resolve ties in order to arrive to the linear ordering chosen

by the respective SCR.

1. The plurality rule counts the number of top positions for each alternative and orders

them accordingly. Looking at the profile in Table 1, we see that the resulting ordering of the

alternatives are c � d � e � a � b, where we used the above mentioned tie-breaking rule τ to

resolve ties. The SCR PLτ is the plurality rule if for all (�i)ni=1 ∈ Pn and all pairs of distinct

alternatives

a PLτ ((�i)ni=1) b ⇔ # {i ∈ N | rk[a,�i] = 1} > # {i ∈ N | rk[b,�i] = 1} or

# {i ∈ N | rk[a,�i] = 1} = # {i ∈ N | rk[b,�i] = 1} and aτb.

2. The Borda count, briefly denoted by BC, orders the alternatives based on the sum of their

ranks. In particular, an alternative with a lower sum of ranks is preferred over an alternative

with a higher sum of ranks. In case of the profile in Table 1 the sum of ranks of alternatives a,
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b, c, d and e are 21, 26, 24, 16 and 18, respectively. Therefore, the social ordering determined

by BC is d � e � a � c � b. The SCR BCτ is the Borda count if for all (�i)ni=1 ∈ Pn and all

pairs of distinct alternatives a and b we have

a BCτ ((�i)ni=1) b ⇔
n∑
i=1

rk[a,�i] <
n∑
i=1

rk[b,�i] or

n∑
i=1

rk[a,�i] =

n∑
i=1

rk[b,�i] and aτb.

3. The k-approval rule counts how many times an alternative is ranked among the top k

alternatives in a profile and orders them accordingly. We shall denote this rule by kAV . In

case of the profile given in Table 1 alternatives a, b, c, d and e are 4, 1, 2, 3 and 4 times top

two alternatives, and therefore the respective ranking by 2AVτ is a � e � d � c � b. In an

analogous way, for the 3-approval rule for the same profile alternatives a, b, c, d and e are 4, 2,

3, 7 and 5 times top three alternatives, which implies the ranking d � e � a � c � b by 3AVτ .

Formally, the kAVτ rule is the k-approval rule if for all (�i)ni=1 ∈ Pn and all pairs of distinct

alternatives a and b we have

a kAVτ ((�i)ni=1) b ⇔ # {i ∈ N | rk[a,�i] ≤ k} > # {i ∈ N | rk[b,�i] ≤ k} or

# {i ∈ N | rk[a,�i] ≤ k} = # {i ∈ N | rk[b,�i] ≤ k} and aτb.

In our computations we will just use the 2AV and 3AV rules. Note that 1AV equals PL.

4. The Copeland method carries out for all voters pairwise comparisons of two alternatives,

where an alternative beats the other one if it is ranked higher by more voters than the other

alternative. In this case the former alternative wins while the other looses their competition.

This procedure is carried out for any pair of distinct alternatives. Thereafter, the alternatives

are ranked by the Copeland method following the ordering based on their numbers of wins.

This is in fact the usual way how round-robin tournaments are organized. Of course, possible

ties have to be broken by a tie-breaking rule. Again we consider the profile given in Table 1

and employ the same tie-breaking rule as in case of the previously introduced SCRs. We can

see that a beats alternatives b and c, b beats alternative c, c does not beat another alternative,

d beats alternatives a, b and c, and finally e beats all alternatives. Therefore, the Copeland

method arrives to the linear ordering e � d � a � b � c. We shall denote by CM the Copeland

method, which we define now formally. For a given profile (�i)ni=1 ∈ Pn we say that alternative

a ∈ A beats alternative x ∈ A if #{i ∈ N | a �i x} > #{i ∈ N | x �i a}, i.e. a wins over

x by pairwise comparison. Furthermore, alternative a ∈ A is tied with alternative x ∈ A if

#{i ∈ N | a �i x} = #{i ∈ N | x �i a}, which can only happen if n is even. We shall denote

by l[a, (�i)ni=1] the number of alternatives beaten by alternative a ∈ A plus half of the number
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of alternatives a is tied with for a given profile (�i)ni=1. Then an SCR CMτ is the Copeland

method if for all (�i)ni=1 ∈ Pn and all pairs of distinct alternatives a and b we have

a CMτ ((�i)ni=1) b ⇔ l[a, (�i)ni=1] > l[b, (�i)ni=1] or

l[a, (�i)ni=1] = l[b, (�i)ni=1] and aτb.

5. The Bucklin rule determines for each alternative a ∈ A the highest rank ha that has

still to be taken into account so that considering the first ha ranked alternatives it appears at

least n/2 times in a given profile. Looking at Table 1, we see that no alternative receives a

majority (i.e. 4 votes) when counting only the numbers of top ranked alternatives. Now taking

also the second ranked alternatives into consideration we see that both a and e appear four

times, where the tie-breaking rule τ gives priority to a. Thus, ha = he = 2. Admitting also

third ranked alternatives, d appears 6 times in the first three rows and we have hc = 3. If we

also take the fourth ranked alternatives into account b and c appear 6 and 4 times, respectively.

Hence, hb = hc = 4. In case of tied values hb and hc priority is given to the alternative with

the higher number of occurrences and if even these ones are the same the tie breaking rule τ is

applied. Then the Bucklin rule gives the ranking a � e � d � b � c. For each alternative a the

rank ha is determined by the median voter in the increasingly reordered sequence of voters by

ranks based on how they rank alternative a. We shall denote the Bucklin rule by BR. Then

the SCR BRτ is the Bucklin rule if for all �∈ Pn and all pairs of distinct alternatives we have

aBRτ (�) b⇔
ha < hb or

(ha = hb and # {i ∈ N | rk[a,�i] ≤ ha} > # {i ∈ N | rk[b,�i] ≤ hb}) or

(ha = hb and # {i ∈ N | rk[a,�i] ≤ ha} = # {i ∈ N | rk[b,�i] ≤ hb} and aτb) .

6. The Bucklin rule has itself several variants, but there is a related one, which is called the

MedRank rule in the computer science literature as an abbreviation for the aggregation rule

based on the median ranks of the alternatives, henceforth also briefly MR. The modification

lies in the fact that only the medium ranks of the alternatives matter, that is only the above

defined ha1 ,...,han matter (see for instance, Dwork et al., 2002). In our framework of SCRs for

two distinct alternatives a and b for which ha = hb the tie-breaking rules have to be employed

immediately without taking into account how many times these two alternatives appear in

the top ha positions of all voters. Therefore, the MedRank algorithm is less decisive than the

Bucklin rule and in fact has tied alternatives far more frequently. Dwork et al. (2002) showed

that at least for those profiles in which all median ranks of the alternatives are pairwise distinct

(that is, they form a permutation), then the ranking obtained by the MedRank rule equals the

Spearman footrule optimal ranking.
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7. The Kemény-Young method, henceforth also KY , selects for a given profile the KY

solution by minimizing the sum of Kendall τ distances over the set of voters. For the profile

given in Table 1 the brute-force method would require the evaluation of 5! = 120 linear orderings

and there is no polynomial time algorithm for determining an optimal KY ranking. Therefore,

we just state for our profile that e � d � a � b � c is an optimal KY ranking for which the sum

of Kendall τ distances equals 1 + 3 + 7 + 3 + 2 + 5 + 4 = 25. However, even verifying that this is

an optimal solution is not easy. Therefore, we continue with the formal definition of KY . The

preference relation chosen by the Kemény-Young method for profile (�1, ...,�n) ∈ Pn selects a

preference relation �∗∈ P minimizing

n∑
k=1

#{(ai, aj) ∈ A2 | i < j, ai �∗ aj and aj �k ai}, (3.4)

which is not necessarily unique, however in this case we can pick �∗ arbitrarily from the set of

(3.4) minimizing preference relations.

8. We also include the trivial constant rule, denoted by CR, which assigns to each profile the

same fixed preference relation. Note that considering the properties in Arrow’s impossibility

theorem the constant rule is defined on the universal domain, is non-dictatorial and satisfies the

independence of irrelevant alternatives, but violates the Pareto property. Formally, let �∗∈ P
be a fixed linear ordering and we define the constant rule by CR(�) =�∗ for all �∈ Pn.

9. The reverse plurality rule, denoted by RPL, assigns to each preference profile essentially

the opposite ordering as determined by the plurality rule with the slight exception that for

tied alternatives we use the tie-breaking rule τ−1 (i.e. amτ
−1am−1τ

−1 . . . τ−1a1) to resolve ties.

In an analogous way we define the reverse Borda count, the reverse Copeland method and the

reverse Kemény-Young method, which we shall denote by RBC, RCM and RKY , respectively.

We introduce the notion of a Condorcet winner since some of the above introduced SCRs

satisfy the Condorcet criterium. Let µ be a majority relation for a given profile (�i)ni=1 ∈ Pn,

then aµx if #{i ∈ N | a �i x} > #{i ∈ N | x �i a}. The Condorcet winner CW of a

profile (�i)ni=1 is an element beating any other alternative based on the majority relation µ

(constructed according to the profile), i.e.

CW ((�i)ni=1) = {a ∈ A | for all x ∈ A \ {a} : aµx} .

An SCR is Condorcet consistent or satisfies the Condorcet criterium if it selects the Condorcet

winner as its top alternative if such one exists. From the SCRs defined in this section CM and

KY are Condorcet consistent.
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4 Computation Scheme and Results

For three alternatives and a smaller number of voters (up to 7) we have determined the exact

values of the balancedness indices with the Kendall τ distance by the brute-force algorithm.

We present these results in Tables 2-4.5 For a larger number of alternatives and voters we

performed the estimation of the indices for 3, 4 and 5 alternatives and up to 100 voters. In

our simulations we have generated 2500 random preference profiles, where each profile is chosen

with equal probability. The graphs for 3 and 4 alternatives can be found in the Appendix. To

be focused in this section we present only the graphs for 5 alternatives. Qualitatively, there are

no relevant differences for 3 and 4 alternatives. The exact values in the tables are close to the

results obtained by our simulations. Since the speed of convergence is slow it is not obvious

that the graphs converge to a common limit. We will show that this is the case in Section 5.

Because of the slow rate of convergence in the figures we show the graphs only up to 50

voters. To each case we present two types of figures: the first type contains the graphs of the

BII minimizing, the BII maximizing, the PL, the RPL and the CR SCRs for the number of

voters ranging from 3 to 50 and the second type is a zoomed in version of the first one in which

we omit the strange reverse type rules, but include all discussed usual SCRs. In the first type

of figures we had to be selective because the graphs of many SCRs lie very close to each other,

while the second type of figures contain only the parts ranging from 15 to 50 voters because

the graphs are steeply increasing for a smaller number of voters. Regarding the first type of

figures, if shown, then the graphs of the BII of the usual SCRs would lie between that of the

BII minimizing SCR and that of the PL, while concerning the reverse type of SCRs they

would lie between that of the BII maximizing SCR and that of the RPL.

We proceed sequentially and start with the Kendall τ distance. From Table 2 we see that

KY has the lowest BIK values with the exception of n = 4, where it is tied with BC and CM .

Since for 3 alternatives the 3AV rule is identical with the constant rule it is not surprising that

they have identical BIK values. There is also a strong connection between PL and 2AV since

the former one just singles out the top alternatives, while the latter one the bottom alternatives,

which also leads to identical BIK values. We observe that among the common rules PL and

MedRank perform worst. We also find that the reverse kind rules perform worst. They have

at the same time highest BIK and NDIK indices. The latter indicates that maximizing the

NDIK , that is searching for the rule which is the furthest away from the closest dictatorial

rule, results in strange rules. By symmetry RKY has the highest NDIK .

Figures 1 and 2 show the results of our simulation for the case of 5 alternatives. They

confirm the results observed in Table 2. On the vertical axis we can see the values of the indices

for the 2500 generated profiles, while on the horizontal axis we can see the number of voters.

5Our Python code is downloadable at http://www.uni-corvinus.hu/~tasnadi/SCRsRank_and_Kemeny_

distances_optimized2b.py.
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SCR \ n 3 4 5 6 7

Plurality 0.314815 0.339506 0.355967 0.368313 0.377915
Bucklin 0.268519 0.321759 0.331019 0.356610 0.361325
MedRank 0.277778 0.326389 0.347222 0.367541 0.383402
2-approval 0.314815 0.339506 0.355967 0.368313 0.377915
3-approval 0.500000 0.500000 0.500000 0.500000 0.500000
Borda 0.268519 0.312500 0.327932 0.345465 0.356181
Copeland 0.259259 0.312500 0.320987 0.344393 0.351323
Kemény-Young 0.256173 0.312500 0.317130 0.344179 0.347322
Reverse plurality 0.685185 0.660494 0.644033 0.631688 0.622085
Reverse Borda 0.731481 0.687500 0.672068 0.654535 0.643819
Reverse Copeland 0.740741 0.687500 0.679012 0.655607 0.648677
Reverse Kemény 0.743827 0.687500 0.682870 0.655821 0.652678
Constant 0.500000 0.500000 0.500000 0.500000 0.500000

Table 2: Exact values of BIK for m = 3

The graphs in Figure 1 show also the values for the obscure reverse Kemény-Young method

and reverse-plurality rule, and strengthen our observation that looking for least dictatorial

rules (as we have defined them) result in strange SCRs since they are getting far away from

the preference relations of all voters. In the middle we see the graph for the constant rule

which always chooses the same fixed preference relation independently from the composition of

a given preference profile. We will show in the next section that the graphs of all anonymous

SCRs tend to the value of the constant rule. Since in Figure 1 the graphs of the meaningful

SCRs would lie close to each other we highlight these ones in Figure 2 so that we can see the

differences between them clearly. We can also see that for slightly more than twenty voters the

MedRank algorithm performs even worse than the plurality rule.
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Figure 1: Balancedness in case of ρK and m = 5
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Figure 2: Balancedness in case of ρK and m = 5

Since the Kemény-Young rule is defined by selecting for each profile a preference relation by
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minimizing the inner sum of ρk it is obvious that no anonymous rule can be more balanced than

KY . We see that the other Condorcet-consistent rule, the Copeland method is the second one

concerning balancedness. The Borda count preforms just slightly worse than CM . The Bucklin

method is more further away, and thereafter the 2-approval and 3-approval methods perform

almost identically. However, this is due to the fact that we are considering 5 alternatives, since

then 2AV means two votes for and three votes against an alternative, while for 3AV we have

the opposite case. Indeed, looking at the figures in the Appendix. we can observe that 2AV and

3AV perform differently for 3 and 4 alternatives. Finally, the plurality rule and the MedRank

algorithm are the least balanced ones.

Considering the fact that computing the Kemény-Young rule is NP-hard (Bartoldi et al., 1989),

our simulations indicate that on average the CM gives results close to KY , which is interesting

since considering only given profiles other rules like the Bucklin rule (more precisely the rule

minimizing the Spearman footrule distance) are mentioned as possible approximations of KY

by Dwork et al. (2002) based on a result by Diaconis and Graham (1977).

Turning to the distance ρ2, we see in Table 3 the exact values for m = 3 and in Figures

3-4 the results of our simulations for m = 5. In all of these we find that the Borda count is

the most balanced one. In fact it has been proven by Dwork et al. (2002) that minimizing

the inner sum of (2.2) results in the Borda count for any profile for which BC gives a linear

ordering, and therefore our simulations are basically in line with this theoretical finding and

show that possible ties (needing the application of a tie-breaking) does not spoil this result for

the investigated SCRs, when taking the averages. Again on the vertical axis we can see the

values of indices for the 2500 generated profiles. In Figure 3 we see the reverse-Borda rule,

which is the least dictatorial rule because of the previously mentioned theoretical finding and

symmetry. The graphs of the most common SCRs are shown in more detail in Figure 4.
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SCR \ n 3 4 5 6 7

Plurality 0.291667 0.319444 0.337963 0.351852 0.362654
Bucklin 0.256944 0.305556 0.318287 0.342303 0.349055
MedRank 0.263889 0.310764 0.334491 0.354681 0.372471
2-approval 0.291667 0.319444 0.337963 0.351852 0.362654
3-approval 0.500000 0.500000 0.500000 0.500000 0.500000
Borda 0.250000 0.288194 0.309414 0.326710 0.339463
Copeland 0.250000 0.291667 0.312500 0.330247 0.343750
Kemény-Young 0.250000 0.306134 0.311343 0.338552 0.342089
Reverse plurality 0.708333 0.680556 0.662037 0.648148 0.637346
Reverse Borda 0.750000 0.711806 0.690586 0.673290 0.660537
Reverse Copeland 0.750000 0.708333 0.687500 0.669753 0.656250
Reverse Kemény 0.750000 0.693866 0.688657 0.661448 0.657911
Constant 0.500000 0.500000 0.500000 0.500000 0.500000

Table 3: Exact values of BI2 for m = 3

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0,2

0,3

0,4

0,5

0,6

0,7

0,8

Plurality Borda Rev.plurality Rev.Borda Constant

Figure 3: Balancedness in case of ρ2 and m = 5
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Figure 4: Balancedness in case of ρ2 and m = 5

We observe that the two Condorcet-consistent rules (CM and KY ) are the closest ones to

the Borda count in terms of balancedness. CM is more balanced in case of even numbers of

voters, while KY in case of odd numbers of voters; however, the difference between them is

minor. The Bucklin method is clearly less balanced, while the next ones in terms of balancedness

are the 2-approval and 3-approval rules, which again perform almost identically. Once again

the plurality rule and the MedRank algorithm are the least balanced ones.

If we look at Table 4 and Figures 5-6 determining BI1, we can make similar observations as

based on Figures 3-4. In both the ordering with respect to balancedness is BC, CM or KY ,

BR, 2AV or 3AV , and PL or MedRank. Nevertheless, the result in Figure 6 is surprising

since the so called MedRank algorithm, which is quite similar to BR, minimizes the Spearman

footrule distance (see Dwork et al., 2002). However, to be precise the statement only holds

true for those profiles for which the median ranks of the alternatives form a permutation of the

ranks. It easy to see that a large set of such profiles does not satisfy this property. For instance,

rank 1 as the median rank of an alternative emerges in a profile if and only if it has a strict

majority of the top positions. m alternatives satisfy this property with probability

m

n∑
k=dn/2e

(
n

k

)(
1

m

)k (m− 1

m

)n−k
.

For example, in case of m = 3 and n = 10 the above probability approximately equals 0.229691.
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SCR \ n 3 4 5 6 7

Plurality 0.453704 0.481481 0.503086 0.516461 0.527092
Bucklin 0.370370 0.449074 0.453704 0.494663 0.493377
MedRank 0.370370 0.449074 0.464506 0.496914 0.513489
2-approval 0.453704 0.481481 0.503086 0.516461 0.527092
3-approval 0.666667 0.666667 0.666667 0.666667 0.666667
Borda 0.384259 0.439815 0.460648 0.482017 0.495842
Copeland 0.370370 0.439815 0.453704 0.481696 0.492913
Kemény-Young 0.370370 0.445602 0.452160 0.486518 0.490805
Reverse plurality 0.870370 0.842593 0.827160 0.812757 0.801783
Reverse Borda 0.884259 0.863426 0.841821 0.828597 0.816915
Reverse Copeland 0.870370 0.856481 0.828704 0.821202 0.805413
Reverse Kemény 0.962963 0.887731 0.881173 0.846815 0.842528
Constant 0.666667 0.666667 0.666667 0.666667 0.666667

Table 4: Exact values of BI1 for m = 3

Many profiles fail this criteria and there can be even other missing ranks. Hence, the necessity

of resolving ties can destroy the optimality of the simple MedRank algorithm over the set of all

profiles and completely different types of rules having ties with a significantly lower probability

can perform better as we can observe in Figure 6. For more details we refer to Subsection 5.3.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
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Figure 5: Balancedness in case of ρ1 and m = 5
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Figure 6: Balancedness in case of ρ1 and m = 5

5 Limits

As we have seen is Section 4 the graphs of the BII indices of the investigated SCRs got closer

to the BII indices of the constant rule. However, the distance for n = 50 in the figures and

also for n = 100 in our simulations (not presented in the paper) remained quite large. In this

section we show that the conjectured convergence results hold true. The simplest case is that

of the BIK index. For the BI2 index we basically need to show that the probability of ties

in the sum of ranks determining the social preference of the Borda count tends to zero as the

number of voters tends to infinity. The result on the BI1 index is less clear cut since in this

case the probability of ties tends to one for the MedRank rule.

5.1 Kendall τ – Kemény-Young

First, we show that for any given number of alternatives the BIK index (the same holds for the

NDIK index) of any anonymous SCR F tends to 1/2 as the number of voters tends to infinity.

It follows from the definition of the Kemény-Young rule (KY )6 that for any anonymous

SCR F we must have

BIK(KY ) ≤ BIK(F ) ≤ BIK(RKY ),

6There can be more than one KY rules, however in this case we can pick anyone of them.
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where RKY stands for the reverse Kemény-Young rule. Let T = {(ai, aj) ∈ A2 | i < j}. Then

BIK(KY ) =
1

n

∑
i∈N

1

(m!)nCK

∑
�∈Pn

∑
(a,b)∈T

1aKY (�)b,b�ia

=
∑

(a,b)∈T

1

n

∑
i∈N

1

(m!)nCK

∑
�∈Pn

1aKY (�)b,b�ia, (5.5)

where 1aKY (�)b,b�ia equals 1 if aKY (�)b and b �i a are true, and zero otherwise. To determine

the inner sum of the last sum in (5.5) we approximate it by the following sum

∑
�∈Pn

1aKY (�−i)b,b�ia =
(m!)n

2
, (5.6)

where the equality follows from the observation that in half of the preference relations of all

profiles �−i∈ Pn−1 the rankings of a and b determined by KY agrees with their rankings in

�i∈ P because the former subprofiles and the later preferences are independent. Note that

since, as it can be verified, BIK(KY ) +BIK(RKY ) = 1 we must have BIK(KY ) ≤ 1/2.

For notational convenience we set i = n, which can be done without loss of generality by

the anonymity of KY . Observe that, by taking the LHS of (5.6) as the point of departure, in

order to bound the inner sum of (5.5) from below it is sufficient to give an upper bound on the

number of cases in which merging �n with �−n changes aKY (�−n)b to bKY (�)a. The latter

change in the ordering of a and b can only occur if the number of cumulative signed inversions7

between them in �−n just differs by at most 1. For a given profile � we shall assign 1 to those

preferences in which a �i b and −1 to the opposite case. Since the preference relations for

each voter can be selected independently in Pn we can describe the sequence of cumulative

signed inversions between a and b for the sequence of subprofiles (�1, . . . ,�j) by the Bernoulli

random walk. In particular, a sequence of cumulative signed inversions in a subprofile �−n can

be identified with the first n− 1 steps of a realization of the Bernoulli random walk. Therefore,

the probability that the absolute value of the number of cumulative signed inversions between

a and b in �−n is at most 1 tends to 0 as n tends to infinity. This implies that the proportion

of profiles for which we have

1aKY (�)b,b�na < 1aKY (�−n)b,b�na (5.7)

tends to 0. For a given n we shall denote by Nn ⊂ Pn the set of those profiles for which (5.7)

7By cumulative signed inversions in a profile � we mean the difference between the number of preferences in
which we have a �i b and the number of preferences in which we have b �i a.
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holds true. Then ∑
�∈Pn

1aKY (�−n)b,b�na− | Nn |<
∑
�∈Pn

1aKY (�)b,b�na,

and therefore it follows that

BIK(KY )→
∑

(a,b)∈T

1

n

∑
i∈N

1

(m!)nCK

(m!)n

2
=

1

2

1

CK

1

2
(m− 1)m =

1

2

as n tends to infinity.

It can be easily verified that BIK(CR) = 1/2. Therefore, we have established the following

proposition, which is in line with Figure 1.

Proposition 1. For any anonymous SCR F we have BIK(F )→ BIK(CR) = 1/2 as n tends

to infinity.

5.2 Spearman’s Rank Correlation – Borda Count

Second, we show that for any given number of alternatives the BI2 index (the same holds for

the NDI2 index) of any anonymous SCR F tends to 1/2 as the number of voters tends to

infinity.

The following lemma governs our asymptotic results.

Lemma 5.1. The probability that an additional voter changes the ranking obtained by the Borda

count tends to zero as n tends to infinity.

Proof. For notational convenience we let i = n be the additional voter, which can be assumed

without loss of generality by the anonymity of BC. We will show that the ratio of profiles on

which BC(�−n) does not equal BC(�) tends to zero as n tends to infinity. In order to show that

we start with picking two arbitrary distinct alternatives aj and ak. Let us consider the random

walk defined by the difference in the sum of ranks of alternatives aj and ak. In particular, we

consider the random variable Xn =
∑n−1

i=1 (rk[aj ,�i]−rk[ak,�i]), where n = 0, 1, . . .. Note that

−m < Xn < m is a necessary condition for ajBC(�−n)ak and akBC(�)aj . The state space of

the random walk, which is a Markov process, is S = Z, the initial state is X0 = 0, the transition

probabilities are ps,s+d = P (Xi+1 = s+ d | Xi = s) = (m− d)/(m(m− 1)) if d = 1, . . . ,m− 1

and ps,s−d = P (Xi+1 = s − d | Xi = s) = (m − d)/(m(m − 1)) if d = 1, . . . ,m − 1 for all

i = 0, 1, . . . , n − 1. Let us denote by p
(t)
i,j the transition probability from state i to state j in t

steps. The defined random walk is

1. persistent, meaning that it will return to the starting state sometime with probabil-

ity one, which can be verified by Billingsley (1995) Theorem 8.2.(ii) since
∑∞

t=1 p
(t)
i,j >

1
m

∑∞
t=1 p̃

(t)
i,j =∞, where p̃

(t)
i,j stands for the respective transition probabilities of the sym-

metric Bernoulli random walk,
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2. irreducible, that is all states can be reached from every other state in a finite number of

transitions and

3. aperiodic since with the exception of X1 we have P (Xi = 0) > 0 for all i ≥ 2.

By Billingsley (1995) Theorem 8.8. we know that limn→∞ pij = 0 for all i and j. Therefore, for

any arbitrarily small ε > 0 and for sufficiently large n we have ε/(m(m− 1)) > P (−m < Xn <

m). Now even considering all distinct pairs of alternatives the probability that adding an nth

voter changes the result of BC is less than ε and tends to zero as n tends to infinity.

We formulate a simple corollary of Lemma 5.1.

Corollary 1. The probability that BC has tied alternatives or put it otherwise alternatives with

identical rank sums tend to zero as n tends to infinity.

Dwork et al. (2002) have shown that for any �∈ Pn for which the Borda count determines

a linear ordering BC minimizes Spearman’s rank correlation. Taking their result, Corollary 1

and symmetry into consideration, we know that for any anonymous SCR F we must have

lim
n→∞

BI2(BCτ ) ≤ lim
n→∞

BI2(F ) ≤ lim
n→∞

BI2(RBCτ−1).

We have

BI2(BCτ ) =
1

n

∑
i∈N

1

(m!)nC2

∑
�∈Pn

m∑
j=1

(rk[aj , BCτ (�)]− rk[aj ,�i])2

=

m∑
j=1

1

n

∑
i∈N

1

(m!)nC2

∑
�∈Pn

(rk[aj , BCτ (�)]− rk[aj ,�i])2. (5.8)

To determine the inner sum of the last sum in (5.8) we approximate it by the following sum

BI2(BCτ )→
∑

�−i∈Pn−1

∑
�i∈P

(rk[aj , BCτ (�−i)]− rk[aj ,�i])2. (5.9)

Note that each alternative aj is ranked lth for any l = 1, . . . ,m with probability 1/m by both

a random BCτ (�−i) and �i, where in the former case only its limit equals 1/m. Concerning

a fixed alternative a, there are 2(m − 1), 2(m − 2), . . . , 2(m − l), . . . , 2 · 2, 2 · 1 ways such that

the rank distances of a in BCτ (�−i) and �i equal 1, 2, . . . , l, . . . ,m − 2,m − 1, respectively.
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Moreover, �−i and �i are drawn independently.

BI2(BCτ ) → (m!)n

m2
2
(
(m− 1) + (m− 2)22 + · · ·+ (m− l)l2 + · · ·+ 1(m− 1)2

)
=

(m!)n

m2
2
(
m− 1 +m22 − 23 + · · ·+ml2 − l3 + · · ·+m(m− 1)2 − (m− 1)3

)
=

(m!)n

m2
2
(
m(12 + 22 + · · ·+ (m− 1)2)− (13 + 23 + · · ·+ (m− 1)3

)
=

(m!)n

m2
2

(
m

(m− 1)m(2m− 1)

6
− (m− 1)2m2

4

)
= (m!)n(m− 1)

(
2m− 1

3
− m− 1

2

)
= (m!)n

1

6
(m2 − 1) (5.10)

Note that since, as it can be verified, BI2(BCτ )+BI2(RBCτ−1) = 1 we must have BI2(BCτ ) ≤
1/2. Therefore, calculating with the approximation (5.10) of the inner sum (5.9), it follows that

BI2(BCτ ) given by (5.8) tends to
1

C2

1

6
m(m2 − 1) (5.11)

Hence, we have obtained the following proposition.

Proposition 2. For any anonymous SCR F we have BI2(F )→ 1/2 as n tends to infinity.

Next we determine the BI2 index of the constant rule. Note that any alternative aj is

ranked lth with probability 1/m by any voter i. Without loss of generality we can assume

that the constant rule is given by a1 �∗ a2 �∗ · · · �∗ am. The possible rank distances from

alternative al are l− 1, l− 2, . . . , 1, 0, 1, . . . ,m− l. If we take all alternatives into consideration,

then there are 2(m− 1), 2(m− 2), . . . , 2(m− l), . . . , 2 · 2, 2 · 1 ways such that the rank distances

of an alternative in �∗ and �i equal 1, 2, . . . , l, . . . ,m− 2,m− 1, respectively. Therefore,

BI2(CR) =
1

n

∑
i∈N

1

(m!)nC2

m∑
j=1

∑
�∈Pn

(rk[aj ,�∗]− rk[aj ,�i])2

=
1

n

∑
i∈N

1

(m!)C2

m∑
j=1

∑
�i∈P

(j − rk[aj ,�i])2

=
1

mC2
2
(
(m− 1)12 + · · ·+ (m− l)l2 + · · ·+ 1(m− 1)2

)
=

1

2
, (5.12)

where we have abbreviated our calculations since they are similar to those ones in (5.10).

Proposition 3. BI2(CR) = 1/2 for any n.

Propositions 2 and 3 are in line with Figure 3.
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5.3 Spearman’s Footrule – MedRank

Third, we turn to the limit of the BI1 index (the same holds for the NDI1 index) and show

that its limit for any anonymous SCR F tends to 2/3 for odd m and to values close to 2/3

for even m as the number of voters tends to infinity. We cannot directly proceed in the same

way as in Subsections 5.1 and 5.2 because it was apparent from Figure 5 and its discussion

that the MedRank algorithm does not bound the other anonymous SCRs in the same way as

the Kemény-Young method in Subsection 5.1 and the Borda count in Subsection 5.2. The

MedRank algorithm only bounds the Spearman footrule distance of other anonymous SCRs on

the set of profiles for which all median ranks are different. However, a MedRank∗ algorithm

not necessarily resulting in a linear ordering can be used to bound the other anonymous SCRs.

The MedRank∗, henceforth briefly MR∗, algorithm that assigns to each alternative its

median rank, that is MR∗ maps from Pn to {1, . . . ,m} and is not an SCR, can result in weak

preferences. In addition, it assigns ranks to the alternatives and not just a weak ordering of

them.8 Nevertheless, BI1(MR∗) can be still defined in the same was as for SCRs. Furthermore,

since for any j = 1, . . . ,m and any �∈ Pn the solution of

min
r=1,...,m

∑
i∈N
|r − rk[aj ,�i]|

is the median of the ranks rk[aj ,�1], . . . , rk[aj ,�n] by the standard property of the minimum

of the sum of absolute differences from a set of given numbers. Note that for any j and any �
we have independent minimization problems, and therefore we get

BI1(MR∗) ≤ BI1(F )

for any anonymous SCR F .

We have

BI1(MR∗) =
1

n

∑
i∈N

1

(m!)nC1

∑
�∈Pn

m∑
j=1

|rk[aj ,MR∗(�)]− rk[aj ,�i]|

=

m∑
j=1

1

n

∑
i∈N

1

(m!)nC1

∑
�∈Pn

|rk[aj ,MR∗(�)]− rk[aj ,�i]|. (5.13)

To determine the inner sum of the last sum in (5.13) we approximate it by the following sum

BI1(MR∗) =
∑

�−i∈Pn−1

∑
�i∈P

|rk[aj ,MR∗(�−i)]− rk[aj ,�i]|. (5.14)

8This is more admissive than the usual rank assignments since, for instance, there can be two gold medalists
in the olympic games, but there cannot be two silver medalists without a gold medalist.
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Note that each alternative aj ∈ A is ranked rth for any r = 1, . . . ,m with probability 1/m by

a random �i. However, at first sight may be surprisingly this does not hold true for a random

MR∗(�−i).
Our next step is to determine for notational convenience the asymptotic distribution of

MR∗(�) as n tends to infinity, which is the same as the asymptotic distribution of MR∗(�−i).
Pick an arbitrary alternative a and note that for each �l, where l = 1, . . . , n, alternative a is

ranked in the top r positions with probability r/m. If for a given n we denote by X
(r)
n the

number of voters ranking a in the top r positions, then X
(r)
n is binomially distributed with

parameters n and r/m. Hence, the probability that a is ranked in the top r positions by MR∗

equals

P (X(r)
n ≥ bn/2c+ 1) =

n∑
i=bn/2c+1

(
n

i

)( r
m

)i (
1− r

m

)n−i
(5.15)

and the probability that a is ranked rth by MR∗ equals

P (MR∗ = r) = P (X(r)
n ≥ bn/2c+ 1)− P (X(r−1)

n ≥ bn/2c+ 1).

We recall the result on the binomial distribution in Arratia and Gordon (1989, Theorem 1),

which we will employ to give an upper bound of the probability in (5.15). Let Yn be binomially

distributed with parameters n and p. Then for any n = 1, 2, . . . and any p < a < 1 we have

P (Yn ≥ an) ≤ e−n
(
a log a

p
+(1−a) log 1−a

1−p

)
. (5.16)

In our case p takes values 1/m, 2/m,...,(m−1)/m and because of symmetry we only need to give

an upper bound of the probabilities in (5.15) for values 1/m, 2/m,...,bm/2c since we can give

related required lower bounds on the probabilities in (5.15) for values bm/2c+ 1,...,(m− 1)/m

by considering the complementary event. For the missing case p = m/2 if m is even, we will

determine (5.15) directly. Therefore, we start with the case of p < a = 1/2. Substituting these

values into (5.16), we get

P (Yn ≥
1

2
n) ≤ e−

1
2
n
(
log 1

2p
+log 1

2(1−p)

)
= e
− 1

2
n log 1

4p(1−p) ,

which in turn implies by p(1 − p) < 1/4 that P (Yn ≥ 1
2n) tends to zero as n tends to infinity.

Therefore, we also have that for r = 1, 2, . . . , b(m − 1)/2c the probabilities in (5.15) tend to

zero as n tends to infinity. Now if m is even, that is m = 2k, then

n∑
i=bn/2c+1

(
n

i

)(
1

2

)i(
1− 1

2

)n−i
=

1

2n+1
2n =

1

2
.
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From our limiting results and symmetry (by considering the complementary events) we

conclude that when n tends to infinity that the probabilities in (5.15) tend to 1/2 and 1 for

r = m/2 and r = m/2+1,9 respectively, while for r smaller than the median(s) and for r larger

than the median(s) they tend to zero and one as n tends to infinity, respectively.

Now we are ready to determine the limit of BI1(MR∗) as n tends to infinity. From the

results on MR∗ summarized in the previous paragraph we know that for odd m = 2k + 1

each alternative is ranked k + 1th with probability one in the limit and for even m = 2k each

alternative is ranked kth and k + 1th with probability one half each in the limit. Therefore,

for odd m = 2k + 1 the possible rank distances for any alternative in MR∗(�−i) and �i are

k, k − 1, . . . , 1, 0, 1, . . . , k − 1, k. Hence, for odd m = 2k + 1 we get

BI1(MR∗) → (m!)n

m
(k + (k − 1) + · · ·+ 1 + 0 + 1 + · · ·+ (k − 1) + k)

=
(m!)n

m
2

1

2
k(k + 1) =

(m!)n

4

m2 − 1

m
. (5.17)

which in turn implies that BI1(MR∗) given by (5.13) tends to

BI1(MR∗)→ 1

C1
m

1

4

m2 − 1

m
=

1

4

m2 − 1

m− 1 + (m− 1)2/2
=

1

2

m+ 1

m+ 3
(5.18)

For even m = 2k the possible rank distances are still k, k − 1, . . . , 1, 0, 1, . . . , k − 1, k if m is

even, however the rank distance k has half the probability of the other rank distances. Hence,

we get

BI1(MR∗) → (m!)n

m

[
1

2
((k − 1) + (k − 2) + · · ·+ 1 + 0 + 1 + · · ·+ (k − 1) + k)

+
1

2
(k + (k − 1) + · · ·+ 1 + 0 + 1 + · · ·+ (k − 2) + (k − 1))

]
=

(m!)n

m

[
2

1

2
(k − 1)k + k

]
= (m!)n

m

4
. (5.19)

which in turn implies that BI1(MR∗) given by (5.13) tends to

BI1(MR∗)→ 1

C2
m
m

4
=

1

2
. (5.20)

From Figure 5 we see that 1/2 can only be a nontight lower bound. However, as we will see

later after investigating the constant rule, it conveys a substantial message.

We determine the BI1 value of the constant rule. Without loss of generality we can assume

that a1 �∗ a2 �∗ · · · �∗ am. The possible rank distances from alternative al are l − 1, l −
9We have these cases only if m is even.
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2, . . . , 1, 0, 1, . . . ,m − l. If we take all alternatives into consideration, then there are 2(m −
1), 2(m− 2), . . . , 2(m− l), . . . , 2 · 2, 2 · 1 ways such that the rank distances of an alternative in

�∗ and �i equal 1, 2, . . . , l, . . . ,m− 2,m− 1, respectively. Moreover, �∗ is fixed, while �i are

drawn independently. Furthermore, each alternative is ranked lth with probability 1/m in �i.

BI1(CR) =
1

C1

1

m
2 ((m− 1) + (m− 2)2 + · · ·+ (m− l)l + · · ·+ 1(m− 1))

=
1

C1m
2
(
m− 1 +m2− 22 + · · ·+ml − l2 + · · ·+m(m− 1)− (m− 1)2

)
=

1

C1m
2
(
m(1 + 2 + · · ·+ (m− 1))− (12 + 22 + · · ·+ (m− 1)2

)
=

1

C1m
2

(
m

1

2
m(m− 1)− (m− 1)m(2m− 1)

6

)
=

m− 1

C1

(
m− 2m− 1

3

)
=

m2 − 1

3bm2/2c
, (5.21)

which equals 2/3 if m is odd and 2/3(1 − 1/m2) if m is even. We formulate our result as a

proposition.

Proposition 4. For any n the balancedness index BI1(CR) = 2/3 if m is odd and BI1(CR) =

2/3(1− 1/m2) if m is even.

From Figure 5 (and also from the ones in the Appendix for 3 and 4 alternatives) we see that

for the given tie-breaking rule the Borda count has a lower BI1 index than the other investigated

SCRs including both the MedRank algorithm and the Bucklin rule, where the latter one is a

refined version of the former one. Therefore, we determine the limit of the BI1(BCτ ). We have

BI1(BCτ ) =
1

n

∑
i∈N

1

(m!)nC1

∑
�∈Pn

m∑
j=1

|rk[aj , BCτ (�)]− rk[aj ,�i]|

=
m∑
j=1

1

n

∑
i∈N

1

(m!)nC1

∑
�∈Pn

|rk[aj , BCτ (�)]− rk[aj ,�i]|. (5.22)

To determine the inner sum of the last sum in (5.22) we approximate it by the following sum

BI1(BCτ )→
∑

�−i∈Pn−1

∑
�i∈P

|rk[aj , BCτ (�−i)]− rk[aj ,�i]|. (5.23)

Note that each alternative aj is ranked lth for any l = 1, . . . ,m with probability 1/m by both

a random BCτ (�−i) and �i, where in the former case only its limit equals 1/m. Concerning

a fixed alternative a, there are 2(m − 1), 2(m − 2), . . . , 2(m − l), . . . , 2 · 2, 2 · 1 ways such that

the rank distances of a in BCτ (�−i) and �i equal 1, 2, . . . , l, . . . ,m − 2,m − 1, respectively.
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Moreover, �−i and �i are drawn independently.

BI1(BCτ ) → (m!)n

m2
2 ((m− 1) + (m− 2)2 + · · ·+ (m− l)l + · · ·+ 1(m− 1))

=
(m!)n

m2
2

(
m
m(m− 1)

2
− (m− 1)m(2m− 1)

6

)
=

(m!)n

m
(m− 1)

(
m− 2m− 1

3

)
= (m!)n

m2 − 1

3m
, (5.24)

where we have skipped a few steps since they are similar to those ones in (5.21). Therefore,

calculating with the approximation of the inner sum (5.24), it follows that BI1(BCτ ) given by

(5.22) tends to
1

C1

1

3
(m2 − 1). (5.25)

From (5.25) for odd m we get BI1(BCτ ) = 2/3 and for even m we get BI1(BCτ ) = 2/3(1 −
1/m2). These values are the same as for the constant rule. Furthermore, since we have to do

exactly the same calculations for determining BI1(RBCτ−1) we obtain the same values, and

thus we have obtained the following proposition.

Proposition 5. For any anonymous SCR F for which

BI1(BCτ ) ≤ BI1(F ) ≤ BI1(RBCτ−1)

holds for any n we have BI1(BCτ )→ BI1(F )→ BI1(CR) as n tends to infinity.

The main message from this subsection is that while in Subsections 5.1 and 5.2 the chosen

anonymous tie-breaking had no effect on the orderings obtained by an anonymous SCR and

also on their limits, for the Spearman’s footrule it has a substantial effect and changes its limit

extremely. When considering BI1, for large n basically the tie-breaking rule enforces the chosen

linear ordering and the rules themselves only play a negligible role.

6 Conclusion

In this paper we have ranked common SCRs based on the Kendall τ , the Spearman rank

correlation and the Spearman footrule distances. In line with these distances we have defined

respective balancedness and non-dictatorship indices by considering the distance of an SCR

from the dictatorial rules. In this way we have also given a new interpretation of the traditional

literature which derives SCRs as a solution of distance minimization problems.

For three alternatives and at most seven voters we have determined the indices by employing

the brute force algorithm, while for a larger number of voters and 3 to 5 alternatives we took

a random sample of 2500 profiles. Our main findings were that the Borda count, the Copeland
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method and the Kemény-Young method were the most balanced rules, or put it otherwise for

the three distances we have considered these rules have the smallest average sum of normalized

distances. We have carried out the same calculations and estimations for the distance function

ρ∞(F,G) =
∑
�∈Pn

max
i=1,...,m

|rk[ai, F (�)]− rk[ai, G(�)]|

and found the same results. We have not included these results into this paper since ρ∞ is not

related to a known SCR and the paper contains already a large number of figures.

We found that minimization with respect to the Spearman footrule is sensitive on how

ties are broken. The usually associated MedRank algorithm with this distance function, as

its optimal solution, performs poorly if ties have to be broken. One of its refined version, the

Bucklin rule behaves significantly better. Another escape route is to allow for indifferences in

the socially chosen preference relation. However, even in this case the way how we assign ranks

to tied alternatives matters.

Finally, we outline possible further research directions. In our analysis we presented our

results for a given number of alternatives m and let the number of voters n vary. Clearly,

this is the more interesting case in the social choice context. However, in computer science

applications the other case in which we fix n and let m vary can be equally interesting. Since

m alternatives imply m! rankings, this analysis is far less tractable. Already determining the

Kemény-Young ranking is NP-hard (Bartoldi et al., 1989). Therefore, we expect less results

from this research direction. Furthermore, additional limits, in which we tend only with m to

infinity or with both m and n, may be determined. Another strand of research would be not to

simply take the uniform distribution above the set of profiles, but consider other manageable

alternative distributions.
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Appendix

Figures 7-18 contain the same figures for m = 3 and m = 4 as those ones in Section 4 for

m = 5. There is one interesting difference worthwhile to mention: for four alternatives and

the Spearman footrule distance the Bucklin rule is the second best after the Borda count and

the MedRank algorithm itself does perform somewhat better than in the other two Figures

for 3 and 5 alternatives. This might indicate a difference in the performance of the Bucklin

method between an odd and even number of alternatives. However, it also might be the case
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that this only holds for small even number of alternatives. To get more insight we have also

included for the Spearman footrule distance the case of six alternatives in Figures 19-20. We can

observe that the Borda rule is clearly the best, but now we cannot really distinguish between

the Kemény-Young method, the Copeland method and the Bucklin rule. We conjecture that for

eight alternatives the Bucklin rule will be outperformed by the Kemény-Young and Copeland

methods. In several zoomed in versions of our figures we made only parts of the BII graph of

the MedRank algorithm visible to improve the clarity of the figures.
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Figure 7: Balancedness in case of ρK and m = 3

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0,4

0,41

0,42

0,43

0,44

0,45

0,46

Plurality Bucklin MedRank 2-approval 3-approval Borda Copeland Kemeny

Figure 8: Balancedness in case of ρK and m = 3
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Figure 9: Balancedness in case of ρK and m = 4
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Figure 10: Balancedness in case of ρK and m = 4
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Figure 11: Balancedness in case of ρ2 and m = 3
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Figure 12: Balancedness in case of ρ2 and m = 3
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Figure 13: Balancedness in case of ρ2 and m = 4
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Figure 14: Balancedness in case of ρ2 and m = 4
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Figure 15: Balancedness in case of ρ1 and m = 3
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Figure 16: Balancedness in case of ρ1 and m = 3
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Figure 17: Balancedness in case of ρ1 and m = 4
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Figure 18: Balancedness in case of ρ1 and m = 4
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Figure 19: Balancedness in case of ρ1 and m = 6
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Figure 20: Balancedness in case of ρ1 and m = 6

36



References

[1] Andjiga, N.G., A. Y. Mekuko, and I. Moyouwou, (2014), Metric rationalization of

social welfare functions, Mathematical Social Sciences, 72, 14-23.

[2] Arratia, R. and L. Gordon, (1989), Tutorial on large deviations for the binomial dis-

tribution, Bulletin of Mathematical Biology, 51, 125-131.

[3] Arrow, K. (1951), Social choice and individual values, Wiley, New York.

[4] Bartholdi, J., C. A. Tovey, and M. A. Trick, (1989), Voting schemes for which it can

be difficult to tell who won the election, Social Choice and Welfare, 6, 157-165.
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