
Munich Personal RePEc Archive

Robustness, Low Risk-Free Rates, and

Consumption Volatility in General

Equilibrium

Luo, Yulei and Nie, Jun and Young, Eric

5 July 2017

Online at https://mpra.ub.uni-muenchen.de/80046/

MPRA Paper No. 80046, posted 05 Jul 2017 17:53 UTC



Robustness, Low Risk-Free Rates, and Consumption Volatility in

General Equilibrium

Yulei Luo∗

The University of Hong Kong

Jun Nie†

Federal Reserve Bank of Kansas City

Eric R. Young‡

University of Virginia

Academy of Financial Research, Zhejiang University

July 5, 2017

Abstract

This paper develops a tractable continuous-time recursive utility (RU) version of the Huggett

(1993) model to explore how the preference for robustness (RB) interacts with intertemporal

substitution and risk aversion and then affects the interest rate, the dynamics of consumption

and income, and the welfare costs of model uncertainty in general equilibrium. We show that

RB reduces the equilibrium interest rate and the relative volatility of consumption growth to

income growth when the income process is stationary, but our benchmark model cannot match

the observed relative volatility. An extension to an RU-RB model with a risky asset is successful

at matching this ratio. The model implies that the welfare costs of uncertainty are very large.
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1 Introduction

Hansen and Sargent (1995) first formally introduced the preference for robustness (RB, a concern for

model misspecification) into linear-quadratic-Gaussian (LQG) economic models.1 In robust control

problems, agents are concerned about the possibility that their true model is misspecified in a

manner that is difficult to detect statistically; consequently, they make their optimal decisions as if

the subjective distribution over shocks is chosen by an evil agent in order to minimize their expected

lifetime utility.2 As showed in Hansen, Sargent, and Tallarini (1999), Luo and Young (2010), and

Luo, Nie, and Young (2012), robustness models can produce precautionary savings even within the

class of discrete-time LQG models, which leads to analytical simplicity. The precautionary savings

induced by a concern about robustness emerges because the agent makes pessimistic forecasts of

future income and wants to protect himself against mistakes in specifying conditional means of the

income shocks. Unfortunately, if we consider problems outside the LQG setting (e.g., when the

utility function is constant-absolute-risk-averse, i.e., CARA, or constant-relative-risk-averse, i.e.,

CRRA), RB-induced worst-case distributions are generally non-Gaussian, which generally renders

the model analytically intractable.3

In intertemporal consumption-savings problems, prudent households save today for three rea-

sons: (i) they anticipate future declines in income (saving for a rainy day), (ii) they face uninsurable

risks (precautionary savings), and (iii) they are patient relative to the interest rate. For example,

the “permanent income hypothesis” (PIH) of Friedman (1957) emphasizes motive (i) in which con-

sumption is solely determined by permanent income (the annuity value of total wealth including

both financial wealth and human wealth) and follows a random walk (see Hall 1978).4 In contrast,

Caballero (1990) examined a precautionary saving motive due to the interaction of risk aversion

1See Hansen and Sargent (2007) for a textbook treatment on robustness. It is worth noting that we can use

either robust decision-making or recursive multiple-prior utility (Chen and Epstein 2002) due to ambiguity aversion

to capture the same idea that the decision maker is concerned that their model is misspecified and thus considers a

range of models when making decisions (Gilboa and Schmeidler 1989). In this paper, for simplicity, we follow the

Hansen and Sargent (2007) to use the robust control specification to model the basic idea of the multiple-priors utility

model.
2Many empirical and experimental studies have repeatedly confirmed Ellsberg’s conjecture that a preference for

robustness (or ambiguity aversion) would lead to a violation of the Savage axioms. For example, Ahn, Choi, Gale, and

Kariv (2014) used a rich experiment data set to estimate a portfolio-choice model and found that about 40 percent

of subjects display either statistically significant pessimism or ambiguity aversion.
3See Chapter 1 of Hansen and Sargent (2007) for discussions on the computational difficulties in solving non-

LQG RB models, and Bidder and Smith (2012) and Young (2012) for numerical methods to compute the worst-case

distributions.
4This statement holds, for example, if households have quadratic utility and have access to a single risk-free bond

with a constant return. If utility is not quadratic, the random walk nature of consumption is only approximately

true, but the PIH still holds.

1



and unpredictable future income uncertainty when the consumer has convex marginal utility. The

Caballero model leads to a constant precautionary savings demand and a constant dissavings term

due to relative impatience. Wang (2003) showed in a Caballero-Huggett equilibrium model that the

precautionary saving demand and the impatience dissavings term cancel out in general equilibrium

and the PIH reemerges.

Conceptually, the precautionary savings coming from a concern about robustness differs in

structure from that coming from the interaction between future uncertainty and the convex marginal

utility. Although Hansen and Sargent (1995, 2007) showed that the max-min robustness model is

observationally equivalent to the corresponding risk-sensitive model in which the EIS is set to be

one, conceptually, the RB models mentioned above do not explicitly model the interactions between

robustness, risk aversion and intertemporal substitution when examining consumption, saving and

investment decisions. This paper therefore fills the gap by providing a general recursive utility

framework to explore the general equilibrium implications of the preference for robustness for the

risk-free rate and the cross-sectional dispersion of consumption (relative to income).5 We investigate

both the theoretical mechanism (how RB influences the equilibrium interest rate and the relative

dispersion/volatility of consumption to income) and the empirical performance (whether plausibly

calibrated values of RB lead the model to fit the data better). Specifically, the main goal of this

paper is to construct a tractable continuous-time dynamic stochastic general equilibrium (DSGE)

precautionary saving model in which RB consumers have recursive utility with exponential risk and

intertemporal attitudes and face uninsurable labor income.6 We disentangle two distinct aspects of

preferences: the agent’s elasticity of intertemporal substitution (EIS; attitudes towards variation in

consumption across time) with the coefficient of absolute risk aversion (CARA; attitudes towards

variation in consumption across states).7

As the first contribution of this paper, we show that this continuous-time DSGE model featuring

incomplete markets, RB, and the separation of risk aversion and intertemporal substitution can be

solved explicitly. We find that the effective coefficient of absolute risk aversion (e) is determined
by the interaction between the true CARA (), the EIS (), and the degree of RB () via the

5For applications of recursive utility (RU) in intertemporal consumption-portfolio chice and asset pricing, see, for

example, Epstein and Zin (1989), Campbell (2003), Vissing-Jorgensen and Attanasio (2003), and Guvenen (2006).
6See Cagetti, Hansen, Sargent, and Williams (2002), Anderson, Hansen, and Sargent (2003), Maenhout (2004),

Kasa (2006), and Kasa and Lei (2017) for the applications of robustness in continuous-time models.
7Constant-relative-risk-aversion (CRRA) utility functions are more common in macroeconomics, mainly due to

balanced-growth requirements. CRRA utility would greatly complicate our analysis because the intertemporal con-

sumption model with CRRA utility and stochastic labor income has no explicit solution and leads to non-linear

consumption rules. See Kasa and Lei (2017) for a recent application of RB in a continuous-time Blanchard-Yaari

model with CRRA utility and wealth hetergeneity.
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following formula:

e =  +





It is clear from this expression that the EIS affects individual consumption-saving-portfolio rules.

Second, we show that a general equilibrium under RB can be constructed in the vein of Bewley

(1986) and Huggett (1993).8 We also show that the general equilibrium is unique in such an

RB-RU economy. Furthermore, we find that the EIS plays an important role in affecting the

equilibrium properties of the model economy. In particular, we show that an increase in EIS affects

the equilibrium interest rate through two channels: (i) it increases the relative importance of the

impatience-induced dissaving effect (the direct channel) and (ii) it reduces the precautionary saving

amount by reducing the effect of RB (the indirect channel). In general equilibrium, for given EIS

and CARA, we find that the interest rate decreases with the degree of RB. The intuition is that

the stronger the preference for RB, the greater the amount of model uncertainty, leading to strong

precautionary savings effects and therefore low interest rates. In addition, we show that the relative

volatility of consumption growth to income growth is determined only by the equilibrium interest

rate and the persistence coefficient of the income process; the relative volatility decreases with RB

if the income process is stationary.

Third, after calibrating the RB parameter using the detection error probabilities (DEP), we

find that RB has significant effects on the equilibrium interest rate and consumption volatility. In

the U.S. economy the average real risk-free interest rate averaged roughly 187 percent between

1981 and 2010, and is only about 137 percent if the sample is from 1981 to 2015.9 The full-

information rational expectations (FI-RE) model requires the coefficient of risk aversion parameter

to be 24 to match this rate if the EIS is 08, and requires the coefficient to be 15 if the EIS is 05.10

In contrast, when consumers take into account model uncertainty, the model can generate a low

equilibrium interest rate with much lower values of the coefficient of risk aversion.11 In addition, we

find that as income uncertainty increases, the relative volatility of consumption growth to income

growth decreases through the general equilibrium interest rate channel.12 We also show that if the

8Wang (2003) constructs a general equilibrium under full-information rational expectations (FI-RE) in the same

Bewley-Huggett type model economy with CARA utility that we study. Angeletos and Calvet (2006) characterize

a closed-form recursive general equilibrium in a neoclassical growth model with idiosyncratic production risk and

incomplete markets.
9Here the numbers are computed using CPI to measure inflation. Using PCE leads to similar results. See Table

1 for different measures of the risk-free rates.
10We normalize the mean consumption level to be 1, so the coefficient of relative risk aversion is equal to the

coefficient of absolute risk aversion.
11Barillas, Hansen, and Sargent (2009) showed that most of the observed high market price of risk in the U.S. can

be reinterpreted as a market price of model uncertainty and the risk-aversion parameter can thus be reinterpreted as

measuring the representative agent’s doubts about the model specification.
12This theoretical result might provide a potential explanation for the empirical evidence documented in Blundell,
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benchmark model generates the observed low risk-free rate, the model’s predicted relative volatility

of consumption to income is well below the empirical counterpart. The reason was noted in the

previous paragraph — the relative volatility depends only on the interest rate and the persistence of

income changes, and this persistence is too low relative to the low interest rate to generate adequate

consumption volatility.

To correct this anomaly we extend our benchmark model to a model with one risky asset. The

presence of the risky asset affects equilibrium precautionary saving through two channels: (i) the

risky asset can be used to hedge the labor income risk and (ii) it increases the amount of total

uncertainty when the net supply of the risky asset is positive. More importantly, we find that the

relative volatility of consumption growth to income growth is increasing in the supply of the risky

asset and the risk-free rate is decreasing. For plausibly calibrated parameter values of RB, we

find that the extended model can simultaneously generate the observed low risk free rate and high

relative volatility of consumption to income in the US economy.

Finally, we use our model to assess the welfare gains associated with eliminating model un-

certainty — what would an agent pay in order to find out exactly (and with complete confidence)

the stochastic process affecting his income? We find that these numbers are very large — the cost

can be as large as 25 percent of permanent income. These costs are increasing in the aversion to

model uncertainty and decreasing in the elasticity of intertemporal substitution (EIS). In addition,

we find that the general equilibrium effects increase the cost relative to partial equilibrium with a

fixed interest rate. In GE, as model uncertainty is eliminated precautionary savings falls, leading

to higher interest rates; in turn, higher interest rates facilitate consumption smoothing, leading to

larger welfare gains.

This paper is organized as follows. Section 2 presents a robustness version of the Caballero—

Bewley-Huggett type model with incomplete markets and precautionary savings. Section 3 discusses

the general equilibrium implications of RB for the interest rate and the joint dynamics of consump-

tion and income. Section 4 presents our quantitative results after estimating the income process

and calibrating the RB parameter. Section 5 considers the extension to the multiple-asset case.

Section 6 concludes.

Pistaferri, and Preston (2008) that income and consumption inequality diverged over the sampling period they study.

4



2 A Continuous-time Heterogeneous-Agent Economy with Ro-

bustness

2.1 The Full-information Rational Expectations Model with Recursive Utility

and Precautionary Savings

In this section, we first consider a full-information rational expectations (FI-RE) recursive utility

model with labor income and precautionary savings. Although the expected power utility model

has many attractive features, that model implies that the elasticity of intertemporal substitution

is the reciprocal of the coefficient of relative risk aversion. Conceptually risk aversion (attitudes

towards atemporal risks) and intertemporal substitution (attitudes towards shifts in consumption

over time) capture two distinct aspects of decision-making and need not be so tightly connected.13

In contrast, the class of recursive utility functions (Kreps and Porteus 1978; Epstein and Zin 1989;

Duffie and Epstein 1992) enable one to disentangle risk aversion from intertemporal substitution. In

this paper, we assume that agents in our model economy have recursive preferences of the Kreps-

Porteus/Epstein-Zin type: for every stochastic consumption stream, {}
∞
=0, the utility stream,

{ ()}
∞
=0, is recursively defined by

 () =
³
1− −∆

´
 () + −∆ ( [+∆])  (1)

where∆ is the time interval,   0 is the agent’s subjective discount rate,  () = (−) exp (−),
 () = (−) exp (−),

 [+∆] = −1 ( [ (+∆)])  (2)

is the certainty equivalent of +1 conditional on the period  information, and  (+∆) =

− exp (−+∆) . In (1),   0 governs the elasticity of intertemporal substitution (EIS),

while   0 governs the coefficient of absolute risk aversion (CARA).14 A high value of  corre-

sponds to a strong willingness to substitute consumption over time, and a high value of  implies

a low willingness to substitute consumption across states of nature. Note that when  = 1, the

functions  and  are the same and the recursive utility reduces to the standard time-separable

expected utility function used in Caballero (1990) and Wang (2003).

We assume that there is only one risk-free asset in the model economy and there are a continuum

of consumers who face uninsurable labor income. The evolution of the financial wealth () of a

13Risk aversion describes the agent’s reluctance to substitute consumption across different states of the world and

is meaningful even in a static setting. In contrast, intertemporal substitution describes the agent’s willingness to

substitute consumption over time and is meaningful even in a deterministic setting.
14 It is well-known that the CARA utility specification is tractable for deriving optimal policies and constructing

general equilibrium in different settings. See Caballero (1990), Wang (2003, 2009), and Angeletos and Calvet (2006).
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typical consumer is

 = ( +  − ) ; (3)

 is the return to the risk-free asset and  and  are consumption and labor income at time ,

respectively. Uninsurable labor income () follows an Ornstein-Uhlenbeck process:

 = 

µ



− 

¶
+  (4)

where the unconditional mean and variance of income are  =  and 2 (2), respectively, the

persistence coefficient  governs the speed of convergence or divergence from the steady state,  is

a standard Brownian motion on the real line R, and  is the unconditional volatility of the income

change over an incremental unit of time. To present the model more compactly, we define a new

state variable, :

 ≡  + 

where  is human wealth at time  and is defined as the expected present value of current and

future labor income discounted at the risk-free interest rate ,

 ≡ 

∙Z ∞


exp (− (− )) 

¸


For the given the income process, (4),  =  ( + ) +  ( ( + )).15 Using  as the unique

state variable, we can rewrite (3) as

 = ( − ) +  (5)

where  =  ( + ) is the unconditional variance of the innovation to .
16

The optimization problem can thus be written as

 () = max


n³
1− −∆

´
 () + −∆ ( [+∆])

o
 (6)

subject to (5). An educated guess is that  =  +0. The  function at t time +∆ can thus

be written as

 (+∆) = +∆ +0 ≈  + ( − )∆+∆ +0

15 If   0, the income process is stationary and deviations of income from the steady state are temporary; if  ≤ 0,
income is non-stationary. The last case captures the essence of Hall and Mishkin (1982)’s specification of individual

income that includes a non-stationary component. The  = 0 case corresponds to a simple Brownian motion without

drift. The larger  is, the less  tends to drift away from . As  goes to ∞, the variance of  goes to 0. We need to
impose the restriction that   − to guarantee the finiteness of human wealth.
16 In the next section, we will introduce robustness directly into this “reduced” precautionary savings model. It

is not difficult to show that the reduced univariate model and the original multivariate model are equivalent in the

sense that they lead to the same consumption and saving functions, because the financial wealth part of total wealth

is deterministic between periods. The detailed proof is available from the corresponding author by request.
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where ∆ ≡ +∆ −  and ∆ ≈ ( − )∆+ ∆ where ∆ =
√
∆ and  is a standard

normal.

In the benchmark full-information rational expectations (FI-RE) model, we assume that the

consumer trusts the model, i.e., no model uncertainty. The Hamilton-Jacobi-Bellman (HJB) equa-

tion is then

 () = sup
∈C

{ () +D ()} (7)

where

D () =  0 ()

µ
 ( − )−

1

2
22

¶
 (8)

C is the set of admissible values for the consumption choice, and the transversality condition,

lim→∞ { |exp (−) |} = 0, holds at the optimum. Solving the HJB equation subject to (5)

leads to the consumption function

 =  +Ψ− Γ (9)

where

Ψ ≡ 

µ



− 1
¶

(10)

is the savings demand due to relative patience (if   , this term is negative and so savings rises)

and

Γ ≡ 1
2
2  (11)

is the consumer’s precautionary saving demand.17 From (10), it is clear that if the consumer

is impatient relative to the market (  ), the higher the EIS, the stronger the demand for

consumption. If    households want consumption to fall over time, and a higher EIS implies

that consumption will be allowed to fall faster for a given value of 
 ; as a result, consumption

must initially be high. Following the literature on precautionary savings, we measure the demand

for precautionary saving as the amount of saving induced by the combination of uninsurable labor

income risk and risk aversion. From (11), one can see that the precautionary saving demand is

larger for a higher value of the coefficient of absolute risk aversion (higher ), a more volatile

income innovation (higher ), and a larger persistence coefficient (lower ).18 Holding other

parameters constant, we can see from (9) to (11) that intertemporal substitution and risk aversion

have opposing effects on consumption and saving decisions if    (which will be the case in general

equilibrium).19

17See Appendix 7.2 for the derivations.
18As argued in Caballero (1990) and Wang (2003, 2009), a more persistent income shock takes a longer time to

wear off and thus induces a stronger precautionary saving demand by a prudent forward-looking consumer.
19As a side note, incomplete markets generally imply that aggregate dynamics depend on the wealth distribution,

this “curse of dimensionality” is circumvented by our CARA-Gaussian specification since savings functions are linear.
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2.2 Incorporating Fear of Model Uncertainty

To introduce aversion to model uncertainty into our model (and thus generate a demand for robust

decision rules), we follow the continuous-time methodology proposed by Anderson, Hansen, and

Sargent (2003) (henceforth, AHS) and adopted in Maenhout (2004). Households take Equation

(5) as the approximating model. The corresponding set of distorting models can thus be obtained

by adding endogenous distortions  () to (5):

 = ( − ) +  ( () + )  (12)

As shown in AHS (2003), the objective D defined in (8) can be thought of as  [ ]  and plays

a key role in generating robustness. A key insight of AHS (2003) is that this differential expecta-

tions operator reflects a particular underlying model for the state variable because this operator is

determined by the stochastic differential equations of the state variables. Consumers accept (5) as

the best approximating model, but are still concerned that the model is misspecified. They there-

fore want to consider a range of models (the distorted models (12)) surrounding the approximating

model when computing the continuation payoff. A preference for robustness manifests by having

the agent guard against the distorting model that is reasonably close to the approximating model.

The drift adjustment  () is chosen to minimize the sum of (i) the expected continuation payoff

adjusted to reflect the additional drift component in (12) and (ii) an entropy penalty:

inf


∙
D +  0 () ()

2
 +

1


H

¸
 (13)

where the first two terms are the expected continuation payoff when the state variable follows

(12), i.e., the alternative model based on drift distortion  (), H =( ())
2 2 is the relative

entropy or the expected log likelihood ratio between the distorted model and the approximating

model and measures the distance between the two models, and 1 is the weight on the entropy

penalty term.20  is fixed and state independent in AHS (2003), whereas it is state-dependent

in Maenhout (2004). The role of the state-dependent counterpart to  in Maenhout (2004) is

to assure the homotheticity or scale invariance of the decision problem under a CRRA utility

function.21 Note that the evil agent’s minimization problem, (13), is invariant to the scale of total

resources  under the state-dependent specification for  (), which we use as well so that the

demand for robustness does not disappear as the value of total wealth increases.

20The last term in (13) is due to the consumer’s preference for robustness. Note that the  = 0 case corresponds

to the standard expected utility case. This robustness specification is called the multiplier (or penalty) robust control

problem. We will discuss another closely related robustness specification, the constraint robust control problem,

in the next subsection. See AHS (2003) and Hansen, Sargent, Turmuhambetova, and Williams (2006) (henceforth,

HSTW) for detailed discussions on these two robustness specifications.
21See Maenhout (2004) for detailed discussions on the appealing features of “homothetic robustness”.
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We can then obtain the HJB equation for the RB model:

 () = sup
∈C

inf


½
 () +D () +  ()

2
 +

1

 ()
H

¾
 (14)

Solving first for the infimization part of (14) yields

 ()
∗ = − () 

where  () = − ()  0 (see Appendix 7.3 for the derivation). Following Uppal and Wang

(2003) and Liu, Pan, and Wang (2005), here we can also define “1 ()” in the  () specification

as a normalization factor that is introduced to convert relative entropy (the distance between the

approximating model and a given distorted model) into units of utility so that it is consistent with

the units of the expected future value function evaluated with the distorted model. Adopting a

slightly more general specification,  () = − () where  is a constant, does not affect the
main results of the paper, as we can just define a new constant, e = , and e, rather than ,

will enter the decision rules. It is worth noting that this state-dependent robustness specification

is similar to the AR(1) ambiguity shocks proposed in Bhandari, Borovička, and Ho (2016). They

identified AR(1) ambiguity shocks using survey data from the Surveys of Consumers and the Survey

of Professional Forecasters, and found that in the data, the ambiguity shocks are an important

source of variation in labor market variables.

Since  ()  0, the perturbation adds a negative drift term to the state transition equation

because   0. Substituting for 
∗ in (14) gives

 () = sup
∈C

½
 () +  0 ()

µ
 −  −

1

2
2 +



 ()
 0 ()

2


¶
− 

2 ()
2
¡
 0 ()

¢2
2

¾


(15)

2.3 The Robust Consumption Function and Precautionary Saving

We can now solve (15) and obtain the consumption rule under robustness. The following proposition

summarizes the solution.

Proposition 1 Under robustness, the consumption function and the saving function are

∗ =  +Ψ− Γ (16)

and

∗ =  + Γ−Ψ (17)

respectively, where  ≡  ( − )  ( + ) is the demand for savings “for a rainy day”,

Ψ () ≡  ( − 1)
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captures the saving demand of relative patience,

Γ ≡ 1
2
e2 (18)

is the demand for precautionary savings due to the interaction of income uncertainty, intertemporal

substitution, and risk and uncertainty aversion, and

e ≡  +



(19)

is the effective coefficient of absolute risk aversion. The corresponding value function is

 = −



exp

µ
−
µ



− 1− 1

2

∗


e2

¶
− 




¶
 (20)

Finally, the worst possible distortion is

∗ = − 

 (21)

Proof. See Appendix 7.3.

From (16), it is clear that robustness does not change the marginal propensity to consume out of

permanent income (MPC), but does affect the amount of precautionary savings (Γ). In continuous

time consumption is less sensitive to unanticipated income shocks than in the discrete-time robust

LQG-PIH model of Hansen, Sargent, and Tallarini (1999) (henceforth, HST); in discrete time the

MPC increases with the amount of model uncertainty, causing consumption to become respond

more to changes in permanent income (as noted in Luo 2008 and Luo and Young 2010, robust

control exacerbates the excess sensitivity puzzle). Expression (18) shows that the precautionary

savings demand now depends on the effective coefficient of risk aversion e which is a function of
the EIS (), the CARA (), and the degree of robustness (). Specifically, it increases with  and

, whereas it decreases with .

Another interesting question here is the relative importance of RB () and CARA () in de-

termining the precautionary savings demand, holding other parameters constant. We can use the

elasticities of precautionary saving as a measure of their importance.

Proposition 2 The relative sensitivity of precautionary saving to risk aversion (), intertemporal

substitution (), robustness () can be measured by

 ≡


=




 (22)

 ≡


= −1 (23)

respectively, where  ≡ ΓΓ
 ,  ≡

ΓΓ
 , and  ≡ ΓΓ

 are the elasticities of the precautionary

saving demand to CARA, EIS, and RB, respectively.

10



Proof. The proof is straightforward.

The interpretation of (22) is that the precautionary savings demand is more sensitive to the

actual coefficient of (absolute) risk aversion () than it is to RB () if the actual CARA is greater

than RB amplified by the inverse of the EIS, i.e.,   . Of course, it is not exactly clear how

to interpret a proportional change in either parameter since they do not have units, but we report

this result to show that risk aversion does not clearly dominate the motives of the agents in the

model.

HST (1999) showed that the discount factor and the concern about robustness are observation-

ally equivalent in the sense that they lead to the same consumption and investment decisions in

a discrete-time LQG representative-agent permanent income model. The reason for this result is

that introducing a concern about robustness increases savings in the same way as increasing the

discount factor, so that the discount factor can be changed to offset the effect of a change in RB

on consumption and investment.22 In contrast, in our continuous-time CARA-Gaussian model, we

have a more general observational equivalence result between , , and :

Proposition 3 Let

 =  +



 (24)

where  is the coefficient of absolute risk aversion in the FI-RE model. Then consumption and

savings are identical in the FI-RE and RB models, holding other parameter values constant. Fur-

thermore, let  =  in the RB model, and

 =  − 1
2


µ




¶2
2  (25)

where  is the discount rate in the FI-RE model. Then consumption and savings are identical in

the FI-RE and RB models, ceteris paribus.

Proof. Using (16) and (18), the proof is straightforward.

Expression (24) means that a consumer with a preference for robustness () and recursive utility

with EIS () and CARA () is observationally equivalent to a consumer with full-information and

recursive utility with EIS () and CARA ( + ). In contrast, within a Merton model with

recursive utility, Maenhout (2004) showed that an agent with a preference for robustness and

Epstein-Zin recursive utility with EIS () and CRRA () is observationally equivalent to an agent

with full-information and recursive utility with EIS () and CARA ( + ). In other words, in

Maenhout’s model, the effective coefficient of relative risk aversion ( + ) does not depend on the

EIS ().

22As shown in HST (1999), the two models have different implications for asset prices because continuation valua-

tions would alter as one alters the values of the discount factor and the robustness parameter within the observational

equivalence set.
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3 General Equilibrium Implications of RB

3.1 Definition of the General Equilibrium

As in Huggett (1993) and Wang (2003), we assume that the economy is populated by a continuum of

ex ante identical, but ex post heterogeneous agents, with each agent having the saving function, (18).

In addition, we also assume that the risk-free asset in our model economy is a pure-consumption loan

and is in zero net supply.23 The key insights can be also obtained in a CARA-Gaussian production

economy with incomplete markets (as in Angeletos and Calvet 2006) using a neoclassical production

function with capital and bonds as saving instruments. We consider the simpler Huggett-type

endowment economy for two reasons. First, in the endowment economy, we can directly compare

the model’s predictions on the dynamics of individual consumption and income with its empirical

counterpart, and do not need to infer the idiosyncratic productivity shock process. Second, the

endowment economy allows us to solve the models explicitly, and thus helps us identify distinct

channels via which RB interacts with risk aversion, discounting, and intertemporal substitution

and affects the consumption-saving behavior.

In the model economy, the initial cross-sectional distribution of income is assumed to be its

stationary distribution Φ (·). By the law of large numbers in Sun (2006), provided that the spaces

of agents and the probability space are constructed appropriately, aggregate income and the cross-

sectional distribution of permanent income Φ (·) will be constant over time.

Proposition 4 The total savings demand “for a rainy day” in the precautionary savings model

with RB equals zero for any positive interest rate. That is,  () =
R

 () Φ () = 0, for   0.

Proof. Given that labor income is a stationary process, the LLN can be directly applied and the

proof is the same as that in Wang (2003).

This proposition states that the total savings “for a rainy day” is zero, at any positive interest

rate; with a constant income distribution and linear decision rules, agents in the stationary wealth

distribution follow the ’American dream and American nightmare’ path, where any rise in income

today is eventually offset by a future decline. Therefore, from (17), for   0, the expression for

total savings under RB in the economy at time  can be written as

 ( ) ≡ Γ ( )−Ψ ()  (26)

where Γ =  ( + )22 is the demand for precautionary savings, and Ψ () =  ( − ) 

captures the saving demand of relative patience. We can now define a general equilibrium.

Definition 5 Given (26), a general equilibrium under RB is defined by an interest rate ∗ satisfying

 ( ∗) = 0 (27)

23We can easily generalize to fixed positive net savings, as in a Lucas-style tree model. Nothing would change.
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3.2 Theoretical Results

The following proposition shows that an equilibrium exists and provides a sufficient condition for

uniqueness. We also show that, in any equilibrium, the PIH is satisfied.

Proposition 6 There exists at least one equilibrium interest rate ∗ ∈ (0 ) in the precautionary-
savings model with RB; if    the equilibrium interest rate is unique on (0 ). In equilibrium,

each consumer’s optimal consumption is described by the PIH, in that

∗ = ∗ (28)

Furthermore, the evolution equations of wealth and consumption are

∗ =  (29)

∗ =
∗

∗ + 
 (30)

respectively, where  =  ( − )  (∗ + ).

Proof. If   , both Γ ( ) and Ψ () in the expression for total savings  ( ) are positive,

which contradicts the equilibrium condition  ( ) = 0. Since Γ ( ) − Ψ ()  0 ( 0) when

 = 0 ( = ), the continuity of the expression for total savings implies that there exists at least

one interest rate ∗ ∈ (0 ) such that  ( ∗) = 0. To establish the conditions under which this
equilibrium is unique, we take the derivative

 ( )


=

µ
 +





¶
2

( + )2

µ
1

2
− 

 + 

¶
+



2

and note a sufficient condition for this derivative to be positive for any   0 is

1

2
− 

 + 
 0⇔   

Therefore, if    there is only one equilibrium in (0 ). From Expression (16), we can obtain the

individual’s optimal consumption rule under RB in general equilibrium as ∗ = ∗. Substituting

(28) into (3) yields (29). Using (5) and (28), we can obtain (30).

The intuition behind this proposition is similar to that in Wang (2003). With an individual’s

constant total precautionary savings demand Γ ( ), for any   0, the equilibrium interest rate

∗ must be at a level with the property that individual’s dissavings demand due to impatience

is exactly balanced by their total precautionary-savings demand, Γ ( ∗) = Ψ (∗). We can see

from (27) that EIS affects the equilibrium interest rate via two channels: (i) the precautionary

saving channel and (ii) the impatience-induced dissaving channel. As EIS decreases, it increases

the precautionary saving demand via increasing the effective coefficient of risk aversion and also
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reduces the impatience-induced dissaving effect; both channels drive down the equilibrium interest

rate. It is also clear from (27) that a high value of  would amplify the relative importance of the

dissaving effect Ψ () for the equilibrium interest rate. The intuition behind this result is simple.

When  is higher, consumption growth responds less to changes in the interest rate. In order to

clear the market, the consumer must be offered a higher equilibrium risk free rate in order to be

induced to save more and making his consumption tomorrow even more in excess of what it is

today (less smoothing).

From the equilibrium condition,

1

2
∗
µ
 +





¶
2

(∗ + )2
− 

µ


∗
− 1
¶
= 0 (31)

it is straightforward to show that

∗


= −

∗2


µ
e2

− ∗

+ ∗
+
2

∗2

¶−1
 0 (32)

for plausible parameter values of . It is clear from this expression that ∗ is decreasing in the

degree of RB, . In addition, it is clear that

∗


 0 and

∗


 0

That is, the equilibrium interest rate decreases with the degree of risk aversion and increases with

the degree of intertemporal substitution. From (30) and (29), we can conclude that although both

the CARA model and the LQ model lead to the PIH in general equilibrium, both risk aversion and

intertemporal substitution play roles in affecting the dynamics of consumption and wealth in the

CARA model via the equilibrium interest rate channel.

Following Caballero (1991) and Wang (2003), we set  = 25,  = 05,  = 01823, and

 = 00834.24 Figure 1 shows that the aggregate saving function  ( ) is increasing with the

interest rate for different values of  when  = 004, and there exists a unique interest rate ∗ for

every given  such that  ( ∗) = 0.25

The magnitude of the EIS () is an open and unresolved question, as the literature has found

a very wide range of values. Parker (2002) and Vissing-Jorgensen and Attanasio (2003) estimate

the EIS to be well in excess of one, while Hall (1988) and Campbell (2003) estimate a value well

below one (and possibly zero). Guvenen (2006) finds that stockholders have a higher EIS (around

24 In Section 4.1, we will provide more details about how to estimate the income process using the U.S. panel data.

The main result here is robust to the choices of these parameter values.
25We ignore negative interest rate equilibria because the resulting consumption function does not make economic

sense. It is easy to see that  has the same zeroes as a cubic function, so that there exist conditions under which the

equilibrium is globally unique, but these conditions are not amenable to analysis.
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10) than non-stockholders (around 01); he argues that this disparity can explain the differences

between the two results above, since Parker (2002) and Vissing-Jorgensen and Attanasio (2003)

use micro data (dominated by the consumption of nonstockholders) and Hall (1988) and Campbell

(2003) use macro Euler equations (where only stockholder consumption matters). Havránek (2015)

surveys the vast literature and suggests that a range around 03−04 is appropriate after correcting
for selective reporting bias, while Crump et al. (2015) find that the EIS is precisely and robustly

estimated to be around 08 in the general population using the newly released FRBNY Survey of

Consumer Expectations (SCE). Here we choose  = 05 for illustrative purposes and will examine

how EIS affects the general equilibrium under RI in Section 4.

The following result is immediate.

Proposition 7 The relative volatility of consumption growth to income growth is

 ≡ sd (
∗
 )

sd ()
=

∗

∗ + 
 (33)

Figure 1 also shows how RB () affects the equilibrium interest rate (∗). It is clear from

the figure that the stronger the preference for robustness, the lower the equilibrium interest rate.

From (33), we can see that RB can affect the volatility of consumption by reducing the equilibrium

interest rate. The following proposition summarizes the results about how the persistence coefficient

of income changes the effect of RB on .

Proposition 8 Using (33), we have




=



(∗ + )2
∗


 0

because   0 and ∗  0.

Proof. The proof is straightforward.

In the next section, we explore the effects of RB on equilibrium interest rates and consumption

dynamics.

4 Quantitative Analysis

In this section, we first describe how we estimate the income process and calibrate the robustness

parameter. We then present quantitative results on how RB affects the equilibrium interest rate

and relative volatility of consumption to income.
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4.1 Estimation of the Income Process

To implement the quantitative analysis, we need to first estimate  and  in the income process

specification (4). We use micro data from the Panel Study of Income Dynamics (PSID). Following

Blundell, Pistaferri, and Preston (2008), we define the household income as total household income

(including wage, financial, and transfer income of head, wife, and all others in household) minus

financial income (defined as the sum of annual dividend income, interest income, rental income,

trust fund income, and income from royalties for the head of the household only) minus the tax

liability of non-financial income. This tax liability is defined as the total tax liability multiplied by

the non-financial share of total income. Tax liabilities after 1992 are not reported in the PSID and

so we estimate them using the TAXSIM program from the NBER. Details on sample selection are

reported in Appendix 7.1.

To exclude extreme outliers, following Floden and Lindé (2001) we normalize both income and

consumption measures as ratios of the mean of each year, and exclude households in the bottom

and top 1 percent of the distribution of those ratios. To eliminate possible heteroskedasticity in the

income measures, we regress each on a series of demographic variables to remove variation caused

by differences in age and education. We next subtract these fitted values from each measure to

create a panel of income residuals. We then use this panel to estimate the household income process

as a stationary AR(1) process with Gaussian innovations:

 = 0 + 1−1 +   ≥ 1 |1|  1 (34)

where  ∼  (0 1), 0 = (1− 1) ,  is the mean of , and the initial level of labor income 0 are

given. Once we have estimates of 1 and , we can recover the drift and diffusion coefficients in

the Ornstein-Uhlenbeck process specified in (4) by rewriting (34) in the time interval [ +∆] as

+∆ = 0 + 1 + 
√
∆+∆ (35)

where 0 =  (1− exp (−∆))  (∆), 1 = exp (−∆),  = 
p
(1− exp (−2∆))  (2∆),

and +∆ is the time-(+∆) standard normal distributed innovation to income.
26 As the time

interval, ∆, converges to 0, (35) reduces to the Ornstein-Uhlenbeck process, (4). The estimation

results and the recovered persistence and volatility coefficients in (4) are reported in Table 2.

4.2 Calibration of the Robustness Parameter

We adopt the calibration procedure outlined in Hansen, Sargent, and Wang (2002) and AHS (2003)

to calibrate the value of the RB parameter () that governs the degree of robustness. Specifically,

we calibrate  by using the method of detection error probabilities (DEP) that is based on a

26Note that here we use the fact that ∆ = 
√
∆, where ∆ represents the increment of a Wiener process.
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statistical theory of model selection. We can then infer what values of  imply reasonable fears

of model misspecification for empirically-plausible approximating models. The model detection

error probability denoted by  is a measure of how far the distorted model can deviate from the

approximating model without being discarded; low values for this probability mean that agents are

unwilling to discard many models, implying that the cloud of models surrounding the approximating

model is large. In this case, it is easier for the consumer to distinguish the two models. The value

of  is determined by the following procedure. Let model  denote the approximating model, (5)

and model  be the distorted model, (12). Define  as

 = Prob

µ
ln

µ




¶
 0

¯̄
¯̄
¶
 (36)

where ln
³



´
is the log-likelihood ratio. When model  generates the data,  measures the

probability that a likelihood ratio test selects model . In this case, we call  the probability of

the model detection error. Similarly, when model  generates the data, we can define  as

 = Prob

µ
ln

µ




¶
 0

¯̄
¯̄
¶
 (37)

Given initial priors of 05 on each model and the length of the sample is  , the detection error

probability, , can be written as:

 (;) =
1

2
( + )  (38)

where  is the robustness parameter used to generate model . Given this definition, we can see

that 1−  measures the probability that econometricians can distinguish the approximating model

from the distorted model.

The general idea of the calibration procedure is to find a value of  such that  (;) equals a

given value after simulating model  , (5), and model , (12).27 In the continuous-time model with

the iid Gaussian specification,  (;) can be easily computed. Since both models  and  are

arithmetic Brownian motions with constant drift and diffusion coefficients, the log-likelihood ratios

are Brownian motions. The logarithm of the Radon-Nikodym derivative of the distorted model ()

with respect to the approximating model ( ) can be written as

ln

µ




¶
=

Z 

0
 −

1

2

Z 

0
2 (39)

where

 ≡ ∗ = −



∗ (40)

27The number of periods used in the calculation,  , is set to be 31, the actual length of the data (1980− 2010).
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Similarly, the logarithm of the Radon-Nikodym derivative of the approximating model ( ) with

respect to the distorted model () is

ln

µ




¶
= −

Z 

0
 +

1

2

Z 

0
2 (41)

Using (36)-(41), it is straightforward to derive  (;):

 (;) = Pr

µ
 



2

√


¶
 (42)

where  follows a standard normal distribution. From the expressions of , (40), and  (;),

(42), it is clear that the value of  is decreasing with the value of . Under the observational

equivalence condition between the multiplier and constraint robustness formulations, (42) can be

rewritten as  (;) = Pr
³
  −√2

√

´
, where  is the upper bound on the distance between

the two models and measures the consumer’s tolerance for model misspecification.

We first explore the relationship between the DEP () and the value of the RB parameter, . A

general finding is a negative relationship between these two variables. The upper panels of Figure

2 illustrates how DEP () varies with the value of  for different values of EIS () and CARA

().28 We can see from the figures that the stronger the preference for robustness (higher ), the

less the DEP () is. For example, let  = 2 and  = 08, then  = 0432 and ∗ = 310 percent

when  = 1, while  = 0108 and ∗ = 231 percent when  = 9.29 Both values of  are reasonable

as argued in AHS (2002), HSW (2002), Maenhout (2004), and Hansen and Sargent (Chapter 9,

2007). In other words, a value of  below 9 is reasonable in this case in which  = 2 and  = 08.

Furthermore, from the two upper panels of Figure 2, we can also see that the DEP increases with

both 6  and  for given values of , and the impact of a change in  is much larger than that of a

change in . The intuition is that a change in the EIS has two channels to affect the values of  and

: (i) the direct channel and (ii) the indirect channel via affecting the general interest rate channel

(∗), and the direct channel dominates the indirect channel. In contrast, a change in CARA only

affects the values of  and  via the indirect equilibrium interest rate channel, which is relatively

weak. Furthermore, using (22), in this case, we have  = 5 625 and 0625 when we set  = 1

and 9, respectively. That is, the relative importance of risk aversion to RB in determining the

precautionary savings demand decreases with the value of , holding other parameters constant.

The two lower panels of Figure 2 illustrate how DEP () varies with  for different values of

28Based on the estimation results, we set  = 1,  = 0182, and  = 0083. The implied coefficient of relative risk

aversion (CRRA) in our CARA utility specification can be written as either  or . Given that the value of the

CRRA is very stable and  can be expressed as  () ( + ), proportional changes in the mean and standard

deviation of  do not change our calibration results because their effects on  and  cancel.
29Caballero (1990) and Wang (2009) also consider the  = 2 case.
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 and  if  = 05 and  = 2.30 It also shows that the higher the value of , the less the DEP

(). In addition, to calibrate the same value of , smaller values of  (less volatile labor income

processes) or higher values of  (less persistent income processes) lead to higher values of . The

intuition behind this result is that  and  have opposite effects on  and then  (see (40)).

As emphasized in Hansen and Sargent (2007), in the robustness model,  is a measure of the

amount of model uncertainty, whereas  is a measure of the agent’s aversion to model uncertainty.

If we keep  constant when recalibrating  for different values of , , or , the amount of model

uncertainty is held constant — that is, the set of distorted models with which we surround the

approximating model does not change. In contrast, if we keep  constant,  will change accordingly

if the values of , , or  change; in this case, the amount of model uncertainty is “elastic” and

will change accordingly as the agent’s aversion to uncertainty changes.

4.3 Effects of RB on the Equilibrium Interest Rate and Consumption Volatility

The equilibrium interest rate and relative volatility of consumption to income are jointly determined

by the degree of robustness, risk aversion, intertemporal substitution, and the income process. To

better see how RB affects the equilibrium interest rate and the relative volatility, we present two

quantitative exercises here. The first exercise fixes the parameters of the income process at the

estimated values and allows the risk aversion and intertemporal substition parameters to change,

while the second exercise fixes the risk aversion and intertemporal substitution parameters and

allows the key income process parameter to vary.

Figure 3 shows that the equilibrium interest rate and the equilibrium relative consumption

volatility decrease with the calibrated value of  for different values of  and  when  = 0182

and  = 0083. For example, if  is increased from 1 to 4 ( decreases from 040 to 020), ∗ falls

from 277 percent to 218 percent and  falls from 0249 to 0207, given  = 05 and  = 2.31 In

addition, the figure also shows that the interest rate and the relative volatility decrease with  and

increase with  for different values of .

Our model has the potential to explain the observed low real interest rate in the U.S. economy;

see Laubach andWilliams (2015) or Hall (2016) for evidence on low real rates. One of our theoretical

results shows that a stronger aversion to model uncertainty lowers the equilibrium real interest rate.

In the US, the average real risk-free interest rate has been about 187 percent between 1981 and 2010

if we use CPI to measure inflation, and about 196 percent if we use PCE to measure inflation.32

30Since  =  ( + ), both changes in the persistence coefficient () and changes in volatility coefficient ()

will change the value of .
31 In the FI-RE case, ∗ = 3 11 percent and  = 0272.
32Following Campbell (2003), we calculate the average of the real 3-month Treasury yields. Here we choose the

1981 − 2010 period because it is more consistent with our sample period of the panel data in estimating the joint
consumption and income process. When we consider an extended period from 1981 to 2015, the real interest rate is
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Therefore, depending on what inflation index is used, the risk-free rate is between 187 and 196

percent. In our following discussion, we set the risk free rate to be 191 percent which is the average

of the two real interest rates under CPI and PCE. Using the equilibrium condition, we find that

the full-information RE model without RB requires the coefficient of risk aversion parameter to be

24 to match this rate if  = 08, and requires the coefficient to be 15 if  = 05.33

In contrast, when consumers take into account model uncertainty, the model can generate an

equilibrium interest rate of 191 percent with much lower values of the coefficient of risk aversion.34

Figure 4 shows the relationship between  and  for interest rates equal to 191 percent for different

values of . For example, if  = 05, the RB model with  = 5 and  = 5 leads to the same interest

rate as in the FI-RE model with  = 15. Using the same calibration procedure discussed in Section

4.1, we find that the corresponding DEP is  = 0174. In other words, agents tolerate a 174 percent

probability that they cannot distinguish the distorted model from the approximating model. We

have summarized these results in Table 3. As argued in Hansen and Sargent (2007) and in Section

4.2, this value is viewed as reasonable in the literature.

The explanation that agents have become more concerned about model misspecification after

the 2007− 09 financial crisis does not seem unreasonable given the long and deep recession which

generated skepticism (at least in the popular press) about whether the standard macro models fully

capture the key features of the economy.35 To provide a numerical example, under our calibrated

parameter values and  = 2, an increase in model uncertainty reflected by a reduction in the DEP

from  = 0319 to  = 0117 (an increase in  from 2 to 63) leads to a reduction in the equilibrium

interest rate from 253 percent to 191 percent.

The explanation of a lower equilibrium real interest rate due to higher savings is of course

not new. Bernanke (2005), Summers (2014), and Blanchard, Furceri, and Pescatori (2014) also

argue that increases in global savings could be a reason for a lower equilibrium real interest rate

in the US and other advanced economies. These explanations for higher savings rely on either

demographic trends (such as an aging population) or capital flows from emerging economies to

advanced economies, in contrast to our story about enhanced risk aversion; Hall (2016) tells a

137 percent when using CPI and is 175 percent when using PCE. Hall (2016) finds that real rates (computed using

TIPS) have been consistently falling for several decades, so we are overstating the current rate.

33Note that since we set the mean income level to be 1, the coefficient of relative risk aversion (CRRA) evaluated

at this level is equal to the coefficient of absolute risk aversion (CARA).
34This result is comparable to that obtained in Barillas, Hansen, and Sargent (2009). They found that most of the

observed high market price of uncertainty in the U.S. can be reinterpreted as a market price of model uncertainty

rather than the traditional market price of risk.
35Boyarchenko (2012) uses data on CDS spreads to show that the amount of ambiguity in the economy rose during

the financial crisis but the aversion to ambiguity did not change; in our model the same parameter controls both

features.
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related story that involves wealth being redistributed from more risk tolerant agents to more risk

averse ones, which leads to a rise in average risk aversion.36

To examine how RB affects the relative volatility of consumption to income ( = sd (∗ )  sd ()),

we follow Luo et al. (2016) and construct a panel data set which contains both consumption and

income at the household level.37 Figure 5 shows the relative volatility of consumption to income

between 1980 and 2000.38 From the figure, the average empirical value of the relative volatility

() is 0377 for the 1980 − 1996 period, and is 0326 for the period from 1980 to 2010. The min-

imum and maximum values of the empirical relative volatility from 1980 to 2010 are 0195 (year

2006) and 055 (year 1982), respectively. From the expression for the equilibrium relative volatility

(33), we can see that when the real interest rate is low, it is impossible for the model to generate

sufficiently high relative volatility of consumption to income without using an implausible value

for . For example, when ∗ = 191 percent we obtain  = 019, which is well below the average

value  = 0326; to get  = 0326 we would need  = 0039, a value that can be rejected given our

estimated value of  = 0082. Because this moment matters for the welfare calculations that are

the focus of the paper, in the next section we will resolve the disparity between data and model

using a risky asset in positive net supply.

4.4 The Welfare Cost of Model Uncertainty

We can quantify the effects of RB on the welfare cost of volatility in the general equilibrium using

the Lucas elimination-of-risk method (see Lucas 1987 and Tallarini 2000). We define the total

welfare cost of volatility as the percentage of permanent income the consumer is willing to give up

in the initial period to be as well off in the FI-RE economy as he is in the RB economy.39 That is,

define

e (0 (1−∆)) =  (0)  (43)

where

e (0 (1−∆)) = −


e1
exp (−e0 − e10 (1−∆)) and  (0) = −



1
exp (−0 − 10)

36Hall’s evidence for this shift is indirect — he notes the rise in the volume of assets and liabilities held by "risk-

splitting intermediaries".
37Appendix 7.1 presents details on how the panel is constructed.
38See Appendix 7.1 for more details on how the panel was constructed.
39This approach is also used in Epaulard and Pommeret (2003) to examine the welfare cost of volatility in a

representative-agent model with recursive utility. In their model, the total welfare cost of volatility is defined as the

percentage of capital the representative agent is ready to give up at the initial period to be as well off in a certain

economy as he is in a stochastic one.
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are the value functions under FI-RE and RB, respectively, ∆ is the compensating amount measured

as a percentage of 0,

1 =
∗


 e1 =

e∗

0 =



∗
− 1− 1

2

∗



µ
 +





¶
2  e0 =



e∗ − 1−
1

2

e∗


µ
 +





¶
e2 

and ∗ and e∗ are the equilibrium interest rates in the RB and FI-RE economies, respectively.40

We state our measurement of the welfare costs formally in the next proposition.

Proposition 9 The welfare costs due to model uncertainty are given by

∆ =
0 (e1 − 1)− ln (e11)

e10
=

µ
1− ∗

e∗
¶
− 

e0
ln

µ
e∗
∗

¶
 (44)

where e0 = e∗0 is optimal consumption under FI-RE.

Proof. Substituting (27) into the expressions of 0 and e0 in the value functions under FI-RE and
RB, we obtain that 0 = e0 = 0. Combining these results with (43) yields (44).

To understand how the welfare cost varies with the degree of uncertainty aversion, we note that

∆


=

∆

∗
∗




The second term is negative, ∗  0, for the reasons we have already discussed. The first

term is
∆

∗
= − 1e∗

µ
1− 

∗0

¶
;

for reasonable values we expect this term to be negative, so that higher model uncertainty leads to

larger welfare costs.

To do quantitative welfare analysis, we set 0 such that 0 = e∗0 = 0. Figure 6 illustrates

how the welfare cost of model uncertainty varies with  for different values of  and  if 0 = 1,

 = 23, and  = 0083.41 We can see from this figure that the welfare costs of model uncertainty

are nontrivial and increasing in  and . The intuition behind this result is that higher income

uncertainty leads to higher induced model uncertainty. For example, if  = 05 and  = 2, the

welfare cost of model uncertainty ∆ is 846 percent. If  increases from 2 to 4, ∆ increases from

846 percent to 1223 percent. The figure also shows that an increasing income volatility can

significantly increase the welfare cost of model uncertainty. For example, when  = 2,  = 2, and

income volatility  increases from 018 to 023, ∆ increases from 846 percent to 1025 percent.

One policy implication stemming from this finding is that macro policies aiming to reduce income

volatility and inequality are more beneficial in an economy in which consumers have a greater

40See Appendix 7.3 for the derivation of the value functions. Note that ∆ = 0 when  = 0.
41When generating the left and right panels of this figure, we set  = 0182 and  = 2, respectively.
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aversion to model uncertainty, both because they reduce risk but also because they mitigate costly

precautionary saving.42

5 Extension to an RU-RB Model with Multiple Financial Assets

In this section, we follow Merton (1971), Maenhout (2004), and Wang (2009), and assume that

consumers can assess two financial assets: one risk free asset and one risky asset. Our aim here is

to resolve the anomaly from the benchmark model regarding the relative volatility of consumption

to income at low interest rates.

5.1 Model Specification

The consumer can purchase both a risk-free asset with a constant interest rate  and a risky asset

(the market portfolio) with a risky return  . The instantaneous return  of the risky market

portfolio over  is given by

 = ( + ) +  (45)

where  is the market risk premium;  is a standard Brownian motion; and  is the standard

deviation of the market return. Let  be the contemporaneous correlation between the labor

income process and the return of the risky asset. If  = 0, the labor income risk is purely

idiosyncratic, so the risky asset does not provide a hedge against labor income declines. The

agent’s financial wealth evolution is then given by

 = ( +  − ) +  (+ )  (46)

where  denotes the amount of wealth that the investor allocates to the market portfolio at time

.

As in the benchmark model, we define a new state variable, :  ≡ +, where  is human

wealth at time  and is defined as the expected present value of current and future labor income

discounted at the risk-free interest rate :  ≡ 

£R∞
 exp (− (− )) 

¤
. Following the same

state-space-reduction approach used in the benchmark model, the budget constraint can be written

as:

 = ( −  + ) +  (47)

where  =  + ,  =  ( + ), and

 =
q
2

2
 + 2 + 2 (48)

42Ellison and Sargent (2015) found that idiosyncratic consumption risk has a greater effect on the cost of business

cycles when agents fear model misspecification. In addition, they showed that endowing agents with fears about

misspecification leads to greater welfare costs caused by the idiosyncratic consumption risk. The underlying reasons

are the same: the enhanced risk aversion created by uncertainty aversion.
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is the unconditional variance of the innovation to .

5.2 Consumption and Saving Rules under RB

To introduce robustness into the above recursive utility model, we follow the same procedure as in

Section 2.2 and write the distorting model by adding an endogenous distortion  () to the law of

motion of the state variable , (47),

 = ( −  + ) +  ( () + )  (49)

The drift adjustment  () is chosen to minimize the sum of the expected continuation payoff, but

adjusted to reflect the additional drift component in (49), and an entropy penalty:

inf


∙
D +  0 () ()

2 +
1


H

¸
 (50)

where the first two terms are the expected continuation payoff when the state variable follows (49),

i.e., the alternative model based on drift distortion  (), H =( ())
2 2 is the relative entropy

or the expected log likelihood ratio between the distorted model and the approximating model and

measures the distance between the two models, and 1 is the weight on the entropy penalty term.

Solving this infimization part of (50) yields

 ()
∗ = − () 

where  () = − ()  0. Substituting for ∗ in (50) gives

 () = sup
∈C

½
 () +  0 ()

µ
 −  +  −

1

2
2 +



 ()
 0 ()

2

¶
− 

2 ()
2
¡
 0 ()

¢2
2
¾


(51)

The following proposition summarizes the solution to this dynamic program.

Proposition 10 Under robustness, the consumption function, the portfolio rule, and the saving

function are

∗ = 

µ
 −


2

¶
+Ψ− Γ+Π (52)

∗ =


e2
− 

2
 (53)

and

∗ =  + Γ−Ψ+Π (54)

respectively, where  ≡  ( − )  ( + ) is the demand for savings “for a rainy day”,

Γ ≡ 1
2
e
¡
1− 2

¢
2 (55)
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is the demand for precautionary savings due to the interactions of income uncertainty, intertemporal

substitution, and risk and uncertainty aversion,

Ψ ≡ 

µ



− 1
¶

(56)

captures the saving demand of relative patience,

Π ≡ 2

2e2
(57)

is the additional saving demand due to the higher expected return of the risky asset, and e ≡ +

is the effective coefficient of absolute risk aversion. Finally, the worst possible distortion is ∗ =

− ().

Proof. See Appendix 7.4.

Expression (16) shows that the presence of the risky asset in the agent’s investment opportunity

has two effects on current consumption. First, it reduces the risk-adjusted certainty equivalent

human wealth by 
¡
2

¢
because the agent faces more risk when holding the risky asset.

Second, it increases current consumption because it offers a higher expected return (see Merton

1971). In general equilibrium, the second effect dominates the first effect. Furthermore, from the

definition of individual saving, we can see that the presence of ∗ term has the potential to increase

saving because it offers a higher expected return. Combining these two effects, it is easy to show

that the net effect of the risky asset on current saving is governed by Π  0 defined in (57). In

addition, since the risky asset can be used to hedge labor income risk (provided the correlation

is not zero), it will reduce the precautionary saving demand arising from income uncertainty by

a factor 1 − 2 ∈ (0 1). From (54), it is clear that there are four saving motives in the model

with a risky asset. The first three saving motives, , Γ, and Ψ, are the same as that mentioned in

our benchmark model. The fourth term captures the additional saving demand due to the higher

expected return of the risky asset and obviously does not appear in the benchmark model.

Since the effective coefficient of absolute risk aversion depends on both the EIS and the degree of

RB, it is clear from (53) that even if the consumer only has a constant investment opportunity set,

the optimal share invested in the risky asset not only depends on risk aversion, but also depends on

intertemporal substitution if   0.43 Svensson (1989) showed in a FI-RE recursive utility model

that when the investment opportunity set is constant, the optimal share invested in the risky asset

depends on the risk aversion parameter, but not on the EIS.

43A constant investment opportunity set means a constant interest rate, a constant expected return on risky assets,

and a constant volatility the returns on risky assets.
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5.3 General Equilibrium Implications

We first consider the equilibrium in the market for the risky asset. Assuming that the net supply

of the risky asset is  ≥ 0, the equilibrium condition in the market for the risky asset is

 =


e2
− 

2
(58)

for a given risk free rate, .

Using the individual saving function (54) and following the same aggregation procedure used in

the previous section, we have the following result on savings:

Proposition 11 The total demand of savings “for a rainy day” equals zero for any positive interest

rate. That is,  () =
R

 () Φ () = 0, for   0.

Proof. The proof uses the LLN and is the same as that in Wang (2003).

Using this result, from (54), after aggregating across all consumers, the expression for total

savings can be written as

 ( ) ≡ Γ ( )−Ψ () +Π ( )  (59)

where Γ ( ), Ψ (), and Π ( ) are given in (55), (56), and (57), respectively. To compare ( )

with the aggregate saving function obtained in the benchmark model, we rewrite  ( ) as follows:

 ( ) = eΓ ( )−Ψ () + eΠ ( )  (60)

where eΓ ( ) = e22, eΠ ( ) = e + 2e22 and  is determined by (58). Com-

paring the two aggregate saving functions, eΠ ( ) is an additional term due to the positive net

supply of the risky asset in this model. As in the benchmark model, an equilibrium interest rate

∗ satisfies  ( ∗) = 0. The following proposition proves that an equilibrium exists and that the

PIH is satisfied.

Proposition 12 There exists an equilibrium with an interest rate ∗ ∈ (0 ) and

∗ = e ( + )  (61)

and if    and  ≥ 0 this equilibrium is unique. In any such equilibrium, each consumer’s

optimal consumption-portfolio rules are described by:

∗ = ∗ (62)

and

∗ =  (63)
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respectively. Furthermore, in this equilibrium, the evolution equation of  is

 =

µ
2

e2

¶
+  (64)

if the true economy is governed by the approximating model.

Proof. If   , Γ ( ), −Ψ (), and Π ( ) in the expression for total savings  ( ∗) are
positive, which is inconsistent with the equilibrium condition  ( ∗) = 0. Since eΓ ( )−Ψ ()+
eΠ ( )  0 ( 0) if  = 0 ( = ), the continuity of the expression for total savings implies that

there exists at least one interest rate ∗ ∈ (0 ) such that  ( ∗) = 0. To establish the uniqueness
condition, we again study the derivative

 ( )


=

µ
 +





¶
2

( + )2

µ
1

2
− 

 + 

¶
+



2
+



 + 
e +

1

2
2e2 ;

as before sufficient conditions for the derivative to be always positive are    and  ≥ 0.

Therefore, there is only one equilibrium in (0 ) if   . From Expression (16), we can obtain the

individual’s optimal consumption rule under RB in general equilibrium as ∗ = ∗.

Figure 7 shows that the aggregate saving function  ( ) is increasing with the interest rate

for different values of .44 It clearly shows that there exists a unique interest rate ∗ for every

given  such that  ( ∗) = 0, and a higher supply of the risky asset leads to a lower equilibrium

interest rate given .45 Although the presence of the risky asset helps hedge labor income risk, it

also makes consumers face greater total uncertainty (see Expression 57), leading to higher overall

saving and lower returns.

The following result is an immediate implication on how the presence of the risky asset affects

the relative volatility of consumption growth to income growth under RB.

Proposition 13 The relative volatility of consumption growth to income growth is

 ≡ sd (
∗
 )

sd ()
= ∗

sµ



¶2
2 +

µ
1

∗ + 

¶2
+ 2


∗ + 




 (65)

Comparing (33) with (65), it is clear that the positive net supply of the risky asset will be helpful

at increasing the relative volatility of consumption to income while keeping the real interest rate at

a low level. To quantitatively examine the effects of RB on the relative volatility of consumption

growth to income growth, we first use the observed risk premium of 6 percent to calibrate the value

of  using (58). Estimating the correlation between individual labor income and the equity return is

44Here we use the same parameter values in the benchmark model.
45The idea is similar to Caballero, Farhi, and Gourinchas (2008) — it is the relatively low supply of risk-free securities

that leads to low interest rates.
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complicated by the lack of panel data on household portfolio choice, and we found several estimates

in the literature: Davis and Willen (2000) estimated that the correlation is between 01 and 03 for

college-educated males, and is 025 or more for college-educated women, while Heaton and Lucas

(1999) found that the correlation between entrepreneurial earnings and equity returns was about

02, so  = 015 seems like a reasonable value. In our model, if  = 15,  = 28,  = 055,

 = 004, and  = 015, the corresponding DEP () is 0295, the equilibrium interest rate (∗) is

191 percent, and the relative volatility () is 037, which equals the empirical counterpart for the

sample from 1980 to 2010. If  = 25,  = 3 135,  = 055,  = 004, and  = 015, the model

leads to  = 0295, ∗ = 191 percent, and  = 031, which are the empirical counterparts for the

sample from 1980 to 1996. These results are summarized in Table 3.

5.4 Welfare Costs of Uncertainty Revisited

Following the same procedure adopted in the benchmark model, we define the total welfare cost of

volatility as the percentage of total wealth the consumer is ready to give up at the initial period to

be as well off in the FI-RE economy as he is in the RB economy:

e (0 (1−∆)) =  (0)  (66)

where

e (0 (1−∆)) = −


e1
exp (−e0 − e10 (1−∆)) and  (0) = −



1
exp (−0 − 10)

are the value functions under FI-RE and RB, respectively, ∆ is the compensating amount measured

as a percentage of 0,

1 =
∗


 e1 =

e∗



0 =


∗
− 1− 1

2

∗



µ
 +





¶¡
2 − 22

¢
 e0 =



e∗ − 1−
1

2

e∗


µ
 +





¶¡
e2 − 22

¢


and ∗ and e∗ are the equilibrium interest rates in the FI-RE and RB economies, respectively.46

As noted above, when  = 0, our multiple-asset model reduces to the benchmark.

The following proposition summarizes the result about how RB affects the welfare costs in

general equilibrium.

Proposition 14 The welfare costs due to model uncertainty are given by

∆ =
0 (e1 − 1)− ln (e11)

e10
=

µ
1− ∗

e∗
¶
+



e0
ln

µ
e∗
∗

¶
+

 (e − )

e0
 (67)

46When we compare welfare in these two economies, we assume that the asset supply is the same across the two

economies.
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where e0 = e∗0 is optimal consumption under FI-RE,

e = e∗e ( + ) and  = ∗e ( + )

are the risk premia in the FI-RE and RB economies, respectively.

Proof. Substituting the equilibrium condition (27) into the expressions of 0 and e0 in the value
functions under FI-RE and RB, we obtain that

0 =
1


 e0 =

1


e

Combining these results with (??) yields (67).

To do quantitative welfare analysis, we set 0 = e∗0 = 1 as we did in our benchmark model.
The left panel of Figure 6 illustrates how the welfare cost of model uncertainty varies with  for

different values of  and  = 8.47 We can see from this figure that the welfare costs of model

uncertainty are nontrivial and decreasing in . The intuition behind this result is that the lower

the EIS, the larger the effect of RB on the equilibrium interest rate and therefore the larger the

welfare costs. The right panel of Figure 6 shows that the welfare cost of model uncertainty decreases

with the supply of the risky asset.48 The reason behind this result is that the risky asset provides a

hedging tool for the consumer as long as  6= 0, and higher supply of the asset means that agents

inefficient precautionary savings motives are weaker.

6 Conclusions

This paper has developed a tractable continuous-time continuous-time recursive utility (RU) ver-

sion of the Huggett (1993) model to explore how the preference for robustness (RB) interacts with

intertemporal substitution and risk aversion and then affects the interest rate, the dynamics of con-

sumption and income, and the welfare costs of model uncertainty in general equilibrium. We found

that for moderate risk aversion and plausibly calibrated parameter values of RB, our benchmark

model can generate the observed low risk free rate in the US economy. However, the model cannot

generate the observed high relative volatility of consumption to income. However, if we allow for

a positive net supply of a risky asset (interpreted as the market portfolio), our model is able to

reconcile low interest rates, moderate risk aversion, and relatively high volatility of consumption to

income. The resulting model implies that the welfare costs of model uncertainty are large.

47When generating the left and right panels of this figure, we set  = 0083,  = 0182 and  = 2.
48Here we set  = 08, and need to impose a condition, 2 −22  0, such that the total uncertainty has negative

impact on the lifetime welfare of the consumer.
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7 Appendix

7.1 Description of Data

This appendix describes the data we use to estimate the income process as well as the method we

use to construct a panel of both household income and consumption for our empirical analysis.

We use micro data from the Panel Study of Income Dynamics (PSID). Our household sample

selection closely follows that of Blundell, Pistaferri, and Preston (2008) as well.49 We exclude

households in the PSID low-income and Latino samples. We exclude household incomes in years of

family composition change, divorce or remarriage, and female headship. We also exclude incomes

in years where the head or wife is under 30 or over 65, or is missing education, region, or income

responses. We also exclude household incomes where non-financial income is less than $1000,

where year-over-year income change is greater than $90 000, and where year-over-year consumption

change is greater than $50 000. Our final panel contains 7 220 unique households with 54 901

yearly income responses and 50 422 imputed nondurable consumption values.50

The PSID does not include enough consumption expenditure data to create full picture of

household nondurable consumption. Such detailed expenditures are found, though, in the Consumer

Expenditure Survey (CEX) from the Bureau of Labor Statistics. But households in this study are

only interviewed for four consecutive quarters and thus do not form a panel. To create a panel

of consumption to match the PSID income measures, we use an estimated demand function for

imputing nondurable consumption created by Guvenen and Smith (2014). Using an IV regression,

they estimate a demand function for nondurable consumption that fits the detailed data in the

CEX. The demand function uses demographic information and food consumption which can be

found in both the CEX and PSID. Thus, we use this demand function of food consumption and

demographic information (including age, family size, inflation measures, race, and education) to

estimate nondurable consumption for PSID households, creating a consumption panel.

In order to estimate the income process, we narrow the sample period to the years 1980− 1996,
due to the PSID survey changing to a biennial schedule after 1996. To further restrict the sample

to exclude households with dramatic year-over-year income and consumption changes, we eliminate

household observations in years where either income or consumption has increased more than 200

percent or decreased more than 80 percent from the previous year.

49They create a new panel series of consumption that combines information from PSID and CEX, focusing on the

period when some of the largest changes in income inequality occurred.
50There are more household incomes than imputed consumption values because food consumption - the main input

variable in Guvenen and Smith’s nondurable demand function - is not reported in the PSID for the years 1987 and

1988. Dividing the total income responses by unique households yields an average of 7 − 8 years of responses per
household. These years are not necessarily consecutive as our sample selection procedure allows households to be

excluded in certain years but return to the sample if they later meet the criteria once again.
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7.2 Solving the FI-RE Recursive Utility Model

The optimizing problem can be written as:

 () = max


n³
1− −∆

´
 () + −∆ ( [+∆])

o
 (68)

where  () is the value function. An educated guess is that  =  + 0. The  function at t

time +∆ can thus be written as

 (+∆) = +∆ +0 ≈  + ( − )∆+∆ +0

where ∆ ≡ +∆ −  and ∆ ≈ ( − )∆+ ∆. (Here ∆ =
√
∆ and  is a standard

normal distributed variable.)

Using the definition of the certainty equivalent of +∆, we have

exp (−) =  [exp (− (+∆))]

= exp

µ
− [+∆] +

1

2
22 var  [+∆]− 0

¶

= exp

µ
− [ + ( − )∆] +

1

2
222∆− 0

¶


which means that

 = 

∙
 +

µ
 −  −

1

2
2

¶
∆

¸
+0 (69)

Substituting these expressions back into (68) yields:

 () = max


½
 ()∆+  () +  0 ()

µ
 ( − )−

1

2
22

¶
∆− ∆ ()

¾

where we use the facts that −∆ = 1− ∆,

+∆ ≈  +  0 ( − )∆ =  + ( − )∆

and



µ
 + ( − )∆+

1

2
22∆

¶
≈  () +  0 ()

µ
 ( − )−

1

2
22

¶
∆

Dividing both sides by ∆, the Bellman equation can then be simplified as:

 () = max


½
 () +  0 ()

µ
 ( − )−

1

2
22

¶¾
 (70)

The FOC for  is then

 0 () =  0 ()
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which implies that

 = − ln
µ




¶
+ ( +0)  (71)

Substituting this expression for  back to the Bellman equation and matching the coefficients, we

have:

 = 

and

0 = 

µ
 − 



¶
+  ln

³


´
− 1
2
2 −



2
2 

Substituting these coefficients into (71) gives the consumption function, (9), in the main text.

7.3 Solving the Benchmark RU-RB Model

Following AHS (1999), Uppal and Wang (2003) and Maenhout (2004), we introduce robustness

into the above otherwise standard model as follows:

 () = max

min


½
 () +  0 ()

µ
 −  −

1

2
2 + 

2


¶
+

1

2
2 

2


¾
(72)

subject to the distorting equation, (12). Solving first for the infimization part of the problem yields

∗ () = − 0 () 

Given that  ()  0, the perturbation adds a negative drift term to the state transition equation

because  0 ()  0. Substituting it into the above HJB equation yields:

 () = max


½
 () +  0 ()

µ
 −  −

1

2
2 − 

0 ()
2


¶
+

1

2

¡


0 ()
¢2
2

¾

(73)

Following Uppal and Wang (2003) and Maenhout (2004), we assume that

 = −


 ()


The HJB equation reduces to

 () = max


½
 () +  0 ()

µ
 −  −

1

2
2 +



 ()
 0 ()

2


¶
− 

2 ()
2
¡
 0 ()

¢2
2

¾


The FOC for  is then

 0 () =  0 ()

which implies that

 = − ln
µ




¶
+ ( +0)  (74)
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Substituting this expression for  back to the Bellman equation and matching the coefficients, we

have:

 =  and 0 = 

µ
 − 



¶
+  ln

³


´
− 1
2
2 −



2
2 

Substituting these coefficients into (74) gives the consumption function, (16), and the value function,

(20), in the main text.

Finally, we check if the consumer’s transversality condition (TVC),

lim
→∞

 [exp (−) | ()|] = 0 (75)

is satisfied. Substituting the consumption function, ∗ , into the state transition equation for 
yields

 = e+ 

where e = −(−)
 + 1

2e2 under the approximating model. This Brownian motion with drift can
be rewritten as

 = 0 + e+  ( −0)  (76)

where  −0 ∼  (0 ). Substituting (76) into  [exp (−) | ()|] yields:

 [exp (−) | ()|] =
1

1
 [exp (−− 0 − 1)]

=
1

1
exp

µ
 [− − 0 − 1] +

1

2
var (1)

¶

=
1

1
exp

µ
−− 0 − 1

³
0 + e

´
+
1

2
21

2


¶

= | (0) | exp

µ
−
µ
 + 1 e−

1

2
21

2


¶


¶

where | (0) | =
1
1
exp (−0 − 10) is a positive constant and we use the facts that  − 0 ∼


³
e 2

´
. Therefore, the TVC, (75), is satisfied if and only if the following condition holds:

 + 1 e−
1

2
21

2
 =  +

1

2

µ




¶2µ 


− 1 + 

¶
2  0

Given the parameter values we consider in the text, it is obvious that the TVC is always satisfied

in both the FI-RE and RB models. It is straightforward to show that the TVC still holds under

the distorted model in which e = −(−)
 + 1

2e2 − 


2
 for plausible values of .

7.4 Solving the RU-RB Model with a Risky Asset

The robust HJB equation for the RU-RB model with multiple financial assets can be written as:

 () = max

min


½
 () +  0 ()

µ
 −  +  −

1

2
2 + 

2

¶
+

1

2
2 

2

¾
 (77)
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subject to the distorting equation, (49). Solving first for the infimization part of the problem yields

∗ () = − 0 () 

Given that  ()  0, the perturbation adds a negative drift term to the state transition equation

because  0 ()  0. Substituting it into the above HJB equation yields:

 () = max


½
 () +  0 ()

µ
 −  +  −

1

2
2 − 

0 ()
2

¶
+

1

2

¡


0 ()
¢2
2
¾

Following Uppal and Wang (2003) and Maenhout (2004), we assume that  = − (). The

HJB equation reduces to

 () = max


(
 () +  0 ()

µ
 −  +  −

1

2
2 +

 0 ()

 ()
2

¶
−  ( 0 ())

2

2 ()
22

)


Using the fact that  () = (−) exp (−), the HJB reduces to

 () = max


½
 () +  0 ()

µ
 −  +  −

1

2

µ
 +





¶
2 +

 0 ()

 ()
2

¶¾


The FOC for  is then

 0 () =  0 ()

which implies that

 = − ln
µ




¶
+ ( +0)  (78)

The FOC for  is

 =


 ( + )2
− 

2
 (79)

which is just (53). Substituting this expression for  back to the Bellman equation and matching

the coefficients, we have:

 =  (80)

and

0 = 

µ



− 1
¶
− 1
2
e
¡
1− 2

¢
2 +

2

2e2
− 

2
+  ln

³


´
 (81)

Substituting these coefficients into (78) gives the consumption function, (52) in the main text.
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Given the optimal consumption-portfolio rules, the individual saving function can be written as

∗ =  +  − ∗ + ∗

=  +  −
µ
 +Ψ− Γ−


2

+
2

2e2

¶
+ 

µ


e2
− 

2

¶

=

∙


µ
 +

1

 + 1
 +

1
 ( + 1)



¶
− 

µ
1

 + 1
 +

1
 ( + 1)



¶¸
+ 

−
µ
 +Ψ− Γ−


2

+
2

2e2

¶
+ 

µ


e2
− 

2

¶

=


 + 
( − ) + Γ−Ψ+ 

2
− 2

2e2
+ 

µ


e2
− 

2

¶

=


 + 
( − ) + Γ−Ψ+Π

where Π = 2

22 .
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Table 1: Measures of the Risk Free Rate

Three-month Nominal T-Bond One-year Nominal T-Bond

CPI Inflation (1981− 2010) 187% 233%

PCE Inflation (1981− 2010) 196% 242%

CPI Inflation (1981− 2015) 137% 178%

PCE Inflation (1981− 2015) 175% 216%
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Table 2: Estimation and Calibration Results

Labor Income Parameter Values

Discrete time specification

constant 0 00005

persistence 1 0919

std. of shock  0175

Continuous-time specification

persistence  0082

std. of income changes  0182

Table 3: Model Comparison with Key Parameter Values

Parameters Data FI RB (Benchmark) RB (  0) RB (  0)

Moments ( = 055) ( = 055) ( = 055) ( = 055)

 15 5 25 15

 0 5 3 1 28

 05 0175 0295 0313

∗(%) 191 191 191 191 191

 031 or 037 019 019 031 037
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