
Munich Personal RePEc Archive

Revising the school choice problem

Duddy, Conal

National University of Ireland, Galway

29 March 2015

Online at https://mpra.ub.uni-muenchen.de/63316/

MPRA Paper No. 63316, posted 29 Mar 2015 13:04 UTC



Revising the school choice problem

Conal Duddy∗

March 29, 2015

Abstract

In a school choice problem each school has a priority ordering over stu-

dents. These priority orderings depend on criteria such as whether a student

lives within walking distance or has a sibling already at the school. We argue

that by including just the priority orderings in the problem, and not the crite-

ria themselves, we lose crucial information. This loss of information results

in mechanisms that discriminate between students in ways that are difficult to

justify. We propose an alternative school choice problem and adaptations of

the Gale-Shapley student optimal stable mechanism and the top trading cycles

mechanism.

1 Introduction

In some school districts in the United States students are assigned to public schools

via a matching mechanism. Districts vary in the particular mechanism that they

use. Each mechanism is a solution to what is called the school choice problem.

There are three mechanisms that are central in the literature on the school choice

problem, a literature that begins with Abdulkadiroğlu and Sönmez (2003). These
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are the Boston mechanism, the Gale-Shapley student optimal stable mechanism and

the top trading cycles mechanism.

Each of these mechanisms assigns students to schools based on preference or-

derings submitted by the students and the priority orderings of the schools. A

school’s priority ordering is a ranking of students based on criteria such as hav-

ing a sibling already at the school or living within walking distance of the school.

There is no consensus as to which mechanism is best because there are in-

escapable tensions in the school choice problem between objectives such as effi-

ciency, strategy-proofness and the avoidance of what is called justified envy. The

debate about this matching problem has centered around trade-offs between these

important normative principles.

However, this paper is not about those trade-offs. Here we argue that the school

choice problem itself must be modified if we are to design mechanisms that treat

students fairly. We define the school choice problem formally in the next section

and argue against its suitability in Section 3. We propose an alternative problem in

Section 4. Finally, in Section 5 we show how standard mechanisms can be adapted

to this new version of the school choice problem.

2 The school choice problem

A school choice problem consists of five items:

1. a set I of students,

2. a set S of schools,

3. a list of natural numbers, each indicating the capacity of a school,

4. a list of strict preference orderings over S, one for each student, and

5. a list of weak priority orderings over I, one for each school.

The total number of available seats across all of the schools must be at least as great

as the number of students. This list of five items is based on the one provided by

Ergin and Sönmez (2006).

2



A matching assigns each student to a school. We require that the number of

students assigned to a school does not exceed the capacity of that school, and that

each student is assigned to exactly one school. A mechanism is a systemic way

of generating a matching for a school choice problem. A mechanism may involve

some randomization. Given such a mechanism we can associate an expected match-

ing to a school choice problem prior to the resolving of any lotteries. An expected

matching describes each student’s probability of being matched to each school.

There is another form of the school choice problem called the controlled school

choice problem. In the controlled problem, school enrollments are subject to ex-

ogenously imposed constraints that maintain diversity in schools. These constraints

usually take the form of lower or upper limits for students in particular ethnic, racial

or socioeconomic groups. For simplicity, we leave aside these kinds of exogenous

constraints here. For analysis of controlled school choice problems see Kojima

(2012), Hafalir, Yenmez and Yildirim (2013) and Ehlers et al. (2014).

3 Motivating a revision

To help motivate a revision of the school choice problem let us consider a simple

scenario involving two neighborhoods and three schools. Two of the schools, call

them s1 and s2, are located in the Oak Hill neighborhood while s3 is in the Elm Hill

neighborhood.

There are twenty available places at each school, and there are sixty students to

be assigned to these places. Twenty of these students live in Oak Hill and forty live

in Elm Hill. All sixty students share the same preference ordering over the schools;

they all like s1 the most and s3 the least. The twenty Oak Hill students have priority

for both s1 and s2 because they live within walking distance of those schools and

the Elm Hill students do not.

Under the Boston mechanism, we assign as many students as possible to their

first-choice schools. Where a school is over-subscribed we refer to that school’s

priority ordering to determine which students are accepted. So the Boston mecha-

nism would give all twenty available places at s1 to Oak Hill students. The other

two standard mechanisms, the Gale-Shapley mechanism and the top trading cycles
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mechanism, are more complex and we will postpone a discussion of them until

Section 5. For now it suffices to say that they satisfy a principle called “Mutual

Top”, just as the Boston mechanism does. This principle says that if school s is

the top choice of student i, and student i is at the top of the priority ordering for

school s, then i should be assigned to s (unless the school cannot accommodate all

such “mutual top” students). Thusly those two mechanisms agree with the Boston

mechanism in this case; the twenty Oak Hill students should be assigned to s1 and

the forty Elm Hill students should be split between s2 and s3.

Crucially, however, the only difference between schools s1 and s2 is that one is

more desirable than the other. Twenty Elm Hill students must travel to Oak Hill

for their schooling and, seemingly without justification, they are all assigned to the

inferior Oak Hill school.

We do not object to there being some inequality of access to more desirable

schools in general. Such inequality is often justifiable. We may quite reasonably

prefer students to attend schools within walking distance of their homes, and this

will inevitably entail unequal access to better schools. But in this scenario the

degree of inequality is needlessly high. After all, we could have given students

from Elm Hill a non-zero chance of being matched to s1, by way of some kind of

lottery, while still ensuring that all Oak Hill students are assigned to s1 or s2.

This scenario motivates a change to the important concept of justified envy that

we briefly mentioned earlier. This change, in turn, requires a revision of the school

choice problem itself.

3.1 Justified envy

Justified envy occurs when a student i prefers some other school s to the school he or

she has been assigned to and i has higher priority for s than a student who has been

assigned to s. In the above scenario, if an Elm Hill student is assigned to s1 while

an Oak Hill student is assigned to s2 then we have a case of justified envy. The Oak

Hill student, and her parents, may well feel aggrieved that she has been deprived of

a place at a school located in her neighborhood in favor of a student from another

area. Indeed, this is the basis on which the standard mechanisms allocate all twenty
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places at s1 to Oak Hill students. Yet, we argue, this family’s grievance surely loses

any justification it seemed to have once we see that the school that the student has

been assigned to, s2, is also located in her neighborhood. As we have noted, the

schools differ only in their desirability.

To help us to define an alternative concept that we call strongly justified envy

we introduce some notation and terms here. A key feature of this paper is that we

associate a set of “priority factors” to each student-school pair. A priority factor

could be “lives within walking distance” or “has a sibling at the school”. Given a

student-school pair (i,s) let the corresponding set of priority factors be denoted by

φ(i,s). This set may be empty.

Given a student i and schools s and s′, if φ(i,s) is a subset of φ(i,s′) then we

say that s′ is substitutable for s with respect to i. Note that a school is always sub-

stitutable for itself. Let ω(i,s) denote i’s least preferred school that is substitutable

for s with respect to i. We now define strongly justified envy as follows.

Strongly justified envy. A student i has been assigned to school s′, another student

has been assigned to school s despite having lower priority for s than i has,

and i prefers ω(i,s) to s′.

Suppose that student i prefers s to s′ but has been matched to s′. It transpires that

a student with lower priority for s has been matched to s. This case of justified

envy may fail to be “strong” for one of two possible reasons. One is that s′ is

substitutable for s with respect to i. This would rule out i preferring ω(i,s) to s′.

The second possible reason is that s′ is better than a school that is substitutable for

s. In other words, i strictly prefers s′ to ω(i,s). In the above scenario, an Oak Hill

student attending s3 would regard any Elm Hill student at s1 with strongly justified

envy, but an Oak Hill student at s2 would not.

4 An alternative problem

In this section we propose an alternative definition of the problem. The seven items

that constitute an alternative school choice problem are:

1. a set I of students,
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2. a set S of schools,

3. a list of natural numbers, each indicating the capacity of a school,

4. a list of strict preference orderings over S, one for each student,

5. a set F of priority factors,

6. a weak ordering over 2F , the power set of F , and

7. a mapping φ from I ×S to 2F .

Items 1–4 are unchanged from the original problem. The weak ordering over 2F is

a ranking of priority factors, and combinations of priority factors, by their impor-

tance. For example, “has a sibling at the school” may be considered more important

than “lives within walking distance”.

Items 5–7 induce a priority ordering for each school. Let � be the weak ordering

over 2F . Then i is ranked equal to or above j in the priority ordering for school s if

and only if φ(i,s)� φ( j,s).

Crucially, the alternative school choice problem allows a mechanism to take

account of the “substitutability” of schools with respect to each student. In the next

section we show how this can lead to fairer mechanisms.

5 Solutions

Given that items 5–7 induce a priority ordering for each school, we can derive a

standard school choice problem from an alternative school choice problem. There-

fore we can apply any standard mechanism to an alternative problem. In Section 3,

however, we argued that the standard mechanisms may discriminate between stu-

dents in ways that are difficult to justify. In this section we adapt the Gale-Shapley

student optimal stable mechanism and the top trading cycles mechanism to the al-

ternative school choice problem. We leave the adaptation of the Boston mechanism

as an open problem.
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5.1 The Gale-Shapley mechanism

When school priority orderings are strict the Gale-Shapley student optimal stable

mechanism, or more simply the Gale-Shapley mechanism, generates a matching as

follows. A matching is said to be stable if it is free from justified envy. A school

is deemed possible for a student if assigning that student to that school is consis-

tent with a stable matching. Each student is assigned to his or her most-preferred

possible school. Gale and Shapley (1962, Theorem 2) prove that this matching is

always feasible. The matching generated by the Gale-Shapley mechanism is thusly

Pareto-superior to all other stable matchings.

When there are ties in school priority orderings, as there typically are in practice,

the matter is less straightforward. For analysis of the complex issues that arise in

this case see Erdil and Ergin (2008) and Abdulkadiroğlu, Che and Yasuda (2015).

Here we propose one simple adaptation of the Gale-Shapley mechanism to the

alternative school choice problem. In what follows we do not assume that the school

priority orderings (as induced by items 5–7) are strict. We define this modified

Gale-Shapley mechanism as an iterative procedure as follows. At each step k we

draw an unassigned student i at random and we assign i to the highest school s in i’s

preference ordering such that: (i) there is a free place at s and (ii) assigning i to s,

combined with all previous assignments made in steps 1 to k−1, is consistent with

a complete matching that is free from strongly justified envy.

By way of an example, let us apply this mechanism to the scenario we discussed

in Section 3. We noted that the three standard mechanisms generate the following

expected matching. The first row shows the probability that a representative Oak

Hill student will be assigned to each of the three schools, and the second row shows

the respective probabilities for an Elm Hill student.

s1 s2 s3

Oak 1 0 0

Elm 0 1/2 1/2

When we instead apply the modified version of the Gale-Shapley mechanism
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we generate the following expected matching.

s1 s2 s3

Oak 1/3 2/3 0

Elm 1/3 1/6 1/2

The first twenty students drawn at random will be assigned to s1. None of those

assignments are inconsistent with freedom from strongly justified envy. So every

one of the sixty students has a probability of one third of being assigned to s1. Any

Oak Hill student not assigned to s1 will be assigned to s2. Freedom from strongly

justified envy requires this. Thusly each Oak Hill student is assigned to s2 with a

probability of two thirds. The last twenty of the forty Elm Hill students drawn at

random will be assigned to s3. So each Elm Hill student is assigned to s3 with a

probability of one half. It follows that each Elm Hill student is assigned to s2 with

a probability of one sixth.

This second expected matching is much fairer than the first and it fully respects

the entitlement of Oak Hill students to attend a local school. Let us also note that

if, say, one of the Oak Hill students had a sibling already attending s1 then the

probability of that student being assigned to s1 would be one. This is because s2

would not be substitutable for s1 with respect to that student. Assigning such a

student to s2 would result in strongly justified envy.

Of course, by construction, this method always generates a matching that is

free from strongly justified envy. It is also clear that a matching generated by this

method will not be Pareto-inferior to any other matching that is free from strongly

justified envy. However, like the original mechanism, it may generate a matching

that is Pareto-inferior to a matching that does exhibit strongly justified envy.

This method also fails to be strategy-proof. Erdil and Ergin (2008) provide

an example (their Example 2) of a standard school choice problem for which no

strategy-proof mechanism can generate a matching that is stable and constrained

efficient. A stable matching is constrained efficient if it is not Pareto-inferior to any

other stable matching. We can construct an alternative school choice problem in

which no school is substitutable for another with respect to any student and where

student preference orderings and the induced school priority orderings match those
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of Erdil and Ergin’s example. In the absence of any substitutability of schools, the

concepts of justified envy and strongly justified envy coincide. By recasting their

example in this way we can see that no mechanism that eliminates strongly justified

envy and achieves constrained efficiency (vis-à-vis strongly justified envy) can be

strategy-proof for every alternative school choice problem.

5.2 Top trading cycles

The top trading cycles algorithm originates in a paper by Shapley and Scarf (1974).

They investigate a model of trading in goods that are indivisible. They attribute

the idea for the algorithm to David Gale. A standard school choice problem cor-

responds to the kind of scenario Shapley and Scarf analyze when each school has

just one place available. Abdulkadiroğlu and Sönmez (2003) adapt the original top

trading cycles algorithm to the case where each school may have multiple seats

available. Given a standard school choice problem, their method works in the fol-

lowing way to determine a matching.

By random selection let us resolve any ties in the priority orderings of the

schools so that all priority orderings become strict. Each student points to his or

her most preferred school of those that are available. Each school points to its high-

est priority student among those not yet matched to a school. There will be at least

one cycle. Each student involved in a cycle is assigned to the school he or she is

pointing to. The matched students are removed and any school that has now reached

its capacity is removed, and the process is then repeated. The procedure ends when

all students have been assigned to schools.

There are multiple other ways of adapting the original top trading cycles mech-

anism to problems in which schools have capacities greater than one. Compelling

adaptations have been proposed by Morrill (2014) and Hakimov and Kesten (2014).

While there are convincing normative arguments in favor of the newer adaptations,

we will prioritize simplicity here and base our proposal on the mechanism proposed

by Abdulkadiroğlu and Sönmez (2003), which remains the simplest and most well-

known of the adaptations.

Our modified version of the top trading cycles mechanism for the alternative
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school choice problem works as follows. Let us take the school priority orderings

(induced by items 5–7) and use randomization to break ties and make those pri-

ority orderings strict. Following this, we distribute school seats to students in the

following way to generate a kind of initial endowment of seats before trading takes

place. Some students may be endowed with multiple seats and others with none.

The total number of seats at each school is equal to the capacity of that school. In

each step we begin by selecting at random a seat that is not yet in any student’s ini-

tial endowment. Suppose we select a seat at school s. We allocate it to the highest

priority student for s who has not already been allocated a seat at a school that is

substitutable for s with respect to that student. If every student already has a seat

at a school that is substitutable for s then we choose at random a student who has

not already been allocated a seat at s and we allocate the seat to him or her. We

repeat this step until all seats are allocated to students. At this point we have de-

termined initial endowments for the students but we have not yet actually assigned

any student to a school. We say that a student is “holding” the seats in his or her

endowment.

As in the method proposed by Abdulkadiroğlu and Sönmez (2003), we have

each school point at just one student at a time. Initially, each school points to a

student chosen at random from among those who hold a seat at that school. Once a

school points to a student it continues to point to that same student for as long as he

or she remains in the procedure. Only when that student is removed does the school

point to another student (again chosen at random from among those holding a seat at

the school). Each student always points to his or her most preferred school of those

that have not yet reached capacity. Then, just as in the standard algorithm, any

student involved in a cycle is assigned to the school he or she is pointing to. When

a student is assigned to a school s the particular seat that the student is matched to is

the one held by the student that s is pointing to. Those matched students and seats

are removed from the procedure. If a removed student had been holding more than

one seat then the unmatched seats are immediately redistributed to the endowments

of the remaining students by a continuation of the procedure we used to determine

the initial endowments. A school is removed once all of its seats have been matched

to students. The procedure ends when all students have been assigned to schools.
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By way of an example, let us apply this method to the scenario discussed in

Section 3. In that scenario the Oak Hill students have higher priority than the Elm

Hill students for both s1 and s2. Each time a seat at one of those schools is selected

at random, during the initial endowment phase, it will be given to an Oak Hill

student until all Oak Hill students have been allocated a seat at either s1 or s2.

The substitutability of those two schools means that none of those students will be

allocated seats at both schools. So each Oak Hill student will receive a seat at s1

with a probability of one half, and a seat at s2 with a probability of one half. Twenty

seats at Oak Hill schools will be allocated to Elm Hill students. The twenty seats

at s3 will also be allocated to Elm Hill students. Since all sixty students share the

same preference ordering it is easy to see that no trading will take place. That is,

every cycle that occurs will be a trivial cycle in which a school and a student point

directly to one another.

Prior to the resolving of lotteries to determine the order in which schools seats

are initially allocated and to break ties in the school priority orderings, the students

face the following expected matching.

s1 s2 s3

Oak 1/2 1/2 0

Elm 1/4 1/4 1/2

This is less egalitarian than the expected matching that resulted from the modi-

fied version of the Gale-Shapley mechanism, though more egalitarian than the one

generated by the standard mechanisms. As an aside, let us observe that in this ex-

pected matching we see that, for all sixty students, the conditional probability of a

student being assigned to s1 given that he or she is assigned to an Oak Hill school

is one half. The same is true of s2. On the basis of this equality in conditional

probabilities one may argue that this expected matching is fair even though an Elm

Hill student has less chance of attending s1 than an Oak Hill student has.

In modifying the top trading cycles mechanism we retained an important fea-

ture of the original. The rule that determines which student each school points to

does not take any account of the preferences of students. This is a simple way of

ensuring that the resulting mechanism is strategy-proof. This is why we ignored
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the popularity of s1 when distributing seats to students and instead treated s1 and s2

symmetrically, as is reflected in the expected matching.

To see that this method is strategy-proof one may apply the very same intuition

that Abdulkadiroğlu and Sönmez (2003) provide for their Proposition 4. Also, since

in every iteration we only match students to schools that are their most preferred

of the remaining schools, this method always generates a matching that is Pareto-

efficient. However, while it does take account of the substitutability of schools, it

does not eliminate strongly justified envy. This is unsurprising given that a central

fact in the literature on matching problems is that the Gale-Shapley mechanism

ensures stability but not efficiency, while the top trading cycles mechanism ensures

efficiency but not stability.
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