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Abstract
We provide a comprehensive analysis of the impact of probability weighting on 
optimal insurance demand in a unified framework. We identify decreasing relative 
overweighting as a new local condition on the probability weighting function that is 
useful for comparative static analysis. We discuss the effects of probability weight-
ing on coinsurance, deductible choice, insurance demand for low-probability, high-
impact risks versus high-probability, low-impact risks, and insurance demand in the 
presence of nonperformance risk. Probability weighting can make better or worse 
predictions than expected utility depending on the insurance demand problem at 
hand.
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1 Introduction

Insurance choices are important financial decisions for households and can have 
a significant impact on their welfare (Bhargava et  al. 2017). Researchers have 
aspired to find a valid descriptive model of insurance choice under risk for dec-
ades to be able to predict individual behavior and conduct policy analysis. In 
the expected utility (EU) model, the curvature of the utility function measures 
the individual’s degree of risk aversion (Pratt 1964), which then drives optimal 
insurance demand (Mossin 1968). From a descriptive standpoint, utility curvature 
alone is often too rigid to explain insurance choices in the field and may require 
implausibly high levels of risk aversion (e.g., Sydnor 2010). Incorporating prob-
ability weighting into the decision model is a common approach to address these 
shortcomings (e.g., Barseghyan et  al. 2013; Hansen et  al. 2016; Wakker et  al. 
1997).

In this paper, we provide a comprehensive analysis of the impact of probabil-
ity weighting on optimal insurance demand in a unified framework. Our model 
allows for clear comparisons to the predictions obtained under the standard EU 
model. We explore a number of common insurance demand problems. Specifi-
cally, we consider the effects of probability weighting on coinsurance, deductible 
choice, insurance demand for low-probability, high-impact (LPHI) risks versus 
high-probability, low-impact (HPLI) risks, and insurance demand in the pres-
ence of nonperformance risk. We are the first to formalize these problems of opti-
mal insurance demand in one efficient model. We thus provide a comprehensive 
assessment of the merits and limitations of probability weighting when it comes 
to explaining insurance demand.

Three empirical observations motivate our study. First, people tend to “overin-
sure” modest risks (e.g., Sydnor 2010). Probability weighting is a potential expla-
nation. Typical probability weighting functions imply higher insurance demand 
than EU when considering coinsurance in the binary loss model and for deduct-
ible choice. The reason is a substitution effect between overweighting of the loss 
probability and utility curvature. Second, studies have documented less demand 
for insurance covering LPHI risks than for insurance covering HPLI risks, which 
is at odds with EU predictions (e.g., Browne et al. 2015; Slovic et al. 1977). We 
show that, under mild conditions, probability weighting makes the same predic-
tion as EU and is therefore not able to explain underinsurance of LPHI risks. 
Third, individuals are sensitive to contract nonperformance risk and reduce their 
insurance demand by more than EU predicts (e.g., Wakker et al. 1997; Zimmer 
et al. 2018). While probability weighting may appear as a promising solution, it 
actually implies higher insurance demand than EU under reasonable assumptions. 
So if anything, it exacerbates the puzzle. Together, these results reveal that the 
descriptive appeal of probability weighting is limited to overinsurance puzzles 
and does not extend to underinsurance puzzles.

We conduct most of our analysis in the simplest model of insurance demand 
with a binary loss risk. This simplification makes the model tractable and allows 
us to derive rich comparative statics without having to assume a particular 
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functional form of the probability weighting function. We extend our results for 
coinsurance to optimal deductible choice. This not only shows that our results do 
not depend on the binary loss assumption, but also covers an important range of 
applications on insurance markets. We introduce decreasing relative overweight-
ing (DRO) as a local property of the probability weighting function and collect 
all probabilities where it holds in the DRO region. In this region, small prob-
abilities are overweighted more than large probabilities relative to their baseline 
value. We relate DRO to other properties of the probability weighting function.1 
DRO regions are large theoretically and empirically, so most loss probabilities 
relevant in insurance demand fall well within the region.2 Given the usefulness of 
DRO for the comparative statics of insurance demand, this property may be help-
ful in other applications as well. In a final step, we use experimentally calibrated 
preferences to provide numerical illustrations of our results.

We are not the first to look at optimal insurance demand outside of the EU model. 
Machina (1995) analyzes the robustness of several classical results in insurance 
theory under non-expected utility preferences (see also Schlesinger 1997). Doherty 
and Eeckhoudt (1995) examine optimal insurance demand under Yaari’s (1987) dual 
theory. Yet others have looked at insurance demand through the lens of regret aver-
sion (Braun and Muermann 2004), disappointment aversion (Huang et  al. 2012), 
ambiguity aversion (Alary et al. 2013; Snow 2011), and prospect theory (Schmidt 
2016). We focus on Quiggin’s (1982) rank-dependent utility (RDU) to study the role 
of probability weighting in insurance demand. We explicitly allow the probability 
weighting function to take the commonly-observed inverse S-shape (e.g., Abdellaoui 
et al. 2011) and abstain from parametric assumptions, which are abundant in empiri-
cal work (e.g., Barseghyan et al. 2013; Hansen et al. 2016; Harrison and Ng 2018). 
While some results exist (see Schmidt 1998), we are the first to bring together a 
whole range of insurance demand problems, including LPHI versus HPLI risks and 
nonperformance risk. Analyzing these issues in one unified framework allows us to 
take a broader perspective on the effects of probability weighting.

The paper proceeds as follows. The next section introduces the baseline model 
and defines DRO. In Section  3, we characterize optimal insurance demand under 
probability weighting, derive the substitution between overweighting and utility cur-
vature, which resolves the overinsurance puzzle for modest risks, and extend our 
results to deductible insurance. In Section 4, we present situations where underinsur-
ance has been observed. We analyze how insurance demand differs for LPHI versus 
HPLI risks, and study the demand effects of nonperformance risk under probabil-
ity weighting. Section 5 offers numerical illustrations based on experimentally-cal-
ibrated preferences. Section 6 presents a more in-depth discussion of the literature 
and explains how our results offer new insights. The last section concludes.

1 In many cases, the DRO region takes the form of (0, p̂) with p̂ < 1 . This is weaker than requiring star-
shapedness at 1 of the dual to the probability weighting function (see Ryan 2006) but stronger than Tver-
sky and Wakker’s (1995) lower subadditivity property.
2 For typical inverse S-shaped probability weighting functions, the DRO region includes all probabilities 
below a threshold of at least 75%. Our focus on loss probabilities in the DRO region is thus less restric-
tive than overweighting, because only probabilities below 40% or so are overweighted in most cases.
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2  Probability weighting and insurance demand

2.1  Model setup

Quiggin’s (1982) rank-dependent utility (RDU) allows us to isolate the effect of 
probability weighting on optimal insurance demand. We start with a simple two-
state model with a binary loss. We will extend our results to deductible choice in 
Section 3.3 and consider three states of the world in Section 4.2 to accommodate 
nonperformance risk.

Let x̃ = (E1, x1;...;En, xn) be an ordered prospect with outcomes x1 ≥ ... ≥ xn for 
a partition 

{
Ei

}
i
 of the state space into events. Under RDU, ordered prospects are 

evaluated according to

where u denotes an increasing and concave utility function, and �i is the decision 
weight for event Ei . Let ℙ be the probability distribution and w the individual’s prob-
ability weighting function. Insurance covers losses and losses are bad news, so deci-
sion weights are defined by

with the convention that ∪n
j=n+1

Ej = �.3 To avoid violations of first-order stochastic 
dominance, we assume that w is increasing with w(0) = 0 and w(1) = 1 (see Quiggin 
1982; Tversky and Kahneman 1992). EU is a special case of (2) for w(p) = p , 
because then �i = ℙ(Ei) . This enables us to isolate the effect of probability weight-
ing on insurance decisions.

To model insurance demand, we assume the individual has initial wealth x and is 
subject to a potential loss of L < x which occurs with probability p. The individual 
chooses a level of insurance coverage to protect himself against the risk of loss. We 
denote the coinsurance rate by � and make the common assumption that 0 ≤ � ≤ 1 . 
The insurer charges a loading m on top of the expected cost of insurance, so the pre-
mium is �mpL . Insurance is called actuarially fair for m = 1 . If m > 1 , the contract 
is actuarially unfair or loaded, and if m < 1 , it is actuarially favorable or subsidized.4 
The no-loss state results in final wealth of x1 = x − �mpL , the loss state results in 
final wealth of x2 = x − �mpL − (1 − �)L.

(1)V (̃x) =

n∑
i=1

�iu(xi),

(2)�i = w

(
ℙ

(
∪n
j=i
Ej

))
− w

(
ℙ

(
∪n
j=i+1

Ej

))
,

3 If only gains were involved, decision weights would be given by 
�i = w

(
ℙ

(
∪i
j=1

Ej

))
− w

(
ℙ

(
∪i−1
j=1

Ej

))
 , with the convention that ∪0

j=1
Ej = � , see Sarin and Wakker 

(1998). Insurance decisions have rarely been interpreted in the gain domain. Exceptions are Schmidt’s 
(2016) analysis based on third-generation prospect theory (see Schmidt et  al. 2008) and Köszegi and 
Rabin’s (2007) choice-acclimated personal equilibrium.
4 We assume m < 1∕p because otherwise purchasing any amount of insurance would be state-wise domi-
nated by remaining uninsured. We will tighten the upper bound on m later in the analysis.
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Because � ≤ 1 , final wealth in the no-loss state is never less than final wealth in 
the loss state. According to (2), the decision weights are then given by �1 = 1 − w(p) 
and �2 = w(p) . The individual’s optimal insurance demand �∗

W
 maximizes the fol-

lowing objective function:

The notation W indicates the presence of probability weighting. EU is nested in (3) 
for w(p) = p with the following objective function:

The notation U is short for expected utility. We can rewrite the probability weight-
ing function as w(p) = p + �(p) , where �(p) denotes the absolute amount of over-
weighting. It measures by how many percentage points a given probability is over-
weighted.5 We can then compare the two objective functions as follows:

As long as insurance is partial ( 𝛼 < 1 ), probability weighting reduces the individu-
al’s perceived welfare if and only if the loss probability is overweighted.

2.2  Decreasing relative overweighting (DRO)

We also make use of the relative amount of overweighting, which we define as 
follows:

It relates the absolute amount of overweighting to the value of the loss probability. 
For example, if p = 0.05 and p = 0.10 are both overweighted with w(0.05) = 0.10 
and w(0.10) = 0.15 , the absolute amount of overweighting is identical for the two 
probabilities, �(0.05) = �(0.10) = 0.05 . In relative terms, however, 0.05 is over-
weighted by more because 𝜌(0.05) = 2 > 1.5 = 𝜌(0.10).

Descriptive decision theory primarily has found inverse S-shaped probability 
weighting functions (e.g., Abdellaoui et  al. 2011; Stott 2006; Wu and Gonzalez 
1996). Functions with this shape overweight small and underweight large probabili-
ties with a unique interior fixed point where w(p∗) = p∗ . They are concave up to 
an inflection point p̃ and convex afterward. Many functional forms have been pro-
posed to accommodate an inverse S-shape including those in Goldstein and Einhorn 
(1987), Tversky and Kahneman (1992), Wu and Gonzalez (1996), Prelec (1998), 
and Wakker (2010). We provide an overview in Appendix A.1 and discuss some of 

(3)W = w(p)u(x − �mpL − (1 − �)L) + (1 − w(p))u(x − �mpL).

(4)U = pu(x − �mpL − (1 − �)L) + (1 − p)u(x − �mpL).

(5)W = U − �(p) ⋅
[
u(x − �mpL) − u(x − �mpL − (1 − �)L)

]
.

(6)�(p) =
w(p) − p

p
=

�(p)

p
.

5 The absolute amount of overweighting �(p) is positive for probabilities that are overweighted and nega-
tive for probabilities that are underweighted. Some properties of � follow directly from properties of w, 
such as �(0) = �(1) = 0 , �(p) ∈ [−p, 1 − p] for all p, and ��(p) ≥ −1 for all p where � is differentiable.
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their properties. Panel (a) in Fig. 1 shows an example of inverse S-shaped probabil-
ity weighting based on the Goldstein and Einhorn functional form with parameters 
r = 0.5 and s = 0.7 . Panels (b) and (c) depict the associated absolute and relative 
amount of overweighting. This motivates the following definition.

Definition 1 A probability weighting function has decreasing relative overweighting 
(DRO) at probability p if there is an open neighborhood of p where � is decreasing. 
The DRO region is the collection of all probabilities where the probability weight-
ing function satisfies DRO.

In the DRO region, smaller probabilities are more overweighted than larger ones 
relative to their baseline value, just as in the example after Equation (6). If w is 
differentiable, the DRO region contains all probabilities where 𝜌′ < 0.6 So while 
overweighting can be characterized as a positive relative amount of overweighting, 
a condition on the level of � , DRO is a condition on its slope. Panel (c) of Fig. 1 
shows that the DRO region covers all overweighted probabilities but extends to 0.79, 
far beyond the fixed point and the inflection point, including many probabilities that 
are underweighted. Many probability weighting functions have large DRO regions, 
which contain the vast majority of probabilities relevant in insurance demand (see 
Appendix A.2). Our focus on loss probabilities in the DRO region is thus innocuous.

DRO can be related to other properties of the probability weighting function. 
Ryan (2006) shows that, with a concave utility function, RDU preferences are Jewitt 
(1989) risk-averse if and only if w(p)/p is non-increasing on (0, 1]. This is equiva-
lent to requiring that the weak version of DRO holds globally, in which case the 
dual to the probability weighting function is star-shaped at 1 (see Chateauneuf et al. 
2004).7 In our analysis, we do not require DRO to hold globally. Doing so would 
exclude empirically relevant shapes of the probability weighting function such as an 
inverse S-shape because the DRO region is (0, p̂) in this case with p̂ < 1 , see Propo-
sition 7(i). DRO regions of this form imply that Tversky and Wakker’s (1995) lower 
subadditivity condition holds for all probabilities up to p̂.

3  Overinsurance puzzles

3.1  Insurance demand under probability weighting and under EU

We first consider how optimal insurance demand depends on the loading. All 
formal derivations and proofs are provided in Appendix B. We obtain an upper 

7 Ghossoub and He (2020) provide an overview of notions of (comparative) risk aversion for RDU pref-
erences and their characterization. If the probability weighting function is star-shaped at 0, the DRO 
region is empty because star-shapedness is equivalent to w(p)/p being non-decreasing on (0, 1].

6 As long as the probability weighting function has no more than one inflection point, which holds 
for most functional forms including inverse S-shaped, the DRO region is connected. With two or more 
inflection points, the DRO region may be a collection of intervals. We exclude disconnected DRO 
regions to simplify the exposition.
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bound mW and a lower bound m
W

 on the loading. For loadings above the upper 
bound, the optimal level of insurance coverage is zero ( �∗

W
= 0 if m ≥ mW ). 

Therefore, we call mW the no-insurance bound. For loadings below the lower 
bound, full insurance coverage is optimal ( �∗

W
= 1 if m ≤ m

W
 ). We call m

W
 the 

full-insurance bound. Partial insurance is optimal for loadings between the two 
bounds ( 0 < 𝛼∗

W
< 1 for m

W
< m < mW ). The two bounds are given by

The corresponding EU bounds arise as special cases of (7) for w(p) = p . We denote 
them by m

U
 and mU , and let the optimal level of coverage under EU be �∗

U
 . Accord-

ing to Mossin (1968), full insurance is optimal when the price of insurance is actuar-
ially fair ( �∗

U
= 1 if m = 1 ) and partial insurance is optimal when the loading exceeds 

unity ( 𝛼∗
U
< 1 if m > 1 ). Since the objective function in (3) nests EU, we can com-

pare optimal insurance demand across RDU and EU.

Proposition 1 For a given utility function, overweighting (underweighting) of the 
loss probability: 

 (i) increases (decreases) the full-insurance bound and the no-insurance bound, 
that is, m

W
> m

U
 and mW > mU (m

W
< m

U
 and mW < mU);

 (ii) increases (decreases) the level of insurance demand for loadings between 
min(m

W
,m

U
) and max(mW ,mU).

Furthermore, a higher loss probability: 

 (iii) decreases the ratio m
W
∕m

U
 for loss probabilities in the DRO region;

 (iv) decreases the ratio mW∕mU for overweighted loss probabilities in the DRO 
region.

(7)m
W
=

w(p)

p
and mW =

w(p)u�(x − L)

p
[
w(p)u�(x − L) + (1 − w(p))u�(x)

] .

Fig. 1  An inverse S-shaped probability weighting function based on Goldstein and Einhorn’s (1987) 
specification with r = 0.5 and s = 0.7 [see Equation  (A.1) in Appendix A]. Parameter p∗ denotes the 
fixed point, p̃ the inflection point, and p̂ the upper bound of the DRO region
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Results 1(i) and 1(ii) state that overweighting of the loss probability rational-
izes higher insurance demand than predicted by EU. Results 1(iii) and 1(iv) say 
that, in the DRO region, probability weighting drives a larger wedge between 
the demand thresholds the lower the loss probability. It may seem obvious that 
overweighting of the loss probability raises insurance demand, but there are actu-
ally two conflicting effects at work. Overweighting of the loss probability raises 
both the marginal cost and the marginal benefit of insurance relative to EU. Over-
weighting puts more weight on the loss state where marginal utility is high, and 
decreases the weight on the no-loss state where marginal utility is low. This raises 
the marginal cost of insurance because paying an additional dollar in premium is 
more costly in the loss state than the no-loss state. At the same time, it raises the 
marginal benefit of insurance because the indemnity is only received when the 
loss occurs. The positive net effect derives from Equation (5). Insurance transfers 
final wealth from the no-loss state to the loss state, which shrinks the marginal 
utility gap across states. Therefore, probability weighting makes the individual 
appreciate insurance more if and only if the loss probability is overweighted. The 
increase in the marginal benefit then dominates the increase in the marginal cost 
of insurance, and demand for insurance increases.

Proposition  1 is similar to Schmidt’s (1998) Proposition 3.1, but there are 
important differences. He allows for overinsurance (i.e., 𝛼 > 1 ), which we exclude 
by assumption, and identifies the range of loadings for which full insurance is 
optimal. In our case, this range is (0,m

W
] and contains loadings where individuals 

would purchase more than full insurance if they had the chance to do so. Schmidt 
(1998) focuses on a strictly concave probability weighting function, which rules 
out the inverse S-shape. Our result does not require any assumptions about the 
curvature of the probability weighting function. Additionally, we also provide 
insights into the extensive margin by looking at the loading factor that chokes off 
insurance demand along with some comparative statics.

EU has often been criticized for its prediction of partial coverage at actuari-
ally unfair premiums, as it tends to conflict with choices observed in the labora-
tory and the field (e.g., Jaspersen et  al. 2021; Shapira and Venezia 2008; Syd-
nor 2010). Probability weighting allows us to explain the evidence. According to 
result 1(i), overweighting of the loss probability implies a full-insurance bound 
above unity so that full insurance can be optimal even when premiums are actu-
arially unfair. Results 1(i) and 1(ii) extend to the intensive margin: m

W
 , mW , and 

�∗
W

 are increasing in the absolute amount of overweighting. So the more the loss 
probability is overweighted, the larger the range of loadings above one where full 
insurance is in demand. Furthermore, the ratio mW∕mW

 is decreasing in p because 
the no-insurance bound changes at a faster rate than the full-insurance bound. So 
for loss probabilities in the DRO region, m

W
 , mW , and mW − m

W
 are all decreas-

ing in p. At lower loss probabilities, the range of loadings where insurance is in 
demand is wider and individuals are willing to purchase insurance at higher rela-
tive prices.

Figure  2 illustrates these results. We use the estimates in Barseghyan et  al. 
(2013), who analyze choices for three different insurance products: automobile com-
prehensive, automobile collision, and homeowners insurance. They find average loss 
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probabilities of 2.1%, 6.9% and 8.4%, and estimate a single coefficient of absolute 
risk aversion and a product-specific absolute amount of overweighting from the 
observed insurance choices. For our illustration, we use their estimates and set the 
loss to $1,000, which roughly corresponds to the deductible choice that the indi-
viduals in Barseghyan et  al.’s (2013) study faced. Following their analysis, we 
use an exponential utility function, so no assumption on the individual’s wealth is 
necessary.8

In Figure  2, we plot the full-insurance bound and the no-insurance bounds as 
a function of the absolute amount of overweighting. The gray area corresponds 
to RDU and the black area to EU. In all three panels, (m

W
,mW ) is above (m

U
,mU) 

when �(p) is positive, is equal to (m
U
,mU) when �(p) is zero, and is below (m

U
,mU) 

when �(p) is negative, consistent with result 1(i). Since the bounds under probability 
weighting are increasing in the absolute amount of overweighting, the gray areas fan 
out. Comparing the panels from right to left, the gray areas become “steeper” and 
wider as p decreases. This illustrates the effect of the loss probability on the RDU 
bounds. The black EU areas do not change much at all. In fact, m

U
 is constant at 1 

across panels and mU increases slightly when going from right to left. This is con-
sistent with results 1(iii) and 1(iv) because both the no-insurance bound and the full-
insurance bound are more sensitive to changes in the loss probability under RDU 
than under EU.

All three panels show a sizable effect of probability weighting even for modest 
overweighting. The dashed vertical lines in Fig.  2 represent the absolute amounts 
of overweighting estimated in Barseghyan et al. (2013). At these levels, the reser-
vation price for insurance can be one and a half to four times as high as under EU. 
Particularly, when the loss probability is small, an individual who overweights the 
loss probability will likely still buy full insurance at loadings where his EU twin 
would not buy any insurance at all. This happens for loadings anywhere above the 
black area and below the gray area. Hence, probability weighting can help rational-
ize insurance choices when individuals exhibit higher demand than predicted by EU.

The underlying mechanism behind these observations is that RDU with standard 
probability weighting functions leads to increased risk aversion toward low-prob-
ability risks. The finding of increased risk aversion for losses of low probability is 
already part of Tversky and Kahneman’s (1992) fourfold pattern of risk attitudes. 
Ghossoub and He (2020) provide an overview of notions of risk aversion under 
RDU and also characterize their comparative versions. Requiring an RDU prefer-
ence to be more risk-averse than the corresponding EU preference for all risks often 
imposes restrictions on the probability weighting function such as concavity (e.g., 
Hong et al. 1987; Ryan 2006) or dominance of the identity line (see Quiggin 1993). 
These restrictions rule out the common inverse S-shape. A focus on risks with a loss 
probability that is overweighted alleviates this issue.

8 The individuals in Barseghyan et al.’s (2013) sample choose from six auto comprehensive deductibles 
between $50 and $1,000, from five auto collision deductibles between $100 and $1,000, and from six 
homeowners insurance deductibles between $100 and $5,000.
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3.2  Substitution between overweighting and utility curvature

Proposition 1 rests on the assumption of identical utility functions when comparing 
insurance demand between RDU and EU. While this helps us isolate the effect of 
probability weighting, empirical studies tend to find less concave utility functions 
when allowing probabilities to be distorted (see Barseghyan et  al. 2013; Diecidue 
and Wakker 2002; Fox et al. 1996; Rabin 2000; Selten et al. 1999). Here, we shed 
light on how both motives, utility curvature and overweighting of loss probabilities, 
jointly explain insurance demand.

While the full-insurance bound m
W

 in (7) is constant in utility curvature, the no-
insurance bound mW and the optimal level of coverage �∗

W
 are increasing in utility 

curvature.9 So, in general, optimal insurance demand reflects a substitution between 
utility curvature and overweighting of the loss probability. We can obtain additional 
insights by specifying the utility function. We use exponential or iso-elastic utility 
because they measure utility curvature with a single parameter and are common in 
empirical applications. We can then analyze combinations of utility curvature and 
absolute amount of overweighting that generate the same level of insurance demand. 
Graphically, this yields iso-insurance demand curves in the utility curvature-over-
weighting plane. The substitution effect makes these curves downward-sloping, and 
the size of their slope measures the degree of substitution. This allows us to identify 
factors that are associated with stronger substitution. We summarize our results in 
the following proposition.

Fig. 2  Partial insurance regions under EU and under probability weighting for different values of �(p) 
for the three insurance products analyzed by Barseghyan et  al. (2013). Our calculations are based on 
model 1b of their analysis and assume exponential utility with absolute risk aversion of 0.00063. The 
dashed line indicates the value of �(p) estimated by Barseghyan et al. for each market. The black shaded 
area contains the loadings where an EU individual buys partial coverage, with full insurance for loadings 
below and no coverage for loadings above the area. The gray shaded area is the analogous area for prob-
ability weighting

9 The result for mW is obtained by factoring out w(p)/p from (7). The first-order condition for �∗
W

 implies 
a positive relationship between utility curvature and insurance demand. Both conclusions rely on Pratt 
(1964), who shows that u�(x)∕u�(x − L) is negatively associated with the curvature of u.
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Proposition 2 Let the utility function be exponential or iso-elastic utility and con-
sider the iso-insurance demand curves in the utility curvature-overweighting plane. 

 (i) The curves are decreasing in any case and convex if w(p) < 0.5;
 (ii) They are steeper and more convex, the higher the level of insurance demand, 

the lower the loss probability as long as w(p) < 0.5 , and the lower the loss 
severity.

Figure 3 shows examples of iso-insurance demand curves for iso-elastic utility. 
We set the loading to m = 2 and assume that 50% of wealth is at risk. Each panel 
sets a different level of insurance demand and illustrates the iso-insurance demand 
curve for four different loss probabilities. Per result 2(i), the curves are downward-
sloping and slightly convex. In each panel, the curves are steeper the lower the loss 
probability. By comparing the curves across panels, we observe that higher insur-
ance demand makes the curves steeper. This is consistent with result 2(ii). Similar 
results can be obtained for the no-insurance bound mW , which is also characterized 
by a substitution between utility curvature and overweighting of the loss probability. 
In Section 5.2, we provide a sense of magnitude for this effect using experimentally-
calibrated preferences.

The substitution between overweighting and utility curvature has practical impli-
cations for the inference of preferences from insurance choices. Overweighting of 
the loss probability reduces the degree of utility curvature needed to rationalize a 
given level of insurance demand. Under EU, the utility curvature required to explain 
insurance choices can be implausibly large (Sydnor 2010), but allowing for over-
weighting renders more sensible estimates (Barseghyan et al. 2013). The convexity 
of the iso-insurance demand curves implies that this substitution effect is stronger at 
the extensive margin than the intensive margin. So when introducing a 1 percentage 
point overweighting of the loss probability, this reduces the utility curvature by more 
than when increasing an existing amount of overweighting by 1 percentage point. 
Result 2(ii) implies that probability weighting is particularly suitable as an expla-
nation for high insurance demand against modest risks (see Sydnor 2010). These 
mechanisms underlie the empirical appeal of probability weighting as a descriptor 

Fig. 3  Iso-insurance demand curves in the utility curvature-overweighting plane for iso-elastic utility. We 
consider a loading of m = 2 and that 50% of wealth is at risk. We vary the loss probability p in each 
panel and the level of insurance demand �∗

W
 across panels
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of certain insurance choices in the field. As we will see in Section 4, this appeal is 
limited and does not extend to other types of insurance demand phenomena.

3.3  Deductible insurance

For many insurance decisions, individuals face severity risk conditional on the 
occurrence of loss and choose a deductible that determines how much of the risk 
they retain and how much they transfer to the insurer. The binary loss model does 
not allow us to distinguish between deductible insurance and coinsurance. There-
fore, we will now introduce severity risk and consider the individual’s choice of 
an optimal deductible level. A caveat to our analysis is that a straight deductible is 
not necessarily optimal under RDU with an inverse S-shaped probability weighting 
function, see Bernard et al. (2015), Ghossoub (2019) and Xu et al. (2019). However, 
it is a very common shape of the indemnity schedule, which is found for property 
losses in auto insurance and homeowners insurance. Many health plans also contain 
deductibles. As it turns out, our main results in Proposition  1 do not rely on the 
binary loss assumption and can be extended to deductible choice.

A loss occurs with probability p, and we let the loss severity � take values in 
[0, L] according to the cumulative distribution function F(�) . We let F be continu-
ous and assume that L is the maximum possible loss, which is the smallest value 
such that F(L) = 1 . Then, F(�) < 1 for all losses � < L . The indemnity schedule is 
a straight deductible, I(�) = max(0,� − D) , for deductible level D, with associated 
premium

The last equality is obtained via integration by parts. We thus have 
P�(D) = −mp(1 − F(D)) . The individual’s optimal deductible D∗

W
 maximizes

see also Bernard et al. (2015). The second equality holds because w is differentiable 
and F is continuous, the third equality is obtained by distinguishing between losses 
below the deductible and losses above the deductible. The objective function under 
EU is a special case of (9) by setting w(p) = p such that w�(p) = 1 for all p. It is 
given by

(8)

P(D) = mp∫
L

0

I(�) dF(�) = mp∫
L

D

(� − D) dF(�) = mp∫
L

D

(1 − F(�)) d�.

(9)

W =(1 − w(p))u(x − P(D)) + ∫
L

0

u(x − P(D) −min(�,D)) d[−w(p(1 − F(�)))]

= (1 − w(p))u(x − P(D)) + p∫
L

0

u(x − P(D) −min(�,D))w�(p(1 − F(�))) dF(�)

= (1 − w(p))u(x − P(D)) + p∫
D

0

u(x − P(D) − �)w�(p(1 − F(�))) dF(�)

+ pu(x − P(D) − D)∫
L

D

w�(p(1 − F(�))) dF(�),
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see also Schlesinger (2013). The three terms represent the utility if no loss occurs, 
the utility of losses below the deductible, and the utility of losses above the deduct-
ible. Even under EU with a concave utility function, the objective function of the 
deductible choice problem is not necessarily concave (see Meyer and Ormiston 
1999; Schlesinger 1981). Therefore, we have to assume that both U and W are con-
cave in D so that we can utilize the first-order approach.

In this case, we obtain an upper bound mW on the loading with no insurance 
demand for loadings above this threshold ( D∗

W
= L for m ≥ mW ), and a lower bound 

m
W

 on the loading with full insurance demand for loadings below this threshold 
( D∗

W
= 0 for m ≤ m

W
 ). Partial insurance is optimal for loadings between the two 

bounds ( 0 < D∗
W
< L for m

W
< m < mW ). These results mirror what we found in the 

coinsurance problem. The bounds are given by m
W
= w(p)∕p and by

The full-insurance bound m
W

 is exactly the same as in the case of coinsurance. We 
therefore recoup the first part of Proposition 1(i): Overweighting (underweighting) 
of the loss probability increases (decreases) the full-insurance bound. Obviously, we 
then also recoup Proposition 1(iii)

The no-insurance bound mW differs from the expression in Eq. (7) for coinsur-
ance. In the deductible case, the EU no-insurance bound is

and probability weighting now has several effects on the no-insurance bound. If 
limp→0 w

�(p) = ∞ , as is the case for many parametric classes of inverse S-shaped 
probability weighting functions, we have that mW = ∞ , and probability weighting 
induces the individual to always buy some insurance regardless of the size of the 
loading. This prediction seems unrealistic. When we focus on w�(0) < ∞ , prob-
ability weighting raises the no-insurance bound when the loss probability is over-
weighted and the probability weighting function is concave on (0, p]. The same con-
ditions ensure that probability weighting lowers the deductible compared to the level 
optimal for EU. A lower deductible corresponds to increased insurance demand. The 
next proposition summarizes.

Proposition 3 Consider the problem of optimal deductible choice for a given utility 
function. 

(10)
U =(1 − p)u(x − P(D)) + p∫

D

0

u(x − P(D) − �) dF(�)

+ p(1 − F(D))u(x − P(D) − D),

(11)

mW =
u�(x − L)

(1 − w(p))u�(x) + p ∫ L

0
u�(x − 𝓁)w�(p(1 − F(𝓁))) dF(𝓁)

⋅ lim
D↑L

w(p(1 − F(D)))

p(1 − F(D))
.

(12)mU =
u�(x − L)

(1 − p)u�(x) + p ∫ L

0
u�(x − �) dF(�)

,
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 (i) Overweighting (underweighting) of the loss probability increases (decreases) 
the full-insurance bound.

 (ii) Probability weighting increases the no-insurance bound if limp→0 w
�(p) = ∞ , 

or if w overweights the loss probability and is concave on (0, p].
 (iii) Probability weighting lowers the optimal deductible if w overweights the loss 

probability and is concave on (0, p].

Compared to the coinsurance case, overweighting of the loss probability now 
needs to be flanked by the concavity of the probability weighting function for prob-
abilities below the loss probability. The reason is that, in addition to the effects dis-
cussed in Section  3.1, probability weighting now also affects the marginal utility 
of losses below the deductible because these losses are retained by the individual. 
Overweighting of p and concavity up to p imply that the DRO region includes 
(0, p]. The assumptions in Proposition 3(ii) and (iii) are thus more restrictive than 
the assumptions for the corresponding coinsurance results. From an empirical 
standpoint, however, they are still mild. They are satisfied for an inverse S-shaped 
weighting function for loss probabilities that are below the interior fixed point p∗ 
and below the inflection point p̃ . Many empirical studies find p̃ ≥ p∗ and p∗ ≈ 0.37 
(e.g., Prelec 1998) so that most loss probabilities relevant in insurance demand are 
covered. In this case, the prediction of higher insurance demand under probability 
weighting continues to hold for some loss probabilities that are between p∗ and p̃ 
and are thus underweighted. The appeal of probability weighting as an explanation 
for higher insurance demand thus extends to the case of deductible choice and is not 
driven by the binary loss assumption.

4  Underinsurance puzzles

4.1  LPHI versus HPLI risks

The study of low-probability, high-impact (LPHI) risks such as natural catastro-
phes has become a focus of the insurance economics literature. Such risks pose 
a major financial challenge to consumers and to society as a whole (e.g., Abadie 
and Gardeazabal 2003; Bouwer et al. 2007). High insurance penetration can make 
households and the entire economy significantly more resilient against such shocks 
(Von  Peter et  al. 2012), suggesting that insurance against LPHI risks has greater 
value than insurance against high-probability, low-impact (HPLI) risks. Browne 
et  al. (2015) show that, under EU, individuals should purchase more insurance 
against LPHI risks than comparable HPLI risks, but observe the opposite in the 
data.10 Other studies document a similar preference in favor of insurance against 
HPLI risks (e.g., Slovic et al. 1977).

10 Their argument is based on a binary loss distribution. It extends to more general loss distributions if 
relative prudence is bounded by 2 (see Chiu et al. 2012; Menegatti and Peter 2021).
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In this section, we investigate whether probability weighting can explain this 
behavior. Our results thus far do not provide an answer. As long as loss probabilities 
are overweighted, RDU predicts higher demand against both HPLI risks and LPHI 
risks than EU does, see Proposition 1(i) and 1(ii). It is not clear how the two demand 
levels under RDU compare to each other. Our results on the effects of changes in 
the loss probability in Proposition  1(iii) and 1(iv) are first-order risk changes, 
whereas the comparison between LPHI and HPLI risks is better conceptualized as 
an increase in risk in the sense of Rothschild and Stiglitz (1970), which is a second-
order risk change. We summarize our findings in the following proposition.

Proposition 4 Under probability weighting, the no-insurance bound mW , the full-
insurance bound m

W
 , and optimal insurance demand �∗

W
 are higher for LPHI risks 

than HPLI risks as long as the corresponding loss probabilities are in the DRO 
region.

Proposition 4 extends Browne et al.’s (2015) EU prediction of higher insurance 
demand against LPHI risks than comparable HPLI risks to probability weighting as 
long as DRO holds for the relevant loss probabilities. Overweighting is not required. 
The result holds for a probability weighting function that underweights the associ-
ated loss probabilities as long as low probabilities are relatively less underweighted 
than larger ones so that DRO remains satisfied. Under EU, the full-insurance bound 
is always one and therefore unaffected by the change from an HPLI risk to an LPHI 
risk but the no-insurance bound and optimal insurance demand increase.

Probability weighting and EU make the same prediction about insurance demand 
against LPHI versus HPLI risks – we should observe higher demand for the former 
than the latter, and not the other way around. Proposition 4 holds for any increas-
ing and concave utility function, so this prediction continues to hold even if indi-
viduals who weight probabilities have less concave utility functions than their EU 
counterparts. As we show in Proposition 7 in Appendix A.2, DRO regions are large 
for common probability weighting functions and contain all loss probabilities rel-
evant in insurance demand. The DRO condition in Proposition 4 is thus likely to be 
fulfilled.

Our proof relies on Rothschild and Stiglitz’s (1970) notion of an increase in risk, 
which presupposes equal expected losses. This may appear as a knife-edge case. In 
reality, the expected loss for LPHI risks is often greater than for HPLI risks, espe-
cially when considering the fat-tailed nature of catastrophic events. Extended war-
ranties for appliances are a typical example of an HPLI risk. Jindal (2014) finds that 
washing machines have a 25–29% failure rate with an average repair cost of $249 
and an average replacement cost of $599, resulting in an expected loss of $62–$72 
for repair and $150–$173 for replacement. Flood risk is often considered an example 
of an LPHI risk with some degree of underinsurance. A back-of-the-envelope calcu-
lation based on aggregate data from the National Flood Insurance Program (NFIP) 
shows an average insured loss amount of $67,500 and an average insured loss 
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probability of 0.8655%.11 This results in an expected loss of $584, which exceeds 
the expected loss for the HPLI risk example by more than a factor of three.

Proposition 4 remains valid when LPHI risks have higher expected losses than 
HPLI risks as long as the utility function displays non-increasing absolute risk aver-
sion. Standard comparative static arguments show that optimal insurance demand 
is then increasing in the loss severity. Both EU and probability weighting share the 
prediction of higher insurance demand against LPHI risks compared to HPLI risks 
even if we allow for differences in expected losses. Probability weighting cannot 
explain why researchers often find the reverse behavior in the data.

Several alternatives have been proposed to explain underinsurance of LPHI risks. 
One suggestion is diminishing marginal sensitivity (Schmidt 2016), though evidence 
of this behavioral assumption is mixed (e.g., Chung et  al. 2019; Harbaugh et  al. 
2010; Jaspersen et al. 2021). Friedl et al. (2014) argue that social comparison can 
make insurance against highly correlated risks less attractive and present evidence 
from a laboratory experiment. Subjective probability estimates are another possi-
bility. Recent experimental evidence suggests that underinsurance of LPHI risks 
is not observed when objective probabilities are provided (Bajtelsmit et  al. 2015; 
Laury et  al. 2009). Krawczyk et  al. (2017) document persistent underestimation 
of loss probabilities for LPHI risks even if subjects learn about the risk over time. 
In the extreme, individuals may simply neglect rare events. Kahneman and Tver-
sky (1979) emphasized the importance of neglect within the editing phase. Neglect 
or underestimation of rare events is much more common than overweighting when 
people make decisions based on experience as opposed to when they learn about 
their options from descriptions (Hertwig et al. 2004; Hertwig and Erev 2009). When 
people neglect rare events, lack of insurance demand is to be expected and is not at 
odds with probability weighting.

4.2  Nonperformance risk

Thus far, we have assumed that the insurer will follow through with the promised 
indemnity when a loss happens. In real life, however, promises are not always kept. 
Reasons for nonperformance include insurer default, claims being denied or con-
tested, delays in the claims handling process, and contractual uncertainty when 
it comes to the interpretation of the insurance contract (see Schlesinger 2013; Li 
and Peter 2021). Experiments have shown that individuals tend to react strongly to 
nonperformance risk, purchasing less insurance than predicted by EU. In Wakker 
et al.’s (1997) hypothetical survey, respondents required a 20% premium reduction 
to compensate for a 1% default probability. Similar results have been documented 
in other hypothetical studies (Albrecht and Maurer 2000; Zimmer et  al. 2009), in 

11 Our calculations are from 2014–2018 statistics on NFIP-insured properties posted on the FEMA 
homepage, https:// www. fema. gov/ total- polic ies- force- calen dar- year. Average loss size is based on total 
loss dollars paid divided by the number of losses. Average loss probability is based on the number of 
losses divided by the number of policies in force.

https://www.fema.gov/total-policies-force-calendar-year
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incentive-compatible experiments (Zimmer et al. 2018; McIntosh et al. 2019), and 
in the field (Cole et al. 2013).

Probability weighting appears to be a promising explanation for low insurance 
demand due to nonperformance risk, because the inverse S-shape will overweight 
the probability of the worst outcome – experiencing a loss but not receiving a pay-
ment from the insurer. Wakker et al. (1997) find that probability weighting indeed 
reduces the willingness to pay for insurance when nonperformance risk is present. 
They only consider full insurance and can therefore not speak to the demand impli-
cations of probability weighting. When considering optimal demand, we will see 
that probability weighting has several effects on the optimal level of coverage. From 
a practical standpoint, the prediction of overinsurance tends to persist even in the 
presence of nonperformance risk.

We follow the primary theoretical models of Schlesinger and von der Schulen-
burg (1987) and Doherty and Schlesinger (1990). The setup is the same as in Sec-
tion 2.1, except that the insurer now pays the claim with probability q ∈ (0, 1) and 
nonperformance occurs with probability (1 − q) . The insurance premium is adjusted 
accordingly to �mpqL . If the claim goes unpaid, final wealth is x3 = x − �mpqL − L . 
The individual’s objective function under EU is

where the subscript NP abbreviates nonperformance.12 Under RDU, the individual’s 
insurance demand maximizes

with decision weights �1 = 1 − w(p) , �2 = w(p) − w(p(1 − q)) and �3 = w(p(1 − q)) . 
We assume that the compound lottery is reduced before obtaining the decision 
weights.13

Under EU, nonperformance risk invalidates most of the comparative statics of 
insurance demand because it introduces complex effects into the individual’s cost-
benefit analysis (Doherty and Schlesinger 1990). The possibility of contract nonper-
formance reduces the marginal benefit of insurance because insurance is no longer 
completely reliable. It also increases the marginal cost of insurance because mar-
ginal utility in the nonperformance state is higher than in the other states. However, 
the insurance premium takes nonperformance risk into account. This represents a 
countervailing wealth effect, which reduces the marginal cost of insurance, because 
nonperformance risk makes coverage more affordable. The following proposition 

(13)UNP = (1 − p)u(x1) + pqu(x2) + p(1 − q)u(x3),

(14)WNP = �1u(x1) + �2u(x2) + �3u(x3),

12 We focus on total nonperformance for simplicity. Doherty and Schlesinger (1990) and Mahul and 
Wright (2007) also discuss partial recovery.
13 Assuming reduction of compound lotteries (ROCL) is not innocuous (see Bernasconi 1994). Segal 
(1990) shows in his Theorem 2(a) that ROCL does not imply compound independence or mixture inde-
pendence, so it is not at odds with RDU. Segal’s (1990) recursive RDU model allows for violations of 
ROCL. Recent experimental evidence suggests that this model performs worse at explaining insurance 
choices than conventional RDU with ROCL (see Lambregts et al. 2021).
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presents the effects of nonperformance risk on insurance demand and draws a com-
parison between RDU and EU.

Proposition 5 Assume the DRO region covers all probabilities up to the loss 
probability. 

 (i) At the margin, nonperformance risk reduces the full-insurance bound and the 
no-insurance bound.

 (ii) At the margin, nonperformance risk reduces optimal insurance demand if the 
utility function exhibits non-increasing absolute risk aversion.

Let the utility function be given and assume that w overweights the loss probability 
and is concave on (0, p]. 

 (iii) Probability weighting leads to higher insurance demand than EU if and only 
if q > q̂ for an endogenous performance threshold q̂ ∈ [0, 1).

According to results 5(i) and 5(ii), nonperformance risk has the intuitive effect 
of reducing insurance demand if the level of nonperformance risk is small and the 
DRO region is large enough. Small nonperformance probabilities lower the no-
insurance bound, making it less likely that individuals will purchase any amount of 
coverage. Small levels of nonperformance risk also lower optimal insurance demand 
for those loadings where coverage is in demand. In these cases, the negative effect 
of a less reliable insurance contract due to nonperformance risk outweighs the posi-
tive effect of a lower premium. Results 5(i) and 5(ii) contain EU as a special case, 
thereby extending Doherty and Schlesinger’s (1990) analysis. They find that demand 
effects are indeterminate when allowing for an arbitrary level of nonperformance 
risk, whereas we find a definitive negative effect by focusing on small levels of non-
performance risk.14

Result  5(iii) holds for a given level of nonperformance risk, which does not 
have to be small. Under the stated assumptions, RDU predicts higher insurance 
demand than EU as long as the performance probability is large enough. In this 
case, probability weighting does worse than EU at explaining the underinsur-
ance puzzle for nonperformance risk. This result may appear surprising at first 
sight, especially against the background of Wakker et al. (1997) who find a lower 
willingness to pay for insurance due to probability weighting when nonperform-
ance risk is present. The decision weights in Equation  (14) put less weight on 
the no-loss state ( 𝜋1 < 1 − p ) due to overweighting of the loss probability, and 
more weight on the nonperformance state ( 𝜋3 > p(1 − q) ) because overweight-
ing of the loss probability and concavity of w on (0, p] imply overweighting of 

14 Equivalently, higher insurance demand in response to nonperformance risk requires a sufficiently 
large nonperformance probability. How large exactly depends on the other parameters of the model, 
including utility curvature. Whether such levels of nonperformance risk are empirically relevant is 
unclear.
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the nonperformance state. The probability of the intermediate state, where a loss 
happens and the insurance contract performs, may be overweighted ( 𝜋2 > pq ) or 
underweighted ( 𝜋2 < pq ). Overweighting occurs when q exceeds a critical level 
and underweighting occurs when q is below this critical level.

As a result, the marginal benefit of insurance with nonperformance risk may 
actually be larger under RDU than under EU as long as the performance probabil-
ity is large enough because then the individual attaches sufficient weight on the 
intermediate state where the contract performs. So while probability weighting 
always increases the marginal cost of insurance relative to EU, its effect on the 
marginal benefit can be positive or negative. In the absence of nonperformance 
risk, we know from Proposition 1(ii) that the impact of probability weighting on 
the marginal benefit is stronger than its impact on the marginal cost. This domi-
nance persists when introducing nonperformance risk as long as the nonperform-
ance probability is not too large.

The assumptions on the probability weighting function in Proposition  5(iii) 
are the same as in the case of deductible choice, see Proposition 3(ii) and (iii). 
As discussed there, they are more restrictive than assuming DRO on (0, p] but 
are still satisfied by inverse S-shaped probability weighting functions and loss 
probabilities relevant in insurance demand. The important insight from Proposi-
tion  5(iii) is that for low, and thus empirically plausible, levels of nonperform-
ance risk, probability weighting predicts higher insurance demand than EU. If 
EU already predicts demand that is too high compared to empirically observed 
behavior, probability weighting will only widen the gap between theory and evi-
dence and make matters worse.

The restrictive assumption in Proposition 5(iii) is that we keep utility curvature 
fixed when introducing probability weighting. As discussed in Proposition 2, util-
ity functions are usually less concave in the presence of probability weighting. 
To take this into account, we will now assume exponential or iso-elastic utility to 
leverage Clarke’s (2016) Theorem 2. Insurance demand with nonperformance risk 
is a special case of index insurance. Focusing on those cases where some insur-
ance is purchased for some levels of risk aversion, Clarke shows that insurance 
demand can be strictly decreasing in risk aversion for m = 1 , or hump-shaped in 
risk aversion for m ≥ 1 . For iso-elastic utility, we denote the relative risk aver-
sion parameters by �U for EU and by �W for probability weighting with 𝛾U > 𝛾W . 
If insurance demand under EU is hump-shaped in risk aversion, let �∗ denote the 
level of risk aversion where it peaks. We then obtain the following result.

Proposition 6 Assume iso-elastic utility with parameter �U under EU and �W under 
probability weighting, with 𝛾W < 𝛾U . Assume that w overweights the loss probability 
and is concave on (0, p]. Let q̂ denote the threshold from Proposition 5(iii) for iso-
elastic utility with parameter �W . 

(i) For m = 1 , if insurance demand is strictly decreasing in risk aversion and q > q̂ , 
probability weighting predicts higher insurance demand than EU.
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For m ≥ 1 with hump-shaped insurance demand that peaks at �∗ , several cases are 
possible. 

 (ii) If �U ≤ �∗ and q ≤ q̂ , probability weighting predicts lower insurance demand 
than EU.

 (iii) If 𝛾U > 𝛾∗ , there is a �̂� < 𝛾∗ so that probability weighting predicts higher 
insurance demand than EU for 𝛾W ∈ (�̂� , 𝛾U) and q ≥ q̂ , and lower insurance 
demand for 𝛾W < �̂� and q ≤ q̂.

The proof is obtained by combining Clarke’s (2016) Theorem 2(i) and (ii) with 
our Proposition  5(iii). Proposition  6 presents those cases where the effect of the 
change in utility curvature is aligned with the effects of probability weighting. When 
insurance demand is hump-shaped and �U lies to the right of the peak, the critical 
value �̂� partitions (0, �U) into levels of risk aversion associated with lower insurance 
demand and levels of risk aversion with higher insurance demand. Similarly, the 
threshold q̂ from Proposition  5(iii) separates nonperformance probabilities where 
probability weighting predicts higher insurance demand from those where it predicts 
lower insurance demand. We obtain Proposition 6 by combining cases with the same 
sign. Proposition  6 also holds for exponential utility because Clarke’s Theorem  2 
does and because our Proposition 5(iii) holds for any concave utility function.

Some cases remain indeterminate. Take m > 1 with a small level of nonperform-
ance risk ( q > q̂ ) and �U ≤ �∗ or 𝛾U > 𝛾∗ but 𝛾W < �̂� ; in this case, the decline in util-
ity curvature predicts lower insurance demand, either because we are in the upward-
sloping portion of the hump or because the decrease in utility curvature is large. 
However, probability weighting predicts an increase in insurance demand. The net 
effect then depends on the relative strength of both changes. To shed some light on 
those cases, we present numerical illustrations in Section 5.3.

5  Numerical illustrations based on experimental preference data

5.1  Experimental design

To speak to the magnitude of some of our analytical results, we use data from an 
incentivized experiment to calibrate utility curvature and probability weighting 
functions. We then use those preferences to illustrate our findings. For the experi-
ment, we recruited 94 subjects from a population primarily consisting of students.15 
Subjects first completed a general knowledge questionnaire of 20 multiple-choice 
questions. They received 20€ in compensation for answering at least 50% of the 
questions correctly. Each subject then made 90 insurance-like choices over a pos-
sible loss ( L = 10 € or L = 20€). Four of our subjects did not pass the questionnaire 

15 Sessions were conducted in the Munich Experimental Laboratory for Economic and Social Sciences 
in 2014. Subjects were recruited from the general subject pool without restrictions. See Appendix D for 
detailed instructions.
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and are not considered further in the analysis. In 45 choices, the subject chose 
between a risky loss of L with probability p or a certain loss of mpL. In the other 45 
choices, the subject chose between a risky gain of another 20€-L with probability p 
or 20€ with probability (1 − p) , or a certain gain of 20€ −mpL . Both sets of choices 
had the same possible combinations of p, m and L, which are displayed in Table 1. 
The order of all 90 choices, as well as their left/right ordering, were randomized.

5.2  The role of utility curvature and probability weighting

In Proposition  2, we showed that utility curvature and overweighting of the loss 
probability jointly rationalize insurance demand. To compare the relative importance 
of each preference motive, we first use the subjects’ decisions to estimate parameters 
of preference functionals at the individual level, assuming full integration of assets. 
We use iso-elastic utility with relative risk aversion � , that is, u(x) = x1−�∕(1 − �) 
for � ≠ 1 and u(x) = ln x for � = 1 , and estimate parameters for the six probability 
weighting functions given in Appendix  A.1. Goldstein and Einhorn’s (1987, GE) 
functional form fits our data best, so we use it for our main analysis.16

We then use the estimated parameters to show how differences in preferences 
across individuals affect predicted insurance demand. We assume x = 20 and L = 10 
and calculate the no-insurance bound mW over the range of absolute amounts of 
overweighting �(p) and utility curvature parameters � observed in the subject popu-
lation. For this, we hold one parameter constant at its median and vary the other 
parameter in the 10th, 25th, 50th, 75th, and 90th percentiles of the data, moving 
from lowest to highest. The top panel of Table 2 provides the percentiles of �(p) and 
� in the data based on the estimated preference functionals.17

The bottom panel of Table 2 shows the results. The second column denotes the 
parameter being varied. Reading from left to right, the no-insurance bound increases 
in the amount of overweighting of the loss probability and in utility curvature. This 
is consistent with the substitution between overweighting and utility curvature out-
lined in Proposition 2. Reading down the columns, the no-insurance bound decreases 
as p increases because the loss probabilities considered here are in the DRO region 
of wGE , see Proposition 7(iv) in Appendix A.2. The rightmost column of Table 2 
shows the interdecile range of the no-insurance bound for the respective parameter. 
Three points are noteworthy. First, differences in overweighting and utility curvature 
can lead to sizable variation in mW . Second, such differences generate more vari-
ation in mW at low rather than high loss probabilities. Third, mW is more sensitive 
to changes in overweighting than changes in utility curvature at all considered loss 

17 We include subjects with negative � and thus convex utility functions in the analysis. For them, mW is 
the loading where they are indifferent between no insurance and full insurance because individuals with 
a convex utility function would never purchase partial insurance. However, mW is continuous in � ∈ ℝ 
and its comparative statics with respect to � and �(p) are similar for concave and convex utility functions.

16 Results for other probability weighting functions are comparable, see Appendix C.2. We only include 
subjects for whom the maximum likelihood estimator converges. For the GE function, this is the case for 
77 out of 90 subjects. The second column of Table 4 in Appendix A.2 provides an overview.



84 The Geneva Risk and Insurance Review (2023) 48:63–109

probabilities. All in all, our findings suggest that probability weighting is the domi-
nating preference motive because it has a stronger impact on the no-insurance bound 
than utility curvature, at least for our set of experimentally calibrated preferences.

The calculations in Table 2 are based on a loss that puts 50% of wealth at risk, 
which is high compared to most naturally occurring insurance decisions except lia-
bility and perhaps homeowners insurance when considering a total loss. In Appen-
dix C.1, we provide an illustration for losses that put only 25% or 10% of wealth at 
risk. Differences in overweighting and utility curvature then lead to less variation 
in mW , but probability weighting is even more important than utility curvature in 
relative terms. In Appendix C.2, we repeat our illustration for different forms of the 
probability weighting function. While the no-insurance bound is always decreasing 
in p, the size of this effect varies by functional form. We provide a detailed discus-
sion in the appendix.

5.3  Calculation of nonperformance thresholds

Propositions 5(iii) and 6 highlight the role of an endogenous performance thresh-
old q̂ to sign the effect of probability weighting on insurance demand under non-
performance risk. We will now use the experimentally calibrated preferences to 
calculate this threshold and provide a sense of its magnitude. We set x = 20 and 
L = 10 and simulate sixteen insurance decisions, using the estimated preference 
functionals of the subjects in our sample.18 We vary the loss probability across four 
values with p ∈ {0.01, 0.05, 0.10, 0.20} and the loading across four values with 
m ∈ {1.10, 1.25, 1.50, 2.00} . For each combination of p and m, we determine opti-
mal insurance demand as a function of the performance probability for each indi-
vidual with and without probability weighting.19 We make two such comparisons 

Table 1  Summary of choices in the experiment

Load Loss probability (p)

(m) 1% 5% 10% 25% 50% 75% 90% 95% 99%

0.8 L = 20 L = 20 L = 10 or 20 L = 20 L = 10 or 20 L = 20 L = 10 or 20 L = 20 L = 20
1.0 L = 20 L = 20 L = 10 or 20 L = 20 L = 10 or 20 L = 20 L = 10 or 20 L = 20 L = 20
1.5 L = 20 L = 20 L = 10 or 20 L = 20 L = 10 or 20 – – – –
2.0 L = 20 L = 20 L = 10 or 20 L = 20 – – – – –
3.0 L = 20 L = 20 L = 10 or 20 L = 20 – – – – –
4.0 L = 20 L = 20 L = 10 or 20 – – – – – –

18 Our results are virtually unchanged if the loss puts only 25% or 10% of wealth at risk.
19 We use Goldstein and Einhorn’s (1987) probability weighting function because it has the best overall 
fit with our data, and restrict the comparison to individuals with a concave utility function, since this 
is required in Proposition 5(iii) and 6 . In each insurance decision, we further discard those individuals 
who have the same insurance demand at all levels of nonperformance risk as no meaningful compari-
son is possible. This case mostly appears for combinations of high p and high m because then insurance 
demand is uniformly zero.
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and report them in Table 3. For the results in panel (a), we keep the utility function 
fixed when introducing probability weighting as in Proposition 5(iii). In panel (b), 
we re-estimate each individual’s preference functional when probability weighting is 
muted to obtain the best-fitting level of utility curvature under EU. In each compari-
son, we identify the value of the performance probability q where the individual’s 
insurance demand under probability weighting coincides with his insurance demand 
under EU. This is q̂ for this particular individual.

For each combination of loss probability and loading, we thus obtain a distribu-
tion of q̂ values across individuals. Table 3 reports the averages of these distribu-
tions. For example, the top-left value of q̂ = 0.05 means that, for insurance with a 
loading of 1.10 covering a 1% chance of loss, probability weighting will, on average, 
imply higher insurance demand than EU as long as claims have at least a 5% chance 
of getting paid. In other words, for probability weighting to rationalize lower insur-
ance demand than EU, a nonperformance probability of more than 95% is required.

In both panels, the average performance thresholds are so low that virtually all 
empirically relevant levels of nonperformance risk lead to higher insurance demand 
under probability weighting than under EU. The average thresholds are closer to one 
when a high loading is coupled with a high loss probability, but these cases become 
less realistic at the same time. A 20% loss probability with a loading of 2 creates an 
insurance premium that is 40% of the insured asset’s value, and many individuals 
may prefer not to insure altogether, regardless of the insurer’s performance probabil-
ity. Comparing the average thresholds between panels, we notice a slight increase 

Table 2  Effect of the absolute 
amount of overweighting �(p) 
and utility curvature � on the 
no-insurance bound mW

The top panel provides percentiles of �(p) and � in the data. The bot-
tom panel presents mW at different loss probabilities. The second 
column gives the parameter being varied over the percentiles, hold-
ing the other parameter constant at its median

Percentile 10-90

10th 25th 50th 75th 90th Range

Parameter values
�(0.01) 0.01 0.03 0.11 0.20 0.43
�(0.05) 0.02 0.08 0.19 0.31 0.48
�(0.10) 0.04 0.11 0.22 0.35 0.46
�(0.20) 0.03 0.11 0.21 0.34 0.44
� −1.13 −0.41 −0.10 0.33 0.79

No-insurance bound mW

p = 0.01 �(p) 2.10 4.19 12.00 20.54 43.65 41.55
� 9.16 11.02 12.00 15.04 19.51 10.34

p = 0.05 �(p) 1.44 2.58 4.73 7.07 10.34 8.91
� 3.70 4.38 4.73 5.74 7.11 3.40

p = 0.10 �(p) 1.36 2.08 3.11 4.44 5.51 4.15
� 2.48 2.90 3.11 3.70 4.46 1.98

p = 0.20 �(p) 1.14 1.53 2.00 2.64 3.18 2.04
� 1.62 1.88 2.00 2.32 2.71 1.09
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when allowing for a different level of utility curvature. So the additional flexibility 
about the utility function implies that lower levels of nonperformance risk allow for 
RDU to predict less insurance demand than EU. However, the difference between 
the two panels never exceeds 5 percentage points, so in absolute terms these levels 
of nonperformance risk are still high.

To put things in perspective, we note that many of the loss probabilities and load-
ing factors in Table 3 are representative of standard consumer insurance markets. 
The predicted homeowners loss probability in Barseghyan et al. (2013) has a mean 
of 8.4% and a standard deviation of 4.4%. Insurers typically operate in competitive 
markets with moderate loadings. A back-of-the-envelope calculation using twenty 
years of industry-level data from the National Association of Insurance Commis-
sioners (NAIC 2017), shows that the mean ratio of premiums to losses (an approxi-
mation of m) for homeowners insurance is 1.39 with a maximum of 1.67. For pri-
vate auto insurance, the mean is 1.31 and the maximum is 1.44.

The nonperformance probabilities implied by Table  3 are higher than those 
observed in practice, and in most cases much higher. For example, A.M. Best stud-
ied impairments between 1969 and 2002 and found an average annual impairment 
frequency of 0.8% in the U.S. property/casualty industry (Best 2004). Li et  al. 
(2021) use rating transitions for annuity providers and show that cumulative average 
impairment rates can be in the double digits when allowing for long time horizons 
of more than 10 years and for initial ratings of B++/B or worse. Insurers with an 
A/A- rating or better will have a cumulative average impairment rate of less than 
10% even after 15 years. In this case, almost all combinations of loss probability 
and loading in Table 3 predict higher insurance demand under RDU than under EU. 
So while the substitution between utility curvature and overweighting can resolve 
commonly observed overinsurance puzzles, it does not provide a good explanation 
for underinsurance due to nonperformance risk. If anything, it exacerbates the puz-
zle because RDU predicts even higher insurance demand than EU in the presence 
of nonperformance risk despite the fact that the probability of the nonperformance 
state will typically be overweighted. Contrary to the case of underinsurance of LPHI 
risks, neglect or underestimation of rare events does not help here. If individuals 
neglect nonperformance risk altogether, their insurance demand should not react 
much at all. Peter and Ying (2020) propose uncertainty as a potential explanation for 
lower insurance demand due to nonperformance risk.

Table 3  Average performance 
thresholds q̂ across individuals; 
for q > q̂ , RDU predicts higher 
insurance demand than EU

m =

(a) (b)

Fixed utility curvature Flexible utility curvature

1.10 1.25 1.50 2.00 1.10 1.25 1.50 2.00

p = 0.01 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06
p = 0.05 0.16 0.16 0.21 0.32 0.16 0.17 0.23 0.32
p = 0.10 0.33 0.35 0.50 0.74 0.33 0.38 0.53 0.77
p = 0.20 0.70 0.78 0.88 0.94 0.73 0.83 0.90 0.96
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6  Relationship to prior literature

Our results complement and extend the literature on probability weighting and 
insurance demand. Several authors have explained a preference for full insurance 
at actuarially unfair premiums. One explanation is based on first-order risk aversion 
(Schmidt 1998; Segal and Spivak 1990; Schlesinger 1997), which can be accom-
modated by EU (Dionne and Li 2014), but arises more prominently in RDU with 
a concave or convex probability weighting function, see Segal and Spivak’s (1990) 
Proposition 4. In a similar vein, Doherty and Eeckhoudt (1995) use Yaari’s (1987) 
dual theory with a concave probability weighting function to explain full insurance 
at unfair premiums. By assumption, these papers rule out the commonly found pat-
tern of inverse S-shaped probability weighting (e.g., Abdellaoui et  al. 2011). Our 
focus on binary risks allows us to be more flexible about the probability weight-
ing function. We are also able to provide a more detailed characterization of opti-
mal insurance demand under probability weighting and to carve out the substitution 
between overweighting and utility curvature explicitly, including its determinants.

Others have investigated risk sharing in markets with aggregate uncertainty under 
the dual theory, under RDU, or under Schmeidler’s (1989) more general Choquet 
Expected Utility. Schmidt (1999) characterizes efficient risk sharing under the dual 
theory with a concave probability weighting function. Chateauneuf et  al. (2000), 
Tsanakas and Christofides (2006), Chakravarty and Kelsey (2015), and Carlier and 
Dana (2008) go beyond the dual theory but focus on convex probability weight-
ing functions. Xia and Zhou (2016) require all individuals in the economy to have 
the same probability weighting function. Boonen and Ghossoub (2020) allow for 
inverse S-shaped probability weighting and for differences across individuals. Over-
all, the focus in this literature is on the characterization of Pareto optima and less 
on the comparative statics of insurance demand. There is usually no comparison of 
insurance demand for LPHI risks versus HPLI risks and no consideration of nonper-
formance risk.

Several empirical studies have used probability weighting to explain insurance 
demand. The identification strategy in Barseghyan et al. (2013) is based on a binary 
loss risk and approximates the utility function by a second-order Taylor expansion. 
Their focus is on the willingness to pay for insurance. Similar studies include Har-
rison and Ng (2018), Hansen et  al. (2016), and Collier et  al. (2021). We, in turn, 
derive new results about optimal insurance demand without approximating the util-
ity function and without functional form assumptions on the probability weighting 
function. Contrary to the commonly held belief, results about willingness to pay do 
not automatically carry over to optimal demand. Chiu (2012) identifies comparabil-
ity assumptions that allow him to leverage results about the effect of risk preferences 
on willingness to pay and apply them to the optimal demand for stochastic improve-
ments.20 He relies on EU. What these comparability assumptions look like under 
RDU is, to the best of our knowledge, unknown.

20 Jaspersen (2016) provides a numerical example where the individual with a higher willingness to pay 
optimally selects a lower level of coverage than the individual with a lower willingness to pay.
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Our application of probability weighting to underinsurance problems is novel in 
the literature. Doherty and Schlesinger’s (1990) model of nonperformance risk has 
been extended to recovery conditional on default (Mahul and Wright 2007), to the 
insurer-reinsurer relationship (Bernard and Ludkovski 2012), to risk management 
instruments other than insurance (Briys et al. 1991; Schlesinger 1993), to divergent 
beliefs about nonperformance risk (Cummins and Mahul 2003), and to endogenous 
default risk (Biffis and Millossovich 2012). All of these studies are based on EU. 
Wakker et  al. (1997) study the willingness to pay for full insurance in the pres-
ence of nonperformance risk. Probability weighting then implies a stronger nega-
tive effect of nonperformance risk than EU (see also Segal 1988). Propositions 5(i) 
and 5(ii) show that this negative effect persists when considering optimal demand; 
however, when comparing demand levels between RDU and EU, the ranking can 
now go either way (see Proposition 5(iii) and 6). The more plausible case is higher 
insurance demand under RDU than under EU, as illustrated in Section 5.3. This dis-
crepancy highlights that findings about willingness to pay may not be applicable to 
optimal demand. In reality, individuals not only choose whether to buy insurance 
but also how much to buy, because many contracts offer different levels of coverage.

7  Implications and conclusions

In this paper, we study the effect of probability weighting on optimal insurance 
demand. We investigate three established empirical findings. People overinsure 
modest risks, underinsure LPHI risks compared to HPLI risks, and underinsure in 
response to nonperformance risk. We are the first to formalize these different insur-
ance demand problems in one efficient framework, which allows us to take a broader 
perspective on the merits and limitations of probability weighting. In the course of 
our analysis, we identify decreasing relative overweighting (DRO) as a useful local 
property of the probability weighting function and focus on loss probabilities in the 
DRO region for many of our results. Given its usefulness in the context of insurance 
demand, we anticipate that the DRO property may turn out to be helpful in other 
economic applications of probability weighting as well.

Many of our results are based on a simple model of insurance demand with a 
binary risk of loss. This allows us to be flexible in terms of the probability weight-
ing function. We characterize optimal insurance demand under RDU and compare 
it to EU. Overweighting of the loss probability increases insurance demand, which 
leads to a substitution between overweighting and utility curvature. We derive deter-
minants of the intensity of this substitution effect and explain how it underlies the 
descriptive appeal of probability weighting as a solution to the overinsurance puz-
zle of modest risks (Sydnor 2010). We also extend our results for coinsurance to 
deductible choice and show that they are robust. When it comes to underinsurance 
problems, however, probability weighting has little to offer. Just like EU, it predicts 
higher insurance demand for LPHI risks than HPLI risks, and is therefore unable to 
explain lacking insurance demand against LPHI risks (Browne et al. 2015). Finally, 
we investigate insurance demand in the presence of nonperformance risk with prob-
ability weighting. EU has been criticized for its inability to explain how strongly 
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individuals react to even modest levels of nonperformance risk (Cole et  al. 2013; 
Zimmer et  al. 2018). Under plausible assumptions, RDU predicts higher insur-
ance demand than EU in such contexts, and is therefore even further away from 
the evidence. Collectively, our results show that the predictions of higher insurance 
demand due to probability weighting carries over to situations where researchers 
have instead documented underinsurance.

The juxtaposition of these results reveals that probability weighting is best under-
stood as an incomplete solution for insurance demand puzzles. Its descriptive appeal 
depends on whether the objective is to explain overinsurance or underinsurance. The 
results in our paper motivate further research in this area. For example, what are 
the properties of a particular insurance choice that activate or deactivate probability 
weighting as a preference motive? How and when does probability weighting inter-
act with other drivers of insurance choices, such as reference dependence, subjective 
probabilities, and the use of heuristics? Insurance markets provide a real-world labo-
ratory to test the descriptive merits of competing models of choice under risk, and 
the new results in this paper are a step forward toward a better understanding of the 
advantages and limitations of probability weighting as a descriptive theory of insur-
ance demand behavior.

Appendix A: Probability weighting functions and DRO

A.1 Common parametric classes of probability weighting functions

We use several classes of probability weighting functions to illustrate our results. 
We introduce them here for reference and note some of their features.21 Many proba-
bility weighting functions have initially been developed for gain lotteries, and while 
differences between gain and loss domain estimates tend to be small (Tversky and 
Kahneman 1992), they do exist (Etchart-Vincent 2004). We start with the probabil-
ity weighting function introduced by Goldstein and Einhorn (GE, 1987):

with r, s > 0 to ensure monotonicity. Examples are shown in Panel (a) of Fig.  4. 
The GE probability weighting function can be S-shaped ( r > 1 ), inverse S-shaped 
( r < 1 ), concave ( r = 1, s > 1 ) or convex ( r = 1, s < 1 ), and the identity is obtained 
for r = s = 1 . Parameter r mostly controls curvature, while s steers elevation.

The functional form proposed for Prospect Theory’s rank-dependent version, 
Cumulative Prospect Theory (CPT), was introduced by Tversky and Kahneman 
(TK, 1992 Panel (b) of Fig. 4):

(A.1)wGE(p) =
spr

spr + (1 − p)r
,

21 Our selection largely coincides with Stott’s (2006), and we adopt his notation. Epper and Fehr-Duda 
(2017) provide a more extensive review of probability weighting functions in their Table 3.
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with r > 0.2793 for monotonicity. It is inverse S-shaped for r < 1 , reverts to the 
identity for r = 1 , and is S-shaped for 1 < r ≤ 2.22 Parameter r controls both cur-
vature and elevation, but in opposite directions. A two-parameter version of the TK 
function was initially proposed by Wu and Gonzalez (WG, 1996) and is given by

with r, s > 0.23 As can be seen in Panel (c) of Fig. 4, s controls elevation while r 
is inversely related to curvature. The function wWG is inverse S-shaped for r < 1 , 
contains the identity as a special case for r = 1 , and is S-shaped for r > 1 as long as 
s > (r − 1)∕r.24

Prelec (1998) derives two probability weighting functions axiomatically. The 
one-parameter version (Prl-I) is given by

with r > 0 for monotonicity. We obtain an inverse S-shape for r < 1 (see Panel (d) 
of Fig. 4), the identity for r = 1 , and an S-shape for r > 1 . This class of probability 
weighting functions intersects the identity at its inflection point at p̃ = p∗ = 1∕e . It 
has fixed elevation and its curvature is inversely related to r. The two-parameter ver-
sion (Prl-II, see Panel (e) of Fig. 4) is

and r, s > 0 guarantee monotonicity. This class of probability weighting functions 
control elevation via s, exhibit an inverse S-shape for r < 1 and an S-shape for r > 1 . 
For r = 1 , it nests the class of power weighting functions wPwr(p) = ps (not illus-
trated), which are either convex for s > 1 , concave for s < 1 , or revert to the identity 
for s = 1.

Another relevant class of probability weighting functions, which has received 
praise for its empirical appeal (see Wakker 2010), is the neo-additive class,

(A.2)wTK(p) =
pr

(pr + (1 − p)r)
1

r

,

(A.3)wWG(p) =
pr

(pr + (1 − p)r)s
,

(A.4)wPrl−I(p) = exp(−(− ln p)r),

(A.5)wPrl−II(p) = exp(−s(− ln p)r),

22 For r ∈ (2, 2.6112) , it has two inflection points and is convex-concave-convex. For r ≥ 2.6112 , it is 
convex.
23 For monotonicity, we need to set s ≤ 1 when r > 1 and s < s when r < 1 . The upper bound s on s 
is implicitly defined via s +

[
((1 − r)∕r)r + ((1 − r)∕r)r−1

]
s
r
= 1 . It is strictly increasing in r from 

limr→0 s(r) = 2 to limr→1 s(r) = ∞.
24 For r > 1 and s ≤ (r − 1)∕r , it does not have an interior fixed point. In this case, it can be convex, 
S-shaped, or have multiple inflection points.
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with parameters r ∈ (0, 1) and s ∈ (−r, r) . They are straight lines that are flatter than 
the identity and have discontinuities at both ends of the unit interval. Parameter r 
inversely measures slope and s controls elevation. We illustrate this class in Panel (f) 
of Fig. 4.

Decreasing relative overweighting

The DRO region plays an important role in our comparative static analysis. We 
will now derive the DRO region for various classes of probability weighting 
functions. Any inverse S-shaped probability weighting function with fixed point 
p∗ and inflection point p̃ has two points p′ and p′′ , one smaller and one larger 
than p∗ and p̃ , which define the likelihood insensitivity region. For p ∈ (p�, p��) 
the probability weighting function is flatter than the identity, w�(p) < 1 , while it is 
steeper than the identity on (0, p�) ∪ (p��, 1) , see Lemma 1 in Baillon et al. (2020). 
Likewise, any S-shaped probability weighting function has two points p′ and p′′ 
such that w�(p) > 1 for p ∈ (p�, p��) and w�(p) < 1 for p ∈ (0, p�) ∪ (p��, 1) . We will 
first establish some general results about DRO regions for probability weighting 

(A.6)wNeo(p) =

⎧
⎪⎨⎪⎩

0, if p = 0,
r−s

2
+ (1 − r)p, if p ∈ (0, 1),

1, if p = 1,

Fig. 4  Examples of probability weighting functions
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functions with no more than one change in curvature (inverse S-shaped, S-shaped, 
concave, convex, neo-additive), and then apply them to specific parametric 
classes.

Proposition 7 Consider a probability weighting function w that is twice continu-
ously differentiable on (0, 1) with no more than one inflection point. 

 (i) If w is inverse S-shaped, the DRO region is (0, p̂) for a p̂ ∈ (max(p∗,�p), p��).
 (ii) If w is S-shaped, the DRO region is (p̂, 1] for a p̂ ∈ (max(p∗,�p), p��).
 (iii) If w is concave or neo-additive, the DRO region is (0, 1]; if w is convex, the 

DRO region is empty.

For parametric probability weighting functions, we obtain p̂ as follows: 

 (iv) p̂GE is implicitly defined via r

1−p̂GE
− s

(
p̂GE

1−p̂GE

)r

= 1.

 (v) p̂TK is implicitly defined via (r − 1)
(

1−p̂TK

p̂TK

)r

+
(

1−p̂TK

p̂TK

)r−1

= 2 − r.

 (vi) p̂WG is implicitly defined via (r − 1)
(

1−p̂WG

p̂WG

)r

+ rs

(
1−p̂WG

p̂WG

)r−1

= 1 + r(s − 1).

 (vii) p̂Prl−I = exp
(
−r

1

1−r

)
 and p̂Prl−II = exp

(
−(rs)

1

1−r

)
.

Proof 

(i) By definition, �(p) = (w(p) − p)∕p with derivative ��(p) = (pw�(p) − w(p))∕p2 . 
We denote the numerator of �′ by g. DRO holds whenever g is negative. Using 
the properties of inverse S-shaped probability weighting functions, we find that 
limp→0 g(p) = 0 , limp→1 g(p) > 0 and g�(p) = pw��(p) for p ∈ (0, 1) . Therefore, g 
is strictly decreasing for p ∈ (0, p̃) , reaches a global minimum at p = p̃ , and is 
strictly increasing for p ∈ (p̃, 1) . This shows the existence of a unique zero of 
g between p̃ and 1, denoted by p̂ , and g is negative for all p ∈ (0, p̂) . Due to 
g(p∗) = p∗(w�(p∗) − 1) < 0 and g(p��) = p�� − w(p��) > 0 , p̂ must lie between p∗ 
and p′′.
(ii) Follows with a similar argument. For S-shaped probability weighting func-
tions, g(0) = 0 , g(1) = w�(1) − 1 < 0 , and g′ is strictly increasing for p ∈ (0, p̃) , 
has a global maximum at p = p̃ , and is strictly decreasing for p ∈ (p̃, 1) . This 
proves the existence and uniqueness of p̂ . Furthermore, g(p∗) > 0 and g(p��) < 0 
so that p̂ must lie between p∗ and p′′.
(iii) For concave probability weighting functions, limp→0 g(p) = 0 , g(1) < 0 and 
g�(p) < 0 on (0, 1] so that g is negative on (0, 1]. For convex probability weight-
ing functions, g(0) = 0 , limp→1 g(p) > 0 and g�(p) > 0 on (0, 1] so that g is pos-
itive on (0,  1]. For the neo-additive class we obtain g(p) = (r − s)∕2 , which is 
negative on (0, 1).
(iv) to (vii) follow per direct computation by rearranging g(p̂) = 0.

  ◻
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DRO regions of inverse S-shaped probability weighting functions include 
all overweighted probabilities, all probabilities where w is concave, and some 
probabilities that are underweighted and where concavity does not hold. DRO 
regions can be quite large. For example, p̂Prl−I is negatively associated with r and 
limr→1 p̂

Prl−I = exp(−1∕e) ≈ 0.6922 . When the Prelec-I function is inverse S-shaped 
(i.e., for r < 1 ), the DRO region includes at least all probabilities below 69.22% , and 
even larger probabilities the smaller the value of parameter r. A similar argument shows 
that the lowest p̂TK for inverse S-shaped TK weighting functions is 0.75 so that DRO 
regions in this case include at least all probabilities up to 75% , and contain probabilities 
above 75% for values of r below 1. Both of the upper bounds are in a region where 
probabilities are underweighted.

This suggests that our focus on loss probabilities in the DRO region is a mild 
assumption. Figure 5 plots p̂ for various parameter values of inverse S-shaped prob-
ability weighting functions. With sufficient elevation (high s in GE or low s in WG and 
Prl-II), the DRO region is large. For almost all r and s parameter values reported in the 
literature (see Table 5 in Stott 2006), nearly all loss probabilities relevant in insurance 
lie in the DRO region, the main exception being maybe the probability to claim on a 
health insurance policy (e.g., Bhargava et al. 2017).

Based on our own experimental data (see Section  5), we calibrate the different 
classes of probability weighting functions and calculate the upper bound p̂ of the DRO 
region for each subject under the given function. Table 4 summarizes the distribution of 
p̂ for subjects exhibiting inverse S-shaped probability weighting. Even the lowest 10th 

Fig. 5  Parameter p̂ for various classes of inverse S-shaped probability weighting functions

Table 4  Descriptive statistics 
for DRO thresholds p̂ . These 
thresholds are determined for 
the subset of experimental 
subjects with inverse S-shaped 
probability weighting functions

Percentile

Form N Mean SD 10th 50th 90th

GE 77 0.91 0.09 0.81 0.93 0.99
TK 88 0.76 0.01 0.76 0.76 0.77
WG 65 0.87 0.09 0.75 0.89 0.98
Prl-I 82 0.80 0.07 0.72 0.79 0.90
Prl-II 65 0.87 0.15 0.70 0.91 0.98
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percentile of the distribution for p̂ still leads to a DRO region that is large enough to 
contain all loss probabilities relevant in insurance demand.

Appendix B: Mathematical proofs

Determining the Loading Thresholds in Equation (7)

The first-order condition for objective function (3) is

where x∗
1
 and x∗

2
 denote final wealth in the no-loss and the loss state at the optimal 

level of insurance demand �∗
W

 . The second-order condition is satisfied because the 
objective function is globally concave in � due to u′′ < 0 . The first-order expres-
sion is then strictly decreasing in � . We derive the full-insurance bound and the no-
insurance bound by solving �W∕��|�=1 ≥ 0 and �W∕��|�=0 ≤ 0 for m. This yields 
Equation (7). Diminishing marginal utility implies m

W
< mW.

Proof of Proposition 1 and Additional Comparative Statics

The full-insurance bound m
W

 can be rewritten as 1 + �(p)∕p , which is increasing 
in the absolute amount of overweighting. We rearrange the no-insurance bound as 
follows:

Therefore, mW increases in the absolute amount of overweighting. This shows 
result 1(i).

For  1(ii), we need to compare insurance demand under EU and under RDU. 
When the individual overweights the loss probability, we know from  1(i) that 
m

U
< m

W
 and mU < mW . We distinguish different cases for the loading factor. 

If m ≤ m
U

 , full coverage is optimal under EU and under RDU. If m
U
< m ≤ m

W
 , 

less than full coverage is optimal under EU, whereas full coverage is optimal under 
RDU. If m ∈ (m

W
,mU),25 partial insurance is optimal under EU and under RDU but 

insurance demand is higher under RDU because

(B.1)
�W

��
= w(p)(1 − mp)Lu�(x∗

2
) − (1 − w(p))mpLu�(x∗

1
) = 0,

(B.2)
mW =

1

p

(
1 +

1 − w(p)

w(p)
⋅

u�(x)

u�(x − L)

)−1

=
1

p

(
1 +

[
1

p + �(p)
− 1

]
⋅

u�(x)

u�(x − L)

)−1

.

25 This case may not arise because when �(p) is high enough, m
W
≥ mU.
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If mU ≤ m < mW , no insurance is optimal under EU but partial insurance is optimal 
under RDU. For m ≥ mW no insurance is optimal under both EU and RDU. So the 
individual always purchases at least as much insurance under RDU as under EU, and 
strictly more for m ∈ (m

U
,mW ) . The reasoning for underweighting is analogous.

To show results 1(iii) and 1(iv), we first provide comparative statics with respect 
to the loss probability p. We rewrite the full-insurance bound as m

W
= 1 + �(p) , 

which is decreasing in p for loss probabilities in the DRO region. For the effect on 
mW , consider the numerator of �mW∕�p , which after some rearrangement is given by

The first square bracket is negative because DRO at p is equivalent to the probabil-
ity weighting function being elastic at p. The second square bracket is negative due 
to diminishing marginal utility. Hence, an increase in the loss probability increases 
mW . The ratio mW∕mW

 is decreasing in p, regardless of whether p is in the DRO 
region or not, because

An increase in p raises w(p), which increases the denominator so that mW∕mW
 

decreases. If p is in the DRO region, the range of loadings where partial insurance is 
optimal decreases in p. This follows from mW − m

W
= m

W
⋅
[
mW∕mW

− 1
]
 because 

both factors are decreasing in p.
These results imply that m

W
∕m

U
 is decreasing in p for p in the DRO region 

because m
U
= 1 and m

W
 is decreasing in p under DRO. This shows (iii). For (iv), we 

compute

Taking the derivative of mW∕mU with respect to p and rearranging its numerator 
yields:

For p in the DRO region, the square bracket is less than 
w(p)(w(p) − p)(u�(x) − u�(x − L)) , which is negative for w(p) > p . Then, a lower loss 
probability raises mW∕mU.

(B.3)
𝜕W

𝜕𝛼

||||𝛼∗
U

= 𝛿(p)L
[
(1 − mp)u�(x∗

2
) + mpu�(x∗

1
)
]
> 0.

(B.4)u�(x − L)u�(x)
[
pw�(p) − w(p)

]
+ u�(x − L)

[
u�(x) − u�(x − L)

]
w(p)2.

(B.5)mW∕mW
=

u�(x − L)

w(p)u�(x − L) + (1 − w(p))u�(x)
.

(B.6)mW∕mU =
u�(x − L) +

1−p

p
⋅ u�(x)

u�(x − L) +
1−w(p)

w(p)
⋅ u�(x)

.

(B.7)
u�(x)

p2w(p)2

[
pw�(p)

(
pu�(x − L) + (1 − p)u�(x)

)

−w(p)
(
w(p)u�(x − L) + (1 − w(p))u�(x)

)]
.
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Proof of Proposition 2

We rewrite the first-order condition (B.1) for an interior solution as follows:

We can then solve for �∗
W

 when the utility function is exponential or iso-elastic. For 
exponential utility, we have u(x) = (1 − e−Ax)∕A with A > 0 , and optimal insurance 
demand is given by

Solving for utility curvature A yields

with the following derivatives:

 For iso-elastic utility, we have u�(x) = x−� with 𝛾 > 0 . Optimal insurance demand is 
then given as follows:

Solving for the utility curvature parameter � renders

This differs from (B.10) only by a non-negative factor that does not depend on �(p) . 
Therefore, d�∕d�(p) and d2�∕d�(p)2 have the same sign as for exponential utility. 
This proves 2(i).

For 2(ii), note that dA∕d�(p) is more negative the higher �∗
W

 , the lower p as long 
as w(p) < 0.5 , and the lower L. When d2A∕d�(p)2 is positive, it is more positive the 
higher �∗

W
 , the lower p, and the lower L. For exponential utility, this is directly evi-

dent from Equations (B.11) and (B.12). For iso-elastic utility, ln
(
x∗
1
∕x∗

2

)
 is decreas-

ing in �∗
W

 , increasing in p, and increasing in L, so  2(ii) follows from (B.11) and 
(B.12) with a similar argument.

(B.8)
w(p)

1 − w(p)
⋅
1 − mp

mp
=

u�(x∗
1
)

u�(x∗
2
)
.

(B.9)�∗
W
= 1 −

1

A ⋅ L
⋅ ln

(
1 − w(p)

w(p)
⋅

mp

1 − mp

)
.

(B.10)A =
1

(1 − �∗
W
)L

⋅ ln

(
1 − w(p)

w(p)
⋅

mp

1 − mp

)
,

(B.11)
dA

d𝛿(p)
= −

1

(1 − 𝛼∗
W
)L ⋅ w(p)(1 − w(p))

< 0,

(B.12)
d2A

d𝛿(p)2
=

1 − 2w(p)

(1 − 𝛼∗
W
)L ⋅ w(p)(1 − w(p))

> 0 for w(p) < 1∕2.

(B.13)�∗
W
=

L − (1 − �)x

(1 − (1 − �)mp)L
with � =

(
w(p)

1 − w(p)
⋅
1 − mp

mp

) 1

�

.

(B.14)� = ln

(
1 − w(p)

w(p)
⋅

mp

1 − mp

)/
ln

(
x∗
1

x∗
2

)
.
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Proof of Proposition 3

After some rearrangements and simplifications, the first-order condition for 
objective function (9) is given as follows:

For D = 0 , we obtain P(0) = mp ∫ L

0
� dF(�) for the premium and hence

This is nonpositive for m ≤ w(p)∕p , indicating that raising the deductible above zero 
would lower the value of the objective function. Hence, full insurance is optimal. 
For no insurance, we set D = L and obtain P(L) = 0 . Notice that

because F(L) = 1 and w(0) = 0 . Rewrite the first-order expression as follows:

When m > mW , the square bracket is strictly positive for D = L . Due to continu-
ity, it remains positive for values of D slightly below L, indicating that the value of 
the objective function can be increased by raising the deductible. This establishes 
that no insurance is optimal, D∗

W
= L . On the flip side, when m < mW , the square 

bracket is strictly negative for D = L . Due to continuity, it remains negative for val-
ues of D slightly below L, and the objective function can be increased by lowering 
the deductible. Therefore, some insurance is optimal, D∗

W
< L . Again by continuity, 

this implies that D∗
W
= L for m = mW because otherwise the optimal deductible level 

would exhibit a jump at m = mW.
Given that the full-insurance bound is the same as in the coinsurance prob-

lem, result  3(i) follows immediately. For result  3(ii), limp→0 w
�(p) = ∞ implies 

mW = ∞ , which exceeds mU . When w�(0) < ∞ , we obtain that mW ≥ mU if and 
only if

(B.15)

�W

�D
=mp(1 − w(p))(1 − F(D))u�(x − P(D))

+ mp2(1 − F(D))∫
D

0

u�(x − P(D) − �)w�(p(1 − F(�))) dF(�)

+ (mp(1 − F(D)) − 1)u�(x − P(D) − D)w(p(1 − F(D))).

(B.16)

�W

�D

||||D=0 = u�
(
x − mp∫

L

0

𝓁 dF(𝓁)

)
⋅ (mp(1 − w(p)) + (mp − 1)w(p)).

(B.17)
�W

�D

||||D=L = 0

(B.18)

�W

�D
=p(1 − F(D)) ⋅

[
m(1 − w(p))u�(x − P(D))

+ mp∫
D

0

u�(x − P(D) − 𝓁)w�(p(1 − F(𝓁)) dF(𝓁)

+(mp(1 − F(D)) − 1)u�(x − P(D) − D) ⋅
w(p(1 − F(D)))

p(1 − F(D))

]
.
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Overweighting of the loss probability and concavity of the probability weight-
ing function on (0,  p] imply that w�(0) > 1.26 This together with overweight-
ing of p implies that the first square bracket is positive. The second square 
bracket is non-negative because p(1 − F(�)) is in the concave portion of w so that 
w�(p(1 − F(�))) ≤ w�(0) for all � ∈ [0, L].

For result 3(iii), we first characterize the optimal deductible D∗
U

 under EU via the 
corresponding first-order condition, which is given by

When inserting D∗
U

 into the first-order expression under RDU, we can utilize the 
above condition and obtain the following:

The first square bracket is negative if and only if

Overweighting of p and concavity up to p of the probability weighting function 
imply that (0, p] is part of the DRO region. In this case, the left-hand side of (B.22) 
exceeds w(p)/p, which exceeds the right-hand side of (B.22) because p is over-
weighted. The second square bracket in (B.21) is also negative because the probabil-
ity weighting function is concave on (0, p]. As a result, we obtain that

(B.19)

[
(1 − p)w�(0) − (1 − w(p))

]
u�(x)

+ p�
L

0

u�(x − �)
[
w�(0) − pw�(p(1 − F(�)))

]
dF(�) ≥ 0.

(B.20)
m(1 − p)u�(x − P(D∗

U
)) + mp∫

D∗
U

0

u�(x − P(D∗
U
) − �) dF(�)

+ (mp(1 − F(D∗
U
)) − 1)u�(x − P(D∗

U
) − D∗

U
) = 0.

(B.21)

�W

�D

||||D∗
U

=mu�(x − P(D∗
U
)) ⋅

[
p(1 − w(p))(1 − F(D∗

U
)) − w(p(1 − F(D∗

U
)))(1 − p)

]

+ mp∫
D∗

U

0

u�(x − P(D∗
U
) − 𝓁) ⋅

[
p(1 − F(D∗

U
))w�(p(1 − F(𝓁)))

−w(p(1 − F(D∗
U
)))
]
dF(𝓁)

(B.22)
w(p(1 − F(D∗

U
)))

p(1 − F(D∗
U
))

>
1 − w(p)

1 − p

(B.23)
𝜕W

𝜕D

||||D∗
U

< 0.

26 If we had w�(0) ≤ 1 for a probability weighting function that is concave on (0,  p], then 
w(p) = ∫ p

0
w�(t) dt ≤ w�(0) ∫ p

0
dt = pw�(0) ≤ p , which contradicts with overweighting of p.
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This indicates that probability weighting induces the individual to lower the optimal 
deductible, which is equivalent to higher insurance demand in the deductible choice 
problem.

Proof of Proposition 4

We fix the expected loss by setting pL = const . Then, (dp∕dp) ⋅ L + p ⋅ (dL∕dp) = 0 
so that dL∕dp = −L∕p . By rewriting m

W
 as 1 + �(p) , we can see that m

W
 increases 

following a mean-preserving spread of the insured risk as long as the loss probabil-
ity remains in the DRO region. Under the binary risk assumption, a mean-preserv-
ing spread reduces p and simultaneously increases L. We calculate this derivative 
explicitly,

and find that DRO at p is equivalent to pw�(p) < w(p).
We then take the derivative of mW with respect to p while using dL∕dp = −L∕p . 

After some simplifications, the numerator is given by:

The first term is negative due to u′′ < 0 . The sign of the second term depends on the 
square bracket, which is negative if pw�(p) < w(p) . So for loss probabilities in the 
DRO region, mW increases after a mean-preserving spread of the insured risk.

For optimal insurance demand �∗
W
∈ (0, 1) , recall first-order condition (B.1). The 

implicit function theorem and the concavity of the objective function imply that the 
sign of ��∗

W
∕�p

|||pL=const coincides with the sign of �2W∕���p||pL=const . This cross-
derivative is given by:

The five terms represent different economic effects on insurance demand when the 
insured risk becomes riskier.27 To determine the net effect, we solve for u�(x∗

1
) from 

the first-order condition,

(B.24)
�m

W

�p

|||||pL=const
=

pw�(p) − w(p)

p2
,

(B.25)
u�(x)u��(x − L)w(p)(1 − w(p))

L + u�(x − L)
[
u�(x)(pw�(p) − w(p)) − w(p)2(u�(x − L) − u�(x))

]
.

(B.26)

�2W

���p

||||pL=const = −mpLw�(p)
[
u�(x∗

2
) − u�(x∗

1
)
]
− mpLw(p)u��(x∗

2
)(1 − �∗

W
)
L

p

+ w�(p)Lu�(x∗
2
) − w(p)

L

p
+ w(p)Lu��(x∗

2
)(1 − �∗

W
)
L

p
.

27 A lower p decreases the marginal cost of insurance because there is less weight on the loss state (first 
term); a larger L increases the marginal cost of insurance because it lowers final wealth in the loss state 
(second term); a lower p reduces the marginal benefit of insurance because there is less weight on the 
loss state (third term); a larger L increases the marginal benefit of insurance because it raises the dollar 
amount per unit of coverage (fourth term); a larger L increases the marginal benefit of insurance because 
it reduces final wealth in the loss state (fifth term).
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substitute, rearrange and combine terms to obtain:

The second term is negative because u′′ < 0 . The first term is negative if DRO holds 
at p. To see this, recall that an interior solution requires m > m

W
= w(p)∕p . The 

square bracket in (B.28) is then no larger than

This is negative for p in the DRO region. Hence, optimal insurance demand 
increases following a mean-preserving spread of the insured risk because such a 
change lowers p.

Proof of Proposition 5

The first-order condition associated with (14) is given by

The threshold m
W

 is implicitly defined via �WNP∕��
||�=1 = 0 . To determine the 

effect of nonperformance risk at the margin, we interpret �WNP∕��
||�=1 as a function 

of m and q, apply the implicit function theorem to obtain dm∕dq , and evaluate it at 
q = 1 . Define

then

and

(B.27)u�(x∗
1
) =

w(p)

1 − w(p)

1 − mp

mp
u�(x∗

2
),

(B.28)

�2W

���p

||||pL=const =
u�(x∗

2
)L

p(1 − w(p))

[
pw�(p)(1 − mp) − w(p)(1 − w(p))

]

+ w(p)(1 − mp)Lu��(x∗
2
)(1 − �∗

W
)
L

p
.

(B.29)pw�(p)

(
1 −

w(p)

p
p

)
− w(p)(1 − w(p)) = (1 − w(p))(pw�(p) − w(p)).

(B.30)
�WNP

��
= −mpqL

[
�1u

�(x∗
1
) + �2u

�(x∗
2
) + �3u

�(x∗
3
)
]
+ �2Lu

�(x∗
2
) = 0.

(B.31)
F(m, q) =

�WNP

��

|||||�=1
= −mpqL

[
(�1 + �2)u

�(x − mpqL)

+�3u
�(x − mpqL − L)

]
+ �2Lu

�(x − mpqL);

(B.32)

�F

�m
= −pqL

[
(�1 + �2)u

�(x − mpqL) + �3u
�(x − mpqL − L)

]

+ m(pqL)2
[
(�1 + �2)u

��(x − mpqL) + �3u
��(x − mpqL − L)

]

− �2pqL
2u��(x − mpqL)
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because �3 = 0 and m = m
W

 for q = 1 . We know from Equation  (7) that 
m

W
= w(p)∕p , so the second and third term in �F∕�m||q=1 cancel each other out. 

Hence,

Furthermore,

so that

because �3 = 0 and m = m
W

 when q = 1 . If limp→0 w
�(p) = ∞ , which is the case 

for many parametric inverse S-shaped probability weighting functions, then 
limq→1 �F∕�q = ∞ . If w�(0) is finite, we use the fact that m

W
= w(p)∕p to simplify 

the last expression as follows:

Hence,

(B.33)

�F

�m

|||||q=1
= −pLu�(x − m

W
pL) + m

W
(pL)2u��(x − m

W
pL)

− w(p)pL2u��(x − m
W
pL),

(B.34)
�F

�m

|||||q=1
= −pLu�(x − m

W
pL).

(B.35)

�F

�q
= −mpL

[
(�1 + �2)u

�(x − mpqL) + �3u
�(x − mpqL − L)

]

+ m2p2qL2
[
(�1 + �2)u

��(x − mpqL) + �3u
��(x − mpqL − L)

]

− mp2qLw�(p(1 − q))
[
u�(x − mpqL) − u�(x − mpqL − L)

]

− mpL2�2u
��(x − mpqL) + pw�(p(1 − q))Lu�(x − mpqL)

(B.36)

�F

�q

|||||q=1
= −m

W
pLu�(x − m

W
pL) + (m

W
pL)2u��(x − m

W
pL)

− m
W
p2Lw�(0)

[
u�(x − m

W
pL) − u�(x − m

W
pL − L)

]

− m
W
pL2w(p)u��(x − m

W
pL) + pw�(0)Lu�(x − m

W
pL)

(B.37)

�F

�q

|||||q=1
=pLu�(x − m

W
pL)

[
w(p)w�(0)

(
u�(x − m

W
pL − L)

u�(x − m
W
pL)

− 1

)

+

(
w�(0) −

w(p)

p

)]
.

(B.38)

dm
W

dq

|||||q=1
= −

�F∕�q

�F∕�m

|||||q=1
=w(p)w�(0)

(
u�(x − m

W
pL − L)

u�(x − m
W
pL)

− 1

)
+

(
w�(0) −

w(p)

p

)
.
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The first round bracket is positive due to diminishing marginal utility; the second 
round bracket is positive because the DRO region contains (0, p] so that w(�)∕� is 
decreasing for � ≤ p and w�(0) = lim�→0 w(�)∕� . Also, limq→1 dmW

∕dq = ∞ when-
ever limp→0 w

�(p) = ∞ . In any case, starting at no nonperformance risk ( q = 1 ), any 
small decrease of q reduces m

W
.

The threshold mW is implicitly defined via �WNP∕��
||�=0 = 0 . To determine the 

effect of nonperformance risk at the margin, we interpret �WNP∕��
||�=0 as a function 

of m and q, apply the implicit function theorem to obtain dm∕dq , and evaluate it at 
q = 1 . Define

then direct computation shows that

For q = 1 , we know from Equation (7) that

As a result,

which is infinite whenever limp→0 w
�(p) = ∞ . If w�(0) is finite, the round bracket is 

positive because we assumed that (0, p] is part of the DRO region. Therefore, start-
ing at no nonperformance risk ( q = 1 ), any small decrease of q reduces mW . This 
shows result 5(i).

To show result  5(ii), we need to determine the cross-derivative of WNP with 
respect to � and q and evaluate it at q = 1 . This cross-derivative is given by

(B.39)
F(m, q) =

�WNP

��

|||||�=0
= − mpqL

[
�1u

�(x) + (�2 + �3)u
�(x − L)

]
+ �2Lu

�(x − L);

(B.40)

dm

dq
= −

�F∕�q

�F∕�m

=
−mpL

[
(1 − w(p))u�(x) + w(p)u�(x − L)

]
+ pw�(p(1 − q))Lu�(x − L)

pqL
[
(1 − w(p))u�(x) + w(p)u�(x − L)

] .

(B.41)mW =
w(p)u�(x − L)

p
[
(1 − w(p))u�(x) + w(p)u�(x − L)

] .

(B.42)
dmW

dq

|||||q=1
= mW

(
w�(0)

p

w(p)
− 1

)
,

(B.43)
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�(x∗
1
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2
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3
)
]

+ �m2p2qL2
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�1u

��(x∗
1
) + �2u

��(x∗
2
) + �3u

��(x∗
3
)
]
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[
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2
) − u�(x∗

3
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]

− �mpL2�2u
��(x∗

2
) + pLw�(p(1 − q))u�(x∗

2
).
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For q = 1 , this expression simplifies to

The cross-derivative is infinite when limp→0 w
�(p) = ∞ . If w�(0) is finite, we can use 

the first-order condition at q = 1 , which is given by

and substitute it into �2WNP∕���q
||q=1 . After some rearrangements, this yields the 

following:

The first square bracket is positive because the DRO region contains (0, p], the sec-
ond square bracket is positive due to u′′ < 0 , and the third square bracket is non-
negative because of non-increasing absolute risk aversion. As a result, the cross-
derivative is positive at q = 1 , and potentially infinite, indicating that any small level 
of nonperformance risk reduces optimal insurance demand.

To prove result  5(iii), we need to assess the effect of probability weighting on 
optimal insurance demand at a given level of nonperformance risk. Let �∗

U,NP
 denote 

optimal insurance demand under EU. It is characterized by the following first-order 
condition:

Solving for u�(x∗
2
) yields

When evaluating the individual’s first-order expression under RDU at �∗
U,NP

 and sub-
stituting condition (B.48), we obtain the following after some simplifications and 
rearrangements:

(B.44)
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���q
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2
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2
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3
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In the absence of nonperformance risk (i.e., for q = 1 ), this simplifies to

which is positive because of w(p) > p . Probability weighting increases insurance 
demand in the absence of nonperformance risk, as shown in Proposition 1(ii).

For the remainder of the proof, let q ∈ (0, 1) . Our assumptions ensure that (0, p] 
is part of the DRO region. Therefore, 𝛿(p(1 − q))∕p(1 − q) > 𝛿(p)∕p , which is 
equivalent to 

[
pq𝜋3 − p(1 − q)𝜋2

]
> 0 . We can then rearrange (B.49) as follows:

The sign coincides with the sign of the curly bracket. Nonperformance risk implies 
x∗
3
< x∗

1
 so that u�(x∗

3
)∕u�(x∗

1
) > 1 due to u′′ < 0 . We denote the first fraction in the 

curly bracket by f(q) and examine its behavior on (0, 1) as a function of q. For q → 1 , 
the numerator of f(q) converges to (w(p) − p) , which is positive because the loss 
probability is overweighted. The denominator of f(q) converges to 0 from above due 
to DRO so that limq→1 f (q) = ∞ . For q → 0 , we obtain from L’Hôpital’s rule that

which may or may not exceed unity depending on whether the probability weighting 
function is steeper or flatter than the identity at the loss probability. For q ∈ (0, 1) , 
the derivative of f(q) with respect to q is given by

The numerator is non-negative because the loss probability is overweighted and the 
weighting function is assumed to be concave up to the loss probability p. Indeed, the 
curly bracket in (B.53) can be rearranged to

(B.49)
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and concavity of w on (0,  p] implies a positive sign. In conclusion, f is strictly 
increasing on (0, 1) with limits 1 + w�(p)−1

w(p)−pw�(p)
 for q → 0 and ∞ for q → 1.

This renders two possibilities for how f(q) compares to u�(x∗
3
)∕u�(x∗

1
) . If 

1 +
w�(p)−1

w(p)−pw�(p)
≥ u�(x∗

3
)∕u�(x∗

1
) , then f(q) exceeds u�(x∗

3
)∕u�(x∗

1
) for any q ∈ (0, 1) . In 

this case, we set q̂ = 0 , and (B.51) is always positive implying higher insurance 
demand under RDU than under EU. On the other hand, f(q) can exceed u�(x∗

3
)∕u�(x∗

1
) 

for some values of q and fall below it for others. Due to strict monotonicity and the 
limits, there will then be a unique q̂ ∈ (0, 1) separating high values of q from low 
values of q. Insurance demand under RDU is higher than under EU for q > q̂ and 
lower than under EU for q < q̂.
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