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ABSTRACT 

Demand for more accurate particulate matter forecasts is accumulating 
owing to the increased interest and issues regarding particulate matter. 
Incredibly low concentration particulate matter, which accounts for 
most of the overall particulate matter, is often underestimated when 
a particulate matter prediction model based on machine learning 
is used. This study proposed a concentration-specific separation 
prediction model to overcome this shortcoming. Three prediction 
models based on Deep Neural Network (DNN), Recurrent Neural 
Network (RNN), and Long Short-Term Memory (LSTM), commonly 
used for performance evaluation of the proposed prediction model, 
were used as comparative models. Root mean squared error (RMSE), 
mean absolute percentage error (MAPE), and accuracy were utilized 
for performance evaluation. The results showed that the prediction 
accuracy for all Air Quality Index (AQI) segments was more than 
80 percent in the entire concentration spectrum. In addition, the 
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study confirmed that the over-prediction phenomenon of single 
neural network models concentrated in the ‘normal’ AQI region was 
alleviated.

Keywords: DNN, RNN, LSTM, particulate matter.

INTRODUCTION

Particulate matter comprises particles of various sizes, shapes, and 
components. Tiny particulate matter can penetrate the respiratory 
system and cause severe effects, especially if they contain heavy 
metals. Pope III (2006), Valavanidis et al. (2008), and Anderson et 
al. (2012) investigated the drastic effects of particulate matter on 
the human body. The International Agency for Research on Cancer 
(IARC) has designated particulate matter as having the same 
carcinogenic level as asbestos, while the World Health Organization 
(WHO) (2013) has classified particulate matter as a Group 1 
carcinogen. In addition, the Organization for Economic Co-operation 
and Development (OECD) (2016) has reported that premature death 
from outdoor particulate matter and ozone is the highest in OECD 
countries, at 1,109 per million people (Jo et al., 2018). The Korean 
government has designated particulate matter as a social disaster, and 
a special law on reducing and managing particulate matter has been in 
effect since February 2019.

Many people know the dangers of particulate matter and check 
relevant forecasts to decide on leaving their houses or wearing a mask 
before leaving. Therefore, the need for highly accurate particulate 
matter forecasts. Particulate matter forecasts rely on the Air Quality 
Index (AQI), which is classified into four levels depending on 
particulate matter concentration: ‘good’, ‘moderate’, ‘bad’, and ‘very 
bad’. A report issued by the Board of Audit and Inspection of Korea 
(BAI) (2017) on operation conditions of the weather forecast and 
earthquake alert systems showed that forecast accuracy of particulate 
matter above the ‘bad’ level is approximately 60 percent, which does 
not satisfy the public expectations. Incredibly low concentration 
particulate matter, which accounts for most of the overall particulate 
matter, is often underestimated when a particulate matter prediction 
model based on machine learning is used. Thus, research is underway 
to improve particulate matter forecast accuracy based on weather and 
air pollution data via machine learning and deep learning.
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The current research team sought to enhance the accuracy of 
particulate matter prediction based on a study conducted in 2021 (Jung 
& Oh, 2021). Particulate matter concentration has the characteristic 
of a non-uniform distribution. The prevalence of the concentrations 
corresponding to ‘bad’ and ‘very bad’ in AQI is significantly less 
than that corresponding to ‘good’ or ‘moderate’. If such prevalence 
frequency characteristics are learned using deep learning, problems 
can arise due to the imbalance of learning volume. Therefore, the 
prediction model is designed by implementing a section containing 
the AQI ‘good’ and ‘moderate’ particulate matter concentrations 
(low concentration: below 81 µg/m³) and another with the AQI 
‘bad’ and ‘very bad’ concentrations (high concentration: above 81 
µg/m³). The prediction model includes a classification function that 
distinguishes between low and high concentrations. Deep Neural 
Network (DNN) was used for the proposed prediction model. 
Recurrent Neural Network (RNN) and Long Short-Term Memory 
(LSTM), which underwent learning without distinguishing low and 
high concentrations, were utilized to compare the performance of the 
particulate matter concentration prediction. Performance comparison 
and analysis were conducted through the prediction results of the three 
prediction models. The performance evaluation proceeded through 
the prediction accuracy corresponding to the entire spectrum and the 
low and high concentration areas.

RELATED STUDIES

Particulate matter is either naturally occurring or artificial. Natural 
occurrences include dust and pollen, while artificial occurrences 
include fumes from burning fossil fuels (e.g., coal and oil), exhaust 
gas, and dust from industrial sites. Artificial particulate matter can 
be further classified into primary and secondary. Primary particulate 
matter is directly discharged from smoke in incineration plants, 
exhaust gas, and industrial sites. Secondary particulate matter is 
released as gas from a source and then converted to particulate matter 
through chemical reactions with other substances in the air. Particulate 
matter is defined by diameter for air quality regulatory purposes. 
PM10 is a particulate matter of 10 micrometers or less in diameter, 
whereas PM2.5 is a particulate matter of 2.5 micrometers or less in 
diameter. Bae (2016) and Han et al. (2017) analyzed sulfur dioxide 
(SO2), nitrogen oxide (NOx), and ammonia (NH3) as air pollutants that 
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affect the chemical reactions involved in the generation of secondary 
particulate matter. Furthermore, Jeon et al. (2016) found that SO2 and 
nitrogen dioxide (NO2) produced the most particulate matter among 
the substances that caused secondary particulate matter, and ozone 
(O3) also needed to be managed as such a substance.

Related studies have confirmed that air pollutants and meteorological 
elements are the primary factors affecting changes in particulate 
matter concentrations. Analyses of changes in the particulate matter 
concentrations due to meteorological elements have been conducted. 
Shin et al. (2007) analyzed how particulate matter concentrations 
gradually decreased as the wind speed increased and how the 
concentrations increased along with humidity. Zhou (2014) scrutinized 
changes in particulate matter concentrations with humidity, wind 
speed, temperature, and rainfall, and confirmed that meteorological 
elements affected changes in particulate matter concentrations. 
Based on this information, data on air pollutants and meteorological 
elements were used as learning data for the proposed particulate 
matter concentration prediction model.

While studying the particulate matter prediction model using deep 
learning, Cha and Kim (2018) designed a model for predicting 
particulate matter concentrations using air pollutant data collected for 
four years. The DNN and K-Nearest Neighbor (K-NN) algorithms 
were applied, and the improvement in prediction performance was 
confirmed through comparisons with general DNN models. The study 
conducted by Jeon and Sook (2018) proceeded with the prediction by 
classifying the particulate matter concentrations into four categories 
based on AQI standards. Thus, data on air pollutants, meteorological 
elements, particulate matter concentrations from China, and seasonal 
variables were used. The DNN model with 200 nodes and three hidden 
layers was confirmed to entail higher performance in predicting high 
concentration particulate matter than other comparative models. 
Choi et al. (2022) conducted a predictive study of PM2.5 using DNN. 
Data collected from 2016 to 2020 (SO2, CO, NO2, and PM10) were 
used. Monthly modeling was proposed to improve the prediction 
performance, and it was used for performance analysis using root 
mean squared error (RMSE). The proposed model confirmed that the 
error was reduced by about 46 percent compared to the comparison 
model. Bihter et al. (2022) studied the predictions of PM10 and SO2 in 
2022. The algorithms of the prediction model performed performance 
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comparisons using DNN, RNN, and LSTM. Mean squared error 
(MSE), mean absolute error (MAE), RMSE, and R-squared regression 
analysis were employed to compare the predictive performance of the 
model. The LSTM model showed higher performance than the other 
models, and it was confirmed that the prediction results were the most 
similar to the actual value.

Lim et al. (2019) conducted their research using the RNN algorithm. 
The length of the input data, optimization function, and the number 
of layers and nodes of the RNN-based model were altered to design 
a more enhanced prediction model through optimal parameter 
settings. Zhao et al. (2018) utilized the six Individual Air Quality 
Indexes (IAQI) provided by the Environmental Protecting Agency 
(EPA) to design an RNN-based particulate matter prediction model. 
This model utilized SO2, NO2, carbon monoxide (CO), and O3 as the 
learning data and was confirmed to have enhanced performances 
compared to a typical prediction model. Ong et al. (2014) investigated 
the dynamic pre-training of RNN to predict particulate matter data 
for monitoring. Time series training data were dynamically learned 
during learning in the RNN models, and wind speed, wind direction, 
temperature, light intensity, and humidity were used as parameters. 
A higher prediction capability of particulate matter was confirmed 
compared to existing auto-encoder methods, which involved learning 
through backpropagation without training data. An LSTM algorithm 
can be effectively used to solve the vanishing gradient issue of RNN. 
This advantage initiated various studies considering the time series 
characteristics of particulate matter concentration. 

Ma et al. (2019) proposed an LSTM model to predict particulate matter 
data in areas where no monitoring stations that measure particulate 
matter are present. Bi-directional Long Short-Term Memory 
(BiLSTM), which uses past, present, and future data, was applied to 
enhance the performance of particulate matter data. Furthermore, the 
correlation between air pollution and space was considered, and the 
spatial distribution of particulate matter data was interpolated through 
the inverse distance weighted (IDW). The subsequent comparison 
of prediction performance with Support Vector Regression (SVR), 
Gradient Boosting Decision Tree (GBDT), Artificial Neural Network 
(ANN), RNN, and the existing LSTM confirmed that the accuracy of 
particulate matter prediction was enhanced in the proposed model. 
Jiao et al. (2019) designed an environmental quality model based on 
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LSTM to predict particulate matter concentrations. The said model 
was structured with ten hidden layers. the study confirmed the 
improvement in prediction efficiency using nine parameters (SO2, 
NO2, CO, O3, maximum temperature, minimum temperature, wind 
direction, PM10, and PM2.5) in the LSTM model. 

Beck et al. (2022) used Kalman, LPF, Savitzky-Golay, and Moving 
Average Filters to correct noise in time series data. The study 
established an excellent correction rate of the Savitzky-Golay Filter 
and Moving Average Filter. Ipek et al. (2022) conducted a study to 
predict the concentration of PM10 per hour using LSTM via the data 
pre-processing and feature selection (DPFS) process to improve its 
prediction accuracy. The LSTM model learned six data (SO2, O3, CO, 
relative humidity, wind direction, and wind speed). RMSE and MAE 
were used for performance evaluation, and overall, it was confirmed 
that the performance of the proposed model significantly improved. 
Kim et al. (2022) used the LSTM and DNN models to predict the 
Comprehensive Air-Quality Index (CAI). Moreover, network 
techniques were applied to improve the performance of the model. 
Network techniques are used in various fields, such as computer 
science and climatology. Data collected from 2016 to 2020 (PM10, 
PM2.5, O3, SO2, NO2, and CO) were used. 

The correlation coefficient, Nash–Sutcliffe efficiency coefficient, and 
RMSE were utilized to evaluate the performance of the model. The 
results of comparing the performance of the models confirmed that the 
predictive performance of the DNN model applied with the network 
technique was higher. Zihan and Zhe (2022) proposed a Bayesian 
Optimized CNN-RNN (BO-CNN-RNN) hybrid model for the accurate 
prediction of air pollution. Data collected for five years from 2013 
(PM2.5, PM10, SO2, NO2, CO, and O3) were used. The study utilized 
RMSE and MAPE to evaluate the model. It showed RMSE of 10.3 
and MAPE of 8.39 percent, and performed better than the LSTM and 
CNN models used for comparison. Kristiani et al. (2021) conducted 
a study of the PM2.5 prediction model using LSTM combined with 
the statistical method. Air pollution data collected from 2014 to 2018 
were used. Five prediction models were designed based on the data 
used for learning the LSTM prediction model. RMSE was applied 
to evaluate the performance of the prediction model. Among the 
prediction models, the models using PM10, SO2, and NO2 for learning 
showed the lowest RMSE value. It was confirmed that PM10, SO2, and 
NO2 were the main variables in predicting PM2.5.
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DATA COLLECTION AND COMPOSITION

Air pollutants and meteorological elements data collected from 
three measurement stations in Cheonan, South Korea, were used as 
the prediction model’s learning and testing data. The data for each 
attribute were taken at hourly intervals over ten years from 2009 
(Table 1). However, data were not collected for some hours due to 
maintenance of the measuring stations and other external factors.

If data were unmeasured at all three stations, data corresponding 
to the unmeasured duration were excluded from the learning data. 
Air pollutant data were reconstructed using the average values 
of the variables measured simultaneously to decrease the effect of 
unmeasured data. In addition, the data were rearranged so that the 
particulate matter concentration of the next hour could be predicted 
from the previous hour. Table 2 shows the data structure configured to 
apply collected data to the prediction model.

Table 1

Collected Data

Category Variable Number of data Number of missing data

Air pollutants

O3 255,464 8,480
NO2 254,244 8,700
CO 252,924 10,020
SO2 252,623 10,321
PM10 249,268 13,676

Meteorological 
elements

Temperature  87,622       26
Wind speed  87,612       36

Wind 
direction 87,601       47

The configuration of the training set for the prediction model to learn 
and the testing set to be used in the evaluation of the model needed to 
be established using the data in Table 2, and the composition was set 
to 75 percent and 25 percent, respectively, as shown in Figure 1. 20 
percent of the training datasets were separated and constructed into a 
validation set as data needing verification during the learning process 
may exist.
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Each variable of the configured data had a different range of measured 
values and data characteristics, indicating that problems can arise in 
the learning performance due to specific algorithms. The data were 
pre-processed so that each variable was suitable for learning. The 
most frequent wind direction was not a continuous variable, but a 
categorical variable expressed in 16 directions. Each variable was 
converted to 16 vector values represented by 0 and 1 through one-hot 
encoding.

Table 2

Data Structure

Category Variable Number of samples

Input

O3 (t-1)

87,215

NO2 (t-1)
CO (t-1)
SO2 (t-1)
PM10 (t-1)

Temperature (t-1)
Wind speed (t-1)

Wind direction (t-1)
Output PM10 (t) 87,215

Figure 1

Dataset Composition

Furthermore, the scales of all numerical variables in different ranges 
were converted to a value between 0 and 1 using min-max scaling. 
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Subsequently, relevant datasets were employed directly in learning 
and evaluation for the RNN and LSTM prediction models, being the 
comparison groups. For the proposed model that conducted prediction 
after distinguishing low and high concentrations, the data were used 
separately based on 81 µg/m³ to differentiate between low and high 
concentrations in the training, validation, and testing datasets so 
that they can be used in the learning and evaluation of DNN-based 
classification and prediction models.

MODEL DESIGN

DNN-Based Concentration Classification Prediction Model

The proposed model consisted of a classification model that divided 
particulate matter concentrations into low and high concentrations 
and a model that predicted the separated low and high concentrations. 
The two models were designed based on a DNN algorithm. Figure 2 
shows the structure of the proposed model. After pre-processing the 
data collected for learning the model, they were classified into low and 
high concentrations through the classification model. If zero, which 
meant low concentration, was the output according to the prediction 
result of the classification model, the data used in the classification 
model were transferred to the low concentration prediction model. 
When 1 was the output, the data used in the classification model 
were delivered as a high concentration prediction model. Among the 
prediction results of the low concentration prediction model, a value 
corresponding to the high concentration might be predicted. 

In addition, a value corresponding to the low concentration could 
be predicted among the results of the high concentration prediction 
model. Incorrect predicted values needed to be corrected. If the high 
concentration value was predicted in the low concentration prediction 
model, it is modified to the maximum value of the low concentration 
range. If the low concentration value was predicted in the high 
concentration prediction model, it was modified to the minimum 
value of the high concentration range. After correcting the incorrectly 
predicted values, all predicted values were integrated to determine the 
final predicted results.
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Figure 2

Structure of the Proposed Model

The individual settings of the model used in the proposed method are 
as follows. Sigmoid was applied as the activation function, and root 
mean squared propagation (RMSprop) was used as the optimization 
function of the model, as classification models must conduct a binary 
classification of low and high concentrations. Binary cross-entropy 
was employed as the cost function. Prediction models by concentration 
comprise a regression model that directly predicts the concentration 
of particulate matter. Therefore, ReLU, Adam, and MSE were used as 
the activation, optimization, and cost functions, respectively.

Subsequently, the optimal parameter values were derived from the 
common number of layers, hidden nodes, batch size, L2, and dropout 
to minimize overfitting through searching for hyperparameters. The 
epoch was designed to be 100. Table 4 shows the hyperparameter 
search results. 
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Table 3

Functions Used for Each Model

Category Activation function Optimization 
function

Cost 
function

Low and high 
concentration

classification models
Sigmoid RMSprop

Binary 
cross-

entropy
Low concentration 
prediction model ReLU Adam Mean 

square error
High concentration 
prediction model ReLU Adam Mean 

square error

Table 4

Hyperparameters for Each Model

Category Layer Hidden node L2 Dropout
rate

Batch
size Epoch

Classification 
model 2 20 0.001 0.3 80

100

Low 
concentration 

prediction 
model

4 20  0         0 40

High 
concentration 

prediction 
model

2 140 0.001 0.3 40

Designing Comparative Models 

The prediction models for performance comparison were based on 
DNN, RNN, and LSTN algorithms. The three models commonly 
set ReLU and Adam as their activation and optimization functions, 
respectively, and their epoch was set to 100. The learning in RNN 
and LSTM models must proceed through regression, and the amount 
of regression learning was determined by the timesteps parameter, 
which was set to 24. In addition, optimal parameter values were set 
for each model through hyperparameter searches for the layer, hidden 
node, L2, dropout rate, and batch size commonly applied to the three 
models. Three comparative prediction models were designed based 
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on these results. Table 5 shows the hyperparameter search results for 
the comparative models.

Table 5

Hyperparameters of the Comparative Models

Category Layer Hidden 
node L2 Dropout

rate
Batch
size Epoch

DNN 
predicion 

model
2 100 0.01 0.1 100

100
RNN 

prediction 
model

1 80      0     0 20

LSTM 
prediction 

model
2 80      0 0.3 60

PERFORMANCE EVALUATION AND ANALYSIS

As an evaluation criterion for prediction performance, RMSE, 
as indicated in Equation 1, was used to compare the average error 
between the actual value and the predicted value, and MAPE, as 
indicated in Equation 2, was employed to confirm the error ratio of 
the predicted value. 

where, n is the total number of predicted targets, At is the actual value, 
and Pt is the predicted value.

Subsequently, the accuracy of the entire spectrum of the particulate 
matter concentration and the AQI levels of ‘good’, ‘moderate’, ‘bad’, 
and ‘very bad’ were compared. Figure 3 shows the prediction results 
of the proposed model and the comparison model (i.e., DNN, RNN, 
and LSTM). 15 
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Figure 3

Prediction Result of Each Model

(a) Proposed Model

(b) DNN Model

(c) RNN Model
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(c) RNN Model 

 

(d) LSTM Model 
 

In the case of DNN, over-prediction and under-prediction were shown 
in the 150–200 concentration section. In addition, in the case of a 
concentration section of 100 or more, it can be seen that the range of 
the prediction error is relatively larger than in other sections. In the 
case of RNN and LSTM, over-prediction can be mainly confirmed in 
the concentration section of 100 or more. However, it was confirmed 
that the error between the actual and predicted values was large in the 
section with a rapid change as in the 150–170 concentration section. 
This can be seen as a result of the characteristics of RNN that used past 
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(d) LSTM Model

In the case of DNN, over-prediction and under-prediction were shown 
in the 150–200 concentration section. In addition, in the case of a 
concentration section of 100 or more, it can be seen that the range of 
the prediction error is relatively larger than in other sections. In the 
case of RNN and LSTM, over-prediction can be mainly confirmed in 
the concentration section of 100 or more. However, it was confirmed 
that the error between the actual and predicted values was large in 
the section with a rapid change as in the 150–170 concentration 
section. This can be seen as a result of the characteristics of RNN 
that used past information for learning. In the case of the proposed 
model, a predicted value close to the actual value could be confirmed 
in the section showing a rapid change in concentration. As a result 
of checking the graph of each model, the actual and predicted values 
were similar. Therefore, achieving accurate comparison and analysis 
was difficult.

Table 6 shows the prediction performance of the comparative 
and proposed models. The results of comparing the prediction 
performance of the testing dataset for each model showed that the 
single DNN model had the lowest error with 8.3459 µg/m³ in RMSE, 
which signified the error in the predicted concentration. Meanwhile, 
the single LSTM model had the best performance of 14.1329 percent 
in MAPE.
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Table 6

Comparison of Prediction Performance

Category
Comparative model Proposed 

model DNN RNN LSTM
RMSE 8.3459 8.3653 8.3964 8.853
MAPE 14.2333 14.2131 14.1329 14.3944
Overall accuracy 87.38% 87.58 87.1 87.35
‘Good’ accuracy       79.9 87.28 79.2 84.76
‘Moderate’ accuracy 93.14 91.22 92.8 89.53
‘Bad’ accuracy 75.5 75.24 76.83 81.99
‘Very bad’ accuracy 65.44 72.79 66.18 80.15

Comparing the RMSE and MAPE values for each model showed 
that the performance of the proposed separation prediction model 
by concentration was lower than the single neural network models. 
However, both the RMSE and MAPE values showed slight differences 
in the decimal range. It was deemed that the performance was similar 
to the single model without any marginal errors, considering the 
structure of the proposed model where low and high concentrations 
of the particulate matter classification model and the prediction model 
by concentration were combined.

The single RNN model showed the highest performance at 87.58 
percent for the overall accuracy, and the proposed model demonstrated 
the highest performance in the accuracy of ‘good’, ‘bad’, and ‘very 
bad’ levels at 84.76 percent, 81.99 percent, and 80.15 percent, 
respectively. The single DNN model indicated the highest accuracy 
for the ‘moderate’ level at 93.14 percent. Compared to the RMSE 
and MAPE values, which showed performance differences below the 
decimal range, the single neural network models and the proposed 
model showed large deviations in the accuracy of different AQI 
concentration categories. Considering the accuracy of the relevant 
AQI concentrations, the DNN, RNN, and LSTM models all revealed 
an accuracy higher than 90 percent in the ‘moderate’ category. 
However, the accuracy was relatively lower for other concentration 
levels. 

The accuracy of each concentration based on the particulate matter 
concentration of 81 µg/m³ was also high in low concentrations at 
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88 percent but was relatively lower in high concentrations at 74~76 
percent. Meanwhile, the overall AQI accuracy and the accuracy in 
the ‘moderate’ level decreased by 0.23 percent and 3.61 percent, 
respectively, in the proposed model, compared to the single neural 
network model. On the other hand, a stable accuracy of more than 80 
percent resulted in the entire concentration spectrum, indicating that 
the over-prediction issue of low concentrations in the single neural 
network model had been alleviated.

CONCLUSION

Low concentration particulate matter data, which account for most of 
the total particulate matter generation, can cause low concentration 
over-prediction problems when creating a particulate matter prediction 
model based on machine learning. In this study, a prediction model 
by concentration based on deep learning conducted predictions by 
combining a classification model that distinguished low and high 
concentrations and models that predicted low and high concentrations 
of particulate matter. Air pollutants and meteorological elements data 
collected from three measurement stations in Cheonan, South Korea 
were used as the prediction model’s learning and testing data. 

The evaluation of the prediction model was configured through pre-
processing. The classification and prediction models were designed 
based on a DNN algorithm and were used in models that predicted low 
or high concentrations after the particulate matter concentrations were 
distinguished into the relevant category in the classification model. 
The low concentration prediction model was designed to predict low 
concentrations, whereas the high concentration prediction model 
was constructed to predict high concentrations. Three comparative 
prediction models were also designed based on DNN, RNN, and 
LSTM algorithms, respectively. Hyperparameter searching was used 
to optimize these models.

The performance evaluation results and the subsequent comparison 
of prediction performance showed that the RMSE and MAPE values 
of the proposed separation prediction model by concentration were 
slightly lower than those of the single neural network models by figures 
in the decimal range. For AQI accuracy, the DNN model showed the 
highest accuracy of 93.14 percent in the ‘moderate’ category among 
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all the single neural network models, and the accuracy of the proposed 
model was less than 3.61 percent. However, the proposed model 
exhibited stable accuracies in the 80 percent range throughout the 
entire AQI spectrum, and the accuracy of the ‘very bad’ category was 
80.15 percent, which was 7.36 percent higher than the accuracy of 
the RNN model at 72.79 percent. Considering the characteristics of 
particulate matter prediction problems where the prediction of high 
concentrations is crucial, it was confirmed that the separation prediction 
model by concentration entailed similar errors in concentration with 
single neural networks, and the prediction performance of high 
concentrations of particulate matter was enhanced. 

In addition, when checking the prediction accuracy of the AQI 
segments, the accuracy was at a stable level of over 80 percent 
throughout the entire concentration spectrum. The over-prediction 
phenomenon at low concentrations in single neural network models 
concentrated in the ‘moderate’ region of AQI was confirmed to have 
been alleviated. A classification model was designed and proceeded 
to classify low and high concentrations. In this process, the problem 
of not being accurately classified was identified. This study plans to 
improve prediction performance by solving the problem in the future. 
It will also conduct a performance analysis of the prediction model 
by converging various types of algorithms. Furthermore, this study 
intends to design an improved prediction algorithm.
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