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Abstract 
Mating systems play an essential role in the evolution of natural populations. The 
reproductive mode of a population affects the evolutionary forces and 
recombination. Shifts in mating systems change major evolutionary traits of 
natural populations and affect the life-history cycle on many different levels. 
Among all transitions of mating schemes, a shift from outcrossing to selfing is one 
of the major shifts in plants. Such shifts have repeatedly occurred on the 
phylogenetic level. Despite their importance, there were no published tools to 
estimate such transitions in natural populations using genetic data on a genome-
wide level. Existing estimates rely on estimating the loss-of-function mutations 
of causal loci. However, such estimates rely on the knowledge of the underlying 
genetic mechanism to induce the shift from outcrossing to selfing. Thus, such 
estimates are restricted to be conducted on very few species. 

In this study, we investigated the genetic consequences of shifts from 
outcrossing to selfing (Chapter 1). We used extensive simulations of the forward-
in-time Wright-Fisher model and the backward-in-time coalescent model. We 
found the previously described theoretical work on implementing partial selfing 
in the coalescent to suffice in simulating transitions to selfing. We developed an 
Approximate Bayesian Computation approach (tsABC) to identify and estimate 
the date of transitions from outcrossing to selfing using a pairwise comparison of 
genomes (Chapter 2). Finally, in collaboration with Thibaut Sellinger, we 
introduced the modified PSMC’ (teSMC) to estimate piecewise-constant selfing 
rates through time jointly with piecewise-constant population sizes for single-
population demographies and analyzed its accuracy (Chapter 3). Taken together, 
we provide not only an approximate Bayesian but also a maximum likelihood 
approach to identify and estimate transitions to selfing for single populations. We 
found tsABC to be a versatile tool to identify and estimate transitions to selfing. 
Under carefully made assumptions for the proposed models, transitions to selfing 
can be detected under a broad range of scenarios. Moreover, the assumed model 
in the teSMC method improved the estimates of demography and detected 
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transitions to selfing at least as powerful as the tsABC. The automized 
parametrization of teSMC allows users with little expertise in scripting to use it. 

We used both methods to estimate the transition from outcrossing to 
selfing for three genetic clusters of Arabidopsis thaliana. Our results were 
consistent with each other and existing estimates from the literature. 

With our study, we not only contributed to the understanding of 
evolutionary processes that formed the genetic diversity of natural populations 
but also provided two powerful tools to investigate the demographic history of 
natural populations in the context of transitions to selfing. Recombination 
provides a molecular clock on a separate time scale compared to mutation that 
interacts with all the four evolutionary forces at various levels. Eventually, that 
will contribute to understanding the functions of genes and their relationship and 
interaction with the bearing individual, the population, and the environment. 
Taken together, selfing as a breeding scheme or reproductive strategy is a crucial 
trait that interferes and connects evolutionary forces, adaptive potential, and life-
history traits of natural populations.  
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Zusammenfassung (Abstract in German) 
Paarungssysteme spielen eine wichtige Rolle in der Evolution natürlicher 
Populationen. Die Reproduktionsart einer Population wirkt sich auf die 
Evolutionskräfte und den Rekombinationsprozess aus.  Verschiebungen in 
Paarungssystemen verändern wichtige evolutionäre Merkmale natürlicher 
Populationen und beeinflussen den Lebenszyklus auf vielen verschiedenen 
Ebenen. Unter allen Verschiebungen, die in Paarungssystemen von Pflanzen 
vorkommen, ist der Übergang vom Auskreuzen zur Selbstbestäubung der am 
häufigsten vorkommende. Solche Übergänge fanden in der Geschichte der 
Evolution häufig statt, wie man bei phylogenetischen Analysen sehen kann. Trotz 
ihrer Bedeutung wurden bisher keine Methoden entwickelt, um solche 
Übergänge in natürlichen Populationen anhand genetischer Daten auf 
genomweiter Ebene zeitlich zu bestimmen. Vorhandene Schätzungen beruhen 
auf der Schätzung des Funktionsverlustes durch Mutationen der beteiligten Loci. 
Solche Schätzungen beruhen jedoch auf der Kenntnis des zugrunde liegenden 
genetischen Mechanismus, welcher den Übergang von Auskreuzung zur 
Selbstbefruchtung bewirkt. Daher ist die Durchführung solcher Schätzungen auf 
sehr wenige Arten beschränkt. 
 In dieser Studie untersuchten wir die genetischen Konsequenzen der 
Verschiebung von Auskreuzung zur Selbstbestäubung (Kapitel 1). Wir 
simulierten derartige Übergange umfangreich, einerseits mit Wright-Fisher-
Modellen, die zeitlich fortlaufend eine gesamte Population inklusive ihrer 
expliziten Reproduktion simulieren, und andererseits mit Modellen der 
Koaleszenztheorie, bei der genetische Abstammung in der Zeit rücklaufend 
simuliert wird. Die Ergebnisse zeigten, dass die zuvor in der Koaleszenstheorie 
entwickelte theoretische Arbeit zur Implementierung anteiliger 
Selbstbefruchtung hinreichend sind, um die Übergänge zur Selbstbefruchtung zu 
simulieren. Wir haben eine näherungsweise bayessche  Berechnungs-Methode 
(tsABC) entwickelt, mittels derer wir Übergange vom Auskreuzen zur 
Selbstbefruchtung, durch das paarweise Vergleichen von Genomen, 
identifizieren und zeitlich abzuschätzen können (Kapitel 2). Außerdem 
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erweiterten wir in Zusammenarbeit mit Thibaut Sellinger die PSMC‘-Methode zu 
teSMC, um die stückweise-konstante Selbstbefruchtungsrate zeitgleich mit der 
stückweise-konstanten Populationsgröße abzuschätzen. Zudem analysierten wir 
die Genauigkeit dieser Schätzungen (Kapitel 3). Wir entwickelten also nicht nur 
einen bayesschen, sondern auch eine Maximum-Likelihood-Methode, um 
Übergänge zur Selbstbefruchtung einzelner Populationen zu identifizieren und 
zu datieren. Wir stellten fest, dass tsABC ein vielseitiges Werkzeug ist, um 
Übergänge zum Selbsten zu identifizieren und zu datieren. Unter sorgfältig 
getroffenen Annahmen für die vorgeschlagenen Modelle können Übergänge zur 
Selbstbefruchtung in einer Vielzahl von Szenarien identifiziert werden. Darüber 
hinaus verbesserte das angenommene Modell in der teSMC-Methode die 
Schätzungen des zeitlichen Verlaufs der Populationsgröße und identifizierte 
Übergänge zur Selbstbefruchtung, die mindestens genauso robust waren wie die 
Schätzungen mit tsABC. Die automatisierte Parametrisierung von teSMC 
ermöglicht Benutzern mit wenig Fachwissen die Anwendung. 
 Wir schätzten den Übergang vom Auskreuzen zur Selbstbefruchtung 
anhand der Daten von drei genetischen Clustern mit beiden entwickelten 
Methoden. Die Ergebnise stimmten miteinander und mit bereits veröffentlichten 
Schätzung überein. 

Mit unserer Studie trugen wir nicht nur zum Verständnis evolutionärer 
Prozesse bei, welche die genetische Vielfalt natürlicher Populationen formten, 
sondern stellten auch zwei leistungsstarke Methoden zur Verfügung, um die 
demografische Geschichte natürlicher Populationen im Zusammenhang mit 
Übergängen zur Selbstbefruchtung zu untersuchen. Rekombination bietet eine 
molekulare Uhr auf einer anderen Zeitskala als die der Mutation, welche mit allen 
vier evolutionären Kräften auf verschiedenen Ebenen interagiert. Letztendlich 
wird dies zum Verständnis der Funktionen von Genen und ihrer Beziehung und 
Interaktion mit dem jeweiligen Individuum, der Population und der Umwelt 
beitragen. Zusammenfassend kann die Selbstbestäubung als Züchtungsschema 
oder Fortpflanzungsstrategie als entscheidendes Merkmal betrachtet werden, 
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welches mit den evolutionären Kräften, dem Adaptionspotenzial und dem 
Lebenszyklus natürlicher Populationen interagiert. 
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General introduction 
The evolution of mating systems from outcrossing to 
selfing  
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The evolution of mating system shifts from outcrossing to selfing 

Keywords 

Selfing, transition to selfing, self-incompatibility, life-history trait evolution, 
selfing syndrome, statistical modeling, coalescent theory 

Motivational statement and relevance of this project 

“Nothing in biology makes sense except in the light of evolution.” (Dobzhansky, 
1973, 2013) is probably the most cited statement in lectures and textbooks 
introducing evolutionary biology. Since genetics gained importance and became 
centered in biological research, population genetics mark the only field directly 
accessing, measuring, and modeling evolutionary forces to establish evolutionary 
hypothesis on experienceable questions and time scales.  
 I would like to add the importance of modeling further and anticipate 
methodological criticism of this project by citing George Box: All models are 
wrong, but some are useful (Box, 1976). Understanding the genetic basis of 
developmental research on morphological evolution must be embedded into 
population genetics to provide robustness. 

Introduction, general section 

Self-fertilization (selfing) is sexual reproduction, i. e. the life-cycle of a species 
includes gamete formation and reduction of the chromosome set and their fusion 
to form a complete heterozygote. Selfing describes the mode of sexual 
reproduction of both gametes descending from the same parental individual. 
Sexual reproduction is often the mechanism to enforce recombination and, thus, 
a fundamental mechanism for evolution at the individual, population, and species 
level (S. P. Otto & Lenormand, 2002). The evolution of sexes is a major topic in 
biology. The evolution of selfing is an important part of the evolution of sexes. 
Investigating the rate at which selfing occurs on the phylogenetic level may 
provide evidence for standing hypotheses based on the theory that has been 
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developed to substantiate basic principles of the theory of evolution (Shimizu & 
Tsuchimatsu, 2015). 
 The evolution of sexual reproduction from the ancestral asexual 
reproduction is associated with compensating for the two-fold cost of sex (J 
Maynard Smith, 1971; John Maynard Smith & Maynard-Smith, 1978). Asexually 
reproducing individuals outcompete individuals performing sexual reproduction 
under otherwise neutral assumptions. Most species, including plants, reproduce 
sexually (Barton & Charlesworth, 1998). Selfers benefit from the two-fold 
transmission advantage resulting in automatic selection (Busch & Delph, 2011; 
Fisher, 1941). However, selfing shuts down recombination. Taken together, it 
raises the hypothesis that selfing is an evolutionary dead-end (Igic & Busch, 2013; 
G. L. Stebbins, 1957; G Ledyard Stebbins, 1974; S. I. Wright, Kalisz, & Slotte, 
2013). However, data-based evidence is sparse. Thus, a systematic phylogenetic 
analysis of selfing species is inevitable. 

On the evolution of selfing 

The selfing syndrome in plants 

In plants (and animals), species performing high selfing rates manifest 
phenotypes distinguishing them from obligatory outcrossing sister species. The 
so-called ‘selfing syndrome‘ includes small flowers with stigmas and anthers in 
close proximity, limited pollen, and reduced longevity (Ornduff, 1969; Sicard & 
Lenhard, 2011). Selfing also correlates with genomic features, established as 
‘genomic selfing syndrome’: accumulation of deleterious mutations, smaller 
genomes and loss of transposable elements, and enhanced structural evolution of 
chromosomes. Immediate population genetic consequences are a reduced 
diversity and increased linkage disequilibrium due to reduced heterozygosity (S. 
C. Barrett, Arunkumar, & Wright, 2014; Glémin & Galtier, 2012; Shimizu & 
Tsuchimatsu, 2015). The phenotypic and genotypic ‘selfing syndrome’ is 
hypothesized to be a consequence of selfing; however, the relationship between 
cause and effect may be hard to state (Cutter, 2019). 
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Taken together, selfing marks an essential trait with broad effects not only 
on determining spatial and temporal patterns of genetic diversity but also on 
morphological and ecological properties, even dispersal and speciation (Cutter, 
2019; Epinat & Lenormand, 2009). 

Population dynamics of transitions to selfing 

Most angiosperms have hermaphroditic flowers providing the general possibility 

to perform selfing. However, only ~15% are currently known to perform 
predominant selfing (Goodwillie, Kalisz, & Eckert, 2005). Still, transitions from 
outcrossing to selfing are the most frequent shifts in mating schemes that have 
occurred both often and independently throughout the phylogeny (Franklin-
Tong, 2008). 
 There are two main hypotheses about how selfing evolves in a population. 
The first to state is the automatic selection, i. e. the two-fold transmission 
advantage of selfing individuals that transmit both and not only one of the 
haplotypes to the next generation (Fisher, 1941; Goodwillie et al., 2005). That 
advantage outcompetes outcrossing individuals of the same population under 
otherwise neutral assumptions. Moreover, selfing is an evolutionary stable 
strategy (ESS), i. e. no other mating strategy provides an enhanced fitness 
compared to selfing individuals. Thus transitions to selfing must occur one-
directional towards selfing and cannot be reversed (J Maynard Smith, 1971; John 
Maynard Smith & Maynard-Smith, 1978). The second hypothesis is reproductive 
assurance which states the advantage of reproduction by selfing in ecological 
conditions that impede outcrossing (Darwin, 1876). Baker’s law promotes that 
hypothesis. Furthermore, woody perennial species tend to self at lower rates 
compared to small herbal plants. Additionally, perennial herbs tend to self on 
lower rates compared to annuals (Spencer CH Barrett & Harder, 1996). Both are 
indicative of reproductive assurance. Taken together, selfing provides a fitness 
advantage and can invade outcrossing populations immediately if there is no 
disadvantageous effect: Inbreeding depression marks the only short-term 
negative effect of selfing compared to outcrossing, reviewed by Busch and Delph 
(2011). However, selfing provides enhanced rates of purging, indicating that the 
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transition phase is a critical phase for the fitness of a population (Arunkumar, 
Ness, Wright, & Barrett, 2015). However, allotetraploidization has been 
established to be correlated with transitions to selfing and attenuate the 
disadvantageous effects of inbreeding (Comai, 2005; Glémin, François, & Galtier, 
2019; Sarah P Otto & Whitton, 2000). Long-term wise, populations performing 
selfing are established to suffer from a reduced adaptation potential which raised 
the dead-end hypothesis of selfing as a reproductive strategy (Igic & Busch, 2013; 
G. L. Stebbins, 1957; G Ledyard Stebbins, 1974; S. I. Wright et al., 2013). 
 Selfing is an ESS; thus, if selfing is prevented, outcrossing is maintained 
as the reproductive mode in a population. Several self-incompatibility (SI) 
mechanisms have been discovered (Franklin-Tong, 2008; Nasrallah, 2019). 
Brassicaceae prove a genetic mechanism consisting of a single locus containing 
two multiallelic genes. The allelic combination determines an S-haplotype. The 
recognition of an individual plant to reject self-pollen relies on detecting the S-
haplotype. The molecular mechanism is not fully understood however a 
disruption of the function of one of the genes results in a dominant self-
compatibility (SC) that is promoted on the RNA level (de Nettancourt, 1997; 
Franklin-Tong, 2008; Shimizu & Tsuchimatsu, 2015; Suwabe et al., 2020). 
 In summary, investigating and dating transitions to selfing throughout the 
phylogeny will contribute to understanding the evolution of selfing. It may 
answer open questions (or raise new ones) and help to close some gaps in 
understanding the evolution of sexes. 

Life history of Arabidopsis thaliana 

The most supported hypothesis of Arabidopsis thaliana‘s demographic history 
states that its origin is in Africa and roughly follows the out-of-Africa paradigm 
of humans (Durvasula et al., 2017). Most sister species of Arabidopsis thaliana 
perform obligate outcrossing. Additionally, the gain of predominant selfing 
occurred by losing self-incompatibility, the genetic mechanism to enforce 
outcrossing (Franklin-Tong, 2008; Takayama & Isogai, 2005). Three 
independent mutations have been identified and were found in every existing 
population outside of Africa (Durvasula et al., 2017). These findings, taken 
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together, indicate that the transition to selfing occurred before the split and in an 
ancestral population before migration to Eurasia started (Durvasula et al., 2017). 

A high proportion of selfing was observed for independent populations of 
Arabidopsis thaliana. A lower limit of selfing was found to be 0.99715 for seven 
independent investigated groups, which all performed predominant selfing 
(Abbott & Gomes, 1989). The flowers of Arabidopsis thaliana open late in 
development after the anthers have elongated, enabling self-pollination during 
outgrowth (Alvarez-Buylla et al., 2010). Thus, flowers open after fertilization, and 
only under high pollinator activity, marginal outcrossing rates may be exceeded. 
Since selfing is an ESS, low and intermediate selfing rates require mechanistic or 
genetic enforcement. Reduced selfing rate estimates on different Arabidopsis 
thaliana populations recently have not been critically revised and may have 
arisen under overconfident prior assumptions; e. g. (Sellinger, Abu Awad, Moest, 
& Tellier, 2020; Tang et al., 2007). 

Coalescent based demographic inference 

Statistical models provide a systematical approach to jointly sample parameters 
and statistics under priorly determined theoretical assumptions (D. R. Cox, 1990; 
D. R. S. E. J. Cox, 1981; McCullagh, 2002). In population genetics, statistical 
models are used to describe and infer past stochastical processes, e. g., the 
demographic history (Mark A Beaumont, 2010; M. A. Beaumont & Rannala, 
2004; M. A. Beaumont, Zhang, & Balding, 2002). The coalescent model describes 
the genealogy of a sample from a population backward-in-time. The coalescent 
theory can be derived from the forward-in-time Wright-Fisher or the Moran 
model, requiring fewer assumptions than the coalescent model and thus 
providing a golden standard for simulating diversity. In other words, under 
certain assumptions, the properties of the Wright-Fisher and the Moran model 
converge with the properties of the coalescent theory. Indeed, the coalescent 
theory helped to statistically summarize and understand the effect of 
evolutionary forces and population genetic properties of populations. In 
population genetics, opposing to the term definition in descriptive statistics, a 
population classically is defined as a set of individuals performing random 
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mating. That is a helpful definition for modeling, yet not necessarily true in 
natural populations. That is why, here, we refer to populations in the modeling 
context, but to natural populations or genetic groups or clusters if referring to 
sample sets from natural observations. 

Aim of this project 

With this study, we aim to develop and provide a method to identify and estimate 
the time of transitions from outcrossing to predominant selfing using whole-
genome haplotype variation. We describe the genetic consequences of transitions 
to selfing using forward-in-time Wright-Fisher models simulating explicit 
reproduction under selfing to achieve this goal. Then we compare our findings 
with simulated genetic data under the coalescent with partial selfing, which 
approximates implicitly selfing as a reproductive mode, but is computationally 
more tractable. Based on our findings, we introduce a new summarization 
statistic that captures the genetic diversity of MRCA segments, which we define 
as tracts of a pairwise comparison of sequences that descend from the same most 
recent common ancestor (MRCA) compared to its neighboring tracts. We 
implement our insights not only in developing an approximate Bayesian 
computation (ABC) method but also a maximum-likelihood-estimation-method 
(MLE) based on the Sequential Markovian Coalescent (SMC) to identify and 
estimate transitions from outcrossing to selfing. We analyze the performance of 
both the methods and apply them to three distinct genetic clusters of Arabidopsis 
thaliana.  
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Chapter 1 
Genetic consequences of transitions from outcrossing to 
selfing  
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Genetic consequences of transitions from outcrossing to selfing 

Keywords 

Selfing, recombination, mating systems, population genetics, demography 

Introduction 

The effects of predominant selfing as a reproductive mode on genetic diversity 
have been described and reviewed in many aspects, e. g, reviewed by Cutter 
(2019). Selfing occurring via autogamy within a hermaphroditic flower has been 
described to be associated with the evolution of specific morphological traits of 
the flower, like reduced petal sizes and pollen reduction (Darwin, 1876; Ornduff, 
1969; Wilcock, 1987). Additionally, predominant selfing predicts convergent 
features of a genomic selfing syndrome: including an increase in the genetic load 
and more compact genomes (Cutter, 2019). Moreover, theoretical work has been 
published describing the population genetics aspects of selfing (Glémin, 2021; 
Hartfield, Bataillon, & Glemin, 2017). However, there is no formal description of 
the effects of transitions to selfing on a whole-genome level enabling its 
summarization to be informative about recent and mid-recent transitions to 
selfing. Multisite statistics, such as linkage, have become only recently of broader 
interest since next-generation sequencing provides affordable access to such 
genetic information. Therefore, developing population genetic tools to 
incorporate such information becomes inevitable. 

There are generally two approaches to investigate the effects of selfing on 
whole-genome genetic diversity. 1) We can describe and investigate genetic 
patterns of natural populations of which we priorly know that they perform 
selfing, and 2) we generate a model with which we mimic the effects of selfing and 
investigate and describe the effects of selfing on genetic diversity. The earlier 
approach suffers from uncertainties of traits, e. g. life-history traits, and possible 
confounding factors of the recent evolutionary history of the given populations if 
unknown. Importantly, we cannot investigate the temporal development of 
evolving trait processes. Moreover, we must have prior knowledge of the effects 
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of selfing to interpret the genetic diversity in those populations depending on the 
populations. Here, we aim to investigate the effects of a transition from 
predominant outcrossing to predominant selfing on whole-genome genetic 
diversity. Our findings will provide insights into developing a statistical 
framework to identify and estimate the age of such transitions using whole-
genome diversity. 

In this study, we simulate and describe genetic diversity using two 
common model frameworks to investigate how transitions to selfing shape 
genetic diversity. We use the standard summarizing statistics, the site-frequency 
spectrum, and linkage-disequilibrium to describe the genetic diversity. 
Additionally, we develop a novel optimized summarizing statistic to capture the 
temporal signature of transitions from outcrossing to selfing. Our findings will 
contribute to the understanding of how to efficiently summarize genetic diversity 
and, thus, contribute to inferring recent transitions from outcrossing to selfing of 
populations and species throughout the phylogeny. 

Models and Methods 

Population genetics models in the context of changing selfing rates 

In classical population genetics modeling approaches, we consider partial selfing 
under a theoretical population of N diploid individuals. N can be any positive 
integer. If assuming constant population size, we consider the same number of N 
diploid individuals in the next generation who will be generated from the present 

generation of individuals through selfing or outcrossing with probability 𝜎	and 
(1 − 	𝜎), respectively. Both reproductive modes, outcrossing and selfing, are 
considered sexual reproduction. In other words,  individuals of the offspring 
generation will be generated by the fusion of two gametes produced by the 
previous generation. During reproduction, gametes are produced through 
meiosis, a biological process that includes recombining the genetic material via 
crossovers, e.g., reviewed by Mercier, Mézard, Jenczewski, Macaisne, and Grelon 
(2015). In our models, the two gametes for the offspring are chosen randomly. 
However, in the case of outcrossing, the second gamete must be from a different 
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individual compared to the first gamete. In the case of selfing, the same individual 
must produce the second gamete. In our models, the second gamete can be either 
the other gamete from the same meiotic process as the first gamete or must have 
undergone an independent process of meiosis and, thus, recombination. 
Irrespective of this difference, from a biological perspective, gametes from two 
different meiotic processes and thus two different recombination events fuse in 
the case of sexually reproducing organisms. Usually, we do not model the 
generation of gametes because, from a theoretical perspective and under the 
assumption of neutral evolution, the generation of the offspring individual will 
not depend on explicitly simulated meiosis. Thus, each chromosome set can be 
generated independently. The expected distribution of polymorphic sites in a 
sample of sequenced individuals is independent of recombination (Fisher, 1958; 
Kingman, 1977, 1982, 2000; S. Wright, 1931). 

Under the assumption of neutral evolution, the distribution of 
polymorphic sites (single nucleotide polymorphisms, SNPs) in a sample of 
sequenced individuals from a specified population is determined by the 
underlying genealogy of the site, which in turn depends on the demographic 
history of the population. The genealogy of a sample of recombining sequences 
can be described via a complex graph, the ancestral recombination graph (ARG). 
The ARG connects the genealogy of each site; the connections of two neighboring 
trees represent past recombination events between present haplotypes. A tree 
represents the genealogy of a single site. A tree consists of two properties: 1) Its 
length and 2) its topology, which, taken together, is the order, number, and timing 
of the branching process. Each pair of samples traces back its lineages to a node, 
which represents the most recent common ancestor (MRCA), while we label the 
node's age as TMRCA. The genealogy of neighboring sites remains unchanged if no 
recombination event has occurred in the past between them. 

Two population parameters determine the distribution and characteristics 
of genealogies observed in a sample of several recombining genomes: the 
population mutation rate (θ) and the population recombination rate (ρ). Both 
variables depend on the effective population size and the per site per generation 
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mutation (𝜇) or recombination rate (𝑟), respectively. Both 𝜇 and 𝑟 are measures 
that can be approximated from experimental data. Under outcrossing, the ratio 
between the population mutation and recombination rates equals the ratio 
between the per site per generation mutation and recombination rates. The 
proportion of selfing within a population determines reduced heterozygosity and, 
thus, a reduced effective population size Nσ. Selfing for several to dozen 

generations results in the limit of the inbreeding factor 𝐹!". The theoretical 
expectations of consequences of selfing can be calculated using the mathematical 
frameworks provided by Fisher, Charlesworth, and further (B. Charlesworth & 
Charlesworth, 2010; Fisher, 1941): The reduction of the effective population size 
by a selfing proportion of individuals in the population is simply described being 
half of the proportion of selfing within the population: 
   

 𝑁# = 𝑁 ∙ 01 −
𝜎
22 ( 1 ) 

   
or, more generally: 
   

 𝑁$!" = 𝑁 ∙
1

(1 + 𝐹!"	)
 ( 2 ) 

   
with 
   

 𝐹!" =
𝜎

(2 − 𝜎) ( 3 ) 

   
Again, the inbreeding effect of selfing rescales both θ and ρ through the 

reduced effective population size. However, the effective recombination rate is 
further affected by selfing. The reduced heterozygosity silences the effect of 
recombination. In the most extreme case of complete selfing (we assume no 
mutation for simplicity here), each individual will have zero heterozygosity. 
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Recombining two chromosomes will not affect the constitution of the gametes' 
haplotypes. Thus, the rescaling of the recombination rate is defined as: 
   

 𝑟# = 𝑟 ∙ (1 − 𝐹!") ( 4 ) 
   

This yields the effective population recombination rate ρ being affected in two 
distinct ways through selfing: 
   

 𝜌# = 𝜌 ∙
(1 − 𝐹!"	)
(1 + 𝐹!"	)

 ( 5 ) 

   
while θ is rescaled only by the selfing through the rescaled effective population 
size. Notably, the additional effect on the population recombination rate creates 
a difference in the ratio between the ratio of θ and ρ, compared to the ratio 
between the respective per site per generation mutation and recombination rates 
r and µ: 
   

 %#
&#
= '

(
∙ )
()+$!")

  ( 6 ) 

   
The rescaled ration between θ and ρ determines an estimator for the selfing rate 
(M. Nordborg, 2000). Thus, any summarization of the polymorphism data being 
informative about both processes potentially is informative about the selfing 
process and history of a population. 

Measures of the effect of the joint rescaling of θ and ρ under partial selfing 
are descriptive of the reproductive process of a population. This joint rescaling 
allows modeling a panmictic population with the same levels of drift and 
recombination in a selfing population. These rescalings are a direct consequence 
of the reduced heterozygosity. As described above, an offspring reproduced by 
selfing obtains its haplotypes from either the same haplotype or different 
haplotypes of the same parent. Thus, on average, each reproduction event via 
selfing halves the heterozygosity of the offspring compared to its parent. Reduced 



 
 

14 

heterozygosity results in reduced diversity throughout the population, thus 
explaining the rescaling of the effective population size. The additional rescaling 
of the population recombination rate ρ again is a direct consequence of the 
reduced heterozygosity. Under reduced heterozygosity, crossovers tend to 
recombine homozygous genetic material. Thus, a crossover does not result in a 
new recombinant. Here, we do not consider the creation of a new haplotype 

through ongoing mutation. The inbreeding factor 𝐹 describes the proportion of 

identity by descent (IBD). In observed data from natural populations, 𝐹 is 
estimated from the lack of heterozygosity compared to its expectation under 
random mating. If we assume t as the number of generations in which the 

offspring was reproduced by selfing, we find 𝐹- being the the reduced inbreeding 
factor at time t. 
   

 𝐹- = 1 − 5
1
26

-
(1 − 𝐹.) ( 7 ) 

   
with 
   

 𝐹. = 1 −
𝐻/
𝐻0

= 1 −
𝐻/
2𝑝𝑞 ( 8 ) 

   

being any observed lack of heterozygosity at time 𝑡 = 0. In its most extreme case, 
even after only ten selfing events, the heterozygosity is reduced to a 1024th which 
we could effectively consider as homozygous. Thus, we conclude that any 

developed mathematical framework based on the inbreeding factor 𝐹 holds its 
limits to selfing. 
 There are generally two different available models to simulate the genetic 
diversity of a population: 1) the forward-in-time Wright-Fisher model (WF) and 
2) the backward-in-time coalescent model (Fisher, 1958; Kingman, 1982; S. 
Wright, 1931). The WF simulates all individuals of a population that explicitly 
undergoes reproduction, including the generation of gametes with meiotic 
recombination, as a time-forward process. Notably, this model can easily be 
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modified to model complex traits, including life-history traits, e. g. selfing, and 
violations of the process of neutral evolution. These traits are usually simulated 
explicitly and, thus, most reliable in mimicking actual biological processes. The 
coalescent model simulates only the genetic diversity of a sample subset of a 
population in a time-backward process. The most exciting advantage over the WF 
is its computational feasibility. Still, the computational demand of many 
population genetics scenarios is exhausted for computing systems. Second, the 
coalescent process can be derived from the WF. Both models converge under 
carefully made assumptions. It is possible to extend the coalescent model to 
mathematically described life-history traits, e. g. partial selfing using the 
properties of θ and ρ effectively being rescaled (M. Nordborg, 1997, 2000; 
Magnus Nordborg, 2001; M. Nordborg & Donnelly, 1997). However, in the 
framework of the coalescent theory, only a single haplotype per individual is 
modeled. This sampling scheme is a potential source for breaking the 
assumptions of the coalescent model with partial selfing. Moreover, it remains to 
be investigated whether the coalescent model with partial selfing suffices in 
describing the genetic structure resulting from an unequilibrated population with 
partial selfing after a transition from outcrossing to selfing. 

Simulation and demographic models in the context of selfing 

We previously described the properties of the theoretical expectation of the 
genetic structure arising if a random mating population is partially selfing. θ and 

ρ will be effectively rescaled via 1 (1 + 𝐹)⁄  and (1 − 𝐹) (1 + 𝐹)⁄ , respectively. 
When using the coalescent model to simulate transitions to selfing, it is crucial to 
assure the model's validity. Thus, we propose two different demographic models 
under three different simulation models. The demographic models include 1)  a 
time-forward transition from predominant outcrossing to predominant selfing 
under constant population size and 2) a time-forward change from a big 
population size to a small population size under the rescaling corresponding to 
the transition from outcrossing to selfing in the first model (Figure 1). The 
simulation models include 1) explicitly selfing under demographic model 1 using 
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time-forward WF, 2) a rescaled time-forward WF under demographic model 1, 
and 3) a rescaled backward-in-time coalescent under demographic model 1. 
 

 
Figure 1. Two population scenarios to investigate the genetic consequences of transitions to 
selfing: (A) A single population of constant size undergoes a transition from predominant 
outcrossing to predominant selfing; (B) a single population with constant selfing undergoes a 
single change of population size according to the rescaled effective population sizes of model 1 
in the predominant outcrossing and selfing phase, respectively. 

Our theoretical expectations are different for the two demographic models 
(see above). The second demographic model is a confounding model. It provides 
an alternative demographic scenario to explain the reduction in diversity, in 
which no joint change in recombination is considered. Transitions to selfing 
reduce the effective population size to half in its extreme. Changes in population 
sizes in the demographic history are common. However, a joint or independent 
change in the recombination rate in a species is not common. Transitions to 
selfing rescale diversity and recombination rate, both. Thus, another confounding 
model could be interesting: A single population undergoes a change in 
recombination rate but not a change in population size. The third model could 

capture the effects on the genetic variation through the rescaled ρ, but not 𝜗. 
However, no biological reason is known that the recombination rate changes 
rapidly in demographic history. Thus, the third model to rescale ρ via a rescaled 
effective population size is obsolete according to the rescaling of a transition from 
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selfing to outcrossing (backward-in-time). Additionally, it could quickly be ruled 
out since such a drastic increase in diversity could be detected easily, e. g. approx. 

48-fold increase when transitioning from predominant outcrossing (𝜎 = 0.1) to 

predominant selfing (𝜎 = 0.99) backward-in-time. 
We successfully identify transitions from outcrossing to selfing if we 

demonstrate model 1 being more likely under the observed data than model 2. 
Thus, we need to show how the genetic structure changes specific to a transition 
to selfing using the two proposed models. Our theoretical expectations are 
congruent for the three different simulation models (see above). The congruency 
of the genetic diversity data simulating the consequences of transitions from 
outcrossing to selfing would enable the use of the coalescent for implementing 
fast simulations into an inferring method (Chapter 2). 

In this chapter, we characterize the specific signals of transitions from 
predominant outcrossing to selfing on the genetic structure of a population. We 
provide a summarization of theoretical and measurable statistics. Eventually, we 
aim to implement our findings into an inference framework to identify and 
estimate shifts from predominant outcrossing to selfing. 

Implementation 

To investigate the consequences of a transition from outcrossing to predominant 
selfing, we simulate genetic variance for a demographic model of a single 

population undergoing a single-step transition from complete outcrossing (𝜎 =

0) to predominant selfing (𝜎 = 0.95, model 1). Furthermore, we compare the 
genetic variance of this model with the simulated data from a model with a single 
stepwise change in population size (model 2, Figure 1). The change in 
population size in model 2 rescales the effective population size to the same 
extent as the transition to selfing does in model 1 (Equation 2). 

We simulated a population of 50,000 diploid individuals with 

chromosomes of 1 ∙ 101 bp length. We set the mutation and recombination rate 

to 𝜇 = 𝑟 = 1 ∙ 10+2 under neutrality. 
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To investigate the direct effect on the rescaling of the recombination rate, 
we counted the effective recombination events before and after a transition to 
selfing. We defined a recombination event as effective if it created a new 
haplotype that was not present in the parental gametes, i. e. there is an odd 
number of recombination events between two SNPs of the parental gamete 

haplotypes. The rescaling factor 𝑓( was calculated via 
   

 𝑓( =
𝑛($%&'($))*+,
𝑛()-./*+,

 ( 9 ) 

   

with 𝑛( being the observed number of effective recombination events per 
generation during the outcrossing or selfing phase of the simulation. 

Moreover, we calculated different statistics further to investigate the 
genetic effects of transitions to selfing. To summarize the genetic data, we 
sampled 20 haplotypes from different individuals. We calculated the 
summarizing statistics SFS, LD, TMTRUE, and TMWIN. SFS and LD were calculated 
on the whole set of 20 sequences. TMTRUE and TMWIN (see page 20) were 
calculated on the pairwise comparison. 

We used the SliM3 suite to simulate a forward-in-time WF population to 
simulate the explicit transitions to selfing. We explicitly applied the change of the 

selfing rate at a given time 𝑡# to the whole population at once. We created the 
samples at different times after the transition to selfing.  

Classical site-based summarization of genetic diversity 

In population genetics, classical summary statistics depend on allele frequencies 
only. Evolutionary forces affect expected frequencies of mutations, but not 
recombination. We summarized the simulated genetic variation jointly with two 
classical approaches: 1) The site-frequency spectrum (SFS) and 2) the linkage 
disequilibrium decay (LD).  

The SFS is a two-dimensional statistic summarizing the distribution of 
allele frequencies of a given sample set. The sampling scheme – whether the 
samples are taken from a single or multiple populations – and the demographic 
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history, i. e. the magnitude of drift, determines the specific counts of site 
frequencies and the set of sequences. The expected SFS can be calculated for a 
single population of constant size since each frequency provides partial 
information about a specific time frame in the past (Griffiths & Tavaré, 1998). 
The calculation of site frequencies can be extended to consider a piecewise 
constant population size function. Reciprocally, estimating a piecewise constant 
population size can be formalized into ML or approximation by simulation 
statistical approaches based on a given SFS for different population model 
assumptions (Boitard, Rodriguez, Jay, Mona, & Austerlitz, 2016; X. Liu & Fu, 
2015). However, the recombination rate through time, and thus the selfing rate, 
does not affect expected site frequencies. The SFS must be extended by a 
summarizing statistic correlating to recombination rates through time to fulfill 
the criterion of Bayesian sufficiency for estimating population sizes and 
recombination rates through time jointly. Thus, we extend the SFS by measuring 
the linkage disequilibrium (LD). 

Linkage disequilibrium relates the dependency of inheritance of site 
frequencies in a population to an effective recombination rate. The physical 
distance of sites can be translated to an effective population recombination rate 

(𝜌) of a specific time (Boitard et al., 2016; Hayes, Visscher, McPartlan, & 
Goddard, 2003): 
   

 𝐸(𝑟3) 	≈
1

𝑎 + 4𝑁𝑐  ( 10 ) 

   

with 𝐸(𝑟3)	being the expected LD measured as 𝑟3, 𝑎 being a constant dependent 

on the mutation model, 𝑁 being the effective population size at the time 1 (2𝑐)⁄  
and c being the recombination rate. Thus, measuring both SFS and LD provides 
information about the effective population mutation rate through time and the 
effective population recombination rate through time, which we can parametrize 
into an effective population size through time and a selfing rate through time. 
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Haplotype-based summarization of the genetic diversity 

Selfing rescales both the effective population size and recombination rate 
(Equations 2, 3, 4). To obtain a measure sensitive to both of these effects, we 
chose the following approach: We identified segments and compared two 
sequences sharing the same most recent common ancestor (MRCA). These 
MRCA-segments are bounded by the positions at which recombination occurred 
in the past. Therefore, the distributions of the length of MRCA segments will 
measure the effective population recombination rate. Thus, characterizing a 
pairwise comparison of sequences through their MRCA segments by measuring 
the joint distribution of their TMRCA and length (TL) is sensitive to the effects of 
selfing. 

Note, this summarizing statistic requires knowledge about the boundaries 
of MRCA segments, i.e., at which position recombination occurred in the past. 
Thus, we obtain this summarizing statistic only from simulated data. 

Summarizing the clustering property of non-recombining segments 

In addition to TL distributions, we also calculated the transition matrix of TMRCAs 
of successive MRCA segments along the genome, which we refer to as TMTRUE. 
Therefore, we discretized TMRCA values. Then, we counted the frequencies of 
segment transitions along the simulated sequences for each combination of 
discrete TMRCA values. We normalized the frequency of transitions from each 
discretized TMRCA class to obtain the final transition probability matrix. 

Note, similar to TL, this summarizing statistic requires knowledge about 
the boundaries of MRCA segments, i.e., at which position recombination 
occurred in the past. Thus, we can obtain this summarizing statistic only from 
simulated data. 

Joint summarization of recombination and drift 

To measure the combined effects of selfing on the genetic diversity of natural 
populations, we designed a measure informative about both the recombination 
and demographic history of a population. We calculated the transition probability 
matrix of pairwise diversity in non-overlapping windows, which we refer to as 
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TMWIN. Thus, to summarize the genetic diversity, we do not require any 
knowledge about the position of recombination events along the sequence.  

Results 

Theory predicts the true rescaling of the recombination rate under low mutation rates 

The rescaling of the effective recombination rate can be predicted using theory 
(Equation 4). However, in the theoretical model discussed before (REF 
introduction), we do not consider recombination between haplotypes of the same 
individual when gametes are formed. However, mutation during gamete 
formation can result in novel haplotypes if recombination between the haplotypes 
within an individual is considered. This ‘class’ of recombination is silent under 
complete homozygosity. Thus, a particular class of recombination events will not 
be considered. 

We simulated a single population with a given chromosome length to 
address this issue. We counted the effective recombination events before and 
after the transition to a given explicitly simulated selfing rate. We considered 
recombination events as ‘effective’ if they resulted in novel haplotypes. For 
comparison, we also simulated the transition to selfing under the rescaling 
introduced in equations ( 2 ) and ( 4 ). We counted the number of effective 
recombination events in each generation using forward-in-time WF simulations 
under the demographic model 1. We calculated the ratio of the average effective 
recombination rate before and after the transition to selfing (Figure 2, equation 
9) to provide a measure for the underlying rescaling parameter (Equation 4). 
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Figure 2. The observed ratio of effective recombination rates of simulated populations under 
Model 1 in WF simulations: Measured rescaling for 𝜇 𝑟⁄ = 0.1 (A, C) and 𝜇 𝑟⁄ 	= 10 (B, D) 
under the Forward-explicit WF model (A, B) and the Forward-rescaled WF model with partial 
selfing (C, D). Simulations were performed for two populations of sizes, 500 (red) and 2000 
(blue), and three chromosome lengths, 10! (circle), 5 ∙ 10! (triangle), 1.2 ∙ 10" bp (square). 
Results are shown for 12 independent simulations. We counted effective recombination events 
before and after the transition to selfing and calculated the ratio using equation ( 9 ). 

For complete outcrossing (𝜎 = 0), we obtained the ratio of the effective 

recombination rates 𝑓( = 1, under all scenarios. The rescaling factor of the 
recombination rate varied the most under small chromosome length, and low 
population sizes around the theoretically expected values. Using the rescaling of 
the coalescent to mimic transitions to selfing, we obtain a perfect congruence of 
the simulated rescaling compared to the theoretical expectation. This is different 
for explicitly simulated selfing rates. With increasing selfing rate and increasing 
chromosome length, but independent from population size, we obtain an 
increased rescaling of the effective recombination rate. 

Moreover, this effect is even more pronounced for high 𝜇 𝑟⁄  ratios, but 
almost absent for mutation rates being a 10th of the recombination rate. We found 

this effect was most pronounced for complete selfing, which results in (𝜌 = 0) in 
the rescaled model, indicating a systematic error in the approximation of the 
rescaling for partial selfing deriving from a specific class of recombination events. 
In Arabidopsis thaliana, the mutation and recombination rate were estimated to 

𝜇 = 6.95 ∙ 10+4 and  𝜇 = 3.6 ∙ 10+2 resulting in 𝜇 𝑟⁄ ≈ 0.2	(Ossowski et al., 2010; 
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P. A. Salomé et al., 2012). Thus, we consider the rescaling proposed in the 
coalescent with partial selfing being accurate. 

The rescaled coalescent simulates a single haplotype per individual 

The coalescent with partial selfing provides a model to simulate haplotype genetic 
diversity for selfing populations. However, the modeled haplotype samples 
represent distinct individuals. To investigate whether the sampling stage of a 
selfing population biases the measured genetic diversity in contrast to the 
rescaled coalescent, we simulated transitions to selfing and calculated FIS under 
the explicit and the rescaled model for selfing using the forward-in-time WF-
model. We compared the individuals' FIS distribution and their average to the 
expected values (Equation 3). We used different sampling proportions to 
represent expected different lineage ages (small sample sizes represent old 
lineages). Except for the complete sampling proportion, we sampled one 
haplotype per individual and assembled them to represent the sample haploid 
individuals in the coalescent with partial selfing. 

 We did not observe differences in the 𝐹!" distribution for different 

sampling proportions. For explicit selfing, the 𝐹!" distributed bimodally: A certain 
proportion of the measured samples is distributed around zero; the other 

proportion of the measured samples distributes at 𝐹!" = 1. The average of them 
exactly meets the theoretical expectation. However, when simulating genetic 
diversity under the rescaled coalescent with partial selfing, we only obtain a 

distribution around 𝐹!" = 0. The observed values distribute with more 
considerable variance under high selfing rates (Figure 3). This effect is observed 
for any population sampling proportion (0.005 to 1.0). Thus, the coalescent with 
partial selfing cannot be used to simulate diploid genetic diversity. However, 
sequencing inbred lines provides an accurate haplotype sample to be analyzed 
using the coalescent theory. 
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Figure 3. Measured inbreeding factors 𝐹#$ as one minus the ratio between observed and expected 
heterozygosity for different sampling proportions from a simulated WF population with constant 
selfing (sigma = 0.5, left; sigma = 0.95, right). Simulations were done using SliM3. Population 
size was set to 𝑁% = 10,000, and mutation and recombination rates were set to 𝜇 = 𝑟 = 10&". 
After 100,000 generations, samples were taken and repeated every 10,000 generations 30 times. 
For sample proportion of 0.5 or lower, haplotypes were sampled from different individuals. 
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The coalescent model accurately simulates direct measures of the joint effects of 
transitions to selfing 

The joint distribution of TMRCA and lengths of MRCA segments (TL) were used to 
describe the consequences of a transition to selfing at the genomic level and how 
it differs from a change in population size. In SliM3 and msprime, MRCA 
segments were analyzed by identifying consequential recombination events in the 
history of the samples (i.e., events that lead to the inclusion of new MRCA); the 
genomic position of those recombination events then represent the boundaries of 
the successive segments, which we refer to as MRCA segment. 

 
Figure 4. Comparison of the joint distributions of TMRCA and lengths of MRCA segments (TL) 
under three different simulation approaches. (A) Explicit selfing is implemented in a forward-in-
time Wright-Fisher model (SliM3). Population size is constant, and the selfing rate changes from 
outcrossing (𝜎 = 0, green) to predominant selfing (𝜎 = 0.95, orange). MRCA segments were 
defined as contiguous sets of nucleotides sharing the same most recent common ancestor. (B) 
Shift to selfing is simulated using a forward-in-time Wright-Fisher model (SliM3) by rescaling 
population size and recombination rate at 𝑡' as suggested by M. Nordborg and Donnelly (1997) 
(C). Shift to selfing simulated using the coalescent by rescaling population size and recombination 
rate at 𝑡' as in panel B. Except for the selfing rates, both axes are scaled in 𝑙𝑜𝑔(). 

We found the correlation function between the TMRCA and length of the 
MRCA segments representing a measure for the selfing rate per time. The  TMRCA 
and the length were simulated and distributed around the expected values, 
adding a layer of uncertainty when interpreting TL. Pairwise nucleotide diversity 
can approximate TMRCA when mutation rates are sufficiently large (Ralph, 
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Thornton, & Kelleher, 2020). This is true and indistinguishable using the three 
proposed simulation models (Figure 4). 

We simulated TL for a complete-time series of transitions to selfing 
(Figure 5). We found the change in the slope of the underlying correlation 
between TMRCA and length of MRCA segments to precisely date the time of the 
transition to selfing and follow strictly theoretical predictions (Equation 6). 
Furthermore, we found TL to be specific to transitions to selfing (Figure 6, 
panels A and B). 

 
Figure 5. Consequences of a transition to selfing on the genealogies of simulated chromosomes 
over time. (A-I) Joint and marginal distributions of ages in generations and lengths of MRCA 
segments (TL) in a population with constant population size and a shift from outcrossing (green) 
to predominant selfing (orange). MRCA segments were defined as contiguous sets of nucleotides 
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sharing the same most recent common ancestor. Except for the selfing rates, both axes are scaled 
in 𝑙𝑜𝑔(). 

In summary, we conclude that the coalescent model with partial selfing 
accurately simulates an effect on genetic diversity being a consequence of 
transitions to selfing, or more generally, accurately simulates changes in selfing 
rates through time. 

Summarizing the clustering property of non-recombining segments 

Recombination is the only event that determines TMRCA of adjacent sites being 
different. Thus, we measured the probability of TMRCAs of consecutive MRCA 
segments following each other depending on their TMRCA (TMTRUE). The expected 
probabilities for MRCA segments following each other were determined by the 
probabilities of the Poisson process of recombinations. It has been described in 
the Sequential Markovian Coalescent (SMC) framework for constant 
recombination rates. 
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Figure 6. Consequences of a transition to selfing on genealogies of simulated chromosomes. 
(A) Joint and marginal distributions of ages (TMRCA in generations on a 𝑙𝑜𝑔() scale) and lengths 
of MRCA segments (in bp on a 𝑙𝑜𝑔() scale) in a selfing population (𝜎 = 0.95) with a stepwise 
change from large (green, 𝑁*+, = 50,000) to low (orange, 𝑁-./0 = 26,250) population size. The 
population sizes were chosen to correspond to the rescaling of the effective population size by the 
selfing rates used in panel B. (B) Distribution of ages (TMRCA) and lengths of MRCA segments 
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(in bp) in a population with a constant population size and a shift from outcrossing (green, 𝜎 = 0) 
to predominant selfing (orange, 𝜎 = 0.95). (B) (C) Spatial distribution along the genome of a 
subset of MRCA segments (D) The transition matrix of ages (TMRCA) between adjacent segments 
along the genome corresponding to the data simulated in panel A. This matrix summarizes the 
probability that the nth MRCA segment with a given age X is followed by the (n+1)th segment of 
age Y. The heat colors indicate the transition probabilities (tp). (E) The transition matrix of ages 
(TMRCA) between adjacent segments along the genome corresponds to the data simulated in 
panel B. Recombination rate for the simulations was set to 𝑟 = 3.6 ∙ 10&1. TMRCA- and Length-
axis are scaled in 𝑙𝑜𝑔(). 

 Comparing the two demographic models, the transition to selfing and the 
single change in population size models (Figure 6), we found a 2D-bimodal 
distribution of transition probabilities for transitions to selfing, which is different 
from a confounding change in population size (Figure 6, panel C, D and E). 
Intuitively, we could explain this finding through the genealogical process of 
segments that enter a demographic phase with a higher recombination rate (e. g., 
outcrossing) and, after that, undergo recombination events that only affect the 
TMRCA of that phase and older. Thus, clusters of MRCA segments appear for each 
demographic phase, dependent on the recombination rate of that phase. 

Observing genetic diversity consequences of selfing on MRCA segments 

Pairwise diversity is a direct measure of the TMRCA of two sequences. 
Recombination does not affect the expected or mean diversity along the sequence. 
However, recombination affects the variance of the diversity. Thus, similar to 
TMTRUE, we measured the probability of discretized diversities of consecutive 
windows along the sequence following each other dependent on their TMRCA 

(TMWIN). We used a window of size 10,000 bp (Figure 7). 
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Figure 7. (A) The transition matrix of pairwise diversity (TMWIN) between adjacent non-
overlapping 10 kb windows measured for 1 Mb of data simulated with the population-size-
change-model (Figure 1) in an outcrossing population with a stepwise change from NANC = 
100,000 (green) to low NPRES=50,500 (orange). The population sizes were chosen to correspond 
to the rescaling of the effective population size by the selfing rates used in panel B. (B) The same 
transition matrix of pairwise diversity as in panel A for a constant population (𝑁 = 100,000) but 
with a transition from outcrossing (𝜎 = 0) to predominant selfing (𝜎 = 0.99). The recombination 
rate was set to 𝜇 = 1 ∙ 10&". These matrices summarize the probabilities that the nth window with 
a given diversity X is followed by the (n+1)th window of diversity Y. The heat colors indicate the 
transition probabilities (tp). The demographic model under the simulations for A, a potential 
confounding model, captures the signal of the rescaled diversity by a transition to selfing, but not 
the joint rescaling of the recombination rate. 

Comparing the two demographic models, the transition to selfing and the 
single change in population size models (Figure 1), we found TMWIN to show an 
increased variance of probability distribution around the diagonal under 
demographic phases of high recombination rates, e. g. predominant outcrossing, 
compared to demographic phases of low recombination rates, e. g. predominant 
selfing, where the transition probability towards a similar diversity is heavily 
pronounced. This effect is different from the confounding model, where the 
transition probability towards a similar diversity is also heavily pronounced in 
the outcrossing phase. 

MRCA segments range from a few base pairs to hundreds of thousands of 
base pairs dependent on their TMRCA (Figure 5). This range spans around the 



 
 

31 

chosen TMWIN window length. Thus, on the one hand, young MRCA segments 
containing low numbers of SNPs with a single TMRCA result in an increased 
probability of transitioning to the same class of low diversity, as the underlying 
genealogy for multiple each other following windows remains to be the same. 
That provides a peak transition probability for low diversity to low diversity, 
depending on the defined discretization boundaries. On the other hand, old but 
short MRCA segments may contain a high SNP density. However, they are short 
compared to the TMWIN window length. Thus, a single TMWIN window will span 
multiple to many MRCA segments resulting in a reduced variance of SNP 
frequencies for a single window. However, suppose the length of MRCA segments 
compares well to the TMWIN window length. In that case, we measure the variance 
of TMRCA dependent on the corresponding temporal recombination rate via its 
approximate measure of diversity, showing an increased transition probability to 
other time windows. In other words, the variance of the clustering MRCA 
segments depends on the effective recombination rate that those segments 
underwent backward in time, which is high if a recent transition has occurred. 
Thus, we see a deflection from the diagonal (transition probability to the same 
discretized TMRCA) in the TMWIN if a transition to selfing has occurred in the past 
(Figure 7). 

To conclude, via calculating TMWIN, we measured the combined effects of 
a rescaled effective population size and recombination rate, both, i. e. specific 
genetic consequences of transitions to selfing. Thus, TMWIN is a summarizing 
statistic from which we can obtain the piecewise-constant selfing and population 
size parameters of the underlying model and identify and date transitions to 
selfing. Moreover, TMWIN can be used to approximate the calculation of posterior 
likelihoods of parameter distributions in an Approximate Bayesian Computation 
(ABC) approach to infer transitions to selfing. 

Comparison of the effects of implicit and explicit selfing on the summary statistics 

We did not detect differences in simulated data under the explicit selfing or 
implicit selfing model using SFS, LD (Figure 8). The Wilcoxon signed-rank test 
provided the expected significance proportion of 4.26% under an assumed type 1 
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error of 𝛼 = 0.05. Given that we performed multiple testing, this met our exact 
expectation under the assumption of both models simulating the summarizing 
statistics under the same underlying distribution. Multivariate Kolmogorov-
Smirnov testing of TL was oversensitive and detected significance to the same 
condition. Taken together, under our assumed scenario, we could not find any 
measurable differences between the two simulation models. In other words, we 
state the coalescent with partial selfing to be a valid method to simulate and infer 
transitions to selfing. 
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Figure 8. Explicit (green) and implicit (orange) selfing in comparison (A) Site-frequency spectra 
under two different selfing rates at two time points after a transition to selfing, no significance 
level (𝑝	 > 	0.05) (B) Linkage disequilibrium of discretized distances under two different selfing 
rates at two time points after a transition to selfing. (C) The number of segregating sites under the 
same conditions. There was no significance between the models, no significance level (𝑝	 >
	0.05). (D) The joint measure of TMRCA (in generations) and length of MRCA segments (TL) for 
two different selfing rates at three time points after the transition to selfing, the dotted line marks 
the timing of the transition to selfing (E) Number of according segments (compare to panel D), 
no significance (𝑝	 > 	0.05) was observed. Population size was set to 𝑁% = 50,000; 𝑡' was 
measured in past generations. Significance levels ns (𝑝	 > 	0.05), * (𝑝	 < 	0.05). 
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Discussion 

This study aimed to summarize genetic data to obtain a specific signal for a 
transition from outcrossing to selfing. We demonstrated the effects of transitions 
to selfing and how they relate to the timing of the transition. Additionally, we 
provided not only a comprehensive summarization of theoretical simulated data 
but also a new summarization of pairwise genetic variation to measure the effects 
of transitions to selfing, which can be calculated on observed data from natural 
populations. Furthermore, we indicated potential limitations to obtaining 
observable signals of the effects of transitions to selfing on pairwise genetic 
diversity. Moreover, we have shown the limitations of the coalescent with partial 
selfing to simulate transitions to selfing. 

For the first time, we provide a broad investigation of temporal 
consequences of transitions to selfing on genome-wide genetic diversities of 
samples of size two. We demonstrated that a transition to selfing leaves particular 
marks on the genetic structure in the individuals of a population, depending on 
the timing of a transition to selfing. Our results hint towards and can be used to 
develop statistical methods to infer past transitions from outcrossing to selfing 
(Chapter 2, Chapter 3). 

We showed the rescaling introduced in the coalescent framework with 
partial selfing generally holding when compared to explicit forward-in-time 
WF simulations. We found the deviation of the coalescent with partial selfing 
increasing with selfing rates towards one and also with chromosome length, but 
not with population size. That indicates that a specific type of recombination 
caused the deviation: The effective recombination concurrently occurs within the 
meiotic gamete production. This deviation of the effective rescaling compared to 
the expected from the coalescent with partial selfing indicates potential limits of 
the coalescent with selfing when considering other life-history traits (e. g., clutch 
size) and non-neutral scenarios, such as linked or background selection (BGS). In 
conclusion, we must carefully design coalescent models for partial selfing as it 
holds for high r/mu ratios and low mutation rates only. However, in most species 
of interest, e. g., Arabidopsis thaliana, we find these prerequisites as given. 
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Additionally, we provided evidence that the coalescent with partial selfing 
does not simulate any inbreeding. We conclude that diploidy in partial selfing 
cannot be modeled under the coalescent. Further, we found a bimodal 
distribution of observed inbreeding factors for populations with partial selfing. 
Thus, using an expected inbreeding mean potentially disturbs the accurate 
simulation of selfing in other model frameworks. However, the diffusion 
approximation to the coalescent remains robust (Blischak, Barker, & Gutenkunst, 
2020). 

We used SFS and LD and newly proposed summarizing statistics to 
describe the effects of transitions to selfing on pairwise genetic diversity: TL, 
TMTRUE, TMWIN. SFS and LD are classical summarizing statistics used in 
population genetics; they carry information about temporal changes in 
population size and recombination rates (Boitard et al., 2016; Tang et al., 2007). 
The expected SFS can be directly calculated from the demographic history of a 
single population and vice-versa under the assumption of a constant mutation 
rate, which is a robust assumption for population genetics time scales (dos Reis, 
Donoghue, & Yang, 2016; Zuckerkandl & Pauling, 1965). The same is true for the 
LD-decay under a constant recombination rate assumption. However, we are 
interested in transitions from predominant outcrossing to predominant selfing, 
which translates into a severe change in the recombination rate. Thus, the 
assumption of a constant recombination rate through time is not holding. The 
possible confounding of LD-decay through a transition to selfing can be ruled out 
via the joint measure of the SFS. 

TL and TMTRUE are theoretical summarizing statistics because they can 
only be calculated from simulated data. The calculation of these two summarizing 
statistics depends on the exact knowledge of the position of recombination 
breakpoints. To obtain our results, we measured the TMRCA but not the diversity. 
The diversity directly approximates the TMRCA, i. e., molecular clock (dos Reis et 
al., 2016; Ralph et al., 2020; Zuckerkandl & Pauling, 1965). Under high mutation 
rates, the diversity converges to the exact TMRCA. Concludingly, relating effective 
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population recombination rates with effective population mutation rates suffers 

from low 𝜃# 𝜌#⁄ ratios. 
TMWIN was designed to measure the combined effects of selfing on 

pairwise genetic diversity along the sequence. This summarization strategy has 
three advantages: firstly, it captures the distribution of TMRCA (through their 
positive correlation with pairwise diversity levels); secondly, it captures the 
effects of the positional clustering in the genome of segments older than tσ  
(Figure 6, panel C) on the pairwise diversity variance; and finally, it also retains 
some information about the distribution of segment lengths (unlike the matrices 
in Figure 6, panel D, E). The latter is caused by the fact that large segments will 
contribute more to transition to the same state (i.e., the cells on the diagonal of 
TMWIN for very recent times), and short segments will be averaged in the sliding 
window. TMWIN is highly related to the calculated transition matrices in the SMC-
HMM frameworks (Chapter 3); those provide the transition probabilities of 
TMRCAs of a sliding window of size one bp along the sequence. The TMRCAs emit 
then to a mutated or an unmutated site. The emission depends on the mutation 
rate only. For a window of size one, the emission can only have two states. 
However, the underlying hidden states provided a better time resolution, which 
is implicitly provided by the discretization of diversity, which we use to calculate 
TMWIN. 
 In summary, we provided a new way to summarize genetic data to obtain 
a specific signal for changing selfing rates over time. This is a fundamental base 
for developing inference methods to estimate changing recombination or selfing 
rates through time based on whole-genome sequence data. Furthermore, we have 
studied potential complications of simulation models, e. g. the coalescent with 
partial selfing, simulating transitions to selfing. Our findings provide an excellent 
foundation for developing a statistical inference method for estimating breeding 
shifts from outcrossing to selfing. Exploring the phylogeny of plants of such 
transitions will contribute to understanding evolutionary processes shaping plant 
species and populations in the context of the evolution of sexes. 
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Conclusion 

1. Transitions to selfing leave a specific signal in the genetic variation of a 
population through their combined effect on population mutation and 
recombination rate. 

2. We demonstrated how to summarize the temporal effects of such 
transitions using both the classical site-based summarizing statistics in 
population genetics and a novel segment-based summarization of pairwise 
diversity, which enables measuring transitions to selfing. 

3. We investigated the limits of the ‘coalescent with selfing’ and showed that 
it can be used for statistical inference under a broad and biologically 
relevant parameter range. 

Author contributions 

All methods and data shown in this chapter were developed by the author of this 
thesis under the supervision of principal investigator Dr. Stefan Laurent and 
guided by the thesis advisory committee (TAC).  
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Chapter 2 
Identifying and estimating transitions from outcrossing 
to selfing using tsABC  
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Identifying and estimating transitions from outcrossing to selfing 
using tsABC 

Keywords 

Selfing, demographic inference, transition/shift mating systems, ABC 

Introduction 

Technological development progressed in the last decades and provided access to 
large amounts of genetic data. Phased diversity and haplotype information on 
entire chromosomes via NGS became accessible. Thus, whole-genome-diversity-
based and haplotype-based methods gained importance, and inferring the 
recombination history became reachable (Marchi, Schlichta, & Excoffier, 2021). 

Felsenstein published (Felsenstein, 1988) the Felsenstein equation 1988, 
which for the first time provided access to the likelihood of genetic data under all 
possible genealogies. Thus, he introduced the concept of genealogical inference 
(e. g. demographic history) based on an analytical likelihood function. Providing 
likelihoods and not only a single expectancy of parameters marked a change in 
the paradigm of genetic-based demographic inference. Improvements in 
computational performance further allowed integration over complex likelihood 
functions, thus, making inference in complex contexts and scenarios tractable. 
However, for complex models, an analytical likelihood may not be deducible.  

Bayesian statistics provide a framework to overcome the urge to rely on a 
likelihood function. In Bayesian statistics, prior knowledge is implemented into 
calculating posterior likelihoods using a provided likelihood function. The 
Approximate Bayesian Computation (ABC) framework optimizes a posterior 
likelihood function using a vector of simulated summarizing statistics if a 
likelihood function is unknown or intractable or if its calculation is 
computationally over-demanding. ABC has successfully been introduced into 
demographic inference in population genetics and used for demographic 
inference (M. A. Beaumont et al., 2002; Boitard et al., 2016; Wegmann, 
Leuenberger, Neuenschwander, & Excoffier, 2010). 
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In this study, we aimed to develop an inference method to identify and 
estimate transitions to selfing using the ABC framework (tsABC). We used a novel 
summarizing statistic to capture the temporal signature of transitions from 
outcrossing to selfing (Chapter 1) and compared the improvement in accuracy 
compared to using the classical summarizing statistics, SFS, and LD. Finally, we 
infer the transition to selfing of three non-admixed genetic clusters of 
Arabidopsis thaliana. 

Existing estimates for Arabidopsis thaliana 

The timing of the transition to selfing has been estimated in the model species 
Arabidopsis thaliana, reviewed by Tiina M. Mattila, Benjamin Laenen, and Tanja 
Slotte (2020). In Arabidopsis thaliana, Bechsgaard, Castric, Charlesworth, 
Vekemans, and Schierup (2006) used the S-locus's diversity to infer the timing of 
the transition to selfing. Under the assumption of selection on a functional S-
locus, they inferred a transition to selfing having occurred not later than 413,000 
years ago. However, P. Liu, Sherman-Broyles, Nasrallah, and Nasrallah (2007) 
published PUB8 as an S-locus modifier. Thus, loss of SI in Arabidopsis thaliana 
would be a consequence rather than a cause of a transition to selfing and, thus, 
potentially more ancient. In a second approach, Tang et al. (2007) concluded 
from LD patterns that a transition to selfing must have occurred in the magnitude 
of at least 1 Mio years ago. However, selfing was simulated by a 25-fold increase 
of recombination rate backward in time under two demographics: constant or 
exponential growth. These assumptions may not suffice to explain the LD pattern. 
Little deviation in the exact recombination rates may lead to biased estimates of 
transitions. Durvasula et al. (2017) concluded the lower boundary of 500,000 
years based on the distribution of all known S-haplotypes being present in natural 
populations in Afrika. Taken together, the estimations of a transition to selfing 
broadly vary for Arabidopsis thaliana depending on the assumptions and used 
methodology. Mainly, they lack a measure of the direct consequences on the 
genetic structure of a change in selfing rates. 
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Models and Methods  

ABC in population genetics 

Population genetics models often exhibit large nuisance parameter spaces and 
unknown or prohibited likelihood functions. Parameter inference using 
Approximate Bayesian Computation (ABC) is a widely used model-based 
approach in population genetics (Mark A Beaumont, 2010). ABC offers a 
likelihood-function-free approach for parameter inference (M. A. Beaumont et 
al., 2002). In the ABC framework, parameters and summarizing statistics of a 
model are assumed to be random variables that follow a joint probability 
distribution. Summarizing statistics themselves depend on random nuisance 
variables that follow a probability distribution. Thus, they result in a Gaussian 
distribution, resulting in local linearity, which allows for linear regression if the 
tolerance level of accepted parameters is sufficiently tiny, i. e. the similarity 
threshold is small. This method's inherent logic provides the mathematical 
dependence of model parameters given the summary statistics without knowing 
the likelihood function and provides uncertainty information. 

Our developed ABC, tsABC, provides a statistical framework for 1) model 
choice and 2) parameter estimates of a shift-to-selfing model. These two 
functions of the ABC refer to our biological questions of 1) identifying a transition 
to selfing and 2) dating the transition to selfing. Furthermore, we provided a 
complete performance analysis to investigate the accuracy in identifying and 
dating transitions to selfing in this study. Finally, we apply tsABC to data obtained 
from three natural populations of Arabidopsis thaliana. 

Modeling a transition to selfing 

We considered a single population composed of N diploid individuals to model a 
transition from outcrossing to predominant selfing. At each generation, each 
offspring is generated by self-fertilization of a single individual or by outcrossing 

with probabilities 𝜎 and 1 − 𝜎, respectively, where 𝜎 = 1 denotes full selfing and 

𝜎 = 0 denotes pure outcrossing. Transitions to predominant selfing were 

modeled by allowing the selfing rate to change instantaneously from 𝜎567  to 𝜎890" 
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at the time 𝑡#. The mutation and recombination were set to 1 ∙ 10+2 events per 
generation per nucleotide. When needed, the population size was allowed to 
change instantaneously from NANC  to NPRES at tN. Thus, we proposed three models 
in total, two simple models for the performance analysis and one extended model 
to apply tsABC to Arabidopsis thaliana: 1) A single population of constant size 

undergoes a single transition from predominant outcrossing (𝜎 < 0.2) to 

predominant selfing (𝜎 > 0.5), which we refer to as model A; 2) a single 
population undergoes a single change in population size while keeping the selfing 

rate constant to predominant selfing (𝜎 > 0.5), which we refer to as model B; 3) a 
single population undergoes a transition from outcrossing to selfing at a given 
time and, additionally, independently a single change in population size, which 
we refer to as model 3 (Figure 9). 
 We designed model 1 to estimate a transition to selfing in the most concise 
scenario. We proposed a confounding model 2 that potentially explains the 
changed diversity through a transition to selfing via a single change in population 
size while keeping the selfing rate constant to predominant selfing (σ>0.5). 
Model C combines the earlier models, A and B. Thus,  it implicitly allows us to 
estimate the event contributing to a loss of diversity through time being a 
population size change instead of a transition to selfing. Consequentially, model C 
potentially disentangles the transition to selfing from a change in population size. 
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Modeling negative linked selection with forward-in-time WF simulations 

To extend the performance analysis of tsABC to the investigation of its robustness 
to the negative linked selection, we extended the model to simulate PODs. We 
simulated the PODs using a forward-in-time WF model. We applied the 
distribution of fitness effects (DFE)  relying on estimates of Arabidopsis thaliana. 
We created a pseudo genome containing exonic and intronic regions with the 
exact exonic distribution chosen from Arabidopsis thaliana. We used the 
simulation of five independent chromosomes of 1 Mb length mimicking the five 
chromosomes of Arabidopsis thaliana. We used these PODs and repeated the 
model choice and parameter estimates. 

Figure 9. Three population scenarios 
to identify and estimate transitions to 
selfing: (A) Model 1: A single popu-
lation of constant size undergoes a 
transition from predominant out-
crossing to predominant selfing; (B) A 
single population with constant sel-
fing undergoes a single change of 
population. Model B is a confounding 
model to model 1 because it poten-
tially explains reductions in diversity. 
(C) A single population undergoes a 
transition to sel-fing and, additio-
nally, at an independent time point a 
single change in population size 
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Coalescent simulations for the ABC 

Following Nelson, Kelleher, Ragsdale, McVean, and Gravel (2019) who showed 
that continuous-time coalescent simulation of large sequences causes biases in 
identity-by-descent and linkage disequilibrium patterns, we implemented a 
hybrid model in which the first 1,000 generations were simulated using a 
discrete-time coalescent process. We used this model to generate a genetic 
variation for a sample of n = 20 haploid genomes, sampled from 20 different 
individuals and composed of five DNA sequences of one megabase each. The 
same model was also implemented in a coalescent framework using msprime 
(Kelleher, Etheridge, & McVean, 2016). The following generations were modeled 
using the SMC' coalescent algorithm.  The coalescent implementation, which runs 
significantly faster than the forward-WF implementation, was used for the ABC 
simulations and for generating the PODs for the performance analysis (see 
below). 

Identifying a transition to selfing 

In chapter 1, we described two different models to investigate the specific genetic 
signature of a population that changed selfing rates, e. g. a transition from 
predominant outcrossing to predominant selfing. Here, we propose the same two 
demographic models to identify a transition to selfing via an ABC model choice. 
The demographic models include 1) a time-forward transition from predominant 
outcrossing to predominant selfing under constant population size and 2) a time-
forward change from big population size to a small population size under the 
rescaling corresponding to the transition from outcrossing to selfing in the first 
model (Figure 9). To analyze the performance of the ABC to estimate transitions 
to selfing, we use the first model. 

Calculation of the summarizing statistics of genetic diversity 

In Chapter 1, we introduced summarizing statistics to measure transitions to 
selfing. However, both TL and TMTRUE are challenging to infer from empirical 
genetic data. Both require positional knowledge of recombination events.  
Therefore, we additionally introduced TMWIN, a sliding window approach that 
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captures the specific genetic signal of transitions to selfing. To investigate the 
performance of tsABC, we used the following summarization approaches, which 
capture the characteristic genetic signal of transitions to selfing: 1) the site 
frequency spectrum (SFS), which is the distribution of absolute derived allele 
frequencies in the sample and is known to carry information about past 
population size changes (Griffiths & Tavaré, 1998); 2) A discretized distribution 
of linkage disequilibrium (LD) decay inspired from the approach taken by Boitard 
et al. (2016) who used it jointly with the SFS to estimate past changes in 

population sizes. Unlike the SFS, which only carries information about 𝑁 but not 

the recombination rate (𝑟), LD-decay depends on the product of 𝑁 and 𝑟. 

Combining both distributions allows capturing the signature of changes in 𝑁 and 

𝑟. LD was calculated as 𝑟3 from a subset of 10,000 randomly chosen SNPs and 

discretized into discrete physical distances with following breakpoints: 6,105; 
11,379; 21,209; 39,531; 73,680; 137,328; 255,958; 477,066; 889,175 bp. Unlike in  
Boitard et al. (2016) the physical distance cannot be generalized to specific 
parameters in the past demography. That is because the recombination rate is not 
a fixed parameter and has changed at different times in the past. 3) Window-
based transition matrix (TMWIN): While TMTRUE carries a characteristic signal to 
estimate shifts to selfing, it is not straightforward to calculate it using genetic 
variation data. This is because the boundaries of MRCA segments are not directly 
observable and need to be inferred themselves. TMWIN captures some of the 
information in TMTRUE by substituting the segments by non-overlapping 
successive genomic windows of 10,000 bp in samples of size two and substituting 
the TMRCA by the diversity between the two sample sequences. 

Dimensionality reduction 

The dimensionality of our summary statistic TMWIN is up to 400. To overcome 
the curse of dimensionality in our ABC, first, we centralized, normalized and Box-
Cox transformed each calculated statistic to obtain the orthogonal independent 
variation. Then, we applied the partial least squares (PLS) analysis to our data as 
suggested by (Wegmann, Leuenberger, et al. 2010). We chose an appropriate 
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number of PLS components for model selection and parameter estimation 
according to the chosen combination of summary statistics. SFS and LD are 
summarizations of lower dimensions. Thus, e. g. folded SFS and discretized LD 
provided only 17 PLS components. If not stated otherwise, we used the complete 
17 PLS to compare with the 20 PLS components of other summarizations. 

Parameters and Priors 

For the performance analysis, we drew the parameters from uniform or log 
uniform distributions (Table 1). With that, we provide a maximally uninformed 
prior. Thus, all inference on parameters is model immanent.  
 

Table 1. Parameter priors used for the performance analysis of tsABC 

Model Parameter lower upper type 

A N 10,000 200,000.00 logunif 

A SIGMA_PRES 0.5 1.0 uniform 

A SIMGA_ANC 0.0 0.2 uniform 

A T_SIGMA 1,000 500,000 logunif 

B N_ANC 1,000 200,000 logunif 

B N_PRES 1,000 200,000 logunif 

B SIGMA 0.5 1.0 uniform 

B T_N 1,000 500,000 logunif 

 
We aimed to investigate the performance of identifying and estimating 

times of transition.  Thus, the parameters of the PODs were defined for a range 
of different times of transitions (Table 2), but otherwise constant parameters.  
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Table 2. Parameters for PODs 

Model Parameter Value 

A N 40,000 

A SIGMA_PRES 0.99 

A SIMGA_ANC 0.10 

A T_SIGMA t ϵ(0.05, 10) 

 
Similar to the choice of parameters for models A and B in the performance 

analysis of the ABC, we chose the priors for the six-parameter model for 
Arabidopsis thaliana (Table 3). 

 
Table 3. Parameter priors used to estimate the transition 

from outcrossing to selfing in Arabidopsis thaliana 

Parameter lower upper type 

N_PRES 50,000 500,000 logunif 

N_ANC 50,000 1,000,000 logunif 

T_N 10,000 1,000,000 uniform 

SIGMA_PRES 0.5 0.1 uniform 

SIMGA_ANC 0.0 0.2 uniform 

T_SIGMA 10,000 500,000 logunif 

 

Model choice 

The Bayesian framework naturally allows obtaining a posterior density for each 
proposed model. The Bayes factor is simply defined as the ratio of the marginal 
densities of two models. In ABC, we approximate those marginal densities by the 
posterior density. Thus, the Bayes factor  
   

 𝐵5: =
𝑑𝑒𝑛𝑠5(𝑠𝑡𝑎𝑡𝑠;<=)
𝑑𝑒𝑛𝑠:(𝑠𝑡𝑎𝑡𝑠;<=)

 ( 11 ) 
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provides an approximation to the model support given the observed data 
(Leuenberger & Wegmann, 2010; Wegmann et al., 2010). We categorize the 
Bayes factors into negative, barely worth mentioning, substantial, strong, very 
strong, and decisive (Jeffreys, 1998). 

We calculated the Bayes factor for different sets of summarizing statistics. 
We conducted a model choice using a multinomial regression analysis between 
proposed models A and B. The calculations were done using the R package abc 
(Csilléry, François, & Blum, 2012). We accepted 1% of the total number of 
simulations for the model choice. 

Parameter inference 

We tested the performance of parameter inference under model A described in 
the Model selection section to estimate the date of a transition to selfing. We 
conducted the estimation using the R package abc (Csilléry et al., 2012). We 
accepted the closest 1% of the simulations of the transitioning model. For each 
corresponding set of summarizing statistics, we estimated the average posterior 
distribution for the 100 PODs. We show the average quantiles for the following 
credible intervals: 99%, 95%, 90%, 80%, 50%, 25%, 10%, and the median for the 
whole time series. We show the performance for each model parameter using the 
following sets of summary statistics: SFS/LD, TMWIN, and both combined. We 
used a set of 20 PLS components for each but not for SFS/LD because they 
consisted of lower dimensionality. 

Simulations and observation of data 

From 20 individuals, we sampled a single haplotype per individual and five 
independent regions of 1 MB length mimicking five chromosomes. We used the 
complete set of 20 haplotypes for the SFS and LD calculation. TMWIN is based on 
a pairwise comparison of sequences. To calculate TMWIN, we compared all 

possible 20	𝑐ℎ𝑜𝑜𝑠𝑒	2 pairs. Thus, the total pairwise length results in 950 MB. We 

used mutation and recombination rates of 𝜇 = 𝑟 = 10+2.  

For the ABC, we created 100,000 datasets for each model. We used 
corresponding prior parameters for both models (Table 1). We tested the 
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performance of the ABC under the assumption of neutrality. The corresponding 
pseudo-observed datasets (PODs) were created for different transitioning times 
under the transitioning model and otherwise fixed parameters (Table 2). Thus, 
we obtain a time series for the performance analysis. We tested the performance 
for following transitioning times in generations: 1,000; 2,000; 3,000; 4,000; 
5,000; 6,000; 7,000; 8,000; 9,000; 10,000; 12,000; 16,000; 20,000; 30,000; 
40,000; 50,000; 60,000; 70,000; 80,000; 90000; 100,000; 200,000. That 
translates to coalescent time units ranging from 0.05 to 10. For each condition, 
we created 100 independent PODs.  

Simulating negative linked selection and background selection 

Briefly, we simulated the PODs for the background selection (BGS) analysis 
forward-in-time under Wright-Fisher assumptions. We created 100 independent 
burn-ins of 10N generations. Starting from those, we 5-times simulated a time 
series of transitions to explicit selfing under the same parameters as used for the 
neutral PODs. Each set of five simulations was aggregated and summarized into 
a single POD. 

The simulations with negative linked selection were conducted with 
SLiM3. Deleterious mutations are purged and reduce the genetic variation of a 
population at linked sites. The reduction of neutral genetic variation due to 
linkage is referred to as background selection (B. Charlesworth, Morgan, & 
Charlesworth, 1993; Hudson & Kaplan, 1995). We used the distribution of fitness 
effects estimated by DFE for Arabidopsis thaliana provided by Hämälä and Tiffin 
(2020). The distribution was used to assign negative selection coefficients to 
simulated coding non-synonymous genetic variants only (i.e., we did not simulate 
negative selection on functional non-coding regions).  We took care of simulating 
realistic proportions and spatial distributions of coding sequences by using the 
positional information of CDS from the annotation of the reference genome of 
Arabidopsis thaliana (Berardini et al., 2015). Except for the DFEs and genetic 
structure, all other parameters and dataset dimensions were identical to the 
simulations without negative selection. 
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Dating transitions to selfing in Arabidopsis thaliana 

To estimate the transition to selfing for Arabidopsis thaliana, we proposed an 
additional model 3 (Figure 9): A single population undergoes a transition from 
outcrossing to selfing at a given time and, additionally, independently, a single 
change in population size. Again, this model implicitly estimates the event that 
contributed to a loss of diversity through time being a population size change 
instead of a transition to selfing. Thus, we allow disentangling the estimate of a 
transition to selfing from a change in population size. Furthermore, this model 
implements the prior knowledge that Arabidopsis thaliana as a species has 
undergone a relatively recent transition to selfing. 

Similar to the performance analysis, twelve samples for five independent 
loci of 1 MB length were simulated to mimic five chromosomes of Arabidopsis 
thaliana. We simulated under a 6-parameter model (Figure 9, panel C) that 
allowed for two independent changes: 1) a transition from predominant selfing 

(𝜎 > 0.5) to predominant outcrossing (𝜎 < 0.2) and 2) a stepwise change of 

population size. Mutation and recombination rates were set to 6.95 ∙ 10+4 and 

3.6 ∙ 10+2 per bp per generation, respectively (P. Salomé et al., 2012; Weng et al., 
2018). 

To obtain the observed summarizing statistics, we masked for exonic 
regions using the annotation published in TAIR10 (Berardini et al., 2015). The 
regions were chosen based on homogeneity of recombination rates and diversity 
(Weng et al., 2018). Our estimates using tsABC were based on three independent 
sample sets; we chose the samples from the CEU, IBnr, and Relicts that belonged 

at least to 95% to their assigned genetic cluster (Alonso-Blanco et al., 2016). 
To estimate the time of the transition to selfing, the model parameters 

were estimated as described for the ABC performance analysis. We used 20-PLS 
of the combined summary statistics of SFS/LD and TMWIN (see above). 

Implementation and software 

Except for BGS, we simulated the genetic data using the coalescent implemented 
in msprime version 0.7.4 (Kelleher, Etheridge et al. 2016). We simulated the most 
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recent 1,000 generations under the discrete-time-Wright-Fisher model to avoid 
biases in IBD and the following times under the SMC' model. We used the 
rescaled coalescent-with-partial-selfing (M. Nordborg & Donnelly, 1997) to 
simulate transitions to selfing for a recent selfing past. Backward in time, our 
simulations underwent a transition to outcrossing. 

For the BGS-simulations, we wrote a forward-in-time simulator using 
SLiM version 3.6 (Benjamin C. Haller, Galloway, Kelleher, Messer, & Ralph, 
2019; Benjamin C Haller & Messer, 2019). We forbid accidental selfing. We used 
the tree-sequence-recording option. A few lineages have not coalesced after the 
simulation. Thus, we recapitated the obtained tree-sequences from the pyslim-
package version 0.6, which utilizes msprime(Kelleher et al., 2016). 

We implemented the entire pipeline into Snakemake 5.13. We have run all 
simulations on the high-performance cluster HPC of the MPIPZ. 

Results 

We developed tsABC, an approximate Bayesian computation (ABC) method, to 
estimate population size and selfing rate changes jointly. ABC is a computational 
approach to estimating posterior probabilities for models and parameters. ABC 
is well suited for demographic modeling in population genetics because models 
often have many parameters and no analytically derived or tractable likelihood 
function (M. A. Beaumont et al., 2002; Csillery, Blum, Gaggiotti, & Francois, 
2010). Two advantages of the ABC method allow comparing competing 
demographic hypotheses based on the Bayes factor. Second, it does not require 
bootstrapping the data to generate measures of uncertainty for the inferred 
parameters. A critical aspect of ABC is that it requires a careful summarization of 
the genomic data into a set of summary statistics that carry information about the 
parameters of interest (M. A. Beaumont et al., 2002). In the case of a transition 
to selfing, we require that such summary statistics be informative about 
coalescence and recombination rates to make changes in selfing rates and 
population size distinguishable by the ABC model choice (Figure 10, panel A, 
B). Unfortunately, while the lengths of MRCA segments are straightforward to 
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calculate on simulated genealogies, it is more difficult to estimate them based on 
genomic diversity data alone. We calculated the number of differences for pairs 
of sampled chromosomes using non-overlapping genomic windows of 10kb. We 
constructed a transition matrix for pairwise diversity, a summarization we refer 
to as TMWIN (Figure 7). This summarization strategy has three advantages: 
firstly, it captures the distribution of TMRCA (through their positive correlation 
with pairwise diversity levels); secondly, it captures the positional clustering in 

the genome of fragments older than 𝑡#; and finally, it also retains some 
information about the distribution of segment lengths (Figure 7). The latter is 
because large segments will contribute more to transition to the same state (i.e., 
the cells on the diagonal of TMWIN. For comparison, we also considered the 
canonical site-based summarization, the combined site frequency spectrum 
(SFS), and a discretized distribution of the decay in linkage disequilibrium (LD), 
as these carry information about temporal changes in population size and selfing 
rates (see Chapter 1). We, therefore, evaluated the efficiency of three sets of 
summary statistics: SFS/LD, TMWIN, and SFS/LD/ TMWIN (see methods). 

Identifying transitions to selfing 

Transitions to selfing result in a reduction of diversity. To test whether tsABC 
identifies transitions to selfing against a model of population census reduction, 
we conducted a model choice experiment using two competing models (Figure 
10, panel A, B): We simulated datasets under model 1 and evaluated the ability of 
tsABC to identify the correct model for transitions of varying ages, using different 
sets of summary statistics to summarize the genetic data. 
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Figure 10. ABC model choice and parameter estimate performance analysis. (A) Demographic 
model 1 in the model choice analysis: one population with a single transition from predominant 
selfing to predominant outcrossing (B) Demographic model 2 in the model choice analysis: one 
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population with constant selfing and a single change in population size. (A, B) The parameters of 
interest are the population sizes (𝑁234$, 𝑁567), the selfing rates (𝜎567 , 𝜎234$), and the time of 
change in selfing rate and population size (𝑡', 𝑡6). Model 2, a potential confounding model, 
captures the signal of the rescaled diversity by a transition to selfing, but not the joint rescaling 
of the recombination rate. (C-E) Performance of the ABC model choice method using three 
different summarizations of data. C: Combining site frequency spectrum (SFS) and linkage 
disequilibrium (LD). (D) Window-based transition matrix (TMWIN).  E: The combination out of 
SFS, LD, and TMWIN. The x-axis represents the range of used 𝑡' values; the y-axis indicates the 
proportion (out of 100 trials) that the ABC correctly identified the transition-to-selfing model 
among the two models presented in (A). (F-H): Parameter estimation accuracy for the age of a 
transition to selfing (100 simulated datasets) under a model with constant population size (𝑁 =
	40,000) and a change in selfing rate from 𝜎567 = 0.1 to 𝜎234$ = 0.99. Colored lines represent 
the average interpercentile ranges for 100 posterior distributions corresponding. 𝑡'-axes are 
scaled in 𝑙𝑜𝑔(). 

We approximated and compared the posterior densities of the transition to 
selfing model with constant population size to model 2, which implements a 
population undergoing a change in population size but is constant in selfing. We 
calculated the Bayes' factors using multinomial logistic regression and the 
marginal densities of model 1 (transition to selfing) against the marginal densities 
of model 2 (change in population size). The results depict the proportion of the 
correct model estimations (Figure 10, panel C-E). Depending on our 
summarizing statistics, our results indicate that we can precisely detect 
transitions to selfing for times up to 2.5 Ne generations in the past. 

Dating transitions to selfing 

We evaluated the accuracy of our method for estimating the age of a transition to 

selfing (𝑡#). We simulated 100 datasets under model 1 (Figure 10, panel A) with 
values of tσ ranging from 1,000 to 200,000 generations and used tsABC to re-

estimate posterior distributions for 𝑡# and the other model parameters (Figure 
10, panel F-H, Figure 11). 
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Figure 11. ABC performance analysis: Parameter re-estimation of the three remaining parameters 
of the model described in Figure 10. (A-C) Re-estimation of the population size on 100 datasets 
simulated under a model with constant population size (𝑁	 = 	40,000) and a change in selfing 
rate from 𝜎567 = 0.1 to 𝜎234$ = 0.99. Colored lines represent the average quantiles for 
100 posterior distributions corresponding to the given credible intervals. (D-F) Re-estimation of 
the present selfing rate on 100 datasets simulated under a model with constant population size 
(𝑁	 = 	40,000) and a change in selfing rate from 𝜎567 = 0.1 to 𝜎234$ = 0.99. Colored lines 
represent the average quantiles for 100 posterior distributions corresponding to the given credible 
intervals. (G-I) Re-estimation of the ancestral selfing rate on 100 datasets simulated under a model 
with constant population size (𝑁	 = 	40,000) and a change in selfing rate from 𝜎567 = 0.1 to 
𝜎234$ = 0.99. Colored lines represent the average interpercentile ranges for 100 posterior 
distributions corresponding. Except for the selfing rates, both axes are scaled in 𝑙𝑜𝑔(). 
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Our estimates were obtained using the same three summarization strategies used 
for the model choice (SFS/LD, TMWIN, SFS/LD/ TMWIN). The age of a shift to 
selfing could be well estimated using the TMWIN approach, while the SFS/LD 

approach over-estimated 𝑡# almost over the complete range of values (Figure 
10, panel F-H). Combining SFS, LD, and TMWIN does not further improve the 
accuracy of the estimations (Figure 10, panel H). We note that the parameters 

𝑁 and 𝜎890" (i.e., the population size and the current selfing rate) are better 
estimated with TMWIN than with SFS/LD, except for transitions younger than 

10> generations ago where 𝜎890" is slightly better estimated with SFS/LD 
(Figure 14, panel D). However, no summary statistics set could estimate the 
ancestral selfing rate (Figure 11, panel G-I). 

Importance of the ratio between mutation and recombination rate 

The performance of the model choice experiment depends on the specificity of 
the observed signal, i. e. summarizing statistics, to distinguish between a change 
in population size and a transition to selfing. The specificity of the signal depends 
on the detection of MRCA segments (Chapter 1). The SNP density limits the 
detection of such segments. Thus, to investigate potential information horizon 

exceedings, we repeated the model choice experiment with an increased 𝑟 𝜇⁄  ratio 

(𝑟 𝜇⁄ = 5). 

For 𝑟 𝜇⁄ = 1, we maintain consistently high performance in the model 
choice. However, the power to select the correct model and, thus, the specificity 

of the observed signal is more uncertain for increased ratios, e. g. here 𝑟 𝜇⁄ = 5 
(Figure 12). Model choice using SFS/LD remains somewhat robust in recent 
times. TMWIN based model choice is significantly weaker for the entire 
investigated time range. However, the model choice experiment performs best 
when combining SFS/LD and TMWIN. For PODs created with negative linked 
selection, the performance of model selection is further decreased. 
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Figure 12. Model choice experiment for different rho-theta-ratios and negative linked selection. 
The performance analysis for the different conditions was conducted the same way, as shown in 
Figure 10. (A-C) Model choice performance for increased recombination on otherwise same 
parameters. (D-F) Model choice performance under the same parameters as Figure 10, but PODs 
were simulated under negative linked selection.	𝑡'-axes are scaled in 𝑙𝑜𝑔(). 

Robustness of tsABC to negative linked selection in parameter estimation 

Background selection (BGS) refers to the effect of deleterious alleles on linked 
neutral diversity (Charlesworth, et al. 1993; Irwin, et al. 2016).  Recently, several 
studies highlighted that neglecting the effect of BGS in demographic analyses can 
lead to statistical biases and potential miss-identification of population size 
changes (Ewing & Jensen, 2016; Johri et al., 2021; Pouyet, Aeschbacher, Thiéry, 
& Excoffier, 2018; Schrider, Shanku, & Kern, 2016). Because transitions to selfing 
substantially reduce the recombination rate (up to two orders of magnitude for 
transitions to predominant selfing), a corresponding increase of linkage between 
deleterious and neutral alleles is expected. Selfing indeed drastically magnifies 
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the effect of BGS (Kamran-Disfani & Agrawal, 2014). Because tsABC ignores the 
effect of selection, we evaluated the performance when applied to data simulated 
under a model with both a transition to selfing and background selection. We 
used SLiM3 (Benjamin C. Haller et al., 2019; Benjamin C Haller & Messer, 2019) 
to simulate genomic data with a similar distribution of exonic sequences as in the 
model species Arabidopsis thaliana and modeled negative selection on exonic 
sequences according to the distribution of fitness effects (DFE) for Arabidopsis 
thaliana published by Hämälä and Tiffin (2020). The tsABC estimates remained 
accurate for estimates using the summarization of unmasked genetic variation 
(Figure 13, Figure 14). However, identifying a transition to selfing in the model 
choice experiment is less accurate (Figure 12, panel G-I). These results suggest 
that parameter estimates of tsABC are generally robust to the effect of negative 
selection on linked neutral sites, even in compact genomes such as the one of 
Arabidopsis thaliana. 
 

 
Figure 13. Accuracy of tsABC in the presence of background selection (BGS): Inference of times 
of transition from outcrossing (𝜎 = 0.1) to predominant-selfing (𝜎 = 0.99) using tsABC using 
(A) SFS/LD, (B) TMWIN or (C) both. Simulations were done under constant population size and 
negative selection acting on exonic sequences. The spatial distribution of exonic sequences was 
fixed and taken from the annotation of Arabidopsis thaliana. The negative selection was modeled 
using a distribution of fitness effects (see methods). The result should be compared with the case 
without linked negative selection in Figure 10 (panel F-H). Colored lines represent the 
interpercentile ranges quantiles for 100 posterior distributions obtained with tsABC. Both axes 
are scaled in 𝑙𝑜𝑔(). 
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Figure 14. ABC performance analysis under negative linked selection: Parameter re-estimation 
of the three remaining parameters of the model described in Figure 10. (A-C) Re-estimation of 
the population size on 100 datasets simulated under a model with constant population size (𝑁	 =
	40,000) and a change in selfing rate from 𝜎567 = 0.1 to 𝜎234$ = 0.99. Colored lines represent 
the average quantiles for 100 posterior distributions corresponding to the given credible intervals. 
(D-F) Re-estimation of the present selfing rate on 100 datasets simulated under a model with 
constant population size (𝑁	 = 	40,000) and a change in selfing rate from 𝜎567 = 0.1 to 𝜎234$ =
0.99. Colored lines represent the average quantiles for 100 posterior distributions corresponding 
to the given credible intervals. (G-I) Re-estimation of the ancestral selfing rate on 100 datasets 
simulated under a model with constant population size (𝑁	 = 	40,000) and a change in selfing 
rate from 𝜎567 = 0.1 to 𝜎234$ = 0.99. Colored lines represent the average interpercentile ranges 
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for 100 posterior distributions corresponding to the given credible intervals. Except for the selfing 
rates, both axes are scaled in 𝑙𝑜𝑔(). 

Application of tsABC to Arabidopsis thaliana  

To date the transition to selfing in Arabidopsis thaliana, we used carefully chosen 
regions of 1 MB per chromosome to obtain the summarizing statistics. We 
assured these regions to be in the non-pericentromeric region (Underwood et al., 
2018) towards regions of lower diversity to avoid potential biases through 
associative overdominance in the low recombining regions in the pericentromer 
(Gilbert, Pouyet, Excoffier, & Peischl, 2020). Further, we calculated the 
summarizing statistics, SFS, LD, and TMWIN, as described in Chapter 1. We 
estimated transitions to selfing in Arabidopsis thaliana with tsABC under the six-

parameter model (Figure 9, panel C) in the range from 592,321 to 756,976  

(Figure 15, panel A; Table 4). 
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Figure 15. Inference of the time of transition from outcrossing to selfing in Arabidopsis thaliana 
using tsABC: A: Inferred transitions from outcrossing to selfing for three independent genetic 
clusters of Arabidopsis thaliana from the 1001 genomes project (CEU, Ibnr, Relicts).  (B) Co-
estimated population sizes over time with a single population change. Except for the selfing rates, 
both axes are scaled in 𝑙𝑜𝑔(). 

Our estimates are older than the one proposed by Bechsgaard et al. (2006) but 
younger than the age proposed by Tang et al. (2007). Our estimates of transition 
to selfing are robust to the geographical origin of the population samples (Iberian 
non-relicts, Iberian relicts or central European) and range from 592,321 years 
(CEU) to 756,976 years (IBnr) ago (Figure 15, panel A; Table 4). 
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Table 4. Estimated times of transitions from predominant outcrossing to predominant selfing in 
Arabidopsis thaliana. The demography was estimated for three non-admixed genetic clusters 
(genetic assignment  > 	95%) of the 1001 genomes project. tsABC estimated the time of a 
transition from predominant outcrossing to predominant selfing on the entire sample set (nCEU=99, 
nIBnr=66, nRelicts=18). To obtain the summarizing statistics, repeatedly 12 random samples were 
chosen. The 95% interquartile range CI provides the uncertainty measure on the approximated 
likelihood function. 

Method Population Mode 95%-IPR 

tsABC CEU 707,995 443,485 973,841 

tsABC IBnr 756,976 397,048 988,708 

tsABC Relicts 592,321 386,405 934,499 

 

Discussion 

In this study, we developed an inference method to identify and estimate 
transitions to selfing using the ABC framework (tsABC). To date, no method was 
published to identify and estimate such shifts in reproductive systems using the 
consequences of such shifts on the genome-wide genetic diversity. Additionally, 
tsABC jointly estimates the demography. We demonstrated how to use a novel 
summarizing statistic to capture the temporal signature of transitions from 
outcrossing to selfing. We provided a complete performance analysis to 
investigate the power of tsABC to identify transitions to selfing and show biases 
and precision in estimating the time of a transition from outcrossing to selfing in 
a single population. Finally, we estimated the transition to selfing in three 
independent genetic clusters of Arabidopsis thaliana. 

Shifts in mating systems are considered a critical evolutionary and 
ecological process. Timing is a key feature of the transition to selfing (D. 
Charlesworth & Vekemans, 2005; T. M. Mattila, B. Laenen, & T. Slotte, 2020). 
Existing hypotheses consider predominant selfing an evolutionary dead-end, 
reviewed by Igic and Busch (2013). By developing tsABC, we provide a method to 
use genome-wide genetic haplotype variation to date transitions to selfing and, 
thus, contributing to the evidence for (or against) the existing evolutionary 
hypothesis of such reproductive shifts. 
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Using SFS and LD theoretically provides information to relate theta and 
rho to each other. Thus, their joint measure contains specific information to 
measure transitions to selfing. However, using tsABC, we demonstrated the 
specificity of that signal being informative only for recent times. Furthermore, 
although identifying transitions to selfing, SFS/LD alone is not sufficient to infer 
the correct demographic parameters. Adding the information on past 
demographic events using TMWIN not only provides unbiased parameter 
inference for recent times but also extends the correct identification to 
intermediate time ranges (Figure 10, panel C-E). 

Estimating the correct model parameters exceeds the time range of a 
robust model choice, i. e., correct identification of a transition to selfing, by more 
than a magnitude (Figure 10, panel F-G). Correctly estimating the model 
parameters holds for the whole set of parameters. It indicates the potential 
performance improvement of tsABC in the model choice to a similar extent if 

including prior information and restricting the model parameters to fit 𝜗-, i. e., 
the temporal population effective diversity. Thus, we enable tsABC to implement 
solely the differences in the genetic structure caused by the rescaled 
recombination by selfing, but not our assumptions on the demographic history, 
e. g., the increase of a prior range of a model by factor two potentially halves the 
marginal probability density of that model. 

Classically, population genetics time scales are measured in units of 
effective population size. The coalescent theory provides mathematical support 
that the expected (mean) coalescent time of two lineages is 1 scaled in coalescent 
time; see e. g. (Wakeley, 2009). However, the variance is as significant. 
Effectively the TMRCA converges to 2 for large sample sizes. Thus, the theoretical 
absolute information horizon is given by the limit of the TMRCA = 2. Effectively, 
the information horizon is determined by the SNP density on MRCA segments 
and their age. 

Our study demonstrated that tsABC correctly identifies transitions to 

selfing for times up to 2.5	𝑁? (𝑁? = 𝑁# = 20,200; Figure 10, panel E). Dating the 

transition to selfing is robust for the tested time range from present to 200,000 
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past generations. However, transitions to selfing reduce diversity; thus, the 
average of the effective population size exceeds the effective population size at 
present. Thus, tsABC is valid to estimate recent transitions to selfing, but not 
more ancestral transitions to selfing. The current hypothesis states that selfing is 
an evolutionary dead-end (Igic & Busch, 2013; G. L. Stebbins, 1957; G Ledyard 
Stebbins, 1974; S. I. Wright et al., 2013), but selfing is an ESS (J Maynard Smith, 
1971; John Maynard Smith & Maynard-Smith, 1978), i. e. a selfer largely 
outcompetes any outcrosser of the same population throughout the plant 
phylogeny. Thus, tsABC will help to investigate the abundance of recent 
transitions to selfing throughout the plant phylogeny. 

We demonstrated robustly high accuracy in the model choice experiment 

for low rho/theta ratios, e. g. if 𝑟 𝜇⁄ = 1. However, the performance for model 
choice decreased in more recent times by almost one magnitude (Figure 12) for 

higher 𝑟 𝜇⁄  ratios (here, 𝑟 𝜇⁄ = 5) . The SNP density per MRCA segment marks a 
limiting factor in identifying such segments: SNPs approximate the TMRCA of 
MRCA segments and are the only source to provide information about the 
underlying genealogy. Thus, the model must be designed carefully under 
reasonable assumptions. Note, the implementation of prior knowledge, e. g. 
ecologist providing evidence that a population has undergone a transition to 
selfing and information on effective population sizes over time would 
significantly improve identifying transitions to selfing and suggest the better 
performance of maximum-likelihood methods that co-estimate the demography. 

We jointly dated the transition to selfing combined with the demography 
inference for the first time. The agreement between our estimations for the 
transition to selfing in Arabidopsis thaliana between the two used methods is 
remarkable. We estimated the transitions to selfing older than previously 
published estimates (Bechsgaard et al., 2006). However, S-locus-based 
inferences of shifts to selfing are not only data limitid because of the restricted 
size of the S-locus, but also to species for which a loss-of-function mutation in the 
S-locus has caused such transitions. Additionally, the S-locus had to be identified 
and correctly assembled. This information is only partially available for other 
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species, and the genetic determinism of selfing also varies between genera 
(Franklin-Tong, 2008). Our only limitation lies in the restrains of the coalescent 
with partial selfing model (M. Nordborg, 1997, 2000; M. Nordborg & Donnelly, 
1997). However, tsABC can easily be extended to models which require further 
modifications to any required complexity, e. g., other reproductive modes, 
tetraploidization, complex demography, and stepwise transitions to selfing. 

In summary, with the developed tsABC, we provided a novel method to 
estimate transitions to selfing to apply to whole-genome diversity observable 
from natural populations. We analyzed its potential biases and precision under 
neutral and non-neutral scenarios. We demonstrated the robustness and 
precision of tsABC if the models were designed carefully for recent and 
intermediate time ranges. We consistently dated the transition to selfing of 
Arabidopsis thaliana using three distinct genetic clusters as proof of principle. 
Thus, we enable exploring the phylogeny of plants for transitions to selfing to 
contribute to the understanding of evolutionary processes shaping plant species 
and populations in the context of the evolution of sexes. 

Conclusion 

1. tsABC identifies transitions to selfing, given that they occurred more 

recently than 2.5	𝑁? generations. 
2. Our performance analysis indicates potential for improvement in the 

model choice by including prior information about past effective 

population sizes and restricting the model parameters to fit 𝜗- (the past 
pairwise genetic diversity under given past effective population sizes). 

3. Estimates on three independent genetic clusters of Arabidopsis thaliana 
are slightly older than previously published estimates and dated the 
transition to selfing to a range between 592,321 years and 756,976 years 
ago. 

4. The use of tsABC will contribute to the phylogenetic exploration and 
identification of recent transitions to selfing to elaborate on existing 
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hypotheses on the evolution of mating systems, e. g. the dead-end 
hypothesis of selfing species. 

Author contributions 

All methods and data shown in this chapter were developed by the author of this 
thesis under the supervision of principal investigator Dr. Stefan Laurent and 
guided by the thesis advisory committee (TAC). 
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Chapter 3 
Inferring demography and piecewise-constant selfing 
using teSMC  
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Inferring demography and piecewise-constant selfing using 
teSMC 

Keywords 

SMC, demographic inference, piecewise-constant selfing, population genetics 

Introduction 

Since the technological development of the last decades provided access to large 
amounts of genetic data, haplotype information on entire chromosomes via NGS 
data has become accessible (Marchi et al., 2021). The introduction of the 
sequentially Markovian coalescent (SMC) provided the statistical framework to 
analytically describe the genealogy of a pair (or more) samples along the 
sequence. The genealogy (TMRCA for a sample of size two) emits diversity (e. g. 
SNPs). Thus, the SMC is a model for relating parameters of genealogy to an 
observable statistic. Using hidden Markov models (HMM), the likelihood of 
proposed genealogical models can be optimized (Baum, Petrie, Soules, & Weiss, 
1970). Recombination events in between sites may cause differences in the 
genealogies for the genealogical history older than the recombination event. The 
SMC describes the current site's genealogy as dependent on the previous site's 
genealogy and the probability of a recombination event occurring (recombination 
rate) between these two sites. Thus, the SMC approximates the Ancestral 
Recombination graph providing information about past demographical 
processes.  

The description of a sequence of states (e. g. genealogies) along a sequence 
is a well-known paradigm in mathematics. It has been addressed and described 
as the Markov model. Hidden Markov models (HMM) describe the sequence of 
observed states (e. g. diversity) depending on underlying hidden states, which 
emit to the observable states. In the case of a sample of size two, the genealogy is 
described via the coalescent time (TMRCA). The probability of a mutation having 
occurred then depends on the TMRCA. Assembling the SMC and the HMM leads to 
the description of TMRCA along the sequence, which emits an observable diversity. 
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Baum et al. (1970) introduced an algorithm (Baum-Welch) to optimize the 
likelihood of a Markov model given a set of observed sequences. Li and Durbin 
(2011) firstly formalized an SMC-HMM model for pairwise samples to infer an 
optimized piecewise-constant past population size, known as the pairwise 
sequentially Markovian coalescent (PSMC). Schiffels and Durbin (2014) 
extended the PSMC framework to multiple samples, the multiple sequentially 
Markovian coalescent (MSMC), using the SMC-prime approximation to the full 
coalescence model to optimize its composite likelihood given the first coalescent 
event for the provided sample set. 

Moreover, they extended the PSMC framework to optimize the likelihood 
of the model using all possible pairs of a given sample set (MSMC2), calling its 
application to a sample of size two PSMC' (pronounce "P – S – M – C – prime"). 
Recently, the SMC-HMM framework was extended to include other properties of 
the marginal genealogies of multiple samples, e. g. the TMRCA and the entire length 
of the genealogy (Upadhya & Steinrücken, 2021). 

Previously, Sellinger et al. (2020) extended the PSMC' to eSMC infer 
constant seed bank or selfing rates. In this way, they included the estimation of 
ecological parameters into an SMC-HMM for the first time. Under seed bank or 
selfing, both, the discrepancy between census and effective population size leads 

towards the expected 𝜗 𝜌⁄ ≠ 𝜇 𝑟⁄ . The underlying model of eSMC uses the 

deviation between the ratios 𝜗 𝜌⁄  and 𝜇 𝑟⁄  to infer either seed bank or selfing rates 
(e. g., equation 6). Their model assumes both rates to be constant and show that 
the demographic inference is strongly biased if constant seed bank is not 
considered but less severe biased if constant selfing is not considered. 

In this study, we collaborated with Thibaut Sellinger and Aurelien Tellier 
to introduce and test an inference method to estimate piecewise constant selfing 
rates and population sizes using the SMC-HMM approach (teSMC). Further, we 
tested the accuracy and performance to estimate transitions from predominant 
outcrossing to predominant selfing using simulations. Finally, we inferred the 
transition to selfing of three non-admixed genetic clusters of Arabidopsis 
thaliana. 
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Models and Methods 

Genomes or chromosomes evolve in a temporal process generation by generation, 
including mutation and recombination during reproduction. Comparing genetic 
sequences reveals differences, i. e., mutated sites or SNPs. Segments of this 
comparison that share the same genealogical history are separated by 
recombination events, leading to differences in the TMRCA or topology of a 
genealogy. However, for a sample of size two, only the TMRCA determines the 
genealogy since only a single possible topology for a genealogy exists, i. e., two 
lineages coalescing at the time TMRCA. 

The sequentially Markovian coalescent is a model enabling simulating 
genealogies and diversity along the sequence. The mutational process is 
described as a Poisson process overlaid on a simulated genealogical tree in the 
coalescent framework. Mutations accumulate over time, generally approximated 
and described as a constant rate (dos Reis et al., 2016; Zuckerkandl & Pauling, 
1965) per generation and base pair. Whether a site mutates depends on the 
stochasticity of the mutational process. Thus, older TMRCA tend to contain more 
SNPs than segments with younger TMRCA. Consequently, diversity is a statistical 
measure for TMRCA. Taken together, that enables the development of an HMM 
using the SMC. 

Hidden Markov models in the coalescent framework 

A conceptual description of the HMM used in teSMC is schematically depicted in 
Figure 16. An HMM itself is a model consisting of five parameters: 1) The set of 
hidden states, 2) a set of observable states, which sometimes is referred to as a 
signal, and 3) a transition probability matrix describing the probability of one 
hidden state to the next, 4) an emission probability matrix describing the 
probability of observing each signal given each hidden state, and 5) the initial 
probability, which provides the probability distribution at the first position of the 
sequence. In the SMC’-HMM for a sample of size two, we translate this into 1) the 
discretized TMRCA, 2) the number of SNPs at a position, 3) a transition probability 
matrix describing the transition of any of the discrete TMRCAs to any of the discrete 
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TMRCAs, 4) an emission probability matrix describing the probability to observe 
an SNP dependent on the TMRCA and 5) the stationary distribution of the SMC' 
under the proposed demographic parameters (e. g. constant population size and 
constant selfing at the beginning before the optimization), respectively. 
 To discretize the hidden state, we usually use an approximately equidistant 
log-spaced time distribution to provide an equally distributed information 
content per hidden state under all constant assumptions. There are only two 
observable states for a sample size two, as we observe either an SNP or none. The 
emission probability depends on the TMRCA; it is intuitive to understand that large 
TMRCAs have a higher probability of emitting a SNP and vice versa. It is 
straightforward to implement missing data here. To include missing data in our 
analysis, we expand our set of observables with another element that every 
hidden state emits equal probability. The initial probability must be defined. We 
usually use the stationary probability distribution, i. e. the equilibrium 
distribution, which can be calculated. 
 The HMM was designed to solve three basic problems: 1) What is the 
probability that the model generated the observations? 2) What is the most likely 
sequence of states under the proposed model? 3) How do we need to adjust the 
model parameters (the initial probabilities, transition probability matrix, and the 
emission probability matrix) to maximize the likelihood that the HMM produced 
the sequence of observables, e. g. a sequence of homozygous and heterozygous 
(SNP) sites. The algorithms to solve these problems are well described. teSMC 
generally uses a modified Baum-Welch algorithm (BW) and optimizes the 
composite likelihood of the model only based on the transition probabilities. 
Optimizing the HMM parameters on the full likelihood (answer to problem 1) did 
not increase the performance (data not shown). The answer to the second 
problem can be calculated using the Viterbi algorithm. It allows us to infer the 
positions at which recombination has occurred. However, the likelihood of a state 
sequence depends highly on the proposed model and may not be informative 
under constant population size and selfing assumptions to obtain MRCA 
segments. 
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Figure 16. The sequentially Markovian coalescent process for a sample of size two considers 
recombination events of three different types in the SMC' algorithm and the PSMC’-based 
demographic inference methods. Recombination events potentially cause changes to the 
genealogy of a sample of size two. (A) The TMRCA increases if the recombining lineage re-
coalesces at a time older than the TMRCA of the current MRCA, (B) it remains the same if the 
lineage re-coalesces to itself before the TMRCA of the current MRCA, or (C) it decreases if the 
lineage re-coalesces to any other lineage but itself before the TMRCA of the current MRCA. The 
probability of recombining between two loci depends on the integrated recombination rate over 
time on the genealogy of the current locus. The probability of coalescing follows the assumed 
coalescent framework.  

SMC-HMM 

In the SMC-based methods, the waiting time until the next recombination 
breakpoint along the sequence is dependent on the length of the coalescent tree 
and the recombination rate. The lineage on which the recombination event 
occurred will be simulated backward-in-time to coalesce with the remaining 
lineages, but not itself (McVean & Cardin, 2005) or including itself (Marjoram & 
Wall, 2006). The probability of a recombination event occurring between two 
sites depends on the integrated recombination rate over the genealogy, e. g. the 
coalescent tree of the previous site. Variable recombination rates per time 
window weighting the total probability of a recombination event enable the 
implementation of a rescaled SMC, thus selfing. Selfing rescales both the effective 
recombination and coalescent rates (see Chapter 1). Thus, the parametrization of 
a population model with piecewise-constant population size and piecewise-
constant selfing rates enables the inference of transitions from predominant 



 
 

73 

outcrossing to predominant selfing. An expected piecewise-constant 
recombination rate affects the transition probabilities of TMRCAs along the 
sequence. In contrast, the expected piecewise-constant population size will 
rescale the coalescent times, i. e. the TMRCA, and thus the emission probabilities 
of SNPs (Figure 16). 

Modifications of eSMC to infer changing selfing rates 

Here, we extended eSMC (Sellinger et al., 2020) into teSMC, allowing the 
estimation of varying selfing or recombination rates through time, jointly with 
varying population sizes. To achieve that, teSMC no longer assumes the ages of 
recombination events to follow a uniform distribution along the genealogical 
branches representing the recombining lineage (Li & Durbin, 2011; Schiffels & 
Durbin, 2014); but rather let them be a function of the selfing and recombination 
rate at each piecewise-constant time frame, i. e. hidden state. This enables teSMC 
to jointly infer piecewise constant selfing or recombination rates and population 
sizes by maximizing the approximated likelihood for the proposed parameter 

functions, e. g. 𝜎(𝑡) or 𝑟(𝑡) and 𝑁(𝑡) with 𝜎, 𝑟, and 𝑁 being functions of time.  
In teSMC, the parameter space increased on the magnitude of the number 

of hidden states compared to eSMC. SNPs are a sparse information source; 
however, they are the only observable source to optimize an inferred 
demography. Thus, the optimization process potentially benefits from prior 
knowledge to help the parametrization of the inference model. To account for 
prior knowledge, two modes are implemented for parameter inference: the free 
mode, in which each hidden state has its independent selfing rate, and the single-
transition mode in which teSMC estimates only three parameters: the current and 
ancestral rates, and the transition time between both rates; this marks a 
constraint significantly reducing the number of inferred parameters and well 
suited for the analysis of recent and sudden shifts from outcrossing to 
predominant self-fertilization. Details about the calculation of the HMM 
underlying teSMC can be obtained in the appendix (Description of teSMC). 
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Simulations and inference 

We used the same simulation and population models as in Chapter 1 for the 
performance analysis of tsABC. Briefly, we simulated transitions to selfing under 
the same parameters as we used for the PODs (Table 2). We inferred the 
population sizes and selfing rates through time on ten pairwise comparisons 
using teSMC. 

Results 

Briefly, we repeated the performance analysis of chapter 2 but using teSMC. We 
showed the theoretical convergence of teSMC, the accuracy of dating transitions 
to selfing, and its robustness to negative linked selection. Unfortunately, the 
differences in the theoretical model design and parametrization of the 
demographic models complicate the comparison of the two methods. 

Theoretical convergence 

First, to demonstrate the theoretical accuracy of our model and inference method, 
we analyze its performance when sequences of TMRCA are given as input instead 
of sequence data. This is termed the best-case convergence of teSMC (Sellinger, 

Abu-Awad, & Tellier, 2021). We simulate data from a population undergoing a 
substantial bottleneck and simultaneously a transition to selfing or change in 
recombination rate. We consider such demography complex and difficult to infer. 
Thus, we obtain a theoretical information horizon of the underlying genealogy 

independent of the 𝜌 𝜃⁄  ratio (see Chapter 2) as branch length-based measures of 
genealogical trees converge to site-based measures for high recombination rates 
(Ralph et al., 2020). In both cases, the population size and the past 
selfing/recombination values are recovered with high accuracy (Figure 17). 
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Figure 17. Theoretical convergence of teSMC under complex demography. Best-case 
convergence of teSMC using ten sequences (i.e., haploid genomes) of 100 Mb (green) when the 
population undergoes a bottleneck (true sizes are indicated in black) with either variation of 
selfing in time (A, C) or variation of recombination rate in time (B, D). The selfing rate through 
time is represented in A), and the corresponding estimated population size is represented in C), 
the estimated recombination rate through time (B), and the corresponding population size in D). 
The recombination rate was set to 𝑟 = 1 ∙ 10&! and the mutation rate to 𝜇 = 1 ∙ 10&" per 
generation per bp. Except for the selfing rates, both axes are scaled in 𝑙𝑜𝑔(). Simulations and raw 
data were provided by Thibaut Sellinger. 

Second, to understand the convergence properties of teSMC, we analyzed 
its performance under a simple scenario assuming a constant population size and 
a constant selfing value of 0.9 given a different amount of data. We compare the 
eSMC method, which estimates a constant selfing rate in time, with teSMC, which 
estimates varying selfing through time. When selfing is known to be constant 
(eSMC), the value of this parameter is recovered with high accuracy and low 
variance even with the lowest amount of given data (Figure 18, panels A and C). 
However, when it is unknown whether selfing changes through time (teSMC), a 
greater amount of data is required to reduce the variance in the estimation 
(Figure 18, panels B and D). 
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Figure 18. Best-case convergence of teSMC for a different amount of data. Best-case convergence 
of teSMC using different combinations of sample sizes (𝑛 = 2, 𝑛 = 5, or 𝑛 = 20 sequences; i.e., 
haploid genomes) and sequence lengths (𝐿 = 10	𝑀𝑏 or𝐿 = 100	𝑀𝑏), when population size is 
constant (N=100,000, black line) with a constant selfing rate of 0.9. The best-case convergence 
is estimated assuming that selfing is constant (A, C) or varying in time (B, D). The estimated 
population size assuming constant selfing in time is represented in (C) and the simultaneously 
estimated selfing rate in (A). The estimated population size assuming varying selfing rate in time 
is represented in (D) and the simultaneously estimated selfing rate through time in (B). The 
recombination was set to 𝑟 = 	1 ∙ 10&" per generation per bp. Except for the selfing rates, both 
axes are scaled in 𝑙𝑜𝑔(). Simulations and raw data were provided by Thibaut Sellinger. 

Estimates on simulated data  

We now evaluate the statistical accuracy of teSMC on neutral polymorphism data 

from 5 Mb, simulated under a model with constant population size (𝑁 = 40,000) 

with mutation (𝜇) and recombination (𝑟) rates of 1 ∙ 10+2, and with an 

instantaneous change from outcrossing (𝜎567 	 = 	0.1) to predominant selfing 

(𝜎567 	 = 	0.99) at the time 𝑡# (see methods Chapter 2). The single-transition mode 

estimation procedure performs well over a wide range of 𝑡# values, although it 
slightly underestimates the true value for transitions younger than 
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10,000 generations (corresponding to 0.0625 in units of 4N generations, Figure 
19). The free mode of teSMC performs better before 10,000 generations but 
slightly overestimated tσ compared to the single-transition mode over the rest of 
the range. Population sizes estimated under the assumption of a constant selfing 
rate were consistently larger than the true value in the outcrossing phase and 
displayed large fluctuation in the selfing phase, which could be mistaken for past 
population size bottlenecks (Figure 20). On the other hand, when teSMC is 

allowed to account for the change in selfing rates, population size estimates (𝑁) 

remain close to the true values. We note that the increased variance in 𝑁 in the 
selfing phase is likely caused by fewer available MRCA segments. 
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Figure 19. Performance of teSMC on simulated polymorphism data. Inference of times of 
transition from outcrossing (𝜎	 = 	0.1) to predominantly selfing (𝜎	 = 	0.99) using neutral 
simulations. The inference was made using the free mode (yellow) and the one-transition mode 
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(green) of teSMC and ten replicates per time point. (A) Under constant population size. (B-E):  
simulations were done with an additional change in population size; the vertical grey line indicates 
the change in population size. (B-C) From NANC = 200,000 to NPRES = 40,000 (population 
crash) at 10,000 generations (B) or 40,000 generations (C) in the past. D-E) From NANC = 40,000 
to NPRES = 200,000 (population expansion) at 10,000 generations (D) or 40,000 generations (E) 
in the past. Both axes are scaled in 𝑙𝑜𝑔(). Inference was done by Thibaut Selllinger. 

 Finally, we evaluated the ability of teSMC to jointly estimate the age of a 
transition to predominant selfing and the time of a stepwise change in population 
size. To achieve that, we used simulated data produced as above, except with the 
addition of a single stepwise population size reduction (Figure 19, panels B and 
C) or expansion (Figure 19, panels D and E). In both cases, our results indicate 
that teSMC can precisely estimate the age of the shift to selfing, regardless of the 
relative timing of the population size change and the transition to selfing. Also, in 
most cases, the population sizes inferred by teSMC were close to the true 
simulated values (Figure 21). However, when the transition is recent and the 
present population size is low, this can affect the precision of the estimations of 
the population sizes (Figure 21). We note that, as it is a characteristic of SMC-
based methods, teSMC failed to recover the population size in very recent times, 
suggesting a lack of data, i. e. coalescent events (Sellinger et al., 2021). These 
results demonstrate that transitions to predominant self-fertilization and, more 
generally, large changes in recombination rate through time can be captured by 
teSMC, and the estimations can be disentangled from changes in population 
sizes. 
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Figure 20. Inference of population sizes when transitions to selfing are not accounted for. 
Comparisons between true (black lines) and estimated selfing rates and population sizes estimated 
by teSMC for ten replicates. Here simulations were done using a constant population size (𝑁 =
40,000) and a transition to selfing from 𝜎567 	= 	0.1 to 𝜎234$ = 	0.99 at 𝑡' 	= 	10,000 (A,C) 
and 40,000 (B,D). Five chromosomes of 1 Mb were simulated with mutation and recombination 
rates set to 𝜇 = 𝑟 = 1 ∙ 10&" events per generation per bp. Red and green lines indicate results 
obtained assuming the wrong model (i.e., constant selfing) and the correct model (i.e., single-
transition). For the selfing rates (A, B), results for each replicate are indicated with solid lines. 
For the population sizes, the ten replicates were summarized by the green and red shaded areas, 
where the width of the shaded area corresponds to the range between the minimum and maximum 
value observed across replicates. Except for the selfing rates, both axes are scaled in 𝑙𝑜𝑔(). 
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Figure 21. Inference of population sizes and selfing rates estimated by teSMC when both 
parameters change over time. (A-P): Comparisons between true (black lines) and estimated 
selfing rates and population sizes estimated by teSMC for ten replicates. Here simulations were 
done as in Figure 20 except for the addition of a single stepwise population size expansion 
forward-in-time (first and second rows) or contraction (third and fourth row). The transition to 
selfing occurred from 𝜎567 	= 	0.1 to 𝜎234$ = 	0.99 at 𝑡' 	= 	10,000 (A, C, E, G, I,  K, M, O; 
first and third column) and 𝑡' 	= 	40,000 (B, D, F, H, J, L, N, P; second and fourth column). For 
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the population sizes, the ten replicates were summarized by the green and red shaded areas, where 
the width of the shaded area corresponds to the range between the minimum and maximum value 
observed across replicates. Red and green lines indicate results obtained assuming the wrong 
model (i.e., constant selfing) and the correct model (i.e., single-transition). For the selfing rates, 
results for each replicate are indicated with solid lines. Except for the selfing rates, both axes are 
scaled in 𝑙𝑜𝑔(). 

Masking for exonic regions improves teSMC inference robustness 

As described in chapter 2, BGS can lead to statistical biases in the demographic 
inference if neglected. Transitions to selfing result in a substantial reduction of 
the recombination rate up to two orders of magnitude. Because teSMC ignores 
the effect of selection, we evaluate its performance when applied to data 
simulated under a model with both a transition to selfing and background 
selection. Again, we used SLiM3 (Benjamin C. Haller et al., 2019; Benjamin C 
Haller & Messer, 2019) to simulate genomic data with a similar distribution of 
exonic sequences as in the model species Arabidopsis thaliana and modeled 
negative selection on exonic sequences according to the distribution of fitness 
effects (DFE) for Arabidopsis thaliana published by Hämälä and Tiffin (2020). 
We found that when exonic sequences are masked, the accuracy of estimating the 
transition to selfing by teSMC improves slightly compared to the unmasked case 
(Figure 22). These results suggest that our approach is somewhat robust to the 
effect of negative selection on linked neutral sites, even in compact genomes such 
as Arabidopsis thaliana. 
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Figure 22. Accuracy of teSMC in the presence of background selection (BGS). Inference of times 
of transition from outcrossing (𝜎 = 0.1) to predominant-selfing (𝜎 = 0.99) using teSMC. 
Simulations were done under constant population size and negative selection acting on exonic 
sequences. The spatial distribution of exonic sequences was fixed and taken from the annotation 
of Arabidopsis thaliana. The negative selection was modeled using a distribution of fitness effects 
(see Chapter 2). Comparison between simulated values of 𝑡' and estimates obtained with teSMC 
using the one-transition mode. Estimations were conducted with and without masking exonic 
sequences subject to negative selection. Both axes are scaled in 𝑙𝑜𝑔(). Inference was done by 
Thibaut Sellinger. 

Application of tsABC to Arabidopsis thaliana 

Similar to inferring transitions to selfing of Arabidopsis thaliana using tsABC, 
again, we used teSMC to estimate the transition to selfing for three non-admixed 
genetic clusters. We used the single-transition mode of teSMC, parametrizing the 
model to only allow for a single change in selfing rates. The piecewise constant 
population size was parametrized to vary during the optimization freely. 

Using teSMC, we jointly estimated the demography of each Arabidopsis 
thaliana population and the transition to predominant self-fertilization (Figure 
23). Here, we estimated the transitioning time from predominant outcrossing to 
selfing ranging from 697,490 to 749,668  years ago, assuming an average of one 
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year per generation (Table 5). Furthermore, the estimates of transitions to 
selfing were robust to the geographical origin of the population sample. 
Table 5. Estimated times of transitions from predominant outcrossing to predominant selfing in 
Arabidopsis thaliana. The demography was estimated for three non-admixed genetic clusters 
(genetic assignment  > 	95%) of the 1001 genomes project. teSMC estimated the time of a 
transition from outcrossing to selfing on a sample of 20 haplotypes, 1 MB from each of the 
five chromosomes. Exonic regions were masked. The Relicts sample set consisted of 
17 individuals only. 

 

Method Population Mode 

teSMC CEU 697,490 

teSMC IBnr 713,421 

teSMC Relicts 749,668 

Discussion 

This study introduced and tested an inference method to infer past selfing rates 
and population sizes of single populations by extending the existing SMC-HMM 
method eSMC to changing selfing rates through time (teSMC). We tested the 
theoretical best-case convergence of teSMC on simulated marginal genealogies. 
Furthermore, we tested the performance of tsABC on simulated data under 
different demographies and for different parametrization modes. Finally, we 
estimated transitions to selfing consistent with our current estimates using tsABC 
(Chapter 2) and, thus, existing published estimates using different approaches. 
Together with tsABC, we provided two distinct methods to infer transitions to 
selfing from the genome-wide variance obtainable from natural populations. 
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Figure 23. Inference of the time of transition from outcrossing to selfing in Arabidopsis thaliana. 
(A) Inferred transitions from outcrossing to selfing for three independent genetic clusters of 
Arabidopsis thaliana from the 1001 genomes project (CEU, IBnr, Relict) using teSMC under the 
one-transition mode. (B) Co-estimated population sizes over time with piecewise constant 
population size. Except for the selfing rates, both axes are scaled in 𝑙𝑜𝑔(). Inference was done by 
Thibaut Sellinger. 

 The correct inference of demographies is critical to understanding 
evolutionary forces and functions of genes, which is a necessary consequence of 
the definition of function being the selected effect function (Graur, 2017; Graur, 
Zheng, & Azevedo, 2015; Graur et al., 2013; P. Brunet & Doolittle, 2014). Thus, 
the function of DNA, in general, is determined by its interaction with evolutionary 
forces. Not only are shifts in mating systems considered a critical evolutionary 
and ecological process, but also the correct inference of inbreeding consistently 
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improves the correct demographic inference (Figure 20, Figure 21). By 
introducing teSMC, we provided a method to use genome-wide genetic variance 
to date transitions to selfing on small sample sets. 

Our study demonstrated that teSMC correctly infers transitions to selfing 
for the tested time ranges. However, the parametrization of the teSMC model 
complicates the comparison of the likelihoods between the models and different 
modes. Usually, we obtain better likelihoods for the free mode, inferring 
transitions to selfing. Different information criteria usually give a penalty to an 
increased number of parameters, assuming that they are independent. 
Independency of parameters is not a given in the SMC-HMM method family. 
However, the estimated selfing history is robust, especially for recent up to 
intermediate times, making it an excellent method to infer recent shifts in mating 
systems. Note, assuming constant selfing provides only slightly wrong estimates 
of recent selfing rates if the transition is not recent (Figure 20, panels B and D; 
Figure 21, panels B, F, D, and H). Nevertheless, still, spurious artifacts occur in 

the inferred demography. We bound the maximum selfing rate to 0.99 because 
higher values practically do not allow for a change of hidden states when moving 
along the sequence, potentially biasing the inference of transition to selfing 
towards older dates. 

Chapter 1 demonstrated the consequences of transitions to selfing on the 
genome-wide genetic structure. We identified the information of transitions to 
selfing, laying in the correlation of length and diversity of MRCA segments. The 
introduced teSMC is the first member of the SMC-HMM family decoding the 
position of recombination events under the correct model, i. e., piecewise-
constant recombination rates through time, to implicitly identify MRCA 
segments, providing information about past changes in recombination rates, 
which we parametrize into transitions to selfing. 

With teSMC, we jointly dated the transition to selfing combined with the 
demography inference. The estimates on the same three genetic clusters of 
Arabidopsis thaliana as used in chapter 2 agree with the estimates of tsABC 
(Table 4) but are slighly older than previous estimates from literature (see 
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Chapter 2). Given that two separate approaches agree with each other provides 
confidence in our estimates. Additionally, the estimated dates being older than 
any known split in between different Arabidopsis thaliana groups and the fact of 
its transition being older than the migration out of Africa (Durvasula et al., 2017) 
also raises the hypothesis that selfing contributed to enabling Arabidopsis 
thaliana to migrate commensal with modern humans and early hominins, that 
migrated out of Africa between 60 kyr to probably more than 400 kyr ago 
(Malaspinas et al., 2016; Nielsen et al., 2017). 

In summary, we introduced teSMC, a novel inference method extending 
existing methods of the SMC-HMM family to estimate changes in recombination 
rates and selfing. Additionally, we tested the performance of teSMC to infer 
demography and transitions to selfing. Finally, we consistantly dated the 
transition to selfing of Arabidopsis thaliana using three distinct genetic clusters. 
Thus, we enable exploring the phylogeny of plants for transitions to selfing to 
contribute to the understanding of evolutionary processes shaping plant species 
and populations in the context of the evolution of sexes. 

Conclusion 

1. The new method teSMC infers transitions to selfing jointly with the 
inference of population sizes. 

2. Estimates on three genetic clusters of Arabidopsis thaliana are slightly 
older than previously published estimates and dated the transition to 
selfing from 697,490 to 749,668 years ago. 

3. The introduced teSMC will facilitate the phylogenetic exploration and 
identification of recent transitions to selfing to elaborate on existing 
hypotheses on the evolution of mating systems, e. g. the dead-end 
hypothesis of selfing species. 

Author contributions 

Prof. Dr. Sylvain Glémin (TAC member) provided the initial idea of extending the 
SMC framework to implement selfing. I elaborated the idea under the supervision 
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of Dr. Stefan Laurent, and we initiated a collaboration with Thibaut Sellinger and 
Auréllien Tellier to develop the method teSMC as an extension of their previously 
published eSMC (Sellinger et al., 2020). Thibaut Sellinger formalized and wrote 
the sequentially Markovian coalescent to infer piecewise-constant selfing rates 
and piecewise-constant population sizes and implemented the method in the 
R package teSMC. The simulation of transitions to selfing, i. e., changes of 
recombination rates through time, was implemented using msprime, which only 
provided a usable interface for that in recent versions by using the "from_ts" 
argument of its simulation function. The performance analysis and application to 
Arabidopsis thaliana were conducted by myself with the help of Thibaut 
Sellinger.  
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General discussion 
Outlook and implications of identifying and estimating 
transitions from outcrossing to selfing  
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Outlook and implications of identifying and estimating 
transitions from outcrossing to selfing 
In this work, we developed and tested methods to identify and estimate 
transitions to selfing using haplotype genomic variation. We investigated and 
comprehensively described the consequences of changes in selfing rates on intra-
specific genomic variability. We used forward-in-time Wright-Fisher models to 
explicitly simulate reproduction under selfing and the coalescent with partial 
selfing, which approximates implicitly selfing. We developed a novel measure of 
the effects of transitions to selfing on genetic variation based on our theoretical 
expectation. We provided evidence that the coalescent with partial selfing 
accurately models transitions to selfing. We developed an ABC and an MLE 
method to identify and estimate transitions from outcrossing to selfing based on 
these insights. We provided a complete performance analysis of both methods. 
Finally, we applied both methods to three distinct genetic clusters of Arabidopsis 
thaliana, consistently providing slightly older estimates than pre-existing 
estimates of Arabidopsis thaliana's transition to selfing. 
 Based on our insights and investigation of the genetic consequences of 
transitions to selfing, we introduced a summarization of genetic variance focusing 
on MRCA segments. Segment-based inference relates to haplotype-based 
inference methods that recently gained more importance with the rise of high 
throughput sequencing techniques that provide accessibility to whole genomes of 
natural populations for many species. Many extensions of our developed methods 
are possible. For example, tsABC could be extended to consider allotetraploid 
speciation or demographic histories with multiple populations. However, an 
extension of the teSMC to some aspects may seem simple but not necessarily 
helpful, e. g. MSMC with piecewise constant recombination rates. Nevertheless, 
the implementation of other statistics of the coalescent with partial selfing may 
contribute to the improvement of estimating shifts in mating systems or the 
evolution of recombination rates through time and increase the accuracy of 
estimates also for more ancestral time ranges. 
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 We estimated that the transition to selfing for Arabidopsis thaliana 
occurred between 552,920 and 749,668 years ago. We assumed a generation time 
of one year per generation (Donohue, 2002). Arabidopsis thaliana is an annual 
plant. Seasonality enforces the assumed generation time. However, an average 
generation may be shorter in tropical to subtropical regions. We would expect an 
older estimate for the Relicts. The estimates of teSMC are consistent with that 
assumption, but the estimates of tsABC are not in accordance. Furthermore, we 
provided a single but successful application example in this study. Expanding our 
research to other populations and species will increase the potential to answer 
standing biological questions, e. g. the evolutionary relationship of the correlated 
polyploidy to selfing. 
 Altogether, this thesis paves the way to expand the research on the 
evolution of selfing to any sampled population and species. The developed and 
introduced two statistical methods to identify and estimate transitions to selfing 
from genome-wide genetic variance will help to explore not only the plant 
phylogeny on the evolution of mating systems. We expect to confirm and provide 
evidence for existing hypotheses and raise new ones.  
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1 teSMC
To define our Hidden Markov Model (HMM) we need to define :
— Hidden States
— The signal (observed data)
— A Transition matrix (Probability of jumping from one state to another)
— An Emission matrix (Probability of observing the data given the hidden state)
— An Initial probability (Probability of hidden states at the first position of the sequence)

1.1 Notations and Assumptions
We here define the different notations used and their meaning :
— �t : self fertilization rate ( between 0 and 1) at time t
— �t : self fertilization rate ( between 0 and 1) at time t
— N0 : Population size at present time
— rt : recombination rate per nucleotide per 4N0 generation at time t
— µ : Mutation rate per nucleotide per 4N0 generation
— µb : ratio of mutation rate during the dormant stage over the mutation rate during the active stage

per nucleotide per 4N0 generation
— u : time at which the recombination occurs (follows a pice-wise uniform distribution )
— L : Sequence length in bp
— Nt : Population size at time t
— �t : Scaling factor for the population size at time t (Nt = �tN0)
The model’s assumptions are :
— Piecewise constant population size
— Piecewise constant selfing, germination and recombination rate in time
— Constant mutation rate in time
— Constant mutation and recombination rate along the sequence
— Neutrality

1.2 Hidden States
We define our hidden states at one position on the genome as the coalescent time between the two

individual at that position. We note that coalescent time t (t>0). A transition from a coalescent time s to
time t (t 6= s) at the next can only occur if a recombination happened in between the two positions.

1.3 Observations
Our observations, or the signal, is a sequence of 1 and 0. This sequence is build from phasing the DNA

sequences of two individual. When going along the sequence, if both nucleotide are similar, then the signal
is 0 (no mutation occurred). If both are different, then a mutation occurred, and the signal is 1.

1
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1.4 Transition Matrix
A transition to state t from state s (t 6= s) can only occur if there is a recombination event. Assuming

Recombination event on the tree as a Poisson process we have the probability of a recombination :

P (rec|s) = (1� e
�

R s
0

2(1��k)�k
2��k

2rkdk) (1)

We now Assume that a recombination event occurred at time u (<s) where u follows a piecewise uniform
distribution (i.e. uniform in each hidden state but the density between hidden state is allowed to change)
between 0 and s. Then three scenarios are possible. Either the new coalescent time is smaller (t<s),bigger
(t>s) or unchanged (t=s).

1.4.1 t<s

The resulting floating branch of the recombination event coalesces at time t < s . This mean it must not
coalesce before time t (including itself). In addition we have u<t. The transition probability is therefore :

P (t|s, u) = 2�2
t

(2� �t)�t
(e

R t
u � 4�2v

(2��v)�v
dv) (2)

1.4.2 t=s

The resulting floating branch of the recombination event self coalesce before time t. We therefore have
the transition probability :

P (s|s, u) =
Z s

u

2�2
k

(2� �k)�k
e
R k
u � 4�2v

(2��v)�v
dvdk (3)

1.4.3 t>s

The resulting floating branch of the recombination event must not coalesce (including itself) before
time s. Then no coalescent event must happen before time t. We therefore have the transition probability :

P (t|s, u) = 2�2
t

(2� �t)�t
e
R s
u � 4�2v

(2��v)�v
dve

R t
s � 2�2v

(2��v)�v
dv (4)

1.4.4 Transition probability in continuous time

In the end we have :

p(t|s, u) =

8
>>>>><

>>>>>:

(1� e
�

R s
0

2(1��k)�k
2��k

2rkdk) 2�2
t

(2��t)�t
(e

R t
u � 4�2v

(2��v)�v
dv) if u < t < s

e
�

R s
0

2(1��k)�k
2��k

2rkdk + (1� e
�

R s
0

2(1��k)�k
2��k

2rkdk)
R s

u

2�2
k

(2��k)�k
e
R k
u � 4�2v

(2��v)�v
dvdk if t = s

(1� e
�

R s
0

2(1��k)�k
2��k

2rkdk) 2�2
t

(2��t)�t
e
R s
u � 4�2v

(2��v)�v
dve

R t
s � 2�2v

(2��v)�v
dv if t > s

0 if otherwise

(5)

Once again, if all �k = 0, �k = 1, we fall back on the probability from PSMC’.
One can find p(t|s) using the total probability formula which is :

p(t|s) =
Z s

0

p(u)p(t|s, u)du (6)

As explained before, the state space must be finite. We therefore discretized time in n intervals. At one
point the hidden state is ↵ if t 2 [T↵, T↵+1], where ↵ 2 [0, (n� 1)]. We define T↵ :

T↵ = �(2� �0)

2�2
0

ln(1� ↵

n
) (7)
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We therefore have :
p(↵|s) =

Z T↵+1

T↵

p(t|s)dt (8)

The transition matrix need to be the probability from one state to another. Therefore we need the
probability when the coalescent time at the previous position (which is here s) belongs to the state �. To
do this we simply replace s by the average coalescent time t�.

1.4.5 Initial Probability

We use the equilibrium probability as initial probability. The equilibrium probability is the probability
that the first coalescent happens in each time interval and is thus given by :

qo(↵) =

Z T↵+1

T↵

2�2
↵

(2� �↵)�↵
e
R t
0

�2�2v
(2��v)�v

dvdt

qo(↵) =

Z T↵+1

T↵

2�2
↵

(2� �↵)�↵
e
R T↵
0

�2�2v
(2��v)�v

dve
R t
T↵

�2�2v
(2��v)�v

dvdt

qo(↵) = e
R T↵
0

�2�2v
(2��v)�v

dv
Z T↵+1

T↵

2�2
↵

(2� �↵)�↵
e

�2(t�T↵)�2↵
(2��↵)�↵ dt

qo(↵) = e
P↵�1

⌘=0

�2�2⌘
(2��⌘)�⌘

�⌘(1� e
�2�↵�2↵
(2��↵)�↵ )

(9)

1.4.6 Calculation of t�

t� = E[Coalescent time|�] = E[Coalescent time \ �]

P (�)
=

R T�+1

T�
t⇤�e�

R t
0 ⇤vdvdt

q0(�)

=
⇤�

R T�+1

T�
te�

R T�
0 ⇤vdve

�
R t
T�

⇤vdvdt

q0(�)
=

⇤�e�
R T�
0 ⇤vdv

R T�+1

T�
te

�
R t
T�

⇤vdvdt

q0(�)

=
⇤�

R T�+1

T�
te(T��t)⇤�dt

(1� e���⇤� )
=

T� � T�+1e���⇤�

(1� e���⇤� )
+

R T�+1

T�
e(T��t)⇤�dt

(1� e���⇤� )

=
T� � T�+1e���⇤�

(1� e���⇤� )
+

(1� e���⇤� )

⇤�(1� e���⇤� )
=

T� � T�+1e���⇤�

(1� e���⇤� )
+

1

⇤�

(10)

Where :

�� = T�+1 � T�

⇤� =
2�2

�

(2� ��)��

(11)
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1.4.7 Calculation of p(↵|�)

↵ < � We first need p(t|t�) when ↵ < �, which is obtained as described below :

p(t|t�) = P�

Z t

0

⇡u
2�2

t
(2��t)�t

(e
R t
u � 4�2v

(2��v)�v
dv)

⇧�
du

= P�(
↵�1X

⌘=1

Z T⌘+1

T⌘

⇡u
2�2

t
(2��t)�t

(e
R t
u � 4�2v

(2��v)�v
dv)

⇧�
du

+

Z t

T↵

⇡u
2�2

t
(2��t)�t

(e
R t
u � 4�2v

(2��v)�v
dv)

⇧�
du)

= P�(
↵�1X

⌘=1

Z T⌘+1

T⌘

⇡⌘
2�2

t
(2��t)�t

(e
R t
u � 4�2v

(2��v)�v
dv)

⇧�
du

+

Z t

T↵

⇡↵
2�2

t
(2��t)�t

(e
R t
u � 4�2v

(2��v)�v
dv)

⇧�
du)

= P�(
↵�1X

⌘=1

Z T⌘+1

T⌘

⇡⌘
2�2

↵
(2��↵)�↵

(e
R T⌘+1
u � 4�2v

(2��v)�v
dv)(e

R t
T⌘+1

� 4�2v
(2��v)�v

dv
)

⇧�
du

+

Z t

T↵

⇡↵
2�2

↵
(2��↵)�↵

(e
R t
u � 4�2v

(2��v)�v
dv)

⇧�
du)

= P�(
↵�1X

⌘=1

Z T⌘+1

T⌘

⇡⌘
2�2

↵
(2��↵)�↵

(e
�(T⌘+1�u)

4�2⌘
(2��⌘)�⌘ )(e

R t
T⌘+1

� 4�2v
(2��v)�v

dv
)

⇧�
du

+

Z t

T↵

⇡↵
2�2

↵
(2��↵)�↵

(e�(t�u)
4�2↵

(2��↵)�↵ )

⇧�
du)

= P�(
↵�1X

⌘=1

⇡⌘
2�2

↵
(2��↵)�↵

(1� e
��⌘

4�2⌘
(2��⌘)�⌘ )(e

R t
T⌘+1

� 4�2v
(2��v)�v

dv
)

4�2
⌘

(2��⌘)�⌘
⇧�

+
⇡↵

2�2
↵

(2��↵)�↵
(1� e�(t�T↵)

4�2↵
(2��↵)�↵ )

4�2
↵

(2��↵)�↵
⇧�

)

P� = (1� e
�(

P��1
⇠=1

2(1��⇠)�⇠
2��⇠

2r⇠�⇠+
(t��T� )2r���2(1��� )

(2��� ) )
)

(12)

Where :

⇡u = (
ru�u2(1� �u)

(2� �u)
)

⇧� = (
��1X

⇠=1

�⇠r⇠�⇠2(1� �⇠)

(2� �⇠)
+

(t� � T�)r���2(1� ��)

(2� ��)
)

= (
��1X

⇠=1

�⇠⇡⇠ + (t� � T�)⇡�)

(13)
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We can now calculate p(↵|�).

p(↵|�) =
Z T↵+1

T↵

P�2�2
↵

(2� �↵)�↵
(
↵�1X

⌘=1

⇡⌘(1� e
��⌘

4�2⌘
(2��⌘)�⌘ )(e

R t
T⌘+1

� 4�2v
(2��v)�v

dv
)

4�2
⌘

(2��⌘)�⌘
⇧�

+
⇡↵(1� e�(t�T↵)

4�2↵
(2��↵)�↵ )

4�2
↵

(2��↵)�↵
⇧�

)dt

=
P�2�2

↵

(2� �↵)�↵
(
↵�1X

⌘=1

⇡⌘(1� e
��⌘

4�2⌘
(2��⌘)�⌘ )(e

R T↵
T⌘+1

� 4�2v
(2��v)�v

dv
)(1� e��↵

4�2↵
(2��↵)�↵ )

4�2
↵

(2��↵)�↵

4�2
⌘

(2��⌘)�⌘
⇧�

+

⇡↵(�↵ � (1�e
��↵

4�2↵
(2��↵)�↵ )

4�2↵
(2��↵)�↵

)

4�2
↵

(2��↵)�↵
⇧�

)

(14)

↵ > � We first need p(t|t�) when ↵ > �, which is obtained as described below :

p(t|t�) =
Z t�

0

P�⇡u
2�2

t
(2��t)�t

e
R t�
u � 4�2v

(2��v)�v
dve

R t
t�

� 2�2v
(2��v)�v

dv

⇧�
du

=
P�

2�2
↵

(2��↵)�↵

⇧�
(
��1X

⌘=0

Z T⌘+1

T⌘

⇡ue
R t�
u � 4�2v

(2��v)�v
dve

R t
t�

� 2�2v
(2��v)�v

dv
du

+

Z t�

T�

⇡ue
R t�
u � 4�2v

(2��v)�v
dve

R t
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� 2�2v
(2��v)�v

dv
du)
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2�2
↵

(2��↵)�↵

⇧�
(
��1X
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T⌘
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4�2⌘
(2��⌘)�⌘ e

R t�
T⌘+1

� 4�2v
(2��v)�v

dv
e
R t
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� 2�2v
(2��v)�v

dv
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T�

⇡�e
�(t��u)

4�2�
(2��� )�� e

R t
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� 2�2v
(2��v)�v

dv
du)

=
P�

2�2
↵

(2��↵)�↵
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(
��1X

⌘=0

⇡⌘
(1� e

��⌘
4�2⌘

(2��⌘)�⌘ )
4�2

⌘

(2��⌘)�⌘

e
R t�
T⌘+1

� 4�2v
(2��v)�v

dv
e
R t
t�

� 2�2v
(2��v)�v

dv

+⇡�
(1� e
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4�2

�

(2���)��

e
R t
t�

� 2�2v
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)

(15)
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We can now calculate p(↵|�).

p(↵|�) =
Z T↵+1

T↵

P�
2�2

↵
(2��↵)�↵
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��1X
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�
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)
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��1X
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⇡⌘(1� e
��⌘

4�2⌘
(2��⌘)�⌘ )

4�2
⌘

(2��⌘)�⌘

e
R t�
T⌘+1

� 4�2v
(2��v)�v

dv
+

⇡�(1� e
�(t��T�)

4�2�
(2��� )�� )

4�2
�

(2���)��

)e
R T↵
t�

� 2�2v
(2��v)�v

dv
(1� e��↵

2�2↵
(2��↵)�↵ ))

(16)

↵ = � Because probabilities sum up to one. We have the following formula :

p(�|�) = 1� (
��1X

↵=0

p(↵|�) +
nX

↵=�+1

p(↵|�)) (17)

1.5 Emission Matrix
Because of seed banking,the coalescent tree can be very big. In this case the infinite site model hypo-

thesis might be violated,therefore we have the following formula :

P (0|�) = e�2µ(((��+((1���)µb))(t��Tc�))+
P��1

⌘ ((�⌘+((1��⌘)µb))�⌘))

P (1|�) = 1� P (0|�)
(18)

Where µ is the mutation rate per nucleotide per N generation, µb le ratio of mutation rate during the
dormant stage over the one in the active stage, �� the germination rate in state � and t� the average
coalescent time in state �.
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Figure 10. ABC model choice and parameter estimate performance analysis. (A) 
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estimation accuracy for the age of a transition to selfing (100 simulated datasets) 

under a model with constant population size (𝑁 = 	40,000) and a change in selfing 

rate from 𝜎𝐴𝑁𝐶 = 0.1 to 𝜎𝑃𝑅𝐸𝑆 = 0.99. Colored lines represent the average 

interpercentile ranges for 100 posterior distributions corresponding. 𝑡𝜎-axes are 
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Figure 11. ABC performance analysis: Parameter re-estimation of the three 
remaining parameters of the model described in Figure 10. (A-C) Re-estimation 
of the population size on 100 datasets simulated under a model with constant 

population size (𝑁	 = 	40,000) and a change in selfing rate from 𝜎𝐴𝑁𝐶 = 0.1 to 

𝜎𝑃𝑅𝐸𝑆 = 0.99. Colored lines represent the average quantiles for 100 posterior 
distributions corresponding to the given credible intervals. (D-F) Re-estimation 
of the present selfing rate on 100 datasets simulated under a model with constant 

population size (𝑁	 = 	40,000) and a change in selfing rate from 𝜎𝐴𝑁𝐶 = 0.1 to 

𝜎𝑃𝑅𝐸𝑆 = 0.99. Colored lines represent the average quantiles for 100 posterior 
distributions corresponding to the given credible intervals. (G-I) Re-estimation 
of the ancestral selfing rate on 100 datasets simulated under a model with 
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constant population size (𝑁	 = 	40,000) and a change in selfing rate from 𝜎𝐴𝑁𝐶 =

0.1 to 𝜎𝑃𝑅𝐸𝑆 = 0.99. Colored lines represent the average interpercentile ranges 
for 100 posterior distributions corresponding. Except for the selfing rates, both 

axes are scaled in 𝑙𝑜𝑔10. ....................................................................................... 55 

Figure 12. Model choice experiment for different rho-theta-ratios and negative 
linked selection. The performance analysis for the different conditions was 
conducted the same way, as shown in Figure 10. (A-C) Model choice 
performance for increased recombination on otherwise same parameters. (D-F) 
Model choice performance under the same parameters as Figure 10, but PODs 

were simulated under negative linked selection.	𝑡𝜎-axes are scaled in 𝑙𝑜𝑔10. ... 57 

Figure 13. Accuracy of tsABC in the presence of background selection (BGS): 

Inference of times of transition from outcrossing (𝜎 = 0.1) to predominant-

selfing (𝜎 = 0.99) using tsABC using (A) SFS/LD, (B) TMWIN or (C) both. 
Simulations were done under constant population size and negative selection 
acting on exonic sequences. The spatial distribution of exonic sequences was fixed 
and taken from the annotation of Arabidopsis thaliana. The negative selection 
was modeled using a distribution of fitness effects (see methods). The result 
should be compared with the case without linked negative selection in Figure 10 
(panel F-H). Colored lines represent the interpercentile ranges quantiles for 100 

posterior distributions obtained with tsABC. Both axes are scaled in 𝑙𝑜𝑔10. .... 58 

Figure 14. ABC performance analysis under negative linked selection: 
Parameter re-estimation of the three remaining parameters of the model 
described in Figure 10. (A-C) Re-estimation of the population size on 100 

datasets simulated under a model with constant population size (𝑁	 = 	40,000) 

and a change in selfing rate from 𝜎𝐴𝑁𝐶 = 0.1 to 𝜎𝑃𝑅𝐸𝑆 = 0.99. Colored lines 
represent the average quantiles for 100 posterior distributions corresponding to 
the given credible intervals. (D-F) Re-estimation of the present selfing rate on 

100 datasets simulated under a model with constant population size (𝑁	 =

	40,000) and a change in selfing rate from 𝜎𝐴𝑁𝐶 = 0.1 to 𝜎𝑃𝑅𝐸𝑆 = 0.99. Colored 
lines represent the average quantiles for 100 posterior distributions 
corresponding to the given credible intervals. (G-I) Re-estimation of the ancestral 
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selfing rate on 100 datasets simulated under a model with constant population 

size (𝑁	 = 	40,000) and a change in selfing rate from 𝜎𝐴𝑁𝐶 = 0.1 to 𝜎𝑃𝑅𝐸𝑆 = 0.99. 
Colored lines represent the average interpercentile ranges for 100 posterior 
distributions corresponding to the given credible intervals. Except for the selfing 

rates, both axes are scaled in 𝑙𝑜𝑔10. .................................................................... 59 

Figure 15. Inference of the time of transition from outcrossing to selfing in 
Arabidopsis thaliana using tsABC: A: Inferred transitions from outcrossing to 
selfing for three independent genetic clusters of Arabidopsis thaliana from the 
1001 genomes project (CEU, Ibnr, Relicts).  (B) Co-estimated population sizes 
over time with a single population change. Except for the selfing rates, both axes 

are scaled in 𝑙𝑜𝑔10. ............................................................................................... 61 

Figure 16. The sequentially Markovian coalescent process for a sample of size 
two considers recombination events of three different types in the SMC' 
algorithm and the PSMC’-based demographic inference methods. Recombination 
events potentially cause changes to the genealogy of a sample of size two. (A) The 
TMRCA increases if the recombining lineage re-coalesces at a time older than the 
TMRCA of the current MRCA, (B) it remains the same if the lineage re-coalesces to 
itself before the TMRCA of the current MRCA, or (C) it decreases if the lineage re-
coalesces to any other lineage but itself before the TMRCA of the current MRCA. 
The probability of recombining between two loci depends on the integrated 
recombination rate over time on the genealogy of the current locus. The 
probability of coalescing follows the assumed coalescent framework. ............... 72 

Figure 17. Theoretical convergence of teSMC under complex demography. Best-
case convergence of teSMC using ten sequences (i.e., haploid genomes) of 100 Mb 
(green) when the population undergoes a bottleneck (true sizes are indicated in 
black) with either variation of selfing in time (A, C) or variation of recombination 
rate in time (B, D). The selfing rate through time is represented in A), and the 
corresponding estimated population size is represented in C), the estimated 
recombination rate through time (B), and the corresponding population size in 

D). The recombination rate was set to 𝑟 = 1 ∙ 10 − 7 and the mutation rate to 𝜇 =
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1 ∙ 10 − 8 per generation per bp. Except for the selfing rates, both axes are scaled 

in 𝑙𝑜𝑔10. Simulations and raw data were provided by Thibaut Sellinger. .......... 75 

Figure 18. Best-case convergence of teSMC for a different amount of data. Best-

case convergence of teSMC using different combinations of sample sizes (𝑛 = 2, 

𝑛 = 5, or 𝑛 = 20 sequences; i.e., haploid genomes) and sequence lengths (𝐿 =

10	𝑀𝑏 or𝐿 = 100	𝑀𝑏), when population size is constant (N=100,000, black line) 
with a constant selfing rate of 0.9. The best-case convergence is estimated 
assuming that selfing is constant (A, C) or varying in time (B, D). The estimated 
population size assuming constant selfing in time is represented in (C) and the 
simultaneously estimated selfing rate in (A). The estimated population size 
assuming varying selfing rate in time is represented in (D) and the simultaneously 

estimated selfing rate through time in (B). The recombination was set to 𝑟 = 	1 ∙

10 − 8 per generation per bp. Except for the selfing rates, both axes are scaled in 

𝑙𝑜𝑔10. Simulations and raw data were provided by Thibaut Sellinger. .............. 76 

Figure 19. Performance of teSMC on simulated polymorphism data. Inference 

of times of transition from outcrossing (𝜎	 = 	0.1) to predominantly selfing (𝜎	 =

	0.99) using neutral simulations. The inference was made using the free mode 
(yellow) and the one-transition mode (green) of teSMC and ten replicates per 
time point. (A) Under constant population size. (B-E):  simulations were done 
with an additional change in population size; the vertical grey line indicates the 
change in population size. (B-C) From NANC = 200,000 to NPRES = 40,000 
(population crash) at 10,000 generations (B) or 40,000 generations (C) in the 
past. D-E) From NANC = 40,000 to NPRES = 200,000 (population expansion) 
at 10,000 generations (D) or 40,000 generations (E) in the past. Both axes are 

scaled in 𝑙𝑜𝑔10. Inference was done by Thibaut Selllinger. ................................ 78 

Figure 20. Inference of population sizes when transitions to selfing are not 
accounted for. Comparisons between true (black lines) and estimated selfing 
rates and population sizes estimated by teSMC for ten replicates. Here 

simulations were done using a constant population size (𝑁 = 40,000) and a 

transition to selfing from 𝜎𝐴𝑁𝐶	 = 	0.1 to 𝜎𝑃𝑅𝐸𝑆 = 	0.99 at 𝑡𝜎	 = 	10,000 (A,C) 
and 40,000 (B,D). Five chromosomes of 1 Mb were simulated with mutation and 
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recombination rates set to 𝜇 = 𝑟 = 1 ∙ 10 − 8 events per generation per bp. Red 
and green lines indicate results obtained assuming the wrong model (i.e., 
constant selfing) and the correct model (i.e., single-transition). For the selfing 
rates (A, B), results for each replicate are indicated with solid lines. For the 
population sizes, the ten replicates were summarized by the green and red shaded 
areas, where the width of the shaded area corresponds to the range between the 
minimum and maximum value observed across replicates. Except for the selfing 

rates, both axes are scaled in 𝑙𝑜𝑔10. .................................................................... 80 

Figure 21. Inference of population sizes and selfing rates estimated by teSMC 
when both parameters change over time. (A-P): Comparisons between true (black 
lines) and estimated selfing rates and population sizes estimated by teSMC for 
ten replicates. Here simulations were done as in Figure 20 except for the 
addition of a single stepwise population size expansion forward-in-time (first and 
second rows) or contraction (third and fourth row). The transition to selfing 

occurred from 𝜎𝐴𝑁𝐶	 = 	0.1 to 𝜎𝑃𝑅𝐸𝑆 = 	0.99 at 𝑡𝜎	 = 	10,000 (A, C, E, G, I,  K, M, 

O; first and third column) and 𝑡𝜎	 = 	40,000 (B, D, F, H, J, L, N, P; second and 
fourth column). For the population sizes, the ten replicates were summarized by 
the green and red shaded areas, where the width of the shaded area corresponds 
to the range between the minimum and maximum value observed across 
replicates. Red and green lines indicate results obtained assuming the wrong 
model (i.e., constant selfing) and the correct model (i.e., single-transition). For 
the selfing rates, results for each replicate are indicated with solid lines. Except 

for the selfing rates, both axes are scaled in 𝑙𝑜𝑔10. ............................................. 81 

Figure 22. Accuracy of teSMC in the presence of background selection (BGS). 

Inference of times of transition from outcrossing (𝜎 = 0.1) to predominant-

selfing (𝜎 = 0.99) using teSMC. Simulations were done under constant 
population size and negative selection acting on exonic sequences. The spatial 
distribution of exonic sequences was fixed and taken from the annotation of 
Arabidopsis thaliana. The negative selection was modeled using a distribution of 

fitness effects (see Chapter 2). Comparison between simulated values of 𝑡𝜎 and 
estimates obtained with teSMC using the one-transition mode. Estimations were 
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conducted with and without masking exonic sequences subject to negative 

selection. Both axes are scaled in 𝑙𝑜𝑔10. Inference was done by Thibaut Sellinger.
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Figure 23. Inference of the time of transition from outcrossing to selfing in 
Arabidopsis thaliana. (A) Inferred transitions from outcrossing to selfing for 
three independent genetic clusters of Arabidopsis thaliana from the 1001 
genomes project (CEU, IBnr, Relict) using teSMC under the one-transition mode. 
(B) Co-estimated population sizes over time with piecewise constant population 

size. Except for the selfing rates, both axes are scaled in 𝑙𝑜𝑔10. Inference was done 
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