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Résumé

La fiabilité des composants électriques est une problématique étudiée pour améliorer la qualité des
produits, et pour planifier la maintenance en cas de défaillance. La fiabilité est mesurée en étudiant
les causes de défaillance et le temps moyen jusqu’à la défaillance. Une des méthodes appliquées dans
ce domaine est l’étude du vieillissement des composants, car la défaillance se produit souvent après
une dégradation.

L’objectif de cette thèse est de modéliser la dégradation des composants en génie électrique, afin
d’estimer leur durée de vie. Plus spécifiquement, cette thèse étudiera les sources de lumière blanche
organiques à grande surface (OLEDs). Ces sources offrent plusieurs avantages dans le monde de
l’éclairage grâce à leur finesse, leur faible consommation d’énergie et leur capacité à s’adapter à de
larges domaines d’application. Les seconds composants étudiés sont des isolants électriques appliqués
à des paires de fils de cuivre torsadés, qui sont couramment utilisés dans les machines électriques
à basse tension. Tout d’abord, les mécanismes de dégradation et de défaillance des différents com-
posants électriques, y compris les OLED et les isolants, sont étudiés. Ceci est fait pour identifier les
contraintes opérationnelles afin de les inclure dans le modèle de vieillissement.

Après avoir identifié les principales causes du vieillissement, des modèles physiques généraux
sont étudiés pour quantifier les effets des contraintes opérationnelles. Des modèles empiriques sont
également présentés lorsque la physique de la dégradation est inconnue ou difficile à modéliser.

Ensuite, des méthodes d’estimation des paramètres de ces modèles sont présentées, telles que la
régression multilinéaire et non-linéaire, ainsi que des méthodes stochastiques. D’autres méthodes
basées sur l’intelligence artificielle et le diagnostic en ligne sont également présentées, mais elles ne
seront pas étudiées dans cette thèse.

Ces méthodes sont appliquées aux données de dégradation des LEDs organiques et des isolateurs
de paires torsadées. Pour cela, des bancs de vieillissement accéléré et multifactoriel sont conçus sur la
base de plans d’expériences factoriels et de méthodes de surface de réponse, afin d’optimiser le coût
des expériences. Ensuite, un protocole de mesure est décrit, afin d’optimiser le temps d’inspection
et de collecter des données périodiques.

Enfin, les méthodes d’estimation traitent des modèles de dégradation déterministes sans con-
trainte basés sur les données mesurées. Le meilleur modèle empirique de la trajectoire de dégradation
est alors choisi en fonction de critères de sélection de modèles.

Dans un second temps, les paramètres des trajectoires de dégradation sont modélisés en fonction
des contraintes opérationnelles. Les paramètres des facteurs de vieillissement et de leurs interactions
sont estimés par régression multilinéaire et selon différents ensembles d’apprentissage. La significa-
tivité des paramètres est évaluée par des méthodes statistiques si possible. Enfin, la durée de vie
des expériences dans les ensembles de validation est prédite sur la base des paramètres estimés par
les différents ensembles d’apprentissage. L’ensemble d’apprentissage qui présente le meilleur taux de
prédiction de la durée de vie est considéré comme le meilleur.
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Abstract

Reliability of electrical components is an issue studied to improve the quality of products, and to
plan maintenance in case of failure. Reliability is measured by studying the causes of failure and
the mean time to failure. One of the methods applied in this field is the study of component aging,
because failure often occurs after degradation.

The objective of this thesis is to model the degradation of components in electrical engineering,
in order to estimate their lifetime. More specifically, this thesis will study large area organic white
light sources (OLEDs). These sources offer several advantages in the world of lighting thanks to their
thinness, their low energy consumption and their ability to adapt to a wide range of applications.
The second components studied are electrical insulators applied to pairs of twisted copper wires,
which are commonly used in low voltage electrical machines.

First, the degradation and failure mechanisms of the various electrical components, including
OLEDs and insulators, are studied. This is done to identify the operational stresses for including
them in the aging model.

After identifying the main causes of aging, general physical models are studied to quantify the
effects of operational stresses. Empirical models are also presented when the physics of degradation
is unknown or difficult to model.

Next, methods for estimating the parameters of these models are presented, such as multilinear
and nonlinear regression, as well as stochastic methods. Other methods based on artificial intelli-
gence and online diagnosis are also presented, but they will not be studied in this thesis.

These methods are applied to degradation data of organic LEDs and twisted pair insulators.
For this purpose, accelerated and multifactor aging test benches are designed based on factorial
experimental designs and response surface methods, in order to optimize the cost of the experiments.
Then, a measurement protocol is described, in order to optimize the inspection time and to collect
periodic data.

Finally, estimation methods tackle unconstrained deterministic degradation models based on the
measured data. The best empirical model of the degradation trajectory is then chosen based on
model selection criteria.

In a second step, the parameters of the degradation trajectories are modeled based on operational
constraints. The parameters of the aging factors and their interactions are estimated by multilinear
regression and according to different learning sets. The significance of the parameters is evaluated
by statistical methods if possible. Finally, the lifetime of the experiments in the validation sets is
predicted based on the parameters estimated by the different learning sets. The training set with
the best lifetime prediction rate is considered the best.
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Résumé de la thèse en français

Chapitre 1: L’état de l’art, motivation de l’étude de la dégradation
Le premier chapitre présente les notions de fiabilité en général, et plus particulièrement celles

liées à la défaillance. Les modes de défaillance sont ensuite classés en fonction de leurs causes et de
leurs conséquences. Ainsi, le mode de défaillance progressif basé sur le vieillissement des composants
est choisi pour être étudié dans cette thèse. Ce choix est basé sur le fait que la défaillance survient
souvent après une dégradation.

L’étude du vieillissement peut se faire selon plusieurs stratégies telles que l’approche expérimen-
tale, les approches basées sur des modèles, le savoir-faire des experts, ou les approches basées sur des
données. Cette thèse étudie l’approche par modèles pour comprendre l’évolution de la dégradation
en fonction des conditions de fonctionnement.

Afin de modéliser la dégradation, les conditions de vieillissement de divers composants du génie
électrique et leurs mécanismes de dégradation sont étudiées. Les catégories de différents composants
comprennent les métaux, les semi-conducteurs et les micro-électroniques, les systèmes de stockage
d’énergie et les diélectriques. Les mécanismes de vieillissement communs à toutes ces catégories sont
la fatigue, l’usure, la corrosion, la modification des paramètres électriques, etc.

En particulier, deux composants électriques sont étudiés dans cette thèse ; les premiers com-
posants sont les sources de lumière blanche organiques à grande surface (OLEDs). Ces sources
offrent plusieurs avantages dans le monde de l’éclairage grâce à leur finesse, leur faible consommation
d’énergie et leur capacité à s’adapter à de larges domaines d’application. Les seconds composants
étudiés sont des isolants électriques appliqués à des fils de cuivre, qui sont couramment utilisés dans
les machines électriques à basse tension. Les facteurs de vieillissement communs à ces deux com-
posants sont les facteurs électriques et thermiques.

La modélisation de la dégradation nécessite également des données concrètes, pour lesquelles des
essais de vieillissement doivent être réalisés. Parmi ces tests, il y a le vieillissement normal et le
vieillissement accéléré. De plus, les tests peuvent appliquer des méthodes de mesure destructives ou
non destructives. Dans cette thèse, seules les méthodes de vieillissement accélérées et non-destructives
(ce qui est original) seront testées pour la modélisation.

Enfin, les méthodes de prétraitement, d’analyse et de post-traitement des données sont présentées
pour être appliquées dans les chapitres suivants.

Chapitre 2 : Synthèse des modèles de dégradation dans la littérature
Le deuxième chapitre se concentre sur les modèles de dégradation présents dans la littérature.

Les modèles de dégradation des composants électriques peuvent être divisés en deux catégories: les
modèles basés sur la physique de dégradation et les modèles empiriques basés sur les données.

Les modèles basés sur la physique de la dégradation incluent un ou plusieurs des facteurs les plus
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influents, ainsi que des paramètres liés aux mécanismes de dégradation de chaque composant. Le
modèle d’Arrhenius, par exemple, modélise le taux de dégradation en fonction de la température
et de l’énergie d’activation de la réaction chimique à l’origine de la dégradation. D’autres modèles
physiques sont le modèle d’Eyring qui modélise le taux de dégradation en fonction de la température
et d’un autre facteur tel que la charge mécanique, la densité de courant ou l’humidité.

Ces modèles ne modélisent que le taux de dégradation et ne définissent pas la trajectoire de dégra-
dation en fonction du temps. De plus, ces modèles incluent des paramètres physiques qui nécessitent
une connaissance approfondie des mécanismes de dégradation. Par ailleurs, les modèles empiriques
sont des modèles qui définissent des trajectoires générales que suit un indicateur de vieillissement en
fonction du temps de vieillissement. Par exemple, un indicateur peut avoir une dégradation linéaire,
exponentielle ou inversement proportionnelle au temps de vieillissement. Ces modèles empiriques
présentent des méthodes générales qui peuvent être appliquées à n’importe quel produit électrique,
mais ils n’incluent aucun facteur de vieillissement.

Concernant les OLEDs, les modèles de dégradation existants dans la littérature sont des modèles
semi-empiriques, qui sont un mélange des deux méthodes présentées ci-dessus. Le modèle empirique
de base pour ces composants est le "Stretched Exponential Decay", dont les paramètres sont mod-
élisés avec un seul facteur au maximum (courant ou température). L’indicateur de vieillissement
utilisé dans la modélisation est souvent la luminance des OLEDs. Quant aux isolants, la majorité des
modèles de la littérature se limitent à la modélisation de la durée de vie. Les modèles utilisés sont
également des modèles semi-empiriques exponentiels ou de type "puissance", où les facteurs les plus
modélisés sont la température, la tension et le champ électrique. Seul le modèle de Simoni modélise
de manière exponentielle le taux de dégradation en fonction de la contrainte thermique et électrique.
Ce taux de dégradation n’est pas indiqué et peut être un indicateur d’un vieillissement quelconque.
En revanche, les modèles présentés ci-dessus nécessitent l’estimation de leurs paramètres. Cette es-
timation se fait par des méthodes déterministes ou stochastiques. La méthode déterministe la plus
couramment utilisée est la régression, qu’elle soit linéaire, non linéaire ou multidimensionnelle. La
régression peut inclure des algorithmes d’estimation robustes ou pondérés. En outre, elle permet
d’estimer l’intervalle de confiance de la trajectoire de dégradation.

D’autres méthodes d’estimation sont basées sur des processus stochastiques, où pour les mêmes
conditions de vieillissement, il existe plusieurs trajectoires de dégradation. Ces méthodes sont utilisées
lorsqu’il y a une grande source de danger, et ne seront pas détaillées dans cette thèse.

Enfin, il existe dans la littérature des méthodes de prédiction de l’évolution du vieillissement
basées sur l’intelligence artificielle. Ces méthodes sont basées sur un grand nombre de données et
utilisent en entrée les conditions de vieillissement pour prédire en sortie les indicateurs de dégrada-
tion. Ces méthodes sont très efficaces pour la prédiction mais elles nécessitent une grande taille de
données et ne sont pas basées sur un modèle de dégradation, ce qui est l’objectif de cette thèse. Pour
ces raisons, elles ne seront pas étudiées dans la suite.

Chapitre 3 : Conception d’expériences, applications aux LEDs organiques et isolants
des paires de fils de cuivre torsadées

Précédemment, des modèles empiriques et physiques sont présentés, qui nécessitent des données
pour estimer leurs paramètres. Ces données sont obtenues par des expériences menées au laboratoire.
Les expériences sont planifiées en 5 étapes : établir l’objectif de l’expérience, développer une stratégie,
créer un plan, mettre en œuvre le plan, puis observer et analyser les résultats.

Les objectifs de ces expériences sont de surveiller la dégradation des composants tout au long du
processus de vieillissement et de prédire avec précision la durée de vie des composants sous différentes
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contraintes.

La stratégie de l’expérience est basée sur la méthode des plans d’expériences. En effet, les mod-
èles présentés dans le chapitre précédent n’incluent pas plusieurs facteurs, ni n’estiment l’interaction
entre les facteurs. Les paramètres des modèles semi-empiriques de dégradation peuvent également
être modélisés en fonction des contraintes opérationnelles, afin de les inclure.

Le plan d’expériences permet d’avoir des données multifactorielles, car il permet de réaliser des ex-
périences sous plusieurs contraintes en même temps. Le plan d’expériences factoriel par exemple, per-
met de placer les expériences orthogonalement dans un plan dont les axes sont les contraintes opéra-
tionnelles dont les effets sont à quantifier. Cette méthode permet d’optimiser le nombre d’expériences
à choisir, si la relation entre les contraintes opérationnelles et le résultat (taux de dégradation par
exemple) est linéaire.

Dans le cas où la relation entre les contraintes opérationnelles et le résultat est du second ordre
ou plus, la stratégie des expériences à réaliser peut être basée sur la méthode des surfaces de réponse.
Les autres méthodes de plans d’expériences existantes dans la littérature sont les plans optimaux (les
plans factoriels en font partie) et la méthode "un facteur à la fois" (OFAT).

Après avoir défini la stratégie d’expérimentation, l’étape suivante consiste à créer un plan. Dans ce
plan, il faut définir le nombre de composants à mettre dans chaque expérience, le nombre d’inspections
à effectuer pendant le processus de vieillissement, et le temps maximum avant d’arrêter l’expérience
si aucune défaillance ne se produit.

La quatrième étape consiste à mettre en œuvre le plan créé. Pour cela, deux bancs d’essai sont
utilisés, l’un pour les LED organiques et l’autre pour les isolateurs des paires de fils de cuivre tor-
sadées.

Le banc de vieillissement des LED organiques se compose de trois fours thermiques reliés à des
sources de courant continu pour appliquer des contraintes à la fois thermiques et électriques. Les
sources de courant alimentent les OLED de manière continue ou cyclique par l’intermédiaire d’un
dispositif électronique. Ainsi, trois facteurs de vieillissement sont testés à des niveaux plus élevés
que leurs valeurs nominales pour un vieillissement accéléré : la température, le courant et le cyclage
électrique.

La campagne d’essais teste un plan expérimental basé sur différents plans factoriels et surfaces de
réponse. Pendant la campagne, les caractéristiques des OLEDs sont mesurées périodiquement. Ces
caractéristiques comprennent des mesures optiques comme la luminance et des mesures électriques
comme l’impédance. D’autres mesures sont également effectuées avant le début de la campagne pour
bien la planifier, comme les mesures de la réponse transitoire de la température, du courant et de
la tension. Des photos à faible courant sont également prises avant le début de la campagne pour
détecter les OLED défectueuses.

D’autre part, le banc de vieillissement des isolants consiste à fabriquer les paires torsadées (con-
trairement aux OLEDs qui sont des produits industriels). Les paires sont ensuite placées dans des
fours électriques sous une tension inférieure à la tension d’inception des décharges partielles (PDIV).
En plus des contraintes thermiques et électriques, les paires sont testées à deux niveaux de haute
fréquence.

La campagne d’essais teste plusieurs plans expérimentaux factoriels et fractionnaires. La PDIV
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de ces paires est ensuite mesurée périodiquement pendant la campagne, jusqu’à la défaillance des
paires ou l’arrêt de l’expérience.

Chapitre 4 : Méthodes de modélisation de la dégradation sans contraintes avec appli-
cation aux OLED et aux isolateurs de machines

Dans ce chapitre, la dégradation de la luminance des LEDs organiques et l’évolution de la PDIV
des isolateurs de paires torsadées sont modélisées. Cette modélisation n’inclut pas de contraintes de
vieillissement, mais se concentre sur le choix approprié de modèles semi-empiriques pour les trajec-
toires de dégradation.

Pour bien choisir les modèles et estimer leurs paramètres, un prétraitement des données est ef-
fectué afin de les classer en différents groupes. Les expériences sont ensuite classées selon plusieurs
critères, tels que le nombre d’échantillons affectés à cette expérience, ou si les intervalles de temps de
vieillissement entre chaque mesure sont uniformes ou non, etc. En plus de ces critères, la présence de
temps de défaillance avec les données de dégradation est un critère de classification lié uniquement
aux isolateurs car il est possible que les isolants aient une rupture causée par des décharges partielles.

Après avoir nettoyé les données, la dégradation de la luminance des OLEDs est ensuite modélisée
de façon déterministe en suivant une trajectoire linéaire ou en suivant le modèle "Stretched Expo-
nential Decay". Plusieurs méthodes d’estimation sont appliquées pour estimer les paramètres de ces
modèles. Ces méthodes comprennent la régression linéaire de base, la régression linéaire robuste pour
éliminer toutes les valeurs aberrantes, la régression linéaire pondérée pour représenter équitablement
tous les échantillons d’une même expérience. Enfin, dans le même but de représenter équitablement
tous les échantillons d’une expérience, la dégradation de la luminance de chaque spécimen d’OLED
est modélisée séparément, puis la moyenne des paramètres de chaque échantillon est considérée pour
l’ensemble de l’expérience.

Le modèle exponentiel est modélisé par une régression non linéaire, qui nécessite la définition
d’algorithmes récursifs, de paramètres de départ et de limites de paramètres. La régression non
linéaire a également le choix d’être robuste ou pondérée.

Pour choisir le meilleur modèle pour chaque expérience, et la meilleure estimation de ses paramètres,
des critères de sélection de modèle sont utilisés, tels que le coefficient de détermination R2, et le critère
d’information d’Akaike AIC. Enfin, la méthode de modélisation qui a été la meilleure par expérience
le plus de fois est choisie comme la meilleure pour représenter la dégradation générale de la luminance
des OLEDs.

D’autre part, l’évolution de la PDIV des isolants est modélisée selon deux modèles empiriques
exponentiels et de puissance. Les méthodes d’estimation sont basées sur la régression non linéaire,
ou il y a la possibilité d’être robuste pour éliminer les valeurs aberrantes. Cependant, l’algorithme
le plus important est l’estimation pondérée qui est utilisée pour augmenter le poids de toutes les
données mesurées avant l’échec d’un échantillon de l’expérience. De même, le meilleur modèle est
choisi en fonction des critères présentés ci-dessus.

Chapitre 5 : Méthodes de modélisation de la dégradation sans contraintes avec appli-
cation aux OLED et aux isolateurs de machines

Dans ce chapitre, l’influence des contraintes de vieillissement sur la dégradation de la luminance
des LEDs organiques et l’évolution de la PDIV des isolateurs à paires torsadées sont quantifiées. Pour
les LEDs organiques, trois facteurs sont modélisés, la température, le courant et le mode de cyclage
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électrique. Pour les isolants, les facteurs sont la température, la tension et la fréquence. Ainsi, les
contraintes étudiées dans cette thèse sont uniquement les contraintes thermiques et électriques.

Les paramètres des trajectoires de dégradation sont modélisés en fonction des facteurs de con-
trainte, afin de quantifier leur influence sur la vitesse de dégradation. Pour ce faire, nous vérifions
d’abord que tous les paramètres identifiés ne suivent pas une loi de distribution normale grâce à des
tests statistiques. Cela permet de montrer que les contraintes ont une influence non aléatoire sur la
variation des paramètres.

Dans une deuxième étape, la relation entre les paramètres et chaque contrainte est identifiée
séparément des autres facteurs. Ceci est fait en considérant toutes les expériences qui partagent le
même niveau de stress de ce facteur étudié. Notez que cette étude utilise les paramètres de dégra-
dation linéaire de la luminance des OLEDs comme exemple, mais elle peut être appliquée pour tous
les autres modèles également. Ainsi, il a été possible de déterminer que le courant a une relation
quadratique avec la pente de dégradation par exemple. N’ayant que trois niveaux de température
testés, il n’a pas été possible de bien modéliser sa relation avec les paramètres. Pour cela, nous avons
eu recours à des modèles physiques qui indiquent que la température a une relation inversement
proportionnelle avec le taux de dégradation.

Ensuite, un modèle général qui incorpore non seulement des facteurs quantitatifs mais aussi des
facteurs qualitatifs comme le cyclage, en plus des interactions entre les facteurs, est étudié. Les re-
lations entre les paramètres et les facteurs sont estimées par une régression multilinéaire en utilisant
différents ensembles d’apprentissage. Une transformation des facteurs est effectuée afin de présenter
correctement la relation quadratique entre le courant et le taux de dégradation par exemple. Les
ensembles d’apprentissage comprennent des plans factoriels complets et fractionnaires et des surfaces
de réponse. Les effets estimés des facteurs sont ensuite comparés entre eux pour chaque ensemble
d’apprentissage, afin d’identifier les effets les plus significatifs. La significativité des effets est égale-
ment mesurée par un test d’analyse de la variance si possible.

Cependant, le critère de sélection le plus important de l’ensemble d’entraînement est la prédiction
de la pente de dégradation des expériences qui font partie des ensembles de validation. La pente de
dégradation prédite est utilisée pour prédire la durée de vie de l’OLED, lorsque le niveau de lumi-
nance chute à 70% de sa valeur initiale. Ainsi, si la durée de vie prédite est incluse dans l’intervalle
de confiance de la durée de vie réelle estimée/mesurée de l’expérience, la prédiction est acceptée. De
plus, l’erreur de prédiction relative entre la durée de vie mesurée et prédite est calculée afin de choisir
le modèle d’apprentissage qui a l’erreur de prédiction la plus faible et les durées de vie prédites les
plus acceptées.

Enfin, afin d’avoir un modèle plus généralisé, des données d’autres types d’OLEDs (provenant
de thèses précédentes) sont incorporées dans l’étude pour confirmer l’estimation des facteurs. Fi-
nalement, l’influence des facteurs sur le taux de dégradation de la PDIV des isolants est également
étudiée en suivant la même procédure que celle utilisée pour les OLEDs.
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General introduction

Nowadays, the industrial market faces many challenges such as competition between companies,
meeting the requirements of safety standards and greener production, as well as meeting customer
expectations. Specifically, the industry includes electrical systems almost everywhere in the modern
world, from power generation, to transportation, telecommunications and logistics. Since electrical
systems could take their share in the failures of industrial components, there is a need to manufacture
highly reliable and safe electrical products with improved quality. Given the industrial competition,
companies need to develop fast manufacturing processes, which include reliability assessment. In
fact, the study of the reliability of a product consists mainly in evaluating its life span and the
causes of its failure. However, destructive failure studies are very costly because most of the failed
components cannot be repaired. Moreover, for highly reliable components, it may take several years
before a failure is observed, which is not possible due to production time constraints.

In this manner, another reliability assessment is possible, based on the study of the behavioral
degradation of components. This is possible because most failures often occur after a degradation.
The study of degradation is therefore about understanding the mechanisms at the origin of degra-
dation and identifying a threshold below which an aged component has a high probability of failure.
This field is very broad and addresses different challenges such as and finding some indicators able
to predict the failure and modeling the degradation of this indicator as a function of the reaction
causing the failure.

This method requires a thorough understanding of the failure mechanisms, which is not always
possible, especially considering that the failure mechanisms are sometimes intertwined. Degradation
can also be measured using real-time monitoring or predicted using artificial intelligence methods.
However, these techniques do not really identify a general method that can be generalized for the
particular component, which can be very costly especially if the product is still being conceptualized.
Other methods are based on stochastic modeling of degradation, which is mainly applied if degra-
dation is caused by unidentified random processes. This is not the case for the study of product
reliability, especially when degradation experiments are performed in a controlled context.

Finally, deterministic approaches based on the identification of degradation trajectories of elec-
trical components can help to assess reliability. These approaches consists of empirical degradation
models that are simple to use, which are developed in this PhD thesis, with the following objectives:

• Modeling degradation paths of electrical components as a function of time

• Identifying a limit below which the degradation path reaches a failure stage

• Predicting accurately the uncertainty of this threshold

• Modeling of degradation trajectories of electrical components with different stress constraints
that are common to all electrical systems

• Aging of electrical components under constant and dynamic constraints
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• Studying the effect of the interaction of these constraints on the degradation rate of electrical
components

• Identifying a good criterion for model selection, in order to evaluate the effectiveness of the
models

• Verifying of the modeling approach using different types of electrical components

• Defining of a non-accelerated degradation procedure so as not to modify the degradation mech-
anisms under normal operating conditions

Keeping in mind these objectives, the PhD thesis is structured as follows:
The first chapter will present the notions of reliability in general, and more particularly those

related to failure. The progressive failure mode based on component aging is chosen to be studied
in this thesis. More particularly, this thesis will study the model-based approach to understand the
evolution of degradation as a function of operating conditions.

In order to model degradation, the aging conditions of various electrical engineering components
and their degradation mechanisms will be studied. In particular, two electrical components will be
studied in this thesis; the first components are large area organic white light sources (OLEDs). These
sources offer several advantages in the world of lighting due to their thinness, low power consumption
and their ability to adapt to large application areas. The second components studied are electrical
insulators applied to enamelled copper wires, which are commonly used in low voltage electrical
machines. The aging factors common to these two components are electrical and thermal factors.

Finally, degradation modeling requires defining the test methods applied, as well as data analysis,
which will be presented in this chapter.

The second chapter will focus on the degradation models present in the literature. Degradation
models for electrical components can be divided into two categories: degradation physics-based
models and empirical data-based models.

A survey of the present physics-based and empirical degradation models found in literature will
be presented, and the main degradation models used for OLEDs and insulators will be listed.

On the other hand, these models require the estimation of their parameters. Therefore, several
estimation methods and their application to electrical components will be presented. In particular,
deterministic methods based on regression analysis will be detailed.

Considering that empirical and physical models require data to estimate their parameters, these
data are obtained through experiments conducted in the laboratory. The steps for planning an
experiments will be listed in the third chapter including defining the objectives of each experiment
and the strategy used. A focus on the design of experiments methodology will be made, to optimally
perform multi-factorial experiments.

The experimental campaigns will be detailed for two electrical components, one for organic LEDs
and one for twisted pairs of enamelled copper. These campaign will include aging the components
under thermal and electrical, constant and cyclic, stress factors.

In the fourth chapter, the luminance degradation of organic LEDs and the PDIV evolution of
twisted pair insulators will be modeled. This modeling will not include aging constraints, but shall
focus on the appropriate choice of semi-empirical models for the degradation trajectories.

Based on several model selection criteria, the modeling method that is best per experiment the
most times will be chosen as the best one to represent the overall luminance degradation of OLEDs
and the Partial Discharge Inception Voltage (PDIV) evolution of the twisted pairs of enamelled cop-
per wires.
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In the last chapter, the influence of aging stresses on the luminance degradation of organic LEDs
and the evolution of the PDIV of twisted pair of insulators will be quantified. For organic LEDs,
three stress factors will be modeled, temperature, current and electrical cycling mode. For insulators,
the factors will be temperature, voltage and frequency. Thus, the constraints studied in this thesis
will be only thermal and electrical stresses factors.

The parameters of the degradation trajectories will be modeled as a function of the stress factors,
in order to quantify their influence on the degradation rate. For this purpose, several training sets
will be used, where the estimated effects of the stress factors are compared to each other to identify
the most significant effects. The best model is selected based on its efficiency to predict either the
decay evolution or the lifetime of experiments that are not part of the training set.

The last part of this thesis will present some conclusions with the key outcomes of this PhD study
and some perspectives for future work.

xxi



xxii



Contents

Acknowledgements iii

Résumé v

Abstract vii

Résumé de la thèse en français ix

List of publications xv

Acronyms xvii

General introduction xix

1 State of the art: Motivation of studying degradation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reliability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Basic concepts of reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Failure Modes and Analysis Effect . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Reliability assessment based on performance data . . . . . . . . . . . . . . . . . 7
1.2.4 Objectives of degradation modeling . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Degradation learning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Survey of applications in electrical engineering . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Semiconductors and microelectronics . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Energy storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.4 Dielectrics and insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.5 Common degradation mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Focus on OLEDs and insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 OLED components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Dielectric insulators materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Degradation test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.1 Destructive vs non destructive degradation analysis . . . . . . . . . . . . . . . 17
1.6.2 Accelerated degradation testing vs accelerated life testing . . . . . . . . . . . . 18

1.7 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.1 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xxiii



2 Degradation models 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Physical-based degradation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Arrhenius model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Eyring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Peck’s temperature–humidity model . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Black’s model for current density . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Solder based fatigue models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Conclusion on the physical-based models . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data-driven empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Typical degradation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 The exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Inverse power law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Conclusion on the Data-driven empirical models . . . . . . . . . . . . . . . . . 30

2.4 Degradation models of OLEDs and insulators . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 OLED degradation modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Insulation degradation modelling, limited to lifetime . . . . . . . . . . . . . . . 33

2.5 Regression-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1 Degradation path curve approach . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Robust regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 Regularized regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.6 Sample size determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.7 Meta-regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Advanced algorithms: machine learning models . . . . . . . . . . . . . . . . . . . . . . 43
2.6.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.2 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.3 Online models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Stochastic modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.8 Modelling with dynamic covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.1 OLED cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.2 Insulators cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8.3 Dynamic aging of other components . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Experimental design 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Design of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Establish a goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Develop a strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Create a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.4 Implement the plan and analyse the results . . . . . . . . . . . . . . . . . . . . 61

3.3 OLED experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 GL55 experimental campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 OLEDWorks experimental campaign . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2.1 Transient response of voltage and temperature . . . . . . . . . . . . . 68
3.3.2.2 Optical measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2.3 Electrical characterization . . . . . . . . . . . . . . . . . . . . . . . . . 70

xxiv



3.3.2.4 Surface characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2.5 Experimental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.3 Conclusion on OLED experiments . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Insulators experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Production of the twisted pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Test bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.3 Measurement procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.4 Experimental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Degradation modeling methods without covariates, with application to OLEDs
and machine insulators 85

5 Degradation modeling methods with covariates, with application to OLEDs and
machine insulators 87

Conclusion and outlook 89

A Data 93
A.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 Anderson-Darling test for goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.5 Model selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.6 Trade-off table for fractional factorial models . . . . . . . . . . . . . . . . . . . . . . . 102

B Data sheets 103
B.1 OLEDWorks FL300L ww OLED panel Datasheet . . . . . . . . . . . . . . . . . . . . . 104
B.2 Iberfil C Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.3 Philips Lumiblade Oled panel GL55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C Measurement devices 113
C.1 Modulab XM MTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.2 Konika Minolta CS1000 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.3 Pearson current monitor model 6585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D Abrupt change algorithm 119
D.1 Abrupt change algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E Stochastic processes 123
E.1 General processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.2 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.3 Degradation processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.4 Wiener modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
E.5 Application of a Wiener process to OLEDWorks experimental design . . . . . . . . . . 127

F Online Models 133
F.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xxv



G Additional information for chapter 5 139
G.1 OLEDWorks experimental design: Current and temperature relationship with the

intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
G.2 OLEDWorks experimental design: Model 2 with variation . . . . . . . . . . . . . . . . 140
G.3 Insulator experimental plan: Prediction of PDIV evolution for some experiments below

200 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xxvi



List of Figures

1.1 Steps of industrial production according to [41] . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Possible realization of the load and the strength of an item leading to a its failure

(according to [179]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Failure modes(from [29]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The classical bathtub curve based on a hazard Weibull distribution over time ( from

[120]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Examples of degradation of metal properties . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Examples of degradation of semiconductors and microelectronics . . . . . . . . . . . . 11
1.7 Examples of insulation defects in high voltage electrical systems . . . . . . . . . . . . . 12
1.8 OLED technology: concept and applications . . . . . . . . . . . . . . . . . . . . . . . . 14
1.9 Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 A simulated data of a linear degradation of random component . . . . . . . . . . . . . 37
2.2 Model fitting and confidence intervals for the simulated data of Fig. 2.1 . . . . . . . . 38
2.3 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 SVM perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 The possible constant and dynamic stress profiles . . . . . . . . . . . . . . . . . . . . 49
2.6 Cyclic profile applied to OLEDs: (a) 10 min bias voltage pulse, with varied relaxation

time in between successive pulses, (b) its luminance response and (c) its recoverable
luminance as a function of relaxation time [178] . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Three factors factorial designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Two factor response surface designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 OLED panel GL55, compared to a pen in size . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Experimental design for GL55 OLED panels . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Luminance aging data of OLED GL55 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Equivalent electrical circuits of OLEDs in literature . . . . . . . . . . . . . . . . . . . 64
3.7 Evolution of the threshold voltage of the IV curve of OLED GL55 at three current

densities and one temperature (from [19]) . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8 OLED panel OLEDWorks FL300 L ww, compared to a pen in size . . . . . . . . . . . 66
3.9 Aging test bench for OLED panels under thermal, constant and cyclic electrical stress 67
3.10 Transient response of an unaged OLED at ambient temperature and nominal current . 68
3.11 Transient response of OLEDs at 600 mA and different temperature . . . . . . . . . . . 69
3.12 Photometric measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.13 Impedance spectroscopy set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.14 Impedance spectroscopy measurement by applying several bias voltage levels and fit-

ting the measurement to the equivalent circuit of Fig. 3.6b . . . . . . . . . . . . . . . . 72
3.15 CV curve using two measurement devices: the Modulab with high sampling rate and

noise, and the Keithley with high precision but low sampling rate . . . . . . . . . . . 72
3.16 Fast electrical transient response of large-area OLED panels, measured repeatedly at

different voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.17 Photos of different OLEDs at 20 µA, and 1′′ exposition time . . . . . . . . . . . . . . . 74

xxvii



3.18 Photos of a burned OLED with its luminance mapping . . . . . . . . . . . . . . . . . . 75
3.19 The experimental aging conditions for OLEDWorks OLED panels . . . . . . . . . . . . 76
3.20 The current cycling profile of the OLEDWorks experimental design . . . . . . . . . . . 77
3.21 Fabrication of twisted pairs of enamelled copper wires . . . . . . . . . . . . . . . . . . 79
3.22 Photos of the twisted pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.23 Aging test bench of twisted pairs under thermal and electrical stress . . . . . . . . . . 80
3.24 Electrical characterization of a twisted pair before and after a partial discharge . . . . 82
3.25 The experimental aging conditions for the twisted pairs insulation . . . . . . . . . . . 83
A.1 Shapes of population distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2 The critical value of the AD test for normal distribution, at different significance level

(from Wikipedia) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.3 Graphical representation of sum of squared deviations from the prediction (SSE) and

from the mean value of data (SST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.4 F density curve and the critical value for F-tests . . . . . . . . . . . . . . . . . . . . . 98
A.5 Fisher critical value for 5 % significance level ( from [4]) . . . . . . . . . . . . . . . . . 100
A.6 Trade off table of the design of experiment to accurately choose the number of exper-

iments for a full and fractional factorial design depending on the number of factors
[68] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

E.1 A degradation process example from [114] . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.2 Stochastic degradation modeling of the second replication of experiment 14 of OLED-

Works experimental plan: (a) The joint confidence interval of the estimated parameters
of interest µ̂ and σ̂2 (b) Comparison between the deterministic part of the process and
the ordinary linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.3 Stochastic degradation modeling of data from experiments #10 and #2 of the OLED-
Works experimental plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

F.1 Online Kalman prediction of experiment #13 from the OLEDWorks experimental plan 136
F.2 Online Kalman prediction of experiment #3 from the OLEDWorks experimental plan 137
F.3 Online Kalman prediction of experiment #3 from the OLEDWorks experimental plan,

when the covariance of the process noise factor is not null. . . . . . . . . . . . . . . . 137
G.1 OLEDWorks experimental plan: Relationship between the estimated intercept of OLR

model and temperature, and current for each other stress level . . . . . . . . . . . . . 139
G.2 OLEDWorks experimental design: Effect estimates of model 2, with 45 observations,

and its ANOVA table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
G.3 Insulator experimental design: Prediction of PDIV evolution for experiment 12 at

480 V, 200 °C and 10 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
G.4 Insulator experimental design: Prediction of PDIV evolution for experiment 10 at

450 V, 150 °C and 4 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xxviii



List of Tables

1.1 Model selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Levels distribution of three-factor factorial designs . . . . . . . . . . . . . . . . . . . . 58
3.2 Technical characteristics of OLED panel GL55 . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Technical characteristics of the OLED panel OLEDWorks FL300 L ww . . . . . . . . . 66
3.4 5 % response time of the organic temperature of OLEDs . . . . . . . . . . . . . . . . . 69
3.5 Specification of the enamelled copper wires used for the twisted pairs . . . . . . . . . . 78
A.1 ANOVA table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
E.1 Increments of the degradation process Z(t) of the second replication of OLEDWorks

experiment #14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xxix



xxx



Chapter 1

State of the art: Motivation of
studying degradation

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reliability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Basic concepts of reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Failure Modes and Analysis Effect . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Reliability assessment based on performance data . . . . . . . . . . . . . . . . 7
1.2.4 Objectives of degradation modeling . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Degradation learning strategies . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Survey of applications in electrical engineering . . . . . . . . . . . . . . . 9

1.4.1 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Semiconductors and microelectronics . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Energy storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.4 Dielectrics and insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.5 Common degradation mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Focus on OLEDs and insulators . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 OLED components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Dielectric insulators materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Degradation test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.1 Destructive vs non destructive degradation analysis . . . . . . . . . . . . . . 17
1.6.2 Accelerated degradation testing vs accelerated life testing . . . . . . . . . . . 18

1.7 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.1 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



2 CHAPTER 1

1.1 Introduction
A product must go through several stages, from design to manufacturing, as shown in Figure 1.1.
During this process, it is important to test the performance of the product and verify that there
are no defects that would lead the product to failure. This is where the study of what is called
"reliability", or the study of the immunity of the system to failures [173], comes in, especially from
a statistical point of view. Product reliability tests are performed throughout the process, when the
product is designed, manufactured and marketed. The International Electrotechnical Commission
(IEC) has defined reliability as the ability of a component to perform its appropriate functions under
certain conditions for a specified time [103]. In fact, reliability is related to quality, because when a
product is highly reliable, it indicates that it is of high quality, reliability being an important factor
in today’s quality criteria.

Figure 1.1: Steps of industrial production according to [41]

In engineering, the reliability of a component must take into account all stages of its life. The
decisions made at each step of the production process, illustrated by Fig. 1.1, will affect the perfor-
mance of the product and therefore its reliability. Indeed, two steps of this procedure, the prototype
test and the post manufacturing test, directly require a reliability study. However, other steps can
add more variability to reliability studies, as the quality of materials used in manufacturing, the
manufacturing process, transportation, and the installation process can differ from one product to
another, thus changing its reliability. Hazardous incidents encountered in production constitute the
"initial" variability that the reliability study must take into account. However, it is the operating
and maintenance conditions that differ from one customer to another. Thus, an overall reliability es-
timate takes into account the customer’s environment and usage profile, i.e. the operating conditions
of the product.

The operating conditions can lead to a degradation of the product, system or asset under study.
However, a degradation is not always related to reliability, because only the degradation that affects
the required function of the system is influential. When a degradation is minor, such as a change in
appearance, for example, it is not related to reliability. On the other hand, some degradations may
lead to system failure, which is directly related to the reliability and maintainability of the system
(terms that will be explained later). In this context, the degradation that would lead to a failure
plays an important role in the study of reliability. It is therefore important to study the failure
modes, and to understand which failure is induced by the system degradation.

In what follows, the concepts of reliability and degradation are introduced, as well as the failure
modes and effects analysis that would lead to reliability studies. On this basis, the study of degra-
dation, one of the failure modes, is selected, where its advantages and disadvantages, as well as the
objectives sought by degradation modeling, are listed.

The second part studies the approaches that can be adopted to learn about the degradation.
The strategies chosen in this thesis are the experimental and model-based approaches, which re-
quire a thorough understanding of the degradation mechanisms. Thus, part three presents several
examples of degradation in electrical engineering, such as the degradation of metals, semiconductors,
and dielectrics. In particular, the degradation mechanisms of organic light-emitting diodes and wire
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insulation are studied in depth.

Finally, one of the strategies chosen is the experimental approach, therefore degradation testing
methods are presented. The second strategy is degradation modeling, which requires data collection.
Thus, some concepts concerning data analysis are introduced.

1.2 Reliability study
1.2.1 Basic concepts of reliability
The basic concepts related to reliability, such as quality, availability, maintainability . . . are:

Reliability is the ability of an item to perform a required function, under given environmental and
operational conditions and for a stated period of time [103]

The item may be a component, a subsystem, or a complete system designed to perform one
or more required functions. To provide a service, the item may have one or a combination of
required functions. The reliability of an electrical system, according to the North American Electric
Reliability Council (NERC), has two aspects: adequacy and safety. Adequacy is the ability of the
electric system to meet overall electricity demand and customer energy needs at all times, taking
into account scheduled and reasonably expected outages of system elements. Security is the ability
of the electrical system to withstand sudden disturbances such as electrical shorts or unanticipated
losses of system elements [179].

Quality "The totality of features and characteristics of a product or service that bear on its ability to
satisfy stated or implied needs" (according to ISO 8402 [102]). Quality is defined as the conformity of
a product to specifications. While quality refers to the conformity of the product to its specifications
at the time of manufacture, reliability refers to its ability to continue to meet its specifications
throughout its useful life. Reliability is therefore an extension of quality in the temporal domain.

Availability The ability of a component to perform its required function at a given time or for a
given period of time[179]. When a system is not repairable, availability is equivalent to reliability.

Maintainability The ability of an item, under given conditions of use, to be maintained or restored
to a condition in which it can perform its required functions, when maintenance is performed under
given conditions and using prescribed procedures and resources[179]. This concept is valid only for
repairable systems.

Other concepts Concepts like safety, security and dependability are also related to reliability.
Safety is defined as the level of acceptable risk, and security as dependability with respect to prevention
of deliberate hostile actions[179]. Dependability is defined here as availability performance and its
influencing factors: reliability performance, maintainability performance and maintenance support
performance.

Reliability, depending on the case study, is measured in different ways:

1. Mean time to failure MTTF

2. Number of failures per time unit (failure rate)

3. Survival probability, or the probability that the system won’t fail in a time interval (0, t]
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4. Availability at time t, or the probability that the item is able to function at time t

Most of the methods listed above include failure studies to measure reliability. In this context, the
definition of failure is "the termination of the ability of an item to perform a required function" [97].
A failure occurs when the required function of the system cannot be performed, or has a performance
that does not meet the requirements. Figure 1.2 shows an example presented in [179], if a component
with a certain strength is subjected to a certain type of load, a failure will occur as soon as the load
is greater than the strength. The study of the reliability of systems or components then includes the

Figure 1.2: Possible realization of the load and the strength of an item leading to a its failure
(according to [179])

study of failures and it is therefore important to know all the causes and possible modes of failure,
it is a full-fledged study called FMEA, but will be presented briefly in what follows.

1.2.2 Failure Modes and Analysis Effect
Understanding failure modes is very important for improving product reliability, because when po-
tential failure modes and their impact are identified, appropriate corrective actions and plans can be
implemented. For instance, if excessive temperature causes a lamp to burn out prematurely, it would
be best to modify the design of the lamp to allow for better heat dissipation, or to add an additional
cooling process, etc.

FMEA, or Failure Modes and Effects Analysis, is a common process analysis tool used to identify
all possible failures in a design, manufacturing or assembly process, or product or service [3]. This
study is applied in many cases, like

• When a product is being designed or redesigned

• When the application conditions of an existing product change

• Before developing control plans for a new or modified process

• When improvement goals are planned for an existing product

• When failure analysis is performed on an existing product

• Periodically throughout the life of the product
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In this thesis, the FMEA study is required for the last two points mentioned above: FMEA
studies are performed periodically throughout the life of the product and when analyzing the fail-
ures of an existing product. Failure modes, however, differ from the cause of failure, as the former
means how the component or system failed, and the latter refers to the circumstances during design,
manufacture or use that led to a failure.

Failure can be caused by natural aging, the "primary" failure occurring under nominal system
operating conditions. Besides natural aging, it can be caused by external reasons like excessive
environmental stress, or by neighboring components like additional thermal, mechanical, electrical,
chemical or radioactive shock; the failure is then classified as secondary failure. Finally, transient
failure can be caused by an inappropriate control signal or by noise [90].

Many examples of natural and forced degradation, caused by conditions of use, neglect, inade-
quate skill levels, or poor documentation can be found in [32]. When considering the degradation
of engine oil quality in a car, for example, it may be natural due to the internal workings of the
engine. The engine has a natural abrasion of its moving parts that would infuse particles into the oil
over time, making the oil less effective. Forced oil degradation, on the other hand, occurs when the
wrong type or amount of oil is used, which deteriorates the quality of the oil more quickly. Another
example of forced degradation due to operating conditions is a refrigerator placed near an oven. In
this case, the refrigerator will have to work harder to perform its function than a fridge placed in a
cool area, i.e. use more energy to maintain the same temperature level.

Besides natural aging, system failure can be caused by inadequate design relative to the function
of the system, or by system weakness when stressed within the nominal range of the function. It can
also be caused by a manufacturing error, by a misuse of the system that causes stresses above the
standards, by a mishandling of the system or finally by aging because the probability of occurrence
increases with time [179].

Concerning failure modes, according to Blache and Shrivastava, there are two types of failures,
intermittent and extended failure [29]. An intermittent failure occurs for a very short period of time,
after which the system immediately returns to its dull operating norm. Some opinions doubt that
this mode should be considered a failure because the defective case is immediately repaired. The
second failure mode is called extended failure, or the failure that was not immediately addressed.
Extended failure is complete when the system cannot be repaired, it completely ceases to perform
its function. If the system does not perform its function, but not completely, due to redundancy for
example, the extended failure is partial.

Independently, a failure is said to be "sudden" when its probability is random, or in other words,
the failure was not expected, and it could not be predicted by monitoring the system or by measur-
ing the age of the asset. On the other hand, when the failure can be predicted by some condition
monitoring indicators, it is called "gradual" or "soft" failure, as opposed to "hard" failure when it is
sudden. Failure is called catastrophic when it combines a sudden and complete failure, and is con-
sidered degradation when it is partial and gradual. Fig. 1.3, taken from [29], shows the classification
of failure modes based on what has been explained above. Keeping in mind all the failure modes
presented earlier, the thesis will elaborate on degradation failure in what follows.

Note that the second term of the FMEA is the analysis of the effects caused by the failure modes
presented above. This analysis is part of the risk management study, along with failure analysis and
reliability estimation. Nevertheless, this thesis focuses only on degradation analysis, and not on risk
management or failure analysis to take precautions in operation for example. Therefore, the effects
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Figure 1.3: Failure modes(from [29])

of failure modes on the system will not be further developed.

As stated earlier, the thesis will focus on the gradual degradation that leads to eventual failure.
This study is part of the reliability degradation analysis, or the analysis of the occurrences. This
means that degradation occurs before any failure, and therefore provides more data and information
about the performance of the component than the time of failure. The data collection could lead to
maintenance scheduling, prediction of remaining life of the system, and reliability assessment.

Reliability degradation analysis consists of two types of studies, according to Vesley and Samanta
[219]: analysis of the time trends of degradation and analysis of the effect of maintenance on the per-
formance of components. Time trend analysis of degradation involves applying statistical techniques
to determine and evaluate the rate at which degradation is progressing and the increase in severity.
The effect analysis of maintenance on component performance, on the other hand, is performed when
corrective maintenance has been performed after a component has degraded to prevent failure. The
concept is to compare the degradation data of two components, one with a maintenance procedure
and the other without, to analyze the effect of maintenance on the performance of the component.
On the other hand, maintenance is not only performed to extend the overall life of a system, but also
to prevent catastrophic failures. In this case, there is usually no data collected for an aged component
without maintenance, and this data must be simulated, not measured. This is the case with nuclear
power plants, where it is not possible for the component to fail, as this would cause a catastrophic
failure of the system.

Additionally, maintenance based on performance data must take into account three criteria: eco-
nomic, structural and stochastic [213]. For example, maintenance of a system has an "economic
dependency", if there is a difference between the maintenance cost of several components and the
sum of their individual maintenance costs. There is also a "stochastic dependency", where the condi-
tion of one component can affect the condition of other components or their failure rate, e.g. a pump
can fail due to contact oxidation and bearing wear.
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In this thesis, the degradation of individual components that are not part of a system is studied.
Therefore, if the performance of the component deteriorates, it will not cause a catastrophic failure
of the system. Hence, no maintenance is required, as the components will be aged to a certain state
of failure, whether it is degradation below a certain threshold or destructive failure . . . Moreover, only
single components are studied, thus, any dependency between subsystems is not considered here.

In the following, reliability analysis based on the time trends of degradation only is studied
thoroughly.

1.2.3 Reliability assessment based on performance data
Reliability is required for complex systems and high-precision products, such as nuclear systems,
aerospace systems, underwater cables, and laser devices. Assessing reliability using traditional life
tests that record only failure times is not possible for these systems because they are designed to
operate for a long period of time without failure. Furthermore, in some cases, systems must not
reach a state of failure as this would have catastrophic consequences. To overcome these difficulties,
degradation testing is performed, where reliability is assessed based on performance data. However
this method has some limitations, that are discussed in the following;

Degradation testing is an important method for assessing the reliability of complex systems and
highly reliable products. These systems are designed to operate without failure for many years and
the failure process cannot be accelerated unless a new failure mode is introduced. Nevertheless, most
of the failure mechanisms can be attributed to underlying degradation processes (e.g., wear, stress
corrosion, impact, cracking, fatigue fatigue, etc) for which models may exist.

The effectiveness of a degradation, however, depends heavily on the adequacy of the model to
describe the process. For example, components can fail suddenly due to random events, such as
thermal and mechanical shocks that result in intense increases in stress [144]. If such events occur
in addition to the degradation process, they must be taken into account, typically using a Poisson
process for example [137].

On the other hand, since performance data are primarily used to study products that are highly
reliable and less likely to fail, there is a tendency to use accelerated degradation to assess lifetime.
In this case, very severe degradation can alter degradation performance, and it would cause extreme
damage and traumatic failure that would not necessarily occur under natural aging conditions [230].

In other circumstances, where a failure could actually occur, performance data would increase the
accuracy of failure detection. Because failure detection depends on many factors and measurements
can be noisy, following a degradation path that would lead to eventual failure would reduce the uncer-
tainty surrounding the time of failure. However, this method is not as optimal as simply measuring
failure, because performance data must be collected frequently, which requires a lot of effort and time.

Nevertheless, degradation modeling based on performance data, has many objectives that can
overcome the limitations presented above.

1.2.4 Objectives of degradation modeling
According to Samanta et al. [185], degradation modeling has the following objectives:

• To quantify and characterize the dynamics of degradation.

• To model and quantify the effects of aging on degradation characteristics.
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• To model and quantify the failure frequency of components and the effects of aging on this
frequency.

• To use component degradation modeling and degradation characteristics to plan component
operational activities and to avoid degradation.

• To estimate the frequency of failure of the component from the dynamics of the component
and its degradation characteristics.

• To develop a reliability model for component aging using degradation and failure information
as input for reliability and aging risk studies.

These objectives fall into different categories such as risk management, prognostic health man-
agement and reliability assessment. This thesis will focus on the first two objectives of degradation
modeling, namely to quantify the dynamics of degradation and the effects of aging on it. However,
the first step in modeling degradation is to select an approach to study degradation and achieve these
goals, in addition to understanding the dynamics of degradation, identifying the causes of degrada-
tion and what is affected by it. In addition, the approach chosen will determine whether it is useful
to study degradation or whether a failure study is more appropriate.

1.3 Degradation learning strategies

There are four groups of approaches that are used for prognosticating degradation models: Experience-
based approaches, model-based approaches, knowledge-based approaches, and data-based approaches
[84].

Experienced-based approaches Experiential Learning Theory (ELT) is "the process whereby
knowledge is created through the transformation of experience" [123]. It consists of a four-part cycle
beginning with concrete experience, followed by reflective observation, then abstract conceptualiza-
tion, and finally active experimentation; this method is used widely in education [20, 163]. In fault
prognostics, this is the well-known traditional approach to modeling reliability based on the distribu-
tion of event records for a population of identical elements. The most widely used distribution is the
Weibull distribution represented by the bathtub curve (Fig 1.4), and it is primarily used to describe
the three stages of failure: Early failure, represented by a decreasing Weibull rate, random failures,
represented by a constant rate, and wear-out failures represented by an increasing failure rate [120].

Experience-based approaches are implemented when failure data is available, and do not take
into account the degradation of an asset when predicting its life.

Model-based approaches Model-based approaches derive the explicit relationship between con-
dition variables and degradation/lifetime via mechanism modeling. They typically use physics-based
mathematical models and statistical models for an asset to be monitored, collecting input/output
data of its operation. These approaches are traditionally used to understand the progression of a
component’s failure mode as a function of operating conditions, and are thus used to estimate the
remaining useful life as a function of uncertainties in the component’s stress properties. Typically,
model-based prognostic approaches are only as good as their representative models for they require
specific knowledge of the system’s degradation mechanism and need many assumptions about the
operating conditions of the asset. For statistical models, it is often impossible to collect data for all
modes of system operating conditions in order to build a generalized model.
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Figure 1.4: The classical bathtub curve based on a hazard Weibull distribution over time ( from
[120])

Knowledge-based approaches Knowledge-based approaches, such as expert systems and fuzzy
logic systems, are algorithms written to solve problems usually solved by human specialists. These
approaches do not require a model like the two previous approaches, but are based on the If-Then
consequence for expert systems and on real world imprecision and non-statistical uncertainty for fuzzy
logic systems. Knowledge-based approaches are generally used in the field of artificial intelligence, and
are recently used in the field of fault diagnosis, where it is difficult to build accurate mathematical
models, providing predictive decisions for maintenance as an expert would have done in a very
humanlike and real-world manner. As much as these approaches have advantages, they also have
limitations, as they are very dependent on the decision of an expert who may not have full domain
knowledge, as fault cases are unique and human experts may not have encountered such situations
before. Even though they require less computation than neural network systems, for example, they
still present computational problems with the increasing number of rules to be considered.

Data-driven approaches Data-driven approaches are based on statistical and learning techniques
like multivariate statistical methods, black-box methods, and graphical models. Neural networks
(NNs) are the typical data-driven approach that is widely applied in prognostics because they can
learn the normal conditions of the system and determine whether there are irregularities in the in-
coming data. They do not require distributional assumptions like traditional approaches, nor do they
require prior knowledge of complex phenomena. Although approaches such as neural networks appear
simple and easy to execute, they require a large amount of representative training data, including
all operating conditions. The main problem with black box methods is their lack of transparency, as
the reason for a certain decision is unknown, which could block any future maintenance.

This thesis will be based on model-driven approaches, as it is the main method used for degra-
dation modelling. It is a mathematical and statistical approach used to quantify the dynamics of
degradation and the effects of aging on it. Nonetheless it requires good understanding of the com-
ponent’s degradation mechanisms which will be presented in the following.

1.4 Survey of applications in electrical engineering

In electrical engineering, the applications of degradation are quite broad and can be divided into
four main categories: Metals, semiconductors and microelectronics, dielectrics and insulators, energy
storage and transformations.
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1.4.1 Metals

Degradation of metal properties includes creep, crack initiation and propagation, wear, corrosion,
oxidation and rust. Shipilov has written a very interesting article presenting cases of catastrophic
failures in industry due to metal degradation, such as the failure of a steam turbine in a nuclear power
plant at Hinkley, England, or Beznau, Switzerland, etc [194]. Metals have many applications beyond
electrical engineering, but they play a major role in the failure of electrical motors for instance, due
to rotor bar failure or degradation in their rolling bearing. Broken motor bars are caused by galvanic
corrosion that distorts the current waveform and can even cause the metal to melt [125, 180]. Simi-
larly, wear on induction motor bearings due to corrosion, contamination, friction and poor lubrication
will increase their friction, causing speed and torque oscillations and reducing the average speed and
torque of the motor [99, 154].

Other examples of metallic degradation of systems are magnetic recording media, where degrada-
tion of the metallic magnetic moment under thermal stress and high water concentration can affect
system performance [148, 168]. Some capacitors have a ferroelectric layer that is very sensitive to
hydrogen ions degrading its coercive field and causing an undesirable leakage current density [46].
Surge arresters experience some degradation due to the uncertainty of various electrical stresses and
environmental pollution, so the return to the isolation mode is not perfect due to the degradation of
their metal-oxide blocks [146]. Applications that involve a high power microwave pulse, such as HPM
generators and linear electron gas pedal pedals, can cause mechanical stress on the metal present in
these applications, and thus degrade its conductivity and mechanical properties [172].

Overall, electrical engineering applications containing metals are susceptible to aging if the metal
is subjected to mechanical, thermal, electrical and environmental stresses like humidity and impurities
in the environment. Fig. 1.5 shows different examples of metal degradation like corrosion, oxidation,
rust, and cracks that can even cause a total breakage. Fig. 1.5a depicts a rusted metal that exhibits

(a) Rust expansion [36] (b) Broken rotor bars [180] (c) Cracked short circuit ring
[205]

Figure 1.5: Examples of degradation of metal properties

volume expansion as rust forms, which has undesirable effects [36]. Fig. 1.5b represents a broken
rotor bar in squirrel-cage induction motors [180]. Finally, Figure 1.5c shows a crack in a shorting
ring that can occur in motor and generator windings [205].

1.4.2 Semiconductors and microelectronics

The primary cause of failure of a semiconductor device is the movement of a material or charge from
its designated location to an unfavorable position [216]. The degradation mechanism can be related
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to oxide leakage current, oxide breakdown, over-voltage and electrostatic discharge, and other envi-
ronmentally induced failures (most degradation mechanisms are thermally activated).

MOSFET devices, for example, are affected by oxide degradation, which increases the leakage
current of their dielectric gate and leads to breakdown [141]. Integrated circuits (ICs) operating at
high temperatures are susceptible to changes in their parameters over time, which significantly affect
their proper operation. In this case, the power dissipation of the IC’s base device, such as the comple-
mentary metal oxide semiconductor (CMOS), increases. In addition, the quality of operation (speed
and accuracy) decreases, and finally, heat-induced latchup can lead to a total loss of functionality [76].

Flash memories are another example that tend to age over time due to many constraints related
to their mode of operation. The program/erase (P/E) cycle would apply electrical stress that would
cause P/E charge flow drift, and cause memory degradation [215]. There are also other mechanisms
that affect flash memory performance, such as loss of electrical charge storage capacity due to tunnel
oxides and many others. [50].

Microelectronics are generally a circuit of different electrical components associated with each
other using a variety of metals. The interconnections between circuit elements are vulnerable to
metal corrosion due to moisture (as discussed in the "Metal" section), which directly affects the reli-
ability of the microelectronics by causing corrosion-induced degradation [164]. In the same concept,
the current stress on microelectronics can cause mechanical degradation of solder joints due to Joule
heating [228]. . .

(a) SEM micrograph of a defective MOSFET [165] (b) Schematic diagram of microelectronics degra-
dation by corrosion [164]

Figure 1.6: Examples of degradation of semiconductors and microelectronics

Fig. 1.6 shows two examples of degradation in semiconductors and microelectronics. Fig. 1.6a is a
SEM (scanning electron microscope) of a defective MOSFET by gate current leakage [165]. Fig. 1.6b
is part of a schematic of a polymer-encapsulated microelectronic device by Osenbach, where the
polymer/passivation interface has delaminated, which could lead to moisture absorption and further
corrosion of the circuit [164].

1.4.3 Energy storage

Energy storage is also a main field of electrical engineering, whose degradation is widely studied.
There are many technologies in this area for different applications, such as storing renewable energy,
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powering green electric vehicles or simply supplying mobile electrical systems.

Lithium batteries, which are considered as the long lasting electrochemical batteries, have many
degradation mechanisms that reduce their capacity, increase their impedance causing a power fade,
and reducing their charging/discharging performance [53, 200]. When aging, Lithium batteries ex-
hibits the growth of solid electrolyte inter-phase, the loss of active material caused by mechanical
stress and structural changes of electrodes, impedance increase and lithium plating [79].

Proton Exchange Membrane Fuel Cells (PEMFC) are used as clean regenerative fuel cells storing
renewable energy production using water electrolyzers. [201]. Despite the advantages of this tech-
nology over conventional batteries, its performance is affected by its complex operating conditions.
The aging of PEMFC is caused by degradation of PEM, degradation of catalyst, and aging of the
diffusion layer, etc [231] These degradations are caused by dynamic electric loads, start-stop cycles,
output temperature of the electrolyzer . . . [190]

1.4.4 Dielectrics and insulation

As mentioned in the previous section, one of the main causes of semiconductor degradation is cur-
rent leakage through their dielectric layers. Other applications that use dielectrics are generators
and motors, transformers, capacitors, etc. Instead of evaluating the degradation of the entire elec-
trical system, it may be better and more efficient to study the degradation of dielectrics directly.
Measured properties of the insulators include breakdown voltage, elongation, tensile strength and
flexural strength [160]. The deterioration factors of electrical insulators are mainly temperature (ag-
gravating factor) and electrical stresses, as well as other secondary factors such as the effect of UV
rays, mechanical stresses, radioactive environment, corrosive ambient conditions, oxidation, presence
of solvents, etc.

In addition to the examples presented in the previous sections of metals, semiconductors, and
microelectronics, where insulation breakdown was a primary cause of component degradation, other
cases of insulation and dielectric degradation deserve mention. Insulation breakdown is common in
high voltage applications such as high voltage transformers or capacitors in the power distribution
system [31] (see Fig. 1.7b). It can also occur in overhead power lines, in underground power cables

(a) Insulation failure causing a
fault in distribution line [9]

(b) The cores and coils of a 24 MVA transformer, and electrical insulation
tearing in a HV coil [31]

Figure 1.7: Examples of insulation defects in high voltage electrical systems

or in lines that arc with nearby tree branches (see Fig. 1.7a). Because space is considered a partial
vacuum environment, high voltage devices are subject to higher stressors such as operating pressure,
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electrode geometry, and the frequency and voltage level of applied power within a power system,
which cause cause breakdown at lower-level voltages [119].

Stator winding insulation breakdown can cause generator and motor failure [181]. One of the
main applications of the degradation modeling studied in this thesis is the degradation of low voltage
twisted pair insulation, and a much more detailed review is made for dielectric degradation in the
following.

1.4.5 Common degradation mechanisms
All electrical systems have certain degradation mechanisms in common, and when identified, they can
be incorporated as signs or outcomes in degradation modeling. These mechanisms include fatigue,
creep, cracking, wear, corrosion/oxidation, variation in electrical parameters, and weathering.

• Fatigue is induced when materials are subjected to repeated mechanical loads and unloading,
and is a major failure mechanism for bearings and electrical contacts [26].

• Creep is the slow plastic deformation of materials under constant mechanical load, and is one
of the causes of failure of solder joints [155].

• Crack growth and initiation is one of the main applications for degradation modeling, especially
using stochastic methods [196].

• Wear and tear is the result of friction that would remove part of the material, it often occurs
on gears and bearings, as well as on machine tools.

• Corrosion and oxidation are generated by chemical reactions with either oxygen (oxidation and
rust) or other chemicals like chlorine, acids, etc. These reactions are induced by temperature,
humidity, and temperature changes. These reactions are induced by temperature, voltage or
other activators, and are a major cause of failure for microelectronics, as discussed previously.

• Electrical parameter variation can be caused by typical operating conditions or accelerated
stresses such as temperature and voltage. Variation in parameters can cause a voltage drop
in a wiper [112], for example, or a change in the resistance of a rotor, which would require an
adaptive control strategy [133].

• Weathering includes solar radiation, moisture, exposure to chemicals such as sulfur, and causes
corrosion, rust, etc.

In general, when the degradation mechanisms are identified, it is possible to model their effects
on the aging performance of the component for assessing its lifetime and eventually for health man-
agement. In this thesis, the aging of two components of different kinds, different models, different
degradation phenomena and speed are studied. These components are organic LEDs, and insulation
of low voltage twisted pair of copper, and in the following, a review of their degradation mechanisms
and their particularity is made.

1.5 Focus on OLEDs and insulators
In this section, the degradation mechanisms of two components in the field of electrical engineering
are presented: organic light-emitting diodes (OLEDs) and the dielectric insulation of low voltage
twisted pairs of copper wire. Even though the degradation of each component is particular, and
the physical reasoning behind this degradation might change, it is important to note that the aging
factors are usually very similar for most components in the electric field, as presented previously.
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1.5.1 OLED components
Organic light emitting diodes, OLED, or organic electro-luminescent devices, were effectively de-
veloped for industrial purposes in 1987 [212]. They are organic semiconductors, i.e. carbon-rich
compounds whose structure is designed to optimize their luminescent properties [77].

They have developed rapidly over the past few decades due to their many advantages, like being
a flat, uniform light source with excellent color rendering. They are thin-film multi-layer devices
consisting of a substrate foil, film or plate, an electrode layer, layers of active organic materials, a
counter electrode layer called cathode, and a protective barrier layer like glass [204] . The electrodes
produces excitons like holes for the anode and electrons for the cathode, that recombine in the emis-
sive layer to produce a photon (see Fig. 1.8a). The produced light naturally diffuses through thin

(a) 2D section diagram of a single
layer OLED

(b) LG Smart Bed TV transparent
display concept [21]

(c) Bendable automotive OLED
lighting panel [6]

Figure 1.8: OLED technology: concept and applications

layers of material, and the OLEDs they have low power consumption and fast response time. OLEDs
have a low operational temperature, unlike typical LEDs that generate a large amount of heat during
operation and thus require additional heat sinking [166]. They have unique application compared to
other lighting technologies, as organic layers can be deposited on several type of substrate, making
it possible to create large-area, flexible or even transparent panels.

OLED technology is very used in display for TVs and smartphones, as it has a great image quality,
exceptional contrast with good darkness representation as well as higher brightness, fuller viewing
angle, wider color rendering than other display technologies. Fig. 1.8b represents an innovation idea
of a transparent TV made from a transparent OLED screen presented at the 2021 Consumer Elec-
tronic Show (CES) [21].

OLED technology is also used for lighting, as it is very designer-friendly. Their panels are ultra-
thin and lightweight, do not produce UV light and have a low heat emission [7]. They also have
excellent uniformity, color consistency and low glare making them the perfect choice for museums for
example, machine visions application and health-care [7]. Fig. 1.8c shows an application of flexible
OLED panels in the automotive field [6].

Although OLEDs have many advantages, they have pronounced degradation mechanisms due to
their organic composition. In order to make this technology reliable enough for mass production,
their degradation mechanisms must be investigated. According to Aziz et al. , degradation of OLED
have three different modes that will be detailed in the following based on the paper [24].

• dark-spot luminance degradation

• catastrophic failure

• intrinsic degradation
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The degradation of the dark spots is related to the decrease of the luminance in a particular
point because of the build-up of non emissive materials on the emissive layer of the OLED. These
accumulations are caused by electrochemical mechanisms and by thermal heating due to manufac-
turing defects. As known, OLEDs are built by spin layer depositing technique, which results in
homogeneous layers, but can sometimes add unwanted bumps that can turn into dark spots or even
high-brightness spots later on.

On the other hand, during OLED operation, oxidation or delamination of the organic layer elec-
trodes can occur due to absorbed moisture. In addition, structural deformation of OLEDs, i.e. local
and lateral changes in the chemical structure, leads to lateral degradation of the bond strength of the
layers. One probable explanation of this type of degradation degradation is the structural change of
the polymers due to charge carrier transportation and therefore the heat formation [193].

Dark spots and delamination cause a high local current density that generates hot spots. In
fact, electrical stress activates electrochemical reactions that expands polymer liquids, emits oxygen,
CO2 or other gases, which results in bubble growth in the non-emissive areas, local high current
density and local heating [116]. The organic layer, subjected to these hot spots, will also develop gas,
resulting in bubble-like bumps that will eventually increase the hot spot until the thin organic layer
is burned away. In this case, the electrodes will be in direct contact, causing electrical shorts and
diffusion of metal into the polymers, resulting in the expansion of dark spots and eventual failure of
the device. This mechanism is called the catastrophic failure from a structural-defect-related cause.
Other catastrophic failures are caused by mechanical expansion when the operating temperature of
the OLED is above the critical temperature of its organic layer.

Finally, the last degradation mode is the natural progressive evolution of the OLED character-
istics during its operating time, called "intrinsic" degradation. It does not depend on the material,
unlike the two previous degradation modes. The evolution of the OLED characteristics can be linked
to the crystallization and the increase of the roughness of the organic layers with time, in particular
for high temperature operating conditions. In addition, the recombination of holes and electrons with
time can modify the characteristics of OLEDs, because the more the recombination is important, the
less the mobility of excitons is important and their production is reduced. Furthermore, the anode
can release some indium to the organic layer that changes the device’s electro-luminescence. Ionic
impurities from charge recombination and redistribution, and trapped positive charge at the emissive
layer can increase the electrical impedance of the OLED with time. With time, the polymer layer
will appear thinner due to degradation and the edge of the nonemissive area expand [116].

Although OLED main functionality is to produce light, it is important to note that OLEDs light
emitting is reversible, which can have the same application as solar panels [38], or why not use it
in a window application where it charges electricity from the daylight and act as a display in the
evening for example [49]. However, this reversible characteristic can cause OLED aging, in such way
that degradation of OLED might occurs when exposed to light, more particularly UV lights. When
OLEDs with cathode made of magnesium is irradiated by UV, electron injection into the emissive
layer deteriorates, increasing the resistance between the electrodes [128]. Overall, these are the main
external factors for the OLED aging: temperature, current flow, UV light exposition, oxygen and
moisture. Oxygen and moisture effects can be avoided by a good encapsulation of the OLED, and
by choosing the right polymer material to avoid any internal chemical reactions that may produce
oxygen or other gases. UV light exposure is avoided by adding a protection film on the glass substrate
that absorbs the UV lights. In this manner, the aging of OLED is essentially caused by thermal and
electrical stress.
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1.5.2 Dielectric insulators materials
Another component used in electrical engineering applications is the dielectric around the cables.
While OLEDs are a recent technology of about 30 years, winding insulation has been widely studied
for more than a century, thanks to the important role it plays in the reliability of the overall ma-
chine. The stator and rotor windings of electrical machines are expected to have a long service life.
In industrial applications, an electric motor or generator is expected to have a service life of at least
20 years.

Recently, electrical machines have been optimally designed to increase the efficiency of electrical
production, reduce size and weight for aeronautical and automotive applications, or simply to reduce
production cost. Optimal machine design changes many features, such as reducing the size of the air
gaps, which results in a more concentrated flux, or reducing the thickness of the wires used, which
reduces the thickness of the insulation around those wires. Most designs do not take into account
the wear and tear of the insulation over time, as their optimum target is already listed. Nevertheless,
designing a more compact machine would increase the stress on it, which would increase the risk
of failure. In addition to the design, other factors also increase the stress on the machine, such as
increasing PWM voltage, switching frequencies and reducing switching times. One of the main rea-
sons for the failure of electrical machines is the failure of the insulation system. In what follows, the
mechanisms of insulator aging are detailed, i.e., the types of stresses that can deteriorate dielectric
materials and the indications of degradation.

The main stress factors that can cause an insulation deterioration and failure are joined under
"TEAM" referring to the following factors [206]:

• Thermal

• Electrical

• Ambient

• Mechanical

Thermal stress can cause chemical reactions in the insulation, such as surface oxidation, or de-
lamination due to loss of bonding strength. Thermal stress can be caused by machine overheating,
due to core losses, losses in the copper conductors like I2R, eddy current and stray load losses. The
temperature increase could induce mechanical stress, as the temperature increase would cause the
copper wire to expand more than the surrounding insulation. This expansion creates a shear stress
and causes a bond break between the copper and its insulation. This type of stress is called thermo-
mechanical stress because it is a mechanical stress induced by thermal causes, mainly by thermal
cycling.

Electric stress factors can be power losses, high local resistance and capacitive currents because
the coating impedance can be non-homogeneous. These factors lead to local overheating, oxidation of
the insulation coating, sometimes even vaporization of the organic materials ([206], chapter 8.6), and
air gap breakdown ([206], chapter 8.5) which can contribute to some discharge appearance. Partial
discharges are the most influential factor that can cause deterioration. These are small electrical
sparks that occur in the insulation and can cause the breakdown of certain chemical bonds within
the insulation, the production of ozone gas, the perforation of the material and, sometimes, fail-
ure. Partial discharges are considered the main cause of insulator aging and premature failure under
electro-thermal stress with high frequency voltage [65, 152]. Note that sometimes thermal stress can
be beneficial because it removes any moisture from the winding, reducing the chance of electrical
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failure. It can also cause some type of insulation to swell, reducing partial discharge in the swollen
area.

On the other hand, moisture is one of the environmental conditions that can cause insulation
failure. The common ambient abrasive factors, based on Stone et al. book, chapter 2.1 ([206], are
moisture condensed on the windings, high humidity, aggressive chemicals, oil from other parts in the
machine, pollution like dirt, debris and particles from the operating environment. Ambient condi-
tions act as a catalyst to accelerate the degradation process caused by the other TEAM factors.

Finally, mechanical stresses such as centrifugal forces can distort or even crush the insulation. Vi-
brations due to magnetic forces induced by power frequency currents can abrade the insulation (if the
windings are free to vibrate or come loose). Lastly, magnetic forces induced by high power transient
currents, e.g. from motor start-up, can bend coils or bars and sometimes crack their insulation system.

In addition to the basic TEAM stresses and their interactions, nuclear radiation can cause abra-
sive chemical deterioration of the insulation surface if the application is in a nuclear power generation
field [126].

In general, the most common stress factors between OLEDs and insulators are thermal and
electrical factors. The degradation mechanisms of both electrical components have many common
behaviors such as local impedance concentration, delamination, etc. Although each component has
its own applications, operating modes, and degradation mechanisms, this thesis will focus on the
common aging factors, and build a general methodology to model their degradation with these aging
factors.

1.6 Degradation test methods

After understanding the degradation mechanisms of components, the second phase of model-based
approach is to collect input/output data of its operation. For this purpose, the test method must
be defined when planning for degradation; methods include destructive or nondestructive testing, as
well as normal or accelerated testing.

1.6.1 Destructive vs non destructive degradation analysis

Degradation analysis is essentially measuring performance and degradation data, extrapolating them,
and directly linking them to the suspected product failure. In order to establish a timely view of
degradation, multiple measurements must be made on the same unit throughout the life of the
product. Non-destructive measurements of degradation are collected in many examples, such as
brake pad wear, crack size propagation, battery voltage decrease, LED bulb light output degrada-
tion. . . However, in some cases, measuring degradation would require destructive testing, which would
affect the performance of the product so that it could not be returned to service for further aging.
Examples of destructive testing include measuring corrosion in a chemical container or measuring
the strength of an adhesive bond.

The evolution of breakdown voltage as a function of aging is a typical example of a destructive
measurement used to assess degradation. Nelson was the first to study degradation using destructive
testing [159]: he tested the degradation of electrical insulation under the same experimental con-
ditions 8 times, for 8 different aging times ranging from 1 to 64 weeks. After each experiment has
reached its expected initial aging time, the specimen is then subjected to a high voltage stress that
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will cause a "destructive" breakdown of the insulation. The indicator of aging is therefore the break-
down stress which is modeled according to the thermal laws of the insulator and the given results.
Similar studies have subsequently been conducted in numerous articles [207]. There are many other
applications of destructive degradation analysis in the literature, such as measuring the strength of
an adhesive bond. [74], or measuring corrosion in a chemical container.

Destructive measurements involve the tester interrupting operations to allow the test process
to proceed, and potentially damaging valuable equipment used in or around the process. A non-
destructive approach, such as ultrasonic inspection, Eddy current inspection, radiography/x-ray in-
spection, is the most effective approach, because it is more sensitive and can detect more aberrations
in less time than destructive inspection. Destructive measurements are a one-measurement process,
so using this single value, it is not possible to differentiate between initial defects caused by man-
ufacturing and defects caused by aging. This is a case mentioned in the paper of Escobar et al. ,
where some measurements showed suspiciously low values, which were attributed to the manufac-
ture of these units [74]. Data from these units were modeled using right-censored values with the
assumption that the true value is unknown, but should be higher than recorded. In addition to
the uncertainties caused by the one and only possible measurement, the destructive process costs
companies a lot of time and money that can easily be saved with the non-destructive approach.

1.6.2 Accelerated degradation testing vs accelerated life testing
Shorter product development imposes a severe time constraint, which is not suitable for a life/degradation
testing approach, especially if the product under test is highly reliable and has a long life. Accel-
erating the degradation would be a better solution than waiting for a failure that might not occur
during a normal functional testing. According to Elsayed, there are three approaches to accelerated
life testing [70]:

• To accelerate the "use" of a product under normal operating conditions. This mode is primarily
tested for products that are not used continuously, such as home appliances and car tires that
are used only a fraction of the time in a typical day.

• To accelerate aging of a product by imposing higher-than-normal operating conditions to accel-
erate failure. This approach is the most frequently used in the world of reliability assessment.

• To test under accelerated stress, defective or used products that have already exhibited some
type of degradation, such as metal corrosion or mechanical component wear.

Although Elsayed considers the third approach to accelerated life testing (ALT) to be the accel-
erated degradation test (ADT), the second approach is the most widely used for both ALT and ADT
modes. The difference between the two modes is based on the application, for example, if a highly
reliable product with a long service life does not fail even with ALT, it is better to use the degradation
approach. The difference lies in the outcome to be modeled, whether it is the mean time to failure
MTTF or the degradation trajectory that would eventually lead to an estimate of the MTTF, and a
reliability assessment. The latter is done by extrapolating the performance degradation to estimate
when the performance reaches a failure level.

The main advantages of accelerated degradation over accelerated life testing are that performance
degradation data can be analyzed earlier, before a product fails. Extrapolating lifetime data from
degradation gives more options for using different design choices or assumptions about the level of
performance leading to failure [160]. For example, some experts assume that an LED fails when its
luminance reaches 50 % of its initial value and other schools consider a level of 70 %. Modeling the
degradation instead of just the lifetime test would allow comparison of the two lifetime estimates,
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selection of the better model, and increase the accuracy of the lifetime estimates.

Most reliability studies in the literature are based on accelerated testing, as these are the most
time effective procedures. Note that the acceleration effect must be accounted for in the modeling in
order to be able to predict lifetime under normal conditions.

Having stated the above comparisons, this thesis will use non-destructive accelerated degrada-
tion tests where measurements will be collected frequently. The input/output data of the collected
measurement are then processed for modeling, where the processing methodology is presented in the
following.

1.7 Data analysis
Results of degradation testing depend on whether they are destructive or not, whether they are
accelerated or not, and if it is the performance that is desired for modeling or the lifetime i.e. the
mean time to failure. As established in this chapter, we will be focusing on performance data, which
will allow for good degradation modeling, while relating performance to age and stress.

1.7.1 Data types
Performance data consist of collecting data while looking for any degradation of objects, assets or
systems. The group of objects to be studied are considered a population of interest. A sample
is a subset of the population, for example, in the reliability domain, a sample is taken from the
population in order to investigate the aging of that population under specific conditions.

Variables are changes in the characteristics of objects in the population. Variables can be cate-
gorical, such as the type of capacitor tested, or numerical, such as the operating temperature level.
A univariate data set consists of observations made on a single variable, and a multivariate data set
consists of observations made on more than one variable.

When desired information is available for all objects in the population, the data are called a
census [63]. However, for performance data, which have constraints on data collection like time or
money, complete information may not be available. Hence, data can be classified as [63]:

• Complete data includes performance data and the exact life (failure time) of each sample unit.
Most of the performance data are incomplete, because failure may not occur during aging for
reasons discussed previously.

• Censored data are of the type when some knowledge is missing.

– The right-censored data are performance data with no failure time. So, if an aging process
stopped before failure, the lifetime is known only to be beyond the process stop time.
Sometimes, for maintenance purposes for example, failure may not occur and operation
should not stop, so the data used for analysis are right-censored, and the lifetime is known
only to be beyond the current running time. Other times, during data collection, some
samples might fail due to uncontrolled accidents that are not related to the aging process,
for example, a measurement error resulting in specimen failure. In such cases, data are
also considered right censored.

– Left censored data are performance data that failed before the assigned measurement time
– Interval data are primarily performance data that are also left censored. For example,

when inspections or measurements are performed regularly and a failure occurs between
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two inspections, without knowing the exact time of the failure, the possibility of failure is
then limited to a certain time interval.

• Competing data are data where sample units fail from different causes

• Quantal-response is a data type limited to life data only, as only one measurement is made
during aging, to check if the specimen has already failed or not. This data are usually binary.

Fig. 1.9 summarizes these, and while some types of data are common to life and performance data,
others are not, depending of several factors. The main data types that are used in the degradation

Figure 1.9: Types of data

modeling of this thesis are complete data where both performance and failure data are logged. In
addition, when failure data are not recorded, only performance data is considered as right-censored
data.

1.7.2 Descriptive statistics
Data analysis requires the interpretation of summary measures, by analyzing descriptive statistics
such as the mean value and standard deviation of the sample or population. While these descriptive
statistics are primarily applied to numerical data, similar concepts can be used for categorical data.

Descriptive statistics include the mean and median value of a sample or a population, and their
standard deviation and variance. It also considers if the population is symmetric or skewed, and
computes the confidence interval that groups a certain percentage of the population. It can also test
if data are correlated or random (For more info on the descriptive statistics, see Appendix. A.1).

1.7.3 Data pre-processing
Data pre-processing can refer to the manipulation or dropping of data prior to its use to ensure
or enhance performance. In most cases, the outcome of modelling is affected by data quality. The
characteristics of data quality are:
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• Validity, i.e. conformity to constraints or rules (a man cannot be pregnant for example, nor a
resistance value can be negative)

• Accuracy, i.e. the closeness of the data to the actual true values

• Completeness, when all required data are known

• Consistency, when data from the same population are regular or consistent

• Uniformity, where data from the same population have the same unit of measure

When a data set lacks some of the data quality characteristics, some treatment should be performed
to improve model fit and true representation to real life.

Data cleaning Data cleaning is the process of removing data that don’t seem to belong in the
data set. Data cleaning improves data quality by removing errors when multiple data sources are
used. It also enhances the ability to use different models that does not usually consider incomplete or
stochastic data... The basic steps of data cleaning are presented in Appendix A.2. Finally, after the
cleaning process, the data must be validated by checking if the cleaned data have some signification,
if they follow the appropriate rules for their domain, or if they show trends that can be modelled,
etc.

Data integration Data integration is the process of combining data from multiple sources into
a coherent data set. Metadata are the characteristics of the data that would aid in such error-free
integration, like the name, meaning, data type, range of values permitted for the attribute and null
rules handling missing values [87]. In data integration, data can be modified to fit the modelling
rules, minimize fitting errors and enhance the total result, without changing their descriptive statis-
tics. Normalization, standardization and transformation are operations that reshape data into a form
that is practical for modelling.

Normalizing data involves scaling their values to fall within a small specified range. The concept
of normalization is based on the fact that variables can have different units, types or sizes. If they
are not scaled, some variables may weigh more than other variables in the modelling, misleading
or distorting the results. There are three methods of normalization [87] that will be used in this
thesis: min-max normalization, z-score normalization and normalization by decimal scaling (see A.3
for information).

On the other hand, when two or more variables have a nonlinear relationship, and the model
to be used is only applicable for a linear relationship, transforming the dependent variable would
linearize this relationship. If a variable y has a nonlinear relationship with a variable x such as
y = f(x) = alog(x) + b, instead of using a nonlinear method to find the parameters a and b of the
model, x would be transformed to x′ = log(x), so that y and x′ would have a linear relationship f ′.

1.7.4 Model selection
Different degradation models based on different modeling methods exist, which will be detailed in the
next chapter. These methods are classified into several groups like physics-based or statistics-based
models, etc [84]. Since many models are classified into several specific groups, some models may be
better suited for degradation than others, as they may take into account factors that influence aging
and increase the accuracy of the performance modeling, for example. Model selection methods are
used to compare models and select the best candidate given the data. These methods can also be
applied, not only on different models, but to check if the selected data are well adapted to the model
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or not.

Model selection is widely used for machine learning, where the data are divided into three groups:
training data that will estimate the parameters of the model; validation data that will predict re-
sults based on the fitted model, and estimate the prediction error, used for model selection; and
test data that are used for assessment of the generalization error of the final chosen model. The
data set is usually divided in the following ratio: 50 % for training data, 25 % for validation and
25 % for testing. In general, machine learning is applied to big data where such split is feasible,
but the performance data for reliability consist mainly of small or medium sized data. In the case
of degradation modelling, splits can be limited to just the training/learning set and the validation set.

As mentioned, model selection in machine learning uses the prediction error to assess model fit.
The fit of a simple model is judged by the error sum of squares SSE, which measures the amount of
variation in the data that is left unexplained by the model. The fit error is the primary indicator of
a model quality, however, there are many better methods for testing the model fit. The main criteria
suitable for comparing degradation models are presented in Table 1.1.

Table 1.1: Model selection criteria

Statistic Criterion
R-squared R2 and Adjusted R-Squared R2

adj Higher the better
F-Statistic and ANalysis Of VAriance (ANOVA) Higher the better
Std. Error Closer to zero the better

t-statistic Should be greater 1.96
for p-value to be less than 0.05

Information criteria Lower the better( Akaike information criterion AIC, etc)

For more details on these criteria, see Appendix A.5. Note that there are many other criteria
which can help in the selection of models, depending on the modeling applications like cross validation
(mainly used for big data), χ2 tests, etc. These criteria are not used in this thesis as they are not
suitable or needed for degradation modeling application .

1.8 Conclusion
This chapter presented the reliability study based on degradation modeling to assess the life of a
product. It was considered preferable to use performance data rather than failure time data, for all
the information that degradation data provides, especially for understanding the mechanisms behind
failure modes.

Performance data can be modeled using different strategies, which have been presented above.
In particular, degradation modeling based on a physical and empirical model approach was chosen
as the best strategy to truly understand degradation. These models are thus detailed in depth in
Chapter 2, and accompanied by some examples concerning their application in electrical engineering,
and more particularly for OLEDs and insulators. For this purpose, the degradation mechanisms of
several applications in electrical engineering are presented, in order to identify the common influenc-
ing factors on the degradation of electrical components in general.

Most of the models require experimental data to estimate their parameters (especially the em-
pirical models), hence the model-based approach and the experimental approach are complementary.
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In Chapter 3, the methodology of experimental design is presented in general, in order to optimize
the cost of the experiments. Therefore, some test methods presented in this chapter will be used,
where it is chosen to perform non-destructive and accelerated degradation experiments. In partic-
ular, the experimental design of OLEDs is detailed, where industrial OLEDs are aged for different
stress conditions, including constant and dynamic cycling. In addition, the experimental design of
the insulator is also carried out, where a twisted pairs of low voltage enameled copper are fabricated
and aged under different thermal and electrical stress conditions.

Finally, some of the basic concepts concerning data treatment needed for the modeling in Chapter
2 are presented. Chapters 4 and 5, that analyze the performance data from the two experimental
designs, also use some of the basic data concepts present in this chapter.



24 CHAPTER 1



Chapter 2

Degradation models

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Physical-based degradation models . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Arrhenius model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Eyring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Peck’s temperature–humidity model . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Black’s model for current density . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Solder based fatigue models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Conclusion on the physical-based models . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data-driven empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Typical degradation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 The exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Inverse power law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Conclusion on the Data-driven empirical models . . . . . . . . . . . . . . . . 30

2.4 Degradation models of OLEDs and insulators . . . . . . . . . . . . . . . . 31
2.4.1 OLED degradation modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Insulation degradation modelling, limited to lifetime . . . . . . . . . . . . . . 33

2.5 Regression-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1 Degradation path curve approach . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Robust regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 Regularized regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.6 Sample size determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.7 Meta-regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Advanced algorithms: machine learning models . . . . . . . . . . . . . . . 43
2.6.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.2 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.3 Online models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Stochastic modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.8 Modelling with dynamic covariates . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.1 OLED cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.2 Insulators cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8.3 Dynamic aging of other components . . . . . . . . . . . . . . . . . . . . . . . 52

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

25



26 CHAPTER 2

2.1 Introduction
In chapter 1, it was established that in order to assess the reliability of a component, it is preferable
to understand its degradation, and especially by using model-based approaches. This chapter details
in depth the modeling of degradation in general, and in particular the degradation of electrical
components. In the model-based approach of degradation learning strategies, there are mainly two
types of models: physics-based models and statistics-based models [84]. These models can include
stress factors related to their degradation mechanisms or can simply model the decay trajectory of
a component regardless of their wear conditions. Finally models can reflect normal or accelerated
degradation mechanisms.

• Normal degradation models are based on degradation data collected under normal operating
conditions. Accelerated degradation models, on the other hand, use degradation data under
accelerated time or stress conditions to assess reliability under normal conditions. These ac-
celerated models are the most commonly used for reliability assessments, for reasons discussed
earlier, and are therefore studied in this thesis.

• Models without stress factors like random process model [237] are applied in two cases; the
first case is when the aging conditions are not known or measured. This is mainly the case
of normal degradation when the aging circumstances are not surveyed. The second case is
where aging conditions are known (because they are measured or imposed to accelerate the
degradation), but are fixed at a level, so the stress factors do not vary with the experiments.
Models with stress factors are models where the degradation is a function of the defined
stress, when the aging conditions are known and the stress factors vary from one experiment
to another.

• Physics-based models group the Arrhenius model for studying temperature effect on degrada-
tion, the Eyring model for accelerated aging with respect to thermal and non-thermal variables,
the inverse power model for accelerated aging with respect to non-thermal variables, etc [84].
Statistics-based models of degradation are mainly parametric models [160] and semi-parametric
models with covariates to estimate the hazard of assets [54, 85].

In this chapter, the first two sections will discuss the two categories of degradation models:
physics-based models, if the physics of degradation is known, or empirical data-based models, oth-
erwise. Both categories are based on accelerated degradation where the stress factors are known.
In particular, a review of the application of these degradation models to OLEDs and insulators is
presented.

Considering that degradation is usually modeled using semi-empirical models, it is important to
estimate their parameters. Therefore, deterministic estimation methods based on regression are fully
detailed. A small review of advanced deterministic approaches such as neural networks and online
modeling is also presented.

These models give an output for a single set of inputs and do not take randomness into account.
Stochastic models, on the other hand, address randomness within the models. Thus, stochastic pro-
cesses will be presented and an application of linear degradation using the Wiener process will be
detailed.

Finally, the chapter will also address the modeling of degradation under dynamic variation of
aging factors. More specifically, the modeling of cycling for OLEDs and insulators is presented, if
available.
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2.2 Physical-based degradation models
Degradation mechanisms have been discussed in 1.4.5, where they are attributed to multiple causes.
Once the degradation mechanism of a product is thoroughly understood, it is possible to build a
degradation model based on the physical process of the component or on chemical reaction laws.
The most commonly used physical acceleration models are the Arrhenius model and the Eyring
model, which have proven effective in modelling physical decays for a wide range of engineering
applications [136].

2.2.1 Arrhenius model
The Arrhenius model accounts for the effect of temperature on the failure or degradation mecha-
nism. The model was constructed to establish an inverse proportional relationship between chemical
reaction rates and the applied temperature. The Arrhenius equation in Eq. 2.1 gives the dependence
of the rate constant R(T ) of a chemical reaction on the absolute temperature T . For degradation
applications, R(T ) is the behavioural decay rate of the component under high thermal stress. A is
the pre-exponential temperature independent factor, Ea is the activation energy for the reaction and
R is the universal gas constant [129].

R(T ) = A exp{− Ea

RT
} (2.1)

The Arrhenius model is applied to a wide range of applications, like modelling the power decay rate
of photovoltaic cells, or the decay rate of their encapsulation discoloration with different temperature,
moisture or UV levels [157, 199]. It is also used to model the degradation of Kraft paper insulation
materials used in power transformers [60], or to distinguish the degradation mechanisms of MOSFETs
as a function of temperature[22].

2.2.2 Eyring model
The Eyring model is another popular physical-based degradation model, which in addition to temper-
ature, takes into account other stressors or covariates, like the effects of material properties, working
conditions, activation energy and reaction dynamics. The Eyring model is based on a statistical me-
chanical justification, and is represented in Eq. 2.2, where R is reaction rate constant and T and X
are respectively the temperature and other non-thermal covariate stressors [136]. k is the Boltzmann
constant, k1, k2 and k3 are the equation parameters, originally related to the chemical reaction but
in the case of degradation, they can be related to the physical degradation process.

R(T, X) = ϕT m exp{− k1
kT
} exp{(k2X + k3X

kT
)} (2.2)

The Eyring model has been used to analyze the degradation of capacity of Li-ion batteries, based
on temperature, current and depth of discharge [58]. It is also applied to model the degradation of
LEDs under voltage and temperature stresses [121], or capacitor aging data [71], the thermo-electric
degradation of motor insulation systems [235].

Eyring model does not specify the other stress factor X along with temperature, but the stress
can be:

• A mechanical load (as in Weertman’s model for creep rupture [86])

• Humidity (as in Peck’s model for corrosion [171]);

• Current density (as in Black’s model for electro-migration [30])
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2.2.3 Peck’s temperature–humidity model
Eyring model is widely used for constructing a relationship between the degradation rate REyring(T, rh)
and temperature T and relative humidity rh (see Eq. 2.3, where Ea is the activation energy, k is the
Boltzmann constant, A and b are the model’s parameters)

REyring(T, rh) = A exp{−Ea

kT
− b

rh
} (2.3)

Pecks model is another model that relates temperature and humidity to degradation rate (see
Eq. 2.4, where B and n are the model’s parameters)

RP eck(T, rh) = B exp{ −Ea

kT
} (rh)n (2.4)

The previous two equations were mentioned in Park and Kim work [167], where they studied the
effect of temperature and humidity on the power generation degradation rate of photovoltaic modules.

It is important to note that the original Peck’s model considers the relationship between temper-
ature, relative humidity and time-to-failure [171].

2.2.4 Black’s model for current density
Black’s model originally is used to estimate the mean time to failure of a semiconductor circuit due
to electro-migration [30]. See Eq. 2.5 for Black’s model, where MTTF is the mean time to failure,
j is the current density, T is the temperature, Ea is the activation energy and k is the Boltzmann’s
constant. B(T ) is related to the properties and geometry of the material and interconnection, but it
can also be related to temperature, and more specifically, this stress can build-up over time according
to Korhonen’s model [61]. Thus, instead of a mean-time-to-failure model, a dynamic model can be
constructed that includes the variation in stress. Note that even if dynamic stress was incorporated
with the MTTF model, it is still not a degradation model, but it can help in understanding the
relationship between current density and degradation.

MTTF = B(T )
j2 exp{Ea

kT
} (2.5)

2.2.5 Solder based fatigue models
Solder fatigue is the mechanical degradation of the solder due to deformation under cyclic loading,
such as cyclic temperature fluctuations [73], mechanical bending [45], etc. Most solder-fatigue models
are failure-based approaches, as they relate the physical parameter to cycles to failure. They are based
on Miner’s rule [151], that constructed the simplest cumulative damage model of Eq. 2.6. C is the
fraction of damage, or the fraction of life consumed by exposure to cycling at different stress levels.
It considers that a failure occurs when the damage fraction tends to 1. k is the number of stress
factors, and Ni is the average number of cycles to failure at the ith stress Si. ni is the number of
cycles accumulated at stress Si.

C =
k∑

i=1

ni

Ni
(2.6)

However, this equation requires several failure measurements in order to know the damage frac-
tion, and it assumes that the damage rate is uniform, meaning that the first stress cycle at a constant
stress level is as damaging as the last. More advanced models can be cited such as Engelmaier’s
model which takes into account the effects of frequency and temperature [72]. Another example
is the Coffin-Manson model, which considers the effects of high cycle fatigue (HCF) mainly due to
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elastic deformation and low cycle fatigue (LCF) mainly due to plastic deformation [95]. Nevertheless,
all the previous models share the same problem, namely that they require failure measurements, in
order to evaluate the damage rate for a certain number of cycles.

2.2.6 Conclusion on the physical-based models

Physics-based degradation models take into account stress covariates such as temperature and hu-
midity, as well as additional stressors such as voltage or frequency. However, voltage, current, or
other factors do not have a direct physical model to relate degradation to cause. Although there are
many degradation models in the literature that take these stressors into account, such as the inverse
power law model. In fact, the latter is an empirical model, or a data-driven model, that is not related
to the physics of the degradation process.

In addition, all the models listed above consider the rate of degradation, and thus they do not
provide a degradation path, as one can assume that degradation is linear with time and the indicator
of this degradation y follows a linear equation y = Rt + y0. This is not always the case, and to take
into account nonlinear patterns, data-driven empirical models are used.

2.3 Data-driven empirical models
When the physical degradation process is difficult to handle, or the chemical reaction is not fully un-
derstood, the previous physical-based models are not suitable. Empirical models describe the aging
processes without using chemical or physical explanations.

To model a degradation using empirical functions, Nelson imposed certain assumptions to follow,
such as [160]:

• The model assumes that degradation is not reversible. If it is reversible, other methods, not
included in this section, must be applied.

• The model applies to a single degradation mechanism, or failure mode. If there are simultaneous
degradation processes, each requires its own model.

• The initial degradation of a sample is assumed to be negligible. That is, any degradation prior
to the start of the aging tests is ignored.

• Performance is measured with negligible error.

From the models presented by Nelson [160], two parametric categories can be drawn: Simple constant
rate models and exponential models. These two categories will be detailed below.

2.3.1 Typical degradation model

A general relationship of a simple constant rate model is represented in Eq. 2.7, where µ(t) can be
the degradation measurements, or the performances, or the log of the performance over time t. α is
the intercept coefficient, that is the degradation measurement at the beginning of the test. β is the
degradation rate, and it has many representations depending on the applied stress, so it can have an
Arrhenius dependence β = β0 e −β1/T , a power dependence β = β0V β1 or an exponential dependence
β = β0 eβ1V (V is the stress applied, β1 and β2 are the parameters of the dependency)

µ(t) = α− βt (2.7)
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Other typical form of a degradation function is presented in Eq. 2.8, where g is an specified
function that is continuous, increasing, and differentiable at t [54].

µ(t) = g(t, a) = ea1(1 + t)a2 (2.8)

2.3.2 The exponential model
The exponential model is the most commonly used model for nonlinear decay trajectories. Nelson
named this model as the Weibull relation (to be distinguished from the Weibull distribution however),
represented in Eq. 2.9, where α, β, γ and δ are the characteristics of the degradation process.

µ(t) = α e
−( t

β
)γ

+ δ (2.9)

Similarly, Cox models degradation has an exponential rate model, when the aging behavior evolves
exponentially with age (Eq. 2.10, where λ is the decay path, λ0 is the initial decay value, β is the
array of the unknown parameters, and z is the array of individual measurements in a sample) [55].

λ(t, z) = λ0ezβ (2.10)

Meeker also represented the exponential degradation [150] (see Eq. 2.11), where D(t; X) is the
degradation with respect to time t and stress X, and D∞ is the asymptote of the degradation path.
R(X) is the degradation rate, it can include an acceleration factor, and it can be a physical-based
model if the physics is known.

D(t; X) = D∞(1− e(−R(X)t)) (2.11)

Finally, a non-physical parametric model but not really a degradation model based on the inverse
power law will be mentioned here because it is widely used to model electrical stress.

2.3.3 Inverse power law
The inverse power low is not really a degradation model as it is a relationship between lifetime L
and non-thermal stressors X (mainly for electrical stressors). See Eq. 2.12, where K and n are the
parameters of the model. Black’s model is a particular application of the inverse power law, when the
stress concerned is current density j, with n = 2. Yet, as mentioned for Black’s model, the inverse
power law is not a degradation model but if the lifetime is replaced with the damage rate, or the
degradation level, it can be used as a model to relate degradation to most often the electrical stress.
[104].

L(X) = 1
KV n

(2.12)

2.3.4 Conclusion on the Data-driven empirical models
To understand the real effect of stress factors on component aging, it is important to track the be-
havioural response of the components when subjected to the equivalent stress factors. It is important
as well to analyse this behaviour and model the decay path of the component’s aging, because degra-
dation can be linear, exponential and much more. Understanding the degradation of a component
can help in estimating its reliability, by predicting the lifetime or time to failure. The aging survey,
can not only help estimates the lifetime, but gives an good indicator to any catastrophic deterioration
that takes place while degrading.

The physical and empirical models presented above form the basis of all degradation modeling.
There are limitations to the application of these models:
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• It is not possible to take into account errors due to the measurement, the realisation of the
experiment, the number of samples, the quality of the product, etc.

• It is not possible to take into account statistical properties such as sample distribution and
bias.

• It is not possible to incorporate results from other studies with different technologies into the
modeling, as they may have different physics or parameters.

• It is not possible to account for the randomness of degradation processes.

2.4 Degradation models of OLEDs and insulators
Physics-based and data-driven empirical models were presented to study the degradation of any
component. This section presents a review on the degradation models that were applied to the
OLEDs and insulators in the literature.

2.4.1 OLED degradation modelling

The degradation of OLEDs can be generally monitored by different indicators, such as electrical
characteristics like the impedance of an equivalent circuit [162], Current-Voltage (CV) curve [69]
or forward voltage [174]. The most commonly used aging indicator is optical luminance, since the
main task of an OLED is to produce light. Brightness can be used as an indicator of aging, where
the lifetime of the OLED can be defined as the time when the brightness reaches 50 % of its initial
value [113]. However, this is not the best optical indicator because it is related to the distance of
measurement. In the literature, most papers focus on luminance to predict lifetime or on electrical
characteristics to design suitable drivers or compensate for luminance loss, as discussed afterwards.

The modeling of the luminance degradation and, consequently, the lifetime of the OLED will be
presented in the following.

OLED lifetime modelling Modeling the aging of OLEDs has an essential objective: to predict
their lifetime, or rather their life span, because the definition of the lifetime of an OLED is the
moment when its luminance reaches a percentage of its initial value. Initially, newspapers considered
a percentage of 50 % meaning half of the initial luminance. Half-life model, as the papers call it, is
a typical model based on luminance and half-time, which was introduced by Wellmann [225] who
noted that it could sometimes have an extrapolation error of 20 %.

Ln
0 × t1/2 = Cte (2.13)

Eq. 2.13 represents the half-life model, where L0 is the initial luminance, t1/2 is the half-life or life
where the luminance is at 50 % of its initial luminance, and n is the acceleration coefficient. It should
be noted that the acceleration coefficient is applicable within certain limits, as excessive operating
temperature would lead to intense chemical reaction and crystallization in organic solids, which would
cause much faster failure of OLED devices [226].

Many papers have used this equation to model a constant stress lifetime. For instance, Li et
al. used it to compare a continuous current wave to a pulsed current one, with 80 % lifetime level as
defined in Eq. 2.14 [139]. They deduced that the effective 80 % lifetime of the pulsed current stressed
OLED with less than 20 % duty cycle is shorter than the one of the constant current stressed OLED.
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Otherwise, it has no effect, which is why they considered the OLED on time as the effective duty
cycle.

EL = t0.8 × duty cycle (2.14)

Pang et al. modeled the lifetime of a small-area OLED as a function of its organic temperature, and
then extrapolated the model to a large-area OLED with the same physical characteristics and current
density aging conditions [166]. Their model is based on the relationship between the operational
temperature rise of the device, which can be called organic temperature, and its induced voltage.
The advantage of this method is to reduce cost and time, as small OLEDs are cheaper and have a
shorter lifetime. The model in the paper is presented by a set of three equations relating the 80 %
lifespan LT (80) to luminance L (Eq. 2.15b), temperature T via the Arrhenius model (Eq. 2.15c),
and and other lifetime values in Eq. 2.15a. The variables of these equations are similar to Eq. 2.13)
where t1 and t2 are the equivalent lifespans of two OLEDs under different aging conditions, L1 and
L2 are their respective initial luminance values, AF is the acceleration factor and a, b and α are the
parameters of the model.

t2 = t1 × (L1/L2)AF (2.15a)

LT (80) = α× LAF (2.15b)

ln(LT (80)) = a + b× 1
T

(2.15c)

All previous models tackled the modeling of lifetime with respect to no factor or at most one factor.
Salameh et al. , on the other hand, incorporated several factors at a time [184]. They established a
linear and quadratic relationship of lifetime with temperature, current density and their interaction
using a design of experiment method. Eq. 2.16 represents an example of their modeling methodology,
where L70 is the lifespan when the luminance reaches 70 % of its initial value, T and J are respectively
the temperature and the current density applied, E and I are respectively the effect of the stress
applied and the interaction between stress factors, and X is the level of the stress applied.

L70 = Mean(L70) + ET XT + EJXJ + IT JXT XJ (2.16)

This method can be useful for estimating lifetime under any given condition, unlike previous models
that only predicted OLED lifetime under one stress condition at a time. The work in this thesis will
be a continuity of the methodology presented above, as it is important to model the degradation and
eventually the lifetime with more than one factor to mimic a real situation.

OLED pre-existing degradation model As mentioned earlier, modeling luminance degradation
is very useful because it improves the reliability of OLEDs. For example, luminance can be kept con-
stant during aging by considering a linear relationship between current and luminance, and letting
the OLED drivers compensate for luminance decline whenever the luminance level drops through
this relationship [44].

The most commonly used luminance decay model is the stretched exponential decay, presented
in Eq. 2.17, where L and L0 is the luminance and its initial value, t is the aging time, τ and β are the
parameters of the model. It was first introduced by Ishii and Taga to study the effect of temperature
and current on OLEDs with high glass transition temperature [101]. Using the model parameters,
they were able to prove that neither temperature nor current density changes the shape of the decay
curves.

L(t) = L0exp{−( t

τ
)β} (2.17)
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Fan et al. were able to build a luminance degradation model including the influence of ambient
temperature [75], by combining the accelerated lifetime relationship (Eq. 2.13) and the stretched
exponential decay model (Eq. 2.17). Since luminance degradation increases with temperature, they
modelled the acceleration n with temperature, using an increasing exponential relationship, which
leads to a full time and thermal variant luminance degradation model (see Eq. 2.18, where α is the
normalized luminance L(t)/L0 and the constant k is K = C/ln21/β from the previous equations).

α = exp{−( tL
n(T )
0
K

)β} (2.18)

Zhang et al. built a model of luminance degradation with time and current intensity for small
areas OLED [233]. The model is based on the stretched exponential decay and on the physical
knowledge of the polymers used. It is presented in Eq. 2.19 where I0 and I are respectively the
normal working stress current and the accelerated current, β being the acceleration coefficient and
m and η are the shape and scale parameters of the luminance decay.

L(t) = L0exp{−( t

η(I0
I

)β

)m} (2.19)

A luminance degradation model called a nonlinear mixed exponential model based on the esti-
mation of 4 parameters as a function of time is considered to model the luminance increase during
the first hours of aging of a flexible OLED display [51].

Overall, only luminance-based lifetime, and subsequent luminance degradation, were modeled over
time and mostly against one single constraint. Although there are many interesting indicators to
model as a function of time, such as the electrical impedance of the OLED for example, the modeling
in the literature is limited to only the luminance decay aspect. Furthermore, in the literature, the
decay is limited to empirical exponential models incorporating only one physics-based constraint
relation at most.

2.4.2 Insulation degradation modelling, limited to lifetime
Insulation reliability has been studied extensively over the past century, and a review of mean time
to failure modeling is presented in this section. The lifetime of insulation is generally modeled as a
function of temperature according to the Arrhenius law [59] (see Eq. 2.20 where L is the life of the
insulation , T is the temperature in Kelvin, A and B are the parameters of the model).

L = A · e
B

T (2.20)

The insulation life is also modelled with electrical stress using an inverse power model [8] (see
Eq. 2.21, where L is the insulation time to failure at applied voltage stress level V , k and n are the
model parameters).

L = k · V −n (2.21)

An exponential model is also used for modeling the life of insulation [8] (see Eq. 2.22, where V is the
electric voltage stress and c, k are the model parameters).

L = c · e−kV (2.22)

The above equations are used to calculate the lifetime of the insulation using the accelerated aging
method, where the stress levels are above a certain threshold, considering that below this threshold,
no aging is observed [206]. For an electrical stress, the threshold is called PDEV or partial discharge
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extinction voltage. Similarly, each insulating material has its own thermal threshold below which no
aging due to thermal stress occurs. For example, the thermosetting threshold for insulating materials
is near the glass transition temperature [206].

Since insulation aging can be caused by multiple reasons (see TEAM factors in 1.5.2), it is impor-
tant to build a valid model that contains most of the causes of failure, as there might be direct and
indirect interactions between the stress factors. The multi-factor aging models for insulators pre-
sented below are abundant in the literature, and they are very well detailed in the paper by Gjerde
[81]. Simoni, Ramu, Fallou and Crine models are examples of these multi-factor models, according
to Gjerde, and they are explained below.

Simoni’s model considers the amount of aging at the time of failure as a characteristic parameter
of an insulation system. Thus, it combines thermodynamics to construct the expression of Eq. 2.23,
where R is the aging rate, T and E are the temperature and the electrical field respectively, a, b, A
and B are the model parameters and f(E) is a function that takes into consideration a reference E0
where there is no aging below its level.

R = Aexp{−B

T
}exp{(a + b

T
)f(E)} (2.23)

Ramu’s model multiplies the classical single-constraint models presented earlier to construct an
electric field and temperature dependent model (see Eq. 2.24). The model considers the parameters
of the inverse power law, k and n to be temperature T dependent. ∆(T ) = 1

T
− 1

T0 uses a threshold
temperature below which no thermal aging occurs. The ∆(T ) is also considered for the temperature
dependent parameters k and n, thus creating a kind of electrical threshold.

L = c(T )E−(n(T )exp{−B∆( 1
T

)} (2.24)

Similarly, Fallou’s model considers the parameters of the Arrhenius model as dependent on the
electric field. On the other hand, Crine’s model uses material physics to construct the insulation
lifetime model, with lifetime defined as the amount of energy required to crack the insulation.

After the basic models were detailed, many papers used and developed their own life models
depending on their application, whether it was a high or low voltage application, etc.However, all
of the previously presented models and their continuity are limited to the lifetime of the insulation
only, and no degradation has been modeled. Some papers have studied the degradation of insulators,
but again, no models have been performed.

Overall, insulator and OLEDs lifetime modeling has focused on empirical exponential and power
models. Insulation reliability in particular, has never used degradation modeling to estimate a mean
time to failure.

For all of the reasons mentioned above, it is necessary to have an appropriate strategy for mod-
eling degradation. This is not to say that the above models are not relevant, but that on their own
they are simply not sufficient to model degradation.

These strategies can be deterministic such as regression modeling, where many stressors and co-
variates can be included in the modeling. The effect of sample size, sample population and many
other parameters can be taken into account.



2.5. REGRESSION-BASED MODELS 35

Stochastic modeling is another group of strategies, widely used for modeling and predicting degra-
dation. These strategies take into account the randomness of degradation and other factors such as
stage changes in the degradation process.

The last strategy is online degradation modeling, as it is mandatory to monitor the degradation
of systems in order to limit the failure points. In the following, the three main strategies will be
explained in detail.

2.5 Regression-based models
Regression-based models primarily consider the empirical models listed above, and apply them to
data extracted from a degraded population, which is aged under certain defined stressors. In what
follows, the basic path approach of regression modeling will be discussed, as well as robust regression,
some details on biased populations, how to incorporate data from different populations, and finally
a graphical approach.

2.5.1 Degradation path curve approach

The degradation path curves are based on the degradation trajectories over time. The degradation
process, and its decay level are assumed to be observed at any time. The products being monitored
come from a population, each of which exhibits the same degradation path.

According to Meeker et al. [150], a degradation model considers a decay path D(t, β) with a
random deviation ϵ from the path representing measurement errors (Eq. 2.25). The decay path
D(t, β) is modelled over time t with unknown parameters β to be estimated for each specimen. Even
though t denotes time (operating or real time), it can represent other factors if the time is not the
main aging abscissa. In case of automobile tires, t designate miles, and number of cycles for batteries
or capacitors . . .

Y (t) = D(t, β) + ϵ(t) (2.25)

The parameters of the decay path can be found by applying a regression method: linear or not,
uni- or multi-variate, . . . . In fact, the regression concept is based on describing a relationship between
a quantitative response variable y and one or more explanatory variables x [40, 189]. Explanatory
variables are known as regressors, predictors, inputs or independent variables. A multi-linear re-
gression (MLR) model is represented in Eq. 2.26, where one response variable y has k explanatory
variables x, linearly bonded through k + 1 parameters β0→k. Y is an (n × 1) vector of observable
random variables, to be modelled or explained by X. X is an (n× k) matrix of observable random
variables called the design matrix with k < n, and has a full rank when its columns are linearly
independent (the rank of X is k). ϵ is an (n×1) vector of unobservable random variables designating
the random error, and its values are assumed to be independently normally distributed with zero
mean and constant variance σ2.

Y = Φ(X, ϵ) = Xβ + ϵ = β0 + β1X1 + . . . + βkXk + ϵ (2.26)

The multi-linear model groups many sub-models, like a simple linear regression (SLR), where
it has one regressor (k = 1). Other sub-models like curvilinear models or interaction terms can
be assessed using the MLR method if some additional transformations of the explanatory variables
are done. Curvilinear models for instance, have polynomial values that are presented in the MLR
as Xj = Xj . If variables are not independent, interactions between predictors can be expressed
as another predictor term X3 = X1 × X2. This is an advantage of regression-based models where
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interactions between the stressors can be included as input variables.

It should be noted that categorical variables, like the manufacturer source of the product for
example, can be transformed as well so they can be included in the MLR. Additionally, a transfor-
mation of the output response variable can be done to respect the linearity specification of the MLR.
The Cox model for instance, which is an exponential model, can be linearized by transforming the
decay path, so that Y = log(λ) = log(λ0) + zβ is a log-linear model.

There are basically two regression methods to estimate a model’s parameter: the least square
and the maximum likelihood methods [189].

The method of least squares is used to obtain the estimate of β, a (k × 1), as it consists of
minimizing the square sum of errors ϵ = Y − Xβ with respect to β. It can be estimated using
Eq. 2.27, that is obtained from differentiating ϵ′ϵ with respect to β and solving ∂ϵ′ϵ

∂β = 0. However, to
apply this method, columns of the matrix X should be linearly independent, for β̂ to have a unique
solution.

β̂ = (X ′X)−1X ′Y (2.27)
The maximum likelihood estimation method is based on the assumption that the errors are

normally distributed ϵ ∼ N(0, σ2). The likelihood function L(β, sigma2) is given by the probability
density function of Y (see Eq. 2.28). As the likelihood is exponential, it is usually transformed into
a log-likelihood, where its maximum is calculated by solving the differential equation with respect to
β: ∂logL

∂β = 0, which is equivalent to the least squares estimate of β.

L(β, σ2) = 1√
(2πσ2)n

exp{− 1
2σ2 ∥y −Xβ∥2} (2.28)

The basic methods to calculate least-square regression fits are solving the normal equations that
would lead to Eq. 2.27 based on the sum of squares and cross-products (SSCP) matrix X ′X using
mathematical methods like Gaussian elimination, the sweep operator or the Cholesky decomposition.

Otherwise, a QR decomposition 1 of X can be applied, by employing algorithms like Gram-
Schmidt or Householder reflections . . . 1 For a more stable numerical results, the singular value
decomposition can be used, but this is the most computationally expensive approach. More details
about the algorithms cited above can be found in Seber and Lee’s book, Chapter 11 [189]. However,
they will not be developed in this thesis as they exist in many statistics software like matlab (mdl =
fitlm(X, y)) or R (lm = (Y ∼ X)).

2.5.2 Confidence bounds
Considering the multiple methods of fitting a model listed previously, and considering that the results
data do not 100 % fit to the model (because of the error factor), each fitted model requires some
confidence intervals. A confidence interval indicates the percentage of the results observations that
follows the model. It can be used as a model selection method, because if the interval is too big, it
may be a sign that observations have a big variance, and do not entirely fit the model.

For degradation modelling, there are two main aspects for using confidence intervals:

• To predict a safety margin for the mean time to failure
1In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition

of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R , Wikipedia
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• To predict the evolution of variability in degradation with time

The first aspect is to predict a confidence interval for the mean time to failure, or when the
degradation reaches its threshold level. As said previously, degradation modelling is used for mainte-
nance purposes, and since observations do not 100 % fit to the model (due to the error), a component
degradation indicator might reach its threshold level before the predicted value of the model. This
might cause a serious problem like the cable car accident that crashed one day before its maintenance
date [2].

Fig. 2.1 illustrates some simulated degradation data, that are used to discuss the second aspect
of using the confidence interval for degradation modelling. The simulation tackles i = 4 specimens

Figure 2.1: A simulated data of a linear degradation of random component

that are supposedly aged under the same conditions, for a period of time. j = 26 inspections are
made along the aging process, making the total number of observations n = 104. The degradation
path is linear and the model of the degradation to be fitted is yi = β0 + β1xij , where β = [β0 β1] is
the array of parameters of the model. xi is the time of the jth inspection for the ith specimen.

As it is seen in the figure, each specimen has its own degradation path, which implies that there
might be a missing covariate. Nonetheless, the aging process could be divided into different stages,
where the degradation of all specimens in the first stage (up to time xj ≤ 1) follows the same path.
The second stage, where 1 < xj ≤ 2, is when each specimen starts having its own path. The last
stage, xj > 2, is when the variability between paths is more pronounced. This type of degradation
occurs quite often in real life, as a lot of insignificant factors progressively develop effects with the
aging of each specimen. For example, if the impedance of an electrical component subject to thermal
and electrical stress increases with aging, it might enlarge the Joule losses. This progressive heat
dissipation increases the local thermal stress on the individual component, which accelerate the evo-
lution of the impedance and etc.

In regression modelling, confidence intervals are calculated for the coefficient estimates and for
the predicted values of the results. The equations presented below are taken from Seber and Lee’s
book, that detailed many ways of computing confidence bounds for regression surfaces [189].

The confidence interval for coefficient estimates follows Eq. 2.29, where t is the inverse of Student’s
t cumulative distribution function, for a confidence level 1−α, and n−k degrees of freedom; n being
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the total number of observations, and k is the number of regressors. s2 =
(∑n

i=1(yi − ŷi)2) /(n−k−1)
is the variance or the mean squared error (similar to Eq. A.3). X = [1 x] is the regressor matrix (in
the case of the example presented, the regressors are only the time), and (X ′X)−1 is the covariance
matrix.

CI(β) = β̂ ± tα/2,(n−k−1)

√
s2(X ′X)−1 (2.29)

The confidence interval for the predicted values of y, for a given regressors values x0, according to
the fitted model using the estimated parameters β̂ is presented in Eq. 2.30. The confidence interval
for only the model without the error of observation is called CIfunc, or the functional confidence
interval. When the observations errors are considered (which is the case wanted for degradation),
the confidence interval is called CIobs, where the mean squared error term is added.

Moreover, there are two ways of computing a confidence interval for y: simultaneous and non
simultaneous. The simultaneous way would consider all the regressors values at once, for example the
CI of the data of Fig. 2.1 would consider all the time array at once. The non simultaneous way would
measure the confidence only for a single regressor value each time. The confidence interval equations
presented here are non-simultaneous, to illustrate the evolution of the variability of observations with
aging.

CIfunc(y0) = ŷ0 ± tα/2,(n−k−1)

√
s2x′

0(X ′X)−1x0

CIobs(y0) = ŷ0 ± tα/2,(n−k−1)

√
s2 + s2x′

0(X ′X)−1x0

(2.30)

Fig. 2.2 shows the fitting of the simulated data to a linear model y = a time+b, where the param-
eters a = −5.64 ±0.31 and b = 100.36 ±0.9 are found according to the Least square linear regression
fitting method. It also shows the functional and observational confidence interval, found according

Figure 2.2: Model fitting and confidence intervals for the simulated data of Fig. 2.1

to Eq. 2.30. The functional confidence interval, does not consider the variability of measurements
for each inspection, but its width does vary with the input variables, that is x0 = [1 time]. The
observational confidence interval however, considers the standard deviation of measurement errors
s2 = 5.7, which is very big compared to the covariance term "s2x′

0(X ′X)−1x0" that has a maximum
value of 0.83. That’s why the observational CI, computed with non-simultaneous fitting, seems to
not change with time, and is very similar to a one computed with a simultaneous fitting.

Lastly, a regression fitting considers several assumptions like the error elements follow a normal
distribution ϵ ∼ N(0, σ2) with a mean= 0 that makes them unbiased, and a constant variance σ2.
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There is no correlation between the residual elements, making them independent, meaning that the
explanatory variables are not random variables. According to these assumptions, a confidence inter-
val can be built for the parameters estimate and for the fitted function and the observations.

When one of the four assumptions

1. ϵ ∼ Normal distribution

2. E[ϵ] = 0n×1

3. V ar[ϵ] = σ2In×n

4. Corr[ϵi, ϵj ] = 0

is not respected, additional techniques can be incorporated during the modelling, to enhance the
estimation. Some techniques (explained in the following) reduce over-fitting, differentiate between
significant and random explanatory variables, and select the minimum sample size to be allowed to
use assumptions like normal distribution, etc.

2.5.3 Robust regression

When the errors are normally distributed, ordinary least square estimation is the most efficient
regression method, as it is called BLUE or Best Linear Unbiased Estimator [78]. However, when
outliers exists causing extreme errors, and making the distribution of errors long-tailed, or biased, a
robust fitting that ignores such outliers is the preferable method.

In fact, the typical ordinary least square (OLS) regression uses the "mean" least square method to
minimize the mean of the squared residuals (min

β

1
n

∑n
i=1 ϵ2

i (β)). However, the average of the squared
errors depends on two factors, this first of which being the size. An outlier having a large estima-
tion error, and thus larger squared residual, would have a higher impact on the total sum than the
other observations. The second factor is the criterion chosen to minimize the least square, which is
commonly the mean, that would inflate when the square of an outlier is added.

The robust regression will solve the problems faced with outliers by replacing the square of
residual ϵ2 by another function ρ(ϵ) that reflects the size of the residual in a moderate way. This
function would have the same proprieties of the square of errors like being symmetrical, positive and
monotone. Additionally, the mean criterion can be replaced by a median or a trimmed mean criterion
that is more robust towards outliers. Functions of the robust fitting are the M-estimators, bound
influence estimators, S-estimators and R-estimators, that sanction outliers by adding further weight
on them, or by scaling the residuals or by measuring their dispersion. Once again, robust fitting and
its estimators are very well detailed in Seber and Lee’s book [189]. Nonetheless, it is important to
note that when data have a normal distribution, a least square is sufficient, as some of the robust
functions like the M-estimators are very inefficient compared to least squares.

2.5.4 Bias

Bias in estimation occurs when the mean of the errors is not zero due to under-fitting or over-fitting.
Under-fitting and over-fitting can be detected through verification data that assess how well the
model fits observations that were not used to estimate the model. A model that has poor prediction
results cannot be generalized to the entire population, and thus further steps are required.



40 CHAPTER 2

Under-fitting A model is under-fitted when the explanatory variables do not illustrate all the
response values. A least square method usually follows the estimation of E[Y ] = Xβ, with E[ϵ] = 0,
but in the case of under-fitting, the true model would need additional parameters like shown in
Eq. 2.31, where Z is an (n× t) matrix, whose columns are linearly independent from X, and γ is the
vector of associated parameters.

E[Y ] = Xβ + Zγ (2.31)

The real estimation of β̂ is then shown in Eq. 2.32, where L = (X ′X)−1X ′Z. Note that the added
term Lγ makes a biased estimation of β. Reducing the bias can be done by increasing the number
of explanatory variables so that the under-fitting term L would be reduced.

E[β̂] = (X ′X)−1X ′(Xβ + Zγ)
= β + Lγ

(2.32)

Over-fitting In the case of over-fitting, the number of explanatory variables X is more that what is
needed and can be divided in two sub-matrix X = [X1 X2] where X1 are the significant explanatory
variables only, and X2 cause the over-fitting. The true model therefore is E[Y ] = X1β1 where β1 is
the unbiased estimation of β̂, based on the demonstration done in Eq. 2.33 [189].

E[β̂] = (X ′X)−1X ′X1β

= (X ′X)−1X ′X

(
β1
0

)

=
(

β1
0

)
= β1

(2.33)

Since the estimate of β̂ = β1 is unbiased, the estimate of E[Ŷ ] = X1β1 is also unbiased. However
the bias would be pronounced in the variance of the elements of β̂, where the apparent variance is
higher then the true one (Further demonstration can be found in Seber et Lee’s book, Chapter 9 [189]).

To limit the over-fitting, it is advised to make an ANOVA test to identify the significant explana-
tory variables A.5, and thus limit unimportant regressors that do not contribute in the real model.
Another way to avoid over-fitting is to do a regularization (explained in the following), which adds
penalty to complex models that usually tend to over-fit.

2.5.5 Regularized regression
Regularization constrains the estimates of the coefficients, penalizing their magnitude as well as that
of the error term. There are two types of regularization in regression, the first being Ridge regres-
sion. It is a way to create a parsimonious model when the number of predictors in a set exceeds the
number of observations, or when a data set has multi-collinearity (correlations between predictors).
The other type is Lasso regression, a linear regression based on shrinkage. Shrinkage involves re-
ducing the values of the data to a central point, such as the mean. This type is very useful when
there are high levels of muti-collinearity or to improve model selection techniques, including variable
selection/parameter elimination [83].

As mentioned above, regularization is very useful when the order of the model increases, so
hereafter a regularization example on a polynomial regression, taken from Wan et al. is presented
[222]. Three models are compared, with and without regularization, to test the effect of regularization
on over-fitting ((β = a0, a1, . . ., an):
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• linear model, h(x, β) = a0 + a1x

• quadratic model, h(x, β) = a0 + a1x + a2x2

• quadratic curve model, h(x, β) = a0 + a1x + a2x2 + a3x3 + a4x4

The criterion chosen to minimize the ordinary least squares, or the mean squared error, is other-
wise called the cost function J(β). Regularization consists in introducing a penalty term λ for the
higher order coefficients, and thus the higher the order of the model, the higher the cost function
that must be minimized (see Eq. 2.34).

J(β) = 1
2

 1
n

n∑
i=1

(y(i) − βx(i))2 + λ
D∑

j=1
a2

j

 (2.34)

2.5.6 Sample size determination

Usually the variance of the error is unknown, and it can be estimated from the data as σ2 = 1
n

∑n
i=1 ϵ2

i .
ϵ is an unobservable variable, that is unknown as well, so it can be replaced by the residual values
of the OLS estimation ei = yi − β̂xi. Since OLS objective is to make the sum of the e2

i as small as
possible, ei are generally smaller than ϵi. The estimated variance is then presented in Eq. 2.35, where
the sum of squared errors is divided by the degrees of freedom n− k rather than n to maintain the
same size as the actual variance [78]. Hence the first constraint on the sample size, as n should be
greater than the number of regressors n > k for the estimator of the variance σ̂2 to be defined. The
consequence of an undefined variance would be misleading results, for example, the R2 value would
be R2 = 1 indicating that the model has a perfect fit, though it is not the truth but the real cause
is the lack of observations.

σ̂2 = s2 = 1
n− k

n∑
i=1

e2
i = 1

n− k

n∑
i=1

(yi − β̂xi)2 (2.35)

One can say that the more observation a sample has, the more it is reliable, however, more sam-
ples require more effort and cost. Defining the minimum sample size needed for a study is a criteria
for optimal modeling, as it will affect the model outcome. The more information available, the best
a model is able to give a general unbiased representation of the population, however it might be
a waste of resources. Small sample size would give inconclusive or contradictory results, especially
when the sample variation is high [100].

In default, to be able to have a variance, a sample must have at least two observations n > 2.
However, some papers require that a minimum sample size per group to be n = 5, for the sta-
tistical analysis to be reliable [39]. It is more likely that an ANOVA test will erroneously accept
non-significant effects for a small sample size [57]. Others base the sample size on the number of
predictors of the regression, n ∼ 50×k. Such numbers are not feasible in many electrical engineering
applications, and standards typically define the sample size for each electrical product. For example,
for accelerated reliability testing of energy measurement equipment, the standard states that aging
tests should be performed with as many samples as available [98].

Sample size can be chosen by selecting the minimum sample number that gives the best model
selection criterion, like adjusted R2 or AIC. After several studies based on these two criteria, Jenkins
et Quintana recommended a minimum sample size of n = 8 for a tight data pattern (i.e., very low
variance value) and n ≥ 25 for high variance value, to clearly match a model to the data pattern [107].
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Sample size determination (SSD) methods fall into two groups: frequentist methods and Bayesian
methods, which generate debate about which group is more reliable, especially for small sizes [12].
The aim of all SSD methods is to allow the investigator to determine the sample size by specifying a
target level of accuracy or by maximizing a specified objective function. Note that these approaches
require preliminary studies that may be harmless when the objective of determining the minimum
sample size is to increase accuracy. If, on the other hand, the goal is to reduce the cost of the
experiment, doing preliminary studies is not the best solution, and the scientist should refer to
standards or devices available on hand.

2.5.7 Meta-regression

Regression has a very wide range of applications, and therefore has many subgroups. If multiple
studies have common or conflicting results, a method called "meta-regression analysis (MRA)" com-
bines, compares, and synthesizes the results of these investigations while adjusting for the effects of
available predictors on the response variable.

Meta-regression does not build a general model of the response y with respect to the explanatory
variables x, but constructs a model of effect size θ of a study. It is usually very used in economics [105]
and medicine [131], for example, a meta-analysis combines 28 studies to estimate the effect of choles-
terol reduction in reducing the risk of heart disease, regardless of the other test conditions within
each study [88]. Instead of testing if the effect estimate of each study is statistically significant, it is
better to group all studies and determine an effect size as it can be more generalized into a population.

In the case of degradation, MRA can be used to combine actual aging research with previous sim-
ilar studies to estimate the overall effect of a particular aging factor. Previous studies could include
degradation data of the same electrical component but with a different technology, or subjected to
additional aging factors, or similar factors but at different stress levels, etc.

For example, the modeling of OLED degradation in one study may end up assuming that the
effect of electrical stress is not significant on luminance degradation, due to lack of samples or bias in
the modeling, etc. In order to really test this hypothesis, a meta-analysis would incorporate various
other studies, to increase the accuracy of the estimation of the effect of electrical stress on OLED
aging and have a more generalized degradation model.

Meta-regressions are similar in essence to simple regressions, in which an outcome variable is
predicted according to the values of one or more explanatory variables [91]. The outcome variable of
a meta regression is the effect of one aging factor, and the explanatory variables are the characteristics
of each study.

b̂j = β +
K∑

k=1
αkZjk + ej (2.36)

Eq. 2.36 presents the general estimation of a particular effect b̂ [202] where

• β is the intercept value or the true value of the parameter of interest

• Zjk is the meta-independent variable which explains the heterogeneity between studies, it in-
dicates relevant characteristic of the jth study out of the K combined studies

• αk is the meta-regression coefficient which reflects the biasing effect of particular study char-
acteristics
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• ej is the meta-regression disturbance term

Meta-regressions are very interesting for having a generalized degradation model independent of
the particular aging factors, controlled and uncontrolled, that influence a specific study. However,
they are not recommended when the number of studies is greater than 10. In this case, heterogeneity
across studies can be added as an explanatory categorical variable (e.g., study number), along with
the other unified regressors in the degradation model.

2.6 Advanced algorithms: machine learning models
In most cases, basic regression models work just as effectively for small degradation problems, but
they are not suitable for more complex problems. Modeling the degradation of a complete system, for
example, requires in-depth knowledge of the degradation of its subsystems and their causes (in many
cases unobservable or unknown). If a system’s weak points are identified and measurable, many
output performance results can be tracked, making it difficult to incorporate them into a simple
regression model. The third problem with a simple regression model is the need for a threshold, to
model a mean time to failure distribution. In many cases, due to the complexity of a system, this is
not easy to detect.

More advanced regression algorithms can solve some of the problems listed above. These algo-
rithms are based on machine learning strategies, which are the most effective at accurately predicting
a model. However, they have a big disadvantage as they are referred to as black box processes, since
the mechanism that transforms input into output is obscured by an imaginary box.

In what follows, neural networks and support vector machines, the two most common machine
learning algorithms, are presented, along with other examples.

2.6.1 Neural Networks

Neural networks (NN) are one of the main techniques used in artificial intelligence. It is based on
the imitation of the biological neural network of the brain, as it consists of interconnected processing
elements, called "neurons", through three main layers: an input layer, one or several hidden layers
and an output layer (see Fig. 2.3a). The hidden layers can have as many intermediate variables or
neurons as needed (depending on the complexity of the model).

As said, they are widely used in artificial intelligence, due to their ability to handle complex
modeling, and can therefore be used in predictive modeling. NNs build a complex regression func-
tion between a set of network inputs and outputs, so they can be used for degradation prediction
without the need to actually understand the physics leading to degradation or the actual model of
degradation. The advantage of using neural networks lies in their ability to model the evolution of
complex multidimensional degradation signals [80].

Neural networks are gaining popularity in degradation modeling because of their efficiency in
prediction. Zhu et al. modeled the degradation of an epoxy resin adhesive using a tri-variate regression
model and a neural network, with a small sample of data [239]. The neural network did indeed
predict with a higher R2 value the lifetime of the validation set, but again, the method did not show
what were the reasons for the degradation, or more importantly, how the adhesive behaves when
faced with stress factors. Gebraeel and Lawley they used neural networks to predict the times of
degradation of bearings, and ultimately predict the distribution of the remaining life of bearings [80].
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(a) Neural network example from Wikipedia (b) SVM example from Wikipedia

Figure 2.3: Machine learning methods

They integrated this technique with an empirical exponential model based on their experimental
observations to better understand the degradation results. Zhang et al. modeled the degradation of
mechanical components using a back propagation neural network algorithm[236]. The paper actually
accentuates the drawbacks of neural networks and attempts to provide solutions. The authors tested
the use of small samples for prediction, using the first n degradation indicators (let’s say a time-series
of [y1, . . . , yn]) to predict the next n degradation indicators [yn+1, . . . , y2n]. Three important bits of
information are extracted from this paper:

• The NN is a black box that gets an output based on the input, regardless of the mechanism
between the input and the output.

• Long-term predictions are poor (in their case).

• The size of the training sample affects the output, as the NN may converge to a local value.
This was also confirmed in the paper by Dong and Luo, compared to other learning algorithms
like SVMs [66].

For insulation, neural networks are widely used for diagnosis, as they can assess the aging state
of electrical insulation based on acoustic techniques [82], or recognition of partial discharges [224],
and even predict their breakdown voltage strength [198]. They are also applied to predict the degra-
dation of insulators by predicting the variation in electrical resistance [195], or the degradation of
their tensile strength [33]. However, the main objective of neural networks is the prediction of the
output, and not the modeling of the degradation behavior.

Neural network algorithms tend to achieve excellent prediction results when using a large amount
of diverse training data. They are expensive and cannot be applied to degradation modeling, because
most degradation data are small to medium in size and therefore not sufficient. Furthermore, this
type of algorithm is used for more complex systems where the failure mechanisms are not known.
NN algorithms can only predict the failure cases that are included in their training set, and fail
to identify other possible failure modes. Finally, neural networks do not show the relationship
between the output to be modeled, whether it is a level of degradation or a lifetime value, and the
corresponding explanatory variables, because the role of the hidden layers is to associate the output
with their explanatory variables.
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2.6.2 Support vector machines
Neural networks became popular in mid 2010 but previously, support vector machines SVM were
used for high dimensionality regression problems [106]. SVMs are learning algorithms used primarily
for classification (of data) and regression analysis. They classify the input data into several cate-
gories or kernels, as they are called. Classification is performed by finding a certain hyperplane as
in Fig. 2.3b, which best separates two or more categories. In Fig. 2.3b, two hyperplanes H2 and H3
make this separation, however, the SVM chooses the hyperplane that has the greatest distance to
the training data, so H3 is considered the best separator.

According to Vapnik [218], the hyperplane has the equation of Eq. 2.37, where Ψ is a feature
space that transforms the variables, for an easier separation (see Fig. 2.4a). w is a vector of weights

(a) Feature space concept from [209] (b) Regression vs classification application from [11]

Figure 2.4: SVM perception

determining the hyperplane in the transformed space. The SVM will find the hyperplane that
separates the training data without error with a minimum norm |w|, i.e., the margin length between
the hyperplane and the nearest data point of Fig. 2.4b (Eq. 2.38).

H : Ψ(x)w + b = 0 (2.37)

yi [(Ψ(xi)w)− b] ≥ 1 (2.38)

SVM is mainly used to classify data, for example to detect spam or for handwriting recognition.
However, for regression applications, SVM does not look for the hyperplane that best separates the
data, but the one that is closest to the value of yi. Its goal is to find a function f(x, α) = (wx)+b, by
minimizing the empirical risk Remp that the data are outside the margin of the hyperplane. In this
manner, the SVM separates two groups of data, so that the measures within the function are grouped
into one class and the outliers are considered as the other class (see Fig. 2.4b). More equations about
the minimization of the empirical risk can be found in [218].

Remp(w, b) = 1
n

n∑
i=1
|yi − (wxi)− b|ϵ (2.39)

SVM is mainly used for fault diagnosis, for example to identify defects in OLED panels [197].
For degradation modeling, however, Sun and Li performed SVM extrapolation of performance data
to determine the lifetime of a microwave assembly [209]. They considered the performance data as
a time-series where the next performance value can be predicted based on the previously recorded
data x̂i = f({xi−h, . . . , xi−1}), where h is the embedded order of the time series. The SVM would
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automatically identify the f and use it to predict the ith value. Here, it was used as a "black box"
technique, which does not show how the prediction is made, even though it has high prediction ac-
curacy.

SVM was used to predict the bearing degradation process [66], where the characteristics of the
vibration signals are extracted and iterative algorithms are applied to predict the next value based on
only 7 previous inputs (inputs are collected as time series every 10 minutes). The method performed
very well, compared to neural networks, especially because it requires very little input data compared
to other learning methods. Once again, the SVM did not give the direct path of degradation, but
predicted future values without really understanding the changes in degradation, and in the case of
Dong et al. [66] or even other papers [208], only one future value was predicted by the algorithm.
Since SVM uses time series for degradation processes, the future values depend on the time series
inspection unit, so it can only predict a few minutes or hours ahead. This could limit the planning of
any preventive or maintenance action, which is basically one of the reasons why degradation modeling
is studied in the first place.

2.6.3 Online models

One of the important reasons for degradation modeling is to study the performance of the device. In
some cases, degradation modeling based on the methods presented earlier is sufficient for scheduling
maintenance and interventions. However, in real life, accidents tend to happen, and if not detected
early, systems or devices can suffer catastrophic damage.

Online modeling, based on advanced machine learning-based algorithms, can be applied. How-
ever, they are more complicated than the other solutions and require many calculations. Kalman
filters are the best way to continuously monitor system degradation. They are very popular for
control applications, and signal processing. For degradation modelling, their advantage is its adapt-
ability to change in degradation paths/trajectories. A Kalman filter is used to evaluate the dynamic
bearing degradation and estimate its failure (that was possible to do 50 minutes before failure) [177].
It can be used to predict the change in chromaticity of LEDs, which has a big variance with aging
[130]. The extended Kalman filter is used to monitor the health of electro-hydraulic servo-valves,
used to power transportation systems like aircraft [140]. An extended Kalman filter is used for an
online estimation of the degradation of a proton exchange membrane fuel cell [134].

Nonetheless, the aim of online models (including artificial intelligence algorithms) is to predict
an outcome. The model may be known in the case of Kalman, filter, but it continuously changes
with the aging time. These changes are solely based on previous data, and do not take into account
external factors.

2.6.4 Others

Other complex models can be used for modeling degradation, depending on the case, such as the
fuzzy logic system. When degradation is a vague phenomenon, where the degradation indicators
have a large variability, it is preferable to use a fuzzy regression model. Thus, the parameters of the
regression do not follow a certain distribution but the model considers a set of fuzzy parameters [211].

For example, fuzzy logic systems have been incorporated with neural networks for the prediction
of the remaining useful life of a ball nose milling cutter [138]. The proposed hybrid method was
found to have better prediction results with higher learning speed than each technique separately or
even compared to ordinary multiple regression, but it is still expensive, and the efficiency gain might
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not be worth the amount of computational effort.

All the methods proposed in this paragraph are based on a black box concept, they have a high
prediction accuracy, but at the cost of understanding the real model that leads to this degradation.
They also need a large amount of training data for their algorithms, which is very expensive for
degradation experiments. Another approach to model the degradation of complex systems is the
stochastic approach. This approach, presented in the following, is very different from the regression
approach, because it includes the randomness of the degradation in the model.

2.7 Stochastic modelling
Electrical components failure can lead to system failure, resulting in downtime losses and additional
unplanned maintenance actions, not to mention the risks to people and the environment. Previously,
deterministic degradations have been studied for inspection planning and maintenance decisions.
Deterministic methods were able to give an exact degradation value, for a particular set of input
variables. However, deterministic models do not include uncertainties caused by random or uncon-
trolled factors. That is, uncertain factors are represented by a random error factor in deterministic
models that result in only one solution to a problem.

In order to adequately predict the evolution of a component’s behavior for better maintenance
decision making, modeling degradation under uncertainty must be considered. Therefore, stochastic
methods that present data and predict outcomes which account for certain levels of unpredictability
or randomness, will be applied to model degradation. Stochastic modeling is inherently random,
and uncertain factors are built into the model. The model produces many responses, estimates, and
results to see their different effects on the solution. The same process is then repeated many times
under different scenarios [117].

The applications of stochastic modeling are very broad. In the following, some examples of
stochastic modeling of degradation in electrical engineering are listed.

• Fatigue crack growth: Fatigue crack growth is generally modeled by a Brownian motion degra-
dation process [196, 229].

• Battery degradation: Differences in lithium-ion battery production processes and materials
were incorporated into the modeling of cut-off voltage degradation by a Wiener process [93].

• Machine degradation: There are three stages of machine performance degradation: normal
operation, fault occurrence and accelerated degradation. Wanf et al. assigned a stochastic
Lévy degradation process to each stage, such as Brownian motion to model gradual time-varying
deterioration and the Poisson process to incorporate transient performance drops [223].

• Physical degradation in microelectronics: An interesting application of stochastic modeling is in
microelectronics, where the aging of trapping/untrapping properties is considered a stochastic
process [169].

• Storage Degradation: Stochastic degradation considers a random initial degradation, where
the initial degradation may not be zero. Shen et al. integrated the initial random decay into
the three basic decay processes: Wiener, Gamma and inverse Gaussian [191]. The paper then
applied these models to modeling the blocking error rate of magneto-optical data storage disks.
This application is characterized by a random degradation process and, more interestingly, by
random initial values due to storage problems.
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• Dynamic degradation: Degradation processes can include stages for dynamic covariates, like a
step-stress degradation process [62]. One application of multi-step degradation processes are
processes that include abrupt jumps in degradation pathways, where the timing of the abrupt
jump is also unknown [124].

The stochastic approach is widely used for modeling degradation, especially when several degra-
dation scenarios are possible. The technique is applied for systems with a lot of randomness, i.e.
real life systems. For example, a stochastic modeling of battery degradation allows to compute the
energy management of an off-grid electrical system,... This thesis tackles the degradation of a single
component, where it is preferable to use deterministic approaches, because the aging conditions are
known and fixed.

2.8 Modelling with dynamic covariates
Static stress is a stress that does not or slowly changes with time. Dynamic stress is a stress that
has change or progress within its time of application.

So far, degradation modeling, including general trajectory models and stochastic degradation
processes, has considered degradation under certain fixed covariates. However, as mentioned in the
degradation mechanisms of the previous chapter 1.4.5, the causes of degradation are not always con-
stant.

Dynamic stress may take various profiles, explained below, and summarized in Fig. 2.5.

• Step stress consist of multiple level constant stress that are increasing with time

• Cyclic stress consist of alternating stress levels in a cyclic way.

• Ramp stress consist of increasing gradually the stress level. It is used to detect the stress level
that causes failure for example. Ramp stress can also be associated with step and cyclic stress,
in order to not abruptly change between two levels (mainly thermal stress is concerned as its
time response is slow). It can only be applied in a cyclic way, in a triangular shape (dwelling
time of the cyclic stress is null).

In fact, the degradation caused by the environment, such as temperature, solar radiation or hu-
midity, is not constant, and can change with the day and night or with the season. The various
operating environments and actual workloads of systems vary in operation, e.g. dimming for lighting
systems, variable speed for electric motors... mean that the rate of degradation varies throughout
the life cycle. Zhang et al. cited many examples of dynamic degradation, such as the change in oper-
ational status of a missile weapon system from storage to transportation to maintenance [238]. The
paper notes that the state change of the system is a stochastic process, as it has many uncertainties
around the state transitions. Thus, it cites many continuous-time stochastic models to represent
state commutations, between storage and operation for example, etc.

If the dynamic operating model of the system workload is scientifically constructed and incorpo-
rated into the degradation model, maintenance planning can be improved and the accuracy of the
remaining useful life estimate can be increased. However, this is a much more complicated modeling
process that requires advanced statistical knowledge.

Of course, Meeker, a pioneer in degradation modeling, studied modeling degradation with dy-
namic covariates [92]. Considering the general degradation path of Eq. 2.25, the degradation with
dynamic covariates will become as represented in Eq. 2.40

yi(tij) = D[tij ; xi(tij)] + R(tij ; wi) + ϵi(tij) (2.40)



2.8. MODELLING WITH DYNAMIC COVARIATES 49

Figure 2.5: The possible constant and dynamic stress profiles

• yi(tij is the jth observation of degradation of the ith realisation at time tij .

• D[tij ; xi(tij)] is the degradation path that includes the dynamic covariates xi as follows:

D[tij ; xi(tij)] = β0 +
p∑

l=1

∫ tij

0
fl[xil(τ); βl]dτ (2.41)

– β0 is the initial level of degradation
– It is supposed that the model has p covariates
– fl(.) is the covariate-effect function, for l = 1, . . . , p

– βl are the parameters of the covariate function fl(.)

fl[xil(τ); βl] represents the effect of xil(τ) at time τ on the degradation process. It is usually
considered as a linear combination of spline bases.∫ tij

0 fl[xil(τ); βl]dτ is the cumulative effect of xl on the degradation process up to time t.

• R(t, wi) represents the random departure from the mean structure D[t; xi(t)], to account for
unit-to-unit variability caused by unobservable factors. wi ∼ N (0, σw) is the effect of the
random factor, that is modelled by zero-mean normal distribution.
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• ϵi(tij) ∼ N (0, σ2
ϵ ) is the independent and identically distributed noise term (similar to Eq. 2.25)

Similarly, there is a physical failure-based modeling method, called the cumulative exposure model
(CEP), used to analyze lifetime data obtained from a step-stress experiment [158]. The CEM is based
on the cumulative probability of physical failure or damage over time, so it will not be detailed in
this thesis as it focuses primarily on a lifetime analysis.

This thesis will focus on one type of dynamic stress, namely cycling. In what follows, a review
of cycling modeling for electrical components in general, and OLEDs and insulators in particular, is
presented.

2.8.1 OLED cycling
Self-heating of OLEDs occurs when some of the input electrical power is converted to heat rather
than light. It causes reactions such as charge traps, nonradiative recombination centers, and lumines-
cence quenchers, especially if there are original defects such as metal ion diffusion and environmental
contaminants. To avoid this self-heating, Li et al. studied the effect of pulsed stress on OLEDs [139]
and observed that short pulses with a duty cycle of 10 ∼ 20% significantly reduced the total injection
power, and thus largely eliminated the effects of self-heating on OLED stability. In other words, the
actual impact of the pulsed current is smaller than the constant stress because the accumulated ions
and carriers have the opportunity to redistribute during the off cycles.

Similarly, Cao studied the effect of thermal and non-thermal stress factors on OLEDs [43]. To
differentiate between the two effects, the current pulse was used because, in this case, the effects of
heating would be significantly reduced because the total power injected is reduced (especially if the
duty cycle is less than 10 %).

Similar work has been done on blue phosphorescent OLEDs with different fabrication technolo-
gies, and it stated that pulsing can suppress Joule heating of the recombination region[227]. The
reduction in self-heating, and thus power dissipation, would result in a slight increase in lifetime. The
work also attempted applying a reverse voltage while pulsing at 100 Hz and 1 % duty cycle, where
an increase in lifespan of about 15 % was observed. It was deduced that the reverse bias voltage
can release carrier accumulation in the recombination region and fixed charge trapping at the defect
states, leading to a small recovery.

Li also studied the reverse cycling by applying a negative voltage during the reverse cycle of
the pulsed stress while maintaining the current density in the forward cycle [139]. Adding a reverse
component to the pulsed current can indeed lead to performance recovery.

On a slower scale, Azrain et al. tested an on/off cycle of a few seconds to study the effect of
discharge time on the luminance of OLEDs [25]. They tested the OLEDs under the same current
density, and for 1 s turn-on time and several turn-off time values starting from 1 to 40 s, for 25 on-off
cycles. First, it was found that this cycling increases the luminance of the OLED, and the shorter the
off-time, the more luminance is increased. The increase in luminance during the off-time is explained
by the additional luminance produced due to the energy stored in the OLED. In other words, when
the OLED is turned on, the charged excitons of the anode and cathode act as a parallel capacitance
to store energy. These excitons will have the ability to rebalance and neutralize each other by re-
ducing the stored energy when the OLED is turned off. The longer the OLED is in its off state, the
more stored energy is dissipated, so when the OLED is in its on state, the luminance changes less
and after a turn-off time of 40 s, the luminance remains constant.
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Similarly, Rao and Mohapatra stated that there are two types of degradation mechanisms in
OLEDs, permanent and recovery degradation [178]. To prove the recovery mechanism, they sub-
jected the OLEDs to a dynamic pulsed voltage, i.e., the pulse width is kept constant for 10 minutes,
but the relaxation time between each pulse increases (see Fig. 2.6). The luminance value is measured

Figure 2.6: Cyclic profile applied to OLEDs: (a) 10 min bias voltage pulse, with varied relaxation
time in between successive pulses, (b) its luminance response and (c) its recoverable luminance as a
function of relaxation time [178]

parallel to the pulse stress, and it is found that the luminance value increases with increasing relax-
ation time. This type of luminance evolution is caused by the recovery mechanism where trapped
charges are released due to the relaxation time. Finally, cyclic stress is modeled using the relaxation
time factor, where luminance is shown to have an exponential relationship with this quantitative
variable.

Lastly, Zhang and his team studied the aging of OLEDs under constant current step stress
to accurately estimate the half-life of OLEDs under accelerated stress. Each stress step is then
transformed into a constant stress using the acceleration factor equation that relates MTTF and
initial luminance [234]. The step stress is actually an excellent way to reduce the number of samples
to be tested, because a sample can be tested at different levels, if no failure occurs.

2.8.2 Insulators cycling
As presented previously, few papers studied the aging of OLEDs under dynamic, and in more par-
ticular, cyclic stress. In fact, even general aging standards of OLEDs does not exists. This is not the
case for insulators, as many standards describe very precisely how to test the insulation, depending
on its application, and its physics and size, and whether it is under constant or dynamic stresses.
Generators usually transition between low and high power loads, inducing thermal variations, leading
to additional dynamic electrical and thermal stress. In the following, some cycling modelling of the
insulation in the literature is presented.

Kokko studied the effect of thermomechanical power control cycles on the life of stator windings
in hydroelectric power plants. [122]. Since power regulation results in thermal heating and cooling,
and thus expansion of the wire and insulation, the effect of cycling was modeled using an electro-
thermo-mechanical aging model presented in Eq. 2.42), where ts is the lifetime consumption for each
cycle, Ew is the electric field stress, le is the maximum relative thermal expansion during the cycle.
tr, Ere and lr are respectively the reference lifetime, electric field stress and thermal expansion, based
on previous studies, and m and n are the model parameters.

ts = tr

(
Ew

Ere

)−m ( le
lr

)−n

(2.42)

Mazzanti studied the effect of electro-thermal step-stress with load cycling on high voltage AC
cables, because as explained earlier in the physics of degradation of insulation, thermal stress can
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cause the insulation and wire to expand differently, resulting in insulation cracking [149]. He con-
sidered three models to represents the electro-thermal stressing, Zhurkov, Crine and Arrhenius-IPM
models. Zhurkov’s model usually represents thermal fluctuations caused by mechanical stress on gen-
eral solids, but Mazzanti replaced mechanical stress with electrical stress, and so the model proposed
in Eq. 2.43 combines electrical and thermal stress, with the presence of a cyclic load. In Eq. 2.43, τ
is for the insulation lifetime, τ0 is the reference lifetime when the exponential of the equation is equal
to 1, w is the activation energy of structural failure, R is the universal gas constant, χ is a generic
structural parameter related to the thermal fluctuation, E is the electrical field and T is the stress
temperature.

τ = τ0e

w − χE

RT (2.43)

(Crine and Arrhenius were explained earlier) Only the loss of lifetime per day, e.g. per cycle was
modeled, and to incorporate the daily dynamic effect of the loads, this loss of lifetime was divided into
small time intervals, where the transient temperature caused by the dynamic load can be considered
constant. The lifetime is then integrated for each step of the dynamic load.

2.8.3 Dynamic aging of other components
In real applications, dynamic stresses in general, and cyclic stresses in particular, can have a great
influence on component aging. In fact, it is very important to model component aging with dynamic
stress, mainly for energy management, as they may have other effects on component degradation
that are not accounted for with constant stress, which could sabotage any energy management plan.

Batteries are one of the most important dynamically stressed electrical components. Their appli-
cation can vary from vehicle batteries to cell phone batteries to solar power plant batteries and much
more. Their applications are based on the state of the charge-discharge cycle which causes them to
age with each cycle. In the field of batteries, there are mainly two types of aging, cyclic aging and
calendar aging. Cyclic aging is related to the decrease of the battery’s capacity during its operation.
Calendar aging is related to the decrease of its capacity when it is stored and not used. Battery
health can be assessed using the State of Charge (SoC) and Depth of Charge (DoD) indicators. The
first parameter is the current capacity of the battery relative to its initial capacity, and the DoD is
the discharged capacity relative to the initial capacity. Narayan et al. modelled the battery lifetime
L with respect to the DoD, the cycle-life n, the nominal battery capacity Enom, and the total energy
throughput of the battery Ethr,tot in Eq. 2.44 [156].

L = n×DODavg ×
2Enom

Ethr,tot
(2.44)

Super-capacitors are another excellent example where aging due to power and thermal cycling has
been studied [23, 214]. Kreczanik et al. modeled the lifetime of super-capacitors under power cycling
aging [170], considering it is proportional to the inverse of the dynamic stress, and it is presented in
Eq. 2.45, where τd is the lifetime, Tc(t) and v(t) are the dynamic voltage and temperature, and (tinit

and tend are the beginning and ending time of the experiment.

τc (Tc(t); v(t)) = tend − tinit∫ tend
tinit

( 1
τs (TC(t); v(t))

)
dt

(2.45)

Photovoltaic ribbon wires are also subjected to dynamic stresses, such as thermal fatigue, thermal
shock by current, moisture, etc. Jeong et al. studied the degradation mechanism of photovoltaic wire
under cyclic thermal stress [108]. Although no modeling was performed, it is interesting to note that,
according to their results, the strength of the photovoltaic ribbon remained constant until a number
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of cycles where a crack caused by thermal expansion significantly decreased its value. Therefore,
dynamic cycling may not lead to direct degradation of electrical component characteristics, but it
can cause catastrophic degradation and premature failures.

As in other previous examples, the reliability of LEDs is related to electrical, thermal and en-
vironmental factors such as humidity. Transient thermal stress, for example, can cause LEDs to
de-laminate, which enhance moisture absorption[94]. Hu et al. modeled the transient stress temper-
ature with the LED surface, as seen in Eq. 2.46, where T is the temperature, t is the time, x, y and
z are the spatial coordinates and α is the thermal diffusivity of the component [94]. Thermal stress
σ, considered to mechanically expand the LED, was also modelled in Eq. 2.47 using the coefficient
of thermal expansion α and the elastic modulus E that are relative to each component and the
difference between the initial temperature Tref and the actual temperature T .

∂2T

∂2x
+ ∂2T

∂2y
+ ∂2T

∂2z
= 1

α

∂T

∂t
(2.46)

σ = Eα(T − Tref ) (2.47)

Overall, dynamic stress, if it has been studied at all, has only been studied to estimate a lifetime.
Also, if dynamic stress has been modeled, it has generally been transformed into an equivalent
constant stress where known models can be applied. Few real-time modeling was done, but no
modeling of "degradation" over time was done, as the main interest of most papers was to estimate
component life. More importantly, no general method can be applied to all components, as most
models are application specific.
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2.9 Conclusion
This chapter has presented the various physical and empirical models that are used in electrical
engineering in general, and for OLEDs and insulators in particular. Each model has its own char-
acteristics, with physical models representing the relationship between degradation rate and stress
factors. The empirical models define the degradation trajectories, where the degradation rate is in-
cluded. In order to model the components of degradation with time and stress factors, a combination
of the two models can be made to have a semi-empirical model.

This chapter has also listed the different approaches to estimate the parameters of the decay
models, from a first theoretical point of view. Each approach has its own advantages and inconve-
nience. For instance, regression methods are easy to use and have very well known variables and
fixed parameters. They are not quite efficient in cases of complex systems however, where unknown
variables are the majority, or where big sources of randomness exists.

Machine learning algorithms tackle complex systems degradation, in a high accuracy level. These
methods however are far more complicated than basic regression analysis and are based on black
box concept, where the degradation process, or the causes of such degradation are unknown. This is
inconvenient for designing a highly reliable product.

Online models, like Kalman filtering, tend to give a very close-up monitoring solution for main-
tenance planning. These models however are very costly, as the data are required to be collected
frequently, and computation is done repeatedly. Moreover, their objective is to monitor the evolution
of degradation, which can change depending on the data. However, this is not the objective of this
thesis, since the components are aged under constant or dynamic, but fixed factors through the aging
time.

Stochastic processes solve the lack of incorporating the randomness in basic regression models.
They are best suited to address the modeling of the degradation of a component in a global system for
design optimization or energy management, where different degradation scenarios must be taken into
account. Again, this is not the case in this thesis because the degradation modeling only addresses
the individual electrical components, where they are subject to very few uncontrolled random factors.

The methods of the degradation models have been detailed, it is now time to apply them, if
possible, to motivating examples. Two motivating examples will be used in this thesis, the first
being the degradation of organic light emitting diodes, which are very sensitive to stressors due
to their organic layers. The other example is the degradation of the insulation of twisted pairs of
enameled copper wires at low voltages, which has been rarely studied before, unlike their mean time
to failure studies. For this purpose, a design of experiments will be performed to evaluate the aging
of components under multiple stress factors. Finally, the test benches and measurement procedures
will be explained. However, the data collected will not be treated in the following chapter.
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3.1 Introduction
In the previous chapter, physics-based and empirical models were presented. It was established that
semi-empirical models that combine both models, include the stress factors and capture the decay
trajectories. To estimate the parameters of the semi-empirical models, experimental data are re-
quired. For this purpose, the experimental design methodology is presented, in order to optimize the
cost of the experiments and to produce the most reliable performance data.

The experimental design procedure is then applied to two experimental designs: The OLEDWorks
experimental design and the insulator experimental design. The OLEDWorks experimental design
includes aging of industrial OLED panels using a test bench that already exists for previous OLED
studies. Therefore, the test bench is presented, along with the added part regarding the application
of dynamic electrical stress. The measurement procedures are then identified, in order to collect as
much data as possible, for the modeling of the degradation and the understanding of the degrada-
tion mechanisms. Finally, the experimental plan selecting the experiments to be performed under
different levels of accelerated, thermal and electrical, constant and cyclic stresses, is presented.

As for the experimental design of the insulator, it consists of aging twisted pairs of enamelled
copper manufactured in the laboratory for low voltage applications. Also, the degradation test bench
is presented, where it includes temperature, voltage and frequency constraints. Therefore, an exper-
imental plan selecting the experiments to be performed under these constraints is designed. Periodic
inspections are performed, where the partial discharge inception voltage is measured. The measure-
ment procedure is also detailed.

3.2 Design of experiments
"The only way to learn anything about a system is to disturb it and then observe it" [68]. An ex-
periment is a scientific procedure undertaken to make a discovery, test a hypothesis or validate a
known fact. Experiments have been conducted since the beginning of time, and while Newton did
not need an experiment to discover the law of gravity, most scientists need to conduct experiments
to understand their research. In the case of this thesis, experiments are needed to test the aging of
electrical components in order to apply degradation modeling methods to their results. In the follow-
ing paragraphs, the terms of the experiments are explained and the steps in designing an experiment
are presented.

Firstly, an outcome is always expected from an experiment, and it may vary depending on the
conditions of the experiment. Although experiments can be natural (uncontrolled), the term "ex-
periment" generally implies a controlled experiment that has a specified goal combining the outcome
and the desire to adjust it. In other words, the conditions of the experiment are controlled by certain
"factors" or "variables", which are modified to influence the outcome. These factors can be qualitative
or categorical, such as the type of variable or its presence, and they can be quantitative, meaning
that the amount of the factor applied varies from experiment to experiment.

Since a large number of tests can be a waste of time and resources, it is important to conduct
the experiments in an efficient manner, i.e., to obtain the maximum amount of information by doing
the minimum amount of work. To plan an experiment, five steps are necessary [115]:

1. Establish the Goal

2. Develop a Strategy
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3. Create a plan

4. Implement the plan

5. Observe and analyse the results

3.2.1 Establish a goal
The first step of the experiment is to assign an objective; In the field of reliability, and in particular
in degradation modeling, the objective is to maximize the lifetime and to accurately predict the
lifetime or the mean time to failure. For instance, in Jin et al. paper, their goal was to predict the
lifetime of a flywheel in long-life satellites by estimating the amount of lubricant lost [109]. In Lall
and Wei paper, their goal was to predict a 70 % lifespan by tracking the luminous flux degradation
and color change of a solid-state light. In addition, the objective is related to the factors used, e.g.,
if the objective is to maximize lifespan, experiments must test several conditions in order to achieve
this objective. Therefore, when planning an experiment, factors that reflect the stress applied under
real-world conditions should be considered.

3.2.2 Develop a strategy
The next step is to develop a strategy: The first strategy that comes to mind for testing the effect of
a factor on the outcome is to conduct several experiments with that factor at different levels. This
is called the OFAT (one-factor-a-time) method, where each factor is tested alone. This method is
very expensive because if n factors have to be studied at k levels each, the number of experiments
to be tested will be a total of n × k. In addition to the cost of the experiments, the interactions
between the factors will not be considered, since only one factor at a time is tested. The interaction
between factors is a phenomenon that occurs in real life, for example, which can not be ignored when
studying all the system. This is where the experimental design comes in, which includes three main
techniques: the factorial design, the D-optimal design and the Latin hypercube design [153].

The factorial experimental design allows for the study of the interactions between factors,
which is not possible with a one-factor-a-time (OFAT) method. Fisher introduced the design by con-
sidering each factor to be independent of the others, and classified it into full and fractional factorial
designs [34]. The full factorial design requires kn experiments to be performed, and generally the
factors are considered orthogonal, i.e. the number of levels for n factors at k levels each is optimally
assigned to two, with two values, high and low. The level depends on whether the factor used is
quantitative or qualitative. When the factor is quantitative, the terms "high" and "low" refer to the
highest and lowest quantity of the factor applied, respectively. Whereas for the qualitative case, the
level can be attributed to the type of factor used or simply its presence or not in the experiment.
The effect of high and low levels of one factor should balance out (cancel) against the effects of the
other factors for an orthogonal experimental design.

The fractional factorial design could be the first option for selecting which experiments to perform
when the effects of the factors are unknown, as it is less expensive and labor intensive. As the name
implies, the fractional factorial design consists of an adequate fraction (half or 1/4) of the combina-
tion of factors that allows the most important factors to be estimated, and higher order interactions
to be neglected.

Fig. 3.1 presents a three-factor full and fractional factorial design. The full design consists of 8
experiments placed orthogonally, to combine all levels. The fractional design, on the other hand, is a
reduction of the full design, where the experiments are carefully chosen so that their projection onto
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(a) full factorial design (b) fractional factorial design

Figure 3.1: Three factors factorial designs

a two-dimensional plan gives the same results as a full two-factor design. This allows the prediction
of the effect of the main factors, without interactions. In fact, the combination of levels for each
factor can be confounded by the interaction between the other two factors. An example is presented
in Tab. 3.1, where the table represents the factor combinations for each experiment in the full and
fractional factorial design. It can be seen that the levels of factor F3 for the fractional design ex-

Table 3.1: Levels distribution of three-factor factorial designs

Levels

Full factorial design

Experiments Factors
F1 F2 F3

1 −1 −1 −1
2 +1 −1 −1
3 −1 +1 −1
4 +1 +1 −1
5 −1 −1 +1
6 +1 −1 +1
7 −1 +1 +1
8 +1 +1 +1

Fractional factorial design

Experiments Factors Interactions
F1 F2 F3 F1×F2

2 +1 −1 −1 −1
3 −1 +1 −1 −1

5 −1 −1 +1 +1

8 +1 +1 +1 +1

periments are the same as the interactions between factors F1 and F2. This phenomenon is called
aliasing, because the effect of the factor F3 includes the effect of the interaction between factors F1
and F2. Nevertheless, it still is a great solution for a primarily study because it reduces the number
of experiments to be made. Instead of 2k experiments, a fraction of this number is needed which can
be extracted from the trade-off table in Fig. A.6.

In addition to the factorial design, center points that are halfway between the high and low levels
can be added to confirm the linearity of the model or to test for curvature and switch to response
surface designs for example (presented below). The center points also serve as a reference for other
experiments and indicate the stability and variability of the process. They should be tested at the
beginning and end of the experiment, and a few times during the experiments. Sometimes it is
worthwhile to test a three-level factorial design to estimate a second-order model, but it is best to
split factorial designs with more than three levels into two or more two-level factorial designs.
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Optimal designs focus on optimizing a criterion, e.g., an A-optimal design minimizes the mean
variance of the parameters, and D-optimal designs minimize the general variance of the parameters,
etc [110]. A full factorial design with two levels for each factor is already an optimal design. The
Placket-Burman design is a different model to use for experimental designs, when only the main
effects of the factors are sought, thus reducing the total number of experiments to a multiple of four
instead of a power of two [176]. The Latin hypercube design consists of assigning a single sample
for each level of the equally divided "p" parts of each of the "d" dimensions. It is mainly used for
computer experiments for sampling and modeling strategies providing good uniformity and covering
the entire surface to be modeled [220]. It is very advantageous when there are nuisance factors but
it does not take into account the interactions between the factors and the number of levels for each
factor must be the same as the number of conditions.

The response surface method is another good strategy to implement for experimental design.
It is mainly applied to test the quadratic or cubic order of the relationship between a factor and the
result. For this purpose, more than two levels are needed for a single factor, in the same way as for
factorial designs with more than two levels for each factor. However, the total number of experiments
required for factorial designs will be very high, even with a modest number of factors.

On the other hand, the total number of experiments in a response surface strategy is based on
the design itself. The first design is the central composite design, which consists of a basic factorial
design (in blue), central points (in red), and another group called "star points" (see Fig. 3.2). For
each factor, two star points are placed on its axis, where the experiments of the star points consider
only one factor at a time. Considering that the distance between the center point and the points
of the factorial design is ±1, the distance between the center and each star point is a certain alpha
computed based on whether the factorial points actually reach the limits of the experiments or not.

If the design can exceed the limits of the experiment, it is called a central composite circumscribed
design CCC, and α =

(
2k
)1/4

is greater than one.

If the design cannot exceed the boundaries of the experiment, the design is referred to as a CCI-
listed central composite design and the actual alpha would be 1

α
< 1.

In both designs, five levels are required for each factor, however, if it is not possible to have more
levels, a design where α = 1 called a central composite face CCF can solve the problem.

All possible response surface designs are shown in Fig. 3.2. The overall number of runs needed

(a) CCC (b) CCI (c) CCF

Figure 3.2: Two factor response surface designs
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by the response surface designs would be 2k for the factorial plan, 2k for the star points and n0 for
the central points (see Eq. 3.1).

n = 2k + 2k + n0 (3.1)

Finally, the design of experiments, as Fisher introduced it, is based on the principles of replica-
tion, randomization and blocking [35]. Replication, or repeating each experiment under the same
experimental conditions but at a different time, is essential for statistical purposes to estimate mea-
surement variance, significance of results, and measurement uncertainty.

By randomizing the timing of the experiments and repeating the samples for each experiment, a
normal distribution for the variance of the results is simulated, allowing the significance of the results
to be tested by considering them as "independent". In addition, randomization can minimize per-
turbations caused by some unknown or uncontrollable factors. When some uncontrolled factors take
place, for example two scientist that alternate in doing the measurements, or experimental devices are
ordered in several batches, or an uncontrolled "pandemic" occurs and interrupts the experimental pro-
cess, or in case of weather variations, etc., the blocking principle can be applied to solve the problem.

Usually, interactions between three or more factors can be ignored, so blocking would be a vari-
able that replaces third degree interactions. For example, when two scientists alternately perform the
measurements, and considering that the experiment has three factors A, B, and C, one scientist will
perform the experiment when the ABC interaction is at its lowest value and the other will perform
it when it is at its highest value. Since the ABC interaction is small and generally ignored, the
disturbance caused by the measurement operator is compensated by blocking. In this case, blocking
is an additional categorical factor that represents the scientist making the measurement.

Finally, validation and testing experiments must be added randomly to validate the good fit of
the model, as presented previously. This is done to test the ability of the model to predict other
outcomes since the experimental designs have no or very few degrees of freedom.

3.2.3 Create a plan

There are two choices for conducting reliability experiments, namely the evolution of quality over
time. Lifetime data is the best way to determine the reliability of a product, while the other choice
is to monitor the degradation of a component through aging. It is preferable to record both data
because they provide the complete aging performance history of the product. However, there are
many challenges that need to be addressed according to Chiao et al. [48]:

• Testing to failure may not be feasible for highly reliable products, even using censored data,
and is very costly

• Failure can be accelerated at high stress levels and may not reflect true behavior under nominal
conditions

These challenges are solved by planning a "degradation" experiment instead of a mean time to failure
experiment. The design of a degradation experiment, according to Yu and Tseng [232], implies posing
the following decision problems:

• How many devices must be used to perform a life test?

• How do you determine an appropriate inspection frequency and interval?

• How long should the experiment last before it is terminated if no failure occurs?
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These questions are answered by consulting previous work or the literature, or by conducting pre-
liminary tests if no previous studies are available. They also depend on the model in situ, as some
models require more samples for the statistical computation. They also rely on the strategy chosen,
e.g. the number of experiments to be tested for k-factor full factorial design with two levels per factor
is 2k, and for each experiment, a certain number of repetitions is necessary. In addition, they are de-
pendent on resources, time, and cost, and responses must take into account whether resources allow
for replication and repetition of experimental conditions, and for designing validation and testing sets.

The inspection time depends on the nominal lifetime of the product, and the model used, for
example if the decay is modelled with a logarithmic scale of time, the inspection interval increases
with time. Inspection frequency depends on the model desired, for example stochastic modelling re-
quires more measurements than an ordinary regression. Finally, ending an experiment before failure
depends on several conditions, and is mainly restricted by time. For example, if a scientist has 6
months to execute a full batch of let’s say 12 experiments, and has three stress equipment ( three
thermal ovens for example), experiments should not age for more than two months, because other
experiments need to be done. This is a crucial constraint to test an experimental process in a three
year PhD thesis. Now, if there is no analogous constraint, and no failure is happening, it is possible
to set a termination rule based on an on-line real-time procedure that is related to the convergence
of the accuracy prediction of MTTF, specially for highly reliable products because of their regularity
and their relatively slow decay [192].

3.2.4 Implement the plan and analyse the results
The fourth step in planning an experiment is to implement the previous plan foreseen, and this
consist of the physical application of the design previously. Lastly results are collected an analysed
to obtain the goal setted at the early stage of the planning.

Studying the main factors that could affect the aging of any component in electrical engineering,
and in particular the OLEDs and insulators were studied firstly. The possible aging models were
studied as well to be considered while choosing stress levels, and inspection frequency and time.
Lastly, several experimental strategies were presented to choose from.

In the following sections, experiments testing the aging of OLEDs and insulation of twisted pairs
are detailed as following:

• Components specifications

• test benches

• Measurement procedures

• Results

The results will be analysed in the next chapter following several degradation modelling methods.
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3.3 OLED experiments

The first component tested is organic light-emitting diodes. As presented in Chapter 1, the degra-
dation mechanisms of OLEDs are activated when the panels are subjected to external factors such
as temperature and current. Other external factors such as UV light and moisture can be avoided
by adding a UV protection film on the glass substrate or by sealing the OLED hermetically. The
OLEDs used in this thesis are industrial panels already sold on the market, so they are assumed to
be very reliable against external stress factors. Two types of OLEDs are tested, and in the following
the experimental setup of these OLEDs are presented.

3.3.1 GL55 experimental campaign

In the LAPLACE laboratory, the aging of OLEDs has been studied in several ways: luminance,
impedance, CV characteristics.

An experimental campaign testing the aging of OLEDs has already been performed before the
beginning of the thesis. The previous OLEDs used were large area lighting panels from Philips (see
Fig. 3.3.1) with the characteristics presented in Tab. 3.2.

Figure 3.3: OLED panel GL55, compared to a
pen in size

Name Philips Lumiblade
OLED Panel GL55

Color White
Color temperature 3200 K

Dimensions 130.2 mm× 47.8 mm
Light 116.7 mm× 35.2 mm

emitting area
Rated current 390 mA

Maximum current 450 mA
Rated voltage 7.2 V

Maximum voltage 7.5 V
Lifetime 10 000 h

at rated current
Nominal luminance 4200 cd m−2

@ rated current

Table 3.2: Technical characteristics of OLED
panel GL55

Aging due to temperature only, without electrical stress, was also tested. One OLED was tested
for each stress condition, and the experimental design is shown in Fig. 3.4. The choice of experimen-
tal design was based on the design of experiments method, specifically the full factorial design plus
the response surface methodology, which was explained earlier. The purpose of the experimental
campaign was to assess the reliability of OLEDs using accelerated life testing, as the life at rated
current was a long period of 10 000 hours. Therefore, considering that the nominal current density is
equal to 9.494 mA cm−2, three current densities above the nominal level were chosen with a ratio of
1.18, 1.37 and 1.58. The temperature also had three levels, the ambient temperature 23 °C, a medium
level at 40 °C and a high level at 60 °C below the maximum organic temperature of the OLED.

The campaign was employed in two different theses where several aspects of aging were studied;
these aspects are presented below.
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Figure 3.4: Experimental design for GL55 OLED panels

Luminance aging Modeling the lifetime of large area OLEDs based on the GL55 experimental
design has been studied previously [182]. The modeling involved several OLED lifespans, which
correspond to the time when luminance decreases by a specified percentage. For example, L85 is the
lifespan of the OLED when its luminance has a decay of 15 %, and reaches 85 % of its initial value.
The luminance data of the aging set is presented in Fig. 3.5.

Figure 3.5: Luminance aging data of OLED GL55

Despite the recording of several luminance decay values over time, the main objective of the
previous thesis was the modeling of the OLED lifetime or the 70 % lifespan L70. Lifetime modeling
of L70 included the effects of applied stress, using different methods such as experimental designs
and regression trees to understand the impact of stress conditions and their interaction on lifetime.
Eq. 3.2 presents a first order semi-empirical model of the lifetime L70 with the current density J , the
temperature T and their interaction. The model is based on a linear relationship between lifetime and
current density, and an inverse exponential relationship between lifetime and temperature (based on
the Arrhenius model). The physical relationships between stressors and lifespan were then combined
using a basic multi-linear regression that also allowed the estimation of the interaction effect between
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electrical and thermal stress. Nonetheless, since the physical relationship between temperature and
lifetime is exponential, a transformation of variables was performed to linearize the equation. Finally,
it was deduced that both stress factors have a negative effect on the lifetime, i.e., they decrease the
lifetime, and that temperature has the most significant effect on the aging of the OLED.

Log(L70) = 3.206− 0.173log(J)− 0.352/T − 0.007log(J)/T (3.2)
The same luminance data was used in another thesis, to model the degradation of the OLED

separately for each given stress condition [19]. The modeling was based on the accelerated lifetime
equation (see Eq. 2.13), and the stretched exponential decay equation (see Eq. 2.17). Eq. 3.3 repre-
sents the fitted SED model of the luminance L of the OLED aged at 23 °C and 11.25 mA cm−2.

L = 3639 · exp{−( t

17024)0.9298} (3.3)

The two previous thesis have used different methods according to their studies purposes. Dr.
Salameh, for example, has worked on semi-empirical models to estimate the effects of stress conditions
on lifetime without considering dynamic aging [182]. Dr. AlChaddoud worked on modeling the decay
in a time-varying equation without incorporating the effects of stress [19]. This thesis integrates
the two approaches to build a time-varying luminance degradation model that includes the stress
constraints.

Impedance aging indicator In addition to luminance, the degradation of OLEDs can be moni-
tored using electrical characteristics. The electrical impedance of OLEDs has been studied previously
based on the equivalent electrical circuits of OLEDs [19]. In fact, there is a wide variety of equivalent
electrical circuits of OLEDs that depend on the materials used (phosphorescent or fluorescent diodes),
the type (display or panels), the application (flexible), or other objectives like designing drivers to
compensate for any degradation in luminance. Studying the equivalent capacitance of the OLED
can help in understanding the transport and trapping of charge carriers, which helps in designing
OLEDs and optimizing layer thickness for example [37, 89, 175].

The basic equivalent circuit of an OLED consists of a resistor in series with a block of capacitors
and resistors in parallel [111] (see Fig. 3.6a). The series resistor is used to model the induction
current flow inside the OLED, and the block of capacitors and resistors in parallel is used to model
the capacitance between the layers, and then the subsequent light output.

(a) OLED basic equivalent electrical circuit (b) OLED equivalent electrical circuit adopted in AlChaddoud
thesis [19]

Figure 3.6: Equivalent electrical circuits of OLEDs in literature

Lee identified the three components of this circuit using the very fast transient response of voltage
and current (less than one microsecond) [132]. Similarly, Li et al. was able to compute the equiva-
lent capacitance of an organic single-layer OLED using this fast transient voltage and current and
their derivatives [135]. In another approach, Campbell identified the capacitor and the resistor in
parallel using a Bode diagram for frequencies ranging from 100 Hz till 1 MHz, and fitting the result
to the equivalent circuit using a least squares fit[42]. Similarly, Ahn et al. used a Cole-Cole plot
for their impedance spectroscopy with two voltage bias levels to identify the same equivalent circuit
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[13]. Drechsel et al. added two additional blocks of parallel resistors and capacitors to model the
intrinsic interlayering and the depletion layer [67]. After identifying the elements of the proposed
circuit by impedance spectroscopy, they used the identified values to determine the geometric thick-
ness of each layer, and the charge density distribution within those layers. In the same approach,
Chulkin et al. added another parallel block for OLEDs with high operation voltage (5 to 10 V) and
used impedance spectroscopy to estimate the mobility and concentration of charge carriers in the
transport layers. [52].

The typical current-voltage curve C-V, which is related to the diode family, has also been used
to identify the equivalent electrical circuits of OLEDs. Bender et al. dissected the C-V curve into
three regions: the first region does not produce light, but a small current begins to flow through the
OLED [28]. The second region corresponds to the first light emission around the threshold voltage
and the third region shows the OLED in operation where the current flow and luminance production
are very important. Each region was modeled with a set of capacitors, resistors, and diodes, and the
model was experimentally verified by simulating the C-V curve and transient voltage.

The evolution of impedance with aging was also studied in Dr. AlChaddoud’s thesis. The OLED
panels in the GL55 experimental design were modeled using an equivalent circuit consisting of one
resistor in series and two blocks of capacitors and resistors in parallel (see Fig. 3.6b). The Bode
diagram was plotted at three stages of the OLED life, before aging, at 30 % of degradation or at
the lifespan L70 and at the half-life where there is 50 % of degradation. It was deduced that the
parallel resistance increased with aging and the parallel capacitance decreased with aging. However,
no modeling of the impedance evolution was performed because only three measurement points were
taken. The current density-voltage curve was also studied for the three stages of aging, and it was
deduced that the threshold voltage, that is capable of generating 1 cd cm−2 of luminance, increased
with aging (see Fig. 3.7). This measurement made it possible to estimate the evolution of the energy

Figure 3.7: Evolution of the threshold voltage of the IV curve of OLED GL55 at three current
densities and one temperature (from [19])

required by the trapped charges to produce light.

3.3.2 OLEDWorks experimental campaign
The second campaign is made during this thesis where large area commercial OLED panels from
OLEDWorks were chosen to test their aging. They are warm white large area OLED panels called
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Figure 3.8: OLED panel OLEDWorks FL300 L ww, compared to a pen in size

"OLED Panel Brite FL300 L ww level 2" that can be seen in Fig. 3.8). Their technical characteristics
are presented in Tab. 3.3, from the corresponding data sheet [143].

Table 3.3: Technical characteristics of the OLED panel OLEDWorks FL300 L ww

System
Name Brite FL300 L ww level 2

Application Indoor buildings
Carrier material Glass

Color White
Dimensions(l × w × h) 248 mm× 70 mm× 21 mm

Weight 69± 0.8g
Light emitting area 222 mm× 46 mm, 102.1 cm2

Operational conditions
Ambient temperature +5 · · · 40 °C

Maximum internal ≤80 °C
operation temperature

Rated current 0.368 A
Maximum current 0.390 A

Initial rated voltage 20 V
Voltage at end of life 25 V
Nominal luminance 8300 cd m−2 @ Iin rated =0.368 A

Similar to the previous GL55 experimental campaign, the main external two factors for OLED
aging are then the thermal and electrical stress. Additionally, to study the effect of the discharge phe-
nomena on the OLED lifetime, the electrical stress factor will be applied constantly or in a cyclic way.

The test bench that was built by Dr. Alchaddoud for the GL55 experimental campaign is used
for this thesis as well. It consists of thermal ovens with electrical wiring for the supply [19]. The
temperature inside these ovens is kept constant using PID controllers, and is well diffused using
fans to ensure a homogeneous distribution in all ovens. In addition to the previously built bench,
mechanical supports were designed to fit the size of the large OLEDs used, and to allow good air
circulation inside the ovens. Each OLED panel is connected to a Wellman DC power source that has
a maximum voltage of 30 V and a current of 5 A.

Furthermore, to take into account the cyclic behavior of the electric current, a solid state relay is
connected to each DC power source, placed on a metal board acting as a cooling system. The relays
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are controlled by DLP design modules which are connected to a LabVIEW program. Moreover, for
each thermal oven, an electronic board connects the power sources, relays and OLEDs to manually
switch from constant to cyclic mode. The boards can also switch between two power sources, mainly
to perform electrical measurements of OLEDs inside thermal ovens. Finally, some thermocouples
read the organic temperature of the OLED inside the oven to detect any unwanted local heating for
example. The test bench and a diagram of the wiring are shown in Fig. 3.9.

(a) Test bench figure
(b) OLED on a mechanical support
inside the thermal oven

(c) Thermal oven with wiring drawing

Figure 3.9: Aging test bench for OLED panels under thermal, constant and cyclic electrical stress

For the OLEDWorks experimental campaign, several types of optical and electrical measurements
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are performed to track the evolution of the OLED over time. Optical measurements include lumi-
nance, spectrum and colorimetric parameters such as correlated color temperature CCT, distance to
the black body-locus Duv, chromaticity (x,y) and (u’,v’) and color rendering coefficient (Rf,Rg) (For
more details on the measured optical parameters, please refer to the US Department of Energy report
[217]). Photos of the very low current OLEDs are taken to detect any super bright or dark spots
that could lead to an unwanted failure. As for electrical measurements, they include impedance mea-
surement, CV curve and voltage evolution versus time. Finally, thermal measurements were made
with a thermal camera occasionally and thermocouples. All these measurements are detailed in the
following parts.

3.3.2.1 Transient response of voltage and temperature

The current that flows in the OLED when it is turned on generates with the luminance, a small
heat that will gradually warm up its organic temperature. At the same time, current diffusion and
thermal resistance decrease the electrical resistance and reduce the voltage level. In fact, as the
temperature increases, the energy required for exciton recombination decreases and therefore a lower
forward voltage is required to power the OLEDs [187]. It is important to wait for the end of this
transient behavior before performing other measurements based on supplying the OLED with con-
stant current (mainly optical measurements).

The study of the transient response of voltage and organic temperature is also very important
for dynamic aging, such as the choice of the electrical stress cycle time or its duty cycle. The study
of the transient temperature and voltage, thus the study of the thermal resistance of the different
anode materials, is very useful to improve the luminance efficiency and thus increase its reliability
[174]. The study of transient temperature is also important to study transient luminance, which is
very important for OLED displays for example, since one of the great advantages of OLEDs is their
fast turn-on time [47]. The study of the thermal degradation of OLEDs allows understanding the
electrical properties, such as electron injections for example, and improving their performance [127].

Fig. 3.10 displays the transient luminance response of an unaged OLED at nominal current
(368 mA) and ambient temperature (23 °C). The curves are fitted to a degree 6 polynomial function

Figure 3.10: Transient response of an unaged OLED at ambient temperature and nominal current
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for a clearer visual reading. The luminance in the first 120 seconds increases with time, but then de-
creases slowly and exponentially to a static state after about 700 s or 11 min. However, the variation
of luminance in this transient state is very small since it fluctuates around a difference of 40 cd m−2,
which is less than 0.5 % of the measured luminance.

Fig. 3.10 also shows the transient voltage and temperature of the OLED. The voltage has a
decreasing exponential curve with a time constant of 550 s or 9 min. The temperature has a rising
exponential curve with a time constant of 600 seconds or 10 minutes. The evolution of the three
curves can be linked as explained above, because when the OLED is heated, the electrical resistance
decreases, which leads to a decrease in voltage. This decreasing voltage will decrease the luminance
consequently. However, even though the time constants are about 10 minutes, the OLED charac-
teristics can be measured before reaching the steady state in about 20 % because their variation is
minimal compared to their actual value. In fact, the luminance has only a 0.5 % variation and the
voltage has an overall change of 3.8 %.

The transient temperature is also measured for higher current and temperature levels to select
the dynamic stress time. Fig. 3.11 represents the temperature evolution for two cycles including
the OLED in its on state and its off state. When the OLED is turned on, its organic temperature

(a) 60 °C (b) 40 °C

Figure 3.11: Transient response of OLEDs at 600 mA and different temperature

increases, but when it is turned off, its organic temperature also decreases exponentially. It is there-
fore important to study the temperature evolution in the on and off states. Tab. 3.4 represents the
time response of the organic temperature of OLEDs at different current levels and different ambient
temperature levels. The higher the ambient temperature, the less time it takes for the organic tem-
perature of the OLED to reach its steady state. In addition, the higher the ambient temperature,
the smaller the difference between the initial temperature and the organic temperature at the steady
state.

Table 3.4: 5 % response time of the organic temperature of OLEDs

Ambient temperature current State 5 % Time response
(°C) (mA) (s)
23 368 on 600
40 600 on 525
40 600 off 614
60 600 on 372
60 600 off 424
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Again, this type of measurement is performed before starting the aging campaign, as it is useful
for designing the measurement protocol performed during each aging inspection.

3.3.2.2 Optical measurements

As in the previous GL55 experimental campaign, luminance is the main indicator to evaluate the
degradation of OLEDs. In addition to luminance, other optical measurements can be taken in paral-
lel, such as spectrum and colorimetric parameters. These optical characteristics are measured using a
Minolta CS-1000 spectrometer (see Appendix C.2). The OLEDs used are rectangular panels of large
surface, whose photometric characteristics can vary from one spot to another. Thus, three location
areas are considered, "low" at the injection area, " middle" in the center and "high" at the other end
of the OLED, as shown in Fig. 3.12. For the measurement, the OLED is placed perpendicular to

Figure 3.12: Photometric measurement

the spectrometer, so that the measurement axis has a 0° angle. The distance of the measurement can
be chosen as described in [161], or following the common rule that the measuring distance should be
at least 10 times the size of the light source. Therefore, the OLED is placed at a distance of 100 me-
ter, to have a complete coverage of the measurement areas of the OLED which has a 5 cm×5 cm area.

The measurements are performed periodically, while the OLEDs are aging. For each inspection,
the OLEDs are removed from the ovens and allowed to cool for at least 5 min on heat dissipating pads
before starting the measurement procedure. The latter consists of turning on the OLED at its rated
current, and waiting 5 minutes until the voltage is almost stabilized (based on the above study of the
transient response of voltage and temperature). For each of the three locations, 22 measurements of
the optical characteristics are then made consecutively in a dark room for a period of about three
minutes to eliminate any measurement uncertainty.

In this thesis, only the luminance is used, but the aging of OLEDs based on the other colorimetric
characteristics are analyzed in a separate study [27].

3.3.2.3 Electrical characterization

Electrical characterisation is made to understand the physical mechanisms behind the aging of
OLEDs. It includes the study of impedance spectroscopy, the CV curve and the fast transient
response of current and voltage.
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Impedance spectroscopy The impedance can be extracted from the equivalent electrical circuit
of the OLED presented in Fig. 3.6b, which is identified from a Bode diagram. The Bode diagram
is plotted using the Modulab XM MTS device for electrochemistry and photovoltaic measurements
from Solartron analytical (see Appendix C.1). The device has a measuring system with 4 connection
terminals (two for the supply of the electrical component and two for the measurement of current
and voltage). It has an internal impedance of 50 Ω which is connected to a Faraday cage, where the
OLED is placed to limit any additional noise.

It is connected to a software called Xm-studio MTS which applies a frequency sweep from 1 Hz
to 100 kHz of an AC voltage of 100 mV, plus a constant bias voltage. Consequently, it records the
magnitude and phase at a rate of 50 samples per second, and plots the Bode diagram. The results
of the Bode diagram are then used to estimate the parameters of an equivalent circuit chosen by the
user using a specific written algorithm that takes into account the internal impedance of the device
(Fig. 3.13).

Figure 3.13: Impedance spectroscopy set-up

Impedance is specifically measured at a bias of 20 V, which is the nominal operating voltage.
However, Bode plots of several other bias levels are recorded, for later study that is not included in
this thesis. For example, the equivalent circuit at a bias voltage of 10V is purely capacitive because
the OLED is not in its conducting state. In Fig. 3.14, 6 levels of constant voltage were applied,
10 V simulating the blocking state of the OLED, 12.5 V the first light production of the OLED, [15 V
17.5 V 20 V 22.5 V] chosen for different levels of light production. Note that the applied voltage bias
is split between the internal resistance and the OLED, so when the current starts to flow through
the circuit, the OLED voltage would be less than the actual voltage bias (see the step voltages above
15 V in Fig. 3.14a)

The correlation between impedance and luminance is investigated in a separate study, in which
we studied the possibility of predicting lifetime using only the electrical characteristics [16]. In this
study, we showed that the impedance has two time constants (from the parallel capacitance and
resistance blocks), which are strongly correlated with the luminance. By tracking the evolution of
these time constants, and using the correlation between luminance and time constant, it is possible
to predict the lifespan of OLEDs.

CV curve The current-voltage curve (known as the CV curve) is an important characteristic for
any light-emitting diode in general, and for OLEDs in particular, as it is used to build an equivalent
circuit, or to track the degradation of OLEDs over time. Measuring the CV curve can be very tricky
because it not only has the typical exponential shape of any diode, but contains many operating
sections that can identify a certain electrical impedance. Thus, two measuring devices were used to
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(a) Measurement voltage conditions (b) Bode diagram impedance for
a 20 V bias voltage with fitting to
an equivalent circuit

Figure 3.14: Impedance spectroscopy measurement by applying several bias voltage levels and fitting
the measurement to the equivalent circuit of Fig. 3.6b

measure the CV curve:

• Modulab XM MTS

• Keithley 2602A source-meter

The first device is the Modulab XM MTS which has a high accuracy with a fast sampling rate
allowing the detection of all small sections useful for any further identification. However, the Modu-
lab XM MTS device is not designed to generate a current greater than 100 mA, so it cannot cover all
stages of the CV curve. For this reason, a Keithley 2602A source meter was used to measure the CV
curve specifically for the operating section above 100 mA till the maximum allowed current 390 mA.
This interval is included in the exponential section because the organic diode will be in its pass state
for these current levels and will produce light at high luminance levels.

As can be seen in Fig. 3.15, the two plots are equal; however, the difference between the plots
is clear when zooming in on the beginning of the exponential area. Fig. 3.15b accentuate this area,

(a) (b) zoom of the CV curve

Figure 3.15: CV curve using two measurement devices: the Modulab with high sampling rate and
noise, and the Keithley with high precision but low sampling rate

where the Keithley has a low precision sampling rate, unlike the Modulab which has higher noise but
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fast sampling. Keithley’s CV plot would identify the threshold voltage at 15 V while Modulab’s CV
curve is more accurate and indicates that the exponential region begins before 14 V.

The CV curve is used to extract the characteristics of the equivalent circuit. Nevertheless, it
will not be employed in this thesis, because the main objective of this study is the modeling of the
degradation of OLEDs.

Transient response of current and voltage There are two aspects to consider for transient
current and voltage measurements. The first is the slow transient voltage which is related to the
thermal self-heating of the OLED (presented above). The second is measuring the rapid turn-on of
the light, in about a few microseconds. Therefore, the fast transient current and voltage response are
measured with the Modulab XM MTS device, because it has a fast sampling rate. A voltage step
should be applied to the OLED to measure these characteristics. However, applying a voltage step
from zero to its nominal value is not recommended for several reasons. First, the OLED does not
provide enough light below about 13 V, and the jump from zero to full light output, will cause the
OLED to go through different states that are not needed. Second, the Modulab cannot cope with
this fast step to measure the transient response of the OLED.

The solution is to turn on the OLED at the nominal voltage level, then increase the voltage for
several steps of 0.4 V peak to peak (see Fig. 3.16a). After each step, the voltage is then reduced

(a) Step command to measure transient response of
the OLED

(b) Transient current and voltage response of the
OLED, repeated for 10 times

Figure 3.16: Fast electrical transient response of large-area OLED panels, measured repeatedly at
different voltage levels

to also measure the turn-off response of the OLED. This will verify if the transient response has
the same characteristics for different current levels. If so, this will increase the certainty around the
estimate of the OLED equivalent model. However, to increase the certainty and accurately estimate
the variance of the measurement, the step command is repeated 10 times. The results of the step
command are shown in Fig. 3.16, where the current has an impeccable replica of its response. The
first repetition of the voltage response differs from the others, and this could be due to the OLED
not being heated enough at the beginning. The voltage response would then be equal for all other
repetitions, but with a lot of noise (due to fast sampling).

This fast transient current and voltage response can also be used to track the aging of the OLED.
In fact, all of the previous measurements required a special device to perform them, and sometimes
these devices can be bulky or expensive. Therefore, companies may not be able to integrate these
measurement procedures into a real time diagnostic of their components.
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An industrial solution to monitor the aging process is to design an electrical board capable of
performing this type of measurement. This electrical board must be inexpensive, simple, and capable
of accurately measuring the rapid transient response of the OLED current and voltage with fast
sampling. This equipment can be sold with the OLED driver for real-time diagnosis of the OLED
aging state.

3.3.2.4 Surface characterisation

OLEDs are first checked for defects using a luminance mapping method. This method involves taking
high quality photos at different exposure times to detect all luminance levels. The photos are then
analyzed using specific software to obtain a surface luminance distribution around the OLED panel.
Fig. 3.17 presents four different OLEDs at 20 µA, and 1′′ exposition time. Fig. 3.17a, Fig. 3.17b,
Fig. 3.17c and Fig. 3.17d respectively present a homogeneous panel, a multitude of bright spots in the
center of the panel, a vertical luminous line and a double dark spot in the lower middle of the panel.
Note that this non-homogeneity is only observed at very low current levels, and at low luminance

(a) (b) (c) (d)

Figure 3.17: Photos of different OLEDs at 20 µA, and 1′′ exposition time

generation, because when the OLED generates more luminance, the non-homogeneity is not noticed
by the naked eye. The bright and dark spots are caused by manufacturing defects while spin coating
for example, where the electrode and polymer layers in some areas have slight bumps increasing or
reducing the luminance production locally.

The pictures are taken with a Canon EOS 50D camera whose sensor is calibrated pixel by pixel.
The camera is equipped with a Sigma EX Circular fisheye with an F 1:2:8 opening. The OLED was
powered at a current of 20 µA, which is the minimum current producing light high enough for the
camera to detect, and not generating transient heat thus transient voltage response. Photos at ten
different exposition times (4′′, 2′′, 1′′, 0.5′′, 1/4′′, 1/8′′, 1/15′′, 1/30′′, 1/60′′, 1/125′′) were taken to
detect all luminance levels.

Next, the photo series were analyzed with Photolux software to create an accurate mapping of
the luminance surface. In Fig. 3.18, the OLED was burned directly when placed in the thermal oven
at 60 °C and turned on at 520 mA. By retrieving the initial luminance mapping, it was found that
the burnt spot was an initial high luminance spot. This means that the local current density at this
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location was very high, that it generated an organic temperature above the tolerated temperature,
which caused the polymer layers to burn. The burning of the organic material generated gas that
formed a bubble around the dark spot, as can be seen in Fig. 3.18a.

(a)

(b)

Figure 3.18: Photos of a burned OLED with its luminance mapping

This initial measurement justified several accidental burn-ins of some of the first stressed OLEDs.
After these incidents, only OLEDs with a homogeneous luminance surface were selected for acceler-
ated stressing. In addition, periodic photos were taken of several aging OLEDs to track the evolution
of the bright spots over time, but this will not be addressed in this thesis. It could be a future
perspective for anyone interested in image analysis.

3.3.2.5 Experimental conditions

Initial characterization of all industrial OLEDs was done before starting the experiment. The exper-
iments are organized according to the factorial designs and surface response methodology (explained
earlier). The levels of the stress factors are based on their nominal characteristics, and are chosen
to be consistent with the previous GL55 experimental design in order to compare the two results.
The experimental design is shown in Fig. 3.19, where three stress factors are considered: Current,
temperature and cycling mode.

The first stress factor is temperature, and its values are the same as in the GL55 experimental
plan. The lowest temperature level is assumed to be the room temperature, which is always main-
tained at23 °C. However, the OLEDWorks panels were larger than the GL55 OLEDs, and despite
the fact that 4 devices fit in one thermal chamber, the self-heating of the OLEDs increased the tem-
perature of the thermal chamber to 30 °C.

Current is the chosen electrical stress factor, unlike the previous GL55 experimental design where
current density was the chosen stress. In fact, the OLEDWorks panels are almost twice as large as
the GL55 panels, so the same current density would result in half the power input. In addition, the
nominal current of OLEDWorks OLEDs is much higher than the nominal current of GL55 OLEDs.
Therefore, it is not possible to consider the same current density levels as the GL55 experimental
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Figure 3.19: The experimental aging conditions for OLEDWorks OLED panels

design, as these values will not cause accelerated aging. Therefore, the ratio of the nominal current
to the applied current is chosen as the mutual electrical stress between the GL55 and OLEDWorks
experimental designs.

The third stress factor is the type of electrical stress applied, whether it is a constant or dynamic
stress. The dynamic constraint was chosen to be an on-off cyclic current, to mimic the daily lighting
of lamps. This type of cycling tests whether the period when the OLED is turned off has a recovery
effect on the luminance or electrical characteristics of the OLED. The on-off states can also cause
thermal self-heating and cooling, resulting in additional thermal and/or mechanical stress that can
increase OLED degradation.

The daily on-off cycle is very slow, the dwell time for the on-state and off-state should be reduced
to accelerate this stress (For more information on cyclic stress, please refer to Fig. 2.5). Nevertheless,
the dwell time should not interfere with the self-heating and self-cooling of the OLED to distinguish
between the effect of thermal stress and the effect of electrical dynamic cycling on OLED aging.
Therefore, the transient thermal response related to self-heating and self-cooling of the OLED for
each thermal stress is measured. The transient voltage, which is correlated with self-heating, is also
measured. The maximum rise time for the temperature and voltage to reach their steady state is
about 15 minutes. The maximum fall time for the OLED to cool to the ambient temperature of the
thermal chamber is just under 20 minutes.

Therefore, a cycle consists of two phases: the online phase and the offline phase, where the current
is turned on for 20 minutes and off consecutively for 20 minutes. As a result, a current cycle will be
40 minutes with two states, on and off, and with a 50 % duty cycle. he cycling chronogram is shown
in Fig. 3.20a, where one cycle is presented. As it is seen in the figure, the cycling stress is alternated
between two successive OLEDs, in other words, when one is switched on, the adjacent OLED is
turned off. This is done to ensure an even temperature inside the oven, because as explained earlier,
the self-heating of the OLEDs can increase the overall temperature of the oven. Even though the PID
controller is able to consider the increase in OLEDs as a disturbance, it will take longer to warm up
the oven when all four OLEDs are turned off. Therefore, alternating will minimize this disturbance,
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(a) Chronogram of one current cycle inside the thermal oven (b) OLEDs on a mechanical sup-
port inside the thermal oven
(from Fig. 3.9)

Figure 3.20: The current cycling profile of the OLEDWorks experimental design

and help the PID maintain a constant temperature in the oven.

3.3.3 Conclusion on OLED experiments

After having designed the OLEDs experimental aging campaign, and selected the measurements to
be performed frequently during the aging, the data are then collected in a regular way, to be treated
in the following chapters. In order to generalize the degradation modeling approach proposed in this
thesis, another type of electrical components will also be aged under thermal and electrical stress.
This type consists in aging an insulation system, which will be presented below.

3.4 Insulators experiments

In the LAPLACE laboratory, the insulation of twisted pairs of enamelled copper wires has been
studied to test its dielectric life [210]. Twisted pairs are used for the stator and rotor windings of low
voltage electrical machines. Dr. Szczepanski has developed methods to test the insulation system of
low voltage motors operating under partial discharges. Organic polymer enamelled twisted wires are
tested under accelerated aging using three stress factors (temperature, voltage and frequency). The
study of insulation life is based on destructive testing: a high voltage above the partial discharge
inception voltage is applied to the twisted pair for a period of time until the insulation and electrical
current break down. Insulation life is then modeled at high stress levels, but extrapolated to low
stress levels below the PDIV using a statistical Weibull distribution.

Dr. Salameh also studied the life of twisted pairs of various enameled wires, using the same
destructive accelerated aging under the same stresses [182]. The objective of the thesis was to study
the effects of applied stresses and their interaction on the overall life of the insulation. The lifespan
modeling used parametric methods such as design of experiments and non-parametric methods such
as regression trees.

However, the main concern of this thesis is the aging of twisted pair insulation and the modeling
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of its degradation. Therefore, no destructive methods must be used to test the dielectric characteris-
tics of the insulation. In other words, aging should not be performed at high voltages, where partial
discharges already exist, but below the PDIV level. This is relatively a new approach, as only one
research has corresponded to this idea by following the evolution of the PDIV of twisted pairs in a
similar way [186]. In fact, they followed the evolution of the PDIV and the capacitance of a 210 °C
thermal class twisted copper wires with different diameter size at 280 °C following the standard EN
60172. They were able to prove that indeed PDIV changes with time, nevertheless, no modeling was
done, and no correlation with capacitance evolution is made.

In the following, the aging of twisted pairs insulation experiment will be presented in the following
order:

• Production of the twisted pairs

• The aging test bench

• The measurement procedure

• Experimental plan

3.4.1 Production of the twisted pairs
Enamelled copper wires from Acebsa were used for the twisted pairs (see Appendix B.2). Their
specifications are presented in Tab. 3.5.

Table 3.5: Specification of the enamelled copper wires used for the twisted pairs

name IBERFIL C
thermal class H 210

Base coat Polyamide-imide
Temperature index 20 000 h 210

Breakdown voltage 180 V µm−1

Diameter 0.5 mm

The manufacture of twisted pairs of enamelled copper wire is based on the European standard
NF EN 60851-5:2008-12.

• A piece of 40 cm wire is cut

• Removing the enamelling from 5 mm of each end

• Cleaning the wire with ethanol, to remove sanded insulation particles

• Hang the wire by both ends to a rotating device, and hold it at a load of 3.4 N

• Twisting the wire for 16 complete turns

• Cut the middle of the twisted wire to create two wires of 20 cm each, twisted together.

After the twisted pairs are manufactured, the bare terminals of the twisted pair are attached
to a banana plug. The twisted pair is cleaned one last time with ethanol to remove any unwanted
residue that may be attached to it and which could affect its characteristics. Fig. 3.21 represents the
equipment used to make these twisted pairs. Fig. 3.22 represents the twisted pairs manufactured,
before their aging and inside a thermal oven.
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(a) The equipment used (b) The rotating de-
vice

Figure 3.21: Fabrication of twisted pairs of enamelled copper wires

(a)

(b) Eight twisted pairs inside ovens

Figure 3.22: Photos of the twisted pairs

3.4.2 Test bench

A test bench based on the application of thermal and electrical stress to twisted pairs, already ex-
isting in the LAPLACE laboratory, is used (see Fig. 3.23). It consists of a thermal oven connected
to an electrical system capable of generating pulsed high voltage signals. The signal is produced
by alternating two voltage levels using two power switches controlled by a waveform generator to
regulate the frequency and waveform of the overall signal.

In this thesis, to realize the electric voltage square wave, the two voltage sources generate the
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(a)
(b) Drawing of the electrical wiring of one
oven

Figure 3.23: Aging test bench of twisted pairs under thermal and electrical stress

same levels but with different polarity. The HV pulse generator will then alternate between the
two signals according to the frequency defined by the waveform generator. A low voltage source is
connected to the HV voltage sources, in order to change both voltage levels at the same time. This
is a necessary option for the periodic partial discharge initiation voltage measurements that will be
performed later. Sensors are placed in series with each twisted pair to detect any current leakage
due to wire insulation failure that could cause a short circuit and damage the power sources. Finally,
three thermal chambers of a maximum temperature of 250 °C, that can contain up to 8 twisted pairs,
and can be regulated to apply constant or dynamic thermal stress are used.

3.4.3 Measurement procedure
The voltage at the beginning of partial discharge is a very delicate characteristic to measure. First
of all, the discharge current for the type of materials used is very low (less than 1 mA). Secondly,
the discharge current is a high-frequency phenomenon that can be confused with other parasitic
signals from measuring devices, cabling or surrounding noise. Also, the measurement of the partial
discharge inception voltage must be extremely fast so as not to add another aging factor, high voltage,
which would play a huge role in insulation failure. As twisted pairs are aged by the effect of partial
discharge, accidental failures due to high voltage are not desired. Thus the criteria for measuring the
PDIV would be

• High sensitivity and high bandwidth current probe
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• High bandwidth oscilloscope

• Fast sampling rate and fast FFT computing time

Partial discharges can add fluctuation to the measured transient current, increase the noise of the
electrical discharges, and produce ozone, resulting in a change in odor[145]. These three indicators
can certainly confirm the presence of partial discharges, but they are not as accurate in detecting
the first occurrence of partial discharges.

The ideal solution after several trial and error with several current probes, oscillators and ca-
bles was to measure the current that flows in the ground wire. The current is measured by two
current probes from Pearson electronics called current monitor model 4100 that has a 1 V A−1 sensi-
tivity, maximum RMS current of 5 A, a 10 ns usable rise time and a high frequency 3 decibel point of
35 MHz. The second probe is always from Pearson Electronics but has higher bandwidth of 250 MHz,
a 1 V A−1 sensitivity, maximum RMS current of 10 A, a 1.5 ns usable rise time (see Appendix C.3).
The measurement is visualized and analysed using a digital phosphor oscilloscope MSO 5204 from
Tektronix that has a 2GHz bandwidth and maximum of 10 GSample/s sampling rate.

The transient response of the current is then analyzed with each rise of the square wave signal
using a fast Fourier transform (FFT), which generates a frequency spectrum related to the measured
current. In order to detect the first partial discharges, one twisted pair at a time is supplied with a
low voltage level, which is then slowly increased in 3.3 V steps using the voltage regulator. The FFT
of the measured transient current remains the same until the appearance of the partial discharge,
where the overall amplitude of the high frequencies changes drastically, and precisely at frequencies
between 40 MHz and 50 MHz. The reason for this change in the FFT measurement may be the overall
circuit of the bench which increases the currents around these frequencies by a form of resonance.

Most of the time, the amplitude around these frequency levels increases a lot, but in some cases,
this frequency does not change for some random reason. Nevertheless, the spectrum still changes
somehow at the PDIV, because in some cases where the 40 to 50 MHz amplitude does not change,
the spectrum still fluctuates greatly after the PDIV voltage level is reached. Therefore, the FFT
spectrum at very low voltage level is saved, and then when the PDIV is detected, the voltage level
at the twisted pair sides and that of the voltage level regulator are noted, and the FFT spectrum is
saved. The PDIV would then be the first voltage applied to the twisted pairs that changes the shape
of the leakage current FFT spectrum.

Fig. 3.24 presents the current and FFT spectrum measured by a Pearson 4100 of a twisted pair,
which is placed in a thermal oven at 150 °C for 24 hours without applied electrical stress. The blue
curves of Fig. 3.24 presents the leakage current and its FFT spectrum of the twisted pairs at a
voltage square signal of 310 V amplitude and 4 kHz was applied. There is no partial discharge under
these conditions, but when the amplitude of the voltage is gradually increased to 570 V (±3 V) (the
red curves), the current signal starts to fluctuate. Additionally, the spectrum around 50 MHz shows
a very obvious increase in level, indicating the occurrence of a partial discharge. In this case, the
partial discharge inception voltage is 570 V. The same results are obtained with the wider bandwidth
oscilloscope, but with more noise. Still, for more precision, the current will be measured by the two
oscilloscopes in order to have the right inception voltage which causes the partial discharge.
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(a) Current (b) FFT spectrum

Figure 3.24: Electrical characterization of a twisted pair before and after a partial discharge

3.4.4 Experimental conditions

The aging factors that were chosen for this experiment are similar to the factors used for destructive
methods in previous studies [210]. The stress factors are voltage, frequency, and temperature, as
these are the most common and influential factors listed in the literature. The main objective of this
experimental campaign is to follow the aging of the twisted pair insulation. To achieve this goal,
non-destructive methods must be used, where low levels of stress are applied. Low stress levels are a
combination of stress factors that place the insulating material below its PDIV. Note that for high
stress levels, insulation breakdown occurs within minutes or at most hours, which would not allow
periodic measurement of the dielectric characteristic.

On the other hand, if low stress levels are applied, aging will take years to reach breakdown
voltage. It is then necessary to establish a compromise between aging below PDIV levels and accel-
erated aging, keeping in mind that the experiments must be performed in a limited time of 6 months
maximum. The experimental conditions that were tested are presented in Fig. 3.25.

The first strategy used, just to have a good understanding of the evolution of PDIV, was to test
the runs from 1 to 3 from the experimental plan of Fig. 3.25. For each run, num8 twisted pairs
were stressed at three temperatures below the thermal class of copper wire (that is 210 °C) including
ambient temperature. Besides the thermal stress, a low voltage level below the minimum measured
PDIV value of the copper wires and a 4 kHz frequency were applied. These runs were tested for
1000 h, and then stopped, as no breakdown happened, to allow further experiments.

New runs were then tested at high temperature and voltage levels 500 V level and alternating
between 4 kHz and 10 kHz frequency. The runs were numbered from 4 to 9 from the experimental
plan of Fig. 3.25. The six runs were conducted in two batches, where the first batch at high temper-
ature levels failed immediately or after a few hours at most. The solution for the second batch was
to reduce the temperature level to see if it was thermal stress that caused this failure, but a rapid
failure also occurred.

Since the high voltage caused the breakdown, the next runs from number 10 to 12 were subjected
to medium voltage and temperature stresses, but were shut down after one month because no failure
occurred.

Finally, runs from number 13 and more are tested at high temperature levels, above thermal
class, and at low and moderate voltage levels. Breakdowns in these runs occurred after several weeks
of testing, which gives a good censored data that is useful in the modelling later on. Therefore, a
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Figure 3.25: The experimental aging conditions for the twisted pairs insulation

three-factor, two-level factorial design is designed by considering two temperature levels of 220 °C
and 250 °C, two voltage levels 400 V and 450 V and two frequency levels 4 kHz and 10 kHz.

In order to be able to compare different factorial designs, experiments at 350 V and at different
temperature and frequency levels are also tested. Note that due to time constraints, it was not
possible to perform full factorial designs, and thus only experiments of fractional factorial designs
are be conducted.
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3.5 Conclusion
This chapter presented the design of experiments technique, according to different steps; the first
one is to define an objective which is the optimization of the lifetime by modeling the effect of stress
factors on the degradation rate of components. The second step was to develop a strategy based
on experimental designs such as factorial designs and response surface methodology. Such strategies
allow for the optimization of the cost of experiments by performing experiments on multiple stress
factors at once. The third step was to create a plan to perform the experimental design, which
consists of optimizing the duration of the experiment and accurately selecting the inspection times,
etc. This step is necessary to have a controlled environment for the thesis, which eliminates any
source of randomness and ensures clean and unbiased data.

The last step was to implement the experiments; In this step, two electrical components were
tested separately. The first component was the organic light emitting diode, where an experimen-
tal campaign performed by previous studies using different industrial OLED panels was presented.
This campaign was used as a guideline for the campaign done in this thesis, where two objectives
were sought: the first one was to estimate the lifetime of OLEDs by measuring the time it takes for
its luminance to decrease to a certain level. The second objective was to understand the physical
mechanisms behind the luminance degradation, by performing impedance spectroscopy and electrical
characterization.

On this basis, the main objective of this thesis, would be to model the degradation of OLEDs,
under constant and cyclic, thermal and electrical stress factors. For that, the test bench used for
this experimental campaign was presented. Moreover, the degradation of OLEDs can be modeled by
following the degradation of their luminance or by measuring some electrical characteristics. Other
measurements were also chosen to obtain additional information, which could be used for other stud-
ies, such as the colorimetric analysis of OLEDs [27].

Lastly, the strategies chosen for this experimental design were a combination of several factorial
and response surface designs, in addition to some randomized experiments, which could be used to
validate the modeling procedure. The experiments are performed, and the timeline of the experi-
ments will be presented in the next chapter.

As for the second component, it consisted of twisted pairs of enamelled copper wires used for
low-voltage applications. The objective of this experimental campaign was to model the degradation
of the insulation under temperature, frequency and voltage. Therefore, a test bench providing these
stress factors is presented. This idea of modeling the degradation is new, as no previous measure-
ments have been performed periodically. Therefore, the objective of the insulator experiments is to
measure the partial discharge initiation voltage (PDIV) of twisted pairs periodically over time. Thus,
the PDIV measurement procedure used in this thesis is presented. Lastly, due to time constraints,
the strategy is based solely on factorial designs with some additional experiments to validate the
modeling procedure.

Finally, the data collected during these experimental campaigns are processed and analyzed in
the following chapters for modeling degradation without stress factors (Chapter 4), and with stress
factors (Chapter 5).



Chapter 4

Degradation modeling methods
without covariates, with application to
OLEDs and machine insulators
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Chapter 5

Degradation modeling methods with
covariates, with application to OLEDs
and machine insulators
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Conclusion and outlook

Overall conclusion
The work carried out during this thesis has demonstrated an effective method for assessing the

degradation of electrical components. The objective of the thesis was to model the degradation of
electrical components under multiple stress factors in order to estimate their lifetime. The electrical
components used as an example in this thesis were large area OLED panels which have many advan-
tages in the lighting industry, but are sensitive to many factors due to their organic characteristic.
The second electrical component used is the twisted pair of enameled copper wires, which is con-
cerned with the insulation of low-voltage electrical machines powered by inverters that are subject
to several stress factors. The reliability of the insulation has always been evaluated by destructive
methods. This thesis proposed a promising new methodology to evaluate insulation degradation by
monitoring their partial discharge.

A state of the art concerning the study of reliability, and more particularly failure analysis was
presented. Since failure often occurs after degradation, the study of degradation was chosen to assess
reliability. In the study of degradation, the model learning approach was chosen because it requires a
good understanding of the degradation mechanisms. In general, the degradation mechanisms in elec-
trical engineering are fatigue, wear, variation of electrical parameters, etc. They are mainly caused
by electrical, thermal, mechanical and climatic conditions. The model-based approach required the
definition of some test methods to identify the result to be modeled. Non-destructive methods of
accelerated degradation were then selected, for measurements to be performed periodically.

In the second chapter, different physics-based models were presented. Physics-based models
require the identification of the main reaction causing the degradation, which is not always possible,
especially for industrial components. Therefore, empirical models have also been presented that focus
on modeling degradation trajectories as a function of time without any stress factors. To incorporate
stress factors into these empirical models, semi-empirical models have been proposed. These are
based on measured data, which require some estimation. Therefore, estimation methods based on
linear and nonlinear deterministic regression have been presented. Another data-based approach for
modeling degradation, which does not require a model, was briefly presented. This approach is based
on black-box models that are not useful, if a degradation model is sought, for lifetime estimation.
Another type of estimation method based on a stochastic approach was briefly presented. It is useful
for modeling component degradation for global systems, where there is a lot of randomness. However,
this is not the case in this research. Finally, an estimation method based on dynamic covariates is
modeled, where it was found that no serious dynamic modeling has been done for OLEDs.

The third chapter was to design the experimental procedure to be followed for aging of OLED
panels under constant and cyclic thermal and electrical stressors. It was then decided to monitor
the degradation of OLEDs by performing optical and electrical measurements such as luminance
measurement and impedance spectroscopy. The experimental design of this campaign tested dif-
ferent experimental design strategies, such as factorial designs or response surface methodology. It
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allocated some experiments for validation sets that were used to evaluate the performance of the
models . Similarly, the experimental procedure for aging twisted pairs of enameled copper wires was
also detailed, from specimen fabrication to experimental design. As this type of experiment is new,
several experiments were performed before the actual aging campaign in order to define the stress
values that will be used for aging. Therefore, the experimental design consisted only of split factorial
designs as well as a few experiments that could be used for the validation set.

The fourth chapter studied the modeling of the degradation of electrical components without
using stress factors. This was done mainly to identify the degradation trajectories of each of the
tested components (OLEDs and insulators). For OLEDs, several estimation methods were applied,
for both linear and exponential decay models. These estimation methods were confronted with several
problems specific to certain experiments, such as the variable number of observations per specimen,
or abrupt changes, etc. Based on the model selection criteria, it was found that ordinary linear
regression was the best estimation method to model the luminance decay of OLEDWorks OLED
panels. Similarly, two nonlinear models, were chosen to model the evolution of the insulator PDIV.
Several estimation methods were applied to identify the parameters of the nonlinear PDIV evolution.
Some methods penalized outliers while others included the few stress factor observations in the decay
models. Based on the model selection criteria, it was found that the ordinary power model estimate
was the most likely to illustrate the PDIV evolution.

In the last chapter, the selected models for OLEDs and insulators were used to estimate the
effect of stress factors on the degradation rate of the electrical component in question. Indeed,
few previous studies have included multiple constant and dynamic stress factors in the lifetime or
degradation rate estimation, which was one of the objectives of this thesis. For OLEDWorks, only
the degradation slope parameters found by ordinary linear regression were used. The intercept was
shown to follow a normal distribution, which is not related to stressors, as it represents the initial
state of the OLEDs. The decay slope was modeled with each stressor alone to identify the relation-
ship it has with these stressors. It was found that the current has a non-linear relationship with the
decay rate (which can be attributed to Eyring’s physical model). The relationship between decay
slope and temperature and the categorical factor, cycling, has not been identified however, due to
lack of experiments. The identified relationship is used to normalize the current into a covariate.
The temperature and cycling covariates were normalized using a linear relationship due to lack of
experimental data.

The decay slope was modeled with these covariates and their interaction using several full and
fractional factorial designs. The effectiveness of the estimates of these models was calculated by
predicting the lifetime of the experiments in the validation set. It was found that the smaller the
current range for the training set, the more efficient the effect estimates. This is due to the fact
that no quadratic current covariate was incorporated, which assumes that the decay current-rate
relationship is linear (even with normalization).

The quadratic current covariate was incorporated using response surface designs for the training
set. This is also a novelty, since in the response surface planes there is a categorical factor that is
cycling. The efficiency of the RSM estimates was also calculated by predicting the lifetime of the
experiments in the validation set. It was found that the wider the current range of the training set,
the more effective the prediction. Overall, the RSM models performed better in prediction than the
factorial models, primarily because they include a quadratic term for the current. This quadratic
term was attributed to Joule losses that increase with OLED degradation, as seen in an impedance
analysis.
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On the other hand, it was found that cycling had a positive effect on the OLED decay rate,
indicating that cycling reduces the self-heating of the panel, which in turn is caused by Joule losses.
Temperature and current always had a negative impact on the luminance decay rate, which confirms
what has been found in the literature.

As with the insulators, the parameters of the power and exponential models that are responsible
for the decay rate were identified. The relationships between decay rates and stress factors separately,
however, have not been identified due to lack of experiments. Therefore, the factors are normalized
using a linear relationship for voltage and frequency (based on Eyring’s law), and an inverse rela-
tionship for temperature (based on Arrhenius’ law). The power and exponential decay rates were
modeled with the covariates using two fractional factorial designs for the training set. These were
the only designs possible in this experimental campaign due to time constraints. The effectiveness
of these models was then calculated using a mutual validation set for both training sets. It consisted
of predicting the evolution of the decay and checking if it was within the confidence interval of the
measured IVDP. It was found that the power decay rate could not really predict the evolution of
the insulator PDIV for the validation experiments. This is in contradiction with what was found
in the previous chapter, which indicates that modeling the decay trajectory by experiment without
covariates tends to over-fit the decay data. On the other hand, the estimates of the effects of the two
training sets for the exponential models were contradictory, which could not be attributed to physical
significance. The training set with the lower voltage range was more effective, and the reason for this
is that it estimated a positive effect for temperature. However, this has no physical explanation, and
further experiments proving the relationship between temperature and decay rate are needed.

Perspectives
Finally, the study could not cover all aspects of degradation modeling, as this is a very broad area.

However, it proved that the degradation methodology was valid for two of the electrical components.
It would be interesting to test this methodology on other electrical components, which show more
variation in degradation, for example, or which are part of a larger electrical system, etc.

In terms of prospects, since it was proven that the models tend to overfit if no stress covariates
are included, it would be interesting to verify which of the linear and nonlinear models has the best
prediction results for the OLEDWorks experimental design.

Another perspective would be to consider adding more covariates to the model to study the evolu-
tion of light inhomogeneity during aging of OLED panels. This can be done by adding the luminance
measurements that were made at different locations on the light emitting surface.

The effect of dynamic cycling on OLED panels also needs to be studied in more detail, by chang-
ing the duty cycle or cycle time, etc. Its impact on aging indicators other than luminance, such as
electrical impedance, should also be studied to link the degradation effect to the physical mechanisms
involved.

Also, it was not possible to apply many statistical tests such as significant ANOVA estimation.
It would be interesting to add more variation to the OLEDs decay patterns either by artificially
introducing it or by increasing the number of specimens per experiment.

Furthermore, can the conclusion that all large area OLED panels exhibit linear decay also be
drawn? The study of aging of other types of OLEDs could help generalize what is found in this PhD
thesis.
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With respect to insulators, the methodology proposed in this thesis is promising, but not com-
plete. A relationship between each factor and the decay rate is required, hence the need for additional
experiments at different stress levels. In addition, a threshold is still needed to define the level at
which an insulator is highly likely to fail. This threshold requires further failure observations, which
in turn require allowing the twisted pairs to age longer. In addition, it was not possible to increase the
temperature above 250 °C, which extended the life of the insulators. Aging the insulators at excessive
temperature could be an interesting prospect, as it could show higher indications of degradation.

Finally, the identification of the PDIV procedure could be improved by turning it into an auto-
matic detection instead of a manual detection as it is currently.



Appendix A

Data

A.1 Descriptive statistics
Mean value The average value x̄ of n observations observation in a sample, or the population
mean µ is

µ = x̄ = x1, x2, . . . , xn

n
=
∑n

i=1 xi

n
(A.1)

Median value The sample median x̃, the population median µ̃, or the middle value of observations
that are ordered from smallest to largest, is

x̃ =


(

n+1
2

)th
ordered value, if n is odd

average of
(

n
2
)th and

(
n
2 + 1

)th ordered values if n is even
(A.2)

Standard deviation and variance Sample variability can be measured by the sample range,
which is the difference between the largest and smallest values in the sample. However, the range
is not exactly representative to the variability of the system, as it does not take into account the
dispersion of the value of other observations. The variability is then represented by the sum of squares
of deviation from the mean, in order to equally represent the deviation to the left and right of the
mean. The sample variance s2, or population variance σ2 is represented in Eq. A.3. The sample
standard deviation is s =

√
s2 and the population standard deviation is σ =

√
σ2.

s2 =
∑(xi − x̄)2

n− 1 , σ2 =
N∑

i=1
(xi − µ)2/N (A.3)

Skewness The population may have a negatively or positively skewed distribution respectively
where the observations are concentrated on the right or left side (Fig. A.1). The data are skewed when
the population does not have a symmetric distribution, so the mean and median of the population
are not equal.

Confidence interval The confidence interval (CI) is a method of checking for outliers when it
surrounds the majority of the population. It is also used to check if an estimate fits the population,
as its value must fall within the CI. It has a confidence level α that measures how reliable the interval
is. The higher the level, the more likely it is that a value will fall within the range. In this sense, if
the confidence level is high and the interval is narrow, the value of the variable is accurate, and vice
versa, where there would be uncertainty about its value.
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Figure A.1: Shapes of population distribution

When a population has a normal distribution, with a mean value µ and standard deviation
σ/
√

n, the mean variable of a sample from this population would have a 95% confidence interval of[
−1.96 σ√

n
, 1.96 σ√

n

]
. 1.96 = zα/2 is the value of the normal distribution with α = 0.95 however, when

a population does not follow a normal distribution, zα/2 is replaced by a t-critical value tα,v, where
v is the number of degrees of freedom for Student’s t-distribution . The α confidence interval of a
sample with n observation is then

CIα =
[
−tα/2,n−1

s√
n

, tα/2,n−1
s√
n

]
(A.4)

Correlation A numerical summary of the relationship between measured variables is the Pearson
product-moment correlation coefficient rx,y (Eq. A.5, where x and y are different variables). The
range of r is between −1 ≤ rx,y ≤ +1, and when it is positive or negative respectively, the variables
are positively or negatively correlated. Independent variables have a zero value, or close to 0, and
the higher the value, the stronger the correlation is.

rx,y =
∑n

i=1(xi − x̄)(yi − ȳ)
[∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2]1/2 (A.5)

A.2 Data cleaning
The basic steps of data cleaning are [5]

• Removal of duplicate or irrelevant observations. Duplication usually occurs when data from
several data sets are combined, such as when a client’s data are present twice . . . Redundancy
when one variable is derived from another is another kind of duplication, and is measured by
the coefficient of correlation r: the higher the value, the stronger the relationship between the
variables (Eq. A.5). Irrelevant observations are data that do not fit the problem at hand. For
example, if the problem is to model the aging of white LEDs, the data for blue LEDs are
irrelevant.

• Fixing structural errors, so that the data follow a certain naming convention, and the data
analysis software can read them.

• Filtering out unwanted outliers, like when measuring the luminance of an LED and someone
turned-on other external light sources, the value would be erroneous. This type of outliers can
be removed, however, outliers do not mean that the data is incorrect, as they can be useful in
understanding the problem, and checking the good model fit.
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• Handling missing data because some algorithms do not accept missing values. An example of
missing values is a lost measurement due to a malfunction of the measuring device, or necessary
inspections that were not performed because of other constraints or simply lack of planning,
etc. If the modelling methodology allows it, missing data can be replaced by its estimation,
assuming that data are consistent. Another solution is to eliminate all the observations that
have missing values but it will be a waist of resources.
This is a case that has already occurred in this thesis, where observations from the first exper-
iments were lost due to the change of measurement devices. Two operations have been made,
where the first operation is to remove all performance data made by the old measurement
device as it is considered as inefficient. However, an initial value was needed for all the degra-
dation methodology, thus the second operation consisted of estimating the initial value based
on measurements of new components made by the new measurement device. This estimation
assumes that all components have no prior degradation before aging, and that the initial data
of all components must follow a normal distribution around a the mean value of the new initial
measurements.

A.3 Normalization
The main three methods of normalization are [87]:

Min-max normalization consists of performing a linear transformation on the original data. If
a variable x with a range of [xmin, xmax], needs to be resized to a lower range [x′

min, x′
max], to be

coordinated with the ranges of the other variables, the transformed variable x′ would be

x′ = x− xmin

xmax − xmin
(x′

max − x′
min) + x′

min (A.6)

Z-score normalization is based on the concept zero-mean normalization, where the variable is
normalized based on the population mean and standard deviation. It is used when data have a
pronounced dispersion and the min-max normalization would consider outliers. The process is called
standardization and the normalized value x′ would be

x′ = x− µ

σ
(A.7)

Decimal scaling consists in reducing the size of the variables. For example, an aging process may
last for several months, and the time variable is represented in hours. In this case, it is better to
consider the khours unit and reduce the size of time following the equation Eq. A.8, where j is the
smallest integer such that x′

max < 1.
x′ = x

10j
(A.8)

A.4 Anderson-Darling test for goodness of fit
The Anderson-Darling test for goodness of fit is a non-parametric test that verify if a data set has a
specific distribution, like a normal or exponential distribution.

The demonstration of the Anderson-Darling test is based on the electronic engineering statistics
handbook [1]. The Anderson-Darling test is defined as:

• The null hypothesis H0: The data follow a specified distribution.
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• The alternative hypothesis Ha: The data do not follow the specified distribution

• The test statistic:
A2 = −N − S (A.9)

where

S =
N∑

i=1

(2i− 1)
N

[lnF (Yi) + ln(1− F (YN+1−i] (A.10)

N is the number of data samples, Yi is the ordered samples from smallest to largest, and F is
the cumulative distribution function of the tested distribution

• The significance level is α

• The critical values at the significance level α depend on the specific distribution that is tested.
The hypothesis that the distribution is of a specific form is rejected if the test statistic A2 is
greater than the critical value.

The critical value can be found using the tables found in [203], or in the code provided by [147].
The critical value of the AD test for normal distribution is presented in Fig.A.2.

Figure A.2: The critical value of the AD test for normal distribution, at different significance level
(from Wikipedia)

A.5 Model selection criteria
The model selection criteria are parametric tests to verify the goodness of fit of the data to a certain
model.

R-squared and adjusted R-squared The R-square (R2) is the simplest criterion to check the
goodness of fit of mainly a regression model, where it is between 0 and 1, with 1 being the best
fitting value. Mathematically, it is called the coefficient of determination or Pearson’s coefficient and
its definition is "the proportion of the variation in the dependent variable that is predictable from the
independent variable(s)" [63].

R-squared is then given by Eq. A.11 where

R2 = 1− SSE

SST
(A.11)
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• SSE = ∑(yi− ŷi)2 is the error sum of squares, or the residual sum of squares; yi is the ith data
measured, and ŷi is its estimated value based on the fitted model.

• SST = ∑(yi − ȳi)2 is the total sum of squares, or the total amount of variation observed; ȳi is
the mean value of all observation data y1→n

• The ratio SSE/SST is the proportion of total variation that cannot be explained by the fitting;
Fig. A.3 represents the graphical error versus the prediction (for the SSE) and versus the total
mean of data (for the SST).

(a) SSE (b) SST

Figure A.3: Graphical representation of sum of squared deviations from the prediction (SSE) and
from the mean value of data (SST)

The major drawback of R2 is that its value increases with each added factor even if the factor is
not as significant, or correlated to the outcome being modelled. When the model has a number of
parameters p ≥ 2, it is preferable to use the adjusted R-squared, because it is less sensitive to the
number of parameters, and thus, models of different numbers of parameters can be compared using
the R2

adj . The R2
adj follows the same concept of R2, but it can take negative values! The adjusted

coefficient of multiple determination (R2
adj) is given by Eq. A.12, where n is the total number of data

observations and k is the number of parameters in the model.

R2
adj = 1− n− 1

n− (k + 1) ·
SSE

SST
(A.12)

R2 is not a suitable model selection criterion for multivariate data, where a model has multiple
predictors k. Instead of identifying a general R2 that would consider all predictors, it is better to
identify the model with the optimal number of predictors i.e. identify the smallest number k that
would give an R2

k that is nearly as large as the general R2.

Rationale for the third criterion Ck A criterion widely used by data analyst called "the rationale
for the third criterion Ck" can be applied also for multivariate data. Eq. A.13 represents the formula
of Ck where SSEk is the error sum of squares for k predictors and n observations; s2 = σ̂2 = V̂ (ϵ) is
the variance estimate of the error ϵ based on the model that includes all predictors for which data
is available. The concept is based on normalizing SSEk, in order to compare models with different
values of k, and since σ2 is not known, its estimate is used. However, this criterion requires a tedious
computational work because, normally, a combination of predictors must be tested to check the best
model, and it is recommended to be applied when k ≤ 5.

Ck = SSEk

s2 + 2(k + 1)− n (A.13)
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Analysis of Variance For multivariate data, when graphical representation is not available, a
formal test of model utility, based on the analysis of variance and Fisher test, called ANOVA, is most
appropriate, because the value of R2 can be deceptive as it is strongly influenced by the number of
predictors.

The basic F-test is based on the null hypothesis H0, which assumes that there is no useful
relationship between the data and their k predictors. To test the null hypothesis, the statistical
value of the test f is compared to a particular Fisher distribution value Fα,k,n−(k+1), where k is the
number of variables or predictors, n is the number of observation, α is the significance level; if f is
higher than the Fisher critical value (see Fig. A.5), the null hypothesis is rejected and the variable
or predictor is useful to the model (Fig. A.4). The value of the statistical test is given by Eq. A.14,
where R2 is the coefficient of determination of the model, SSR = SST − SSE is the regression sum
of squares.

f = R2/k

(1−R2)/[n− (k + 1)] = SSR/k

SSE/[n− (k + 1)] (A.14)

Figure A.4: F density curve and the critical value for F-tests

ANOVA is an advanced F-test, which can be either single-factor or two-factors test. The single-
factor test consists of comparing the means of several n populations, so that the null hypothesis is
that all means are equal (H0 : µ1 = µ2 = . . . = µn), and the relevant hypotheses are many, depending
on the number of populations to be compared, but they claim that at least two of the means are
different (for example, Ha = µ1 ̸= µ2 = µ3 = . . . = µn). The ANOVA method is well presented in
Devore’s book, chapter 10 [63].

ANOVA can be useful for checking whether samples tested under different conditions have dif-
ferent values or not. It is also useful for checking the significance of predictors, and finally for model
selection by comparing their f-value.

The ANOVA will deal with a data set consisting of I populations, with J observations for each
population. xi,j would then be the observed value of the jth measurement for the ith population.
The statistical test for the single-factor ANOVA is presented in Eq. A.15, where

F = MSTr

MSE
(A.15)
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• MSTr = J
I−1

∑
i(X̄i − X̄)2 is the mean square for treatments

– X̄i =
∑J

j=1 Xij

J is the individual population mean.

– X̄ =
∑I

i=1

∑J

j=1 Xij

IJ is the average of all I × J observations

• MSE =
∑I

i=1 S2
i

I is the mean square for error

– S2
i =

∑J

j=1(Xij−X̄i)2

J−1 is the variance of the ith population

The computation of the ANOVA is summarized in an "ANOVA table" (Tab. A.1). The comparison
between populations or models is based on the highest f-value. To check whether the effect of the
predictors is significant or not, Tukey’s method consists in comparing the f-value to a Student’s t-test
distribution Qα,m,v (similar to Fα,k,n−(k+1)) where m and v are respectively the degrees of freedom
of the numerator and denominator of Eq. A.15.

Table A.1: ANOVA table

Source of Degree of Sum of Mean Square f
variation Freedom Squares
Treatments I − 1 SSTr MSTr = SSTr/(I − 1) MSTr/MSE
Error I(J − 1) SSE MSE = SSE/[I(J − 1)]
Total IJ − 1 SST

A two factor ANOVA is an extension of the single-factor method, where several factors are of si-
multaneous interest. Two-factor ANOVA will study the combination of such factors, and tests which
combination is significant. It is mainly applied to design of experiments where the model generally
consists of p factors having 2 levels and the interactions between those factors. More details about
the design of experiments are found in Chapter 3.
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0.95 quantiles for F distributions (f0.05,d1,d2 values)

This table gives f0.05,d1,d2
values for different (d1, d2)’s, where fa,d1,d2

is defined such that

P (F (d1, d2) > fa,d1,d2) = a and F (d1, d2) is the F distribution with (d1, d2) degrees of freedom.

d1 (degrees of freedom for the numerator)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40

d2

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39

1

Figure A.5: Fisher critical value for 5 % significance level ( from [4])
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Akaike information criterion and the corrected information criterion The Akaike infor-
mation criterion (AIC), as its name suggests, is based on information criterion where it estimates the
relative amount of information lost by a given model. It is particularly applied for the estimation
of maximum likelihood models, like linear regression and logistic regression etc. The AIC follows
Eq. A.16, where L̃ is the maximum value of the likelihood function for the model, and k is the model
parameters. The better the fitness of the model, the lower the criterion is. However, the fitness of
the model is penalized by twice the number of its parameters.

AIC = −2log(L̃) + 2k (A.16)

When the sample size n is relatively small, or when the ratio of the number of parameters k to
observations n is big, i.e. n/k < 40, the AIC will select over-fitting models [96]. In such case, it is
better to use corrected AICc that adds a term to the original AIC that would converge to zero when
n tends to infinity (Eq. A.17) .

AICc = AIC + 2k(k + 1)
n− k − 1 (A.17)

Bayesian information criterion BIC The bayesian information criterion (BIC) has the same
concept as AIC, but it has a larger penalty term for the number of parameters than the AIC (Eq. A.18)
[188]. It is also less efficient for small number of samples, as n should be much larger than k2 [221].

BIC = −2log(L̃) + klog(n) (A.18)
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A.6 Trade-off table for fractional factorial models

Figure A.6: Trade off table of the design of experiment to accurately choose the number of experi-
ments for a full and fractional factorial design depending on the number of factors [68]
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B.1 OLEDWorks FL300L ww OLED panel Datasheet

    4  

    

 

System  
  

Figure 1: OLED Panel Brite FL300 L ww N w/o Rset  

   

  Description  Remark  

Indoor / outdoor  Indoor buildings  location with insignificant shock and vibration  

Ingress protection    not applicable for OLED components  

Classification Applicable in applications with 

Class III protection 
Application standard IEC61140  

OLED color  White    

Carrier material  Glass    

Cable  AWG 26  Brite FL300 L ww Level 2 

Brite FL300 L wm Level 2 Connector  5-pin Molex Picoblade  

RoHS conform  Yes  2011/65/EU  

  

ENVIRONMENTAL  

Operational environmental conditions*  
Specification item  Value  Unit  Condition  

Ambient temperature  +5 … +40  °C    
Relative humidity  20 … 80  %rH  no dew, no water spray, a maximum %rH of 60 is 

recommended.  
Recommended internal 

operation temperature 

(temperature of OLED 

emission side)  

≤ 50   °C  local temperature  

Maximum internal operation 

temperature (temperature of 

OLED emission side)  

≤ 80  °C  local temperature, for t > 50 °C 

lifetime will be reduced.  

* please refer to Thermal Characteristics on page 24 for more information.  
  

The Brite FL300 L is designed for indoor use only. Do not expose to water or excessive moisture.  
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Storage conditions*1  
Specification item  Value  Unit  Condition  

Ambient temperature  -40 … +60  °C    

Relative humidity  5 … 85  %rH  no dew, no water spray  
*1 Recommended storage temperature is between 15 ... 25 °C with a humidity < 65 %rH.  

Transport conditions  
Specification item  Value  Unit  Condition  

Ambient temperature  -40 … 

+60  

°C    

Relative humidity  5 … 85  %rH  no dew, no water spray  

  

  

    

MECHANICAL DIMENSIONS  

  
Specification item  Value  Unit  Condition  

Brite FL300 L ww Level 1 

w/o Rset 

Brite FL300 L wm Level 1 

w/o Rset 

length  240.6 ±0.2 mm    

width  62.7 ±0.2 mm    

height  1.4 ±0.15  mm   

weight  36.4 ±0.5  gram    
Brite FL300 L ww Level 2  

Brite FL300 L wm Level 2 
length  248.1 ±0.15 mm  dimensions excluding cable  

width  70.2 ±0.15 mm  

height  2.1 ±0.2  mm  excluding Molex Picoblade plug  

diameter screw 

opening  
3.2  mm  for fixation with M3 screws  

distance screw 

openings  
123.8 ±0.2  

247.5 ±0.2 

69.6 ±0.2 

mm    

weight  69 ±0.8  gram    

Light emitting area  length  222 ±0.2 mm  Brite FL300 L ww Level 1 w/o Rset 
Brite FL300 L wm Level 1 w/o Rset  
Brite FL300 L ww Level 2  

Brite FL300 L wm Level 2 

width  46 ±0.2 mm  

area  102.1  cm2  
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ELECTRICAL AND OPTICAL CHARACTERISTICS - OLED  

Electrical characteristics  
Specification item  Value  Unit  Condition  

OLED rated current, Iin rated  0.368  A    
OLED maximum current, Iin max  0.390  A    
OLED voltage at t=0, Uin  20.0 + 0.5/– 1.0  V DC  Iin rated  
OLED voltage at end of life, UEOL = Uin max  25.5  V DC  Iin max  
Power consumption at t=0, Pin  7.4  W  Iin rated   
Power consumption at end of life, PEOL = Pin max  10.0  W  Iin max  

All data nominal at stabilized conditions after 5 min warm-up, Torganic = 50 °C.   
 

 

OLED drivers  

  

Use of power supplies with dedicated controls for turning off output power if an OLED fails is 
recommended when operating the OLED Panel Brite FL300 L ww and wm. Recommended drivers are 
shown in the table below. These drivers all have sockets compatible with the Molex Picoblade connector.   
  

Product  Supply voltage  Output 

channels  
Product Code  

Driver D230V 80W/0.1-0.5/1A/28V TD/A 8CH  120, 220-240, 277 V AC  8  9254.000.10200  

Driver D024V 10W/0.1A-0.4A/28V D/A  24 V DC  1  9254.000.10100  
Driver D024V 10W/0.1A-0.4A/28V DMX  24 V DC  1  9254.000.12000  

  

  

Dimming  

  

Both pulse width modulation (PWM) and amplitude modulation (AM) techniques can be used to dim the 
OLED. More detailed information can be found in the design-in guide for the Brite FL300 family.  
  

  

OLED connection  

  

The OLED Panel Brite FL300 L is available at different integration levels. At integration level 1, no cable is 
attached to the device. Integration levels 2 provide a cable with a Molex Picoblade connector type 
compatible with the Lumiblade OLED driver electronics.   

  

At integration level 1 the Brite FL300 L features contact areas on the rear side (see Figure 6). Area A 
provides contact pads A1, 3, 5, 7, 9 (plus) and A2, 4, 6, 8, 10 (minus). The individual signals for the 5-wire 
connector are shown in Figure 7. Only one of the interface areas must be used for electrical contact.  
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Optical characteristics FL300 L ww*2  
 

Specification item  Value  Unit  Condition  
Luminance, nominal  8300  cd/m2  @ Iin rated = 0.368 A, perpendicular, 

center  
3150  @ 0.135 A, perpendicular, center  

Luminous flux  300 ± 10 %  lm   @ Iin rated = 0.368 A with L70B50 = 

10khrs 
115 ± 10 %  @ 0.135 A with L70B50 = 50khrs 

Luminous efficacy, nominal  42   lm/W  @ Iin rated = 0.368 A   
46  @ 0.135 A   
50   @ 0.040 A  

Color  White      

Chromaticity x, nominal  0.4415   integral measurement, CIE 1931   

Chromaticity y, nominal   0.4016   
Chromaticity u’, nominal  0.2546    integral measurement, CIE 1976  

Chromaticity v’, nominal  0.5211    
Duv  -0.0016    center of color box with respect to BBL  

Color spec limits CIE xy  0.4290 0.3934 

0.4490 0.3997 

0.4544 0.4097 

0.4337 0.4034 

  corner coordinates of area in colorspace  

Color spec limits CIE u’v’  0.2500 0.5159 

0.2604 0.5215 

0.2594 0.5262 

0.2488 0.5206 

  corner coordinates of area in colorspace  

CCT 2,900 K @ Iin rated = 0.368 A 

Color Rendering Index:  

CRI / R9   
80 / 0    @ Iin rated = 0.368 A  

color instability over angle (CSF)  ≤ 0.004    0 .. 75°, �=5°, Ta = RT, I = 0.368 A  
Homogeneity  ≥ 80%    9 point measurement, min/max,  

Iin rated = 0.368 A  

*2 all data for stabilized electrical conditions of the device after 5 min warm-up period, integration level 1.  
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Lifetime  
  

Luminous flux reduces with lifetime of the OLED. The luminous flux of the Brite FL300 L decreases to 
approximately 70% after 10,000 hours at rated current.  
 

Brite FL300L ww  
Specification item Value  Luminous flux Condition  
OLED Panel Lifetime L70B50  10,000 hours 300lm  @ Iin rated = 0.368 A, Torganic = 52 °C 

OLED Panel Lifetime L70B50  50,000 hours  115lm @ 0.135 A, Torganic = 35 °C  

 

Brite FL300L wm 
Specification item Value  Luminous flux Condition  
OLED Panel Lifetime L70B50  10,000 hours 190lm  @ Iin rated = 0.368 A, Torganic = 52 °C 

OLED Panel Lifetime L70B50  50,000 hours  74lm @ 0.135 A, Torganic = 35 °C  

  

Voltage increases over lifetime of the OLED; color and homogeneity of the panel may also change.   

General handling recommendations and care  
  

Cleaning  

Please avoid scratching the front side with any hard or sharp objects. OLEDs can be cleaned with any soft 
textile. If required use a damp cloth but avoid extensive moisture.   
  

Use of a compressed air spray to remove regular dust from the individual panels is advised for everyday 
cleaning. Should fingerprints or more persistent contamination occur, isopropanol applied to a lint-free 
cloth can be used to gently clean the surface of the OLED. Clean using circular movements beginning at the 
center of the OLED and moving outwards towards the edges. Contact with water is to be avoided.  

   

Storage and operating  

Please note that the recommended storage temperature is 15 °C to 25 °C. The recommended relative 
storage humidity is 65% or lower. Avoid exposing OLEDs to UV light.  
  

Safety  

Please be careful when handling OLEDs. The edges of the OLED panels may be sharp and can chip or break.   

  

In the unlikely event that an OLED fails, the temperature may rise locally to high levels. To avoid this the 
OLED should be turned off immediately.  
  

Disposal  

OLEDs should be disposed of according to local legislation  
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B.2 Iberfil C Datasheet

 C/Estación s /n 

 17457-Riudellots de la Selva (Girona-Spain) 

                                                                                                  Teléfono: 972.47.76.00 – Fax: 972.47.76.10 

 N.I.F.: A-17.003344 

                                                                                                               E-mail: acebsa@acebsa.es / Web: acebsa.com 

Edición: Mayo 2000. 

 

 

SPECIFICATIO
S OF E
AMELLED COPPER WIRES 

 
 “IBERFIL C” 
SPECIFICATIO
S: 
 Very high temperature resistant thermical 

resistents 

Thermal class H-210 

Base coat Polyamide-imide 

Overcoat -- 

Temperature index 20.000 h. 210 

Intersection point Tang. Delta 210ºC 

Heat shock 260ºC 

Cut-through 380ºC 

Breakdown voltage 180 V/µµµµm. 

Continuity of insulation 0 – 2 

Flexibility and adherence 60 % 

Abrasion bidirectional 100 

Abrasion unidirectional 20 gr/µµµµm. 

Resistance to solvents 4 H 

Winding-Ability Excellent 

Resistance to humidity Excellent 

Resistance to transformer oil Excellent 

Resistance to refrigerants Excellent 

Resistance to styrol Excellent 

Solderability -- 

Heat bonding  -- 

Risoftening temperature -- 

MAI
 APLICATIO
 AREAS: Special motors, Pumps, 
uclear industry 

STA
DARDS: 
IEC- 60.317-26 

U
E - E
 60.317-26 

DI
 - -- 


EMA - -- 

UTE - 
FC 31676 

  

HOMOLOGATIO
S: 
  

DIAMETER RA
GE:  

Gr 1 mm. 0,20 – 1,00 

Gr 2 mm. 0,20 – 1,00 
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B.3 Philips Lumiblade Oled panel GL55

16

Philips Lumiblade OLED panel GL55 
L0022 CE32 ILO

Type Color / CCT 

CIE x/y

Lum. Flux1 CRI Voltage Rated 

Current

L0022 CE32 ILO 

9254.000.033

white

3200K

55.0 lm 86 7.2 V 390 mA

Notes:

All values are nominal values measured at standard temperature and pressure.

Connectors
OLEDs of this product family are shipped with minimal 100mm long red cables, finished with Molex Picoblade 

connector: 51021-0500.

Electrical
Rated voltages

Type Rated 

Current

Max 

Current

Minimum  

voltage

Nominal  

voltage

Maximum  

voltage

L0022 CE32 ILO 390 mA 450 mA 7.0 V 7.3 V 7.6 V

Rated voltages and maximum values apply to new OLEDs. Voltage can increase over lifetime.  Philips strongly 

recommend the usage of SCP 1002, see page 32.

130,2

116,73

47
,8

35
,2
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Forward current versus forward voltage 

Luminous fl ux
Rated luminous fl ux 

Type Rated Current Luminous fl ux min Luminous fl ux 

nominal

Luminous fl ux max

L0022 CE32 ILO 390 mA 49.0 lm 55.0 lm 61.0 lm

Luminous fl ux versus forward current

Lifetime
Lifetime

Type Lifetime

L0022 CE32 ILO 7000 h1

L0022 CE32 ILO 20000 h2 

1 Until 50% decrease in luminance or defect (L50B50) at nominal current
2 Until 70% decrease in luminance or defect (L70B50) at 1000 cd/m²
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Homogeneity
Homogeneity

Type Rated Current Homogeneity min Homogeneity 

nominal

Homogeneity

max

L0022 CE32 ILO 390 mA 80%

Luminance
Luminance

Type Rated Current Luminance

min

Luminance nominal Luminance

max

L0022 CE32 ILO 390 mA 3750 cd/m² 4200 cd/m² 4650 cd/m²

Luminance versus current

Luminance versus angle
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C.1 Modulab XM MTS

state of the art

the difference 

ele
ct

ro
ni

c m
at

er
ia

ls

Displays | Solar/PVs | Semiconductors | Nanomaterials

•	 High-performance impedance analysis throughout the entire frequency range and across all three modes of operation

•	 Swept sine (highest accuracy and repeatability)

•	 Multi-sine/FFT (for increased test throughput especially at low frequency)

•	 Harmonic analysis (to study non-linear materials)

•	 100 V option module enables tests of operating range and linearity/breakdown properties of materials 

•	 Low frequency <10 Hz impedance/C-V measurements for material purity and degradation studies

•	 Multi-component system calibration for ensured measurement accuracy

•	 Market leading frequency range and resolution for analysis of carrier mobility/concentration (1 in 65,000,000)

•	 Staircase or smooth ‘analog’ ramp waveforms.  Important for I-V, hysteresis and polarization measurements.

•	 Wide current measurement range (over 16 decades of current from 0.1 fA to 2 A) needed for electronic materials that 
transition between conduction states depending on applied voltage

•	 All time domain techniques (fast pulse, I-V etc.) use the same ‘core’ hardware module ensuring minimum cabling to the 
sample and consistency of results

•	 Available	voltage	and	current	amplification	modules	(100	V	amplifier,	femto	ammeter,	2A	booster)	for	the	greatest	
flexibility	in	application

•	 XM	hardware	and	software	is	compatible	with	highly	efficient,	low	cryogen	usage	cryostats	and	probe	stations

•	 User friendly software with simple three step test setup/run, built-in live waveform displays, connection diagrams and 
equivalent	circuit/	IV	fit	functions.

•	 Compatibility with potentiostat modules for Dye-Sensitized Solar Cells (DSSC)

LED, LCD, OLED, MEMs, Perovskite materials
OPV, Si, DSSC, OFET, Ge, GaAs

Electronic Materials

Market leading impedance analysis

Widest voltage and current range available

Time domain and impedance analysis in a single system

ModuLab® XM MTS is the only electronic materials test system that combines an accurate time domain analyzer and a 
high performance impedance analyzer into a single “plug and play” modular chassis.  Purpose built for electronic materials 
research the ModuLab XM provides:
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C.2 Konika Minolta CS1000 A

SPECTRORADIOMETER
CS-1000A (STANDARD MODEL)
CS-1000S (SMALL MEASURING AREA MODEL)

CS-1000T (SMALL MEASURING ANGLE MODEL)
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Konica Minolta manufactures 

 reliable optical lens 

 via integrated 

 production syste

 starting from R&D 

  and melting glass 

  to the final production.

High Performance 

Spectroradiometer
With the increased emphasis on ISO 9001, product 

quality has become a focal point in many companies. At 

the same time, in-house production departments are 

requiring systems that calibrate their measurement 

instruments. CS-1000 series Spectroradiometer supports 

these activities.

High-Speed
� Use of polychromator enables high-speed 

measurements. �1

� Fast measurement for the low luminance target.�2

�1 Measurement speed varies depending on the luminance of the light source.
�2 Fast Mode. Using CS-S1W

High-Accuracy
� Repeatability of 0.1%+1digit for Luminance, 0.0002�3

for Chromaticity.
�3 Normal Mode. Using Standard Lens.
The other measurement conditions : based on Minolta standard test method.

� Measurements can be synchronized with a display 
device.

� Low polarization error-ideal for measuring LCD's.
� Aperture mirror eliminates misalignment between the 

finder target and actual measuring spot.

Low Luminance
� Specifications are guaranteed even at 

1cd/m2.(Repeatability for illuminant A)

� Sensor cooling improves S/N ratio, enabling 
measurement of low-luminance subjects.
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C.3 Pearson current monitor model 6585

PEARSON ELECTRONICS, INC.

PEARSON
TM

CURRENT
MONITOR
MODEL 6585

Sensitivity 1 V/A ±1%
0.5 V/A into 50 Ω

Output resistance 50 Ω

Maximum peak current 500 A

Maximum rms current 10 A

Droop rate 0.3 %/μs

Useable rise time 1.5 ns

Maximum I•t 0.002 A s with bias 

Low frequency 3 dB cut-off 400 Hz 

High frequency ±3 dB 250 MHz (approximate)

Maximum I²t / pulse 5 A² s

Output connector BNC (UG-290A/U)

Operating temperature 0 to 65 oC

Weight 0.68 kg

* Maximum current-time product can be obtained by using
core-reset bias as described in the Application Notes.
0.0005 Ampere-second is typical without bias.

© 2019 Pearson Electronics, Inc.  6585.wpd 191007 Dimensions in inches

Pearson Electronics, Inc. • 4009 Transport Street • Palo Alto, CA 94303
Telephone 650-494-6444 • FAX 650-494-6716 • www.pearsonelectronics.com
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Appendix D

Abrupt change algorithm

D.1 Abrupt change algorithm
Linear degradation of an electrical component is caused by defined stress factors, usually constant.
However, as previously said, accidents tend to happen, and the linear path will have a catastrophic
degradation not predicted previously. A power cut of the test bench is an example of accidents that
might occur, and will change the electrical stress applied. A bad contact in the thermo-couple of
the heat regulator of a failure in the fan assuring a homogeneous temperature all along the test
bench, will change the local heat stress applied to the electrical component. These accidents will
cause different degradation decays during an interval of time before being detected and resolved. The
uncontrolled factors added might not be harmful (in the case of no stress applied due to the power
cut), but the might cause a catastrophic degradation when the additional stress is added like the
increase of local temperature around the asset might cause a failure.

Even with catastrophic degradation, the stressed asset might not have reached the failure limit
and thus the operation shall continue. However, like said, the decay path changes during the interval
of the accident, and if not considered in the modelling, the overall linear degradation will change
causing false predictions. In this case, data after any abrupt change can be cleaned by the process
described previously in chapter 1, and shall be considered as rightly censored, because the failure is
not a true representation of the real value when it is caused by uncontrolled stress. If the component
did not fail, but there is a change in the slope, data after the change can be eliminated and only
rightly censored data is taken.

However if there is enough degradation data before and after the abrupt change, and if the degra-
dation is linear for example, and the decay slope is the subject of interest, data can be divided
into two subgroups, adding a "fictive" sample to study. We developed an algorithm based on the
confidence intervals to extract an adequate degradation slope from a degradation path with abrupt
change as it can be seen in Alg. 1.

The algorithm studies the degradation in the following way: It applies a robust linear regression
to the first three degradation measurements (as i = 3 is the minimum number for a sample size)
to estimate a preliminary degradation parameters {ai, bi}. A confidence interval is then generated
with the fitting characteristics using the Student law equation from Eq. A.4, where α/2 = 0.05,
n = k − i − 1 and s is the standard deviation of the model from true data (based on Eq. A.3).
When a new measurement is acquired, the confidence interval is extended till the i + 1th point:
y(i+1),CI = ŷi+1 ± CIi, where ŷi+1 ∼ ai + bixi+1. If the measurement is inside the confidence inter-
val, it means the degradation is following the previously modelled path, and there is no fault detected.

119
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Nevertheless, if it is not the case, it can be either due to measurement error and stochastic
variation, or due to catastrophic degradation discussed above. To differentiate the two cases, one
more measurement is taken (if possible), and this measurement is also tested to the confidence interval
built by the ith iteration. If the second new measurement does not fit inside the confidence interval
neither, an abrupt change has happened surely indicating catastrophic degradation. In this case, if
the electrical component is still working, and new degradation measurements can be acquired, the
algorithm re-initializes the data to the moment after the ith iteration and studies a new degradation
path starting from the k = i + 1 measurement. If the second measurement fits however inside the
ith confidence interval, no change is declared, and the first measurement can be considered simply as
an outlier. The online modelling path would continue to incorporate those two measurements and
further ones into the algorithm, considering that that no change in the decay path had occurred.
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Algorithm 1 Recursive algorithm based on confidence intervals to detect abrupt changes
Data: {x,y}
Result: decay parameters

1 initialisation:
n=size(x)
k=1 ; // start the fit from {xk, yk}

2 while k < n− 2 do
3 i = k + 2

repeat
4 Robust linear regression Yk→i ∼ a(i) + b(i)Xk→i

Student confidence interval CI for t(0.05,i−k−1)
if yi+1 > |CIi+1| then

5 Student confidence interval CI for t(0.05,i−k)
if yi+2 > |CIi+2| then

6 save ak and bk ; // Abrupt change detected
7 k = i + 1
8 else
9 i← i + 1

10 end
11 else
12 i← i + 1
13 end
14 until (i == n);
15 end
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Appendix E

Stochastic processes

E.1 General processes
A stochastic process has many statistical definitions (refer to [64]), but in terms of engineering, it is
a random function X(t) that is defined as a family of random variables, for t ∈ R. The distribution
of the stochastic process is determined by some characteristics, such as

• The mean function {aX(t) = EX(t)}

• The covariance function RX(t, s) = cov(X(t), X(s))

• A characteristic functions set {ϕX
t1,...,tm

, m ≥ 1}, that satisfy the below conditions

i ϕ(0) = 1
ii ϕ is continuous in the neighborhood of 0
iii For any m ∈ N, z1, . . . , zm ∈ R and c1, . . . , cm ∈ C:

m∑
j,k=1

ϕ(zj − zk)cj c̄k ≥ 0

A stochastic process can have many properties like being measurable, continuous, stochasti-
cally differentiable, integrable, etc. It can have independent increments, that is X(t0), X(t1) −
X(t0), . . . , X(tm)−X(tm−1) are jointly independent, ∀t0 < . . . < tm and m ≥ 1. if the independent
increments have the same distribution, the process is called homogeneous.

Since a degradation process is an additive accumulation of decay, it can be related to a stochastic
process with independent increments. In the following, a Lévy process that has this feature will
be defined, and examples of Lévy processes that can be assigned as degradation processes will be
mentioned.

E.2 Lévy processes
A Lévy process is a stochastic continuous process X = Xt, t ≥ 0 with stationary and independent
increments [10], that is:

(i) The distribution of (Xt+s −Xt) is independent of t

(ii) The process is additive, that is for every t ≥ 0 and s ≥ 0, P{Xt+s − Xt ∈ A|Xu, u ≤ t} =
P{Xt+s −Xt ∈ A}

123
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(iii) The process is continuous, that is for every t ≥ 0 and ϵ ≥ 0, lims→tP{|Xt −Xs| > ϵ} = 0

The distribution of a Lévy process is characterized by its characteristic function, which is described
in Eq. E.1, where a ∈ ℜ, b ≥ 0 ∈ ℜ, ν(0) = 0 is called the Lévy measure of X on ℜ which has the
property

∫
ℜ\{0} min(1, x2)ν(dx) < ∞ i.e., X0 = 0 almost surely; A Lévy measure represents the

intensity of the jumps of a Lévy process, for when a Lévy process is continuous, a Lévy measure is
null everywhere.

ln(ΦX(z)) = t{iza− z2b

2 +
∫

ℜ\{0}
[eizx − 1− izxI{|x|<1}]ν(dx)} (E.1)

Following the above characteristics, a degradation process where data are measured continuously
and degradation increments constantly can be associated to Lévy processes. Lévy processes include
several processes that, according to the case studied, might be the best fitted to the situation. The
most important processes for degradation modelling are the Brownian motion or the Wiener process,
the Gamma process and the compound Poisson process.

The Brownian motion A Brownian motion is a Lévy process where the increments have a nor-
mal distribution (Xt+s − Xt) ∼ N (sµ, sσ2), for t ≥ 0, and s ≥ 0. A Brownian motion path is
non-differentiable, continuous and has finite variations, or increments. Since a Brownian motion has
continuous trajectories, its Lévy measure is zero everywhere.

A Wiener process W (t) is a standard Brownian motion which increments follow a standard normal
distribution i.e., (Wt+s −Wt) ∼ N (0, s). Note that the independent increments are defined on the
R+, and W (0) = 0.

Gamma process A Gamma process is an increasing Lévy process, that is the sample paths are
increasing. A Gamma process is an increasing Lévy process where the Lévy measure of (Xt)t≥0 is

ν(dx) = δ
e−ηx

x
dx

where δ > 0 ∈ ℜ and η > 0 ∈ ℜ. The characteristic function for a Gamma process is in Eq. E.2. For
more proof, please refer to [142].

ΦXt(ξ) = βαt

(β − iξ)t
(E.2)

Poisson process A Poisson process N(t) is a process with independent increments, where the
increment N(t) −N(s), ∀t > s has the Poisson distribution [64], whom the probability mass distri-
bution is f(k; λ) = Pr(X=k) = λke−λ

k! , for λ > 0.

A compound Poisson process is a Lévy process, where the distribution F of the increments is
characterised by the Lévy measure ν(dx) = λF (dx) is finite. The Gamma process is the limit of a
compound Poisson process with the Poisson arrival rate λ tending to infinity.

The stochastic modeling of the degradation follows a stochastic process and more particularly
a Lévy process (see Appendix E). In the following, a degradation process is presented based on a
Wiener process, the most common process used for the degradation application.
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E.3 Degradation processes
A degradation process is an additive accumulation of degradations with a defined wear intensity.
[114]. It adds modeling uncertainty to a degradation trajectory by including a stochastic process,
as the degradation itself may have multiple trajectory options due to random effects caused by
unknown or uncontrolled variables. It can be modeled by Eq. E.3, where Y (t) is the observation
of the degradation process, D(t, β) is similar to the degradation path of a deterministic model, and
S(t) is a stochastic process that considers the randomness of the paths. D(t) is a typical degradation
function that can be based on common relationships, or physical conclusions, presented earlier. S(t)
can be any of the Levy processes presented in Appendix E, depending on the case of study.

Y (t) = D(t, β) + S(t) (E.3)

Fig. E.1 presents a degradation process where two realizations are tracked, and for each realiza-
tion, mi observations are recorded. Note that the number of observations and the corresponding

Figure E.1: A degradation process example from [114]

time for each realization can be different.

The observations of the degradation process are characterized by certain variables (which are
sketched in Fig. E.1). Note that the denotation used in the following is different from that used for
Eq. E.3. The degradation process here is called Z(t) and has a valid range of t ≥ t0, where t0 is
the beginning of the degradation. It has n realisations and for each realisation, mi observations are
recorded at times tij (i = 1, . . . , n is the number of realisation in question, and j = 1, . . . , mi is the
number of observation in question)

• yij = Zi(tij)− Zi(tij−1) are the increments of the process, for j = 2, . . . , mi

• sij = tij − tij−1 are the distance between time points of observation, for j = 2, . . . , mi

• Zi1 = Zi(ti1) are the observations at the first recorded times of each realisation, for i = 1, . . . , n

• Z̄1 = 1
n

∑n
i=1 Zi1 is the average value of the first observed values of each realisation

• Z̄m = 1
n

∑n
i=1 Zimi is the average value of the last observed values of each realisation
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• t̄1 = 1
n

∑n
i=1 ti1 is the average value of the first recorded times

• t̄m = 1
n

∑n
i=1 timi is the average value of the last recorded times

• m̄ = 1
n

∑n
i=1 mi is the average value of the number of observations in one realisation

In an analogue with a typical regression problem, a device would fail if its degradation process
reaches some threshold h, which is generally unknown in the stochastic world (unlike the threshold
defined in deterministic models). The lifetime of the device Th is then defined as the first time the
degradation process exceeds the threshold level: Th = inf{t ≥ t0 : Z(t) ≥ h}

In order to construct the likelihood for estimating the parameters of the degradation process,
certain assumptions must be made. The first assumption is to define the degradation path (linear,
exponential, etc). The second assumption is to choose the stochastic process that the degradation
follows, as it will define the probability distribution around the uncertainties.

The most common stochastic process associated with the degradation process is the Wiener
process because the degradation starts at 0, and the increments of the degradation follow a normal
distribution. Gamma processes are also widely used for monotonically growing degradation, but this
study will focus on modeling degradation based on the Wiener process. Nevertheless, some works
related to the application of the Gamma process for the application of degradation will be quickly
mentioned.

E.4 Wiener modelling
Several studies have discussed Wiener modeling, however these studies have advanced statistical
equations, which are not within the knowledge of an electrical engineer. Kahle and Lehmann were
among the few to propose a simple approach to quantify the parameters of a Wiener process used for
modeling degradation [114]. Therefore, this section will present the modeling of the Wiener process
from the perspective of the Kahle and Lehmann publication. A degradation process can be modeled
by a standard Wiener process (see in Eq. E.4), where

Z(t) = z0 + σW (t− t0) + µ(t− t0), t ≥ 0 (E.4)

• z0 is the constant initial degradation,

• t0 is the beginning of the degradation,

• µ is the decay drift parameter,

• σ > 0 is the variance parameter,

• W (t) is the standard Wiener process on [0,∞)

The degradation path in Eq. E.4 is a linear path, and the degradation increments follow a normal
distribution Yij ∼ N (sijµ, σ2sij). Similarly, the first observed increment follows a normal distribu-
tion Zi1 ∼ N (z0 + (ti1 − t0)µ, σ2(ti1 − t0).

Th in the case of a Wiener process follows an inverse Gaussian distribution with the density
function fTh

of Eq. E.5 [114].

fTh
(t) = h− z0√

2πσ2(t− t0)3 exp
− (h−z0−µ(t−t0))2

2σ2(t−t0) ,∀t > t0 (E.5)
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Since a degradation process can have a record of degradation increments, failure times, or both,
the likelihood function of the degradation process for each scenario is different. Kahle and Lehmann
considered the case where increments are observed with and without the recorded failure times.

The likelihood function of the scenario where only degradation increments are observed is in
Eq. E.6, where ϕ is the density function of the standard normal distribution.

L =
n∏

i=1

1√
σ2(ti1 − t0)

ϕ(zi1 − z0 − µ(ti1 − t0)√
σ2(ti1 − t0)

)
mi∏
j=2

1√
σ2sij

ϕ(yij − µsij√
σ2sij

) (E.6)

The resolution of the likelihood function leads to Eq. E.7, which is a set of four equations, that
when solved numerically, give the estimated parameters of the degradation process (t̂0, ẑ0, µ̂,σ̂2).
One may ask why estimate a t0 or the initial degradation z0, since normally it is the initial values
that are supposed to be known. In some cases, a certain degradation process does not start at the
beginning of a device’s life, as it may be stored for some time. It may also be subjected to some
stress that does not immediately cause degradation, and degradation occurs after some time. Thus
t0, and its corresponding degradation level z0 in these cases are unknown and must be estimated.

µ̂ = (z̄m − ẑ0)/(t̄n − t̂0)

σ̂2 = 1
m̄n

 n∑
i=1

(zi1 − ẑ0)2

ti1 − t̂0
+

mi∑
j=2

y2
ij

sij

− µ̂n(z̄m − ẑ0)


ẑ0 =

(
1
n

n∑
i=1

zi1

ti1 − t̂0
− z̄m

tm − t̂0

)
/

(
1
n

n∑
i=1

1
ti1 − t̂0

− 1
tm − t̂0

)

σ̂2
n∑

i=1

1
ti1 − t̂0

=
n∑

i=1

(zi1 − ẑ0)2

(ti1 − t̂0)2 − µ̂n

(E.7)

Other modeling scenario are considering the degradation process with only the failure times, when
observed and the threshold is known. Another approach is to consider both degradation increments
and failure times when they are recorded for realization. For more information on the likelihood
function for these scenarios, see [114].

E.5 Application of a Wiener process to OLEDWorks experimental
design

So far, deterministic models have been studied where a single model is generated from a particular
set of data. The main objective of stochastic degradation modeling is to generate different scenarios,
where for a set of aging conditions, the degradation trajectory of the electrical component changes
hazardously. The stochastic degradation modeling is done to include all uncontrolled and immeasur-
able factors in the modeling, in order to expand the prediction area.

The stochastic method of degradation modeling is presented in section 2.7, where the degradation
process is supposed to follow a Wiener Gaussian process. Since a Wiener process is part of the Lévy
processes, it is important to respect the limits of a Lévy process X(t), that is it is

(i) The distribution of an increment (Xt+s −Xt) is independent of t

(ii) The process is additive, that is for every t ≥ 0 and s ≥ 0, P{Xt+s − Xt ∈ A|Xu, u ≤ t} =
P{Xt+s −Xt ∈ A}
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(iii) The process is continuous, that is for every t ≥ 0 and ϵ ≥ 0, lims→tP{|Xt −Xs| > ϵ} = 0

(iv) The start point of the value is null, i.e. X0 = 0.

The degradation modeling in this section will consider the luminance degradation of OLEDWorks
panels. Note that these are commercial OLEDs where the degradation based on a set of conditions
does not vary greatly. However, they are used here only to get a general idea of a stochastic degrada-
tion process. Previously, for deterministic approaches, luminance degradation was modeled directly
with time. But for stochastic modeling, the degradation increments are needed and not the lumi-
nance evolution. The degradation process of specimen i at inspection time tij is the subtraction of
the initial luminance value at inspection time ti0 from the luminance value at inspection time tij:
Di(tij) = Li(tij)−Li(ti0). To simplify the fitting algorithm, the initial inspection time are supposed
to be null: ti0 = 0, ∀ 1 ≤ i ≤ n.

As an example, two experiments from the OLEDWorks experimental design will be used: exper-
iment #14 and experiment #10. Each experiment has its own particularity which will be detailed
later. Note that this analysis can be done for all experiments in the OLEDWorks experimental design.

At first, experiment #14 is used to study the degradation process. Experiment #14 has two
replications (i.e. the experiment was repeated twice, for the same aging conditions, but in a different
time zone). The second replication consists of aging 4 specimens, in the same oven, at 60 °C, 650 mA,
and without cycling. The second replication of this experiment is chosen because the inspection
times are uniform, and the stress interval between two inspections is always 7 days. Each of the 4
specimens has its own degradation process Z(t), but these processes have the same incremental time
(that is the stress interval between two inspections): si,j+1 = ti,j+1 − ti,j = 7 days or 168 hours,
∀ 1 ≤ i ≤ 4 and ∀ 0 ≤ j ≤ (mi − 1). mi is the number of observations for the process i.
The incremental data of the degradation processes Z(t) are represented in Tab E.1.

Table E.1: Increments of the degradation process Z(t) of the second replication of OLEDWorks
experiment #14

Number
Name OLED 14a OLED 14b OLED 14c OLED 14d

i 1 2 3 4
zij − zi,j−1 373 207 478 379
(cd m−2) 202 253 277 269

383 361 412 304
271 237 312 239
370 282 466 352
285 372 312 263
327 296 343 207
337 382 293 392
332 227 312 254
147 340 195 233

The degradation process Z(t) presented in Section 2.7 is used

Z(t) = z0 + σW (t− t0) + µ(t− t0) (E.4)

The estimates of its parameters are based on the set of equations in Eq. E.7 that must be solved
numerically. It was impossible however to solve all four equations, as the values were not reasonable,
like σ̂2 had negative value. Since all the degradation processes started at t0 = 0, it is not mandatory
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to "estimate" a t0 and can be directly considered as t̂0 = 0. Moreover, the stochastic approach does
not give a single parameter estimate, but a set of parameters around a kernel. The kernel of the
parameter estimate is found by numerically computing the set of equations in Eq. E.7.

µ̂ = (z̄m − ẑ0)/(t̄n − t̂0)

σ̂2 = 1
m̄n

 n∑
i=1

(zi1 − ẑ0)2

ti1 − t̂0
+

mi∑
j=2

y2
ij

sij

− µ̂n(z̄m − ẑ0)


ẑ0 =

(
1
n

n∑
i=1

zi1

ti1 − t̂0
− z̄m

tm − t̂0

)
/

(
1
n

n∑
i=1

1
ti1 − t̂0

− 1
tm − t̂0

)

σ̂2
n∑

i=1

1
ti1 − t̂0

=
n∑

i=1

(zi1 − ẑ0)2

(ti1 − t̂0)2 − µ̂n

(E.7)

The joint confidence region for parameter estimation is found using a concept similar to the regres-
sion confidence interval. The joint confidence region is presented in Eq. E.8, where θ is the set of
parameters, and θ̂ is its estimate. Iθ is the Fisher information matrix used to get the covariance
matrix for Bayesian analysis, and a2 is the quantile of the χ2 distribution, with k degrees of freedom
(k being the number of parameters of the vector θ)

(θ̂ − θ)T I−1
θ (θ̂ − θ) < a2 (E.8)

The confidence region for only the two parameters of interest µ and σ2, and equal first observation
time for all specimens t1 is represented in Eq. E.9 (the demonstration is found in [114]).

(µ̂− µ)2

σ2 (tm − t1) + (σ̂2 − σ2)2

2σ4 (m̄− 1) ≤ a2

n
(E.9)

The parameters estimate are θ̂ = [µ̂; ˆsigma
2; ẑ0] = [1.744; 35.6; 64.8] (they are found by nu-

merically computing Eq. E.7).

The 95 % and the 90 % joint confidence regions are represented in Fig. E.2.
As seen in Fig. E.2, the confidence interval of the decay slope µ and the variance of the Wiener

process σ2 are correlated. The largest confidence interval for µ and σ2 is for the kernel estimate.
The confidence interval for σ2 becomes narrower when the values of µ move away from its kernel
(in a symmetric manner). The analysis is similar to the confidence interval of µ. To understand
what this means, the decay slope of the kernel is also plotted in Fig. E.2. This means that the
confidence interval at the kernel level is very wide because it must take into account 90 % or 95 % of
all observations. When the decay slope is larger or smaller than the kernel estimate, the stochastic
process will have a smaller variance, i.e. there is less chance that the decay trajectory of the #14
experiment will follow this path.

Fig. E.2 also represents a comparison between the fits of an ordinary linear regression and the
deterministic part of the process, i.e. µ̂(t − t0) + ẑ0. The two models are very similar and have the
same decay path. The difference is that the OLR method gives only one decay trajectory, unlike the
many decay trajectories estimated by the degradation process.

The lower the σ2 is, the wider the confidence region of µ, and the opposite is true. This means
that either the modeling has a high value of randomness by the stochastic process, or high random
estimation error.
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(a)

(b)

Figure E.2: Stochastic degradation modeling of the second replication of experiment 14 of OLED-
Works experimental plan: (a) The joint confidence interval of the estimated parameters of interest
µ̂ and σ̂2 (b) Comparison between the deterministic part of the process and the ordinary linear re-
gression

Another examples of stochastic modeling is shown in Fig. E.3, where luminance degradation data
from experiment #10 in the OLEDWorks experimental design are presented: Experiment #10 also in-
cludes several specimens and thus several degradation pathways. However, it has an in-homogeneous
inspection times or stress intervals, this is why is chosen, to prove the validity of the stochastic model
in all cases. The Kernel estimate of the degradation process is also compared to a deterministic
ordinary linear regression. The OLR tried to reduce the maximum error between the model and the
data, and thus had better model selection criteria values than the stochastic model. However, the
Wiener process distributed the weights fairly among each repetition of the experiment and had a
decay path similar to a WLR model.

Finally, the stochastic approach is another way to model degradation, which is based on random
statistical processes. This approach is used to estimate the degradation of a component within a
whole system, where there are many interactions between stressors, and many uncontrolled vari-
ables. However, this thesis models the degradation of electrical components, where aging occurs
in a controlled environment. In this case, the stochastic approach is overestimated and traditional
deterministic methods are sufficient to model the degradation of OLEDs for example.
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Figure E.3: Stochastic degradation modeling of data from experiments #10 and #2 of the OLED-
Works experimental plan
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Appendix F

Online Models

F.1 Kalman filter
Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series
of measurements observed over time, including statistical noise and other inaccuracies, and produces
estimates of unknown variables by estimating a joint probability distribution over the variables for
each time-frame. It is very popular for control applications, and signal processing.

In what follows, the basic concepts of the Kalman filter and its application to degradation mod-
eling are presented.

State space Kalman filters are used to estimate states based on linear dynamical systems in a
state space format. [118]. It uses the state space system of Eq. Eq. F.1, where xk, yk and uk

are respectively the state, measurement and control input vectors of the process. Ak is the state
transition matrix applied to the previous state vector xk and Ck is the measurement matrix. αk

and βk are noise vectors that are assumed to be zero-mean Gaussian, and independent, i.e., αk1 and
αk2 (or βk1 and βk2) are independent if k1 ̸= k2. αk ∼ N (0, Q) is the process noise vector with the
covariance Q, and βk ∼ N (0, R) is the measurements noise vector with the covariance R. Although
covariance matrices are supposed to reflect the statistics of the noises, the true statistics of the noises
are not known or are not Gaussian in many practical applications. Therefore, Q and R are typically
used as tuning parameters that the user can adjust to achieve the desired performance [118].{

xk+1 = Akxk + uk + αk

yk = Ckxk + βk

(F.1)

A Kalman filter algorithm consists of two stages: "correction/update" and "prediction". Suppose
that the system has already k measurement points y0, y1, . . . , yk−1. The Kalman filter has already
estimated/predicted the state space vector x̂k|k−1 at time k given the (k−1)th one, that was computed
based on the (k − 1)th measurements vector. This vector has a covariance matrix of Γk|k−1. When
the yk measurement is collected, the state space vector is updated to become xk|k, that is different
of xk|k−1. The correction of this vector is based on the set of equations in Eq. F.2.

(i) x̂k|k = x̂k|k−1 + Kkỹk (corrected state estimate)
(ii) Γk|k = Γk|k−1 −KkCkΓk|k−1 (Corrected error covariance)

(iii) ỹk = yk − Ckx̂k|k−1 (Innovation/ Measurement residual)
(iv) Sk = CkΓk|k−1CT

k + Γβk
(Innovation covariance)

(v) Kk = Γk|k−1CT
k S−1

k (Kalman gain)

(F.2)
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(i) x̂k+1|k =Akx̂k|k + uk (Predicted state estimate)
(ii) Γk+1|k =AkΓk|kAT

k + Γαk
(Predicted covariance)

(F.3)

Degradation modelling The Kalman filter is used for linear modeling while for non-linear degra-
dation paths, the extended Kalman filter must be used. This thesis focuses on the application of the
basic Kalman filter for linear degradation prediction. First, a degradation model must be chosen, for
example a linear or log-linear degradation model D = d0 + µt. The parameters to be estimated and

updated with each new measurement constitute the state space vector, for example x =
[
d0
µ

]
. The

Kalman filter system will then be :
xk+1 =

[
1 0
0 1

]
xk +

[
1
1

]
uk + αk

yk =
[
1 tk

]
xk + βk

(F.4)

yk are the performance measurements at time tk. If multiple measurements are performed at once,
the covariance value of βk, is easily measured, otherwise βk and the parameters covariance αk are
chosen manually, to optimize predictions results. uk are the aging stress factors (in the case presented
here, only one input is considered).

Previously presented models considered data all along aging time. In some cases, the aging
process might change, due to some known factors, or to some uncontrollable variables. Experiment
#2 of the OLEDWorks experimental plan is a good example of uncontrollable degradation process,
where temperature stress level fluctuated, and thus the decay path was not totally linear. Adaptive
modeling methods in this case is needed, as the mean time to failure might change depending on the
instantaneous stress applied. the most used adaptive online modeling method is the Kalman filter,
as it is flexible and adaptive to changes in decay paths. The Kalman filter model used is presented in
Eq. F.4 or the equation below, where no inputs are considered in the model since this chapter only
focuses on modeling degradation without covariates.

xk+1 =
[
1 0
0 1

]
xk +

[
0
0

]
uk + αk

yk =
[
1 tk

]
xk + βk

The algorithm is based on the set of correction equations and prediction equations presented in
Chapter 2 (see Eq. F.2 and Eq. F.3).

(i) x̂k|k = x̂k|k−1 + Kkỹk (corrected state estimate)
(ii) Γk|k = Γk|k−1 −KkCkΓk|k−1 (Corrected error covariance)

(iii) ỹk = yk − Ckx̂k|k−1 (Innovation/ Measurement residual)
(iv) Sk = CkΓk|k−1CT

k + Γβk
(Innovation covariance)

(v) Kk = Γk|k−1CT
k S−1

k (Kalman gain)

(F.2)

(i) x̂k+1|k =Akx̂k|k + uk (Predicted state estimate)
(ii) Γk+1|k =AkΓk|kAT

k + Γαk
(Predicted covariance)

(F.3)

The variables used at the beginning of the algorithm, and at each iteration are defined below
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• Firstly, initial value of xk are needed for the algorithm. For this purpose, and since a linear
model with two parameters needs at least two points for fitting, a basic linear regression is done
for measurements data of the first three inspections y1→3 = b + at1→3, with x0 = [b a]T .
The choice of the number of data for the initial fitting does affect the convergence of the Kalman
filter.

• The error covariance or the parameters covariance is set to be an identity matrix of the size

of parameters to be estimated Γk =
[
1 0
0 1

]
. This covariance will be updated at each data

acquisition.

• For each inspection time, 21 consecutive measurements are taken, to reduce the uncertainty,
and thus the variance of each inspection time is taken as the measurement covariance value
Γβk

. The initial value is taken as the maximum of the variance of the measurements at each
inspection time from 0→ 3.

• The covariance matrix of the parameters error estimation is set to be null Γαk
=
[
0 0
0 0

]
. It is

set arbitrarily, and it will be modified to test its influence later on.

• Ak =
[
1 0
0 1

]
is also an identity matrix of the size of parameters to be estimated.

The algorithm runs in the following order:

1. When a new data measurement is acquired, the innovation covariance Sk and then the Kalman
gain KK are computed first.

2. The innovation residual ỹ is computed, then the state estimate x̂k|k and the parameters covari-
ance Γk|k are corrected.

3. After correcting the variables, new parameters x̂k+1|k and their covariance matrix Γ̂k+1|k are
predicted.

The predicted measurement data Yk+1|k at time tk+1 follows the normal distribution

Yk+1|k ∼ N (Ck+1x̂k+1|k, Ck+1Γk+1|kCT
k+1 + Γβk

)

where Ck+1 = [1 tk+1], and the covariance of Yk+1|k is computed in a similar form as the prediction
interval of a regression [56].

Data from experiments #3 and #13 of OLEDWorks are used as a motivating example of the adap-
tive Kalman filter modeling. The first repetition of experiment 13 had a very pronounced abrupt
change between inspection number j = 10 and j = 11 (see Fig. F.1). Since the Kalman filter is
an online modeling method that requires less computation than online linear regression, it can be
used to monitor the degradation trajectory to detect and adapt to any abrupt changes. Figure F.1
represents the update of the modeling that the Kalman filter performs at each inspection when new
measurements are acquired. It includes the prediction of the time it will take to reach the decay level
of the next inspection and the relative error of this prediction, that is ϵj+1(%) = (tj+1 − t̂j+1)/tj+1.
It can be seen that until 800 hours, or until the 10th inspection, the prediction error is very minimal
(< 4%). However, when an abrupt change occurs, it is normal that the prediction did not consider
such rapid decay, so the prediction error reached 30 %. It then re-adapted to the new path after two
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new measurements acquisitions, to reach a minimal prediction error again.

Figure F.1 also includes ordinary linear regression (OLR) using measurements from all inspections
to compare its performance to online Kalman filter modeling. What can be noted here is that the

Figure F.1: Online Kalman prediction of experiment #13 from the OLEDWorks experimental plan

Kalman filter respected the initial luminance value, since the 14 decay paths had the same intercept,
in contrast to the OLR which had a slightly higher intercept than the initial luminance value, in
order to reduce the residuals and improve the regression fit.

The second case studied is experiment #3 from the OLEDWorks experimental plan. This exper-
iment resembles experiment #2 as its OLED was stressed at 30 °C, meaning that the thermal stress
was not constant and had fluctuations. Experiment #3 is chosen for Kalman filter modeling as it has
more pronounced quadratic decay than experiment #2. Figure F.2 represents the online modeling
and prediction of the Kalman filter at each inspection. It also compare the modelled path to the
OLR of all data at once. The predicted values along time also had some sort of quadratic path, which
implies that the Kalman filter did adapt to this quadratic path, even though the relationship between
y and parameters x is linear. In fact, the progressive trajectories were replicating the tangents of
the real decay curve, which is usually done for linearizing a quadratic path on a small interval. The
more the decay had a quadratic curve shape, the more the prediction error increased though and it
reached a maximum value of 15 %.

Keeping in mind that these results were achieved while Gα is set to zero, the Kalman filter
did not adapt as needed to the quadratic change. To adjust this problem, Gα is chosen as the
uncertainty around the estimated coefficients of the ordinary linear regression applied to the first
three data points (found by Eq. 2.29). In the case of experiment #3, the covariance of the process

noise factor is Gα =
[
0.031 0

0 81.9

]
, which is related to the covariance matrix of the linear regression

of the first three data measurements. In this case, the adaptive Kalman Filter results are presented
in Fig. F.3 where the Kalman filter predictions were very flexible and the prediction errors were
extremely reduced to less 5 % per inspection.
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Figure F.2: Online Kalman prediction of experiment #3 from the OLEDWorks experimental plan

Figure F.3: Online Kalman prediction of experiment #3 from the OLEDWorks experimental plan,
when the covariance of the process noise factor is not null.

Lastly, more complex online models based on machine learning algorithms are widely used in
the degradation modeling field, as presented in Chapter 2. It may be advantageous to apply these
methods to the data, especially if the decay trajectory is not clear, to increase the prediction reliability.
However, these models often do not explain how the prediction was made, as they are data-driven
black box models. As for nonlinear decay paths, such as the exponential decay of the insulation
PDIV, it is recommended to use an extended Kalman filter that takes into account the non-linearity
of the model. This is not tested in this thesis but it is a new perspective for future research.
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Appendix G

Additional information for chapter 5

G.1 OLEDWorks experimental design: Current and temperature
relationship with the intercept

Figure G.1: OLEDWorks experimental plan: Relationship between the estimated intercept of OLR
model and temperature, and current for each other stress level

139
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G.2 OLEDWorks experimental design: Model 2 with variation

(a)
Covariates Sum of squares Degrees of freedom F

Current 1.2× 10−7 1 103.4
Temperature 3.8× 10−8 1 32.7

Cycling 2.3× 10−9 1 1.98
C:T 2.6× 10−9 1 0.23

C:Cyc 5.3× 10−10 1 0.45
T:Cyc 3.4× 10−10 1 0.8

C:T:Cyc 6.2× 10−9 1 5.29
Error 4.3× 10−8 37

(b)

Figure G.2: OLEDWorks experimental design: Effect estimates of model 2, with 45 observations,
and its ANOVA table
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G.3 Insulator experimental plan: Prediction of PDIV evolution for
some experiments below 200 °C

Figure G.3: Insulator experimental design: Prediction of PDIV evolution for experiment 12 at 480 V,
200 °C and 10 kHz

Figure G.4: Insulator experimental design: Prediction of PDIV evolution for experiment 10 at 450 V,
150 °C and 4 kHz
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