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Review of AI‑based methods for chatter detection in machining based 
on bibliometric analysis

Cheick Abdoul Kadir A Kounta1,2  · Lionel Arnaud1 · Bernard Kamsu‑Foguem1 · Fana Tangara2

Abstract
To improve the finish and efficiency of machining processes, researchers set out to develop techniques to detect, 
suppress, or avoid vibration chatter. This work involves tracing chatter detection techniques, from time–frequency signal 
processing methods (FFT, HHT, STFT, etc.), decomposition (WPD, EMD, VMD, etc.) to the combination with machine 
learning or deep learning models. A cartographic analysis was carried out to discover the limits of these different 
techniques and to propose possible solutions in perspective to detect chattering in the machining processes. The fact that 
human expert detects chatter using simple spectrograms is confronted with the variety of signal processing methods used in 
the literature and lead to possible optimal detecting techniques. For this purpose, the bibliometric tool R-Tool was used to 
facilitate a bibliometric analysis using specific means for quantitative bibliometric research and visualization. Data were 
collected from the Web of Science (WoS 2022) using particular queries on chatter detection. Most documents collected 
detect chatter with either transformation or decomposition techniques.

Keywords Bibliometrics · Chatter detection · Time–frequency analysis · Signal processing · Machine learning · Deep 
learning

1 Introduction

Historically, chatter is described by the father of machin-
ing [1] as the most obscure and delicate problem of all that 
confronts the machinist. In the case of castings and forgings 

of various shapes, there is probably no rule or formula that 
can accurately guide the machinist in making the cuts and 
maximum speeds possible without producing chatter. A few 
decades later, firstly in a Slovak book [2] and then in inter-
national publications by the documents [3–5], the stability 
lobes theory showed that it was possible to solve the chatter 
problem. Self-excited vibration frequency called chatter is 
still the most famous vibration phenomena in machining and 
is detrimental to surface finish quality and tool life [6]. Chat-
ter is primarily manifested by the regeneration of waviness 
caused by the interaction between the material surface and 
the tool at given rotational frequencies of the spindle and 
by the interaction of one mode or several modes. Several 
researchers have studied the technique of detecting chatter 
in vibration signals, for example, the authors [7] and [8]. 
These are the cutting force, acceleration, sound, and elec-
tric current signals, fluently used to monitor the state of the 
systems [9].

Several signal processing algorithms have been suc-
cessfully applied to chatter detection, such as Short-Term 
Fourier Transform (STFT) [10, 11], Wavelet Transform 
(WT) [12, 13], Wavelet Packet Decomposition (WPD) [14], 
Hilbert–Huang Transform (HHT) [15–17], empirical mode 
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decomposition (EMD) [18, 19], Variational Mode Decom-
position (VMD) [20, 21], and Local Mean Decomposition 
(LMD) [22].

Generally, this signal processing-based detection is 
performed in three progressive steps: signal collection, 
feature extraction, and defect detection or identification 
[23]. Previously, chatter detection was established based 
on the engineers’ abundant experience and mainly based 
on acoustic human analysis of the process. It is equally 
essential to monitor the condition of the tool and detect 
any anomalies that may occur during machining to prevent 
any dangerous situations [24]. In any machining opera-
tion, the cutting tool’s life directly affects the process’s 
quality and cost. By monitoring the condition of tools, 
it is possible to eliminate problems such as accelerated 
wear and breakage of tools and chatter during machin-
ing. This paper reviews the literature on techniques for 
detecting or identifying vibration-induced chatter in this 
paper. Several vibration mitigation techniques, including 
stiffening in machine tools or part-holder, and active or 
passive damping techniques, also exist [25, 26]. By moni-
toring and analyzing the vibration signals near the tool 
and the workpiece, not only the chatter but also the state 
of the machine tool can be detected effectively, and even 
allow us to develop a digital twin of the machine [27]. 
The predominant analytical methods use so-called stability 
lobe diagrams to predict the stability of machining pro-
cesses. Time–frequency processing models, using a wide 
range of mathematical transforms and decomposition, have 
been used in chatter detection, whether in milling, turning, 
drilling, or grinding. All these sophisticated methods have 
some difficulties in detecting unobvious chatter (i.e., when 
there is not a substantial increase in root mean square 

(RMS) vibration level or even sound noise) and accurate 
industrial noisy vibration signals (rarely considered). 
These difficulties must be confronted by the fact that on-
field human chatter experts use only spectrum and spectro-
gram representations to detect chatter, and thus probably, 
research should investigate more what information can be 
extracted directly from spectrums and spectrograms.

Quite recently, deep learning (Fig. 1) has appeared as a 
general concept that refers to the newest and most successful 
group of methods based on neural networks and has proven 
to be very effective in many fields.

To reduce the human contribution to the diagnosis and 
detection of faults, integrating machine learning theories 
(Fig. 2) with vibration analysis is a promising way to auto-
mate the procedures currently used by the document [28].

This article aims to provide a comprehensive review of 
chattering detection techniques, from time–frequency pro-
cessing techniques to Artificial Intelligence (AI) techniques, 
and identify the already most promising and emergent ones.

To perform this extensive analysis, the bibliometric 
tool R-Tool was used by the document [30], an R package 
intended to facilitate bibliometric analysis, based on the 
open source software R, one of the most influential and flex-
ible software environments for statistics and data science. 
This analysis provides a new perspective on the evolution of 
techniques for detecting, identifying, or suppressing chatter 
in machining by developing a taxonomy of knowledge for 
research topics in the field.

An in-depth analysis of past and current studies on the 
evolution of chatter detection techniques is performed on 
655 research publications between 1985 and 2022. This 
study provides insights into the application of AI in chat-
ter detection in machining and particular industrial needs 

Fig. 1  The deep learning model 
for binary classification [29]

Fig. 2  The machine learning 
model for binary classification 
[29]



regarding the detection of chatter without having to provide 
information on the amplitude of the vibration signal because 
the signal may be more or less intense depending on the type 
of sensors and their positions, or the operating frequencies 
of the machine, which can be difficult to collect or erroneous 
due to the presence of reducers or gearboxes, for example. 
Another perspective is the opportunity to use unsupervised 
learning to detect phenomena not identified a priori by the 
human expert. Finally, the explainability of the AI technique 
would facilitate the use and exploitation of AI results.

The rest of the article is organized as follows: Sect. 2 
describes the bibliometric analysis, Sect. 3 presents previous 
work on time–frequency and AI processing techniques for 
detecting chatter in machining, and Sect. 4 presents chal-
lenges with opportunities and solutions in machining. The 
article concludes with Sect. 5.

2  Bibliometric analysis

2.1  Information about data

The bibliometric analysis will identify key metrics related 
to this section’s sources, documents, authors, keywords, and 
countries. The bibliometric analysis will identify key met-
rics related to sources, documents, authors, keywords, and 
governments. In this section, the analysis will also allow us 
to classify and visualize the publications according to their 
impact, interest, frequency of citations, and collaboration in 
the research field. The appeal of the bibliometric analysis is 
to acquire new information that will give an overview of the 
target field and serve as a perspective subject for scientific 
research.

Data for this search were collected from the Web of Sci-
ence (WoS) database. All articles and journals included in the 
analysis were written in English. Since systematic literature 
reviews rely on careful selection of keywords, it was decided 
that the keywords (chatter detection, time–frequency process-
ing, machine learning, and deep learning) should appear in 
the title, the keywords, or the text. For the data search strat-
egy, the following queries were used in the WoS database 
("Web of Science April 2022"):

• ("chatter detection" OR "chatter identification" OR "chat-
ter recognition" OR "chatter suppression")

• ("chatter detection" OR "chatter identification" OR
"chatter recognition" OR "chatter suppression") AND
("Machine learning" OR "Deep learning" OR "Artificial
Intelligence")

The first query was run to retrieve 679 research pub-
lications, including 350 publications in engineering 

manufacturing, 290 publications in engineering mechanical, 
and 173 publications in automation control systems (Fig. 3).

Table  1 presents the preliminary information about 
the data collected on WoS between 1985 and 2022. This 
table reports information such as the number of documents 
obtained, the search period, author keywords, and keywords. 
The authors provide the author keywords in this case (1546) 
words. The keywords plus (652) are generated from an algo-
rithm to extract the words frequently appearing in the title 
references, not only the document titles or author keywords. 
The bibliometric tool allowed us to know the appearance 
of the author (1425), authors of single-author documents 
(11), authors of multi-author documents (1414), the aver-
age number of authors per document (2.25), and the col-
laboration index (2.27). Figure 4 shows the classification 
of publications by type of document, with 482 articles, 155 
proceedings papers, and 14 reviews.

Figure 5 shows the publication frequency during the 
period 1985–April 2022. The scientific publications on 
chatter detection techniques started to reach 40 publications 
per year in 2017, and the evolution peaked in 2019 with 83 
publications. Between January and April 2022, there were 
26 articles on chat detection.

The growth of the annual scientific production is due to 
the enlargement of the observation base with the addition of 
new publication media (journals, conference proceedings, 
chapters of collective works, etc.) in the database as (WoS 
and Scopus). This addition occurs in two ways, and first, 
the observation bases integrate the existing journals after a 
selection process to better cover the world's scientific pro-
duction. The journals are also created by developing new 
scientific themes [31]. Figure 6 illustrates this growth using 
the more generic term “machining” as a query.

In the present study, it is noted that chatter detection is 
seen almost as much from the manufacturing side as from 
the mechanical side. In contrast, a priori, it would only be 
seen from the manufacturing side and possibly as an auto-
matic system. Most of the publications are less than 6 years 
old, and many studies have focused on the development of 
analytical and numerical algorithms for chatter prediction 
[32–34].

Integrating concepts like the Internet of Things (IoT) 
has significantly shaped the manufacturing industry. The 
development of science and technology has enabled the 
integration of concepts such as IoT because volumetric and 
reliable multi-sensor technologies are integrated to collect 
data. The growth in the size of data in the industry and the 
storage and processing of big data highlights the need for 
data-driven manufacturing as a critical component of intel-
ligent manufacturing. To this end, research has focused on 
combining physics-based models (FFT, WT, etc.) with data-
driven computational models (machine learning and deep 
learning) [35, 36].



2.2  Sources

To show the dynamics of the growth of the productivity of 
the journals, their impacts and number of citations, and their 
network collaborations, Table 2 presents the most productive 
journals according to the number of publications (NP), the 
number of citations (TC), and the impacts (h-index, g-index, 
m-index). H-index [37] is defined as the number of publica-
tions for which the author has received at least h-citations.
G-index is an author-level measure proposed by Egghe [38],
which is calculated based on the distribution of citations
received by publications of a given author, given a set of
articles ranked in descending order of the number of cita-
tions they received. M-index [39] is the number of publica-
tions for which the author received at least h-citations.

“International Journal of Advanced Manufacturing Tech-
nology” is the most productive journal (94) as the number of 
publications or more than 25% of the articles. “International 
Journal of Machine Tools & Manufacture” comes in second 
position (44) and “Mechanical Systems and Signal Processing” 
with 31 publications in the third position. However, it should 
be noted that the most productive journal is not necessarily 
the most cited. For example, “CIRP Annals-Manufacturing 
Technology” is more mentioned than “Mechanical Systems 
and Signal Processing” since it is less productive than “Inter-
national Journal of Advanced Manufacturing Technology” 
(Fig. 7).

In Fig. 7, the vertical axis shows the names of the scien-
tific publication journals, and the horizontal axis indicates 
the number of journal citations in the research on chatter 

detection techniques. The journals are listed in descending 
order. The International Journal of Machine Tools & Manu-
facture is on top with 2661 (TC), followed by CIRP Anales-
Manufacturing Technology 2146 (TC) and International 
Journal of Manufacturing Technology, etc.

2.3  Authors

The bibliometric tool counts the local citations of an arti-
cle and an author in the most cited references. The number 
of local citations presents the number of appearances of an 
author in the documents collected for this study. According 
to Fig. 8, Y. Altintas is the most cited author (1585 citations 
in total), the number in the circle is the number of local 
citations, and the width of the line depends on this number.

Y. Altintas is probably the most famous researcher on
machining vibrations (Table 3). He explained most of the 
chatter process by making the equation and enriching the 
AI models with the mechanical ones. He demonstrates with 
a numerical simulation model on dynamic milling that the 
use of continuously variable spindle speed can be a way to 
suppress chatter [40]. He was followed by D. Dornfeld (731 
total citations), who does not specialize in machining vibra-
tion, talk, or AI but has been prolific in precision machin-
ing and using sensors. K. Jemielniak shares the same score 
with G. O’Donnell and R. Teti (726 citations in total), who 
are classical researchers working for decades on machining. 
These authors have an excellent knowledge of the field and 
propose new techniques to detect, identify, or locate chatter 
for machining stability over time. They are working with D. 

Fig. 3  Ranking of publications in different research areas



Dornfeld on a paper in Advanced Monitoring of Machining 
Operations reviewing past contributions and proposing a 
comprehensive update on sensor technologies, signal pro-
cessing, and, most importantly, decision-making strategies 
for process monitoring [41].

The TC index indicates that the authors are not necessar-
ily the most productive. For more details, Fig. 9 presents a 
network showing the collaboration links between the authors. 
Their distance in the co-citation links indicates the relation-
ship between the authors. The relationships are strong when 
the collaboration connection is shorter. In this case, there are 
ten collaboration groups (X. Liu and Y. Li) are the first group, 
followed by (H. Gao, M. Wang, and Y. Zhang) and (H. Liu 
and Y. Wang).

Figure 10 is proposed according to Lotka’s law, defining 
the abscissa axis as the number of papers and the ordinate axis 

as the number of authors from different fields. The authors 
can be cited in the documents as the primary author. It can be 
seen from the figure that more than 1000 authors represent-
ing 71% of the authors have written at least one article on the 
phenomena of chatter.

Figure 11 presents a tree structure that traces the hierarchi-
cal composition of signal analysis and chatter detection tech-
niques used in the past. This figure shows the combination of 
frequency of keywords used in the field of chatter detection, 
such as "chatter detection," which appeared as a keyword near 
the following keywords: "wavelet, chatter suppression, stabil-
ity, model and dynamics," and the keyword "vibration" also 
appeared with "identification, suppression, regenerative chat-
ter, chatter stability, classification, recognition, etc." in most 
publications. This representation shows that only the terms 
"wavelet" and "frequency" have been used for chatter detec-
tion. However, several variants of Fourier Transform and other 
decomposition techniques, like the EEMD decomposition 
method, have also been widely applied to vibration signals 
to chatter detection, even if not visible on these global biblio-
metric indicators.

Table 4 presents the most cited papers shared in WoS 
between 1985 and April 2022. Notably, the article [41] was 
published in CIRP Annals-Manufacturing Technology with 
(726 citations). In this article, the authors provide a survey of 
the development and implementation of sensor monitoring of 
machining operations. In particular, the paper reviews the past 
contributions of CIRP in these areas and provides a survey of 
sensor technologies, signal processing, and decision-making 
strategies for monitoring machining processes. The scientific 
paper [42], also published in CIRP Annals-Manufacturing 
Technology, is in second place with 502 citations. The authors 
discuss the fundamentals of the chatter stabilization law in 
machining by addressing non-linear processes.

Moreover, Fig. 12 gives an overview of the top 10 most 
cited papers in our network of 679 documents (local cita-
tions) for intelligent chatter detection. This is to be dis-
tinguished from the most mentioned documents globally 
(global citations), which refer to the total number of cita-
tions worldwide. It has been found that chatter detection has 
attracted the attention of researchers in many other fields.

2.4  Scientific production on the chatter phenomena 
by country and continent

Table 5 shows that China, Canada (mainly because of the 
author Y. Altintas), and the USA occupy the first places 
based on the number of total citations, the frequency of 
publication, and the average number of citations per arti-
cle. China is in first place with 3707 total citations on 781 
publications, followed by Canada with 1560 total citations 

Table 1  Primary information about data

Description Results

Timespan 1985–2022
Sources (journals, books, etc.) 250
Documents 679
Average years from publication 7.13
Average citations per document 18
Average citations per year per document 2179
References 10,565
DOCUMENT TYPES
Article 482
Article; book chapter 5
Article; early access 6
Article; proceedings paper 14
Correction 1
Letter 2
Proceedings paper 155
Review 14
DOCUMENT CONTENTS
Keywords Plus (ID) 652
Author’s Keywords (DE) 1546
AUTHORS
Authors 1425
Author appearances 2484
Authors of single-authored documents 11
Authors of multi-authored documents 1414
AUTHOR’S COLLABORATION
Single-authored documents 12
Documents per author 0.476
Authors per document 2.1
Co-authors per document 3.66
Collaboration Index 2.12



on 75 publications, and the USA, which appears 1256 times 
in total on 140 publications. It is noted that no African 
country seems on the table, and only Brazil represents 
South America, which is generally due to the low develop-
ment of manufacturing industries and research. Algeria and 
Egypt are part of this study on the chatter phenomenon, but 
only with 24 citations on 7 published articles (Fig. 13). In 
addition, Fig. 14 shows the collaboration network between 
countries, showing a wide range of interactions.

2.5  Most common technologies or models used 
for chatter prediction, detection, or stabilization

This section analyzes the most frequent keywords and their co-
occurrence levels. These keywords are regarded as the essen-
tial elements of the knowledge concept representation that 
reveal the structure of the research topic. The size of the words 
in the cloud, Fig. 15, determines the number of occurrences 
and the density of the words in the publications. It should be 

Fig. 4  Ranking of publications 
by type of documents

Fig. 5  Annual scientific produc-
tion



noted that the most frequent word is clearly stability (with 178 
occurrences), followed by vibration, prediction, and chatter 
detection with 122, 115, and 101 occurrences, respectively.

This shows that the physical model (“surface,” “tool,” 
“cutting force,” “regenerative,” etc.) is considered sec-
ondary compared to the supposed properties of the signal 

Fig. 6  Annual scientific produc-
tion using the term “machining” 
in research

Table 2  Sources impact

Sources h_index g_index m_index TC NP PY_start

International Journal of Advanced Manufacturing Technology 21 30 0.78 1414 94 1996
International Journal of Machine Tools & Manufacture 30 44 0.97 2661 44 1992
Mechanical Systems and Signal Processing 17 29 0.49 860 31 1988
Journal of Manufacturing Science and Engineering-Transactions of the ASME 12 22 0.44 493 26 1996
CIRP Annals-Manufacturing Technology 13 18 0.62 2146 18 2002
Proceedings of the Institution of Mechanical Engineers Part B-Journal of 

Engineering Manufacture
8 14 0.38 214 16 2002

Journal of Sound and Vibration 12 15 0.48 709 15 1998
Journal of Vibration and Control 8 12 0.62 209 12 2010
Precision Engineering-Journal of the International Societies for Precision 

Engineering and Nanotechnology
7 10 0.58 117 10 2011

Measurement 6 9 1 122 9 2017
Journal of Materials Processing Technology 6 8 0.26 473 8 2000
Journal of Intelligent Manufacturing 5 7 0.17 121 7 1994
Materials 4 6 1 59 6 2019
Advances in Manufacturing 3 5 0.5 32 5 2017
Applied Sciences-Basel 4 5 0.67 29 5 2017
Chinese Journal of Aeronautics 5 5 0.33 223 5 2008
International Journal of Mechanical Sciences 5 5 0.38 177 5 2010
Machining Science and Technology 3 5 0.14 70 5 2002
Mechatronics 3 5 0.14 82 5 2001
Chinese Journal of Mechanical Engineering 3 4 0.23 30 4 2010



(“stability,” “vibrations,” “chatter”) and the goals of detec-
tion (“identification,” “prediction,” “suppression”), and 
depending on the authors the techniques used may vary, 
like “wavelet,” “Hilbert–Huang transform,” and “empirical 
mode decomposition.” The “stability” predominance word 
shows that chatter is strongly related to the mathematical 
concept of instability and exponential divergence to an 
infinite, associated with a very simplified model when the 
machinist knows that there is no such thing, just a change 
in vibrational amplitude and frequencies. Authors have 
sought to control the phenomena of vibration chatter by 
proposing techniques for tool stabilization [48], chatter 
suppression [49, 50], identification or detection of chatter 

phases [51–53], or prediction of chatter with artificial 
intelligence techniques in different machining operations 
[26, 54, 55].

Figure 16 presents a conceptual structure map of the 
authors’ keywords. This map applies the MCA analysis tech-
nique, a multivariate exploratory technique proposed in the 
biblioshiny tool. Figure 16 shows the co-occurrence network 
of the authors’ keywords divided into three clusters. Fifty 
words most used by the authors are distributed between the 
clusters. The red cluster has thirty-three elements, the blue 
cluster has eleven elements, and the green cluster has six 
elements. The red cluster predominates with words related to 
machining processes (milling, end milling, boring, turning, 

Fig. 7  Ranking of journals by 
several citations

Fig. 8  Author local impact by 
TC index



grinding, etc.). The blue cluster represents the words about 
the methods of transformations and extraction of character-
istics of the vibration signal. The green cluster focuses on 
the machining cutting tool and their damping with words 
like (machine tool, machining, vibrations, active damping, 
and machine learning).

This analysis groups extensive data with multiple varia-
bles in a low-dimensional space to produce an intuitive clus-
ter graph. It uses the plane distance to illustrate the similarity 
between the keywords. Keywords close to the center point 
indicate that they have recently received particular attention. 
For example, in the red cluster, the keyword "detection" is 
in the center, surrounded by words like turning, vibration 
control, and boring.

Several elements are analyzed about the dynamics of the 
keywords and the trend topics. First is the evolution of the 
authors’ keywords (Fig. 17). After 2016, some keywords 
significantly increased faster than others: identification tech-
niques (including wavelets) and chatter suppression. Also, 
it shows the trend of keywords with a minimum frequency 
of 10 appearances. It appears that between 2019 and 2020, 
research on chatter identification, monitoring, and, more 
recently, machine learning has increased. In detail, different 
techniques such as artificial intelligence (neural network, 
SVM, CNN, etc.) and signal processing (HHT, EMD, FFT, 
STFT, etc.) have been involved. These techniques have made 
it possible to extract the features of the signal to assist the 
human expert in making decisions and very often serve as 
a basis for training artificial intelligence methods (Fig. 18).

2.6  Artificial intelligence applications

In this part, a second recording was made by adding some 
keywords ("Machine Learning" OR "Deep Learning" OR " 
Artificial Intelligence") to see the extent of the application 
of artificial intelligence techniques for chatter detection in 
machining.

Most studies on vibration chatter detection have used 
signal processing techniques or physics-based numerical 
models exploiting vibration data.

With the emergence of artificial intelligence techniques in 
various fields, researchers have combined signal processing 
techniques and AI models (machine learning and deep learn-
ing) for feature extraction and decision-making in chatter  
detection. This particular analysis query was used to filter 
out articles that use AI to identify or detect chatter. The 
query result gives 75 out of 679 documents using AI tech-
niques; Fig. 20 shows the trend of AI usage over the years 
for chatter detection. Most of these documents were pub-
lished between 2016 and 2021, and machine learning mod-
els (SVM and ANN) are the most used. Figure 20 shows 
that the first published papers on chatter detection using AI 
techniques date back to 1994. It is in 2020 that more than 
19% of these publications have been done, i.e., 15 papers. 
It can be seen in the list of the most cited documents glob-
ally (Table 7) with the document [45], which proposed an 
approach to detect and identify the vibration chatter using 
WT to extract the signal features. SVM decision-making  
(classification) was cited 165 times. In the second position, 

Table 3  Author local impact Authors h_index g_index m_index TC NP PY_start

Y. Altintas 12 16 0.4 1585 16 1992
D. Dornfeld 2 2 0.2 731 2 2010
K. Jemielniak 1 1 0.1 726 1 2010
G. O’Donnell 1 1 0.1 726 1 2010
R. Teti 1 1 0.1 726 1 2010
C. Brecher 3 5 0.2 635 5 2010
H. Cao 9 15 0.9 540 15 2013
J. Munoa 9 14 0.6 504 14 2009
M. Weck 1 1 0.05 502 1 2004
G. Stepan 6 13 0.4 446 13 2008
X. Zhang 10 19 1.7 427 19 2017
E. Budak 3 4 0.1 399 4 2000
X. Chen 8 12 1 394 12 2015
Z. Chen 7 8 0.4 348 8 2007
Z. Dombovari 4 6 0.6 336 6 2016
X. Beudaert 4 5 0.5 323 5 2015
D. Mei 6 6 0.4 319 6 2007
S. Smith 3 3 0.1 301 3 1992
C. Liu 7 12 1 292 12 2016
M. Sortino 3 4 0.2 292 4 2008



the document [56] is a review article on the concept of intel-
ligent machining, and this article is mentioned 131 times. 
The document [57] is in the third position with 67 citations 
total. These authors also proposed a methodology for intelli-
gent detection of the chatter phenomena in a milling process 

using an artificial neural network. All this bibliographic 
information demonstrates that quite apart from the initial 
groups of authors historically publishing on machining chat-
ter, new authors are developing new techniques for chatter 
detection (Fig. 19).

Fig. 9  Collaboration network

Fig. 10  The frequency distribu-
tion of scientific productivity



Table 6 shows in detail the list of the ten authors of 
the two groups in order of the number of documents 
published.

A look at the words of the authors using the new tech-
niques shows a word cloud containing the most used 
AI (machine learning or deep learning) techniques, the 
physics-based signal processing models, and the machin-
ing operations involved (Fig. 21). Among the machine 
learning models used by the authors are the SVM clas-
sifier, one of the most popular supervised classifiers in 
the literature, artificial neural networks, and the discrete 

Markov model. The most interesting is the appearance 
of the keyword deep learning in detecting chattering by 
using generally transfer learning in machining processes 
(milling, turning, drilling, etc.). Transfer learning aims 
at completing the learning of a machine learning model, 
previously trained to solve a given task, to enable it to 
perform a similar task.

Table 7 shows the most cited papers in the automatic 
chatter detection research community. Most of the docu-
ments in Table 8 were published between 2016 and 2022 
for automatic chatter detection on machining processes 

Fig. 11  Treemap for the description of the hierarchical composition

Table 4  Most global cited 
documents

Paper Total citations TC per year Normalized TC

Teti et al. [41] 726 55.85 11.44
Altintas and Weck [42] 502 26.42 5.78
Munoa et al. [25] 290 41.43 10.25
Abele et al. [6] 286 22 4.51
Siddhpura and Pautobally [43] 261 23.73 13.19
Delio et al. [44] 173 5.58 3.04
Yao et al. [45] 161 12.38 2.54
Bravo et al. [46] 159 8.83 3
Sims [47] 147 9.19 4.02
Altintas and Chan [40] 138 4.45 2.42



like (milling, drilling, turning, end milling, etc.). The most 
frequent physics-based models are FFT, STFT, EMD, 
WT, and HHT. The use of data-based models frequently 
Support Machine Vector (SVM), Multi-Layer Percep-
tron (MLP), and Convolutional Neural Networks (CNN). 
Another Index Based Reasoner (IBR) technique proposed 
by the document [58] is used to detect chatter and esti-
mate tool life. IBR is reasoning that ranks the incoming 
signals utilizing a lookup table after the most descriptive 
features have been identified with preprocessing (human 
supervision).

3  State‑of‑the‑art

3.1  Application of signal processing techniques 
in chatter detection

In general, in machining, the sensors detect non-stationary 
signals and knowing that the FFT requires a defined time 
window (classically 0.1 to 1 s in machining), this inevita-
bly introduces a detection delay of the order of a period 
sampling, and anyway, a distortion related to the fact that 
the FFT is inaccurate enough to represent a signal with 
time-varying amplitudes and frequencies. The STFT 
attempts to compensate for this defect by using a sliding 
window and multiplying the FFTs, making it possible to 
identify the changes more finely in the signal. The HHT 
is not constrained by the assumptions of stationarity and 
linearity required for the FFT and can generate vibration 
signal information faster than the FFT. On the other hand, 
the HHT remains a very empirical method and is known 
to have difficulties distinguishing close frequencies, which 
requires eliminating the high-frequency part of the signal, 
which often appears in machining. As for the STFT, despite 
the windowing technique, it is limited by the width of the 
window, which displays the time and frequency resolution. 
Based on the Heisenberg uncertainty principle [73], this res-
olution cannot be arbitrarily high, and it is always a question 
of making a compromise between temporal and frequency 
resolution. The Wavelet Theory (WT) presented in the docu-
ment [74] reduced the problem related to the windowing 
posed on the STFT by using several windows of different 
lengths. In the WT, the analysis of the high frequencies is 
carried out with narrower windows to obtain a better tempo-
ral resolution and expansive windows for the low frequen-
cies to have an optimal frequency resolution (Fig. 22).

Another WT model, the Wavelet Packet Transform 
(WPT), breaks down the approximations and details to gen-
erate more frequency bands and provide more opportunities 

Fig. 12  Most local cited docu-
ments

Table 5  Country scientific production on the phenomena of chatter 
by country and continent in WoS

Country Frequency Total citations Average article 
citations

China 781 3707 13.24
Canada 75 1560 45.88
USA 140 1256 23.26
Italy 47 1180 62.11
Spain 84 823 32.92
Germany 66 460 21.90
UK 66 395 21.94
Australia 25 391 43.44
India 93 364 9.84
Iran 71 307 10.23
Japan 79 298 12.42
Slovenia 24 281 28.10
Poland 54 150 7.50
Hungary 52 142 8.35
Brazil 32 117 9.75
France 30 109 13.62
Turkey 35 102 9.27
Thailand 16 86 14.33
Singapore 7 70 35.00
Sweden 5 70 70.00



to get more signal characteristics. Unlike the STFT, the WT, 
or the WPT, the HHT corresponds more to a process prac-
ticed on a data set than a theoretical tool as clearly defined 
as the previous methods. The HHT is composed of an EMD 
step to obtain the decomposition of the signal into a quasi-
orthogonal basis called Intrinsic-Mode-Functions (IMF). 
The analysis over time of the frequencies associated with 
each IMF makes it possible to generate “Hilbert Spectra 

Analysis” (HSA) to analyze the signal further. The docu-
ment [75] shows that applying HHT in spectrum analysis 
provides higher temporal and high-frequency resolution than 
those offered by STFT.

Table 8 compares the different transformation techniques 
(Fourier, Wavelet, and Hilbert) based on frequency type, 
presentation, frequency linearity, stationarity, and feature 
extraction capability.

Fig. 13  Map of country scien-
tific production

Fig. 14  Network of collabora-
tion between countries at the 
global level



The authors use these techniques to analyze the signal in 
several areas of machining, such as milling [77–79], turning 
[75], and rotor system [80].

Reference [43] is a review of research on vibrational chat-
ter in turning operations. They review vibration prediction, 
detection, and control techniques. They compare different 
analytical methods for the prediction of chatter stability, such 
as the Stability Lobe Diagram (SLD), Nyquist diagrams, and 
the finite-element analysis method. The documents [16, 63] 
propose a Hilbert–Huang transformation method for early 
detection of online chatter before part damage. They meas-
ure the vibration signal and decompose it into a series of 
empirical mode functions by applying the ensemble empiri-
cal mode decomposition. Hilbert–Huang spectral analysis 
is then used on the characteristics of the empirical func-
tion to calculate the time–frequency spectrum. Because of 
vibration chatter’s nonlinear and nonstationary properties 

in the milling process, the document [15] proposes a self-
adaptive approach: Ensemble Empirical Mode Decomposi-
tion (EEMD). They analyze vibration signals with EEMD to 
extract nonlinear indices as vibration indicators. Then they 
integrate the sensitive IMF containing the relevant chatter 
information to obtain a new signal. The two dimensionless 
nonlinear hands reflected the state of chatter in the time 
and frequency domain, providing an alternative solution 
for identifying chatter in the milling process. Since online 
chatter detection involves signal preprocessing, extracting 
sensitive features and developing real-time monitoring mod-
els are crucial. The document’s authors [81] propose a new 
approach to identify chatter in line milling. This method 
uses Optimized Variational Mode Decomposition (OVMD) 
to decompose the cutting force measurements and extract 
subcomponents containing chatter information using a simu-
lated annealing (SA) algorithm. Approximate and sample 
entropy detect the onset of chatter, and the results show bet-
ter performance than the previously mentioned EMD.

The authors [11] experimented with a multisensory con-
figuration composed of sound, acceleration, and cutting 
force to detect chatter in band sawing. The experimental 
analysis shows that the sound signal is more appropriate 
for chatter detection. They adopt a methodology that pre-
processes the signal with the STFT to extract features in 
frequency space, i.e., the height of specific frequency peaks, 
with an optimal threshold. Quadratic discriminant analysis 
is applied to the extracted features to detect chatter. The 
author [78] combines Empirical Mode Decomposition, 
Wavelet Packet Decomposition (WPD), and Hilbert–Huang 
Transform (HHT) to identify chatter. Since the IMF change 
depending on the power spectrum or the frequency ampli-
tude, the empirical mode decomposition is used to select 
the main features of the signal reconstruction. The WPD 

Fig. 15  World cloud

Fig. 16  Conceptual structure 
map—method: MCA



made it possible to reconstruct the signal in two stages using 
the maximum energy. The HHT model is the distribution 
of frequency and energy in the time domain. Considering 
that HHT supports non-stationary and non-linear signals, the 
document [81] proposes a chatter detection technique for the 
boring bar by comparing two types of signals from a strain 
gauge and an FBG sensor by HHT. These signals are then 
decomposed into several IMF using the EMD technique. The 
transform is applied to each IMF to obtain the instantaneous 
frequencies with time and amplitudes. These results show 
that HHT can be considered a simple and reliable technique 
to detect chatter vibration. However, like most studies, very 
far from realistic industrial conditions and chatter is associ-
ated with increased vibrational amplitude.

The document [82] presents a chatter detection method 
based on image analysis of dominant frequency bands 
from STFT spectrograms. Environmental noise related to 
chatter and high-energy frequency bands are localized by a 
squared energy operator of the synthesized FFT spectrum. 
The proposed feature extraction method is verified under 
various milling cutting parameters in three classes (stable 
cutting, slight chatter, and significant chatter). The results 
show the effectiveness of time–frequency image features 
of dominant frequency bands for chatter detection, and its 
performance is better than time-domain feature extraction 
and wavelet-based methods in terms of the capabilities 
of separability. This approach is quite like human expert 
analysis on STFT. However, it is applied to non-realistic 

Fig. 17  Keywords plus dynam-
ics

Fig. 18  Keywords trend topics



industrial applications, and chatter is still clearly associ-
ated with vibration amplitude, making it difficult to decide 
the performance of such an elaborate algorithm.

Similarly, the document [83] proposes a system that 
combines STFT and spectral flattening analysis in the 
time–frequency domain to identify relevant information 
on the chatter and transient vibrations from an accelerom-
eter’s signal. The proposed system cannot only prevent 
the tool’s failure by detecting the occurrence of chatter 
but also provides comprehensive information on the con-
dition of the tool. The authors of document [84] detect 
online chatter by monitoring vibrational energy. Using a 
Kalman filter, they remove forced vibration forces in the 
discrete-time domain and all other periodic components. 
Then, they find the amplitude and the frequency of the 
chatter between the two passing frequency harmonics of 
the consecutive teeth using the nonlinear energy operator. 
The chatter is determined when the energy of the chat-
tering component increases relative to the energy of the 
forced vibrations. This method detects chatter earlier in 
discrete time intervals than frequency domain-based meth-
ods like FFT.

The wide variety of signal analyses to detect chatter 
shows that this remains a very delicate task, especially for 
early detection, i.e., before the amplitude of the vibrations 
is already significant, and it is too late for the quality of the 
part. In addition, all these studies are based on laboratory 
machining tests, therefore without the constraints of noise 
and the variety of situations to be managed in the industry. 
Consequently, defining a practical, robust method largely 
remains, making it possible to quickly identify chatter with-
out needing an expert to fine-tune the detection parameters.

3.2  Application of artificial intelligence techniques 
in chatter detection

The emergence of Industry 4.0 for increasing productivity 
and reducing production costs has prompted the use of auto-
matic, unmanned machining centers or intelligent machin-
ing systems. In these new systems, the machine tool must 
be able to automatically perform certain activities such as 
collision detection and avoidance, tool status monitoring, 
optimization, or at least adaptation of cutting parameters 
in a degraded situation, the detection, and, if possible, the 

Fig. 19  Groups of historical 
authors and authors use new 
techniques for chatter detection

Fig. 20  The evolution of AI 
techniques in chatter detection



suppression of vibrations due to chattering. Specifically, the 
integration of chatter detection systems into the machine tool 
control unit would be a significant improvement in machin-
ing. Thus, the identification and detection of vibrations in 
machining processes have been an active area of research 
over the past two decades.

3.2.1  Machine learning

One of the difficulties in studying chatter is that the machin-
ing equations learn chatter because the machining equations 
describing the scribe’s appearance are generally nonlinear 
delay differential equations. Most of the existing tools for 
chatter identification rely on defining a metric that captures 
chatter characteristics and a threshold that signals its occur-
rence. The difficulty of choosing these metrics, usually 

entrusted to experts, can be eased using machine learning 
techniques [85]. Machine learning is now commonly used to 
relate measured vibration signals to machining. It generally 
consists of three phases: the collection of signals, the extrac-
tion of characteristics, and the learning or training of models, 
commonly called the “signal-characteristics-model” method 
(Fig. 2). The signal collection aims to collect as many signal 
patterns and their corresponding machining states as possi-
ble [86]. The wide variety of the dataset is the basis for the 
model to achieve good generalization performance. Feature 
extraction aims to identify several key feature parameters 
from the initially recorded signals to determine the rela-
tionship between the signal and the machining states. Char-
acteristics are usually defined manually, which requires a 
great deal of human expertise. Among the machine learning 
methods used in automatic chatter, detection is the major-
ity of identification techniques that rely on Support Vector 
Machines (SVM) [87], Artificial Neural Networks (ANN) 
[59, 88], unsupervised Learning [89], and models of deep 
learning like the convolutional neural network.

Further study will show the growth of words over the 
years. One of the first papers using a machine learning 
method in the 1990s to detect chatter is [65] which uses 
the neural network to learn the characteristics of the push-
ing force spectrum in the process of drilling adaptively. In 
the document [60], the authors designed an observer for a 
real-time control system to mitigate chatter in a filming pro-
cess using artificial neural networks. To improve the surface 
quality and reduce vibration and wear of the cutting tool, 
the document [57] proposes an approach based on the mul-
tilayer perceptron (MLP) and Radial Basis Function (RBF) 
to detect the chatter in a milling process. In the document 

Table 6  The ten most revealing authors for both groups

Historical authors Authors using new techniques

Authors Articles Authors Articles

X. Zhang 21 F.A. Khasawneh 4
Z. Xiong 18 B. Sener 4
Y. Altintas 17 B. Singh 4
J. Munoa 16 H.O. Unver 4
H. Cao 15 H. Cao 3
Z. Liu 14 M.C. Chen 3
G. Stepan 14 X. Chen 3
Y. sun 14 J. Liu 3
X. Wang 14 A. Otto 3
X. Chen 13 Y.S. Tarng 3

Fig. 21  The word cloud of 
authors who have published on 
automatic chatter detection



[72], the authors achieve 100% accuracy for chatter detec-
tion by combining WT and HHT for signal feature extrac-
tion and a probabilistic neural network for classification, but 
once again, in a very simplistic machining situation, far from 
industrial applications, cutting conditions being far outside 
the tool manufacturer preconization, and with a clear cor-
relation between chatter and vibration amplitude.

To detect chatter, the document [90] used several sensors 
(sound, spindle vibrations, workpiece vibrations) and cre-
ated several multilayered neural networks by fitting them 
to the inputs of different signals and cutting conditions to 
assess which sensor or combination of sensors could provide 
a reliable source of information for monitoring the chatter, 
but without clear answers. In the document [91], the authors 
used the statistical parameters from the WT as input of a 
neural network to develop an intelligent chatter detection 
system. Still, surprisingly the best chatter indicator was cor-
related with the axial force sensor. This direction is not sup-
posed to vibrate in such a situation strongly. They combined 
Topological Data Analysis (TDA) and Logistic Regression 
Classifier (LRC) to have an excellent performance for chatter 
detection in turning, but this was made only on simulated 
data. To verify chatter stability, the authors of the document 
[92] use an artificial neural network model based on a back-
propagation network to predict stable cut areas and metal
removal rate (but using sensor direction perpendicular to the
main chatter vibration direction).

In 2010, the authors of the document [45] combined 
wavelet transform and SVM for early chatter detection. The 

SVM classifier was designed for recognition based on the 
feature vector derived from the standard deviation of the 
wavelet transform and the wavelet packet energy ratio of 
the signal frequency band. In the document [61], the authors 
propose a cutting state monitoring system based on the 
feed motor current signal. They apply an SVM classifier 
to the features extracted by the EMD model to develop an 
intelligent chatter detection system with 95% accuracy. An 
innovative cutting chatter detection method based on WT 
and multiclass SVM is proposed by the document [93]. To 
simplify the computational complexity when binary SVM 
classification transforms to multi-class classification, the 
algorithm makes each sample type have a spherical SVM. 
A combination of Principal Component Analysis (PCA) and 
SVM is proposed by the document [94] to recognize chatter 
generation. They extract the characteristics of the vibrational 
signal with the FFT and label the FFT vectors to serve as 
input data to the learning model. To increase the accuracy 
of chatter detection, [95] combines an Adaptive Boosting 
algorithm (Adaboost) and SVM with training a robust clas-
sifier for chatter detection. In addition to the Adaboost–SVM 
combination, they extract features with a stacked denoising 
autoencoder considering mislabeled samples. SVM shows 
its identification capabilities in mirror milling, which is an 
effective technique for improving the quality of monolithic 
machined parts. It ensures the mirror relations of the cut-
ter and the support head. The authors of the document [67] 
use the Q-factor to construct a feature vector by determin-
ing the power spectrum of the frequency band. Then, the 

Table 7  Most global cited 
documents with their used 
models

Paper TC Data-based models Physics-based models Machining process

[45] 165 SVM WT-WPT Drilling
[57] 67 MLP FFT Milling
[59] 44 MLP FFT Drilling
[60] 39 MLP - Turning
[61] 33 SVM EMD Turning
[58] 32 – IBR End milling
[62] 27 SVM WPT End milling
[54] 20 CNN CWT Milling
[63] 20 – HHT Milling
[18] 19 ANN EEMD Turning
[26] 18 SVM WPT-EEMD Turning
[64] 18 ANN DWT Saw milling
[65] 17 ANN – Drilling
[66] 17 BPNN VMD Milling
[67] 15 SVM – Milling
[68] 14 CNN – Milling
[69] 12 Hybrid clustering FFT Milling
[70] 11 ANN WPT Turning
[71] 10 KNN – Milling
[72] 10 PNN WD-HHT Turning



SVM is then used to diagnose and detect milling status. It 
proposes a methodology for online chatter detection based 
on WPT and recursive feature removal by SVM at the end-
milling process. In the document [96], the authors construct 
a VMD-SVM model to identify chatter in the robotic milling 
process. Other authors in the document [71] use a K-nearest 
neighbor machine learning classifier to detect chatter in the 
high-speed milling process. They create a cluster contain-
ing two categories of cut conditions (chatter condition and 
normal condition). To facilitate the feature extraction pro-
cess, the document [97] presents an approach based on the 
characterization of the time series of the cutting process 
using its TDA topological features. They integrate the time 

series as clusters using Takens’ theorem, contact details for 
Carlsson, etc.

Several classifiers like SVM, Logistic Regression Classi-
fier (LRC), Random Forest, and Gradient Boosting are com-
bined to detect chatter. The document [98] proposes a multi-
class SVM model to detect chatter phenomena. For this, they 
study two indicators, on the one hand, the real-time variance 
of the milling force signals in the time domain, and on the 
other hand, the wavelet energy ratio of the acceleration sig-
nals based on the WPT. Then chatter detection is performed 
by a trained multi-class SVM. The authors of the document 
[36] proposed an approach for identifying chatter in the
boring process. It consists of merging the characteristics of

Table 8  Comparison between different signal processing techniques

Transform FFT WT HHT

Basis a priori a priori Adaptive (in frequency)
Frequency convolution: global scale, uncertainty convolution: regional scale, uncertainty differentiation: local scale, certainty
Input � : frequency a: Scaling; b: time shift factor t: time; x(t): signal
Presentation Decomposition: f (x) = ∫ +∞

−∞
f̂ (�)ei2��xd�

Function basis: harmonic (sin, cos)
Coefficients: f (�) = ∫ +∞

−∞
f̂ (x)ei2��xdx

Decomposition:
f (x) =

∞∑
j,k=−∞

cjkΨjk(x)

Function basis: orthogonal family
Ψ ∈ L2(ℝ)

Ψjk(x) = 2
j
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)

⟨Ψjk,Ψlm⟩=∫
∞
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Coefficients:
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�
(a, b) =
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−∞
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f(x)dx

With a = 2−j and b = k2−j
dyadic dilatation, and dyadic position)

Decomposition:

X(t) =
n∑
j=1

cj + rn

cj: intrinsic mode function (cubic splines)
rn: residue function
Function basis: cubic splines
Coefficients:
Obtained by an iterative process with a 

stoppage criteria
(The instantaneous frequency is com-

puted using the Hilbert Transform)

Non-stationary No (or using Short Time Fourier 
Transform, STFT)

Yes Yes

Feature extraction No discrete: no, continuous: yes Yes
Theoretical base Complete theory Complete theory Empirical
Merits Gets the information on the frequency Gives both time and frequency domain 

information
Provides both high temporal resolution 

and high-frequency resolution
Limitations Does not evolve in the time domain (or 

using STFT)
Selection of the basic function Near frequency distinction, mixing 

problem (avoided using EEMD)
Application:
– Milling
– Turning
– Drilling
– Grinding

– 25 articles
– 5 articles
– 2 articles
– 2 articles

– 70 articles
– 30 articles
– 19 articles
– 7 articles

– 34 articles
– 8 articles
– 1 article
– 5 articles

Fig. 22  Signal processing, 
respectively, with the FFT, 
STFT, and WT [76]



multiple sensors to obtain the processing signals. The EMD 
transformation decomposes these signals. The indicators of 
the decomposed signals are calculated by performing a com-
bination of multi-sensor features. They are using an SVM 
as a classification model, an identification model with one 
of the best results (95.56% accuracy) to identify the chatter. 
Table 9 shows the advantages and disadvantages of these 
methods.

Table 10 presents the list of the ten articles with the best 
accuracy values.

It is important to note that in all these publications, the 
chatter phenomena are associated with an increase in ampli-
tude vibrational signal and that most verification experi-
ments are far from industrial applications.

3.2.2  Deep learning

As the input dimension grows, machine learning models 
quickly get stuck by many local minima or fail to con-
verge in good time. These limitations necessitate human 
expertise in feature extraction to reduce the dimension of 
the original signal inputs with statistical methods. Despite 
the success of manual feature extraction techniques for 
machine learning models in several problems, they have 
some drawbacks like (1) the extracted features that are 
specific and not generalized to solve different problems, 
and (2) the whole set of extracted features that is a partial 
representation, instead of a complete representation of 
the original signal. (3) The classification model, trained 
on partial features, represents a non-partial relationship 
between features and machining states rather than the 
beneficial relationship between signal and machining 
states [102].

This stage of human expertise for feature extraction aims 
to reduce the dimension of the input. Artificial intelligence 
advancements have allowed techniques such as deep learn-
ing to extract features directly as input data (Fig. 1).

One of the most common methods is the Convolutional 
Neural Network (CNN), which has become a popular tech-
nique for transforming data into information due to its ability to 
process raw data and automatically recognize representations 
of data features across multiple abstractions [103]. The docu-
ment [104] built a deep learning model to detect chatter using 
the vibration signal converted to the time–frequency spectrum 
as input. The deep neural network extracts the time–frequency 
features, and the vibration signal is then decomposed into the 
chatter band by the VMD. An SVM is introduced to classify 

Table 9  The advantages and disadvantages of machine learning and deep learning methods

Method Advantages Disadvantages

SVM • Good in large spaces
• Still efficient in situations where the number of dimensions is

higher than the number of samples
• Multi-usages

• Difficulty in managing the number of features much higher than
the number of samples

• The cost of calculating probability estimates is very high
• Requires human supervision for the task of identifying features

MLP • Ability to learn non-linear models
• Online learning

• Hidden layer MLPs have a non-convex loss function in which
there is more than one local minimum. As a result, different
random weight initializations may lead to different validation
accuracy

• MLP model needs to define a number of hyperparameters such as
the number of hidden neurons, layers, and iterations

• MLP is sensitive to the scale of the characteristics
• Requires human supervision for the feature extraction task

CNN • Do not require human supervision for the feature extraction task
• Precise image recognition and classification
• Weight sharing
• Minimize the computation compared to a normal neural network
• The same knowledge is used in all image locations

• Requires a lot of training data samples
• Difficulty to classify images with various positions
• Tend to be much slower due to operations like maxpool
• Very often requires a machine with a very good Graphics

Processing Units (GPU)

Table 10  The ten articles with the best performance in chatter detec-
tion

Literature Pretreatment Learning 
models

Process Precision (%)

[91] WT MLP Milling 94
[45] WT SVM Turning 95
[61] EMD SVM Turning 95
[93] WT SVM 95
[57] - MLP-RBF Milling 97
[62] WPT SVM Milling 95
[99] TDA LRC Turning 97
[100] WPT-FFT-

SSA
SVM Milling 96

[96] VMD SVM Milling 92.59
[98] WPT SVM Milling 96.66
[101] DTW KNN Turning 98
[26] WPT SVM Turning 95



some publications use realistic cutting conditions. Unfortu-
nately, it is always apparent that vibration amplitude is strongly 
related to chatter. It is difficult to determine if all these sophisti-
cated techniques are better than simple RMS level monitoring.

4  Discussion and perspectives

Machining processes are accurately described from complex 
dynamic models containing non-linearities, delays, and sto-
chastic effects. Regarding the nature of these models and 
the practical challenges that include temporal variables, the 
transition from the design (numerical and analytical forms) 
of machining to the vibration analysis of accurate cutting 
signals remains challenging. This study categorizes the dif-
ferent techniques for chattering detection using vibration 
signals in three stages. First are time–frequency processing 
or decomposition techniques, which decompose the signal 
into several fragments using a transformation method to 
obtain the relevant chatter information. Then the FFT, for 
example, is applied to the elements which overlap the chat-
ter frequencies identified on the signal. These techniques 
require much analysis time from an expert, who visualizes 
these fragments to detect chatter. Several authors have used 
features extracted by transformation techniques as input data 
for machine learning classifiers to solve this problem. The 
features are labeled in the input–output format to train the 
classifier in order to recognize the different phases of the 
signal (chatter). Several major studies have demonstrated 
promising results in applying machine learning techniques 
to vibration signal analysis to detect, identify, stabilize, or 
suppress chatter (Table 10). These machine learning meth-
ods cannot handle high-dimensional data due to the limi-
tation of modeling capability [109]. Unlike conventional 
machine learning methods, deep learning will automatically 
extract features at a higher level and merge feature extrac-
tion and classification into a single structure so that it does 
not require a lot of trial and error. Like machine learning 
models, deep learning has also improved chatter detection 
performance. Some authors achieve almost 100% accuracy 
using the transfer learning technique (Table 11). Despite the 
excellent ability of AI models to provide highly accurate 
predictions in vibration chatter detection, they still face some 
significant challenges: (a) the constraints on time and human 
expertise for labeling data, especially when the number of 
classes is high before training the model; (b) needs of sig-
nificant computational resources during the learning and 
classification phases to dash; (c) the lack transparency due 
to their inherent black box natures.

• To alleviate the data labeling problem, one can either use
the following options:

the features extracted from the chatter detection. The authors 
of the document [105] used images of the inner surface of the 
bearing to detect bearing defects caused by vibration or chat-
ter, but such a technique is not adapted to in situ monitoring. 
They transform the vibration signals into a time–frequency 
image using the continuous wavelet transform (CTW). Based 
on the CWT scalogram, the document [54] proposes a CNN-
based methodology to detect chatter in a milling process. The 
recorded cutting force signals are imaged using CWT and then 
classified into three categories (stable, transit, and unstable). 
These images are introduced as input to the CNN for clas-
sification without the feature extraction process. A deep neu-
ral network is trained to detect the different phases of chatter. 
The authors of the document [68] managed to see chatter on 
the image of the machined part by mixing CNN and genetic 
algorithm and overcome the oscillation problem related to 
the use of genetic algorithms by optimizing their algorithm. 
The document [106] presents a chatter detection approach 
combining a convolutional neural network and a physics-
based model. They use the convolutional neural network to 
simulate the functioning of the human brain by connecting 
virtual neurons with tuned weights resulting in a prediction 
of a state. An intelligent chatter detection model is proposed 
by the authors of the document [107] using CWT preprocess-
ing and a deep convolutional neural network (DCNN). In the 
document [55], the authors combine AlexNet, a pre-trained 
deep neural network, and an analytical solution using transfer 
learning to detect chatter. Another type of Long Short-Term 
Memory (LTSM) neural network is proposed by the authors of 
the document [108] for detecting chatter based on the sequence 
of control currents. Table 11 lists the articles that achieved 
the best performance in chatter detection using either machine 
learning or deep learning.

In these relatively recent researches, many deep learning 
techniques have been tested, often mixed with other meth-
ods, and generally lead to good results. Most studies still use 
machining conditions far from industrial applications, but 

Table 11  List of the top deep learning models with the best perfor-
mance for chatter detection

Literature Features 
extraction

Learning 
models

Process Precision (%)

[86] WT CNN Milling 99
[104] VMD CNN - 92.57
[68] – CNN Milling 98.8
[105] CWT-CNN CNN Turning 99
[54] CWT CNN Milling 99.67
[106] STFT CNN Milling 98.90
[107] CWT DCNN Milling 99.98
[55] EMD AlexNet Milling 82–100
[108] – LSTM Milling 98



• Semi-supervised learning that combines supervised
and unsupervised learning. Unsupervised learn-
ing algorithms are used to automatically gener-
ate labels, which will then be fed into supervised
learning algorithms. Semi-supervised learning has
a significant advantage in reducing the cost of labe-
ling large datasets. Unsupervised learning models
can traverse high-dimensional data and distinguish
groups or atypical data points in a data set. The fea-
tures extracted by the different transformation tech-
niques (WT, FFT, STFT, HHT) or decomposition
techniques (EMD and EEMD) can be categorized by
unsupervised techniques like KNN or K-means. The
clusters obtained by these methods are considered
classes and will serve as input data for a supervised
learning model.

• Topological data analysis (TDA) that allows infor-
mation to be extracted from high-dimensional,
incomplete, or noisy datasets. TDA makes it possible
to combine algebraic topology with other mathemati-
cal tools to develop a study of purely mathematical
form. One of the main tools of TDA is persistent
homology which has attracted the attention of many
researchers for topological signal analysis [97, 99].
The combination of TDA for data labeling and trans-
fer learning for feature extraction can be a powerful
tool for chatter detection.

• The computational resource problem during model train-
ing can be solved by high-performance computing plat-
forms such as Graphics Processing Units (GPUs) and
Tensor Processing Units (TPUs) like Google’s GPU col-
lab, Azure Machine Learning, and Amazon Web Ser-
vices.

• The artificial intelligence models currently used, mainly
convolutional or deep neural networks, are so complex
that it is almost impossible for their designer to under-
stand their operation fully, hence the term black box.
However, explaining their decisions can bring multiple
benefits to a machinist. To clarify and explain this notion
of the black box, the document [110] proposes the con-
cept of explainable AI. While improving the performance
of these models, explainable AI helps identify problems
and flaws in datasets and model operation, allowing
experts, data scientists, and users to understand and trust
the models with their predictions, taking into account
regulatory compliance.

• In these studies, the authors seek either to detect or sup-
press chattering. Since chatter affects part quality, perfor-
mance, and cutting tool life, vibration can be mitigated
by considering all these dynamic elements. Multimodal

learning can be a solution to integrate during the design 
of chatter detection models that considers all the ele-
ments and their intrinsic characteristics, capacities, and 
limits and will significantly contribute to chatter detec-
tion. Multimodal fusion is one of the original themes of 
multimodal machine learning, with works in the litera-
ture favoring early, late, and hybrid fusion approaches. 
Technically, multimodal fusion integrates information 
from multiple modalities to predict an outcome of meas-
urement: a category by classification or a continuous 
value by regression [111].

• To avoid chatter in cutting processes, one can think of
developing an intelligent machine tool to detect, decide,
and control the cutting conditions in order to guarantee
the optimal machining operation. For this, reinforcement
learning can use an algorithm allowing them to perform
a task by giving them positive or negative cues as he
works on how to complete the job. The reward rules are
defined, letting the algorithm decide which steps to take
to maximize its reward and accomplish the task.

• The placement of sensors in the cutting tool represents a
progression in tool process monitoring, allowing users to
collect the data necessary to create more accurate digital
twins for machining processes. The authors have already
explored this concept of intelligent machining by pre-
senting four tools, including a cutting force-based smart
tool, a cutting temperature-based cutting tool, a fast tool
servo (FTS), and intelligent collets for ultra-precision.
The document [112] introduces the concept of intelligent
machining to minimize toolpaths and machining time,
improve the surface quality of components, increase tool
life, accurately machine specific complex structures, ena-
ble autonomous sensing with self-learning to improve
process performance, and dynamically sense the cutting
process. These technologies can be used to monitor the
machining process and tool wear as one of the ways to
solve the annoying chatter phenomenon.

In practice, the authors of document [113] experimented
with an intelligent tool for a high-speed drilling operation
on a multilayer Printed Circuit Board (PCB) part. First, it
was demonstrated by measuring the axial displacement
that the smart tool performs self-protection of the spin-
dle during the experiment. The intelligent tool detects
the wear of the drilling tool, especially the most severe
ones, which start at the periphery of the tool and decrease
progressively toward the center since the outer primary
cutting edge is subjected to the highest torque than its
adjacent ones. This means that the quality of the hole
depends on the number of holes drilled.



5  Conclusion

In this paper, we provide a mapping analysis of the different 
chatter detection techniques, from the time–frequency signal 
processing method and decomposition to the application of 
artificial intelligence for automatic detection. This cartographic 
analysis allowed us to visualize the most significant articles, 
the most cited authors, the collaboration between authors, 
the most productive countries, continents, and journals, the 
partnership between countries, the authors’ keywords, and 
the research trends on chatter detection. This analysis showed 
the limitations of classical time–frequency signal processing 
techniques in explaining the value of applying AI for feature 
extraction and decision-making. A comparison between the 
different processing techniques has been established in Table 8, 
showing the use of the main principles of each method. Despite 
the growth of AI (machine learning and deep learning) in vari-
ous fields, traditional signal processing techniques continue 
to complement AI models in chatter detection. Researchers 
do not often use AI techniques to detect chatter phenomena 
compared to other areas. In this analysis, 679 papers were 
collected, but only 75 articles involved the application of the 
different machine learning or deep learning methods, whose 
global citations are presented in Table 7. We have also dis-
cussed the limitations of the other AI techniques and proposed 
solutions to mitigate the problems of extensive data, the cost of 
computation time, and the lack of transparency of these mod-
els, which significantly hinder its use in such traditional fields 
as machining. These solutions can allow implementation of a 
multimodal system to consider and link the elements that cause 
chatter and the development of an intelligent cutting tool using 
reinforcement learning. Finally, we propose using explainable 
AI algorithms to gain additional scientific knowledge on AI 
models and improve understanding of complex situations.
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