
Weighted Tree Generating Regular
Systems and Crisp-Determinization of

Weighted Tree Automata

PhD Thesis

Dávid Kószó
Supervisor: Zoltán Fülöp, DSc

Doctoral School of Computer Science

Department of Foundations of Computer Science

Faculty of Science and Informatics

University of Szeged

Szeged
2023

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Basic concepts . 7
2.2 Trees and contexts . 10
2.3 Finite-state tree automata . 11
2.4 Weight structures . 14

3 Weighted tree automata and pumping lemmas 23
3.1 The model . 23
3.2 Pumping lemmas . 29

4 Weighted tree generating regular systems 35
4.1 The problem . 35
4.2 Tree generating regular systems . 38

4.2.1 The model . 38
4.2.2 Equivalence of the d-semantics and the r-semantics 42
4.2.3 Normal forms of tgrs with r-semantics 44

4.3 Weighted tree generating regular systems 49
4.3.1 The model . 50
4.3.2 Equivalence of tgrs and wtgrs over the Boolean semiring 52
4.3.3 Normal forms of wtgrs . 54

4.4 Equivalence of wta and wtgrs . 67

5 Crisp-determinization of wta 73
5.1 The problem . 73
5.2 A sufficient condition for crisp-determinization 74
5.3 Undecidability of crisp-determinization 86
5.4 Decidability of crisp-determinization 94
5.5 Undecidability and decidability results for weighted string automata . 102

Publications of the author 105

i

Other references 107

Summary 113

Összefoglalás 117

Acknowledgments 121

Alphabetical Index 123

ii

List of Figures

2.1 Illustrations of the Σ-trees over {�} given in Example 2.2.1 12
2.2 The fta-hypergraph gA of the Σ-fta A defined in Example 2.3.3 14
2.3 Runs of the Σ-fta A defined in Example 2.3.3 on the Σ-tree ξ3 14
2.4 Visualization of the bounded lattice M3 given in Example 2.4.7(2) . . . 21

3.1 The fta-hypergraph of the (Σ,MaxPlus)-wta Amax defined in Exam-
ple 3.1.4 . 27

3.2 Runs of the (Σ,MaxPlus)-wta Amax defined in Example 3.1.4 28
3.3 The fta-hypergraph of the (Σ,M3)-wta Asplit given in Example 3.1.6 . . 29
3.4 Illustration of mappings lc,θ and rc,θ (cf. [2, Fig. 3]) 31
3.5 Illustration of the decomposition of the tree ξ′ in the proof of Theo-

rem 3.2.4 along the positions u and uv (cf. [2, Fig. 2]) 34

4.1 An α-computation of P for the tree σ(σ(α, σ(α, α)), σ(α, α)) under
⇒Sd

. Observe that we may replace the symbols α in an arbitrary order.
(cf. [4, Fig. 1]) . 36

4.2 A σ(σ(α, σ(α, α)), σ(α, α))-computation of P ′ for α under ⇒Sr,dp (cf.
[4, Fig. 2]) . 38

4.3 The C-derivation of S defined in Example 4.2.1 for the tree ξ3 (cf. [4,
Fig. 3]) . 41

4.4 A ζ-reduction of the tgrs S ′r constructed in Example 4.2.11 to Z0 45
4.5 A ζ-reduction of the tgrs S ′′r defined in Example 4.2.14 to Z0 47
4.6 A ζ-reduction of the tgrs S constructed in Example 4.2.18 to Z0 49
4.7 Reductions of the (Σ,MaxPlus)-wtgrs S constructed in Example 4.3.1 . 52

5.1 Illustration of the index idxB(b) and the period prdB(b) of b in B (cf. [3,
Fig. 1]) . 76

5.2 The fta-hypergraph of the crisp-deterministic (Σ,M3)-wta A′split con-
structed in Example 5.2.13; note that each depicted transition has
weight i, and hence, the transition weights are omitted intentionally. . 85

5.3 Loops of the (Σ,MaxPlus)-wta A defined in Example 3.1.4 on some
powers of the Σ-context c = σ(�, α) defined in Example 5.4.6 97

1

2 List of Figures

Chapter 1

Introduction

In computer science, a tree is a widely used abstract data type. In particular, we can
use trees to represent or manipulate hierarchical data. For instance, each of the fol-
lowing applications involves a tree-like abstract data type: the directory structure of
each file system, the class-hierarchy in object-oriented programming without allow-
ing multiple inheritance, abstract syntax trees for computer languages, parse trees in
Natural Language Processing (NLP), Document Object Models (“DOM tree”) of XML
and HTML documents, etc. Interestingly, even JSON and YAML documents can be
considered as trees, but they are typically represented in a different way.

In this PhD thesis we deal only with finite trees over ranked alphabets. A ranked
alphabet Σ is a finite and nonempty set of symbols in which we associate with each
symbol a unique rank, i.e., a nonnegative integer. For each nonnegative integer k,
we denote the set of all symbols in Σ of rank k by Σ(k). Then a tree over Σ is a finite,
labeled, and ordered tree such that if a node of the tree has k children, then that
node is labeled by an element of Σ(k). The set of all trees over Σ is denoted by TΣ.
Furthermore, each subset of TΣ is called a tree language over Σ.

The classical model of finite-state tree automata (for short: fta) [62, 69, 71, 72]
was invented to recognize a tree language over some ranked alphabet. An fta A

over a ranked alphabet Σ consists of a finite and nonempty set Q (states), a family
δ = (δk | k is an integer) of relations δk ⊆ Qk × Σ(k) ×Q (k-ary transitions), and a set
F ⊆ Q (root states). Then a tree ξ over Σ is recognized by A if we can associate to each
node of ξ a state in the following way: (1) if a node is labeled by a symbol σ ∈ Σ(k)

and the states associated to that node and its k children are q and q1, . . . , qk, respec-
tively, then (q1, . . . , qk, σ, q) is a k-ary transition in δk and (2) the state associated to
the root of ξ is a root state. The tree language recognized by A is called a recognizable
tree language. Moreover, two fta are said to equivalent if they recognize the same tree
language. It is well known that with fta qualitative properties of recognizable tree
languages can be described, such as emptiness, finiteness, etc.. For surveys on the
theory of fta we refer to [22, 34, 43].

3

4 Introduction

In parallel and later, further concepts were introduced and proved to be equiv-
alent to fta such as tree generating regular systems (for short: tgrs) [18]; rational
tree languages [34, 43, 73]; monadic second-order logic for trees [24, 73]; regular
tree grammars [18, 43]; representable tree languages [43]. It is also known that a
tree language is recognizable by an fta if and only if it is the image of a local tree
language under a deterministic tree relabeling [34, 43, 71].

Later the idea came up to describe not only qualitative but also quantitative prop-
erties of recognizable tree languages, like degree of ambiguity or costs of acceptance.
Clearly, each tree language can be considered as a mapping from the set of input
trees to the Boolean semiring {0, 1}. Moreover, by replacing the Boolean semiring in
such a mapping by any other semiring B, and allowing that the mapping associates
arbitrary elements of B to the trees, a way was opened to describe also those quan-
titative properties. More precisely, each quantitative property can be interpreted as a
mapping from the set of input trees to some semiring or more generally to the carrier
set of some weight structure. Mappings describing quantitative properties of tree
languages are called weighted tree languages (or formal power series over trees). To
recognize such weighted tree languages, the model of weighted tree automata (for
short: wta) was invented. The concept of wta is a natural extension of the concept
of fta by adding weights to each transition and to each state; then the operations
of the weight algebra allow to combine the transition weights while processing the
input tree. The first such wta over a complete distributive lattice was introduced in
[56] (also see [37]) under the name fuzzy tree automata. Over the years, several
other weight algebras were used to enrich the expressive power of wta: e.g., fields
[10], commutative semirings [7], multioperator monoids [39, 40, 59, 60], strong
bimonoids [1, 3, 66], and tree-valuation monoids [28]. In this thesis we will con-
sider the model of wta over strong bimonoids. A strong bimonoid [21, 30, 32, 66] is
basically a semiring in which the distributivity laws need not hold.

The theory of wta has a huge literature. Several questions have been studied
throughout the years, e.g., the pumping lemma for wta [13] and the determinization
problem for wta [16, 19, 41]. Furthermore, similarly to the unweighted case, addi-
tional concepts were invented and shown to be equivalent to wta, see e.g., weighted
regular tree grammars [7] and the Kleene theorem for wta [7, 29]; monadic second-
order logic and the Büchi-Elgot-Trakhtenbrot’s theorem for recognizable weighted
tree languages [31, 40] (cf. [25–27] for the string case); and weighted representable
tree languages [51, 52]. It is also known that each each weighted tree language rec-
ognized by a wta is the image of a local weighted tree language under a deterministic
tree relabeling [38]. For a survey on the theory of wta we refer to [35, 41, 42].

In this thesis we will consider the following two topics. The first one is the equiv-
alence of wta and weighted tree generating regular systems (for short: wtgrs) over
semirings. In [4] the concept of wtgrs over a strong bimonoid was introduced as a

5

natural extension of the concept of tree generating regular system (for short: tgrs)
[18] to the weighted case. The semantics of wtgrs was not defined as a straight-
forward generalization of the original semantics of tgrs. In fact, an alternative, but
essentially equivalent semantics was introduced for tgrs, of which the generalization
to the weighted case opens a way to prove the equivalence of tgrs and Boolean wtgrs,
and the desired equivalence of wta and wtgrs (like the equivalence of fta and tgrs in
[18]). We recall the main results of [4] in Chapter 4 (cf. Theorems 4.2.8 and 4.3.4
and 4.4.5).

The second topic is the crisp-determinization problem. The determinization prob-
lem shows up if we wish to specify a problem (e.g., a tree language) in a nonde-
terministic way and to calculate its solution (e.g., membership) in a deterministic
way. More precisely, the determinization problem asks the following: for a given
nondeterministic device A of a given type (or class), does there exist a bottom-up
deterministic device A′ of the same type which is equivalent to A′?

It is well known that the determinization problem is solved positively for the class
of all fta (cf., e.g., [73, Thm. 1], [34, Thm. 3.8] , and [43, Thm. 2.2.6]), i.e., for each
fta A, there is an equivalent bottom-up deterministic fta A′. The construction of A′

from A is called powerset construction. However, the situation changes drastically
if we consider the class of all wta. More precisely, there exists a wta to which there
does not exist an equivalent bottom-up deterministic wta [7, 10, 36, 59]. On the
other side, there are subclasses of he class of all wta for which the determinization
problem can be solved positively [16, Cor. 4.9 and Thm. 4.24], [41, Thm. 3.17], and
[19, Thm. 5.2].

A special case of determinization of wta is when we require that the resulting
deterministic wta is crisp-deterministic. We call a wta over a strong bimonoid crisp-
deterministic if it is total and bottom-up deterministic, and each of its transitions car-
ries either the additive or the multiplicative unit of the underlying strong bimonoid;
weights different from these units may only appear at the root of the given input tree.
Then the crisp-determinization problem (of wta over strong bimonoids) deals with the
following question: for a given wta A, does there exist a crisp-deterministic wta A′
such that A′ is equivalent to A? If the answer to this question is “yes”, i.e., such a
wta A′ exists, then we say that the wta A is crisp-determinizable.

Without doubt, the notion of crisp-deterministic wta is quite restrictive. However,
in spite of this fact, it is worth to investigate crisp-deterministic wta as they have a
strong relationship with fuzzy questions (cf. [42, Ch. 19]). In Chapter 5, we give
a sufficient condition for wta to be crisp-determinizable (cf. Theorems 5.2.8 and
5.2.12), and also we prove both undecidability and decidability results regarding the
crisp-determinization problem (cf. Theorems 5.3.7 and 5.3.14 and 5.4.15). To prove
the decidability results, we need new pumping lemmas for wta. We show them in
Section 3.2 (cf. Theorems 3.2.3 and 3.2.4).

6 Introduction

We close the introduction with the following notes to the reader. In this thesis
we will give several constructions, each of them takes some object(s) as input and
delivers some other object(s) as output. We will use the expression “can construct”
in the following sense. There is an algorithm, i.e., a finite number of exact, finite
instructions, such that for each input given effectively1, the algorithm terminates
after a finite number of steps and produces a correct output.

Finally, in order to avoid many repetitions of similar conditions like “Let Σ be a
ranked alphabet.” or “Let B be a strong bimonoid”, etc., we will use general conven-
tions to fix such conditions (cf. p. 15 and 21, etc.) Moreover, in order to empha-
size the main results of the thesis, we put them into a gray colored box. For such
statements, we do not use the mentioned conventions but show all the necessary
conditions inside the box.

1It is difficult to give an exact definition of the expression “given effectively” as its definition cru-
cially depends on the class of input objects and on the algorithm for which we define it. Hence, in this
thesis the expression “given effectively” means that each restriction in the smallest set of reasonable
restrictions, which are crucial for the termination of the algorithm on each input, is satisfied.

Chapter 2

Preliminaries

In this chapter we recall fundamental notions and notations. In most of the cases,
we follow the formalism used in the corresponding parts of [42]. We organize this
chapter as follows. In Section 2.1 we introduce general notations and recall basic
concepts. In Section 2.2 we recall some fundamental notions and notations from the
theory of formal tree languages, and then, in Section 2.3 from the theory of finite-
state tree automata and recognizable tree languages. Finally, in Section 2.4, we
recall basic notions and notations from the theory of universal algebra, and consider
particular algebras, which satisfy certain algebraic laws.

2.1 Basic concepts

General notations. We denote by N the set {0, 1, 2, . . .} of natural numbers, by
N+ the set N \ {0}, and by Z the set of integers. For every m,n ∈ N, we define
[m,n] = {i ∈ N | m ≤ i ≤ n}. Moreover, we abbreviate [1, n] by [n]. Note that [0] = ∅.

For every a, b ∈ N, we denote by max(a, b) and min(a, b) the maximum and the
minimum of a and b with respect to ≤, respectively. In the usual way, we extend
max and min to each finite subset of N. For each N ⊆ N, we denote by max(N)

(respectively, min(N)) the maximum (the minimum, respectively) of N .
Sometimes we use the set N∪{∞}. We abbreviate that set by N∞, and, in the nat-

ural way, we extend the operations + and min to N∞, i.e., we set a+∞ =∞+ a =∞
and min(a,∞) = min(∞, a) = a for each a ∈ N∞. In a similar way we proceed with
an extension of N by −∞ and the operations + and max.

Let A be a set. We denote by |A| the cardinality of A, by P(A) the set of all subsets
of A, and by Pfin(A) the set of all finite subsets of A. Evidently, if A is finite, then we
have P(A) = Pfin(A).

Let n ∈ N and A1, . . . , An be sets. The Cartesian product of A1, . . . , An, denoted by
A1 × . . .× An, is the set {(a1, . . . , an) | ai ∈ Ai for each i ∈ [n]}. Moreover, the n-fold
Cartesian product of A is the Cartesian product of A×. . .×A, where A appears exactly

7

8 Preliminaries

n times. As usual, we abbreviate A× . . .×A by An. In particular, A0 = {()}. Let V be
a subset of A1× . . .×An. Sometimes we call V a relation (on A1, . . . , An). Moreover,
for each i ∈ [n], we call the mapping pri : V → Ai defined, for each (a1, . . . , an) ∈ V ,
by pri(a1, . . . , an) = ai, the ith projection mapping of V into Ai.

Strings. A string over A is a finite sequence w = a1 · · · an with n ∈ N and ai ∈ A for
each i ∈ [n]. In this case we call n the length of the string w, and denote it also by
len(w). For every k, ` ∈ [n] with k < `, we define w(k) = ak and w(k . . . `) = ak · · · a`.
The empty string, denoted by ε, is the string of length 0. For each n ∈ N, we denote
by An the set of strings over A of length n. Moreover, we denote by A∗ the set of
all strings over A, i.e., we have A∗ =

⋃
n∈N A

n. Furthermore, for every strings v
and w in A∗, we denote by vw the concatenation of v and w and by prefix(v) the set
{v′ ∈ A∗ | (∃u ∈ A∗) : v = v′u} of prefixes of v.

Observe that, for each n ∈ N, the notation An is overloaded in the following
sense: it denotes both (a) the n-fold Cartesian product of A and (b) the set of strings
over A of length n. Of course, formally these sets are different, but since there exists
a bijection between them, we find it acceptable to use the same notation.

An alphabet is a finite and nonempty set. Let A be an alphabet. Then each subset
L ⊆ A∗ is called a (formal) language over A. For every languages L1 and L2 over A,
the concatenation of L1 and L2, denoted by L1 · L2, is the language

L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}

over A.

Binary relations. Let A and B be sets. A binary relation (on A and B) is a subset
of A × B. Let R be a binary relation on A and B. For each pair (a, b) in A × B, we
sometimes write aRb to indicate that (a, b) ∈ R. Moreover, for each a ∈ A, we define
R(a) = {b ∈ B | aRb}, and furthermore, for each A′ ⊆ A, we set R(A′) =

⋃
a∈A′ R(a).

The inverse of R, denoted by R−1, is the binary relation {(b, a) | aRb} on B × A. If
A = B, then we call R a binary relation (on A).

Let R be a binary relation on A. We say that R is
• reflexive if aRa for every a ∈ A,
• symmetric if aRb implies that bRa for every a, b ∈ A,
• antisymmetric if aRb and bRa imply that a = b for every a, b ∈ A, and
• transitive if aRb and bRc imply that aRc for every a, b, c ∈ A.
We call R an equivalence relation (on A) if it is reflexive, symmetric, and transitive.

If R is an equivalence relation, then, for each a ∈ A, the equivalence class of a with
respect to R, denoted by [a]R, is the set [a]R = {b ∈ A | aRb}, and furthermore, the
factor set of A modulo R, denoted by A/R, is the set {[a]R | a ∈ A}.

2.1 Basic concepts 9

A binary relation on A is said to be a partial ordering (on A) if it is reflexive,
antisymmetric, and transitive. Let � be a partial ordering on A. For every (a, b) ∈ A2,
we denote by a ≺ b that a � b and a 6= b. We call (A,�) a partially ordered set (with
respect to �) (for short: poset). Let A′ ⊆ A and p ∈ A. We say that p is an upper
bound of A′ (a lower bound of A′) if a � p (respectively, p � a) for each a ∈ A′. We
call p the supremum of A′ (with respect to �), denoted by sup�(A′), if p is an upper
bound of A′ and p � b for every upper bound b of A′. We say that p is the infimum of
A′ (with respect to �), denoted by inf�(A′), if p is a lower bound of A′ and b � p for
each lower bound b of A′.

A partial ordering � on A is called a linear ordering (on A) if, for each (a, b) ∈ A2,
we have a � b or b � a. Let � be a linear ordering on A. For every subset A′ ⊆ A and
element a ∈ A′, we say that a is minimal in A′ if a = inf�(A′). Clearly, if A′ is finite
and nonempty, then there exists a unique minimal element in A′, which we denote
by min�(A′).

Mappings. Let B 6= ∅ and f ⊆ A × B. We say that f is a mapping (from A to B),
denoted by f : A → B, if, for each a ∈ A, there exists a unique b ∈ B such that afb.
In this case we write f(a) = b as usual. Let f : A→ B be a mapping. For every a ∈ A
and b ∈ B, if we have f(a) = b, then sometimes we denote this fact also by a

f7→ b or
just by a 7→ b if f is clear from the context. We say that f is

• injective if a 6= b implies that f(a) 6= f(b) for every a, b ∈ A,
• surjective if, for each b ∈ B, there exists a ∈ A such that f(a) = b,
• bijective if f is injective and surjective.

Note that if f is bijective, then |A| = |B|.
The image of f , denoted by im(f), is the set im(f) = {f(a) | a ∈ A}. For each

subset A′ ⊆ A, the restriction of f to A′, denoted by f |A′, is the mapping f |A′ : A′ → B

defined, for each a ∈ A′, by f |A′(a) = f(a). We denote the set of all mappings from A

to B by BA. For every mappings f1, f2 ∈ BA, we write f1 = f2 if, for each a ∈ A, we
have f1(a) = f2(a).

Let C be a nonempty set, and g : B → C. The composition of f and g, denoted by
g ◦ f , is the mapping (g ◦ f) : A→ C defined, for each a ∈ A, by (g ◦ f)(a) = g(f(a)).

Let A be nonempty. For every k ∈ N and mapping h : Ak → A, we say that h is
a k-ary operation on A. For each k ∈ N, we denote by Ops(k)(A) the set of all k-ary
operations on A, and furthermore, by Ops(A) the set

⋃
k∈N Ops(k)(A). The identity

mapping on A, denoted by idA, is the mapping idA ∈ Ops(1) defined, for each a ∈ A,
by idA(a) = a.

For every subsets A′ ⊆ A and O ⊆ Ops(A), we say that A′ is closed under the
operations in O if, for every k ∈ N, k-ary operation h ∈ O, and (a1, . . . , ak) ∈ (A′)k,
we have h(a1, . . . , ak) ∈ A′. We denote by 〈A′〉O the smallest subset of A, of which A′

is subset and which is closed under the operations in O.

10 Preliminaries

Let I be a set. An I-indexed family over A (or just: a family over A) is a mapping
f : I → A. Let f be an I-indexed family over A. Sometimes we denote f also
by (ai | i ∈ I) where ai = f(i) for each i ∈ I. We say that f is finite if I is finite.
Moreover, we also say that I is the index set of f . Let f = (Ai | i ∈ I) be an I-indexed
family over P(A). We say that f is a a partitioning of A (with respect to I) if we have⋃
i∈I Ai = A, and Ai ∩ Aj = ∅ for every i, j ∈ I with i 6= j.

2.2 Trees and contexts

Here we recall some fundamental notions and notations from the theory of formal
tree languages [22, 34, 43].

Ranked sets. A ranked set is a pair (Σ, rkΣ) in which Σ is a finite (and possibly
empty) set and rkΣ : Σ → N is a mapping, called rank mapping. Let (Σ, rkΣ) be a
ranked set. For each k ∈ N, the set of all k-ary symbols in Σ, denoted by Σ(k), is the
set Σ(k) = {σ ∈ Σ | rkΣ(σ) = k}. Sometimes we write σ(k) to indicate that σ ∈ Σ(k)

for some k ∈ N. We define maxrk(Σ) = max{k ∈ N | Σ(k) 6= ∅}. Each ranked set
(Σ, rkΣ), in which Σ is an alphabet, is called a ranked alphabet. Furthermore, a ranked
alphabet (Σ, rkΣ) is called a string ranked alphabet if Σ = (Σ(1) ∪Σ(0)), |Σ(1)| ≥ 1, and
|Σ(0)| = 1.

In the rest of this PhD thesis, Σ will abbreviate an arbitrary ranked set
(Σ, rkΣ) such that Σ(0) 6= ∅ if not specified otherwise.

Trees and tree languages. Let H be a set disjoint from Σ. The set of Σ-trees over
H, denoted by TΣ(H), is the smallest set T such that

(i) H is a subset of T and
(ii) if k ∈ N, σ ∈ Σ(k), and (ξ1, . . . , ξk) ∈ T k, then σ(ξ1, . . . , ξk) ∈ T .

If H is clear from the context, then we refer to each element of TΣ(H) as a Σ-tree (or
just: tree). As usual, for each α ∈ Σ(0), we sometimes abbreviate the tree α() by α.
Moreover, we write TΣ for TΣ(∅). We call each subset L of TΣ a Σ-tree language (or
just: tree language).

The set of positions (or: Gorn addresses [46]) of trees is defined by the mapping
pos : TΣ(H)→ Pfin(N∗+), where, for each ξ ∈ TΣ(H), we define pos(ξ) as follows:

(i) if ξ is in Σ(0) ∪H, then we let pos(ξ) = {ε} and
(ii) if ξ = σ(ξ1, . . . , ξk) for some k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(H), then we

let pos(ξ) = {ε} ∪ {iv | i ∈ [k], v ∈ pos(ξi)}.
The height and the size of a tree ξ ∈ TΣ(H) are height(ξ) = max({len(v) | v ∈ pos(ξ)})
and size(ξ) = | pos(ξ)|, respectively.

2.3 Finite-state tree automata 11

Let ξ and ζ be in TΣ(H), and v ∈ pos(ξ). The label of ξ at v, denoted by ξ(v),
the subtree of ξ at v, denoted by ξ|v, and the replacement of the subtree of ξ at v by ζ,
denoted by ξ[ζ]v, are defined as follows:

(i) if ξ is in Σ(0) ∪H, then v = ε and we let ξ(ε) = ξ|ε = ξ, and ξ[ζ]ε = ζ and
(ii) if ξ = σ(ξ1, . . . , ξk) for some k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(H), then

• for v = ε, we let ξ(ε) = σ, ξ|ε = ξ, and ξ[ζ]ε = ζ and
• for v = iv′ with i ∈ [k] and v′ ∈ pos(ξi), we let ξ(v) = ξi(v

′), ξ|v = ξi|v′, and
ξ[ζ]v = σ(ξ1, . . . , ξi−1, ξi[ζ]v′ , ξi+1, . . . , ξk).

Let σ be in Σ ∪H. We denote the set {v ∈ pos(ξ) | ξ(v) = σ} by posσ(ξ). Moreover,
we say that σ occurs in ξ if posσ(ξ) 6= ∅.

Contexts. Let � be a symbol such that � 6∈ Σ. For each ξ ∈ TΣ({�}) and each
v ∈ pos(ξ), we abbreviate the tree ξ[�]v by ξ|v. The set of all Σ-contexts, denoted by
CΣ, is the set CΣ = {ξ ∈ TΣ({�}) | pos�(ξ) = 1}. Hence, each Σ-context is a Σ-tree
over the set {�} in which � appears precisely once, as a leaf. We mention that the
set CΣ of all Σ-contexts can be defined also inductively as follows:

(i) � is in CΣ,
(ii) σ(ξ1, . . . , ξi−1, c, ξi+1, . . . , ξk) is in CΣ whenever k ∈ N+, σ ∈ Σ(k), i ∈ [k],

(ξ1, . . . , ξi−1, ξi+1, . . . , ξk) ∈ (TΣ)k−1, and c ∈ CΣ, and
(iii) every Σ-context can be obtained by applying the rules (i) and (ii) a finite num-

ber of times.
Let c ∈ CΣ with {v} = pos�(c), and ζ be in TΣ ∪ CΣ. We abbreviate c[ζ]v by c[ζ].

Thus, we obtain c[ζ] from the Σ-context c by replacing the leaf � by ζ. Clearly, if ζ is
a Σ-context, then so is c[ζ]. Moreover, for each n ∈ N, we define the n-th power of c,
denoted by cn, by induction as follows: c0 = � and cn+1 = c[cn].

Example 2.2.1. Let Σ = {σ(2), γ(1), α(0), β(0)}. Figure 2.1 shows Σ-trees over {�}
as follows. Figure 2.1(a) illustrates the Σ-tree ξ = σ(γ(α), σ(γ(β), α)) together with
its positions in gray color and dashed lines. Observe that, e.g., we have ξ(2) = σ,
ξ|2 = σ(γ(β), α), and posσ(ξ) = {ε, 2}, i.e., σ occurs in ξ. Figure 2.1(b) depicts
the replacement of the subtree of ξ at position 2 by the Σ-tree γ(σ(β, β)). Finally,
Figure 2.1(c) shows the Σ-context γ(σ(γ(�), σ(α, β))). 4

2.3 Finite-state tree automata

In this section we recall basic notions and notations from the theory of finite-state
tree automata and recognizable tree languages from [22, 34, 43].

Finite-state tree automata. A finite-state tree automaton over Σ (for short: Σ-fta,
or just fta) [34, 43] is a triple A = (Q, δ, F) where

12 Preliminaries

σ

γ σ

α γ α

β

ε

1 2

11 21 22

211

(a) a Σ-tree together with its
positions

σ

γ

α

γ

σ

β β

(b) replacement of the subtree ξ|2
by the Σ-tree γ(σ(β, β))

γ

σ

γ σ

� α β

(c) a Σ-context

Figure 2.1. Illustrations of the Σ-trees over {�} given in Example 2.2.1

• Q is a finite nonempty set (states) such that Q ∩ Σ = ∅,
• δ = (δk | k ∈ N) is a family of relations δk ⊆ Qk×Σ(k)×Q (transition relations),

where we consider Qk as a set of strings over Q of length k, and
• F ⊆ Q (set of root states).

Let A = (Q, δ, F) be a Σ-fta. We call A total (respectively, bottom-up deterministic
or for short: bu deterministic) if, for every k ∈ N, w ∈ Qk, and σ ∈ Σ(k), there exists
at least (respectively, at most) one q ∈ Q such that (w, σ, q) ∈ δk.

Semantics. We mention that, for fta, two semantics can be defined: the initial
algebra semantics [34, 42, 43] and the run semantics [22, 42]. We recall that the
two kinds of semantics coincide, cf., e.g., [42, Lm. 2.13.1]. In this thesis we use only
the run semantics.

For this, let ξ ∈ TΣ. A run of A on ξ is a mapping ρ : pos(ξ)→ Q. Let ρ be a run
of A on ξ, and q ∈ Q. We say that ρ is

• a q-run if ρ(ε) = q,
• valid if, for every v ∈ pos(ξ), it holds that

(
ρ(v1) · · · ρ(vk), ξ(v), ρ(v)

)
∈ δk where

ξ(v) ∈ Σ(k) for some k ∈ N, and
• accepting if ρ is valid and ρ(ε) ∈ F .

We denote the set of all q-runs (all valid q-runs, all accepting q-runs) of A on ξ by
RunA(q, ξ) (respectively, Runv

A(q, ξ) and Runa
A(q, ξ)). Moreover, we set

RunA(ξ) =
⋃
q∈Q

RunA(q, ξ) , Runv
A(ξ) =

⋃
q∈Q

Runv
A(q, ξ) , and

Runa
A(ξ) =

⋃
q∈Q

Runa
A(q, ξ) .

2.3 Finite-state tree automata 13

Then the semantics of A, denoted by L(A), is the Σ-tree language defined by

L(A) = {ξ ∈ TΣ | Runa
A(ξ) 6= ∅} .

We say that two Σ-fta A and A′ are equivalent if L(A) = L(A′). Furthermore, a Σ-tree
language L is recognizable if there exists a Σ-fta A such that L(A) = L. For the theory
of recognizable Σ-tree languages we refer to [22, 34, 43]. Next we recall two well
known results on Σ-fta.

Lemma 2.3.1. cf. [43, Thm. 2.4.2] For every recognizable Σ-tree languages L1 and
L2, also the Σ-tree language L1 ∪ L2 is recognizable.

Lemma 2.3.2. cf. [43, Thm. 2.2.6] For each Σ-fta A, we can construct a total and bu
deterministic Σ-fta A′ such that A and A′ are equivalent.

Now we recall that each Σ-fta can be depicted as a particular Σ-hypergraph.

Fta-hypergraphs. Formally, a Σ-hypergraph (cf. [9, 23, 49]) is a pair g = (Q,E),
where Q is a finite set (nodes) and E ⊆

⋃
k∈N Q

k×Σ(k)×Q is a finite set (hyperedges).
For two Σ-hypergraphs g = (Q,E) and g′ = (Q′, E ′), we write g ⊆ g′ (respectively,
g = g′) if we have Q ⊆ Q′ and E ⊆ E ′ (respectively, Q = Q′ and E = E ′).

We can illustrate a Σ-hypergraph as a picture in the following way cf. [42]. Let
g = (Q,E) be a Σ-hypergraph. We represent each node q ∈ Q as a circle with q in its
center. Furthermore, we depict each hyperedge (q1 · · · qk, σ, q) ∈ E as a box with σ in
its center; this box has exactly one outgoing arrow that leads to the representation
of the node q, and it has k incoming arrows which come from the representations
of the nodes q1, . . . , qk, respectively. The string q1 · · · qk determines the order among
q1, . . . , qk as follows: starting from the unique outgoing arrow and moving counter-
clockwise around the box, the i-th incoming arrow comes from the representation of
the i-th component of the string q1 · · · qk.

Finally, for each Σ-fta A = (Q, δ, F), the fta-hypergraph of A, denoted by gA, is the
Σ-hypergraph gA = (Q,

⋃
k∈N δk).

Example 2.3.3. Let Σ = {σ(2), α(0)}. We consider the Σ-fta

A = ({ql, qr, qf , qt}, δ, {qf})

with transition relations δ2 = {(qlqr, σ, qf), (qrqr, σ, qt), (qfqr, σ, qf), (qtqr, σ, qt)},
δ0 = {(ε, α, ql), (ε, α, qr)}, and δk = ∅ for every k ∈ (N \ {0, 2}). Clearly, since both
(ε, α, ql) and (ε, α, qr) are in δ0, the Σ-fta A is not bu deterministic. Moreover, since,
for the string qlqf in Q2 and σ ∈ Σ(2), there does not exist q ∈ {ql, qr, qf , qt} such that
(qlqf , σ, q) ∈ δ2, the fta A is not total either. Figure 2.2 depicts the fta-hypergraph
of A.

14 Preliminaries

ql qr

qf

qt

α

α

σ σ

σ

σ

Figure 2.2. The fta-hypergraph gA of the Σ-fta A defined in Example 2.3.3

σ

σ α

σ α

α α

qf

ql qr

qt qr

qr qf

(a) a not valid qf -run

σ

σ α

σ α

α α

qt

qt qr

qt qr

qr qr

(b) a valid but not accepting
qt-run

σ

σ α

σ α

α α

qf

qf qr

qf qr

ql qr

(c) an accepting qf -run

Figure 2.3. Runs of the Σ-fta A defined in Example 2.3.3 on the Σ-tree ξ3

Next we represent runs of A as pictures as follows. Let c = σ(�, α). Obviously, c
is a Σ-context. For each n ∈ N+, we define the Σ-tree ξn by ξn = cn[α]. Figure 2.3
illustrates the Σ-tree ξ3 with three runs of the Σ-fta A in gray color and dashed
lines in the following way. Figure 2.3(a) shows a qf -run ρ of A. Note that, since
(ρ(11)ρ(12), σ, ρ(1)) = (qtqr, σ, ql) is not in δ2, this run ρ is not valid, and thus, it is
not accepting either. Figure 2.3(b) illustrates a valid qt-run; however, since qt is not
a root state, this is not accepting either. Finally, Figure 2.3(c) depicts an accepting
qf -run.

In fact, for each ξ ∈ TΣ, we have ξ ∈ {ξn | n ∈ N+} if and only if there exists a
unique accepting run of A on ξ. Thus, L(A) = {ξn | n ∈ N+}. 4

2.4 Weight structures

Here we recall some fundamental notions and notations from the theory of universal
algebra [20, 47], and consider particular algebras which satisfy certain algebraic

2.4 Weight structures 15

laws.

Universal algebra. A Σ-algebra is a pair A = (A, θ) which consists of a nonempty
set A (carrier set) and a Σ-indexed family θ over Ops(A) (Σ-interpretation or inter-
pretation of Σ) such that, for every k ∈ N and σ ∈ Σ(k), we have θ(σ) ∈ Ops(k)(A).
We denote by θ(Σ) the set {θ(σ) | σ ∈ Σ} of operations.

Let A = (A, θ) be a Σ-algebra. A subalgebra of A is a Σ-algebra (A′, θ′) such that
A′ ⊆ A, the set A′ is closed under the operations in θ(Σ), and, for every k ∈ N and
σ ∈ Σ(k), we have θ′(σ) = θ(σ)|(A′)k . For each A′ ⊆ A, the subalgebra of A generated by
A′ is the subalgebra (〈A′〉θ(Σ), θ) of A. The smallest subalgebra of A is the subalgebra
of A generated by ∅.

We say that A is finite if the set A is finite, and it is locally finite, if, for each finite
subset A′ ⊆ A, the set 〈A′〉θ(Σ) is finite. Moreover, we call A computable if A is a
recursively enumerable set with tests for equality and, for each σ ∈ Σ, the operation
θ(σ) is computable (e.g. by a Turing machine).

Let ∼ be an equivalence relation on A. We call ∼ a congruence relation on A if, for
every k ∈ N, σ ∈ Σ(k), and (a1, . . . , ak), (b1, . . . , bk) ∈ Ak, the relation ai ∼ bi for each
i ∈ [k] implies that we have θ(σ)(a1, . . . , ak) ∼ θ(σ)(b1, . . . , bk).

Let ∼ be a congruence relation on A. The quotient algebra of A modulo ∼
is the Σ-algebra A/ ∼= (A/ ∼, θ/ ∼), where A/ ∼ is the factor set of A modulo
∼ and θ/ ∼ is defined, for every k ∈ N, σ ∈ Σ(k), and (a1, . . . , ak) ∈ Ak, by
(θ/∼)(σ)([a1]∼, . . . , [ak]∼) = [θ(σ)(a1, . . . , ak)]∼. For the well-definedness of θ/∼ we
refer to [47, p. 36].

Let A1 = (A1, θ1) and A2 = (A2, θ2) be Σ-algebras. Furthermore, let h : A1 → A2

be a mapping. We say that h is a Σ-algebra homomorphism (from A1 to A2) if, for
every k ∈ N, σ ∈ Σ(k), and (a1, . . . , ak) ∈ (A1)k, we have

h(θ1(σ)(a1, . . . , ak)) = θ2(σ)(h(a1), . . . , h(ak)) .

If h is bijective, then h is a Σ-algebra isomorphism. If there exists such an isomorphism
h, then we say that A1 and A2 are isomorphic, and we denote this fact by A1

∼= A2.
Let A = (A, θ) be a Σ-algebra, and ∼ be a congruence on A. Then the mapping

h : A → A/∼ defined, for each a ∈ A, by h(a) = [a]∼ is a Σ-algebra homomorphism
from A to A/∼.

Next we give two examples of Σ-algebras.

Example 2.4.1. One of the well known Σ-algebras is the Σ-term algebra
TermΣ = (TΣ, θΣ), where θΣ(σ)(ξ1, . . . , ξk) = σ(ξ1, . . . , ξk) for every k ∈ N, σ ∈ Σ(k),
and (ξ1, . . . , ξk) ∈ (TΣ)k. 4

16 Preliminaries

In the rest of this thesis, if Σ = {σ1, . . . , σn} for some n ∈ N+ and it is
clear from the context, then we sometimes denote a Σ-algebra (A, θ) by
(A, θ(σ1), . . . , θ(σn)) and refer to it as an algebra.

Example 2.4.2. We consider the algebra Nt = (N,+, ·, 0), where + and · denote the
usual addition and multiplication over N, respectively. Furthermore, we consider the
algebra 0+,· = ({0},+, ·, 0), where + and · are the usual addition and multiplication
over N restricted to the set {0}. Clearly, 0+,· is a finite subalgebra of Nt generated by
the set {0}. Interestingly, 0+,· coincides with the smallest subalgebra of Nt. However,
the subalgebra of Nt generated by the set {0, 1} equals Nt.

Let k ∈ N+, and ≡k be a binary relation on N defined, for every m,n ∈ N, by

m ≡k n iff both m and n give the same remainder when they are divided by k .

Trivially, ≡k is a congruence relation on Nt. Now we consider the quotient algebra

Nt/≡k = (N/≡k,+k, ·k, [0]≡k)

of Nt modulo ≡k, where N/≡k = {[0]≡k , [1]≡k , . . . , [k − 1]≡k}, and +k and ·k are the
usual addition and multiplication modulo k, respectively. Note that the mapping
h : N→ N/≡k defined, for each n ∈ N, by h(n) = [n]≡k , is a homomorphism from Nt

to Nt/≡k. 4

Properties of binary operations. Let B be a nonempty set. Each element in
Ops(2)(B) is called a binary operation. Let � be a binary operation on B. We say
that � is

• associative if (a� b)� c = a� (b� c) for every a, b, c,∈ B,
• commutative if a� b = b� a for every a, b ∈ B, and
• idempotent if a� a = a for each a ∈ B.

An element e ∈ B is an identity element (of �) if e� a = a� e = a for every a ∈ B. If
e ∈ B is an identity element, then it is unique.

Let ⊕ and ⊗ be two binary operations on B, and let a, b, c ∈ B. We say that ⊗ is
• right distributive (with respect to ⊕) if (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c),
• left distributive (with respect to ⊕) if a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), and
• distributive (with respect to ⊕) if it is both right distributive and left distributive

(with respect to ⊕).
Furthermore,⊕ and⊗ satisfy the absorption axioms if a⊗(a⊕b) = a and a⊕(a⊗b) = a.

Example 2.4.3. We consider the Σ-algebra Nt defined in Example 2.4.2. Obviously,
both + and · are associative and commutative operations. The identity elements of
+ and · are 0 and 1, respectively. Moreover, · is distributive with respect to +. 4

2.4 Weight structures 17

Semigroups and monoids. A semigroup is an algebra (B,�) such that � is an as-
sociative binary operation on B. Moreover, a monoid is an algebra (B,�, e) such
that (B,�) is a semigroup and the nullary operation e is an identity of �. A semi-
group (B,�) is commutative if � is commutative. Similarly, we define commutative
monoids.

Let (B,�, e) be a monoid. We extend � to finitely many arguments. Let I be a
finite set with I = {i1, . . . , ik} for some k ∈ N. If (a) I ⊆ N and i1 < · · · < ik or (b)
� is commutative, then we define the operation

⊙
I : BI → B such that, for each

I-indexed family (bi | i ∈ I) of elements in B, we have

⊙
I
(bi | i ∈ I) =

{
bi1 � . . .� bik if I 6= ∅
e otherwise .

We abbreviate
⊙

I(bi | i ∈ I) by
⊙

(bi | i ∈ I) or just by
⊙

i∈I bi. Moreover, if I = [k]

for some k ∈ N, then sometimes we denote
⊙

i∈[k] bi also by
⊙k

i=1 bi. Note that, in
particular, we have

⊙k
i=1 bi = b1 � . . .� bk for each k ∈ N+, and

⊙
i∈∅ bi = e.

Let (B,�, e) be a commutative monoid. We say that (B,�, e) is complete if, for

each index set I, there exists a mapping
∑�

I

: BI → B such that for each I-indexed

family (bi | i ∈ I) over B, the following statements hold true (cf. [33, p. 124]):

• if I = {j}, then
∑�

i∈{j}

bi = bj,

• if I = {j, j′}, then
∑�

i∈{j,j′}

bi = bj � bj′, and

• for each set J and each partitioning (Ij | j ∈ J) of I, we have∑�

i∈I

bi =
∑�

j∈J

(
∑�

i∈Ij

bi) ,

where
∑�

i∈I

bi is an abbreviation for
∑�

I

(bi | i ∈ I). Let (bi | i ∈ I) be a finite

I-indexed family of elements of B. It is easy to see that, if (B,�, e) is complete, then

we have
∑�

i∈I

bi =
⊙
i∈I

bi. Sometimes we also write
∑�

i∈I

bi for
⊙
i∈I

bi even if (B,�, e)

is not complete.

Next we give an example of a complete monoid.

Example 2.4.4. The commutative monoid (N∞,+, 0) is complete with the mapping∑+

I

: (N∞)I → N∞ with

18 Preliminaries

(ni | i ∈ I) 7→

{∑
i∈J nj if {ni | i ∈ I} ⊆ N and J = {i ∈ I | ni 6= 0} is finite

∞ otherwise .

4

Strong bimonoids. A strong bimonoid [21, 30, 32, 66] is an algebra

B = (B,⊕,⊗, 0, 1) ,

where (B,⊕, 0) is a commutative monoid, (B,⊗, 1) is a monoid, 0 6= 1, and 0 is an
annihilator for ⊗, i.e., b⊗ 0 = 0⊗ b = 0 holds true for every b ∈ B. The operations ⊕
and ⊗ are called addition and multiplication, respectively. Let B = (B,⊕,⊗, 0, 1) be
a strong bimonoid. We say that B is

• commutative if ⊗ is commutative,
• idempotent if ⊕ is idempotent,
• right distributive if ⊗ is right distributive (with respect to ⊕),
• left distributive if ⊗ is left distributive (with respect to ⊕),
• distributive if it is right distributive and left distributive,
• zero-sum free if a⊕ b = 0 implies a = b = 0 for every a, b ∈ B,
• zero-divisor free if a⊗ b = 0 implies a = 0 or b = 0 for every a, b ∈ B,
• positive if it is zero-sum free and zero-divisor free,
• complete if (B,⊕, 0) is complete,
• additively locally finite if (B,⊕, 0) is locally finite,
• multiplicatively locally finite if (B,⊗, 1) is locally finite, and
• bi-locally finite if it is additively locally finite and multiplicatively locally finite.
For every n ∈ N and b ∈ B, we define the elements nb and bn in B by induction

as follows: 0b = 0 and (n+ 1)b = b⊕ nb, and b0 = 1 and bn+1 = b⊗ bn, respectively.

Example 2.4.5. cf. [30, Ex. 1] and [42, Ex. 2.6.10] Here we recall some examples of
strong bimonoids.

1. The algebra PlusMin = (N∞,+,min, 0,∞) is a commutative strong bimonoid.
Moreover, it is also complete (cf. Example 2.4.4). However, it is not bi-locally
finite. Furthermore, it is not distributive, because there exist a, b, c ∈ N∞ such
that min(a, b+ c) 6= min(a, b) + min(a, c) (e.g., take a = b = c 6= 0).

2. Let (C,+, 0) be a commutative monoid, and B = {f ∈ Ops(1)(C) | f(0) = 0}.
We extend + to B by a pointwise addition on elements of B, i.e., for every
f, g ∈ B and c ∈ C, we define (f + g)(c) = f(c) + g(c). Moreover, we de-
fine the operation � on B such that, for every f, g ∈ B and c ∈ C, we have
(f � g)(c) = g(f(c)). Finally, we denote by 0̃ the mapping 0̃ : C → C such that
0̃(c) = 0 for each c ∈ C. Then the algebra (B,+, �, 0̃, idC) is a strong bimonoid.
We mention that this algebra is called a near semiring (over C) [54, 58]. Ob-

2.4 Weight structures 19

serve that the condition f(0) = 0 guarantees that (f � 0̃) = 0̃. Also, note that,
except for trivial cases, the operation � is left distributive over +, but not right
distributive.

3. We consider the algebra (Γ∗ ∪ {∞},∧, ·,∞, ε), where
• ∧ is the longest common prefix operation,
• · is the usual concatenation of strings, and
• ∞ is a new element such that s ∧∞ = ∞∧ s = s and s · ∞ = ∞ · s = ∞

for each s in Γ∗ ∪ {∞}.
Obviously, it is a left distributive but not right distributive strong bimonoid
(consider, e.g., if Γ = {a, b, c}, then abc = (a ∧ ab) · bc 6= (a · bc) ∧ (ab · bc) = ab).
We note that this strong bimonoid occurs in investigations for natural language
processing, see [65].

4. We recall the strong bimonoid Stb = (N,⊕,�, 0, 1) from [30, Ex. 25], where the
two commutative operations ⊕ and � on N are defined as follows. For every
a ∈ N, let 0⊕ a = a, 0� a = 0, and 1� a = a. Moreover, let

a⊕ b =

{
b if b is even

b+ 1 if b is odd ,

for every a, b ∈ N+ with a ≤ b, and let

a� b =

{
b+ 1 if b is even

b if b is odd ,

for every a, b ∈ (N+ \ {1}) with a ≤ b, where + denotes the usual addition on
N. Clearly, it is not distributive (e.g. 2 � (2 ⊕ 3) = 5 6= 4 = (2 � 2) ⊕ (2 � 3)).
Moreover, it is bi-locally finite but not locally finite, see [42, Ex. 2.6.10].

For further examples of strong bimonoids we refer to [30, Ex. 1], [21, Ex. 2.2],
[32, Ex. 2.1], and [42, Ex. 2.6.10]. 4

Semirings. A semiring [45, 50] is a distributive strong bimonoid. A semiring
S = (S,⊕,⊗, 0, 1) is complete (as a semiring) if it is complete as a strong bimonoid
and the following equalities hold for every index set I, I-indexed family (si | i ∈ I),
and s ∈ S (cf., e.g., [33, p. 125] and [36]):∑⊕

i∈I

s⊗ si = s⊗ (
∑⊕

i∈I

si) and
∑⊕

i∈I

si ⊗ s = (
∑⊕

i∈I

si)⊗ s .

In the rest of this thesis, if we say that a semiring S is complete, then we
mean by that S is complete as a semiring.

20 Preliminaries

Example 2.4.6. cf. [42, Ex. 2.6.9]. Here we show some examples of semirings.
1. The Boolean semiring Boole = (B,∨,∧, 0, 1), where B = {0, 1} (the truth values)

and ∨ and ∧ denote disjunction and conjunction, respectively. Furthermore, it
is complete with the mapping

∑∨

I

: BI → B with (bi | i ∈ I) 7→

{
1 if there exists i ∈ I such that bi = 1

0 otherwise .

2. The algebra Nt = (N,+, ·, 0) given in Example 2.4.2 extended with the identity
element 1 of · is, in fact, a semiring. Hence, in the rest of this thesis we write
Nat = (N,+, ·, 0, 1), and refer to that algebra as the semiring of natural numbers.

3. The semiring Int = (Z,+, ·, 0, 1) of integers.
4. The semiring MaxPlus = (N−∞,max,+,−∞, 0).
5. The semiring MinPlus = (N∞,min,+,∞, 0). It is complete with the mapping∑min

I

: (N∞)I → N∞ with (ni | i ∈ I) 7→ inf(ni | i ∈ I) .

6. The semiring LangΓ = (P(Γ∗),∪, ·, ∅, {ε}) of formal languages where · denotes
the concatenation of languages. It is complete with the mapping∑∪

I

: (P(Γ∗))I → P(Γ∗) with (Li | i ∈ I) 7→
⋃
i∈I

Li .

Each semiring except 6 is commutative. Moreover, the semirings 1–2 and 4–6 are
positive. The Boolean semiring is finite, and hence, it is bi-locally finite. Furthermore,
also the semirings 4–6 are additively locally finite. For further examples of semirings
we refer to [42, Ex. 2.6.9]. 4

Lattices. Here we recall some basic notions from the theory of lattices [12, 48] and
[20, Ch. 1]. A lattice is an algebra L = (L,∨,∧) in which ∨ (the join) and ∧ (the meet)
are binary operations, (L,∨) and (L,∧) are commutative semigroups, the operations
∨ and ∧ are idempotent and satisfy the absorption axioms.

Let L = (L,∨,∧) be a lattice. We say that L is bounded if there exist elements 0 and
1 in L such that 0∨ a = a and 1∧ a = a for every a ∈ L. We denote a bounded lattice
also by L = (L,∨,∧, 0, 1). Recall that each bounded lattice is a bi-locally finite and
commutative strong bimonoid [30, Ex. 1]. Hence, a bounded lattice (L,∨,∧, 0, 1) is
said to be complete as a strong bimonoid if (L,∨, 0) is complete. If this is the case,
then we have

∑∨

i∈∅

ai = 0.

Here we show two examples of lattices.

2.4 Weight structures 21

o

b ca

i

Figure 2.4. Visualization of the bounded lattice M3 given in Example 2.4.7(2)

Example 2.4.7. cf. [42, Ex. 2.6.15].
1. Let A be a set. Then PSA = (P(A),∪,∩, ∅, A) is a bounded lattice. Moreover,

since the monoid (P(A),∪, ∅) is complete with the mapping∑∪

I

: (P(A))I → P(A) with (Ai | i ∈ I) 7→
⋃
i∈I

Ai ,

the lattice PSA is also complete.
2. [48, Fig. 2] and [20, Fig. 5] Let M3 = {o, a, b, c, i} be a set with five elements.

Moreover, we consider the binary relation � on M3 such that

o ≺ a ≺ i and o ≺ b ≺ i and o ≺ c ≺ i

and x 6≺ y for any other combination x, y ∈ M3. Obviously, � is a partial
ordering, i.e., (M3,�) is a poset. Then we consider the binary operations ∨ and
∧ on M3 defined, for every x, y ∈M3, by

x ∨ y = sup�({x, y}) and x ∧ y = inf�({x, y}) .

Clearly, the algebra M3 = (M3,∨,∧, o, i) is a bounded lattice, which is not dis-
tributive. The lattice M3 is visualized on Figure 2.4.

For further examples of lattices we refer to [42, Ex. 2.6.15]. 4

In the rest of this thesis, B = (B,⊕,⊗, 0, 1) is an arbitrary strong bimonoid
if not specified otherwise.

22 Preliminaries

Chapter 3

Weighted tree automata and pumping
lemmas

This chapter is organized as follows. In Section 3.1, we recall fundamental notions,
notations, and results of weighted tree languages and weighted tree automata from
[41, 42]. Moreover, in Section 3.2 we present our pumping lemmas for runs of
weighted tree automata.

3.1 The model

In order to recall the fundamental notions and notations, we adopt the formalism
used in the corresponding part of [42].

Weighted sets and weighted tree languages. Let A be a set, and f : A → B be a
mapping. We also say that f is a B-weighted set (or just: weighted set). The support of
f with respect to B, denoted by suppB(f), is defined by suppB(f) = {a ∈ A | f(a) 6= 0}.
A (Σ,B)-weighted tree language (or just: weighted tree language) is a B-weighted set
ψ : TΣ → B.

Next we give some examples of weighted tree languages. Each of them is con-
nected to the set of positions. Firstly, we give the weighted tree language #max. For
this, we assume that Σ contains two binary symbols σ and ω. Then the weighted tree
language #max assigns to each tree ξ ∈ TΣ the number of occurrences of that symbol
out of σ and ω, which occurs the most times in ξ.

Example 3.1.1. Let Σ = {σ(2), ω(2), α(0)}. Then we consider the mapping
#max : TΣ → N−∞ defined, for each ξ ∈ TΣ, by

#max(ξ) = max(| posσ(ξ)|, | posω(ξ)|) .

23

24 Weighted tree automata and pumping lemmas

Obviously, #max is a (Σ,MaxPlus)-weighted tree language, where MaxPlus is the
semiring defined in Example 2.4.6(4). 4

Our second example is a variant of the above one. We assume that Σ contains a
binary symbol σ. Then it counts, for each ξ ∈ TΣ, how many times σ occurs in ξ. For
that, this time we consider a different ranked alphabet, and use a different strong
bimonoid as weight structure.

Example 3.1.2. [4, Ex. 2] Let Σ = {σ(2), α(0)}. Then we consider the mapping
#σ : TΣ → N∞ defined, for each ξ ∈ TΣ, by

#σ(ξ) = | posσ(ξ)| .

Evidently, #σ can be considered as a (Σ,MinPlus)-weighted tree language, where
MinPlus is the semiring defined in Example 2.4.6(5). 4

As the last example we define a weighted tree language split, which partitions the
set TΣ into four subsets as follows. We assume that Σ contains a binary symbol σ
and a unary symbol γ. Then split splits TΣ into four partitions: (1) the set of trees in
which none of σ and γ occurs, (2) and (3) the set of trees in which only σ and only γ
occurs, respectively, and (4) the set of trees in which both σ and γ occur. As weight
structure, we consider the bounded lattice M3.

Example 3.1.3. Let Σ = {σ(2), γ(1), α(0)}. We consider the bounded lattice M3 given
in Example 2.4.7(2). Next we define the mapping split : TΣ → M3, for each ξ ∈ TΣ,
as follows:

split(ξ) =


i if ξ = α ,

a if ξ ∈ (T{σ,α} \ {α}) ,

b if ξ ∈ (T{γ,α} \ {α}) ,

o otherwise .

Clearly, split is a (Σ,M3)-weighted tree language. 4

Weighted tree automata. A weighted tree automaton over Σ and B (for short:
(Σ,B)-wta, or just: wta) [41, 42] is a triple A = (Q, δ, F), where

• Q is a finite and nonempty set (states) such that Q ∩ Σ = ∅,
• δ = (δk | k ∈ N) is a family of mappings δk : Qk × Σ(k) × Q → B (transition

mappings)1, where we consider Qk as a set of strings over Q of length k, and
• F : Q→ B is a mapping (root weight mapping).

Let A = (Q, δ, F) be a (Σ,B)-wta. Sometimes, for each q ∈ Q, we abbreviate F (q)

by Fq. We say that A is total (respectively, bottom-up deterministic, or for short:

1For each k ∈ N+ with k > maxrk(Σ), since Σ(k) = ∅, we have δk : ∅ → B.

3.1 The model 25

bu deterministic) if, for every k ∈ N, w ∈ Qk, and σ ∈ Σ(k), there exists at least
(respectively, at most) one q ∈ Q such that δk(w, σ, q) 6= 0.

Semantics. We mention that, for A, the following two semantics can be defined:
the initial algebra semantics and the run semantics [3, 41, 42, 66]. In general, the
two kinds of semantics may differ [30]; however, if B is a semiring or A is bu deter-
ministic, then they coincide [14, Lm. 4.1.13] and [66, Thm. 4.1] and [3, Thm. 3.10].
In this PhD thesis we deal only with the run semantics.

In order to define the run semantics, the concept of run of A on a tree ξ ∈ TΣ is
crucial. However, to prove our pumping lemmas (cf. Theorems 3.2.3 and 3.2.4), we
need a more general definition of the run. For this, let ζ ∈ TΣ({�}). A run of A on ζ
is a mapping ρ : pos(ζ)→ Q. Let ρ be a run of A on ζ, and q ∈ Q. We say that ρ is

• a q-run if ρ(ε) = q,
• valid if δk

(
ρ(v1) · · · ρ(vk), ζ(v), ρ(v)

)
6= 0 for every v ∈ pos(ζ) with ζ(v) ∈ Σ(k)

for some k ∈ N, and
• accepting if it is valid and Fρ(ε) 6= 0.

We denote the set of all q-runs (all valid q-runs, all accepting q-runs) of A on ζ by
RunA(q, ζ) (respectively, Runv

A(q, ζ) and Runa
A(q, ζ)). Furthermore, we define the

following sets

RunA(ζ) =
⋃
q∈Q

RunA(q, ζ) , Runv
A(ζ) =

⋃
q∈Q

Runv
A(q, ζ) , and

Runa
A(ζ) =

⋃
q∈Q

Runa
A(q, ζ) .

Let v ∈ pos(ζ). We define the mapping ρ|v : pos(ζ|v) → Q such that, for each
v′ ∈ pos(ζ|v), we have ρ|v(v′) = ρ(vv′). Obviously, ρ|v ∈ RunA(ζ|v), and thus, we call
it the run induced by ρ at position v.

The weight of the run ρ of A for ζ, denoted by wtA(ζ, ρ), is the element in B

defined by induction on the structure of ζ as follows:

(i) if ζ = �, then wtA(�, ρ) = 1 and
(ii) if ζ = σ(ζ1, . . . , ζk) for some k ∈ N, σ ∈ Σ(k), and (ζ1, . . . , ζk) ∈ (TΣ({�}))k,

then

wtA(ζ, ρ) =
(k⊗

i=1

wtA(ζi, ρ|i)
)
⊗ δk

(
ρ(1) · · · ρ(k), σ, ρ(ε)

)
. (3.1)

If confusion is ruled out, then sometimes we drop the index A from wtA(ζ, ρ) and
write just wt(ζ, ρ) for the weight of ρ.

The (run) semantics of A, denoted by [[A]], is the (Σ,B)-weighted tree language

26 Weighted tree automata and pumping lemmas

[[A]] : TΣ → B defined, for each ξ ∈ TΣ, by

[[A]](ξ) =
⊕

ρ∈RunA(ξ)

wt(ξ, ρ)⊗ Fρ(ε) .

Note that, for every ξ ∈ TΣ and ρ in RunA(ξ) \Runa
A(ξ), either there exists v ∈ pos(ξ)

with ξ(v) ∈ Σ(k) for some k ∈ N such that δk
(
ρ(v1) · · · ρ(vk), ζ(v), ρ(v)

)
= 0, i.e.,

ρ 6∈ Runv
A(ξ), or we have Fρ(ε) = 0, and thus, wt(ξ, ρ)⊗ Fρ(ε) = 0. For this, we have⊕

ρ∈RunA(ξ)

wt(ξ, ρ)⊗ Fρ(ε) =
⊕

ρ∈Runv
A(ξ)

wt(ξ, ρ)⊗ Fρ(ε) =
⊕

ρ∈Runa
A(ξ)

wt(ξ, ρ)⊗ Fρ(ε) .

Moreover, if A is total and bu deterministic, then, for each ξ ∈ TΣ, there is a unique
valid run ρξ of A on ξ, i.e., we have {ρξ} = Runv

A(ξ), with [[A]](ξ) = wt(ξ, ρξ)⊗ Fρξ(ε)
cf. [42, Lm. 4.2.1(3b)]. We will use the above equalities without any reference.

For two (Σ,B)-wta A and A′, we say that A and A′ are equivalent if [[A]] = [[A′]].
Furthermore, for each (Σ,B)-weighted tree language ψ : TΣ → B, we say that r is
(run) recognizable if there exists a (Σ,B)-wta A such that r = [[A]].

Representation of wta by fta-hypergraphs. Recall that in Section 2.3 we have
defined Σ-hypergraphs, and shown that each Σ-fta A can be represented by a partic-
ular Σ-hypergraph, which we call the fta-hypergraph of A. Now we show that also
each (Σ,B)-wta can be represented by an fta-hypergraph but only with extra anno-
tations cf. [42]. For this, let A = (Q, δ, F) be a (Σ,B)-wta. We first consider the
Σ-hypergraph

gA = (Q,
⋃
k∈N

suppB(δk)) .

Then we add to gA the weights of transitions and the root weights of A as follows.
For each q ∈ Q with Fq 6= 0, we add Fq to the node which represents q. Otherwise,
if we have Fq = 0, then we do not illustrate Fq in the picture. Moreover, for each
transition of A with non-0-weight, i.e., element in

⋃
k∈N supp(δk), we add its weight

to its representing hyperedge. We call gA the fta-hypergraph of A.
Here we give some examples of wta and their fta-hypergraphs. Firstly, we show

that the (Σ,MaxPlus)-weighted tree language #max defined in Example 3.1.1 is rec-
ognizable.

Example 3.1.4. Let Σ = {σ(2), ω(2), α(0)}. Then we construct the (Σ,MaxPlus)-wta

Amax = ({qσ, qω, qs}, δ, F)

with δ2(qσqσ, σ, qσ) = δ2(qωqω, ω, qω) = δ2(qsqs, σ, qs) = δ2(qsqs, ω, qs) = 1, and
δ0(ε, α, qσ) = δ0(ε, α, qω) = δ0(ε, α, qs) = δ2(qσqσ, ω, qσ) = δ2(qωqω, σ, qω) = 0, and

3.1 The model 27

qσ

0

qω

0

qs

α
0

α
0

α
0

σ
1

σ
0

σ
1

ω

0

ω

1

ω

1

Figure 3.1. The fta-hypergraph of the (Σ,MaxPlus)-wta Amax defined in Example 3.1.4

every other transition has weight −∞, and Fqσ = Fqω = 0 and Fqs = −∞. Fig-
ure 3.1 shows the fta-hypergraph of Amax. Observe that, since both δ0(ε, α, qσ) and
δ0(ε, α, qω) have weight 0, the wta Amax is not bu deterministic. Moreover, since
δ2(qσqω, σ, q) = −∞ for each q ∈ {qσ, qω, qs}, the wta Amax is not total either.

Next we illustrate some runs of Amax in the following way. For this, let

ξ = σ(σ(α, σ(α, α)), σ(α, α)) .

Figure 3.2 depicts the Σ-tree ξ with three runs of the wta Amax in gray color and
dashed lines as follows. Figure 3.2(a) shows a not valid qσ-run (consider, e.g.,
δ2(qσqω, σ, qs) = −∞). Figure 3.2(b) illustrates a valid but not accepting qs-run (recall
that Fqs = −∞). Moreover, Figure 3.2(c) depicts an accepting qσ-run.

Finally, we examine the semantics of Amax. Let ξ ∈ TΣ. Clearly, on ξ there are
exactly three valid runs, which are as follows. For each tag ∈ {σ, ω, s}, we denote by
ρtag the run of Amax on ξ such that ρtag(v) = qtag for each v ∈ pos(ξ). Then we have
wt(ξ, ρσ) = | posσ(ξ)|, wt(ξ, ρω) = | posω(ξ)|, and wt(ξ, ρs) = | posσ(ξ)|+ | posω(ξ)|.

Note that, since Fqs = −∞, out of the three valid runs, only ρσ and ρω are accept-
ing. Hence, we have

[[Amax]](ξ) = max(wt(ξ, ρσ) + Fqσ ,wt(ξ, ρω) + Fqω)

= max(| posσ(ξ)|, | posω(ξ)|) = #max(ξ) ,

i.e., #max is recognizable. 4

In the following example, we prove that the (Σ,MinPlus)-weighted tree language
#σ defined in Example 3.1.2 is recognizable.

Example 3.1.5. Let Σ = {σ(2), α(0)}. Then we construct the (Σ,MinPlus)-wta

Aσ = ({q}, δ, F) ,

28 Weighted tree automata and pumping lemmas

σ

σ ω

α αα σ

α α

qσ

qs qω

qs qs qω qω

qσ qω

(a) a not valid qσ-run

σ

σ ω

α αα σ

α α

qs

qs qs

qs qs qs qs

qs qs

(b) a valid but not accepting
qs-run

σ

σ ω

α αα σ

α α

qσ

qσ qσ

qσ qσ qσ qσ

qσ qσ

(c) an accepting qσ-run

Figure 3.2. Runs of the (Σ,MaxPlus)-wta Amax defined in Example 3.1.4

where δ0(ε, α, q) = 0, δ2(qq, σ, q) = 1, and Fq = 0. (Note that in the fta-hypergraph
shown in Figure 3.1 if we consider the state qσ without the transition δ2(qσqσ, ω, qσ)

and identify qσ with q, then we obtain the fta-hypergraph of Aσ.) Obviously, Aσ is
both total and bu deterministic. Then, for each ξ ∈ TΣ, there is exactly one run of Aσ
on ξ, which denote by ρξ. Moreover, for each ξ ∈ TΣ, that run ρξ is accepting, and
hence, [[Aσ]](ξ) = wt(ξ, ρξ) + Fq = | posσ(ξ)| = #σ(ξ), i.e., the (Σ,MinPlus)-weighted
tree language #σ is recognizable. 4

Finally, we show that also the (Σ,M3)-weighted tree language split defined in
Example 3.1.3 is recognizable.

Example 3.1.6. Let Σ = {σ(2), γ(1), α(0)}. We consider the bounded lattice M3 shown
in Example 2.4.7(2). We construct the (Σ,M3)-wta

Asplit = ({q}, δ, F)

such that δ0(ε, α, q) = i, δ1(q, γ, q) = b, δ2(qq, σ, q) = a, and Fq = i. Figure 3.3 depicts
the fta-hypergraph ofAsplit. Note thatAsplit is both total and bu-deterministic as well.

Evidently, for each ξ ∈ TΣ, there is a unique run of Asplit on ξ, which we denote
by ρξ. Next we prove by induction on the structure of ξ the following statement:

for each ξ ∈ TΣ, we have wt(ξ, ρξ) = split(ξ) . (3.2)

Induction base: For ξ = α, we can calculate as follows:

wt(α, ρα) = δ0(ε, α, q) = i = split(α) .

Induction step: We proceed by case analysis. Firstly, assume that ξ = γ(ξ1)

for some ξ1 ∈ TΣ. Recall that we have wt(ξ, ρξ) = wt(ξ1, ρξ1) ∧ δ1(q, γ, q), where
δ1(q, γ, q) = b. Moreover, by I.H., we have wt(ξ1, ρξ1) = split(ξ1), and thus,

3.2 Pumping lemmas 29

γ q σ

α

b i a

i

Figure 3.3. The fta-hypergraph of the (Σ,M3)-wta Asplit given in Example 3.1.6

wt(ξ, ρξ) = b if posσ(ξ1) = ∅, and wt(ξ, ρξ) = o otherwise. Consequently, in this
case wt(ξ, ρξ) = split(ξ) holds true.

Alternatively, now assume that ξ = σ(ξ1, ξ2) for some ξ1, ξ2 ∈ TΣ. Clearly, we have
wt(ξ, ρξ) = wt(ξ1, ρξ1) ∧ wt(ξ2, ρξ2) ∧ δ2(qq, σ, q), where δ2(qq, σ, q) = a. Furthermore,
by I.H., we have wt(ξi, ρξi) = split(ξi) for each i ∈ {1, 2}, and hence, wt(ξ, ρξ) = a

if posγ(ξi) = ∅ for each i ∈ {1, 2}, and wt(ξ, ρξ) = o otherwise. This completes the
proof of (3.2). Then, for each ξ ∈ TΣ, we have

[[Asplit]](ξ) = wt(ξ, ρξ) ∧ Fq = wt(ξ, ρξ) = split(ξ) ,

where the second equality is due to the fact that Fq = i, and the last equality follows
from (3.2). 4

Now we recall a well known result from the theory of wta.

Lemma 3.1.7. [41, Thm. 3.9] and [42, Lm. 10.9.2] Let B1 = (B1,⊕1,⊗1, 01, 11) and
B2 = (B2,⊕2,⊗2, 02, 12) be strong bimonoids, and h : B1 → B2 be a strong bimonoid
homomorphism. Then, for each (Σ,B1)-wta A, we can construct a (Σ,B2)-wta h(A)

such that [[h(A)]] = h ◦ [[A]].

3.2 Pumping lemmas

Here we prove pumping lemmas for runs of wta. We will use them in Section 5.4.
With a pumping lemma one can achieve structural implications on small or particular
large trees (cf. [43, Lm. 2.10.1] and [13, Lm. 5.5]). Since such pumping lemmas al-
ready exist for wta (cf. [13, Sect. 5]), the question may arise why we present another
pumping lemmas. To answer that question we note that Borchardt’s setting in [13]
deals with bu deterministic wta over semirings and employs initial algebra seman-
tics, whereas in our setting we deal with (arbitrary) wta over strong bimonoids and
employ run semantics. Nevertheless, if we consider the class of all bu deterministic

30 Weighted tree automata and pumping lemmas

wta over semirings, then the two settings coincide. In order to prove our pumping
lemmas, we first recall some fundamental notions and notations from [2].

Loops of wta. Let A = (Q, δ, F) be a (Σ,B)-wta. Furthermore, let c ∈ CΣ with
{v} = pos�(c) and θ ∈ RunA(q, c) with θ(v) = p for some p ∈ Q. We call θ a
(q, p)-run of A on c. For each p ∈ Q, we denote the set of all (q, p)-runs (all valid
(q, p)-runs) of A on c by RunA(q, c, p) (respectively, Runv

A(q, c, p)). Clearly, we have
RunA(q, c) =

⋃
p∈Q RunA(q, c, p). Moreover, each run θ ∈ RunA(q, c, q) is called a loop.

Combinations of runs of wta. Let c ∈ CΣ with {v} = pos�(c), ζ ∈ TΣ({�}),
q′, q ∈ Q, θ ∈ RunA(q′, c, q), and ρ ∈ RunA(q, ζ). The combination of θ and ρ (at
v), denoted by θ[ρ], is the q′-run θ[ρ] : pos(c[ζ]) → Q of A on c[ζ] defined, for
each u ∈ pos(c[ζ]), as follows: if u = vw for some w ∈ pos(ζ), then we define
θ[ρ](u) = ρ(w), otherwise we define θ[ρ](u) = θ(u).

Left- and right subproducts. Let c ∈ CΣ with {v} = pos�(c), and θ ∈ RunA(c). We
define two mappings lc,θ : prefix(v) → B and rc,θ : prefix(v) → B inductively on the
length of their arguments (cf. [13, p. 526] for bu deterministic wta). Intuitively, we
can split the product (3.1) yielding the element wt(c, θ) in B into a left subproduct
lc,θ(ε) and a right subproduct rc,θ(ε), where the border is given by the factor 1 coming
from the weight of �. Figure 3.4 shows the illustration of mappings lc,θ and rc,θ.

Formally, let w ∈ prefix(v). Then, assuming that c(w) = σ, rkΣ(σ) = k for some
k ∈ N, and b = δk(θ(w1) · · · θ(wk), σ, θ(w)), we let

lc,θ(w) =

{
1 if w = v⊗i−1

j=1 wt(c|wj, θ|wj)⊗ lc,θ(wi) if wi ∈ prefix(v) for some i ∈ N+

rc,θ(w) =

{
1 if w = v

rc,θ(wi)⊗
⊗k

j=i+1 wt(c|wj, θ|wj)⊗ b if wi ∈ prefix(v) for some i ∈ N+ .

In the sequel, for every (Σ,B)-wta A, Σ-context c, and run θ of A on c, we
will abbreviate lc,θ(ε) and rc,θ(ε) by lc,θ and rc,θ, respectively.

Lemma 3.2.1. [1, Obs. 6] and [2, Obs. 5.1] Let A = (Q, δ, F) be a (Σ,B)-wta. Then,
for every Σ-context c and run θ of A on c, we have wt(c, θ) = lc,θ ⊗ rc,θ.

Proof. We prove our statement by induction on the structure of c.
Induction base: Then we have c = � with pos(�) = {ε}, and thus, lc,θ = rc,θ = 1.

Moreover, since wt(�, θ) = 1, our statement evidently holds true.

3.2 Pumping lemmas 31

w
t(
c|
w

1
,θ
| w

1
)

c|
w

1

⊗
..
.⊗

w
t(
c|
w

(i
−

1
),
θ|
w

(i
−

1
))

c|
w

(i
−

1
)

⊗
l c
,θ

(w
i)

c|
w
i v
�

⊗
r c
,θ

(w
i)

w
t(
c|
w

(i
+

1
),
θ|
w

(i
+

1
))

c|
w

(i
+

1
)

⊗
..
.⊗

w
t(
c|
w
k
,θ
| w
k
)

c|
w
k

⊗

σ
l c
,θ

(w
)

r c
,θ

(w
)

1
i
−

1
i

i
+

1
k

··
·

··
·

δ k
(θ

(w
1)
··
·θ

(w
k
),
σ
,θ

(w
))

w

c
∈

C
Σ

θ
∈

R
u

n
A

(c
)

Fi
gu

re
3.

4.
Ill

us
tr

at
io

n
of

m
ap

pi
ng

s
l c
,θ

an
d
r c
,θ

(c
f.

[2
,F

ig
.3

])

32 Weighted tree automata and pumping lemmas

Induction step: There exist k ∈ N+, σ ∈ Σ(k), c′ ∈ CΣ, i ∈ [k], and
(ξ1, . . . , ξi−1, ξi+1, . . . , ξk) ∈ (TΣ)(k−1) such that c = σ(ξ1, . . . , ξi−1, c

′, ξi+1, . . . , ξk). Fur-
thermore, we have

wt(c′, θ|i) = lc′,θ|i ⊗ rc′,θ|i = lc,θ(i)⊗ rc,θ(i) ,

where the first equality holds true by I.H., and the second one is due to the facts that
lc′,θ|i = lc,θ(i) and rc′,θ|i = rc,θ(i). Then, by assuming that

a =
i−1⊗
j=1

wt(ξj, θ|j) and b =
k⊗

j=i+1

wt(ξj, θ|j)⊗ δk(θ(1) · · · θ(k), σ, θ(ε)) ,

we can calculate as follows:

wt(c, θ) = a⊗ wt(c′, θ|i)⊗ b = a⊗ lc,θ(i)⊗ rc,θ(i)⊗ b = lc,θ ⊗ rc,θ ,

where the first equality is due to (3.1), the second equality follows from I.H., and the
last equality holds true by the definitions of lc,θ and rc,θ. This completes our proof.

Lemma 3.2.2. [1, Lm. 7] and [2, Lm. 5.2] (also cf. [13, Lm. 5.1]) Let A = (Q, δ, F)

be a (Σ,B)-wta. Then, for every Σ-context c, Σ-tree ξ, states q′ and q in Q, (q′, q)-run
θ of A on c, and q-run ρ of A on ξ, we have wt(c[ξ], θ[ρ]) = lc,θ ⊗ wt(ξ, ρ)⊗ rc,θ.

Proof. Similarly, we prove our statement by induction on the structure of c.
Induction base: Clearly, in this case we have c = � and q′ = q. Thus, we have

�[ξ] = ξ and θ[ρ] = ρ with wt(�[ξ], θ[ρ]) = wt(ξ, ρ). Consequently, we can calculate
as follows:

wt(�[ξ], θ[ρ]) = wt(ξ, ρ) = 1⊗ wt(ξ, ρ)⊗ 1 = l�,θ ⊗ wt(ξ, ρ)⊗ r�,θ ,

where the last equality is due to the definitions of l�,θ and r�,θ.
Induction step: There exist k ∈ N+, σ ∈ Σ(k), c′ ∈ CΣ, i ∈ [k], and

(ξ1, . . . , ξi−1, ξi+1, . . . , ξk) ∈ (TΣ)(k−1) such that c = σ(ξ1, . . . , ξi−1, c
′, ξi+1, . . . , ξk).

Clearly, we have c[ξ] = σ(ξ1, . . . , ξi−1, c
′[ξ], ξi+1, . . . , ξk), and (θ|i)[ρ] is a θ(i)-run of

A on c′[ξ]. Moreover, we have

wt(c′[ξ], θ|i[ρ]) = lc′,θ|i ⊗ wt(ξ, ρ)⊗ rc′,θ|i = lc,θ(i)⊗ wt(ξ, ρ)⊗ rc,θ(i) ,

where the first equality is due to I.H., and the second one follows from the facts that
lc′,θ|i = lc,θ(i) and rc′,θ|i = rc,θ(i). Then, by assuming that

a =
i−1⊗
j=1

wt(ξj, θ|j) and b =
k⊗

j=i+1

wt(ξj, θ|j)⊗ δk(θ(1) · · · θ(k), σ, θ(ε)) ,

3.2 Pumping lemmas 33

we can calculate as follows:

wt(c[ξ], θ[ρ]) = a⊗ wt(c′[ξ], (θ|i)[ρ])⊗ b = a⊗ lc,θ(i)⊗ wt(ξ, ρ)⊗ rc,θ(i)⊗ b
= lc,θ ⊗ wt(ξ, ρ)⊗ rc,θ ,

where the first equality is due to (3.1), and the last one follows from the definition
of lc,θ and rc,θ. This finishes our proof.

Let A = (Q, δ, F) be a (Σ,B)-wta. Then, for every Σ-context c, state q in Q, and
loop θ in RunA(q, c, q), and nonnegative integer n ∈ N, the nth power of θ, denoted
by θn, is the (q, q)-run on cn defined by induction as follows: (i) θ0 = (ε 7→ q) (recall
that we have c0 = �) and (ii) θn+1 = θ[θn].

Theorem 3.2.3. [1, Thm. 8] and [2, Lm. 5.3] (also cf. [13, Lm. 5.3]) Let Σ be
a ranked alphabet such that Σ(0) 6= ∅, and B be a strong bimonoid. Moreover, let
A = (Q, δ, F) be a (Σ,B)-wta. Then, for every Σ-contexts c′ and c, Σ-tree ξ, states
q′ and q in Q, (q′, q)-run θ′ of A on c′, (q, q)-run θ of A on c, and q-run ρ of A on
ξ, and for each n ∈ N, we have

wt(c′[cn[ξ]], θ′[θn[ρ]]) = lc′,θ′ ⊗ (lc,θ)
n ⊗ wt(ξ, ρ)⊗ (rc,θ)

n ⊗ rc′,θ′ .

Proof. We first prove by induction the following statement:

wt(cn[ξ], θn[ρ]) = (lc,θ)
n ⊗ wt(ξ, ρ)⊗ (rc,θ)

n . (3.3)

Induction base: If n = 0, then we have c0 = � and θ0 = (ε 7→ q), and thus,
�[ξ] = ξ and (ε 7→ q)[ρ] = ρ. Hence, we can calculate as follows:

wt(�[ξ], (ε 7→ q)[ρ]) = wt(ξ, ρ) = 1⊗ wt(ξ, ρ)⊗ 1 = (lc,θ)
0 ⊗ wt(ξ, ρ)⊗ (rc,θ)

0 ,

where the last equality is due to the facts that (lc,θ)
0 = 1 and (rc,θ)

0 = 1.
Induction step: Assume that (3.3) holds true for n. Now we consider Σ-context

cn+1, and the (q, q)-run θn+1 ofA on cn+1. Then we have cn+1 = c[cn] and θn+1 = θ[θn],
and hence, cn+1[ξ] = c[cn[ξ]] and θn+1[ρ] = θ[θn[ρ]]. Thus, we can calculate as follows:

wt(c[cn[ξ]], θ[θn[ρ]]) = lc,θ ⊗ wt(cn[ξ], θn[ρ])⊗ rc,θ
= lc,θ ⊗ (lc,θ)

n ⊗ wt(ξ, ρ)⊗ (rc,θ)
n ⊗ rc,θ

= (lc,θ)
n+1 ⊗ wt(ξ, ρ)⊗ (rc,θ)

n+1 ,

where the first equality follows from Lemma 3.2.2, the second one holds true by
I.H., and the last one is due to the facts that we have (lc,θ)

n+1 = (lc,θ ⊗ (lc,θ)
n) and

34 Weighted tree automata and pumping lemmas

ξ′ =

c′ c ξ

u

uv

> 0
< |Q|

Figure 3.5. Illustration of the decomposition of the tree ξ′ in the proof of Theorem 3.2.4
along the positions u and uv (cf. [2, Fig. 2])

(rc,θ)
n+1 = ((rc,θ)

n ⊗ rc,θ). This completes the proof of (3.3). Now we prove the
statement of the lemma as follows:

wt(c′[cn[ξ]], θ′[θn[ρ]]) = lc′,θ′ ⊗ wt(cn[ξ], θn[ρ])⊗ rc′,θ′
= lc′,θ′ ⊗ (lc,θ)

n ⊗ wt(ξ, ρ)⊗ (rc,θ)
n ⊗ rc′,θ′ ,

where the first equality is due to Lemma 3.2.2, and the second one follows from
(3.3). This completes our proof.

Theorem 3.2.4. [1, Thm. 9] and [2, Thm. 5.4] (also cf. [13, Lm. 5.5]) Let Σ be
a ranked alphabet such that Σ(0) 6= ∅, and B be a strong bimonoid. Moreover, let
A = (Q, δ, F) be a (Σ,B)-wta. For every Σ-tree ξ′, state q′ in Q, and q′-run ρ′ of
A on ξ′, if height(ξ′) ≥ |Q|, then there exist Σ-contexts c′ and c, Σ-tree ξ, state q
in Q, (q′, q)-run θ′ of A on c′, (q, q)-run θ of A on c, and q-run ρ of A on ξ such
that the following conditions hold true: ξ′ = c′[c[ξ]], ρ′ = θ′[θ[ρ]], height(c) > 0,
height(c[ξ]) < |Q|, and, for each n ∈ N, we have

wt(c′[cn[ξ]], θ′[θn[ρ]]) = lc′,θ′ ⊗ (lc,θ)
n ⊗ wt(ξ, ρ)⊗ (rc,θ)

n ⊗ rc′,θ′ .

Proof. Assume that height(ξ′) ≥ |Q|. Then there exist u, v ∈ N∗+ such that
uv ∈ pos(ξ′), |v| > 0, height(ξ′|u) < |Q|, and ρ′(u) = ρ′(uv). Hence, we let c′ = (ξ′|u),
c = ((ξ′|u)|v), and ξ = ξ′|uv. Obviously, we have ξ′ = c′[c[ξ]]. Figure 3.5 shows the
decomposition of ξ′ along the positions u and uv.

Moreover, we let θ′ = (ρ′|pos(c′)), θ = ((ρ′|u)|pos(c)), and ρ = (ρ′|uv). Then our
statement follows from Theorem 3.2.3. This concludes our proof.

Chapter conclusion. The author of this PhD thesis declares that his contribution to
Theorems 3.2.3 and 3.2.4 is significant, and also that Theorems 3.2.3 and 3.2.4 are
published in [1, 2].

Chapter 4

Weighted tree generating regular
systems

In this chapter we will discuss the results on weighted tree generating regular sys-
tems presented in [4]. In Section 4.1 we explain why we introduce an alternative
semantics, called reduction semantics, for tree generating regular systems, and why
we define the concept of weighted tree generating regular system by the generaliza-
tion of the reduction semantics to the weighted case.

In Section 4.2 we recall the concept of tree generating regular system with its
derivation semantics and related results from [18]. Furthermore, we introduce our
alternative semantics, show the equivalence of the two semantics, and prove normal
form lemmas with our alternative semantics.

In Section 4.3 we introduce the concept of weighted tree generating regular sys-
tem over a strong bimonoid, define its reduction semantics, and show the equivalence
of tree generating regular systems and weighted tree generating regular systems over
the Boolean semiring.

Finally, in Section 4.4 we prove the equivalence of wta and weighted tree gener-
ating regular systems.

4.1 The problem

In [4] the concept of weighted tree generating regular system (for short: wtgrs) was
introduced and a further characterization of recognizable weighted tree languages
was given. As weight structures of wtgrs, strong bimonoids [21, 30, 66] were used.
The aim of that paper was to show that wtgrs and wta are equivalent (correspond-
ingly to the fact that tgrs of [18] and fta are equivalent).

More precisely, (Σ,B)-wtgrs were defined such that the following two require-

35

36 Weighted tree generating regular systems

α ⇒Sd

σ

α α

⇒Sd

σ

α σ

α α

⇒Sd

σ

σ

α α

σ

α α

⇒Sd

σ

σ

α σ

α α

σ

α α

Figure 4.1. An α-computation of P for the tree σ(σ(α, σ(α, α)), σ(α, α)) under ⇒Sd
.

Observe that we may replace the symbols α in an arbitrary order. (cf. [4, Fig. 1])

ments were fulfilled:

(a) Each (Σ,Boole)-wtgrs S is "equivalent" to a Σ-tgrs S, and vice versa,

where Boole is the Boolean semiring given in Example 2.4.6(1).

(b) Under some mild conditions, each (Σ,B)-wtgrs S is equivalent to a (4.1)

(Σ,B)-wta A, and vice versa.

In this chapter we recall the results of that paper. To fully understand those results,
here we briefly recall the concept of tgrs and its derivation semantics introduced
by Brainerd [18]. Moreover, we show that the seemingly natural generalization of
the derivation semantics to the weighted case does not work, i.e., it does not fulfill
Requirement (4.1)(b). Finally, we explain the two characteristics of our alternative
semantics, called reduction semantics, given in Subsection 4.2.1 for tgrs. In fact, the
reduction semantics is essentially the same as the derivation semantics (cf. Theo-
rem 4.2.8).

A Σ-tgrs (or just tgrs) S [18] consists of a ground term rewriting system [8, 22] P
over some ranked alphabet ∆ and a finite subset Z of designated trees over ∆. The
ranked alphabet ∆ is partitioned into as follows: the ranked alphabet Σ of terminals
and the ranked set N of nonterminals. Moreover, we call elements of P productions
and elements of Z axioms. The ground term rewrite relation⇒S induced by S is de-
fined in the standard way (cf. [8, Def. 3.1.8]). Furthermore, the derivation semantics
of S (for short: d-semantics of S) is the set of trees ξ over Σ such that there exist an
axiom ζ ∈ Z and a ζ-computation of P for ξ under ⇒S, i.e., ζ ⇒∗S ξ. In order to
illustrate the d-semantics of tgrs, Figure 4.1 shows an example of the tgrs Sd where

• Σ consists of the terminals σ(2) and α(0); the ranked set N of nonterminals is
empty,

• Z is a singleton set consisting of the axiom α, and
• P contains only the production α→ σ(α, α).

If in certain steps of a ζ-computation d of P for ξ under ⇒S we could replace

4.1 The problem 37

at incomparable positions1, then there may exist several other ζ-computations of P
for ξ under⇒S. For instance, we can obtain another α-computation of P for the tree
in Figure 4.1 if in the second step we replace the leftmost α in σ(α, α).

Moreover, we define a (Σ,B)-wtgrs to be a Σ-tgrs in which to each production and
to each axiom a weight in B is associated, i.e., a (Σ,B)-wtgrs S consists of a Σ-tgrs
S = (N,Z, P), a mapping wt : P → B (production weight mapping), and a mapping
X : Z → B (axiom weight mapping). The natural generalization of the d-semantics
of tgrs to the weighted case, i.e., the d-semantics of S, would be as follows. For
a tree ξ over Σ and an axiom ζ ∈ Z, and for a ζ-computation d of P for ξ under
⇒S, to calculate the weight of d, we would multiply the weights of the productions
in a fixed order determined by d by applying the multiplication operation ⊗ of B.
Then we calculate the d-semantics of S for a tree ξ over Σ as follows: by using the
addition operation ⊕ of B we sum up all weights of ζ-computations of P for ξ under
⇒S multiplied by the axiom weight X(ζ). However, this is not suitable to fulfill
Requirement (4.1)(b) for the following reason. When we associate a (Σ,B)-wtgrs S
to a (Σ,B)-wtaA, more than one computation of P may correspond to a single run of
A. Furthermore, since the addition operation ⊕ of B is not necessarily idempotent,
this may yield that the d-semantics of S and the semantics of A differ.

In order to avoid this phenomenon, we advocate an alternative semantics, called
reduction semantics (for short: r-semantics), given in Subsection 4.2.1 for tgrs. The
d-semantics and the r-semantics of tgrs are essentially equivalent (cf. Theorem 4.2.8).
Moreover, we introduce the concept of wtgrs with the natural generalization of the
r-semantics of tgrs to the weighted case (cf. Subsection 4.3.1). The r-semantics of a
tgrs S has two characteristics:

(i) it is based on a restriction of the term rewriting relation, denoted by ⇒S,dp,
in which replacements can be performed only at the minimal position (with
respect to the depth-first post-ordering of positions) at which a replacement is
possible and

(ii) the r-semantics of S is the set of trees ζ over Σ such that there exist an axiom ξ

and a ζ-computation of P for ξ under⇒S,dp.
Figure 4.2 shows an example of a computation by the rewrite relation ⇒Sr,dp of the
Σ-tgrs Sr, where Σ = {σ(2), α(0)}, N = ∅, Z = {α}, and P ′ = {σ(α, α)→ α}.

In conclusion, we introduce the r-semantics for the following reasons. Firstly,
for each tgrs S there exists a tgrs S ′ such that the d-semantics of S is equal to the
r-semantics of S ′ (see Figures 4.1 and 4.2). Vice versa, for each tgrs S there ex-
ists a tgrs S ′ such that the r-semantics of S is equal to the d-semantics of S ′. This
equivalence of the d-semantics and the r-semantics of tgrs is described in Subsec-
tion 4.2.2. Secondly, the concept of wtgrs introduced with the natural generalization
of the r-semantics of tgrs to the weighted case fulfills Requirements (4.1)(a) and (b)

1We call two positions of a tree incomparable if none of them is a prefix of the other one.

38 Weighted tree generating regular systems

σ

σ

α σ

α α

σ

α α

⇒Sr,dp

σ

σ

α α

σ

α α

⇒Sr,dp

σ

α σ

α α

⇒Sr,dp

σ

α α

⇒Sr,dp α

Figure 4.2. A σ(σ(α, σ(α, α)), σ(α, α))-computation of P ′ for α under ⇒Sr,dp (cf. [4,
Fig. 2])

(cf. Subsection 4.3.2 and Section 4.4, respectively).

4.2 Tree generating regular systems

This section consists of three parts. In Subsection 4.2.1 we recall the concept of
ground term rewriting system from [8] and the concept of tree generating regular
system with its derivation semantics from [18]. Moreover, we introduce our alter-
native semantics, called reduction semantics, for tree generating regular systems. In
Subsection 4.2.2 we show the equivalence of the derivation semantics and the re-
duction semantics. Finally, in Subsection 4.2.3 we prove normal form lemmas for
tree generating regular systems with reduction semantics. These normal form lem-
mas will be used to prove corresponding normal form lemmas for weighted tree
generating regular systems over strong bimonoids with reduction semantics (cf. Sub-
section 4.3.3).

4.2.1 The model

Ground term rewriting systems. As already mentioned in Section 4.1, a tree gen-
erating regular system is a particular ground term rewriting system. For this, let
(∆, rk∆) be a ranked alphabet. Formally, a ground term rewriting system over ∆ (for
short: ∆-gtrs, or just: gtrs) [8, 22] is a finite set P of (T∆)2.

Let P be a ∆-gtrs, and p = (η, κ) ∈ P . We call p a production, and, as usual, we
denote it also by η → κ. The left-hand side of p, denoted by lhs(p), and the right-hand
side of p, denoted by rhs(p), are η and κ, respectively.

We define the rewrite relation of p, denoted by
p→, as the binary relation on T∆

such that

for every ζ, ξ ∈ T∆ :

ζ
p→ ξ if there exists v ∈ pos(ζ) such that ζ|v = η and ξ = ζ[κ]v .

4.2 Tree generating regular systems 39

Sometimes we also write ζ
v,p→ ξ to make explicit the position v at which the produc-

tion p is applied.

Later we will employ two subsets of
p→: one will be used in the definition of

derivation semantics (using the full set
p→) and one will be used in the definition

of reduction semantics (a strict subset of
p→). Since both definitions use the same

concept of computation, in order to avoid repetitions, we introduce a parameter.
Formally, let = (

p
 | p ∈ P) be a family of binary relations

p
 on T∆ such that

p
 ⊆ p→. Moreover, for each k ∈ N, we consider P k as a set of strings over P of length
k. Now let ζ, ξ ∈ T∆. A ζ-computation of P for ξ under is a string d = p1 · · · pk
in P k with k ∈ N and pi ∈ P for each i ∈ [k] such that there exist ζ0 ∈ T∆ and
(ζ1, . . . , ζk) ∈ (T∆)k with

• ζ = ζ0,
• ζi−1

pi ζi for each i ∈ [k], and
• ζk = ξ .

We denote a ζ-computation d of P for ξ under also by ζ d
 ξ to make explicit the

computation.

Tree generating regular systems. For every ranked set (N, rkN) with Σ ∩ N = ∅,
we define the ranked alphabet (Σ ∪ N, rkΣ∪N) such that, for each σ in Σ ∪ N , we
let rkΣ∪N(σ) = rkΣ(σ) if σ ∈ Σ and rkΣ∪N(σ) = rkN(σ) otherwise. A tree generating
regular system over Σ (for short: Σ-tgrs, or just: tgrs) [18] is a triple S = (N,Z, P),
where

• N is a ranked set (of nonterminals) such that Σ ∩N = ∅,
• Z ⊆ TΣ∪N is a finite set (of axioms), and
• P is a (Σ ∪N)-gtrs, i.e., a finite set (of productions).

Now we recall the derivation semantics and define the reduction semantics. For
this, let S = (N,Z, P) be a Σ-tgrs.

Derivation semantics. We define ⇒S= (
p⇒S| p ∈ P) to be a family of binary re-

lations
p⇒S on TΣ∪N such that

p⇒S=
p→. Let ζ, ξ ∈ TΣ∪N . A ζ-derivation of S for

ξ is a ζ-computation of P for ξ under ⇒S. We denote by DerS(ζ, ξ) the set of all
ζ-derivations of S for ξ, and furthermore, by DerS(ξ) the set

⋃
ζ∈Z DerS(ζ, ξ). The

derivation semantics of S (for short: d-semantics of S), denoted by Ld(S), is the
Σ-tree language

Ld(S) = {ξ ∈ TΣ | DerS(ξ) 6= ∅} .

Two Σ-tgrs S and S ′ are d-equivalent if Ld(S) = Ld(S ′). Moreover, for each Σ-tree
language L, we say that L is d-generated if there exists a Σ-tgrs S such that L = Ld(S).

40 Weighted tree generating regular systems

Reduction semantics. For the reduction semantics, we define a particular subfam-
ily of the family ⇒S= (

p⇒S| p ∈ P). We obtain it by requiring that productions may
be applied at positions which are minimal, with respect to the depth-first post-order,
among those positions at which a production can be applied. Formally, let ζ ∈ TΣ.
The depth-first post-ordering on pos(ζ), denoted by�dp, is the linear ordering defined,
for every w, v ∈ pos(ζ), by

w �dp v iff (v ∈ prefix(w)) ∨ (∃u ∈ prefix(w) ∩ prefix(v))(∃i, j ∈ N+) :

(ui ∈ prefix(w)) ∧ (uj ∈ prefix(v)) ∧ (i < j) .

We let w ≺dp v if (w �dp v) and (w 6= v). Then, in particular, min≺dp
(pos(ζ)) is the

leftmost leaf of ζ.

In the rest of this chapter, we will abbreviate �dp and ≺dp by � and ≺,
respectively.

Let lhs(P) = {lhs(p) | p ∈ P}. We define the family⇒S,dp= (
p⇒S,dp| p ∈ P), where

p⇒S,dp is the binary relation on TΣ∪N such that

for every ζ, ξ ∈ TΣ∪N :

ζ
p⇒S,dp ξ if ζ

w,p→ ξ and w = min≺({v ∈ pos(ζ) | ζ|v ∈ lhs(P)}) .

Let ζ, ξ ∈ TΣ∪N . A ζ-reduction of S to ξ is a ζ-computation of P for ξ under⇒S,dp.
We denote by RedS(ζ, ξ) the set of all ζ-reductions of S to ξ, and furthermore, by
RedS(ζ) the set

⋃
ξ∈Z RedS(ζ, ξ). The reduction semantics of S (for short: r-semantics

of S), denoted by Lr(S), is the Σ-tree language

Lr(S) = {ζ ∈ TΣ | RedS(ζ) 6= ∅} .

Two Σ-tgrs S and S ′ are r-equivalent if Lr(S) = Lr(S
′). Furthermore, for each Σ-tree

language L, we say that L is r-generated if there exists a Σ-tgrs S such that L = Lr(S).
Observe that, for every Σ-tgrs S, a ζ-derivation of S for ξ starts with an axiom ζ

and ends in a Σ-tree ξ; however, a ζ-reduction of S to ξ starts with a Σ-tree ζ and
ends in an axiom ξ.

Here we give some examples of tgrs. Our first example shows that the tree lan-
guage L(A) recognized by the fta A defined in Example 2.3.3 is d-generated.

Example 4.2.1. [4, Ex. 6] (also cf. [18, Ex. 3.4]) Let Σ = {σ(2), α(0)}. We consider
the Σ-tgrs

S = ({C(0)}, {C}, { C → σ(C, α) , C → σ(α, α) }) .

Next we examine the d-semantics of S. For this, let c = σ(�, α), and for each n ∈ N+,
we define the Σ-tree ξn by ξn = cn[α]. Figure 4.3 shows the C-derivation of S for ξ3.

4.2 Tree generating regular systems 41

C ⇒S

σ

C α

⇒S

σ

σ

C α

α

⇒S

σ

σ

σ

α α

α

α
= ξ3

Figure 4.3. The C-derivation of S defined in Example 4.2.1 for the tree ξ3 (cf. [4,
Fig. 3])

Clearly, we have Ld(S) = {ξn | n ∈ N+} = L(A), i.e., the Σ-tree language L(A) is
d-generated. 4

The next example shows that the d-semantics and the r-semantics do not always
coincide.

Example 4.2.2. [4, Ex. 7] Let Σ = {σ(2), α(0)}. We consider the Σ-tgrs

Sd = (∅, {α}, { α→ σ(α, α) }) .

Let ξ = σ(σ(α, σ(α, α)), σ(α, α)). Figure 4.1 shows the α-derivation of Sd for ξ. Evi-
dently, we have Ld(Sd) = TΣ. However, in case of the r-semantics, the axiom α must
occur at the end of a reduction, but this cannot be achieved with the production
α→ σ(α, α). Thus, we have Lr(Sd) = {α}, i.e., Ld(Sd) 6= Lr(Sd).

Although, the two semantics of Sd differ, interestingly, we can give another tgrs
Sr such that the r-semantics of Sr and the d-semantics of Sd are the same. For this,
it is sufficient to exchange the left-hand side and the right-hand side of the unique
production α→ σ(α, α). Thus, we consider the Σ-tgrs

Sr = (∅, {α}, { σ(α, α)→ α }) .

Figure 4.2 illustrates the ξ-reduction of Sr to α. Obviously, we have
Lr(Sr) = TΣ = Ld(Sd), i.e., the Σ-tree language is not just d-generated but also
r-generated. 4

Later we will see that the phenomenon described in Example 4.2.2 holds true
in general as well (cf. Lemma 4.2.7). Now from [18] we recall a result on the
equivalence of fta and tgrs with d-semantics.

Theorem 4.2.3. [18, Thm. 4.9] For each L ⊆ TΣ, the Σ-tree language L is recognizable
if and only if it is d-generated.

42 Weighted tree generating regular systems

Next, also from [18], we recall normal forms of tgrs and corresponding nor-
mal form lemmas for tgrs with d-semantics. Let S = (N,Z, P) be a Σ-tgrs, and
let p = (η → κ) be in P . We say that p is

• expansive if η = A and κ = σ(A1, . . . , Ak),
• contracting if η = σ(A1, . . . , Ak) and κ = A, and
• a chain production if η = A and κ = A′

for some k ∈ N, σ ∈ Σ(k), (A1, . . . , Ak) ∈ (N (0))k, and A,A′ ∈ N (0). For every A ∈ N
and p ∈ P , we say that A occurs in the left-hand side (right-hand side) of p if A occurs
in lhs(p) (rhs(p), respectively). Moreover, we say that S

• has a single nonterminal axiom if Z = {A} for some A ∈ N (0), and there do not
exist productions p1 and p2 in P such that A occurs in the left-hand side of p1

and in the right-hand side of p2,
• is simple if each production in P has the form either A → σ(A1, . . . , Ak), or
σ(A1, . . . , Ak) → A, or A → A′ with A,A′ ∈ N (0), k ∈ N, σ ∈ (Σ ∪ N)(k), and
(A, . . . , Ak) ∈ (N (0))k, and

• is expansive if each production in P is expansive.
Note that each expansive tgrs is obviously a simple tgrs.

For each Σ-tgrs S = (N,Z, P), if S has a single nonterminal axiom, then
we emphasize this fact by writing Z0 instead of Z, i.e., S = (N,Z0, P), and
identify Z0 with its unique element.

The corresponding normal form lemmas for tgrs with d-semantics are the following.

Lemma 4.2.4. [18, Lm. 3.10] For each Σ-tgrs S, we can construct a Σ-tgrs S ′ such
that S ′ has a single nonterminal axiom and it is d-equivalent to S.

Lemma 4.2.5. [18, Lm. 3.12] For each Σ-tgrs S, which has a single nonterminal
axiom, we can construct a Σ-tgrs S ′ such that also S ′ has a single nonterminal axiom,
and furthermore, it is simple and d-equivalent to S.

Lemma 4.2.6. [18, Lm. 3.15] For each simple Σ-tgrs S, which has a single nonter-
minal axiom, we can construct a Σ-tgrs S ′ such that also S ′ has a single nonterminal
axiom, and furthermore, it is expansive and d-equivalent to S.

4.2.2 Equivalence of the d-semantics and the r-semantics

We devote this subsection to show the equivalence of the d-semantics and the
r-semantics of tgrs. For this, the following notations and definition are necessary.

Let S = (N,Z, P) be a Σ-tgrs. For each production p = (η → κ) in P , we
denote by rel(p) the production κ → η. Moreover, for each subset P ′ of P , we let
rel(P ′) = {rel(p) | p ∈ P ′}.

4.2 Tree generating regular systems 43

For two Σ-tgrs S = (N,Z, P) and S ′ = (N,Z, rel(P)), we say that S and S ′ are
related. For instance, the two Σ-tgrs Sd and Sr defined in Example 4.2.2 are related.
Clearly, for each Σ-tgrs S, there exists exactly one Σ-tgrs S ′ such that S and S ′ are
related. We denote this S ′ also by rel(S). Moreover, for each Σ-tgrs S, we have
S = rel(rel(S)). Later we will use this fact without any reference.

Lemma 4.2.7. [4, Lm. 14] For each Σ-tgrs S, the following statements hold true: 1.
Ld(S) = Lr(rel(S)) and 2. Lr(S) = Ld(rel(S)).

Proof. We first prove Statement 1. By Lemmas 4.2.4, 4.2.5, and 4.2.6, we may as-
sume that S has a single nonterminal axiom and it is expansive. Let S = (N,Z0, P)

and rel(S) = (N,Z0, rel(P)). Then we prove, by induction on the structure of ζ, the
following statement:

for every ζ ∈ TΣ and A ∈ N (0):

we have DerS(A, ζ) 6= ∅ iff Redrel(S)(ζ, A) 6= ∅ .
(4.2)

Induction base: Then we have ζ = α for some α ∈ Σ(0). Moreover, since S is
expansive, and S and rel(S) are related, we have

DerS(A,α) 6= ∅ iff (A→ α) ∈ P iff (α→ A) ∈ rel(P) iff Redrel(S)(α,A) 6= ∅ .

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ζ1, . . . , ζk ∈ TΣ such
that ζ = σ(ζ1, . . . , ζk). Since S is expansive, and S and rel(S) are related, for every
A1, . . . , Ak ∈ N (0), we have

(A→ σ(A1, . . . , Ak)) ∈ P iff (σ(A1, . . . , Ak)→ A) ∈ rel(P) .

Moreover, by I.H., for each i ∈ [k] and each Ai ∈ N (0), we have DerS(Ai, ζi) 6= ∅ iff
Redrel(S)(ζi, Ai) 6= ∅. Thus, we have

DerS(A, ζ) 6= ∅
iff there exist A1, . . . , Ak ∈ N (0) such that p = (A→ σ(A1, . . . , Ak)) ∈ P

and DerS(Ai, ζi) 6= ∅ for each i ∈ [k] with

A
p⇒S σ(A1, . . . , Ak)

d1⇒S · · ·
dk⇒S σ(ζ1, . . . , ζk) = ζ ,

where di ∈ DerS(Ai, ζi) for each i ∈ [k]

iff there exist A1, . . . , Ak ∈ N (0) such that rel(p) = (σ(A1, . . . , Ak)→ A) ∈ rel(P)

and Redrel(S)(ζi, Ai) 6= ∅ for each i ∈ [k] with

ζ = σ(ζ1, . . . , ζk)
r1⇒rel(S),dp · · ·

rk⇒rel(S),dp σ(A1, . . . , Ak)
rel(p)⇒rel(S),dp A ,

where ri ∈ Redrel(S)(ζi,Ai) for each i ∈ [k]

44 Weighted tree generating regular systems

iff Redrel(S)(ζ, A) 6= ∅ .

This completes the proof of (4.2). Finally, for each ζ ∈ TΣ, we have

ζ ∈ Ld(S) iff DerS(Z0, ζ) 6= ∅ iff(∗) Redrel(S)(ζ, Z0) 6= ∅ iff ζ ∈ Lr(rel(S)) ,

where at (∗) we apply (4.2). This finishes the proof of Statement 1. To prove State-
ment 2, it is sufficient to see that we have

Lr(S) = Lr(rel(rel(S))) = Ld(rel(S)) ,

where the second equality is due to Statement 1.

The main result of this subsection is as follows, i.e., the d-semantics and the
r-semantics of tgrs are equivalent.

Theorem 4.2.8. [4, Thm. 15] Let Σ be a ranked alphabet such that Σ(0) 6= ∅.
Then, for each L ⊆ TΣ, the Σ-tree language L is d-generated if and only if it is
r-generated.

4.2.3 Normal forms of tgrs with r-semantics

In this subsection, we first define a new normal form for tgrs, called contracting tgrs.
Then we prove normal form lemmas for tgrs with r-semantics. One may notice that
these new normal form lemmas can be proven in a very similar way as Brainerd
proves the corresponding normal form lemmas for tgrs with d-semantics in [18].
Hence, in order to avoid repetitions, we build up our proofs on the corresponding
ones in [18] and exploit the equivalence of the d-semantics and the r-semantics of
tgrs described in Subsection 4.2.2.

Let S = (N,Z, P) be a Σ-tgrs. We say that S is contracting if each production in
P is contracting. Clearly, each contracting tgrs is a simple tgrs. Moreover, for each
Σ-tgrs S, if S is contracting, then rel(S) is expansive, and vice versa.

Construction 4.2.9. [18, in the proof of Lm. 3.10] Let Sd = (N,Z, Pd) be a Σ-tgrs.
We construct the Σ-tgrs S ′d = (N ′, Z0, P

′
d) such that

• Z0 consists of a single new nonterminal of rank 0, i.e., N ∩ Z0 = ∅,
• we identify Z0 with its one and only element, and
• N ′ = N ∪ Z0, and P ′d = Pd ∪ {Z0 → ξ | ξ ∈ Z}.

4

Lemma 4.2.10. [4, Lm. 17] (also cf. [18, Lm. 3.10]) For each Σ-tgrs Sr, we can
construct a Σ-tgrs S ′r such that S ′r has a single nonterminal axiom and it is r-equivalent
to Sr.

4.2 Tree generating regular systems 45

ζ =

σ

α σ

α α

2,p2⇒ S′r,dp

σ

α α

ε,p2⇒ S′r,dp α ε,p1⇒ S′r,dp Z0

Figure 4.4. A ζ-reduction of the tgrs S ′r constructed in Example 4.2.11 to Z0

Proof. If Sr already has a single nonterminal axiom, then we let S ′r = Sr and we are
done, otherwise we proceed as follows.

Let Sd = rel(Sr). By applying Lemma 4.2.4 to Sd, we can construct a Σ-tgrs S ′d
such that S ′d has a single nonterminal axiom and it is d-equivalent to Sd. (In fact, we
obtain S ′d by applying Construction 4.2.9 to Sd.) Let S ′r = rel(S ′d). Obviously, since S ′d
and S ′r are related, also S ′r has a single nonterminal axiom. Then we have

Lr(Sr) = Ld(Sd) = Ld(S ′d) = Lr(S
′
r) ,

where the equalities follow from Lemma 4.2.7(2), Lemma 4.2.4, and
Lemma 4.2.7(1), respectively.

In the following example we show an application of Lemma 4.2.10.

Example 4.2.11. [4, Ex. 18] Let Σ = {σ(2), α(0)}. We consider the Σ-tgrs Sr con-
structed in Example 4.2.2. Evidently, Sr does not have a single nonterminal axiom.
However, by following the proof of Lemma 4.2.10, we can construct the Σ-tgrs

S ′r = ({Z(0)
0 }, Z0, { α→ Z0︸ ︷︷ ︸

p1

, σ(α, α)→ α︸ ︷︷ ︸
p2

}) .

Obviously, S ′r has a single nonterminal axiom. Furthermore, by Lemma 4.2.10, it is
r-equivalent to Sr. Note that, for each Σ-tree ζ, there is exactly one reduction in
RedS′r(ζ) = RedS′r(ζ, Z0). For the Σ-tree ζ = σ(α, σ(α, α)), Figure 4.4 shows that
ζ-reduction of S ′r to Z0. 4

Construction 4.2.12. [18, in the proof of Lm. 3.12] Let Sd = (N,Z0, {p1, . . . , pn}) be
a Σ-tgrs with n ∈ N such that Sd has a single nonterminal axiom. For each i ∈ [n],
we let pi = (ηi → κi). We can construct the Σ-tgrs S ′d = (N ′, Z0, P

′
d) such that N ′

contains of the following nonterminals:
• for every i ∈ [n] and v ∈ pos(ηi), let Ei,v be a new symbol such that Ei,v 6∈ N

and Ei,v ∈ N ′ with rkN ′(Ei,v) = 0,
• for every i ∈ [n] and u ∈ pos(κi), let Fi,u be a new symbol such that Fi,u 6∈ N

and Fi,u ∈ N ′ with rkN ′(Fi,u) = 0,

46 Weighted tree generating regular systems

• for every A ∈ N , we let A ∈ N ′ with rkN ′(A) = rkN(A), and
• there is no other nonterminal in N ′;

and the set P ′d consists of the following productions:

• for every i ∈ [n] and v ∈ pos(ηi) with σ = ηi(v) and k = rkΣ∪N(σ):

pi,−1,v = (σ(Ei,v1, . . . , Ei,vk)→ Ei,v) is in P ′d . (4.3a)

• for every i ∈ [n]:

pi,0,ε = (Ei,ε → Fi,ε) is in P ′d . (4.3b)

• for every i ∈ [n] and u ∈ pos(κi) with ω = κi(u) and ` = rkΣ∪N(ω):

pi,1,u = (Fi,u → ω(Fi,u1, . . . , Fi,u`)) is in P ′d . (4.3c)

Moreover, for each i ∈ [n], we define

(P ′d)i = {pi,−1,v | v ∈ pos(ηi)} ∪ {pi,0,ε} ∪ {pi,1,u | u ∈ pos(κi)} .

Observe that the family ((P ′d)i | i ∈ [n]) is a partitioning of P ′d. 4

Lemma 4.2.13. [4, Lm. 19] (also cf. [18, Lm. 3.12]) For each Σ-tgrs Sr, we can
construct a Σ-tgrs S ′r such that it is simple and r-equivalent to Sr. Moreover, if Sr has
a single nonterminal axiom, then S ′r has that as well.

Proof. If Sr already has a single nonterminal axiom, then we continue; otherwise,
by Lemma 4.2.10, we may assume that Sr has a single nonterminal axiom. If Sr

is already simple, then we let S ′r = Sr, and we are done. Otherwise, we proceed
as follows.

Let Sd = rel(Sr). By applying Lemma 4.2.5 to Sd, we can construct a Σ-tgrs S ′d
such that also S ′d has a single nonterminal axiom, and furthermore, it is simple and
d-equivalent to Sd. (As a matter of fact, we obtain S ′d by applying Construction 4.2.12
to Sd.) Now we let S ′r = rel(S ′d). Clearly, since S ′d and S ′r are related, also S ′r has a
single nonterminal axiom and it is simple. Hence, we have

Lr(S) = Ld(Sd) = Ld(S ′d) = Lr(S
′
r) ,

where the equalities follow from Lemma 4.2.7(2), Lemma 4.2.5, and
Lemma 4.2.7(1), respectively.

The following example shows an application of Lemma 4.2.13.

4.2 Tree generating regular systems 47

ζ =

σ

α σ

α α

1,p′2,−1,1⇒S′′r ,dp

σ

F2,1 σ

α α

21,p′2,−1,1⇒ S′′r ,dp

σ

F2,1 σ

F2,1 α

22,p′2,−1,2⇒ S′′r ,dp

σ

F2,1 σ

F2,1 F2,2

2,p′2,−1,ε⇒S′′r ,dp

σ

F2,1 F2,ε

2,p′2,0,ε⇒S′′r ,dp

σ

F2,1 E2,ε

2,p′2,1,ε⇒S′′r ,dp

σ

F2,1 α

2,p′2,−1,2⇒ S′′r ,dp

σ

F2,1 F2,2

ε,p′2,−1,ε⇒ S′′r ,dp

F2,ε
ε,p′2,0,ε⇒S′′r ,dp

E2,ε
ε,p′2,1,ε⇒S′′r ,dp

α ε,p
′
1,−1,ε⇒ S′′r ,dp

F1,ε
ε,p′1,0,ε⇒S′′r ,dp

E1,ε
ε,p′1,1,ε⇒S′′r ,dp

Z0

Figure 4.5. A ζ-reduction of the tgrs S ′′r defined in Example 4.2.14 to Z0

Example 4.2.14. [4, Ex. 20] Let Σ = {σ(2), α(0)}. We consider the Σ-tgrs S ′r given in
Example 4.2.11. Recall that S ′r has a single nonterminal axiom. Moreover, observe
that S ′r is not simple as both lhs(p2) and rhs(p2) are in TΣ. Nevertheless, by following
the proof of Lemma 4.2.13, we can construct the Σ-tgrs S ′′r = (N ′′, Z0, P

′′
r), where N ′′

consists of the following nonterminals:
• from p1 we obtain E(0)

1,ε and F (0)
1,ε ,

• from p2 we obtain E(0)
2,ε , F

(0)
2,ε , F (0)

2,1 , and F (0)
2,2 , and

• inherited from S ′r we have Z(0)
0 ,

and (P ′′r) is partitioned by the family ((P ′′r)i | i ∈ {1, 2}) with

(P ′′r)1 = { α→ F1,ε︸ ︷︷ ︸
p′1,−1,ε

, F1,ε → E1,ε︸ ︷︷ ︸
p′1,0,ε

, E1,ε → Z0︸ ︷︷ ︸
p′1,1,ε

} and

(P ′′r)2 = { α→ F2,1︸ ︷︷ ︸
p′2,−1,1

, α→ F2,2︸ ︷︷ ︸
p′2,−1,2

, σ(F2,1, F2,2)→ F2,ε︸ ︷︷ ︸
p′2,−1,ε

, F2,ε → E2,ε︸ ︷︷ ︸
p′2,0,ε

, E2,ε → α︸ ︷︷ ︸
p′2,1,ε

} .

Clearly, S ′′r has a single nonterminal axiom and it is simple. Moreover, it is
r-equivalent to S ′r by Lemma 4.2.13. Observe that, for each Σ-tree ζ, there is ex-
actly one reduction in RedS′′r (ζ) = RedS′′r (ζ, Z0). For the Σ-tree ζ = σ(α, σ(α, α)),
Figure 4.5 depicts that ζ-reduction of S ′′r to Z ′. 4

Lemma 4.2.15. [18, Lm. 3.13] Let Sd = (N,Z0, Pd) be a Σ-tgrs such that Sd has a
single nonterminal axiom and it is simple. Then it is decidable, for arbitrary A ∈ N (0),
k ∈ N, σ ∈ Σ(k), and (A1, . . . , Ak) ∈ (N (0))k, whether the set DerSd

(A, σ(A1, . . . , Ak))

is not empty.

48 Weighted tree generating regular systems

Construction 4.2.16. [18, in the proof of Lm. 3.15] Let Sd = (N,Z0, Pd) be a Σ-tgrs
such that Sd has a single nonterminal axiom and it is simple. We can construct a
Σ-tgrs S ′d = (N,Z0, P

′
d) such that

for every A ∈ N (0), k ∈ N, σ ∈ Σ(k), and (A1, . . . , Ak) ∈ (N (0))k

if the set DerSd
(A, σ(A1, . . . , Ak)) is not empty,

then we put the production A→ σ(A1, . . . , Ak) in P ′d .

(4.4)

We note that, by Lemma 4.2.15, the condition of (4.4) is decidable. 4

Lemma 4.2.17. [4, Lm. 21] (also cf. [18, Lm. 3.15]) For each Σ-tgrs Sr, we can
construct a Σ-tgrs S ′r such that S ′r is contracting and r-equivalent to Sr. Moreover, if
Sr has a single nonterminal axiom, then S ′r is so.

Proof. If Sr already has a single nonterminal axiom, then we continue; otherwise, by
Lemma 4.2.10, we may assume that Sr has a single nonterminal axiom. Moreover, if
Sr is already simple, then we continue; otherwise, by Lemma 4.2.13, we may assume
that Sr is simple. If Sr is already contracting, then we let S ′r = Sr, and we are done.
Otherwise, we proceed as follows.

Let Sd = rel(Sr). By applying Lemma 4.2.6 to Sd, we can construct a Σ-tgrs S ′d
such that also S ′d has a single nonterminal axiom, and furthermore, it is expansive
and d-equivalent to Sd. (In fact, we obtain S ′d by applying Construction 4.2.16 to
Sd.) Next we let S ′r = rel(S ′d). Evidently, since S ′d has a single nonterminal axiom and
it is expansive, and since S ′d and S ′r are related, the tgrs S ′r has a single nonterminal
axiom as well and it is contracting. Thus, we have

Lr(Sr) = Ld(Sd) = Ld(S ′d) = Lr(S
′
r) ,

where the equalities follow from Lemma 4.2.7(2), Lemma 4.2.6, and
Lemma 4.2.7(1), respectively.

In the following example we show an application of Lemma 4.2.17.

Example 4.2.18. [4, Ex. 22] Let Σ = {σ(2), α(0)}. We consider the Σ-tgrs S ′′r shown
in Example 4.2.14. Recall that S ′′r has a single nonterminal axiom and it is simple.
However, S ′′r is not contracting as the production p′1,0,ε is not contracting.

We follow the proof of Lemma 4.2.17, and thus, we first consider the Σ-tgrs
S ′′d = rel(S ′′r). In order to construct the expansive Σ-tgrs S ′′′d d-equivalent to S ′′d , now
we consider particular derivations of S ′′d . For this, we let pi,−j,ε = rel(p′i,j,ε) for every
i ∈ {1, 2} and j ∈ {−1, 0, 1}, and p2,1,i = rel(p′2,−1,i) for each i ∈ {1, 2}. Then these
particular derivations of S ′′d as follows:

Z0
p1,−1,ε⇒S′′d

E1,ε
p1,0,ε⇒S′′d

F1,ε
p1,1,ε⇒S′′d

α
p2,−1,ε⇒S′′d

E2,ε
p2,0,ε⇒S′′d

F2,ε
p2,1,ε⇒S′′d

σ(F2,1, F2,2) ,

4.3 Weighted tree generating regular systems 49

ζ =

σ

α σ

α α

⇒S′′′r ,dp

σ

F2,1 σ

α α

⇒S′′′r ,dp

σ

F2,1 σ

F2,1 α

⇒S′′′r ,dp

σ

F2,1 σ

F2,1 F2,2

⇒S′′′r ,dp

σ

F2,1 F2,2

⇒S′′′r ,dp Z0

Figure 4.6. A ζ-reduction of the tgrs S constructed in Example 4.2.18 to Z0

F2,1
p2,1,1⇒S′′d

α
p2,−1,ε⇒S′′d

E2,ε
p2,0,ε⇒S′′d

F2,ε
p2,1,ε⇒S′′d

σ(F2,1, F2,2) , and

F2,2
p2,1,2⇒S′′d

α
p2,−1,ε⇒S′′d

E2,ε
p2,0,ε⇒S′′d

F2,ε
p2,1,ε⇒S′′d

σ(F2,1, F2,2) .

Hence, the set DerS′′d (A, σ(A1, A2)) is not empty for every A ∈ N ′′,
A1 ∈ {F2,1, E2,ε, F2,ε}, and A2 ∈ {F2,2, E2,ε, F2,ε}; and also the set DerS′′d (A,α) is
not empty for each A in N ′′ \ {E2,ε, F2,ε}. Then we can construct the Σ-tgrs
S ′′′r = (N ′′, Z0, P

′′′
r), where

P ′′′r =
((⋃

A1∈{F2,1,E2,ε,F2,ε}
A2∈{F2,2,E2,ε,F2,ε}

A∈N ′′

{σ(A1, A2)→ A}
)
∪
(⋃
A∈N ′′\{E2,ε,F2,ε}

{α→ A}
))

.

Evidently, S ′′′r has a single nonterminal axiom and it is contracting. Moreover, by
Lemma 4.2.17, it is r-equivalent to S ′′r . Note that, for each Σ-tree ζ, there are more
than one ζ-reduction of S ′′′r to Z0. E.g., for the Σ-tree ζ = σ(α, σ(α, α)), Figure 4.6
illustrates a ζ-reduction of S ′′′r to Z0. 4

4.3 Weighted tree generating regular systems

This section is built up as follows. In Subsection 4.3.1 we introduce the concept
of weighted tree generating regular system with reduction semantics. In Subsec-
tion 4.3.2 we prove the equivalence of tgrs and weighted tree generating regular sys-
tem over the Boolean semiring. Finally, in Subsection 4.3.3 we define normal forms
for weighted tree generating regular systems and prove corresponding normal form
lemmas. These normal form lemmas will be used to prove the equivalence of wta and
weighted tree generating regular systems over strong bimonoids (cf. Section 4.4).

50 Weighted tree generating regular systems

4.3.1 The model

A weighted tree generating regular system over Σ and B (for short: (Σ,B)-wtgrs, or
just: wtgrs) [4] is a triple S = (S,wt,X), where

• S = (N,Z, P) is a Σ-tgrs,
• wt : P → B is the production weight mapping, and
• X : Z → B is the axiom weight mapping.

We call S the tgrs underlying S. Moreover, sometimes, for each ξ ∈ Z, we abbreviate
X(ξ) by Xξ.

Observe that, since each (Σ,B)-wtgrs S is, basically, an extension of some
Σ-tgrs, the concepts and abbreviations defined for tree generating regular
systems are also available for weighted tree generating regular systems. In
particular, we may write⇒S,dp instead of⇒S,dp.

Let S = (S,wt,X) be a (Σ,B)-wtgrs with S = (N,Z, P). Moreover, let ζ, ξ ∈ TΣ∪N .
Then we define RedS(ζ, ξ) = RedS(ζ, ξ). From now on, for every r ∈ RedS(ζ, ξ), we
denote ξ also by

⇒
r . Let r = (p1 · · · pk) ∈ RedS(ζ, ξ) with k ∈ N and pi ∈ P for each

i ∈ [k]. We say that r is
• valid if wt(pi) 6= 0 for each i ∈ [k] and
• successful if it is valid and ξ ∈ supp(X).

We denote the set of all valid (successful) ζ-reductions of S to ξ by Redv
S(ζ, ξ) (respec-

tively, Reds
S(ζ, ξ)). Furthermore, we define the sets

RedS(ζ) =
⋃
ξ∈Z

RedS(ζ, ξ) and Redv
S(ζ) =

⋃
ξ∈Z

Redv
S(ζ, ξ) and

Reds
S(ζ) =

⋃
ξ∈Z

Reds
S(ζ, ξ) .

The weight of r, denoted by wtS(r), is the element in B defined by

wtS(r) =
k⊗
i=1

wt(pi) .

In particular, if ζ = ξ, then k = 0, and thus, wtS(r) = 1.
We say that S is finite-reductional if, for each ζ ∈ TΣ, the set Reds

S(ζ) is finite. If S
is finite-reductional or B is complete, then the (reduction) semantics of S, denoted by
[[S]], is the (Σ,B)-weighted tree language [[S]] : TΣ → B defined, for each ζ ∈ TΣ, by

[[S]](ζ) =
∑⊕

r∈Reds
S(ζ)

wtS(r)⊗X⇒
r
.

Note that, for every ζ ∈ TΣ and r = (p1 · · · pn) ∈ RedS(ζ) with n ∈ N and pi ∈ P for

4.3 Weighted tree generating regular systems 51

each i ∈ [n], if r 6∈ Reds
S(ζ), then either there is an i ∈ [n] such that wt(pi) = 0, or we

have
⇒
r 6∈ suppB(X), i.e., X⇒

r
= 0. Consequently, we have∑⊕

r∈Reds
S(ζ)

wtS(r)⊗X⇒
r

=
⊕

ξ∈suppB(X)

∑⊕

r∈Redv
S(ζ,ξ)

wtS(r)⊗Xξ .

Later, we will use this fact without any reference.
For two (Σ,B)-wtgrs S and S ′, we say that S and S ′ are r-equivalent if [[S]] = [[S ′]].

Moreover, for each (Σ,B)-weighted tree language ψ, we say that ψ is r-generated if
there exists a (Σ,B)-wtgrs S such that [[S]] = ψ.

The following example shows that the weighted tree language #max defined in
Example 3.1.1 is r-generated.

Example 4.3.1. Let Σ = {σ(2), ω(2), α(0)}. We first construct the Σ-tgrs

S = ({A(0)
σ , A(0)

ω , A(0)
s }, {Aσ, Aω}, P)

where P consists of the following productions:

P = { α→ Aσ︸ ︷︷ ︸
p1

, σ(Aσ, Aσ)→ Aσ︸ ︷︷ ︸
p2

, ω(Aσ, Aσ)→ Aσ︸ ︷︷ ︸
p3

,

α→ Aω︸ ︷︷ ︸
p4

, σ(Aω, Aω)→ Aω︸ ︷︷ ︸
p5

, ω(Aω, Aω)→ Aω︸ ︷︷ ︸
p6

,

α→ As︸ ︷︷ ︸
p7

, σ(As, As)→ As︸ ︷︷ ︸
p8

, ω(As, As)→ As︸ ︷︷ ︸
p9

, ω(Aσ, Aω)→ Aσ︸ ︷︷ ︸
p10

} .

Then we construct the (Σ,MaxPlus)-wtgrs S = (S,wt,X) such that wt(pi) = 0 for
each i ∈ {1, 3, 4, 5, 7}, wt(pi) = 1 for each i ∈ {2, 6, 8, 9}, wt(p10) = −∞, and
X(Aσ) = X(Aω) = 0.

Let ζ = σ(α, ω(α, α)). Next we consider some reductions in RedS(ζ) as follows (cf.
Figure 4.7). Figure 4.7(a) shows a not valid reduction in RedS(ζ, Aσ). Figure 4.7(b)
illustrates a valid but not successful reduction in RedS(ζ, As). Finally, Figure 4.7(c)
depicts a successful reduction in RedS(ζ, Aσ).

Now we examine the semantics of S. For this, let ζ ∈ TΣ. Obviously, there are
exactly two reductions in Reds

S(ζ): one ends in Aσ and the other one in Aω, i.e.,
{rσ} = Reds

S(ζ, Aσ) and {rω} = Reds
S(ζ, Aω). Hence, S is finite-reductional. Observe

that wtS(rσ) = | posσ(ζ)| and wtS(rω) = | posω(ζ)|. Moreover, we have

[[S]](ζ) = max(wtS(rσ) +X(Aσ),wtS(rω) +X(Aω))

= max(| posσ(ζ)|, | posω(ζ)|) = #max(ζ) ,

i.e., #max is r-generated. 4

52 Weighted tree generating regular systems

σ

α ω

α α

p1⇒S,dp

σ

Aσ ω

α α

p1⇒S,dp

σ

Aσ ω

Aσ α

p4⇒S,dp

σ

Aσ ω

AσAω

p10⇒S,dp

σ

Aσ Aσ

p2⇒S,dp Aσ

(a) a not valid reduction

σ

α ω

α α

p7⇒S,dp

σ

As ω

α α

p7⇒S,dp

σ

As ω

As α

p7⇒S,dp

σ

As ω

AsAs

p9⇒S,dp

σ

As As

p8⇒S,dp As

(b) a valid but not successful reduction

σ

α ω

α α

p1⇒S,dp

σ

Aσ ω

α α

p1⇒S,dp

σ

Aσ ω

Aσ α

p1⇒S,dp

σ

Aσ ω

AσAσ

p3⇒S,dp

σ

Aσ Aσ

p2⇒S,dp Aσ

(c) a successful reduction

Figure 4.7. Reductions of the (Σ,MaxPlus)-wtgrs S constructed in Example 4.3.1

The following example proves that the weighted tree language #σ defined in
Example 3.1.2 is also r-generated.

Example 4.3.2. [4, Ex. 23] Let Σ = {σ(2), α(0)}. We consider the Σ-tgrs Sr con-
structed in Example 4.2.2. Then we construct the (Σ,MinPlus)-wtgrs Sr = (Sr, wt,X)

where wt(σ(α, α) → α) = 1 and Xα = 0. Recall that in case of ⇒Sr,dp replacements
can be performed only at the minimal position. Hence, for each Σ-tree ζ, there is
exactly one reduction in Reds

Sr
(ζ), i.e., Sr is finite-reductional. Moreover, we have

[[Sr]] = #σ. 4

4.3.2 Equivalence of tgrs and wtgrs over the Boolean semiring

Next we show that Σ-tgrs and (Σ,Boole)-wtgrs are essentially the same, i.e., Require-
ment (4.1)(a) is fulfilled. To prove the equivalence of Σ-tgrs and (Σ,Boole)-wtgrs,
the following concept is necessary. For each (Σ,B)-wtgrs S = (S,wt,X) with
S = (N,Z, P), the support tgrs of S, denoted by suppB(S), is the Σ-tgrs

suppB(S) = (N, suppB(X), suppB(wt)) .

4.3 Weighted tree generating regular systems 53

Note that, for every ζ ∈ TΣ and ξ ∈ suppB(X), we have Reds
S(ζ, ξ) = RedsuppB(S)(ζ, ξ),

and thus, Reds
S(ζ) = RedsuppB(S)(ζ). We will use this fact without any reference.

Lemma 4.3.3. [4, Lm. 24] For a (Σ,Boole)-wtgrs S, we have

suppBoole([[S]]) = Lr(suppBoole(S)) .

Proof. Let S = (S,wt,X) with S = (N,Z, P). Moreover, in the rest of this proof we
abbreviate suppBoole by supp. We first prove the following statement:

for every ζ ∈ TΣ, ξ ∈ supp(X), and r ∈ RedS(ζ, ξ):

we have wtS(r) 6= 0 iff r ∈ Redsupp(S)(ζ, ξ) .
(4.5)

Let r = p1 · · · pk with k ∈ N and pi ∈ P for each i ∈ [k]. Then we have

wtS(r) 6= 0 iff we have wt(pi) 6= 0 for each i ∈ [k]

iff we have pi ∈ supp(wt) for each i ∈ [k]

iff we have r ∈ Redsupp(S)(ζ, ξ) ,

where the second equivalence follows from the fact that the semiring Boole is zero-
divisor free. This completes the proof of (4.5). Now recall that the semiring B is
complete (cf. Example 2.4.6(1)). Then, for each ζ ∈ TΣ, we have

ζ ∈ supp([[S]]) iff
(∑∨

r∈Reds
S(ζ)

wtS(r) ∧X⇒
r

)
6= 0

iff(∗) (∃ξ ∈ supp(X))(∃r ∈ RedS(ζ, ξ)) : wtS(r) 6= 0

iff (∃ξ ∈ supp(X)) : Redsupp(S)(ζ, ξ) 6= ∅ iff ζ ∈ Lr(supp(S)) ,

where at (∗) we use the fact that the semiring Boole is positive; and the last but one
equivalence is due to (4.5).

Theorem 4.3.4. [4, Thm. 25] Let Σ be a ranked alphabet such that Σ(0) 6= ∅.
Moreover, let L be a Σ-tree language. Then the following statements are equiva-
lent.

1. We can construct a Σ-tgrs such that Lr(S) = L.
2. We can construct a (Σ,Boole)-wtgrs such that suppBoole([[S]]) = L.

Proof. In the rest of this proof, we abbreviate suppBoole by supp.
(1⇒ 2). Let S = (N,Z, P). We can construct the (Σ,Boole)-wtgrs S = (S,wt,X)

such that supp(X) = Z and supp(wt) = P . Clearly, we have S = supp(S). Moreover,
by Lemma 4.3.3, we have Lr(S) = Lr(supp(S)) = supp([[S]]).

54 Weighted tree generating regular systems

(2 ⇒ 1). Let S = (S,wt,X) with S = (N,Z, P). Evidently, we can con-
struct the Σ-tgrs supp(S) as described above. Then, by Lemma 4.3.3, we have
Lr(supp(S)) = supp([[S]]).

4.3.3 Normal forms of wtgrs

In the rest of this section we define three normal forms of wtgrs and prove corre-
sponding normal form lemmas. For each (Σ,B)-wtgrs S = (S,wt,X), we say that S
has a single nonterminal axiom (is simple or is contracting) if S has a single nontermi-
nal axiom (respectively, is simple or is contracting).

Lemma 4.3.5. [4, Lm. 26] For each (Σ,B)-wtgrs S such that S is finite-reductional
or B is complete, we can construct a (Σ,B)-wtgrs S ′ such that S ′ has a single nonter-
minal axiom and it is r-equivalent to S. Moreover, if S is finite-reductional, then S ′
is so.

Proof. If S already has a single nonterminal axiom, then we let S ′ = S, and we are
done. Otherwise, we proceed as follows.

Let S = (Sr, wt,X) with Sr = (N,Z, Pr). By applying Lemma 4.2.10 to Sr, we can
construct a Σ-tgrs S ′r such that S ′r has a single nonterminal axiom and it is r-equivalent
to Sr. By following the denotations of Construction 4.2.9, we let S ′r = (N ′, Z0, P

′
r),

where P ′r = rel(P ′d). Then, we can construct the (Σ,B)-wtgrs S ′ = (S ′r, wt
′, X ′) such

that X ′(Z0) = 1, and wt′ is defined as follows:
• wt′(rel(Z0 → ξ)) = Xξ for each ξ ∈ Z (cf. Construction 4.2.9) and
• wt′(p) = wt(p) for each p ∈ Pr.

Clearly, S ′r has a single nonterminal axiom. Next, for each ζ ∈ TΣ, we define the
mapping ϕζ : Reds

S(ζ) → Reds
S′(ζ), for each r ∈ Reds

S(ζ), by ϕζ(r) = r(
⇒
r → Z0),

where (
⇒
r → Z0) = rel(Z0 →

⇒
r). Then we prove the following statement:

for every ζ ∈ TΣ and r ∈ Reds
S(ζ): we have wtS(r)⊗X⇒

r
= wtS′(ϕζ(r)) . (4.6)

Since ϕζ(r) = r(
⇒
r → Z0), we can compute as follows:

wtS(r)⊗X⇒
r

= wtS(r)⊗ wt′(⇒r → Z0) = wtS′(r(
⇒
r → Z0)) = wtS′(ϕζ(r)) ,

and thus, we finish the proof of (4.6). Now we prove the following statement:

for each ζ ∈ TΣ, the mapping ϕζ : Reds
S(ζ)→ Reds

S′(ζ) is bijective,

i.e., it is (a) injective and (b) surjective.
(4.7)

For this, we first show that Statement (a) holds true. Evidently, if |Reds
S(ζ)| ≤ 1,

then ϕζ is injective. Hence, we may assume that |Reds
S(ζ)| > 1. Let r1, r2 ∈ Reds

S(ζ)

4.3 Weighted tree generating regular systems 55

such that r1 6= r2. Then we have ζ 6∈ Z, and thus, len(ri) ≥ 1 for each
i ∈ {1, 2}. Since r1 6= r2, there exist an integer i in [len(r1)] ∩ [len(r2)] such that
r1(1 . . . i− 1) = r2(1 . . . i− 1) and r1(i) 6= r2(i).

Let i ∈ {1, 2}. Moreover, let pi = (
⇒
ri → Z0). Obviously, we have pi ∈ P ′r . Since

ri ∈ Reds
S(ζ), we have X⇒

ri
6= 0, and thus, wt′(pi) 6= 0. Then we have ϕζ(ri) = rpi

such that ζ ri⇒S′,dp
⇒
ri

pi⇒S′,dp Z0. Then, since r1 6= r2, we have ϕζ(r1) 6= ϕζ(r2), i.e., ϕζ
is injective. This concludes the proof of Statement (a), i.e., ϕζ is injective.

Now we prove Statement (b). Since S ′ has a single nonterminal axiom,
we have Reds

S′(ζ) = Reds
S′(ζ, Z0). Obviously, if Reds

S′(ζ, Z0) = ∅, then we
also have Reds

S(ζ) = ∅. Thus, we may assume that Reds
S′(ζ, Z0) 6= ∅. Let

r′ = (p′1 · · · p′k) ∈ Reds
S′(ζ, Z0) with k ∈ N+ and p′i ∈ P ′r for each i ∈ [k]. It follows

from our construction that we have lhs(p′k) ∈ Z with X(lhs(p′k)) = wt′(p′k) 6= 0, i.e.,
lhs(p′k) ∈ suppB(X). Moreover, since S ′ has a single nonterminal axiom, for each
i ∈ [k − 1], the nonterminal Z0 does not occur in the left-hand side of r′(i). Hence,
r = p′1 · · · p′k−1 is in Reds

S(ζ). Note that we have ϕ(r) = r′. This finishes the proof
of Statement (b), i.e., ϕζ is surjective. Furthermore, it concludes the proof of (4.7).
Finally, for each ζ ∈ TΣ, we have

[[S]](ζ) =
∑⊕

r∈Reds
S(ζ)

wtS(r)⊗X⇒
r

=
∑⊕

r∈Reds
S(ζ)

wtS′(ϕζ(r))⊗ (X ′)Z0

=
∑⊕

r′∈Reds
S′ (ζ)

wtS′(r
′)⊗ (X ′)Z0 = [[S ′]](ζ) ,

where the second equality holds true by (4.6); and the last but one equality is due to
(4.7) and the fact that family

({r(ξ → Z0) | r ∈ Reds
S′(ζ, ξ)} | ξ ∈ Z)

is a partitioning of Reds
S′(ζ, Z0). Also, observe that, by (4.7), for each ζ ∈ TΣ, we

have |Reds
S(ζ)| = |Reds

S′(ζ)|. Thus, if S is finite-reductional, then S ′ is so. This
completes our proof.

In the following example we show an application of Lemma 4.3.5.

Example 4.3.6. [4, Ex. 27] Let Σ = {σ(2), α(0)}. We consider (Σ,MinPlus)-wtgrs Sr

constructed in Example 4.3.2. Clearly, S does not have a single nonterminal axiom.
Thus we follow the proof of Lemma 4.3.5. Firstly, by applying Lemma 4.2.10 to
Sr, we construct the Σ-tgrs S ′r such that S ′r has a single nonterminal axiom and it is
r-equivalent to Sr (cf. Example 4.2.11). Then we construct the (Σ,MinPlus)-wtgrs
S ′r = (S ′r, wt

′, X ′) such that wt′(p1) = Wα = 0, wt′(p2) = wt(p2) = 1, and X ′(Z0) = 0.
Evidently, S ′r has a single nonterminal axiom. Moreover, by Lemma 4.3.5, S ′r is
r-equivalent to Sr. Note that, since Sr is finite-reductional, S ′r is so. Recall that,

56 Weighted tree generating regular systems

since S ′r is an extension of S ′r, Figure 4.4 shows a successful σ(α, σ(α, α))-reduction
of S ′ to Z0. 4

Lemma 4.3.7. [4, Lm. 28] Let S be a (Σ,B)-wtgrs such that S is finite-reductional
or B is complete. We can construct a (Σ,B)-wtgrs S ′ such that S ′ is simple and
r-equivalent to S. Moreover, if S is finite-reductional, then S ′ is so. Similarly, if S has
a single nonterminal axiom, S ′ has so.

Proof. If S already has a single nonterminal axiom, then we proceed; otherwise, by
Lemma 4.3.5, we may assume that S has a single nonterminal axiom. If S is already
simple, then we let S ′ = S, and we are done. Otherwise, we continue as follows.

Let S = (Sr, wt,X) with Sr = (N,Z0, Pr) and Pr = {(κ1 → η1), . . . , (κn → ηn)}
for some n ∈ N. Firstly, by applying Lemma 4.2.13 to Sr, we can construct a Σ-tgrs
S ′r such that also S ′r has a single nonterminal axiom, and furthermore, it is simple
and r-equivalent to Sr. As already mentioned in the proof of Lemma 4.2.13, in order
to construct S ′r, we apply Construction 4.2.12 to rel(Sr). Hence, by following the
denotations of Construction 4.2.12 and that in the proof of Lemma 4.2.13, we have
S ′r = (N ′, Z0, P

′
r), where P ′r = rel(P ′d). Secondly, we can construct the (Σ,B)-wtgrs

S ′ = (S ′r, wt
′, X), and we define wt′ as follows:

• for every i ∈ [n] and v ∈ pos(ηi), the production pi,−1,v defined in (4.3a) in
Construction 4.2.12 is in P ′d, and hence, the production p′i,1,v = rel(pi,−1,v) is in
P ′r and we set wt′(p′i,1,v) = 1,

• for each i ∈ [n], the production pi,0,ε defined in (4.3b) in Construction 4.2.12
is in P ′d, and thus, the production p′i,0,ε = rel(pi,0,ε) is in P ′r and we set
wt′(p′i,0,ε) = wt(κi → ηi), and

• for every i ∈ [n] and u ∈ pos(κi), the production pi,1,u defined in (4.3c) in
Construction 4.2.12 is in P ′d, and so, the production p′i,−1,u = rel(pi,1,u) is in P ′r
and we set wt′(p′i,−1,u) = 1.

Moreover, for every i ∈ [n], we define

(P ′r)i = {p′i,−1,u | u ∈ pos(κi)} ∪ {p′i,0,ε} ∪ {p′i,1,v | v ∈ pos(ηi)} .

Note that the family ((P ′r)i | i ∈ [n]) is a partitioning of P ′r . Furthermore, S ′ has a
single nonterminal axiom and it is simple.

Next we establish a relationship between successful reductions of S and that of S ′.
For every w ∈ N∗+ and i ∈ [n], and each u ∈ pos(κi), we define a string over N∗+×(P ′r)i,
denoted by L(wu, κi|u), inductively as follows: assuming that κi(u) ∈ (Σ ∪ N)(`) for
some ` ∈ N, we let

L(wu, κi|u) = L(wu1, κi|u1) · · ·L(wu`, κi|u`)(wu, p′i,−1,u) .

Moreover, for every w ∈ N∗+ and i ∈ [n], and each v ∈ pos(ηi), we define a

4.3 Weighted tree generating regular systems 57

string over N∗+ × (P ′r)i, denoted by R(wv, ηi|v), inductively as follows: assuming that
ηi(v) ∈ (Σ ∪N)(k) for some k ∈ N, we let

R(wv, ηi|v) = (wv, p′i,1,v) R(wv1, ηi|v1) · · ·R(wvk, ηi|vk) .

Let ζ ∈ TΣ. We define a mapping ϕζ : Reds
S(ζ) → Reds

S′(ζ) as follows. Re-
call that we have Reds

S(ζ) = Reds
S(ζ, Z0) and Reds

S′(ζ) = Reds
S′(ζ, Z0). Assume that

Reds
S(ζ, Z0) is not empty. Then let r = ((κj1 → ηj1) · · · (κjm → ηjm)) ∈ Reds

S(ζ, Z0)

with m ∈ N and ji ∈ [n] for each i ∈ [m] such that

ζ
w1,(κj1→ηj1)
⇒S,dp · · ·

wm,(κjm→ηjm)⇒S,dp Z0 .

Now we consider the string

sr = L(w1, κj1)(w1, p
′
j1,0,ε

) R(w1, ηj1) · · ·L(wm, κjm)(wm, p
′
jm,0,ε) R(wm, ηjm) (4.8)

over N∗+ × P ′r . Let N = len(sr). Observe that, since r is successful, for each i ∈ [N],
we have wt′(pr2(sr(i))) 6= 0. Moreover, we have X(Z0) 6= 0. Nevertheless, it is eas-
ily possible that pr2(sr(1)) · · · pr2(sr(N)) is not a ζ-reduction of S ′ to Z0, because by
decomposing the productions in Pr (cf. Construction 4.2.12), we may apply a pro-
duction pr2(sr(i)) for some i ∈ [N] at a position pr1(sr(i)), which is not minimal, with
respect to the depth-first post-order, among those positions at which a production
can be applied. That phenomenon is quite possible. Thus, we pause the proof of
Lemma 4.3.7, and we give an example of this phenomenon here. However, for the
sake of simplicity, we consider only the support tgrs of wtgrs.

Example 4.3.8. We consider the Σ-tgrs S ′r constructed in Example 4.2.11 and the
Σ-tgrs S ′′r given in Example 4.2.14. Note that each of them can be considered as
a support tgrs of some wtgrs. Moreover, S ′r is not simple, but S ′′r is so. Recall
that S ′′r is r-equivalent to S ′r (cf. Example 4.2.14). Now we consider the success-
ful σ(α, σ(α, α))-reduction r of S ′r to Z0 shown in Figure 4.4, and construct the string
sr as described above. Then we have

sr =(21, p′2,−1,1)(22, p′2,−1,2)(2, p′2,−1,ε)(2, p
′
2,0,ε)(2, p

′
2,1,ε)(1, p

′
2,−1,1)(2, p′2,−1,2)(ε, p′2,−1,ε)

(ε, p′2,0,ε)(ε, p
′
2,1,ε)(ε, p

′
1,−1,ε)(ε, p

′
1,0,ε)(ε, p

′
1,1,ε) .

Note that pr2(sr(1)) · · · pr2(sr(13)) is not a σ(α, σ(α, α))-reduction of S ′′r to Z0, because
the position pr1(sr(1)) = 21 is not minimal, with respect to the depth-first post-order,
among those positions of σ(α, σ(α, α)) at which a production can be applied. In this
case that minimal position is pr1(sr(6)) = 1. 4

After the brief pause, we proceed with the proof of Lemma 4.3.7. Recall that

58 Weighted tree generating regular systems

we can apply a production only at a position, which is minimal, with respect to
the depth-first post-order, among those positions at which a production can be ap-
plied. Moreover, the decomposition of the productions in Pr (cf. Construction 4.2.12)
also determine which production can be applied next. Thus, there exists a unique
permutation s′r of sr(1), . . . , sr(N) such that pr2(s′r(1)) · · · pr2(s′r(N)) is a successful
ζ-reduction of S ′ to Z0, and every other permutation of sr(1), . . . , sr(N) is not even a
ζ-reduction of S ′ to Z0. Note that, in some cases we have s′r = sr; however, if s′r 6= sr,
then we can obtain s′r by moving some productions p′i,−1,u with i ∈ [n] and u ∈ pos(κi)

with wt′(p′i,−1,u) = 1 forward. Then we let ϕζ(r) = pr2(s′r(1)) · · · pr2(s′r(N)). Now we
pause the proof of Lemma 4.3.7 again, and give an example where sr 6= s′r.

Example 4.3.9. Here we continue Example 4.3.8. Thus, we consider the string
sr constructed in Example 4.3.8. Then we consider the unique permutation s′r of
sr(1), . . . , sr(13) which is as follows:

s′r =(1, p′2,−1,1)(21, p′2,−1,1)(22, p′2,−1,2)(2, p′2,−1,ε)(2, p
′
2,0,ε)(2, p

′
2,1,ε)(2, p

′
2,−1,2)(ε, p′2,−1,ε)

(ε, p′2,0,ε)(ε, p
′
2,1,ε)(ε, p

′
1,−1,ε)(ε, p

′
1,0,ε)(ε, p

′
1,1,ε) .

Observe that pr2(s′r(1)) · · · pr2(s′r(13)) is a successful σ(α, σ(α, α))-reduction of S ′′r to
Z0 (cf. Figure 4.5). As a matter of fact, the only difference between sr and s′r is that
(1, p′2,−1,1) occurs at the beginning of the string s′r. 4

After our small example, we continue the proof of Lemma 4.3.7. Next we show
properties of the mapping ϕζ . Thus we first prove the following statement:

for every ζ ∈ TΣ and r ∈ Reds
S(ζ): we have wtS(r) = wtS′(ϕζ(r)) . (4.9)

Clearly, we have wt(r(i)) 6= 0 for each i ∈ [len(r)]. Consequently, it follows
from our construction that wt′(ϕζ(r)(i)) 6= 0 for each i ∈ [len(ϕζ(r))]. Moreover,
observe that, for every i ∈ [len(ϕζ(r))], if ϕζ(r)(i) 6∈ {p′j,0,ε | j ∈ [n]}, then we have
wt′(ϕζ(r)(i)) = 1, i.e., we can leave the weight of the production ϕζ(r)(i) out of our
calculation. Assume that r = (κj1 → ηj1) · · · (κjm → ηjm) with m ∈ N and ji ∈ [n] for
each i ∈ [m]. Furthermore, assume that ϕζ(r)(k1) = p′ji1 ,0,ε and ϕζ(r)(k2) = p′ji2 ,0,ε for
some k1, k2 ∈ [len(ϕζ(r))] and i1, i2 ∈ [m]. By the definition of ϕζ , we have i1 < i2 iff
k1 < k2. Thus, we have

wtS(r) =
m⊗
i=1

wt(κji → ηji) =
m⊗
i=1

wt′(p′ji,0,ε) = wtS′(ϕζ(r)) .

4.3 Weighted tree generating regular systems 59

This completes the proof of (4.9). Now we prove the following statement:

for each ζ ∈ TΣ, the mapping ϕζ : Reds
S(ζ)→ Reds

S′(ζ) is bijective,

i.e., it is (a) injective and (b) surjective.
(4.10)

We first prove Statement (a). Obviously, if |Reds
S(ζ)| ≤ 1, then ϕζ is injective. Hence,

we may assume that |Reds
S(ζ)| > 1. Let r1, r2 ∈ Reds

S(ζ) such that r1 6= r2. Obviously,
we have sr1 6= sr2 , and thus, s′r1 6= s′r2. This completes the proof of Statement (a), i.e.,
ϕζ is injective.

Now we show that Statement (b) holds true. Evidently, if Reds
S′(ζ) = ∅, then we

have Reds
S(ζ) = ∅ as well. Thus, we may assume that Reds

S′(ζ) 6= ∅. Let r′ ∈ Reds
S′(ζ)

with N = len(r′). Assume that, for each i ∈ [N], we apply the production r′(i)

at w′i for some w′i ∈ N∗+. By our construction, there exists a unique permutation
sr of (w′1, r

′(1)), . . . , (w′N , r
′(N)) of the form described in (4.8). Then the reduction

r = (κj1 → ηj1) · · · (κjm → ηjm) is in Reds
S(ζ). Moreover, we have ϕζ(r) = r′. This

concludes the proof of Statement (b), i.e., ϕζ is surjective. Moreover, this completes
the proof of (4.10). Finally, since, for each ζ ∈ TΣ, we have Reds

S(ζ) = Reds
S(ζ, Z0)

and Reds
S′(ζ) = Reds

S′(ζ, Z0), we can calculate as follows:

[[S]](ζ) =
⊕

r∈Reds
S(ζ)

wtS(r)⊗XZ0 =
⊕

r∈Reds
S(ζ)

wtS′(ϕζ(r))⊗XZ0

=
⊕

r′∈Reds
S′ (ζ)

wtS′(r
′)⊗XZ0 = [[S ′]](ζ) ,

where the second equality is due to (4.9); and the third one follows from the fact ϕζ
is a bijection between the sets Reds

S(ζ) and Reds
S′(ζ) by (4.10). Moreover, since, for

each ζ ∈ TΣ, the mapping ϕζ is a bijection between the sets Reds
S(ζ) and Reds

S′(ζ), if
S is finite-reductional, then S ′ is so.

The following example demonstrates an application of Lemma 4.3.7.

Example 4.3.10. [4, Ex. 29] Let Σ = {σ(2), α(0)}. We consider the (Σ,MinPlus)-wtgrs
S ′r given in Example 4.3.6. Evidently, S ′r has a single nonterminal axiom (cf. the
production p2). Thus, we follow the proof of Lemma 4.3.7. Firstly, by applying
Lemma 4.2.13 to S ′r, we construct the Σ-tgrs S ′′r such that S ′′r has a single nonterminal
axiom, it is simple and r-equivalent to S ′r (cf. Example 4.2.14). Secondly, we can
construct the (Σ,MinPlus)-wtgrs S ′′r = (S ′′r , wt

′′, X ′) such that wt′′(p′2,ε,0) = wt′(p2) = 1,
and every other production has weight 0. Clearly, S ′′r has a single nonterminal axiom
and it is simple. Moreover, by Lemma 4.3.7, it is r-equivalent to S ′r, and furthermore,
since S ′r is finite-reductional, S ′′r is so. Note that, since S ′′r is an extension of the tgrs
S ′′r , Figure 4.5 depicts a successful σ(α, σ(α, α))-reduction of S ′′r to Z0. 4

60 Weighted tree generating regular systems

In order to be able to construct a semantically equivalent contracting wtgrs (cf.
Lemma 4.3.16(2)) for a wtgrs S, it is crucial that each nonterminal of S of rank zero
is r-useful, i.e., it occurs in at least one successful reduction of S. Fortunately, for a
wtgrs S, we can construct another wtgrs S ′, of which each nonterminal of rank zero
is r-useful (cf. Lemma 4.3.13). To construct S ′, the following notions, notations, and
result (cf. Lemma 4.3.12) are necessary.

Let S = (S,wt,X) be a (Σ,B)-wtgrs with S = (N,Z0, P) such that S has a single
nonterminal axiom and it is simple. For each A ∈ N , we say that A is r-useful (in S) if
there exist ζ ∈ TΣ, ξ ∈ TΣ∪N , r ∈ Redv

S(ζ, ξ), and r′ ∈ Redv
S(ξ, Z0) such that A occurs

in ξ and (rr′) ∈ Reda
S(ζ, Z0). Moreover, we say that S is r-reduced if each A ∈ N (0) is

r-useful.

Example 4.3.11. Let Σ = {σ(2), α(0)}. We consider the (Σ,MinPlus)-wtgrs S ′′r con-
structed in Example 4.3.10. Observe that, each nonterminal in S ′′r of rank zero is
r-useful, and thus, S ′′r is r-reduced. 4

For each ranked set (N ′, rkN ′), we say that (N ′, rkN ′) is a ranked subset of (N, rkN)

if N ′ ⊆ N and rkN ′(A) = rkN(A) for each A ∈ N ′.
A regular tree grammar over Σ (for short: Σ-rtg, or just: rtg) [22, 34, 43] is a

Σ-tgrs G = (N,Z, P) such that N = N (0), Z ⊆ N , |Z| = 1, and each production in P
has the form A → κ, where A ∈ N and κ ∈ TΣ∪N . Let G = (N,Z, P) be a Σ-rtg. For
each A ∈ N , we say that A is useful (in G) if there exist ζ ∈ TΣ∪N and ξ ∈ TΣ such
that A occurs in ζ, DerG(Z0, ζ) 6= ∅, and DerG(ζ, ξ) 6= ∅. Furthermore, we say that G
is reduced if each A ∈ N is useful.

Lemma 4.3.12. cf. [22, Prop. 2.1.3] For each Σ-rtg G, we can construct a Σ-rtg G′

such that G′ is reduced and it is d-equivalent to G.

Lemma 4.3.13. Let S be a (Σ,B)-wtgrs such that S is finite-reductional or B is com-
plete. We can construct a (Σ,B)-wtgrs S ′ such that S ′ is r-reduced and r-equivalent to
S. Moreover, if S has one of the following properties, then so does S ′: having single
nonterminal axiom, simple, and finite-reductional.

Proof. If S already has a single nonterminal axiom, then we continue; otherwise, by
Lemma 4.3.5, we may assume that. Then, if S is already simple, then we proceed;
otherwise, by Lemma 4.3.7, we may assume that. If S is already r-reduced, then we
set S ′ = S and we are done.

Otherwise, we proceed as follows. Let S = (S,wt,X) with S = (N,Z0, P). Recall
that we have suppB(S) = (N, suppB(X), suppB(wt)). Clearly, if either suppB(X) = ∅
or suppB(wt) = ∅, then we have suppB([[S]]) = ∅. If this is the case, then we let
S ′ = ({Z(0)

0 }, Z0, ∅) and S ′ = (S ′, wt′, X ′) with wt′ : ∅ → B andX ′(Z0) = 1. Obviously,
S ′ has a single nonterminal axiom, and it is simple, finite-reductional, r-reduced and
r-equivalent to S; and we are done.

4.3 Weighted tree generating regular systems 61

Consequently, in the rest of this proof we may assume that neither suppB(X) = ∅
nor suppB(wt) = ∅. By following the proof of Lemma 4.2.17, we can construct the
Σ-tgrs Ŝ = (N,Z0, rel(P ′d)) such that Ŝ is contracting (cf. Construction 4.2.16) and it
is r-equivalent to suppB(S).

We consider the ranked subset (N0, rkN0) of (N, rkN) such that N0 = N (0), and
then, we can construct the Σ-rtg G = (N0, Z0, P

′
d). Next we prove, by induction on

the structure of ζ, the following statement:

for every ζ ∈ TΣ and A ∈ N0:

we have DerG(A, ζ) 6= ∅ iff Redv
S(ζ, A) 6= ∅ .

(4.11)

Induction base: There exists α ∈ Σ(0) such that ζ = α. Then we have

DerG(A,α) 6= ∅ iff (A→ α) ∈ P ′d
iff (α→ A) ∈ rel(P ′d) iff Redv

S(α,A) 6= ∅ ,

where the last equivalence follows from our construction and from the proof of
Lemma 4.2.17.

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ζ1, . . . , ζk ∈ TΣ such that
ζ = σ(ζ1, . . . , ζk). Evidently, for every A1, . . . , Ak ∈ N0, we have

(A→ σ(A1, . . . , Ak)) ∈ P ′d iff (σ(A1, . . . , Ak)→ A) ∈ rel(P ′d)

iff Redv
S(σ(A1, . . . , Ak), A) 6= ∅ ,

where the second equivalence follows from our construction and from the proof of
Lemma 4.2.17. Moreover, by I.H., for each i ∈ [k], and each Ai ∈ N0, we have
DerG(Ai, ζi) 6= ∅ iff Redv

S(ζi, Ai) 6= ∅. Thus, we have

DerG(A, ζ) 6= ∅
iff there exist A1, . . . , Ak ∈ N0 such that p = (A→ σ(A1, . . . , Ak)) ∈ P ′d

and DerG(Ai, ζi) 6= ∅ for each i ∈ [k] with

A
p⇒G σ(A1, . . . , Ak)

d1⇒G · · ·
dk⇒G σ(ζ1, . . . , ζk) = ζ ,

where di ∈ DerG(Ai, ζi) for each i ∈ [k]

iff there exist A1, . . . , Ak ∈ N0 such that r ∈ Redv
S(σ(A1, . . . , Ak), A)

and Redv
S(ζi, Ai) 6= ∅ for each i ∈ [k] with

ζ = σ(ζ1, . . . , ζk)
r1⇒S,dp · · ·

rk⇒S,dp σ(A1, . . . , Ak)
r⇒S,dp A ,

where ri ∈ Redv
S(ζi, Ai) for each i ∈ [k]

iff Redv
S(ζ, A) 6= ∅ .

62 Weighted tree generating regular systems

This completes the proof of (4.11). Moreover, by (4.11) and its proof, for ζ ∈ TΣ, we
have DerG(Z0, ζ) 6= ∅ iff Redv

S(ζ, Z0) 6= ∅, i.e., G is reduced iff S is r-reduced.
By Lemma 4.3.12, we can construct a Σ-rtg G′ such that G′ is reduced and

d-equivalent to G. As a matter fact, it follows from the proof of [22, Prop. 2.1.3]
(cf. Lemma 4.3.12) that we have G′ = (N ′, Z0, P

′) such that N ′ ⊆ N0 and P ′ ⊆ P ′d.
Observe that we have N ′ ⊆ N (0). Let P0 be a subset of suppB(wt) such that

• for every k ∈ N, σ ∈ (Σ ∪ N)(k), (A1, . . . , Ak) ∈ (N0)k, and A ∈ N0, if the
production p = (σ(A1, . . . , Ak) → A) is in suppB(wt), σ ∈ (Σ ∪ (N \ N0) ∪ N ′),
(A1, . . . , Ak) ∈ (N ′)k, and A ∈ N ′, then we put p in P0,

• for every A,B ∈ N0, if the production p = (A → B) is in suppB(wt), and both
A and B are in N ′, then we put p in P0, and

• for every A ∈ N0, k ∈ N, σ ∈ (Σ∪N)(k), and (A1, . . . , Ak) ∈ (N0)k, if the produc-
tion p = (A→ σ(A1, . . . , Ak)) is in suppB(wt), A ∈ N ′, σ ∈ (Σ ∪ (N \N0) ∪N ′),
and (A1, . . . , Ak) ∈ (N ′)k, then we put p in P0.

We define N̂ = {A ∈ N | (∃p ∈ P0) : A occurs in lhs(p) or in rhs(p)}, i.e., N̂ consists
of all the nonterminals occurring in the left-hand side or in the right-hand side of
the productions in P0. Then we consider the ranked subset (N̂ , rkN̂) of (N, rkN).
Now we can construct the Σ-tgrs S0 = (N̂ , Z0, P0). Moreover, we can construct the
(Σ,B)-wtgrs S ′ = (S0, wt0, X), where wt0(p) = wt(p) for each p ∈ P0. Note that, since
G′ is reduced, the wtgrs S ′ is r-reduced.

It follows from our construction that, for each ζ ∈ TΣ, we have
Reds

S(ζ) = Reds
S′(ζ). Furthermore, for every ζ ∈ TΣ and r ∈ Reds

S(ζ), we have
wtS(r) = wtS′(r). Thus, for each ζ ∈ TΣ, we can compute as follows:

[[S]](ζ) =
∑⊕

r∈Reds
S(ζ)

wtS(r)⊗XZ0 =
∑⊕

r∈Reds
S′ (ζ)

wtS′(r)⊗XZ0 = [[S ′]](ζ) .

This concludes our proof.

Our example shows an application of Lemma 4.3.13.

Example 4.3.14. Let Σ = {σ(2), α(0)}. We consider the Σ-tgrs

S = ({A(3), B(0), C(0)}, {C}, { A(B,B,B)→ B , α→ B , σ(B,B)→ B }) .

Then we construct the (Σ,MinPlus)-wtgrs S = (S,wt,X) such that wt(α → B) = 0,
wt(σ(B,B) → B) = 2, wt(A(B,B,B) → B) = 3, and X(C) = 1. Evidently, S has a
single nonterminal axiom, and it is simple. Moreover, since, for each ζ ∈ TΣ, the set
Reds

S(ζ) = ∅, the wtgrs S is finite-reductional.
Evidently, the nonterminal B is not r-useful, i.e., S is not r-reduced. There-

fore, by following the proof of Lemma 4.3.13, we can construct a (Σ,MinPlus)-wtgrs

4.3 Weighted tree generating regular systems 63

S ′ = (({C(0)}, {C}, ∅), wt′, X) with wt′ : ∅ → B. Clearly, S ′ r-reduced, and by
Lemma 4.3.13, it is r-equivalent to S. 4

Let S = (S,wt,X) be a (Σ,B)-wtgrs with S = (N,Z, P). We say that S has nullary
nonterminal axioms if Z ⊆ N (0). Obviously, if S has a single nonterminal axiom, then
S has nullary nonterminal axioms.

Lemma 4.3.15. cf. [4, Lm. 16] Let S be a (Σ,B)-wtgrs such that S has nullary
nonterminal axioms and it is contracting. Then S is finite-reductional.

Proof. Let S = (S,wt,X) with S = (N,Z, P). We first prove, by induction on the
structure of ζ, the following statement:

for every ζ ∈ TΣ and A ∈ N (0), the set RedS(ζ, A) is finite . (4.12)

Induction base: Then we have ζ = α for some α ∈ Σ(0). Furthermore, since S is
contracting, RedS(α,A) ⊆ {(α→ A)}, i.e., the set RedS(α,A) is finite as required.

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ζ1, . . . , ζk ∈ TΣ such that
ζ = σ(ζ1, . . . , ζk). By I.H., for each i ∈ [k] and each Ai ∈ N (0), the set RedS(ζi, Ai) is
finite. Thus, we have

|RedS(ζ, A)| ≤
∑

A1,...,Ak∈N(0)

(
|RedS(ζ1, A1)| · . . . · |RedS(ζk, Ak)|

)
.

This completes the proof of (4.12). Let ζ ∈ TΣ. Then, since S has nullary nonterminal
axioms, we have Reds

S(ζ) ⊆ RedS(ζ) =
⋃
A∈Z RedS(ζ, A). Moreover, by (4.12), for

each A ∈ Z, the set RedS(ζ, A) is finite. Consequently, Reds
S(ζ) is finite, i.e., S is

finite-reductional as desired.

Lemma 4.3.16. [4, Lm. 30] Let B be a semiring and S be a (Σ,B)-wtgrs such that S
is finite-reductional or B is complete.

1. There exists a (Σ,B)-wtgrs S ′ such that S ′ has a single nonterminal axiom, and
it is contracting and r-equivalent to S.

2. If, in addition, B is computable and S is finite-reductional, then we can con-
struct S ′.

Proof. We first prove Statement 1. If S already has a single nonterminal axiom, then
we proceed; otherwise, by Lemma 4.3.5, we may assume that. Similarly, if S is
already simple, then we continue; otherwise, by Lemma 4.3.7, we may assume that.
If S is already contracting, then we set S ′ = S, and we are done. Otherwise, we
proceed as follows.

By Lemma 4.3.13, we may assume that S is r-reduced. Let S = (Sr, wt,X) with
Sr = (N,Z0, P). If we have (a) suppB(wt) = ∅ or (b) suppB(X) = ∅, then, by the proof
of Lemma 4.3.13, we have P = ∅, i.e., S is contracting, and thus, we set S ′ = S, and

64 Weighted tree generating regular systems

we are done. Hence, we may assume that neither Assumption (a) nor Assumption (b)
holds true. Firstly, by applying Lemma 4.2.17 to Sr, we can construct the Σ-tgrs S ′r
such that also S ′r has a single nonterminal axiom, and furthermore, it is contracting
and r-equivalent to Sr. As already mentioned in the proof of Lemma 4.2.17, to obtain
S ′r we apply Construction 4.2.16 to Sr. Thus, by following the denotations of Con-
struction 4.2.16 and the denotations of Lemma 4.2.17, we have S ′r = (N,Z0, rel(P ′d)).
Next we can construct the (Σ,B)-wtgrs S ′ = (S ′r, wt

′, X) such that wt′ is defined as
follows:

for every k ∈ N, σ ∈ Σ(k), (A1, . . . , Ak) ∈ (N (0))k, and A ∈ N (0):

if the production p = (σ(A1, . . . , Ak)→ A) is in rel(P ′d) ,

then we set wt′(p) =
∑⊕

r∈Redv
S(σ(A1,...,Ak),A)

wtS(r) .
(4.13)

Obviously, since S ′r has a single nonterminal axiom and it is contracting, also S ′
has these properties. Moreover, since S ′ has a single nonterminal axiom, i.e., it has
nullary nonterminal axioms, by Lemma 4.3.15 , S ′ is finite-reductional regardless of
whether S is finite-reductional or not. Next we prove, by induction on the structure
of ζ, the following statement:

for every ζ ∈ TΣ and A ∈ N (0) :

we have
∑⊕

r∈Redv
S(ζ,A)

wtS(r) =
∑⊕

r′∈Redv
S′ (ζ,A)

wtS′(r
′) . (4.14)

Induction base: Clearly, there exists α ∈ Σ(0) such that ζ = α. Then, by the proof of
Lemma 4.2.17, we have RedS(α,A) 6= ∅ iff (α→ A) ∈ rel(P ′d). If RedS(α,A) = ∅ and
(α→ A) 6∈ rel(P ′d), then, respectively, we have(∑⊕

r∈Redv
S(α,A)

wtS(r)
)

= 0 and
(∑⊕

r′∈Redv
S′ (α,A)

wtS′(r
′)
)

= 0 ,

where the latter follows from the fact that S ′ is contracting, i.e., RedS′(α,A) = ∅.
Consequently, our statement holds true. Now assume that we have RedS(α,A) 6= ∅
and (α→ A) ∈ rel(P ′d). Then we have∑⊕

r∈Redv
S(α,A)

wtS(r) = wt′(α→ A) =
∑⊕

r′∈Redv
S′ (α,A)

wtS′(r
′) ,

where the first equality is due to (4.13), and the second one follows from the fact
that S ′ is contracting.

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ζ1, . . . , ζk ∈ TΣ such that

4.3 Weighted tree generating regular systems 65

ζ = σ(ζ1, . . . , ζk). By the proof of Lemma 4.2.17, for every A1, . . . , Ak ∈ N (0), we have
RedS(σ(A1, . . . , Ak), A) 6= ∅ iff (σ(A1, . . . , Ak) → A) ∈ rel(P ′d). Moreover, by I.H., for
each i ∈ [k], and each Ai ∈ N (0), we have Redv

S(ζi, Ai) 6= ∅ iff Redv
S′(ζi, Ai) 6= ∅, and∑⊕

ri∈Redv
S(ζi,Ai)

wtS(ri) =
∑⊕

r′i∈Redv
S′ (ζi,Ai)

wtS′(r
′
i) .

Thus, we can compute as follows:∑⊕

r∈Redv
S(ζ,A)

wtS(r)

=
∑⊕

(A1,...,Ak)∈(N(0))k

∀i∈[k]:ri∈Redv
S(ζi,Ai)

r∈Redv
S(σ(A1,...,Ak),A)

((k⊗
i=1

wtS(ri)
)
⊗ wtS(r)

)

=
⊕

(A1,...,Ak)∈(N(0))k

(k⊗
i=1

(∑⊕

ri∈Redv
S(ζi,Ai)

wtS(ri)
)
⊗

∑⊕

r∈Redv
S(σ(A1,...,Ak),A)

wtS(r)
)

=
⊕

(A1,...,Ak)∈(N(0))k

(k⊗
i=1

(∑⊕

r′i∈Redv
S′ (ζi,Ai)

wtS′(r
′
i)
)
⊗ wt′(σ(A1, . . . , Ak)→ A)

)

=
∑⊕

(A1,...,Ak)∈(N(0))k

∀i∈[k]:r′i∈Redv
S′ (ζi,Ai)

(k⊗
i=1

(
wtS′(r

′
i)
)
⊗ wt′(σ(A1, . . . , Ak)→ A)

)

=
∑⊕

r′∈Redv
S′ (ζ,A)

wtS′(r
′) ,

where the second and the last but one equalities follow from the fact that B is a
semiring; and third equality is due to I.H. and (4.13). This completes the proof of
(4.14). Finally, for each ζ ∈ TΣ, we can compute as follows:

[[S]](ζ) =
∑⊕

r∈Reds
S(ζ)

wtS(r)⊗XZ0 =
∑⊕

r′∈Reds
S′ (ζ)

wtS′(r
′)⊗XZ0 = [[S ′]](ζ) ,

where the second equality is due to (4.14) and the fact that B is a semiring. This
concludes the proof of Statement 1. Now we show that also Statement 2 holds true.
We first prove, by contradiction, the following statement:

for every k ∈ N, σ ∈ Σ(k), (A1, . . . , Ak) ∈ (N (0))k, and A ∈ N (0) ,

the set Redv
S(σ(A1, . . . , Ak), A) is finite .

(4.15)

66 Weighted tree generating regular systems

Note that, by Construction 4.2.16, we have

RedS(σ(A1, . . . , Ak), A) 6= ∅ iff (σ(A1, . . . , Ak)→ A) ∈ rel(P ′d) .

Moreover, recall that we have suppB(wt) = ∅ and suppB(X) 6= ∅. Moreover, let
ζ ∈ TΣ. Then we have

Reds
S′(ζ, Z0) 6= ∅

iff there exists r′ = (p1 · · · pn) ∈ Redv
S′(ζ, Z0) with n ∈ N+ and pi ∈ suppB(wt′)

for each i ∈ [n]

iff there exists r = (r1 · · · rn) ∈ Redv
S(ζ, Z0) with n ∈ N+ and

ri ∈ Redv
S(lhs(pi), rhs(pi)) for some pi ∈ suppB(wt′) for each i ∈ [n]

iff Reds
S(ζ, Z0) 6= ∅ .

Hence, if there exists i ∈ [n] such that the set Redv
S(lhs(pi), rhs(pi)) is not finite, then

S is not finite-reductional. It is a contradiction. This completes the proof of (4.15).
Moreover, since B is computable, for each production σ(A1, . . . , Ak) → A, we can
compute wt′(σ(A1, . . . , Ak)→ A) in (4.13). Thus, we can construct the wtgrs S ′.

The following example shows an application of Lemma 4.3.16.

Example 4.3.17. [4, Ex. 31] Let Σ = {σ(2), α(0)}. Note that the semiring
MinPlus given in Example 2.4.6(5) is computable and complete. We consider the
(Σ,MinPlus)-wtgrs S ′′r constructed in Example 4.3.10. Obviously, S ′′r has a single
nonterminal axiom and it is simple; however, it is not contracting. For this, we fol-
low the proof of Lemma 4.3.16. Observe that S ′′r is r-reduced (cf. Example 4.3.11).
Firstly, by Lemma 4.2.17, we can construct a Σ-tgrs S ′′′r such that also S ′′′r has a single
nonterminal axiom, and furthermore, it is contracting and r-equivalent to S ′′r (cf. Ex-
ample 4.2.18). Next, to compute the weights of productions of S ′′′r in S ′′′r , we consider
the following reduction of S ′′r , where we use a left brace to show three different ways
to finish that reduction:

σ(F2,ε, F2,ε)
p′2,0,ε⇒S′′r ,dp σ(E2,ε, F2,ε)

p′2,1,ε⇒S′′r ,dp σ(α, F2,ε)
p′2,−1,1⇒S′′r ,dp σ(F2,1, F2,ε)

p′2,0,ε⇒S′′r ,dp σ(F2,1, E2,ε)
p′2,1,ε⇒S′′r ,dp σ(F2,1, α)

p′2,−1,2⇒S′′r ,dp σ(F2,1, F2,2)

p′2,−1,ε⇒S′′r ,dp F2,ε

p′2,0,ε⇒S′′r ,dp E2,ε

p′2,1,ε⇒S′′r ,dp α


p′2,−1,1⇒S′′r ,dp F2,1

p′2,−1,2⇒S′′r ,dp F2,2

p′1,−1,ε⇒S′′r ,dp F1,ε

p′1,0,ε⇒S′′r ,dp E1,ε

p′1,1,ε⇒S′′r ,dp Z0 .

4.4 Equivalence of wta and wtgrs 67

Recall that we have wt′(p′2,0,ε) = 1 and every other production of S ′′r has weight 0 in
S ′′r . Then we can construct the (Σ,MinPlus)-wtgrs S ′′′r = (S ′′′r , wt

′′, X ′) such that
• for each production p = (σ(A1, A2) → A) with A1 ∈ {F2,1, E2,ε},
A2 ∈ {F2,2, E2,ε}, we set wt′′(p) = 1 if A ∈ (N ′′ \ {F2,ε}), and wt′′(p) = 0 other-
wise;

• for each production p = (σ(A1, A2) → A) such that the pair (A1, A2) is in
the set {(F2,ε, F2,2), (F2,1, F2,ε), (E2,ε, F2,ε), (F2,ε, E2,ε)}, we set wt′′(p) = 2 if
A ∈ (N ′′ \ {F2,ε}), and wt′′(p) = 1 otherwise; and

• for each production p = (σ(F2,ε, F2,ε) → A), we set wt′′(p) = 3 if
A ∈ (N ′′ \ {F2,ε}), and wt′′(p) = 2 otherwise; and

• for each production p = (α→ A) with A ∈ (N ′′\{E2,ε, F2,ε}), we set wt′′(p) = 0.
Evidently, S ′′′r has a single nonterminal axiom and it is contracting. Recall that, by
Lemma 4.3.15, it is finite-reductional. Finally, by Lemma 4.3.16, it is r-equivalent
to S ′′r . 4

4.4 Equivalence of wta and wtgrs

In this section we first define another normal form for wtgrs and prove a correspond-
ing form lemma (cf. Lemma 4.4.1). This normal form is crucial to prove the equiva-
lence of wta and wtgrs. Moreover, we show that, if a wta and a wtgrs are related (cf.
Definition 4.4.3), then their semantics coincide (cf. Lemma 4.4.4). Finally, we show
that a weighted tree language is recognizable iff it is r-generated (cf. Theorem 4.4.5).

For each (Σ,B)-wtgrs S = (S,wt,X) with S = (N,Z, P), we say that S is (con-
tracting) production complete [4] if, for every k ∈ N, σ ∈ Σ(k), (A1, . . . , Ak) ∈ (N (0))k,
and A ∈ N (0), the production σ(A1, . . . , Ak)→ A is in P .

Lemma 4.4.1. cf. [4, Lm. 32] Let S be a (Σ,B)-wtgrs such that S has nullary non-
terminal axioms and it is contracting. We can construct a (Σ,B)-wtgrs S ′ such that
also S ′ has nullary nonterminal axioms and it is contracting, and furthermore, it is
production complete and r-equivalent to S.

Proof. If S is already production complete, then we let S ′ = S, and we are done.
Otherwise, we proceed as follows. Let S = (S,wt,X) with S = (N,Z, P). Then
we construct the (Σ,B)-wtgrs S ′ = (S ′, wt′, X) with S ′ = (N,Z, P ′) such that,
for every k ∈ N, σ ∈ Σ(k), (A1, . . . , Ak) ∈ (N (0))k, and A ∈ N (0), we put the
production p = (σ(A1, . . . , Ak)→ A) in P ′, and set wt′(p) = wt(p) if p ∈ P , and
wt′(p) = 0 otherwise. Evidently, S ′ has nullary nonterminal axioms and it is contract-
ing. Now let ζ ∈ TΣ. Finally, since each production in P ′ \ P has weight 0, we have
Reds

S(ζ) = Reds
S′(ζ), and furthermore, wtS(r) = wtS′(r) for each r ∈ Reds

S(ζ). Thus,
we have [[S]](ζ) = [[S ′]](ζ).

68 Weighted tree generating regular systems

Next we show an application of Lemma 4.4.1.

Example 4.4.2. Let Σ = {σ(2), α(0)}. We consider the (Σ,MinPlus)-wtgrs S ′′′r con-
structed in Example 4.3.17. Recall that S ′′′r has nullary nonterminal axioms and it is
contracting. Observe that S ′′′r is not production complete as σ(Z0, Z0) → Z0 is not a
production of the underlying tgrs of S ′′′r . However, by Lemma 4.4.1, we can construct
the (Σ,MinPlus)-wtgrs S ′′′′r such that S ′′′′r has nullary nonterminal axioms and it is
contracting, and furthermore, it is production complete and r-equivalent to S ′′′r . 4

Now we explain when we say that a wta and a wtgrs are related.

Definition 4.4.3. Let A = (Q, δ, F) be a (Σ,B)-wta. Moreover, let S = (S,wt,X) be
a (Σ,B)-wtgrs with S = (N,Z, P) such that S has nullary nonterminal axioms and
it is contracting and production complete. We say that A and S are related if the
following conditions are satisfied:

• Q = N = N (0),
• Z = suppB(F),
• P = {σ(w)→ q | k ∈ N, σ ∈ Σ(k), w ∈ Qk, q ∈ Q},
• wt(σ(w)→ q) = δk(w, σ, q) for every k ∈ N, σ ∈ Σ(k), w ∈ Qk, and q ∈ Q, and
• X = F |Z .

4

Clearly, for each (Σ,B)-wta A, there is exactly one (Σ,B)-wtgrs S such that A and
S are related. We denote this S also by rel(A). Also, vice versa, for each contracting
and production complete (Σ,B)-wtgrs S such that S has nullary nonterminal axioms,
there is exactly one (Σ,B)-wta A such that A and S are related. We denote this A
also by rel(S).

Lemma 4.4.4. [4, Lm. 33] Let A be a (Σ,B)-wta and S be a (Σ,B)-wtgrs such that
A and S are related. Then we have [[A]] = [[S]].

Proof. Since A and S are related, conditions of Definition 4.4.3 are satisfied. Hence,
we use the denotations of Definition 4.4.3.

For every ξ = σ(ξ1, . . . , ξk) with k ∈ N, σ ∈ Σ(k), and (ξ1, . . . , ξk) ∈ Tk
Σ, and q ∈ Q,

we define the mapping ϕξ,q : Runv
A(q, ξ) → Redv

S(ξ, q), for each ρ ∈ Runv
A(q, ξ), as

follows: by assuming that qi = ϕ(i) for each i ∈ [k] we set

ϕξ,q(ρ) = ϕξ1,q1(ρ|1) · · ·ϕξk,qk(ρ|k)(σ(q1, . . . , qk)→ q) .

Next we show properties of the mapping ϕξ,q. Firstly, we prove, by induction on the
structure of ξ, the following statement:

for every ξ ∈ TΣ, q ∈ Q, and ρ ∈ Runv
A(q, ξ) :

we have wtA(ξ, ρ) = wtS(ϕξ,q(ρ)) .
(4.16)

4.4 Equivalence of wta and wtgrs 69

Induction base: Then there exists α ∈ Σ(0) such that ξ = α. Obviously, we have
ρ = (ε 7→ q) and ϕα,q(ρ) = (α→ q). Hence, we can calculate as follows:

wtA(α, ρ) = δ0(ε, α, q) = wt(α→ q) = wtS(ϕα,q(ρ)) ,

where the second equality follows from the fact that A and S are related (cf. Defini-
tion 4.4.3).

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ such that
ξ = σ(ξ1, . . . , ξk). For each i ∈ [k], let qi = ρ(i). Since A and S are related, by the
definition of ϕξ,q, the production p = (σ(q1 · · · qk) → q) is in P , and furthermore, for
each i ∈ [k], there exists ri ∈ Redv

S(ξi, qi) such that ϕξi,qi(ρ|i) = ri. Thus, we can
calculate as follows:

wtA(ξ, ρ) =
(k⊗

i=1

wtA(ξi, ρ|i)
)
⊗ δk(q1 · · · qk, σ, q)

=
(k⊗

i=1

wtS(ϕξi,qi(ρ|i))
)
⊗ wt(p) = wtS(ϕξ,q(ρ)) ,

where the second equality is due to I.H. and the fact that we have
δk(q1 · · · qk, σ, q) = wt(p) (cf. Definition 4.4.3). This finishes the proof of (4.16). Next
we prove, also by induction on the structure of ξ, the following statement:

for every ξ ∈ TΣ and q ∈ Q, the mapping ϕξ,q is injective . (4.17)

Induction base: Then there exists α ∈ Σ(0) such that ξ = α. Note that we have
Runv

A(q, α) ⊆ {ε 7→ q}. Clearly, since |Runv
A(q, α)| ≤ 1, the mapping ϕα,q is injective.

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ such that
ξ = σ(ξ1, . . . , ξk). Obviously, if |Runv

A(q, ξ)| ≤ 1, then ϕξ,q is injective. Hence, assume
that |Runv

A(q, ξ)| > 1. Let ρ1, ρ2 ∈ Runv
A(q, ξ) such that ρ1 6= ρ2. Then there exists

v ∈ (pos(ξ) \ {ε}) such that ρ1(v) 6= ρ2(v). We proceed by case analysis. If v = i

for some i ∈ [k], then (ρ1(1) · · · ρ1(k)) 6= (ρ2(1) · · · ρ2(k)), i.e., ϕξ,q is injective. Oth-
erwise, i.e., if v = iv′ for some i ∈ [k] and v′ ∈ (pos(ξi) \ {ε}), then, since we have
ϕξi,ρ1(i) = ϕξi,ρ2(i), and ϕξi,ρ1(i) is injective, we have ϕξi,ρ1(i)(ρ1|i) 6= ϕξi,ρ1(i)(ρ2|i), and
thus, ϕξ,q(ρ1) 6= ϕξ,q(ρ2). This completes the proof of (4.17). Now we prove, also by
induction on the structure of ξ, the following statement:

for every ξ ∈ TΣ and q ∈ Q, the mapping ϕξ,q is surjective . (4.18)

Induction base: Then ξ = α for some α ∈ Σ(0). Since S is contracting, we have
Redv

S(α, q) ⊆ {α → q}. If Redv
S(α, q) = ∅, then, since A and S are related, we also

have Redv
A(q, α) = ∅. Otherwise, i.e., if Redv

S(α, q) = {α → q}, then the production

70 Weighted tree generating regular systems

p = (α→ q) is in P with wt(p) 6= 0. SinceA and S are related, we have δ0(ε, α, q) 6= 0
(cf. Definition 4.4.3), and thus, we have Runv

A(q, α) = {ε 7→ q}. More precisely, we
have ϕα,q(ε 7→ q) = (α→ q) as desired.

Induction step: Then ξ = σ(ξ1, . . . , ξk) for some k ∈ N+, σ ∈ Σ(k), and
ξ1, . . . , ξk ∈ TΣ. Similarly, if Redv

S(ξ, q) = ∅, then, since A and S are related, by
I.H., we have Runv

A(q, ξ) = ∅. Hence, we may assume that Redv
S(ξ, q) 6= ∅. Let

r ∈ Redv
S(ξ, q). Since S is contracting, there exist qi ∈ Q and ri ∈ Redv

S(ξi, qi) for each
i ∈ [k] such that the production p = (σ(q1, . . . , qk) → q) is in P with wt(p) 6= 0 and
r = r1 · · · rkp, i.e., we have

ξ = σ(ξ1, . . . , ξk)
r1⇒S,dp · · ·

rk⇒S,dp σ(q1, . . . , qk)
p⇒S,dp q .

Then, by I.H., for each i ∈ [k], there exists ρi ∈ Runv
A(qi, ξi) such that ϕξi,qi(ρi) = ri.

Furthermore, since A and S are related, we have δk(q1 · · · qk, σ, q) 6= 0 (cf. Defini-
tion 4.4.3). Thus, we can consider the run ρ ∈ Runv

A(q, ξ) such that ρ|i = ρi for each
i ∈ [k]. Obviously, we have ϕξ,q(ρ) = r. This completes the proof of (4.18). Moreover,
this concludes the proofs of the properties of the mapping ϕξ,q. Finally, since A and
S are related (cf. Definition 4.4.3), for each ξ ∈ TΣ, we can calculate as follows:

[[A]](ξ) =
⊕

ρ∈Runa
A(ξ)

wtA(ξ, ρ)⊗ Fρ(ε) =
⊕
q∈Z

⊕
ρ∈Runv

A(q,ξ)

wtA(ξ, ρ)⊗ Fq

=
⊕
q∈Z

⊕
ρ∈Runv

A(q,ξ)

wtS(ϕξ,q(ρ))⊗Xq =
⊕
q∈Z

⊕
r∈Redv

S(ξ,q)

wtS(r)⊗Xq

=
⊕

r∈Reds
S(ξ)

wtS(r)⊗X⇒
r

= [[S]](ξ) ,

where the third equality is due to (4.16); and the fourth one follows from the fact
that the mapping ϕξ,q is a bijection between the sets Runv

A(q, ξ) and Redv
S(ξ, q) by

(4.17) and (4.18).

In the following theorem we prove the equivalence of wta and wtgrs.

Theorem 4.4.5. cf. [4, Thm. 34] Let Σ be a ranked alphabet such that Σ(0) 6= ∅.
Then, for every semiring B and (Σ,B)-weighted tree language ψ, the following
statements hold true.

1. If B is complete, then ψ is recognizable iff it is r-generated.
2. If B is computable, then we can construct a (Σ,B)-wta A such that [[A]] = ψ

iff we can construct a finite-reductional (Σ,B)-wtgrs S such that [[S]] = ψ.

Proof. We first prove Statement 1. Assume that ψ is recognizable. Then there exists
a (Σ,B)-wta A such that [[A]] = ψ. Moreover, we can construct the (Σ,B)-wtgrs

4.4 Equivalence of wta and wtgrs 71

rel(A) such that A and rel(A) are related. Recall that, by Definition 4.4.3, rel(A) has
nullary nonterminal axioms and it is contracting. Thus, by Lemma 4.3.15, rel(A) is
finite-reductional. Finally, since A and rel(A) are related, by Lemma 4.4.4, we have
[[rel(A)]] = [[A]] = ψ, i.e., ψ is r-generated.

Now we prove the other direction. Assume that ψ is r-generated. Then there
exists a (Σ,B)-wtgrs S such that [[S]] = ψ. Firstly, by Lemma 4.3.5, we can construct
a (Σ,B)-wtgrs S ′ such that S ′ has a single nonterminal axiom and it is r-equivalent
to S ′. Moreover, if S is finite-reductional, then S ′ is so. Hence, we may assume that
S has a single nonterminal axiom.

By Lemma 4.3.7, we can construct a (Σ,B)-wtgrs S ′ such that S ′ is simple and
r-equivalent to S. Since S has a single nonterminal axiom, S ′ also has that. Fur-
thermore, if S is finite-reductional, then S ′ is so. Thus, we may assume that S has a
single nonterminal axiom and it is simple.

By Lemma 4.3.16(1), there exists a (Σ,B)-wtgrs S ′ such that S ′ has a single non-
terminal axiom, and furthermore, it is contracting and r-equivalent to S. (Observe
that, by Lemma 4.3.15, S ′ is finite-reductional.) Therefore, we may assume that S
has a single nonterminal axiom, and it is contracting and finite-reductional.

By Lemma 4.4.1, we can construct a (Σ,B)-wtgrs S ′ such that S ′ is contracting,
and furthermore, it is production complete and r-equivalent to S. Since S has a
single nonterminal axiom, S ′ has nullary nonterminal axioms. Moreover, since S is
finite-reductional, by the proof of Lemma 4.4.1, S ′ is so. Therefore, we may assume
that S has nullary nonterminal axioms, and it is contracting, finite-reductional, and
production complete.

Lastly, we can construct the (Σ,B)-wta rel(S) such that rel(S) and S are related.
Then, by Lemma 4.4.4, we have [[rel(S)]] = [[S]] = ψ, i.e., ψ is recognizable. This
concludes the proof of Statement 1.

Now we prove Statement 2. Note that it can be proven in a similar way as State-
ment 1. Hence, in order to avoid repetitions, here we consider the proof of State-
ment 1, and address only the differences. In fact, to prove Statement 2, in the proof
of Statement 1 we replace the expression “there exists” by the expression “we can
construct” three times as follows. Evidently, both of the parts “Assume that ψ is rec-
ognizable. Then there exists a (Σ,B)-wta A such that [[A]] = ψ.” and “Assume that ψ
is r-generated. Then there exists a (Σ,B)-wtgrs S such that [[S]] = ψ.” can be replaced
by the sentences “We can construct a (Σ,B)-wta A such that [[A]] = ψ.” and “We can
construct a finite-reductional (Σ,B)-wtgrs S such that [[S]] = ψ.”, respectively (cf.
the conditions of Statement 2). Finally, in case of Statement 2 the wtgrs S is finite-
reductional, and thus, in case of the application of Lemma 4.3.16, we can replace
the expression “there exists” by “can construct” if we extend Lemma 4.3.16(1) with
Lemma 4.3.16(2). This finishes the proof of Statement 2.

In the following example, we show two applications of Theorem 4.4.5. Note that

72 Weighted tree generating regular systems

the semiring MinPlus given in Example 2.4.6(5) is both complete and computable.

Example 4.4.6. [4, Ex. 35] Let Σ = {σ(2), α(0)}. We consider the (Σ,MinPlus)-wta
Aσ constructed in Example 3.1.5. Recall that we have [[Aσ]] = #σ, where #σ is the
(Σ,MinPlus)-weighted tree language shown in Example 3.1.2.

Then we can construct the (Σ,MinPlus)-wtgrs Sσ = (Sσ, wt,X) with the Σ-tgrs
Sσ = ({q(0)}, {q}, { σ(qq) → q , α → q }), and weights wt(σ(qq) → q) = 1 and
wt(α → q) = Xq = 0. Obviously, Sσ has a single nonterminal axiom, and it is
contracting, finite-reductional, and production complete. Moreover, since Aσ and Sσ
are related, by Lemma 4.4.4, we have [[Sσ]] = [[Aσ]]. 4

Example 4.4.7. [4, Ex. 36] Let Σ = {σ(2), α(0)}. We consider the (Σ,MinPlus)-wtgrs
S ′′′′r shown in Example 4.4.2. Recall that S ′′′r has nullary nonterminal axioms, it is
contracting, finite-reductional, and production complete. Also, recall that we have
[[S ′′′′r]] = #σ, where #σ is the (Σ,MinPlus)-weighted tree language given in Exam-
ple 3.1.2. Now we can construct the (Σ,MinPlus)-wta A = (N ′′, δ, F) such that

• for every A1 ∈ {F2,1, E2,ε} and A2 ∈ {F2,2, E2,ε}, we set δ2(A1A2, σ, F2,ε) = 0 and
δ2(A1A2, σ, A) = 1 for each A ∈ (N ′′ \ {F2,ε}),

• for each pair (A1, A2) ∈ {(F2,ε, F2,2), (F2,1, F2,ε), (E2,ε, F2,ε), (F2,ε, E2,ε)}, we set
δ2(A1A2, σ, F2,ε) = 1 and δ2(A1A2, σ, A) = 2 for each A ∈ (N ′′ \ {F2,ε}),

• δ2(F2,ε, F2,ε, σ, F2,ε) = 2 and δ2(F2,ε, F2,ε, σ, A) = 3 for each A ∈ (N ′′ \ {F2,ε}),
• for each A ∈ (N ′′ \ {E2,ε, F2,ε}), we set δ0(ε, α,A) = 0, and
• every other transition has weight −∞.

Finally, since A and S ′′′′r are related, by Lemma 4.4.4, we have [[A]] = [[S ′′′r]]. 4

Chapter conclusion. The author of this PhD thesis declares that Theorems 4.2.8,
4.3.4, and 4.4.5 are due to his own work, and those results are published in [4].

Chapter 5

Crisp-determinization of wta

We organize this chapter in the following way. In Section 5.1 we explain why it is
worth to study crisp-deterministic wta. In Section 5.2 we introduce the notion of
crisp-deterministic wta, define the crisp-determinization problem, and give a suffi-
cient condition for wta to be crisp-determinizable. In Section 5.3 we present two
undecidability results related to the crisp-determinization problem. We first show
that, in general, it is undecidable whether an arbitrary wta satisfies our sufficient
condition or not. Then we go one step further and prove that it is also undecid-
able whether an arbitrary wta is crisp-determinizable or not. In Section 5.4 we give
positive decidability results as we identify two subclasses of wta, for which the crisp-
determinization problem is decidable. Finally, in Section 5.5, we show that each of
our undecidability and decidability results holds for weighted string automata.

5.1 The problem

A crisp-deterministic wta A over B has several desirable properties such as [[A]] has a
finite image (called finite-image property) or, for each b ∈ B, the set of all trees with
weight b under [[A]] is a recognizable tree language (called preimage property). In fact,
the class of all crisp-deterministic wta can be characterized using only those two prop-
erties cf. Lemma 5.3.9 (see also [30, 3]). For further properties of crisp-deterministic
wta we refer to [42]. Moreover, it is worth to study crisp-deterministic wta also for
the following reason. Fuzzy automata, languages, and grammars have been of inter-
est for a long time e.g. [17, 37, 56]; for a survey we refer to [67]. The underlying
weight structure of these formal models is some bounded lattice. Recall that, each
bounded lattice is a bi-locally finite strong bimonoid (cf. Section 2.4). In Section 5.2
we show that each wta over a bi-locally finite strong bimonoid satisfies our sufficient
condition to be crisp-determinizable, i.e., advantages of crisp-deterministic wta are
available when we investigate such fuzzy formal models.

Fortunately, there are subclasses of all wta for which the crisp-determinization

73

74 Crisp-determinization of wta

problem is solved positively [21, 30]. However, in those identified subclasses there
are only wta over string ranked alphabets, i.e., weighted string automata (for short:
wsa) cf. [42, Lm. 3.3.3]. One of our aims is to extend some of those positive results
to further subclasses of all wta.

Moreover, we deal with decidability questions related to the crisp-determinization
problem. In the literature there are some promising partial results regarding the
undecidability (decidability) of crisp-determinization. These results justify the rele-
vance of such questions, and create a solid base for further investigations. For in-
stance, each wsa over a finite semiring and over the semiring Nat of natural numbers
(cf. Example 2.4.6(2)) has the preimage property, and each wsa over a commuta-
tive ring which has the finite-image property also has the preimage property [11,
31, 61]. Furthermore, for each wsa over any subsemiring of the rational numbers,
the finite-image property is decidable [63] (also cf. the classical Burnside property
for semigroups [68]). Keeping in mind these existing partial results, our other aim
is to prove undecidability (decidability) results related to the crisp-determinization
problem. For this, in this chapter we consider selected results presented in [1–3].

5.2 A sufficient condition for crisp-determinization

In this section we give a straightforward generalization of the results given in [21,
Sect. 8] from strings to trees. Firstly, we generalize the concept of crisp-deterministic
wsa to wta, and introduce the concept of the finite-order property of wta. Inter-
estingly, if a (Σ,B)-wta A has finite order, then A is crisp-determinizable (cf. The-
orem 5.2.8). If, in addition, B is computable, then we can even construct a crisp-
deterministic (Σ,B)-wta, which is equivalent to A (cf. Theorem 5.2.12).

For each b ∈ B, we say that b has finite additive order (in B) if the set

〈{b}〉{⊕} = {nb | n ∈ N}

is finite. Furthermore, for every B1, B2 ⊆ B, we define

B1 ⊗B2 = {b1 ⊗ b2 | b1 ∈ B1, b2 ∈ B2} .

Let A = (Q, δ, F) be a (Σ,B)-wta. We define im(δ) =
⋃
k∈N im(δk). Then we

say that A is crisp-deterministic [3, p. 9] (also cf. [21, Sect. 5]) if it is total and bu
deterministic, and im(δ) ⊆ {0, 1}. Furthermore, we say that A is crisp-determinizable
if there exists a crisp-deterministic (Σ,B)-wta A′ such that A′ is equivalent to A.

Let us abbreviate the notation 〈im(δ)〉{⊗} by DA. Then we say that A has finite
order (in B) if

• DA is finite and

5.2 A sufficient condition for crisp-determinization 75

• each b in DA ⊗ im(F) has finite additive order.
In particular, if B is bi-locally finite, then each (Σ,B)-wta has finite order.

In the following example we consider the three wta defined in Examples 3.1.4–
3.1.6, and, for each of them, we examine whether it has finite order or not.

Example 5.2.1. Clearly, for the (Σ,MaxPlus)-wta Amax given in Example 3.1.4, the
set DAmax = 〈{−∞, 0, 1}〉{+} = N−∞ is not finite, and thus, Amax does not have
finite order. Similarly, for the (Σ,MinPlus)-wta Aσ defined in Example 3.1.5, the set
DAσ = 〈{0, 1}〉{+} = N is not finite either, and hence, also Aσ does not have finite
order. However, the bounded lattice M3 shown in Example 2.4.7(2) is finite, hence
it is bi-locally finite. Thus the (Σ,M3)-wta Asplit given in Example 3.1.6 has finite
order. 4

Let A = (Q, δ, F) be a (Σ,B)-wta such that A has finite order. Then, for each
ξ ∈ TΣ and each ρ ∈ RunA(ξ), the element wt(ξ, ρ)⊗ Fρ(ε) is in DA ⊗ im(F). Hence,
[[A]](ξ) is a sum over the finite set DA ⊗ im(F). Actually, the fact that each element
in DA ⊗ im(F) has a finite additive order guarantees that any sum over DA ⊗ im(F)

is equal to a finite sum over this set. In the rest of this section we formalize that
phenomenon. For this, the following notions and results are necessary.

Lemma 5.2.2. Let B be computable and A = (Q, δ, F) be a (Σ,B)-wta such that A
has finite order. Then we can compute both DA and DA ⊗ im(F).

Proof. Since A has finite order, both of the sets DA and DA⊗ im(F) are finite. More-
over, since B is computable, for every b, b′ ∈ B, we can compute the product b⊗ b′.

Firstly, we prove that the set DA can be computed. For this, we let D0 = im(δ),
and Di+1 = Di∪(Di⊗ im(δ)) for each i ∈ N. Evidently, we have D0 ⊆ D1 ⊆ . . . ⊆ DA.
It is easy to see that

for each integer i ∈ N: if Di = Di+1, then Di+1 = Di+2 . (5.1)

Furthermore, it is obvious that

for every k ∈ N+ and b1, . . . , bk ∈ im(δ) : we have
(k⊗
j=1

bj

)
∈ Dk−1 .

Since DA is a finite set, we can find a least number i0 ∈ N such that Di0 = Di0+1,
and, by (5.1), we have Di0 = Di for each i ∈ N with i ≥ i0. Then it is easy to see that
we have DA = (

⋃i0
i=1 Di). Since we can compute the set (

⋃i0
i=1Di), the set DA can be

computed as well. Moreover, we can compute also the set DA ⊗ im(F).

Let b ∈ B such that b has finite additive order in B. Then there exists a least
number i ∈ N+ such that ib = (i + k)b for some k ∈ N+, and there exists a least

76 Crisp-determinization of wta

b 2b
. . .

idxB(b)b = (idxB(b) + prdB(b))b

· · ·
prdB(b)

idx(b)

Figure 5.1. Illustration of the index idxB(b) and the period prdB(b) of b in B (cf. [3,
Fig. 1])

number p ∈ N+ such that ib = (i + p)b. We call i and p the index (of b in B) and the
period (of b in B), respectively, and denote them by idxB(b) and prdB(b), respectively.
Moreover, we call idxB(b) + prdB(b)− 1, i.e., the number of elements of 〈{b}〉{⊕}, the
order (of b in B). Figure 5.1 illustrates the index and the period of b, where each
directed arrow means the addition of b.

For each finite subset K ⊆ N+, we denote the least common multiple of K by
lcm(K). Let A = (Q, δ, F) be a (Σ,B)-wta such that A has finite order. Then we
define the integers

idxA = max({idxB(b) ∈ N+ | b is in DA ⊗ im(F)}) and

prdA = lcm({prdB(b) ∈ N+ | b is in DA ⊗ im(F)}) .

Moreover, we define the mapping JA : N→ [0, idxA+ prdA−1], for each n ∈ N, by

JA(n) =

{
n if n < idxA

idxA+((n− idxA) mod prdA) if n ≥ idxA ,

where (n−idxA) mod prdA denotes the remainder when n−idxA is divided by prdA.
In the first case JA(n) < idxA, and in the second case idxA ≤ JA(n) ≤ idxA+ prdA−1,
and thus, JA is well defined. Note that in both cases n ≡prdA JA(n), where ≡prdA de-
notes the congruence relation on the semiring Nat given in Example 2.4.6(3) modulo
prdA. Moreover, for every n ∈ N and b ∈ (DA ⊗ im(F)), we have nb = JA(n)(b).

Lemma 5.2.3. Let B be computable, and A = (Q, δ, F) be a (Σ,B)-wta such that A
has finite order. Then we can compute the integers idxA and prdA.

Proof. By Lemma 5.2.2, we can compute the set DA⊗ im(F). Let b be in DA⊗ im(F).
Since B is computable, for each n ∈ N+, we can compute nb. Moreover, since b has
finite additive order, there exists a least number n0 in N+ \ {1} such that n0b = nb for
some n ∈ [n0 − 1]. Then we have idxB(b) = n and prdB(b) = n0 − n. Moreover, since
DA ⊗ im(F) is a finite set, we can compute the integers idxA and prdA.

5.2 A sufficient condition for crisp-determinization 77

Next, for each Σ-tree ξ, we define a partitioning of runs of A on ξ with respect to
the elements in Q ×DA. Formally, let A = (Q, δ, F) be a (Σ,B)-wta such that A has
finite order. Since DA is finite, the set Q × DA is also finite. For every ξ ∈ TΣ and
(q, b) in Q × DA, we define the set of all q-runs of A on ξ with weight b, denoted by
RunA(q, ξ, b), as the set

RunA(q, ξ, b) = {ρ ∈ RunA(q, ξ) | wt(ξ, ρ) = b} .

From now on, for each (Σ,B)-wta A, which has finite order, we denote the
set ([0, idxA+ prdA−1])(Q×DA) by FA.

Moreover, for each ξ ∈ TΣ, we define the mappings nξ ∈ (N(Q×DA)) and πξ ∈ FA, for
each (q, b) in Q×DA, by

nξ(q, b) = |RunA(q, ξ, b)| and πξ(q, b) = JA(nξ(q, b)) .

Lemma 5.2.4. Let B be computable and A be a (Σ,B)-wta such that A has finite
order. Then, for each ξ ∈ TΣ, we can compute the mappings nξ and πξ.

Proof. Let A = (Q, δ, F). Note that, for every ξ ∈ TΣ and q ∈ Q, since Q is a finite
set, also the set RunA(q, ξ) is finite and we can compute it. By Lemma 5.2.2, we can
compute the set DA, and thus, we can also compute the set Q × DA. Furthermore,
since B is computable, for every ξ ∈ TΣ and (q, b) in Q × DA, we can compute the
set RunA(q, ξ, b). Since Q × DA is finite, and the set RunA(q, ξ, b) can be computed
for every ξ ∈ TΣ and (q, b) in Q × DA, we can compute the mapping nξ. Moreover,
by Lemma 5.2.3, we can compute the integers idxA and prdA, and hence, for every
n ∈ N, the integer JA(n). Again, since Q×DA is finite set, we can also compute the
mapping πξ.

In the following definition, for each (Σ,B)-wta A = (Q, δ, F) such that A has
finite order, we give a (Σ,B)-wta A′ = (Q′, δ′, F ′) such that im(δ′) = {0, 1} and
im(F ′) = im([[A]]).

Definition 5.2.5. Let A = (Q, δ, F) be a (Σ,B)-wta such that A has finite order.
Clearly, we have {πξ | ξ ∈ TΣ} ⊆ FA, and since FA is finite, also {πξ | ξ ∈ TΣ} is
finite. Moreover, the set {πξ | ξ ∈ TΣ} is not empty obviously. Then we define the
(Σ,B)-wta A′ = (Q′, δ′, F ′) where

• Q′ = {πξ | ξ ∈ TΣ},
• for every k ∈ N, (ξ1, . . . , ξk) ∈ (TΣ)k, σ ∈ Σ(k), and tree ξ ∈ TΣ, we set

δ′k(πξ1 · · · πξk , σ, πξ) =

{
1 if πξ = πσ(ξ1,...,ξk)

0 otherwise ,

78 Crisp-determinization of wta

• for every ξ ∈ TΣ, we set

F ′πξ =
⊕

(q,b)∈(Q×DA)

πξ(q, b)(b⊗ Fq) .

4
Next we show that in fact, the (Σ,B)-wta A′ = (Q′, δ′, F ′) given in Definition 5.2.5

is crisp-deterministic (cf. Lemma 5.2.7). Since we have im(δ′) ⊆ {0, 1}, it is sufficient
to show that A′ is total and bu deterministic. In order to prove Lemma 5.2.7, the
following notions, notations, and results (cf. Lemma 5.2.6) are necessary.

Let A = (Q, δ, F) be a (Σ,B)-wta such that A has finite order. For each
k ∈ N, we consider (Q × DA)k as a set of strings over Q × DA of length k.
Let ξ = σ(ξ1, . . . , ξk) ∈ TΣ with k ∈ N, σ ∈ Σ(k), and (ξ1, . . . , ξk) ∈ (TΣ)k, and
(q, b) ∈ (Q×DA). Now we define the set Oξ(q, b) ⊆ (Q×DA)k as follows:

for every string (q1, b1) · · · (qk, bk) in (Q×DA)k :

we have (q1, b1) · · · (qk, bk) ∈ Oξ(q, b)

if πξi(qi, bi) > 0 for each i ∈ [k] and ((
⊗k

i=1 bi)⊗ δk(q1 · · · qk, σ, q)) = b .

Lemma 5.2.6. [3, Lm. 7.2] (also cf. [21, Lm. 8.1]) Let A = (Q, δ, F) be a (Σ,B)-wta
such that A has finite order. Then, for every ξ ∈ TΣ and (q, b) ∈ (Q×DA), we have

nξ(q, b) =
∑

w∈Oξ(q,b)

len(w)∏
i=1

nξ|i(w(i)) .

Proof. Let k ∈ N, σ ∈ Σ(k), and (ξ1, . . . , ξk) ∈ (TΣ)k such that ξ = σ(ξ1, . . . , ξk). Recall
that we have Oξ(q, b) ⊆ (Q × DA)k. Then, for each string w = (q1, b1) · · · (qk, bk) in
Oξ(q, b), we define the set

RunA(w, q, ξ) = {ρ ∈ RunA(q, ξ) | ρ|i ∈ RunA(qi, ξi, bi) for each i ∈ [k]} .

Note that the family (RunA(w, q, ξ) | w ∈ Oξ(q, b)) is a partitioning of RunA(q, ξ, b).
Consequently, we have

nξ(q, b) = |RunA(q, ξ, b)| =
∑

w∈Oξ(q,b)

|RunA(w, q, ξ)|

=(∗)
∑

(q1, b1) · · · (qk, bk) in Oξ(q, b)

k∏
i=1

|RunA(qi, ξi, bi)|

=
∑

(q1, b1) · · · (qk, bk) in Oξ(q, b)

k∏
i=1

nξi(qi, bi) ,

5.2 A sufficient condition for crisp-determinization 79

where at (∗) we use the fact that |RunA(w, q, ξ)| =
∏k

i=1 |RunA(qi, ξi, bi)| if we have
w = (q1, b1) · · · (qk, bk).

Lemma 5.2.7. [3, p. 30–31] Let A = (Q, δ, F) be a (Σ,B)-wta such that A has finite
order. Moreover, let A′ = (Q′, δ′, F ′) be the (Σ,B)-wta defined in Definition 5.2.5
obtained from A. Then A′ is a crisp-deterministic (Σ,B)-wta.

Proof. Recall that we have im(δ′) ⊆ {0, 1}. Hence, it is sufficient to show that A′ is
total and bu deterministic. For this, let k ∈ N, σ ∈ Σ(k), and (ξ1, . . . , ξk), (ξ

′
1, . . . , ξ

′
k)

in (TΣ)k such that πξi = πξ′i for each i ∈ [k]. Moreover, we let ξ = σ(ξ1, . . . , ξk)

and ξ′ = σ(ξ′1, . . . , ξ
′
k). Obviously, it is sufficient to show that πξ = πξ′. Let

(q, b) ∈ (Q×DA). Observe that we have Oξ(q, b) = Oξ′(q, b), and thus, in the rest of
this proof we denote that set simply by O. Furthermore, recall that O ⊆ (Q×DA)k.

Case (a): We have πξ(q, b) ≤ idxA or πξ′(q, b) ≤ idxA. Without loss of gener-
ality we may assume that πξ(q, b) ≤ idxA. Evidently, we have nξ(q, b) = πξ(q, b).
Let (q1, b1) · · · (qk, bk) ∈ O. Clearly, by Lemma 5.2.6, for each i ∈ [k], we have
nξ|i(qi, bi) < idxA, and thus,

nξ|i(qi, bi) = πξ|i(qi, bi) = πξ′|i(qi, bi) = nξ′|i(qi, bi) ,

where the first equality is due to the fact nξ|i(qi, bi) < idxA, the second one is due to
our assumption, and the last one holds true because πξ′|i(qi,bi) < idxA. Hence, we can
calculate further as follows:

πξ(q, b) = nξ(q, b) =
∑
w∈O

k∏
i=1

nξ|i(w(i)) =
∑
w∈O

k∏
i=1

nξ′|i(w(i)) = nξ′(q, b) = πξ′(q, b) ,

where the second and the last but one equalities follow from Lemma 5.2.6.
Case (b): Assume now that idxA ≤ πξ(q, b), πξ′(q, b) ≤ idxA+ prdA−1. Then, for

each (q1, b1) · · · (qk, bk) ∈ O and each i ∈ [k], we have

nξi(qi, bi) ≡prdA πξi(qi, bi) = πξ′i(qi, bi) ≡prdA nξ′i(qi, bi) ,

where the second equality is due to our assumption. Since ≡prdA is a congruence
relation on the semiring Nat of natural numbers (cf. Example 2.4.6(2)), we have

πξ(q, b) ≡prdA nξ(q, b) =
∑
w∈O

k∏
i=1

nξi(w(i))

≡prdA

∑
w∈O

k∏
i=1

nξ′i(w(i)) = nξ′(q, b) ≡prdA πξ′(q, b) ,

where the equalities are due to Lemma 5.2.6. Since, by our assumption, we have

80 Crisp-determinization of wta

idxA ≤ πξ(q, b), πξ′(q, b) ≤ idxA+ prdA−1, we conclude that πξ(q, b) = πξ′(q, b).

The next result shows that, for each (Σ,B)-wta A such that A has finite order, the
(Σ,B)-wtaA′ defined in Definition 5.2.5 obtained fromA is a semantically equivalent
crisp-deterministic (Σ,B)-wta.

Theorem 5.2.8. [3, Thm. 7.3] (also cf. [21, Thm. 8.2]) Let Σ be a ranked
alphabet such that Σ(0) 6= ∅, and B be a strong bimonoid. Moreover, let A be a
(Σ,B)-wta such that A has finite order. Then there exists a (Σ,B)-wta A′ such
that A′ is crisp-deterministic and it is equivalent to A.

Proof. Let A′ be the (Σ,B)-wta obtained by applying Definition 5.2.5 to A. We follow
the denotations of Definition 5.2.5, i.e., we have A = (Q, δ, F) and A′ = (Q′, δ′, F ′).

By Lemma 5.2.7, A′ is a crisp-deterministic (Σ,B)-wta. Hence, for each ξ ∈ TΣ,
there is a unique valid run ρξ of A′ on ξ, i.e., we have {ρξ} = Runv

A′(ξ).
Now we prove, by induction on the structure of ξ, the following statement:

for each ξ ∈ TΣ, the run ρξ is a πξ-run . (5.2)

Induction base: Then there exists α ∈ Σ(0) such that ξ = α. Then, since A′ is
crisp-deterministic, by Definition 5.2.5, we have δ′0(ε, α, πα) = 1 and δ′0(ε, α, πξ) = 0
for each πξ ∈ (Q′ \ {πα}) with ξ ∈ TΣ. Furthermore, since ρα is valid, we have
ρα(ε) = πα.

Induction step: Then there exist k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ such that
ξ = σ(ξ1, . . . , ξk). By I.H., for each i ∈ [k], the run ρξi is a πξi-run. Then, since
A′ is crisp-deterministic, by Definition 5.2.5, we have δ′k(πξ1 · · · πξk , σ, πξ) = 1 and
δ′k(πξ1 · · · πξk , σ, πξ′) = 0 for each πξ′ ∈ (Q′ \ {πξ}) with ξ′ ∈ TΣ. Moreover, since ρξ
is valid, we have ρ(ε) = πξ as needed. This completes the proof of (5.2). Finally, for
each ξ ∈ TΣ, we can calculate as follows:

[[A]](ξ) =
⊕

ρ∈RunA(ξ)

wtA(ξ, ρ)⊗ Fρ(ε) =
⊕

(q,b) in Q×DA

⊕
ρ∈RunA(q,ξ,b)

b⊗ Fq

=
⊕

(q,b) in Q×DA

nξ(q, b)(b⊗ Fq) =
⊕

(q,b) in Q×DA

πξ(q, b)(b⊗ Fq)

= F ′πξ = wtA′(ξ, ρξ)⊗ F ′πξ = [[A′]](ξ) ,

where the second equality easily follows from the fact that the family

(RunA(q, ξ, b) | (q, b) ∈ Q×DA)

is a partitioning of RunA(ξ); the third and the fourth ones are due to the definitions
of nξ(q, b) and πξ(q, b), respectively; the fifth one follows from Definition 5.2.5; the

5.2 A sufficient condition for crisp-determinization 81

Algorithm 1: The mapping calc (cf. [3, Alg. 2] and [21, Alg. 8.4])
Input: a (Σ,B)-wta A = (Q, δ, F) such that B is computable and A has finite order,

k ∈ N, σ ∈ Σ(k), and (πξ1 , . . . , πξk) ∈ (FA)k for some (ξ1, . . . , ξk) ∈ (TΣ)k

Macro: ξ = σ(ξ1, . . . , ξk)

Variables: e : Q×DA; w : (Q×DA)k; and nξ : N(Q×DA)

Output: πξ ∈ FA
1 foreach e ∈ (Q×DA) do nξ(e)← 0
2 foreach e ∈ (Q×DA) do
3 foreach string w ∈ Oξ(e) do
4 nξ(e)← nξ(e) + JA(

∏k
i=1 πξi(w(i)))

5 end
6 πξ(e)← JA(nξ(e))

7 end
8 output πξ

sixth one is due to (5.2) and the fact that im(δ′) ⊆ {0, 1}; and the seventh one holds
true by Lemma 5.2.7.

The following result is an immediate consequence of Theorem 5.2.8 and the fact
that each wta over a bi-locally finite strong bimonoid has finite order.

Corollary 5.2.9. [3, Cor. 7.5] (also cf. [30, Thm. 11]) Let B be bi-locally finite. Then,
for each (Σ,B)-wtaA, there exists a crisp-deterministic (Σ,B)-wtaA′ equivalent toA.

Note that, since the strong bimonoid Stb given in Example 2.4.5(4) is bi-locally
finite, by Corollary 5.2.9, each (Σ, Stb)-wta is crisp-determinizable.

Next we prove an effective version of Theorem 5.2.8: If, in addition, B is com-
putable, then, for each (Σ,B)-wta A such that A has finite order, we can construct a
crisp-deterministic (Σ,B)-wta A′ equivalent to A. Hence, we give a mapping and an
algorithm as follows.

By considering Algorithm 1, we note that the mapping calc takes the following
data as input: a (Σ,B)-wta A = (Q, δ, F) such that B is computable and A has finite
order, k ∈ N, σ ∈ Σ(k), and (πξ1 , . . . , πξk) ∈ (FA)k for some (ξ1, . . . , ξk) ∈ (TΣ)k;
and it outputs the mapping πξ ∈ FA with ξ = σ(ξ1, . . . , ξk). But, compared to the
proof of Lemma 5.2.4, calc do not use the family (RunA(q, ξ, b) | (q, b) in Q×DA) for
computing πξ. Nevertheless, it can compute πξ as the following lemmas prove that.

Lemma 5.2.10. Let B be computable, and A = (Q, δ, F) be a (Σ,B)-wta such that A
has finite order. Then, for every ξ ∈ TΣ and (q, b) in Q × DA, we can compute the
set Oξ(q, b).

Proof. By Lemma 5.2.2, we can compute the set DA, and hence, we can compute also
the set Q ×DA. Let ξ = σ(ξ1, . . . , ξk) with k ∈ N, σ ∈ Σ(k), and (ξ1, . . . , ξk) ∈ (TΣ)k.
Since Q×DA is finite, also the set (Q×DA)k is finite, and we can compute it.

82 Crisp-determinization of wta

Let (q1, b1) · · · (qk, bk) be a string in (Q ×DA)k. By Lemma 5.2.4, for each i ∈ [k],
we can compute the mapping πξi, and thus, it is decidable whether πξi(qi, bi) > 0

holds true or not. Moreover, since B is computable, we can compute the product
((
⊗k

i=1 bi)⊗ δk(q1 · · · qk, σ, q)), and hence, it is decidable whether that product equals
b or not. Therefore, it is decidable whether the string (q1, b1) · · · (qk, bk) is in Oξ(q, b)

or not. Furthermore, since (Q×DA)k is finite, we can compute the set Oξ(q, b).

Lemma 5.2.11. [3, Cor. 7.8] Let A = (Q, δ, F) be a (Σ,B)-wta such that A has finite
order. Then, for every ξ ∈ TΣ and e ∈ (Q×DA), we have

πξ(e) = JA

(∑
w∈Oξ(e)

JA

(len(w)∏
i=1

πξ|i(w(i))
))

.

Proof. Obviously, we can calculate as follows

πξ(e) = JA(nξ(e)) = JA

(∑
w∈Oξ(e)

len(w)∏
i=1

nξ|i(w(i))
)

= JA

(∑
w∈Oξ(e)

JA

(len(w)∏
i=1

nξ|i(w(i))
))

= JA

(∑
w∈Oξ(e)

JA

(len(w)∏
i=1

JA(nξ|i(w(i)))
))

= JA

(∑
w∈Oξ(e)

JA

(len(w)∏
i=1

πξ|i(w(i))
))

,

where the second equality is due to Lemma 5.2.6; and the third and the fourth ones
follow from the fact that ≡prdA is a congruence relation on the semiring Nat.

Theorem 5.2.12. Let Σ be a ranked alphabet such that Σ(0) 6= ∅, and B be
a computable strong bimonoid. Moreover, let A be a (Σ,B)-wta such that A
has finite order. Then we can construct a (Σ,B)-wta A′ such that A′ is crisp-
deterministic and it is equivalent to A.

Proof. Recall that, by the proof of Theorem 5.2.8, the (Σ,B)-wta A′ defined in Defi-
nition 5.2.5 is crisp-deterministic and it is equivalent to A. Thus, here we prove only
that we can construct that wta A′. For this, we follow Algorithm 2 and consider its
denotations.

Now we consider the family (gi | i ∈ N) of Σ-hypergraphs gi = (Qi, Ei) con-
structed in lines 1-11. Obviously, we have g0 ⊆ g1 ⊆ . . . ⊆ gA′. Now we prove by case
analysis the following statement:

for each integer i ∈ N : if gi = gi+1, then gi+1 = gi+2 . (5.3)

Case (a): Let π ∈ Qi+2. By Lemma 5.2.11, there exist k ∈ I, σ ∈ Σ(k), and
(π1, . . . , πk) ∈ (Qi+1)k such that π = calc(A, k, σ, (π1, . . . , πk)) (cf. the application of

5.2 A sufficient condition for crisp-determinization 83

Algorithm 2: Construction of a crisp-deterministic (Σ,B)-wta A′, which is
equivalent to the (Σ,B)-wta A (cf. [3, Alg. 3] and [21, Alg. 8.3])

Input: a (Σ,B)-wta A = (Q, δ, F) such that B is computable and A has finite order
Macro: I = [0,maxrk(Σ)]
Variables: i : N; family (gi | i ∈ N) of Σ-hypergraphs gi = (Qi, Ei) with Qi : P(FA)
and Ei : P(

⋃
k∈I((Qi)

k × Σ(k) ×Qi)); k : I; σ : Σ(k); (π1, . . . , πk) : (FA)k; π : FA;
X : P(FA); and Y : P(

⋃
k∈I(X

k × Σ(k) ×X))
Output: a crisp-deterministic (Σ,B)-wta A′ = (Q′, δ′, F ′) such that [[A′]] = [[A]]

1 Q0 ← ∅ and E0 ← ∅ % this forms the Σ-hypergraph g0

2 i← 0
3 repeat
4 X ← ∅ and Y ← ∅
5 forevery k ∈ I, σ ∈ Σ(k) , and (π1, . . . , πk) ∈ (Qi)

k do
6 π ← calc(A, k, σ, (π1, . . . , πk)) % cf. Algorithm 1
7 X ← X ∪ {π} and Y ← Y ∪ {(π1 · · ·πk, σ, π)}
8 end
9 Qi+1 ← Qi ∪X and Ei+1 ← Ei ∪ Y % this forms the Σ-hypergraph gi+1

10 i← i+ 1

11 until gi = gi−1

12 we can construct A′ as follows:
• Q′ = Qi,
• δ′ = (δ′k | k ∈ N) with suppB(δ′k) = {(π1 · · ·πk, σ, π) | (π1 · · ·πk, σ, π) ∈ Ei} and

im(δ′k) = {0,1}, and
• F ′π =

⊕
(q,b)∈(Q×DA) π(q, b)(b⊗ Fq) for each π ∈ Q′ .

Algorithm 1 in line 6). Moreover, since, by our assumption, we have gi = gi+1, i.e.,
Qi = Qi+1, we also have (π1, . . . , πk) ∈ Qk

i , and thus, π ∈ Qi+1 as desired.

Case (b): Let (π1 · · · πk, σ, π) ∈ Ei+2 with k ∈ I, σ ∈ Σ(k), and
(π1, . . . , πk) ∈ (Qi+1)k, and π ∈ Qi+2. Since, by our assumption, we have gi = gi+1,
i.e., Qi = Qi+1, we have (π1 · · · πk) ∈ Qk

i as well. Moreover, by Case (a), we have
Qi+1 = Qi+2, i.e., π ∈ Qi+1. Thus, we have (π1 · · · πk, σ, π) ∈ Ei+1. This completes
the proof of (5.3). Next we prove, by induction on the structure of ξ, the following
statement:

for each ξ ∈ TΣ, we have πξ ∈ Qheight(ξ)+1 . (5.4)

Induction base: Then there exists α ∈ Σ(0) such that ξ = α. Moreover, recall that
height(α)+1 = 1. By Lemma 5.2.11, we have πα = calc(A, 0, α, ()) (cf. the application
of Algorithm 1 in line 6), and hence, πα ∈ Q1.

Induction step: Clearly, there exist k ∈ I, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ such that
ξ = σ(ξ1, . . . , ξk). Then, by I.H., for each j ∈ [k], we have πξj ∈ Qheight(ξj)+1. Hence,
we let m = (max({height(ξj) | j ∈ [k]}) + 1). Note that we have height(ξ) = m.
Since gi ⊆ gm for each i ∈ [0,m], i.e., Qi ⊆ Qm for each i ∈ [0,m], we then have

84 Crisp-determinization of wta

πξ1 , . . . , πξk ∈ Qm. Moreover, by Lemma 5.2.11, πξ = calc(A, k, σ, (πξ1 , . . . , πξk)) (cf.
the application of Algorithm 1 in line 6), and thus, πξ ∈ Qm+1. This concludes the
proof of (5.4). Now we prove the following statement:

there exists a least number i ∈ N such that gi = gA′ . (5.5)

Recall that we have gi ⊆ gA′. Hence, it is sufficient to show that gA′ ⊆ gi. Moreover,
recall that gA′ = (Q′,

⋃
k∈N suppB(δ′k)). We proceed by case analysis.

Case (a): Let πξ ∈ Q′ for some ξ ∈ TΣ. Then, by (5.4), we have πξ ∈ Qheight(ξ)+1.
If height(ξ) + 1 ≤ i, then, since gj ⊆ gi for each j ∈ [0, i], i.e., Qj ⊆ Qi for each
j ∈ [0, i], we have πξ ∈ Qi. Otherwise, if i < height(ξ) + 1, then, by the (repeated)
application of (5.3), we have gi = gheight(ξ)+1, i.e., Qi = Qheight(ξ)+1, and thus, we also
have πξ ∈ Qi.

Case (b): Let e = (πξ1 · · · πξk , σ, πξ) be in suppB(δ′k) for some k ∈ I, σ ∈ Σ(k), and
(ξ1, . . . , ξk) ∈ (TΣ)k such that ξ = σ(ξ1, . . . , ξk). By following the proof of (5.4) and
Algorithm 2, we have e ∈ Eheight(ξ)+1. If height(ξ) + 1 ≤ i, then, since gj ⊆ gi for each
j ∈ [0, i], we have e ∈ Ei. Otherwise, if i < height(ξ) + 1, then, by the (repeated)
application of (5.3), we have gi = gheight(ξ)+1, i.e., Ei = Eheight(ξ)+1, and hence, we
have e ∈ Ei as well. This finishes the proof of (5.5). Since, by (5.5), we can compute
the Σ-hypergraph gi, we can compute the Σ-hypergraph gA′ as well, and hence, we
can construct A′. This concludes our proof.

Finally, we give an application of Theorem 5.2.12. Recall that the (Σ,M3)-wta
Asplit given in Example 3.1.6 has finite order (cf. Example 5.2.1). Since the bounded
lattice M3 is computable, we can give the wta Asplit to Algorithm 2 as input; and
the algorithm outputs a semantically equivalent crisp-deterministic (Σ,M3)-wta A′split

as follows.

Example 5.2.13. Let Σ = {σ(2), γ(1), α(0)}. We consider the (Σ,M3)-wta Asplit shown
in Example 3.1.6 Evidently, since im(δ) = {a, b, i} 6⊆ {o, i}, the wta Asplit is not crisp-
deterministic. Moreover, we have

DAsplit
= 〈{a, b, i}〉∧ = {o, a, b, i} = DAsplit

∧ im(F) ,

and thus, ({q} ×DAsplit
) = {(q, o), (q, a), (q, b), (q, i)}.

Next, for every ξ ∈ TΣ and e ∈ ({q} ×DAsplit
), we calculate the values nξ(e) and

πξ(e). Observe that we have idxAsplit
= prdAsplit

= 1, and hence, JAsplit
(n) ∈ {0, 1} for

each n ∈ N, i.e. πξ is a mapping from {q} ×DAsplit
to {0, 1} for each ξ ∈ TΣ.

Now we introduce three notations. We denote by ξσ an arbitrary tree ξ ∈ TΣ such
that posσ(ξ) 6= ∅ and posγ(ξ) = ∅, by ξγ an arbitrary tree ξ ∈ TΣ such that posσ(ξ) = ∅
and posγ(ξ) 6= ∅, and by ξσ,γ an arbitrary tree ξ ∈ TΣ such that posσ(ξ) 6= ∅ and

5.2 A sufficient condition for crisp-determinization 85

πα

i

πξγ

b

πξσ

a

πξσ,γ

α γ

γ

γ

γ

σ σ σσσ

σ

σ

σσ σ

σ

σ

σ

σ

σ

σ

Figure 5.2. The fta-hypergraph of the crisp-deterministic (Σ,M3)-wtaA′split constructed
in Example 5.2.13; note that each depicted transition has weight i, and hence, the
transition weights are omitted intentionally.

posγ(ξ) 6= ∅. Evidently, for each ξ ∈ TΣ, we have either ξ = α, or else ξ = ξσ, or else
ξ = ξγ, or else ξ = ξσ,γ, i.e., TΣ can be partitioned into four sets.

Note that, for each f ∈ {n, π}, we have

fα(q, i) = fξσ(q, a) = fξγ (q, b) = fξσ,γ (q, o) = 1 ;

and, for every mapping f ∈ {nξ, πξ} with ξ ∈ {α, ξσ, ξγ, ξσ,γ}, and each
e ∈ ({q} ×DAsplit

), if f(e) is not listed above, then we have f(e) = 0, e.g., nα(q, o) = 0

and πξγ (q, a) = 0, etc.
Then we can construct the (Σ,M3)-wta

A′split = ({πα, πξσ , πξγ , πξσ,γ}, δ′, F ′) ,

where F ′(πα) = o, F ′(πξσ) = a, F ′(πξγ) = b, and F ′(πξσ,γ) = i, and the family δ′ is as
follows:

86 Crisp-determinization of wta

• δ′0(ε, α, πα) = i,
• δ′1(e) = i for each e ∈ {(πα, γ, πξγ), (πξσ , γ, πξσ,γ), (πξγ , γ, πξγ), (πξσ,γ , γ, πξσ,γ)},
• δ′2(e) = i for each e in the set

(παπα, σ, πξσ), (παπξσ , σ, πξσ), (παπξγ , σ, πξσ,γ), (παπξσ,γ , σ, πξσ,γ),

(πξσπα, σ, πξσ), (πξσπξσ , σ, πξσ), (πξσπξγ , σ, πξσ,γ), (πξσπξσ,γ , σ, πξσ,γ),

(πξγπα, σ, πξσ,γ), (πξγπξσ , σ, πξσ,γ), (πξγπξγ , σ, πξσ,γ), (πξγ , πξσ,γ , σ, πξσ,γ),

(πξσ,γπα, σ, πξσ,γ), (πξσ,γπξσ , σ, πξσ,γ), (πξσ,γπξγ , σ, πξσ,γ), (πξσ,γπξσ,γ , σ, πξσ,γ)

 ;

every other transition in δ′ not listed above has weight o. Clearly, A′split is crisp-
deterministic. Figure 5.2 depicts the fta-hypergraph of A′split, where each depicted
transition has weight i, and hence, transition weights are omitted intentionally. Note
that, by Theorem 5.2.8, A′split is equivalent to Asplit. 4

5.3 Undecidability of crisp-determinization

In this section we deal with decidability questions related to crisp-determinization of
wta. Recall that, by the results of Section 5.2, a wta A is crisp-determinizable if A
has finite order. Hence, in particular, we are interested in the following ones:
(Q1) Is it decidable for an arbitrary wta A, whether A has finite order?
(Q2) Is it decidable for an arbitrary wta A, whether A is crisp-determinizable?
We show that the answer to both questions is negative.

We prove these undecidability results in the way that we reduce each to the finite-
ness problem of the submonoid TM generated by an arbitrary Mealy machine M ,
which is known to be undecidable (cf. [44, Thm. 3.13]).

Hence, we first recall Mealy machines with initial states. Then, for each Mealy ma-
chineM , we construct a ranked alphabet ΣM , a computable and idempotent semiring
TransM , and a (ΣM ,TransM)-wta AM (cf. Construction 5.3.4) as follows:

• the states of M become the symbols of ΣM ,
• TransM is the semiring of which the carrier set is the finite subsets of the trans-

lations in the submonoid TM generated by M , and its operations are the usual
union of sets and the composition extended to sets, and

• the image of [[AM]] is bijective to the carrier set 〈M〉 of the submonoid TM
generated by M (cf. Lemma 5.3.5).

Then we recall that translations realized by Mealy machines are closed under
composition (cf. Lemma 5.3.1), and the equivalence of Mealy machines is decidable
(cf. Lemma 5.3.2), and show that TransM is computable.

Due to its construction, AM has finite order if and only if im([[AM]]) is finite (cf.
Lemma 5.3.5). By exploiting the bijectivity of im([[AM]]) and the carrier set 〈M〉
of the submonoid TM , the wta AM has finite order if and only if the submonoid

5.3 Undecidability of crisp-determinization 87

TM generated by M is finite (cf. Corollary 5.3.6). Thus we answer Question (Q1)
negatively (cf. Theorem 5.3.7).

Then we proceed with Question (Q2). For this, we first give a characterization of
crisp-determinizability (cf. Lemma 5.3.9). Here we can give a ΣM -algebra ATransM
(cf. Construction 5.3.10) to which [[AM]] is a ΣM -algebra homomorphism from the
ΣM -term algebra (cf. Lemma 5.3.11). Then we recall a result on algebraic charac-
terization of recognizable tree languages (cf. Lemma 5.3.12). By combining these
results, we prove an equivalence of the crisp-determinizability of AM and the finite-
ness of the submonoid TM generated by M (cf. Lemma 5.3.13). Finally, we answer
Question (Q2) negatively (cf. Theorem 5.3.14).

In the rest of this section Γ will denote an arbitrary alphabet.

Mealy machines. For each mapping τ : Γ∗ → Γ∗, we also say that τ is a translation
over Γ (for short: Γ-translation, or just translation). A Mealy machine over Γ [43, 64]
is a quadruple M = (Q, q0, µ, λ), where

• Q is a finite and nonempty set (states),
• q0 ∈ Q (initial state),
• µ : Q× Γ→ Q is a mapping (transition mapping), and
• λ : Q× Γ→ Γ is a mapping (output mapping).
Let M = (Q, q0, µ, λ) be a Mealy machine over Γ. As usual, we extended the

mappings µ and λ to mappings µ∗ : Q× Γ∗ → Q and λ∗ : Q× Γ∗ → Γ∗, respectively,
for every q ∈ Q, w ∈ Γ∗, and a ∈ Γ, as follows:

(i) µ∗(q, ε) = q and λ∗(q, ε) = ε and
(ii) µ∗(q, wa) = µ(µ∗(q, w), a) and λ∗(q, wa) = λ∗(q, w)λ(µ∗(q, w), a).

The semantics of M , denoted by τM , is the Γ-translation defined, for each w ∈ Γ∗,
by τM(w) = λ∗(q0, w). In particular, τM(ε) = ε. For every Mealy machines M and
M ′ over Γ, we say that M and M ′ are equivalent if τM = τM ′. Furthermore, for each
Γ-translation τ , we say that τ is realizable if there exists a Mealy machine M such
that τ = τM . We denote the set of all realizable Γ-translations by Real(Γ).

Next we recall that translations realized by Mealy machines over Γ are closed
under composition.

Lemma 5.3.1. cf. [53, p. 207–208] and [43, Thm. 4.3.8] For every Mealy ma-
chines M1 and M2 over Γ, we can construct a Mealy machine M over Γ such that
τM = (τM2 ◦ τM1).

Clearly, by Lemma 5.3.1, the set Real(Γ) is closed under the operation ◦. Moreover,
◦ is an associative binary operation on Real(Γ). Hence, (Real(Γ), ◦) is a semigroup.
Finally, since idΓ∗ ∈ Real(Γ), the algebra (Real(Γ), ◦, idΓ∗) is a monoid.

Next we show that the monoid (Real(Γ), ◦, idΓ∗) is computable. The set Real(Γ)

is recursively enumerable as we can enumerate all the Mealy machines of one state

88 Crisp-determinization of wta

over Γ, and then, all the Mealy machines of two states over Γ, and so on. Moreover,
by Lemma 5.3.1, the binary operation ◦ is computable. Evidently, also the nullary
operation idΓ∗ is computable. Hence, it remains to recall that the equivalence of
Mealy machines is decidable.

Lemma 5.3.2. cf. [55, Thm. 3.5] and [43, Thm. 1.7.3] It is decidable, for arbitrary
Mealy machines M and M ′ over Γ, whether M and M ′ are equivalent.

Hence, (Real(Γ), ◦, idΓ∗) is a computable monoid. Now let M = (Q, q0, µ, λ)

be a Mealy machine over Γ. For each q ∈ Q, we define the Mealy machine
M q = (Q, q, µ, λ) over Γ. Furthermore, for the subset {τMq | q ∈ Q} ⊆ Real(Γ),
we denote the set 〈{τMq | q ∈ Q}〉{◦,idΓ∗} by 〈M〉, i.e., we have

〈M〉 =
⋃
k∈N

{τMq1 ◦ . . . ◦ τMqk | (q1, . . . , qk) ∈ Qk} , (5.6)

where (τMq1 ◦ . . . ◦ τMqk) = idΓ∗ if k = 0. Observe that, for each k ∈ N,
the set {τMq1 ◦ . . . ◦ τMqk | (q1, . . . , qk) ∈ Qk} is in Pfin(〈M〉). The submonoid of
the monoid (Real(Γ), ◦, idΓ∗) generated by M , denoted by TM , is the submonoid
TM = (〈M〉, ◦, idΓ∗) generated by the set {τMq | q ∈ Q}. Moreover, we denote the
set {{τ} | τ ∈ 〈M〉} by {〈M〉}.

In this section the following undecidability result plays a key role as we prove our
undecidability results by reducing them to this one.

Lemma 5.3.3. [44, Thm. 3.13] It is undecidable, for an arbitrary Mealy machine M
over Γ, whether the submonoid TM generated by M is finite.

Now, from a Mealy machine M over Γ, we can construct the ranked alphabet ΣM ,
the semiring TransM , and the (ΣM ,TransM)-wta AM as follows.

Construction 5.3.4. Let M = (Q, q0, µ, λ) be a Mealy machine over Γ. Firstly, we
can construct the ranked alphabet ΣM such that ΣM = Σ

(1)
M ∪ Σ

(0)
M with Σ

(1)
M = Q

and Σ
(0)
M = {e(0)}, where e 6∈ Q is a new symbol. Evidently, ΣM is a string ranked

alphabet.
Then, inspired by the semiring LangΓ given in Example 2.4.6(6), we extend the

submonoid TM generated by M to a semiring as follows. We consider the strong
bimonoid

TransM = (Pfin(〈M〉),∪, ◦, ∅, {idΓ∗}) ,

where ◦ is extended to sets as usual, i.e., for every T1, T2 ∈ Pfin(〈M〉), we define
T2 ◦ T1 = {τ2 ◦ τ1 | τ1 ∈ T1, τ2 ∈ T2}. Obviously, ∪ is idempotent, and ◦ is distributive
with respect to ∪, and hence, TransM is an idempotent semiring. Finally, we show
that TransM is computable as follows. Clearly, by (5.6), 〈M〉 is a recursively enu-
merable set because, for each k ∈ N and (q1, . . . , qk) ∈ Qk, we can enumerate the

5.3 Undecidability of crisp-determinization 89

translations τMq1 ◦ . . . ◦ τMqk . Then Pfin(〈M〉) is recursively enumerable, because the
set of finite subsets of each recursively enumerable set is also recursively enumer-
able. Moreover, by a straightforward generalization of Lemma 5.3.2 to finite sets,
Pfin(〈M〉) is a recursively enumerable set with tests for equality. Observe that both ∪
and the extended operation ◦ is computable (for the latter cf. Lemma 5.3.1). Also,
the nullary operations ∅ and {idΓ∗} are computable. Thus, TransM is computable. We
call TransM the semiring of translations realized by M .

Finally, we can construct the (ΣM ,TransM)-wta AM = ({⊥}, δM , FM) as follows:
• ⊥ is a new symbol such that ⊥ 6∈ ΣM ,
• (δM)0(ε, e,⊥) = {idΓ∗} and (δM)1(⊥, q,⊥) = {τMq} for each q ∈ Q, and
• (FM)⊥ = {idΓ∗}.

Observe that AM is total and bu deterministic. 4

In the following lemma we show that im([[AM]]) = {〈M〉}.

Lemma 5.3.5. cf. [3, Lm. 8.2] Let M be a Mealy machine over Γ. Then we have
im([[AM]]) = DAM = {〈M〉}.

Proof. By following the denotations of Construction 5.3.4, we let M = (Q, q0, µ, λ)

and AM = ({⊥}, δM , FM). Since AM is total and bu deterministic, for each ξ ∈ TΣ,
there is a unique valid run ρξ of AM on ξ, i.e., {ρξ} = Runv

AM (ξ).
In the rest of this proof, for every q ∈ Σ

(1)
M and ξ ∈ TΣM , we abbreviate the tree

q(ξ) by qξ. Furthermore, we define the mapping eval : TΣM → Pfin(〈M〉) inductively
as follows: eval(e) = {idΓ∗}, and eval(ξ) = {τMq} ◦ eval(ξ′) if ξ = qξ′ for some q ∈ Q
and ξ′ ∈ TΣM . We first prove, by induction on the structure of ξ, the following
statement:

for each ξ ∈ TΣM , we have wt(ξ, ρξ) = eval(ξ) . (5.7)

Induction base: Then we have ξ = e, and thus, we can calculate as follows:

wt(e, ρe) = (δM)0(ε, e,⊥) = {idΓ∗} = eval(e) .

Induction step: Then there exist q ∈ Q and ξ′ ∈ TΣM such that ξ = qξ′. Hence, we
can calculate in the following way:

wt(ξ, ρξ) = (δM)1(⊥, q,⊥) ◦ wt(ξ′, ρξ′) = {τMq} ◦ eval(ξ′) = eval(ξ) ,

where, by I.H. and the fact that (δM)1(⊥, q,⊥) = {τMq}, the second equality holds
true. This concludes the proof of (5.7). Then, for every k ∈ N and ξ = q1 · · · qke in
TΣM with (q1, . . . , qk) ∈ Qk, we have

[[AM]](ξ) = (FM)⊥ ◦ wt(ξ, ρξ) = (FM)⊥ ◦ eval(ξ)

= {idΓ∗} ◦ {τMq1 ◦ . . . ◦ τMqk ◦ idΓ∗} = {τMq1 ◦ . . . ◦ τMqk} ,
(5.8)

90 Crisp-determinization of wta

where the second equality is due to (5.7). Furthermore, we have

im([[AM]]) =
⋃
k∈N

{{τMq1 ◦ . . . ◦ τMqk} | (q1, . . . , qk) ∈ Qk}

= {〈M〉} = 〈im(δM)〉{◦} = DAM ,

where the first equality follows from (5.8).

Then, as a consequence of Lemma 5.3.5, we obtain the following result.

Corollary 5.3.6. Let M be a Mealy machine over Γ. Then AM has finite order if and
only if the submonoid TM generated by M is finite.

Proof. Firstly, due to Lemma 5.3.5 and the fact that im(FM) = {{idΓ∗}} by Construc-
tion 5.3.4, we have DAM = {〈M〉} = (im(FM) ◦ DAM). Moreover, since TransM is
idempotent, each {τ} in {〈M〉} has finite additive order. Consequently, we have

AM has finite order ⇐⇒ the set {〈M〉} is finite

⇐⇒ the submonoid TM generated by M is finite .

Now we can show that, in general, the Question (Q1) is undecidable.

Theorem 5.3.7. cf. [3, Thm. 8.9] It is undecidable, for arbitrary string ranked
alphabet Σ, computable and idempotent semiring S, and bottom-up deterministic
(Σ, S)-wta A, whether A has finite order.

Proof. We prove our statement by contradiction. For this, we assume that it is decid-
able, for arbitrary string ranked alphabet Σ, computable and idempotent semiring S,
and bu deterministic (Σ, S)-wta A, whether A has finite order.

Now let M be a Mealy machine over Γ. Then, by following Construction 5.3.4, we
can construct the string ranked alphabet ΣM , consider the semiring TransM , and can
construct the total and bu deterministic (ΣM ,TransM)-wta AM . By Corollary 5.3.6,
AM has finite order if and only if the submonoid TM generated by M is finite.

Then, by our assumption, it is decidable whether the submonoid TM generated
by M is finite. This contradicts to Lemma 5.3.3, i.e., our assumption is wrong.

In the rest of this section, we deal with Question (Q2). For this, the following
notions and results are crucial. To give a characterization of crisp-determinizability, it
is necessary to recall that weighted tree languages recognized by crisp-deterministic
wta are closed under sum. For every (Σ,B)-weighted tree languages ψ1 and ψ2,
the sum of ψ1 and ψ2, denoted by (ψ1 ⊕ ψ2), is the (Σ,B)-weighted tree language
(ψ1 ⊕ ψ2) : TΣ → B defined, for each ξ ∈ TΣ, by (ψ1 ⊕ ψ2)(ξ) = ψ1(ξ)⊕ ψ2(ξ).

5.3 Undecidability of crisp-determinization 91

Lemma 5.3.8. [42, Thm. 10.4.1(3)] For every two crisp-deterministic (Σ,B)-wta
A1 and A2, we can construct a crisp-deterministic (Σ,B)-wta A such that
[[A]] = [[A1]]⊕ [[A2]].

The following result gives a characterization of crisp-determinizability.

Lemma 5.3.9. [3, Lm. 5.3] (also cf. [30, Lm. 8 and Prop. 9]) Let ψ be a
(Σ,B)-weighted tree language. Then the following statements are equivalent.

1. There exists a crisp-deterministic (Σ,B)-wta A such that ψ = [[A]].
2. im(ψ) is finite and, for each b ∈ B, the Σ-tree language ψ−1(b) is recognizable.

Proof. (1 ⇒ 2). Let A = (Q, δ, F). Clearly, since A is crisp-deterministic, we have
im(ψ) ⊆ im(F), i.e., im(ψ) is finite. Hence, it is sufficient to show that, for each b ∈ B,
the Σ-tree language ψ−1(b) is recognizable. Evidently, if b 6∈ im(ψ), then ψ−1(b) = ∅,
and thus, ψ−1(b) is recognizable.

Hence, we may assume that b ∈ im(ψ). For each q ∈ Q, we can construct the
Σ-fta Aq = (Q, δ′, {q}), where δ′k = suppB(δk) for each k ∈ N. Obviously, since A
is crisp-deterministic, the fta Aq is total and bu deterministic. Moreover, for every
ξ ∈ TΣ and q ∈ Q, we have Runv

A(ξ) = Runv
Aq(ξ), and thus, we also have

ξ ∈ L(Aq) if and only if ρξ(ε) = q ,

where ρξ is the unique valid run of A on ξ, i.e., we have {ρξ} = Runv
A(ξ). Then, for

each ξ ∈ TΣ, we have

[[A]](ξ) = b if and only if ρξ(ε) ∈ F−1(b) if and only if ξ ∈
⋃

q∈F−1(b)

L(Aq) .

Thus, we have
[[A]]−1(b) =

⋃
q∈F−1(b)

L(Aq) ,

where, by Lemma 2.3.1, the right-hand side of the equality is a recognizable Σ-tree
language. Therefore, the Σ-tree language [[A]]−1(b) is recognizable.

(2⇒ 1). Here we generalize the direction⇒ of [30, Lm. 8] from the string case
to the tree case. Trivially, we have im(ψ) 6= ∅. For this, let im(ψ) = {b1, . . . , bn} for
some n ∈ N+. Observe that, for each b ∈ (B \ im(ψ)), we have ϕ−1(b) = ∅, i.e.,
we do not have to deal with it any further. Moreover, by our assumption, for each
i ∈ [n], the Σ-tree language ψ−1(bi) is recognizable, i.e., there exists a Σ-fta Ai such
that L(Ai) = ψ−1(bi). Note that, by Lemma 2.3.2, for each i ∈ [n], we may assume
that Ai is total and bu deterministic.

Let i ∈ [n]. Moreover, let Ai = (Qi, δi, Fi). Then we can construct the (Σ,B)-wta
Ai = (Qi, δ

′
i, F

′
i) such that

• for each k ∈ N, we set suppB((δ′i)k) = (δi)k and im((δ′i)k) ⊆ {0, 1} and

92 Crisp-determinization of wta

• for each q ∈ Qi, we set F ′i (q) = bi if q ∈ Fi, and F ′i (q) = 0 otherwise.
Since the fta Ai is total and bu deterministic, and we have im((δ′i)k) ⊆ {0, 1} for
each k ∈ N, the wta Ai is crisp-deterministic. Moreover, for each ξ ∈ TΣ, we have
Runv

Ai
(ξ) = Runv

Ai(ξ). Consequently, for each ξ ∈ TΣ, we have

ξ ∈ L(Ai) if and only if ρξ(ε) ∈ Fi if and only if [[Ai]](ξ) = bi ,

where ρξ is the unique valid run of Ai on ξ, i.e., we have {ρξ} = Runv
Ai

(ξ). Further-
more, by Lemma 5.3.8, we can construct a crisp-deterministic (Σ,B)-wta A such that
[[A]] =

⊕
i∈[n][[Ai]]. Then, for each ξ ∈ TΣ, we have

ψ(ξ) =
⊕
i∈Iξ

bi = [[A]](ξ) ,

where Iξ = {i ∈ [n] | ξ ∈ ϕ−1(bi)}, and the last equivalence follows from
Lemma 5.3.8. This concludes our proof.

Next we give a ΣM -algebra ATransM , of which the carrier set coincides with the
carrier set of TransM , and of which the operations correspond roughly to the transi-
tions of AM .

Construction 5.3.10. Let M = (Q, q0, µ, λ) be a Mealy machine over Γ. We first
recall the string ranked alphabet ΣM given in Construction 5.3.4. Then we consider
the ΣM -algebra

ATransM = (Pfin(〈M〉), θTransM)

such that θTransM (e) = {idΓ∗} and θTransM (q)(T) = ({τMq} ◦ T) for every q ∈ Q and
T ∈ Pfin(〈M〉), where ◦ is extended to sets as above (cf. Construction 5.3.4). 4

The following result justifies that [[AM]] is a ΣM -algebra homomorphism.

Lemma 5.3.11. cf. [3, Lm. 8.3] Let M be a Mealy machine over Γ. Then [[AM]] is a
ΣM -algebra homomorphism from the ΣM -algebra TermΣM to ATransM .

Proof. We use the denotations of Construction 5.3.4 and 5.3.10. Recall that we have
TermΣM = (TΣM , θΣM) such that θΣM (e) = e and θΣM (q)(ξ) = q(ξ) for every q ∈ Q and
ξ ∈ TΣM (cf. Example 2.4.1). Then, by assuming ψM = [[AM]], we have

ψM(θΣM (e)) = ψM(e) =(†) {idΓ∗} = θTransM (e) ,

and, for every q ∈ Q and ξ ∈ TΣM , we have

ψM(θΣM (q)(ξ)) = ψM(q(ξ)) =(†) {τMq} ◦ ψM(ξ) = θTransM (q)(ψM(ξ)),

where at (†) we apply (5.8). This completes our proof.

5.3 Undecidability of crisp-determinization 93

Now we recall an algebraic characterization of recognizable tree languages as
follows.

Lemma 5.3.12. [43, Cor. 2.7.2] For every L ⊆ TΣ, the Σ-tree language L is recog-
nizable if and only if there exist a finite Σ-algebra A = (A, θ), a Σ-algebra homomor-
phism h from TermΣ to A, and a subset A′ ⊆ A such that L = h−1(A′).

Now we prove the equivalence of crisp-determinizability of AM and finiteness of
the submonoid TM generated by M .

Lemma 5.3.13. cf. [3, Lm. 8.4] LetM be a Mealy machine over Γ. Then the following
statements are equivalent.

1. im([[AM]]) is finite and [[AM]]−1(T) is recognizable for each T ∈ Pfin(〈M〉).
2. The submonoid TM generated by M is finite.

Proof. (1⇒ 2). By Lemma 5.3.5, our statement trivially holds true.
(2⇒ 1). By Lemma 5.3.5, im([[AM]]) is finite. Hence, it is sufficient to show that,

for each T ∈ Pfin(〈M〉), the ΣM -tree language [[AM]]−1(T) is recognizable. Evidently,
for every T in Pfin(〈M〉) \ im([[AM]]), we have [[AM]]−1(T) = ∅, which is clearly rec-
ognizable. Hence, we may assume that T ∈ im([[AM]]). Since im([[AM]]) is finite,
the set Pfin(〈M〉) is finite as well, i.e., ATransM is a finite ΣM -algebra. Moreover,
by Lemma 5.3.11, [[AM]] is a ΣM -algebra homomorphism from TermΣM to ATransM .
Finally, by Lemma 5.3.12, [[AM]]−1({T}) = [[AM]]−1(T) is recognizable.

Eventually, we prove that, in general, Question (Q2) is undecidable.

Theorem 5.3.14. cf. [3, Thm. 8.5] It is undecidable, for arbitrary string ranked
alphabet Σ, computable and idempotent semiring S, and bottom-up deterministic
(Σ, S)-wta A, whether A is crisp-determinizable.

Proof. We prove our statement by contradiction. For this, we assume that it is decid-
able, for arbitrary string ranked alphabet Σ, computable and idempotent semiring S,
and bu deterministic (Σ, S)-wta A, whether A is crisp-determinizable.

Now let M be a Mealy machine over Γ. By following Construction 5.3.4, we
can construct the string ranked alphabet ΣM , consider the semiring TransM , and can
construct the total and bu deterministic (ΣM ,TransM)-wta AM . Then the following
holds true.

AM is crisp-determinizable

⇐⇒ there exists a crisp-deterministic (ΣM ,TransM)-wta A′M with [[AM]] = [[A′M]]

⇐⇒ im([[AM]]) is finite and [[AM]]−1(T) is recognizable for each T ∈ Pfin(〈M〉)
⇐⇒ the submonoid TM generated by M is finite,

94 Crisp-determinization of wta

where the second equivalence follows from Lemma 5.3.9, and the last one is due to
Lemma 5.3.13. Then, due to our assumption, it is decidable whether the submonoid
TM generated by M is finite. This contradicts to Lemma 5.3.3, i.e., our assumption is
wrong.

5.4 Decidability of crisp-determinization

In this section we identify two subclasses of wta, for which the crisp-determinization
problem is decidable. We first introduce the concept of past-finite monotonic strong
bimonoid. These particular weight structures have several desirable properties (cf.
Lemmas 5.4.2 and 5.4.4). Hence, if B is past-finite monotonic, then we can simplify
the characterization of crisp-determinizability given in Lemma 5.3.9: for an arbitrary
(Σ,B)-wta A, the wta A is crisp-determinizable if and only if im([[A]]) is finite.

To characterize finiteness of im([[A]]), we consider a structural property ofA. More
precisely, certain Σ-contexts and loops of A on those Σ-contexts are of interest. If A
has that structural property, then the weight of any run on any Σ-tree corresponds to
a weight of a run on a small Σ-tree (cf. Lemma 5.4.7).

To formalize a relationship between that structural property of A and finiteness
of im([[A]]) (cf. Lemma 5.4.13), it is crucial that A has only useful states, i.e., each
state of A is a part of at least one accepting run. However, that normal form of A can
be obtained easily (cf. Lemmas 5.4.9 and 5.4.11).

Finally, since it is decidable whether A has that structural property, we can de-
cide also whether im([[A]]) is finite (cf. Lemma 5.4.14), i.e., whether A is crisp-
determinizable (cf. Theorem 5.4.15).

In [15, Def. 12] the concept of monotonic semiring is introduced. In the spirit of
that definition, we define past-finite monotonic strong bimonoid as follows cf. [1,
p. 42] and [2, Def. 2.1].

Definition 5.4.1. For every partial ordering � on B, we say that B is monotonic with
respect to �, denoted by B�, if the following conditions hold true:

(i) for every b1, b2 ∈ B, we have b1 � b1 ⊕ b2, and
(ii) for every b1, b2, b3 in B \ {0} with b2 6= 1, we have b1 ⊗ b3 ≺ b1 ⊗ b2 ⊗ b3 .

Let B be monotonic with respect to some partial ordering � on B. We call B� past-
finite if, for each b ∈ B, the set past(b) = {a ∈ B | a � b} is finite. 4

In the rest of this section, � denotes an arbitrary partial ordering on B such
that B is monotonic with respect to � if not specified otherwise.

Note that the notation B� is overloaded in the following sense: it denotes (a) the
strong bimonoid B and (b) the fact that B is monotonic with respect to �.

5.4 Decidability of crisp-determinization 95

In the following two lemmas we prove desirable properties of (past-finite) mono-
tonic strong bimonoids.

Lemma 5.4.2. cf. [15, Lm. 14] and [42, Lm. 16.2.9] The following statements hold
true.

1. We have 0 � b for each b ∈ B, and 1 � b for each b ∈ (B \ {0}).
2. We have b0 ≺ b1 ≺ b2 ≺ . . . for each b ∈ (B \ {0, 1}).
3. B� is positive, i.e., it is zero-sum free and zero-divisor free.
4. B� is one-summand free, i.e., a⊕ b = 1 implies a, b ∈ {0, 1} for every a, b ∈ B.
5. B� is one-product free, i.e., a⊗ b = 1 implies a = 1 = b for every a, b ∈ B.

Proof. Statements 1 and 3-5 hold true due to [15, Lm. 14] and the fact that in the
proof of [15, Lm. 14] the distributivity laws are not exploited.

Finally, we prove Statement 2. For each n ∈ N, by Condition (ii) of Defini-
tion 5.4.1 for b1 = 1, b2 = b, and b3 = bn, we have bn = 1 ⊗ bn ≺ 1 ⊗ b ⊗ bn = bn+1.
Then, since � is transitive, our statement follows.

Note that, by Lemma 5.4.2(2), if |B| ≥ 2, then B� is not finite. Moreover, there
is exactly one monotonic strong bimonoid with finite carrier set: the semiring Boole

(cf. Example 2.4.6(1)) with its natural order.

Example 5.4.3. Here we show examples and counterexamples of past-finite mono-
tonic strong bimonoids. In order to do that, we consider the semirings given in
Example 2.4.6. The semiring Nat is past-finite monotonic with respect to the usual
linear ordering ≤ on N. Similarly, the semiring MaxPlus is past-finite monotonic with
respect to the usual linear ordering ≤ on N−∞. However, the semiring Int (respec-
tively, MinPlus) is not past-finite monotonic with respect to the usual linear ordering
≤ on Z (respectively, on N∞) as past(−1) (respectively, past(∞)) is not finite. In fact,
in case of the semiring MinPlus, there does not exist a partial ordering � on N∞ such
that MinPlus is past-finite monotonic with respect to � (cf. [2, Ex. 7.6]).

Moreover, the semiring Lang is past-finite monotonic with respect to the partial
ordering �, where � is defined, for every L1, L2 ∈ Pfin(Γ∗), by L1 � L2 if there is an
injective mapping f : L1 → L2 such that w is a substring1 of f(w) for each w ∈ L1

[15]. 4

Next we show that, if B� is past-finite, then, for every (Σ,B�)-wta A and b ∈ B,
the Σ-tree language [[A]]−1(b) is recognizable. By Lemma 5.3.9, this implies that A is
crisp-determinizable if and only if im([[A]]) is finite.

Lemma 5.4.4. [1, Lm. 11] and [2, Thm. 6.10] Let B� be past-finite. Moreover, let A
be a (Σ,B�)-wta. Then, for each b ∈ B, the Σ-tree language [[A]]−1(b) is recognizable.
If, in addition, B� is computable, then, for each b ∈ B, we can construct a Σ-fta Ab
such that L(Ab) = [[A]]−1(b).

1We say that w is a substring of f(w) if there exist v, u ∈ Γ∗ such that f(w) = vwu.

96 Crisp-determinization of wta

Proof. We put C = {a ∈ B | a 6� b}. Moreover, let ∼ be the equivalence relation on
B defined such that B/�= ({{a} | a ∈ past(b)} ∪C), i.e., its classes are the singleton
sets {a} for each a ∈ past(b), and the set C. Now we prove the following statement:

∼ is a congruence relation on B� . (5.9)

Obviously, it is sufficient to show that C is a congruence class. For this, let b′1, b
′
2 ∈ C

and b′ ∈ B. Since B� is monotonic, by Condition (i) of Definition 5.4.1, for each
i ∈ {1, 2}, we have b′i � b′i ⊕ b′, and hence, (b′i ⊕ b′) ∈ C. Moreover, if b′ 6= 0, then,
by Condition (ii) of Definition 5.4.1, for each i ∈ {1, 2}, we have b′i � b′i ⊗ b′ and
b′i � b′ ⊗ b′i , and thus, we also have (b′i ⊗ b′) ∈ C and (b′ ⊗ b′i) ∈ C, respectively.
Consequently, C is a congruence class. This concludes the proof of (5.9).

Then, by (5.9), we consider the quotient strong bimonoid

B/∼= (B/∼,⊕/∼,⊗/∼, [0]∼, [1]∼)

of B modulo ∼, where [b1]∼ ⊕ /∼ [b2]∼ = [b1 ⊕ b2]∼ and [b1]∼ ⊗ /∼ [b2]∼ = [b1 ⊗ b2]∼
for every b1, b2 ∈ B. Evidently, B/∼ is finite. Moreover, we consider the mapping
h : B → B/∼ defined, for each b′ ∈ B, by h(b′) = [b′]∼. Trivially, h is a strong
bimonoid homomorphism from B to B/∼. Then, by Lemma 3.1.7, we can construct
a (Σ,B/∼)-wta h(A) such that [[h(A)]] = (h ◦ [[A]]).

Since B/∼ is finite, the wta h(A) has finite order. Hence, by Theorem 5.2.8, there
exists a crisp-deterministic (Σ,B/∼)-wta h(A)′ such that h(A)′ is equivalent to h(A).
Thus, we can calculate as follows:

[[A]]−1(b) = (h ◦ [[A]])−1([b]∼) = [[h(A)]]−1([b]∼) = [[h(A)′]]−1([b]∼) ,

where the second equality is due to Lemma 3.1.7, and the last one follows from
Theorem 5.2.8. Moreover, since, by Lemma 5.3.9(1 ⇒ 2), the Σ-tree language
[[h(A)′]]−1([b]∼) is recognizable, [[A]]−1(b) is recognizable as well.

Finally, we show that, for each b ∈ B, we can construct a Σ-fta Ab such that
L(Ab) = [[A]]−1(b). In order to do that, we assume that, in addition, B is com-
putable. Then also B/∼ is computable. Hence, by Theorem 5.2.12, we can con-
struct the crisp-deterministic (Σ,B/∼)-wta h(A)′. Moreover, by following the proof
of Lemma 5.3.9(1⇒ 2), for each b ∈ B, we can construct a Σ-fta Ab such that
L(Ab) = [[A]]−1(b).

In the following example we check whether we can apply Lemma 5.4.4 to the
three wta which appear in Examples 3.1.4-3.1.6.

Example 5.4.5. Firstly, we consider the (Σ,MaxPlus)-wta Amax shown in Exam-
ple 3.1.4. Recall that, by Example 5.4.3, the semiring MaxPlus is past-finite mono-

5.4 Decidability of crisp-determinization 97

σ

σ α

σ α

� α

qω

qσ qσ

qs qω

qω qω

(a) neither small nor valid
loop on the Σ-context c3

σ

σ α

� α

qσ

qω qσ

qσ qs

(b) small but not valid loop
on the Σ-context c2

σ

σ α

� α

qσ

qσ qσ

qσ qσ

(c) small and valid loop on
the Σ-context c2

Figure 5.3. Loops of the (Σ,MaxPlus)-wta A defined in Example 3.1.4 on some powers
of the Σ-context c = σ(�, α) defined in Example 5.4.6

tonic with respect to the usual linear ordering ≤. Then, by Lemma 5.4.4, for each
n ∈ N−∞, the Σ-tree language [[Amax]]−1(n) is recognizable.

But, also by Example 5.4.3, the semiring MinPlus is not past-finite monotonic with
respect to any partial ordering � on N∞. Hence, if we consider the (Σ,MinPlus)-wta
Aσ constructed in Example 3.1.5, then we cannot apply Lemma 5.4.4 to show that,
for each n ∈ N∞, the Σ-tree language [[Aσ]]−1(n) is recognizable.

Similarly, the bounded lattice M3 given in Example 2.4.7(2) is not monotonic,
because, by Condition (ii) of Definition 5.4.1 for b1 = i = b3 and b2 = a, we should
have i = i ∧ i ≺ i ∧ a ∧ i = a, but that does not hold true. Thus, for the (Σ,M3)-wta
Asplit shown in Examples 3.1.6, we cannot apply Lemma 5.4.4 either. 4

Let A = (Q, δ, F) be a (Σ,B)-wta. For every c ∈ TΣ, q ∈ Q, and loop
ρ ∈ RunA(q, c, q), we call ρ a small loop if height(c) ≤ |Q|. Moreover, we say that
small valid loops of A have weight 1 if, for every c ∈ TΣ, q ∈ Q, and ρ ∈ Runv

A(q, c, q),
we have wt(c, θ) = 1.

Example 5.4.6. Let Σ = {σ(2), ω(2), α(0)}. We consider the (Σ,MaxPlus)-wta Amax

constructed in Example 3.1.4. Moreover, let c = σ(�, α). Then Figure 5.3 shows some
loops of Amax on cn for some n ∈ N as follows. The loop depicted in Figure 5.3(a) is
neither small (as height(c3) ≥ |{qσ, qω, qs}|), nor valid (as δ2(qωqω, σ, qs) = −∞). The
loop illustrated in Figure 5.3(b) is small but not valid as δ2(qσqs, σ, qω) = −∞. Finally,
the loop shown in Figure 5.3(c) is small and valid. 4

Lemma 5.4.7. [1, Lm. 12] (also cf. [2, Lm. 5.5]) Let A = (Q, δ, F) be a (Σ,B�)-wta
such that small valid loops of A have weight 1. Then, for every ξ′ ∈ TΣ, q′ ∈ Q,
and ρ′ ∈ Runv

A(q′, ξ′), there exist ξQ ∈ TΣ and ρQ ∈ Runv
A(q′, ξQ) such that

height(ξQ) < |Q| and wt(ξ′, ρ′) = wt(ξQ, ρQ).

98 Crisp-determinization of wta

Proof. Trivially, if height(ξ′) < |Q|, then we let ξQ = ξ′ and ρQ = ρ′, and we are done.
Hence, we may assume that height(ξ′) ≥ |Q|. By applying Theorem 3.2.4, there exist
c′, c ∈ CΣ, ξ ∈ TΣ, q ∈ Q, θ′ ∈ RunA(q′, c′, q), θ ∈ RunA(q, c, q), and ρ ∈ RunA(q, ξ)

such that the conditions mentioned in Theorem 3.2.4 hold true, and, in particular,
we have

wt(ξ′, ρ′) = wt(c′[c[ξ]], θ′[θ[ρ]]) = lc′,θ′ ⊗ lc,θ ⊗ wt(ξ, ρ)⊗ rc,θ ⊗ rc′,θ′ and

wt(c′[ξ], θ′[ρ]) = lc′,θ′ ⊗ wt(ξ, ρ)⊗ rc′,θ′ .

Observe that, since ρ′ is valid, each of the runs θ′, θ, and ρ is valid. Then we have

(lc,θ ⊗ rc,θ) = wt(c, θ) = 1 ,

where the first equality follows from Lemma 3.2.1, and the second one is due to the
fact that small valid loops of A have weight 1. Moreover, since, by Lemma 5.4.2(5),
B� is one-product free, we have lc,θ = rc,θ = 1, i.e., wt(ξ′, ρ′) = wt(c′[ξ], θ′[ρ]). Note
that we have θ′[ρ] ∈ Runv

A(q′, c′[ξ]) and size(c′[ξ]) < size(ξ′). If height(c′[ξ]) < |Q|,
then we let ξQ = c′[ξ] and ρQ = θ′[ρ], and we are done. Otherwise, we continue with
the c′[ξ], q′, and θ′[ρ] as before, and after finitely many steps, we obtain the Σ-tree ξQ
with height(ξQ) < |Q|, and the run ρQ as required.

The following notions are crucial to construct a trim wta. For each B′ ⊆ B, we
say that B has effective tests for B′ if, for every b ∈ B and b′ ∈ B′, we can decide
whether b = b′. Let A = (Q, δ, F) be a (Σ,B)-wta. For each q ∈ Q, we call q useful (in
A) if there exist ξ ∈ TΣ and ρ ∈ Runa

A(ξ) such that q ∈ im(ρ). We say that A has a
useful state if there exists q ∈ Q such that q is useful. Moreover, A is said to be trim if
each of its states is useful. Now, by some examples, we illustrate the notions defined
above.

Example 5.4.8. Let Σ = {σ(2), ω(2), α(0)}. Moreover, we consider the
(Σ,MaxPlus)-wta Amax defined in Example 3.1.4. Let ξ ∈ TΣ. Recall that, by Ex-
ample 3.1.4, there are exactly three valid runs of Amax on ξ. But, out of the three
valid runs Amax on ξ, only two are accepting. Moreover, for each ρ ∈ Runa

A(ξ), we
have qs 6∈ im(ρ). Consequently, qs is not useful, i.e., Amax is not trim.

Nevertheless, both the wta Aσ given in Example 3.1.5 and the wta Asplit con-
structed in Example 3.1.6 are trim ab ovo. 4

Since deciding whether an arbitrary (Σ,B)-wta A has a useful state is technical
rather than hard if B has effective tests for {0}, we just show the following result
without its proof.

Lemma 5.4.9. [2, Lm. 4.1] Let B have effective tests for {0}. It is decidable, for
arbitrary (Σ,B)-wta A, whether A has a useful state.

5.4 Decidability of crisp-determinization 99

Next we recall unambiguous wta. Let A = (Q, δ, F) be a (Σ,B)-wta. We call
A unambiguous if, for each ξ ∈ TΣ, we have |Runa

A(ξ)| ≤ 1. If this is the case,
then, for each ξ ∈ TΣ, either (a) Runa

A(ξ) = ∅, and thus, [[A]](ξ) = 0, or else
(b) there is a unique run ρ in Runa

A(ξ), i.e., we have {ρ} = Runa
A(ξ), such that

[[A]](ξ) = wt(ξ, ρ)⊗Fρ(ε). Obviously, each bu deterministic wta is unambiguous; how-
ever, there are easy examples of unambiguous wta, to which there does not exist an
equivalent bu deterministic wta cf. [57]. Then, by an example, we demonstrate the
unambiguous wta.

Example 5.4.10. We consider the wta Amax shown in Example 3.1.4. As already
mentioned, on each tree, there are exactly two accepting runs of Amax, and hence,
Amax is not unambiguous.

This is not the case if we consider either the wta Aσ defined in Example 3.1.5 or
the wta Asplit given in Example 3.1.6 as on each tree there is exactly one accepting
run of both wta, i.e., both Aσ and Asplit are unambiguous. 4

Similarly, since, for an arbitrary (Σ,B)-wta A with a useful state, constructing a
semantically equivalent trim (Σ,B)-wta is technical rather than hard if B has effective
tests for {0}, we just give also the following result without its proof.

Lemma 5.4.11. [1, Lm. 5] and [2, Thm. 4.2] Let B have effective tests for {0}.
Moreover, let A = (Q, δ, F) be a (Σ,B)-wta. If A has a useful state, then we can
construct a (Σ,B)-wta A′ such that A′ is trim and it is equivalent to A. If, in addition,
A is unambiguous, then A′ is so.

Here we give an example of the application of Lemma 5.4.11.

Example 5.4.12. Here we continue Example 5.4.8. Let Σ = {σ(2), ω(2), α(0)}. Fur-
thermore, we consider the (Σ,MaxPlus)-wta Amax defined in Example 3.1.4. Since qs
is not useful, but the states qσ and qω are so, by Lemma 5.4.11, we can construct the
(Σ,MaxPlus)-wta

A′max = ({qσ, qω}, δ′, F ′) ,

where δ′0(ε, α, qσ) = δ′0(ε, α, qω) = δ′2(qσqσ, ω, qσ) = δ′2(qωqω, σ, qω) = 0,
δ′2(qσqσ, σ, qσ) = δ′2(qωqω, ω, qω) = 1, and every other transition in δ′ has weight −∞,
and F ′qσ = F ′qω = 0. Trivially, A′max is trim. 4

Lemma 5.4.13. [1, Thm. 13] (also cf. [2, Thm. 7.1]) Let B� be past-finite. Moreover,
let A = (Q, δ, F) be a trim (Σ,B�)-wta such that B� is additively locally finite or A is
unambiguous. Then the following statements are equivalent.

1. The set im([[A]]) is finite.
2. Small valid loops of A have weight 1.

100 Crisp-determinization of wta

Proof. (1 ⇒ 2). We prove, by contraposition, our statement. In order to do that,
assume that there exist c ∈ TΣ, q ∈ Q, and small θ ∈ Runv

A(q, c, q) such that
wt(c, θ) 6= 1. Since θ is valid, and since B� is zero-divisor free and one-product
free by Lemma 5.4.2, we have 1 ≺ wt(c, θ). Moreover, since A is trim, the state q
is useful, and hence, there exist c′ ∈ TΣ, ξ ∈ TΣ, q′ ∈ Q, θ′ ∈ Runv

A(q′, c, q), and
ρ ∈ Runv

A(q, ξ) such that θ′[θ[ρ]] ∈ Runa
A(c′[c[ξ]]).

By Lemma 3.2.1, we have wt(c, θ) = lc,θ ⊗ rc,θ. Moreover, since 1 ≺ wt(c, θ), we
have 1 ≺ lc,θ or 1 ≺ rc,θ. Here we consider the case where 1 ≺ lc,θ. (Observe that the
other case is symmetrical.) Then, for each n ∈ N, we have

wt(c′[cn[ξ]], θ′[θn[ρ]]) = lc′,θ′ ⊗ (lc,θ)
n ⊗ wt(ξ, ρ)⊗ (rc,θ)

n ⊗ rc′,θ′
≺(†) lc′,θ′ ⊗ (lc,θ)

n+1 ⊗ wt(ξ, ρ)⊗ (rc,θ)
n ⊗ rc′,θ′

�(‡) lc′,θ′ ⊗ (lc,θ)
n+1 ⊗ wt(ξ, ρ)⊗ (rc,θ)

n+1 ⊗ rc′,θ′
= wt(c′[cn+1[ξ]], θ′[θn+1[ρ]]) ,

where the first and the last equalities follow from Theorem 3.2.3, at (†) we ap-
ply Condition (ii) of Definition 5.4.1 for b1 = (lc′,θ′ ⊗ (lc,θ)

n), b2 = lc,θ, and
b3 = (wt(ξ, ρ)⊗ (rc,θ)

n ⊗ rc′,θ′); and at (‡) we apply Condition (ii) of Definition 5.4.1
for b1 = (lc′,θ′ ⊗ (lc,θ)

n+1 ⊗ wt(ξ, ρ) ⊗ (rc,θ)
n), b2 = rc,θ, and b3 = rc′,θ′. Furthermore,

since, � is transitive, we have

wt(c′[c0[ξ]], θ′[θ0[ρ]]) ≺ wt(c′[c1[ξ]], θ′[θ1[ρ]]) ≺ (5.10)

Next we construct an infinite sequence ξ1, ξ2, ξ3, . . . of Σ-trees such that the elements
[[A]](ξ1), [[A]](ξ2), [[A]](ξ3), . . . in B are pairwise different as follows. We let ξ1 = c′[c[ξ]].
Since B� is past-finite, the set P1 = past([[A]](ξ1)) is finite. By (5.10), there ex-
ists n2 ∈ N such that wt(c′[cn2 [ξ]], θ′[θn2 [ρ]]) 6∈ P1. Thus, we let ξ2 = c′[cn2 [ξ]] and
ρ2 = θ′[θn2 [ρ]]. Since ρ2 ∈ Runa

A(q′, ξ2) and B is monotonic, by Conditions (ii) and (i)
of Definition 5.4.1, we have

wt(ξ2, ρ2) � wt(ξ2, ρ2)⊗ Fq′ �
⊕

ρ′2∈Runa
A(ξ2)

wt(ξ2, ρ
′
2)⊗ Fρ′2(ε) = [[A]](ξ2) ,

where Fq′ may be 1, and Runa
A(ξ2) may equal {ρ2}. Consequently, we have

[[A]](ξ2) 6∈ P1. Now we put P2 = past([[A]](ξ2)). By (5.10), there exists n3 ∈ N such
that wt(c′[cn3 [ξ]], θ′[θn3 [ρ]]) 6∈ (P1 ∪ P2). By continuing this process, we obtain the
desired sequence of Σ-trees. Therefore the set im([[A]]) is not finite.

(2 ⇒ 1). Let ξ′ ∈ TΣ. Recall that [[A]](ξ′) =
⊕

q′∈Q
⊕

ρ′∈Runv
A(q′,ξ′) wt(ξ′, ρ′) ⊗ Fq′.

Since small valid loops of A have weight 1, by Lemma 5.4.7, for every q′ ∈ Q and
ρ′ ∈ Runv

A(q′, ξ′), there exist a Σ-tree ξQ and a run ρQ ∈ Runv
A(q′, ξQ) such that

5.4 Decidability of crisp-determinization 101

height(ξQ) < |Q| and wt(ξ′, ρ′) = wt(ξQ, ρQ). Hence, we consider the set

H = {wt(ξQ, ρQ)⊗ Fq′ | ξQ ∈ TΣ, height(ξQ) < |Q|, q′ ∈ Q, ρQ ∈ Runv
A(q′, ξQ)} .

Observe that H is a finite set. Now we proceed by case analysis.
B� is additively locally finite: Then the set 〈H〉{⊕,0} is finite as well, and, since we

have [[A]](ξ′) ∈ 〈H〉{⊕,0}, i.e., im([[A]]) ⊆ 〈H〉{⊕,0}, the set im([[A]]) is finite as required.
A is unambiguous: Then either [[A]](ξ′) = 0, or else there is a unique accepting

run ρ′ of A on ξ′, i.e., we have {ρ′} = Runa
A(ξ′), such that [[A]](ξ′) = wt(ξ′, ρ′)⊗ Fρ′(ε).

Thus, we have im([[A]]) ⊆ H, i.e., the set im([[A]]) is finite as desired.

Lemma 5.4.14. [1, Cor. 14] (also cf. [2, Thms. 7.5 and 7.7]) Let B� be past-finite
and have effective tests for {1}. It is decidable, for arbitrary trim (Σ,B�)-wta A such
that B� is additively locally finite or A is unambiguous, whether im([[A]]) is finite.

Proof. Let A = (Q, δ, F). By Lemma 5.4.13, we have

im([[A]]) is finite if and only if small valid loops of A have weight 1 .

The latter property is decidable for the following reasons. Since there are only finitely
many contexts in CΣ of height less than |Q|, there are only finitely many small and
valid loops of A. Moreover, for each small and valid loop θ ∈ Runv

A(q, c, q) for some
c ∈ CΣ and q ∈ Q, we have wt(c, θ) = 1 if and only if δk

(
θ(v1) · · · θ(vk), c(v), θ(v)

)
= 1

for every k ∈ N and v ∈ pos(c) with c(v) ∈ Σ(k), where the right-hand side of the
equivalence is decidable as B� has effective tests for {1}. This concludes our proof.

Theorem 5.4.15. [1, Thm. 10] Let Σ be a ranked alphabet such that Σ(0) 6= ∅.
Moreover, let B = (B,⊕,⊗, 0, 1) be a strong bimonoid and� be a partial ordering
on B such that B is past-finite monotonic with respect to �, and B has effective
tests for {0, 1}. Then the following statements hold true.

1. If, in addition, B is additively locally finite, then it is decidable, for arbitrary
(Σ,B)-wta A, whether A is crisp-determinizable.

2. It is decidable, for arbitrary unambiguous (Σ,B)-wta A, whether A is crisp-
determinizable.

Proof. Let A be an arbitrary (Σ,B�)-wta such that B� is additively locally finite or A
is unambiguous. By Lemma 5.4.9, it is decidable whether A has a useful state. If the
answer is “no”, then im([[A]]) = {0}. Obviously, we can construct a crisp-deterministic
(Σ,B�)-wta A′ such that [[A]] = [[A′]].

102 Crisp-determinization of wta

Otherwise, i.e., if A has a useful state, then, by Lemma 5.4.11, we may assume
that A is trim. Then

A is crisp-determinizable

⇐⇒ there exists a crisp-deterministic (Σ,B�)-wta A′ such that [[A]] = [[A′]]
⇐⇒ im([[A]]) is finite,

where the second equivalence follows from Lemmas 5.3.9 and 5.4.4. Moreover,
by Lemma 5.4.14, it is decidable, whether im([[A]]) is finite. Hence, it is decidable
whether A is crisp-determinizable. This concludes our proof.

Now we show an application of Theorem 5.4.15 as follows.

Example 5.4.16. Let Σ = {σ(2), ω(2), α(0)}. We consider the (Σ,MaxPlus≤)-wta Amax

defined in Example 3.1.4. Since, the semiring MaxPlus≤ is past-finite and addi-
tively locally finite, we can apply Theorem 5.4.15(1) to the (Σ,MaxPlus≤)-wta Amax.
Hence, by Lemma 5.4.11, we first construct the trim (Σ,MaxPlus≤)-wta A′max such
that A′max is equivalent to Amax (cf. Example 5.4.12). Then, by considering the con-
text c = σ(�, α) and the (qσ, qσ)-run θ of Amax on c such that θ(2) = qσ, we have a
small and valid loop with 1 ≺ wt(c, θ). Consequently, Theorem 5.4.15(1) delivers a
“no”, i.e., Amax is not crisp-determinizable. 4

Moreover, note that even though the semiring MinPlus given in Example 2.4.6(4)
is additively locally finite, it is not past-finite monotonic by Example 5.4.5, and thus,
we cannot apply Theorem 5.4.15(1) to the (Σ,MinPlus)-wta Aσ shown in Exam-
ple 3.1.5. Similarly, by Example 5.4.5, also the bounded lattice M3 is not past-finite
monotonic, and hence, we cannot apply Theorem 5.4.15(2) to the unambiguous
(Σ,M3)-wta Asplit constructed in Example 3.1.6.

5.5 Undecidability and decidability results for
weighted string automata

Here we recall the concept of weighted string automata and show that each of our
undecidability (respectively, decidability) results holds for weighted string automata
as well.

Let Γ be a nonempty alphabet. A (Γ,B)-weighted language (or just: weighted
language) is a B-weighted set ψ : Γ∗ → B. A weighted string automaton (over Γ and
B) (for short: (Γ,B)-wsa, or just: wsa) [33, 70] is a quadrupleA = (Q, I, δ, F), where

• Q is a finite and nonempty set (states) such that Q ∩ Γ = ∅,
• I : Q→ B is a mapping (initial weight mapping),
• δ : Q× Γ×Q→ B is a mapping (transition mapping), and

5.5 Undecidability and decidability results for weighted string automata 103

• F : Q→ B is a mapping (final weight mapping).
LetA = (Q, I, δ, F) be a (Γ,B)-wsa. We define the (run) semantics ofA as follows.

Let w = a1 · · · an be a string in Γ∗ with n ∈ N and ai ∈ Γ for each i ∈ [n]. A run of A
on w is a string ρ = q0 · · · qn in Qn+1, and the weight of ρ for w, denoted by wtA(w, ρ),
is the element of B defined by

wtA(w, ρ) = I(q0)⊗ δ(q0, a1, q1)⊗ . . .⊗ δ(qn−1, an, qn)⊗ F (qn) .

Then the (run) semantics of A is the weighted language [[A]] : Γ∗ → B defined, for
each w ∈ Γ∗, by

[[A]](w) =
⊕

ρ∈Qlen(w)+1

wtA(w, ρ) .

In particular, we have [[A]](ε) =
⊕

q∈Q(I(q)⊗ F (q)). A (Γ,B)-weighted language ψ is
recognizable if there exists a (Γ,B)-wsa A such that ψ = [[A]].

In [42, Lm. 3.3.3], it is shown that the concept of (Γ,B)-wsa and the concept of
(Σ,B)-wta, where Σ is a string ranked alphabet, are essentially the same. In fact, for
each (Γ,B)-wsa A, there exist a string ranked alphabet Σ, a bijection tree : Γ∗ → TΣ,
and a (Σ,B)-wta Atree such that [[A]](w) = (Atree ◦ tree)(w) for each w ∈ Γ∗. Moreover,
the inverse of that statement also holds true.

Since the ranked alphabet in Theorems 5.3.7 and 5.3.14 is a string ranked alpha-
bet, according to the equivalence described above, the corresponding undecidability
results hold for weighted string automata. Furthermore, Theorem 5.4.15 holds, in
particular, for any string ranked alphabet. Hence, by the above, it also holds for
weighted string automata.

Concluding remarks. We consider the (ΣM ,TransM)-wta AM constructed in Con-
struction 5.3.4. Recall that TransM is idempotent, i.e., TransM is additively locally
finite, and AM is bu deterministic, i.e., AM is unambiguous. Compared to The-
orem 5.4.15, Theorem 5.3.14 shows that dropping the condition “B is past-finite
monotonic with respect to some partial ordering � on B” results in undecidability.

The author of this PhD thesis declares that his contribution to Theorems 5.2.8,
5.2.12, 5.3.7, 5.3.14, and 5.4.15 is decisive, that Theorems 5.2.8 and 5.4.15 are
published in [3] and [1], respectively, and also that Theorems 5.3.7 and 5.3.14 are
slightly stronger than [3, Thm. 8.9] and [3, Thm. 8.5], respectively, but are based on
the same ideas. Finally, we mention that [2, Thm. 6.6], [5, Thms. 7 and 11], and [2,
Thms. 7.5, 7.7, and 7.15] supersede Theorems 5.2.8, 5.3.14, and 5.4.15, respectively,
but the contribution of the author to those stronger results is not decisive.

104 Crisp-determinization of wta

Publications of the author

On the subjects of the thesis

[1] M. Droste, Z. Fülöp, D. Kószó, and H. Vogler. “Crisp-Determinization of
Weighted Tree Automata over Additively Locally Finite and Past-Finite Mono-
tonic Strong Bimonoids Is Decidable”. In: Descriptional Complexity of Formal
Systems (DCFS 2020). Ed. by G. Jirásková and G. Pighizzini. Vol. 12442. Lec-
ture Notes in Computer Science. Springer Nature Switzerland, 2020, 39–51.

[2] M. Droste, Z. Fülöp, D. Kószó, and H. Vogler. “Finite-image property of
weighted tree automata over past-finite monotonic strong bimonoids”. In: The-
oretical Computer Science 919 (2022), 118–143.

[3] Z. Fülöp, D. Kószó, and H. Vogler. “Crisp-determinization of weighted tree
automata over strong bimonoids”. In: Discrete Mathematics & Theoretical Com-
puter Science 23(1) (2021), #18.

[4] D. Kószó. “Weighted Tree Generating Regular Systems over Strong Bimonoids
with Reduction Semantics”. In: Journal of Automata, Languages and Combina-
torics 27(4) (2022), 271–307.

Further related publications

[5] M. Droste, Z. Fülöp, and D. Kószó. “Decidability Boundaries for the Finite-
Image Property of Weighted Finite Automata”. In: International Journal of
Foundations of Computer Science (To appear).

[6] D. Kószó. “Tree generating context-free grammars and regular tree grammars
are equivalent”. In: Annales Mathematicae et Informaticae 56 (2022), 58–70.

105

https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.1016/j.tcs.2022.03.036
https://doi.org/10.1016/j.tcs.2022.03.036
https://doi.org/10.46298/dmtcs.5943
https://doi.org/10.46298/dmtcs.5943
https://doi.org/10.25596/jalc-2022-271
https://doi.org/10.25596/jalc-2022-271
https://doi.org/10.33039/ami.2022.12.007
https://doi.org/10.33039/ami.2022.12.007

106 Publications of the author

Other references

[7] A. Alexandrakis and S. Bozapalidis. “Weighted grammars and Kleene’s theo-
rem”. In: Information Processing Letters 24(1) (1987), 1–4.

[8] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge: Cambridge
University Press, 1998.

[9] M. Bauderon and B. Courcelle. “Graph expressions and graph rewritings”. In:
Mathematical Systems Theory 20(1) (1987), 83–127.

[10] J. Berstel and C. Reutenauer. “Recognizable formal power series on trees”. In:
Theoretical Computer Science 18(2) (1982), 115–148.

[11] J. Berstel and Ch. Reutenauer. Rational Series and Their Languages. Vol. 12.
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[12] G. Birkhoff. Lattice Theory. 3rd. Vol. 25. Colloquium Publications. American
Mathematical Society, 1993.

[13] B. Borchardt. “A pumping lemma and decidability problems for recognizable
tree series”. In: Acta Cybernetica 16(4) (2004), 509–544.

[14] B. Borchardt. The Theory of Recognizable Tree Series. (Ph.D. thesis, 2004, TU
Dresden, Germany). Verlag für Wissenschaft und Forschung, 2005.

[15] B. Borchardt, Z. Fülöp, Z. Gazdag, and A. Maletti. “Bounds for tree automata
with polynomial costs”. In: Journal of Automata, Languages and Combinatorics
10(2–3) (2005), 107–157.

[16] B. Borchardt and H. Vogler. “Determinization of finite state weighted tree
automata”. In: Journal of Automata, Languages and Combinatorics 8(3)
(2003), 417–463.

[17] S. Bozapalidis and O. Louscou-Bozapalidou. “Fuzzy tree language recogniz-
ability”. In: Fuzzy Sets and Systems 161 (2010), 716–734.

[18] W. S. Brainerd. “Tree Generating Regular Systems”. In: Information and Con-
trol 14 (1969), 217–231.

[19] M. Büchse, J. May, and H. Vogler. “Determinization of weighted tree automata
using factorizations”. In: Journal of Automata, Languages and Combinatorics
15(3–4) (2010), 229–254.

107

https://doi.org/10.1016/0020-0190(87)90190-6
https://doi.org/10.1016/0020-0190(87)90190-6
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/BF01692060
https://doi.org/10.1016/0304-3975(82)90019-6
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3640
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3640
https://doi.org/10.25596/jalc-2005-107
https://doi.org/10.25596/jalc-2005-107
https://doi.org/10.25596/jalc-2003-417
https://doi.org/10.25596/jalc-2003-417
https://doi.org/10.1016/j.fss.2009.08.008
https://doi.org/10.1016/j.fss.2009.08.008
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.25596/jalc-2010-229
https://doi.org/10.25596/jalc-2010-229

108 Other references

[20] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Ed. by
P.R. Halmos, F.W. Gehring, and C.C. Moore. First Edition. Vol. 78. Graduate
Texts in Mathematics. Corrected version available at https://www.math.
uwaterloo.ca/~snburris/htdocs/ualg.html. New York: Springer-Verlag,
1981.

[21] M. Ćirić, M. Droste, J. Ignjatović, and H. Vogler. “Determinization of weighted
finite automata over strong bimonoids”. In: Information Sciences 180(18)
(2010), 3479–3520.

[22] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S.
Tison, and M. Tommasi. Tree Automata Techniques and Applications. Available
on: http://tata.gforge.inria.fr. 2008.

[23] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Vol. 138. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2012.

[24] J. Doner. “Tree acceptors and some of their applications”. In: Journal of Com-
puter and System Sciences 4 (1970), 406–451.

[25] M. Droste and P. Gastin. “Weighted Automata and Weighted Logics”. In: 32nd
Int. Colloquium Automata, Languages and Programming (ICALP 2005). Ed. by
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung. Vol. 3580.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2005, 513–
525.

[26] M. Droste and P. Gastin. “Weighted automata and weighted logics”. In: Theo-
retical Computer Science 380(1–2) (2007), 69–86.

[27] M. Droste and P. Gastin. “Weighted Automata and Weighted Logics”. In: Hand-
book of Weighted Automata. Ed. by M. Droste, W. Kuich, and H. Vogler. Mono-
graphs in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
2009. Chap. 5.

[28] M. Droste, D. Heusel, and H. Vogler. “Weighted unranked tree automata over
tree valuation monoids and their characterization by weighted logics”. In: Al-
gebraic Informatics (CAI 2015). Vol. 9270. Lecture Notes in Computer Science.
Springer, 2015, 90–102.

[29] M. Droste, Chr. Pech, and H. Vogler. “A Kleene Theorem for Weighted Tree
Automata”. In: Theory of Computing Systems 38 (2005), 1–38.

[30] M. Droste, T. Stüber, and H. Vogler. “Weighted finite automata over strong
bimonoids”. In: Information Sciences 180(1) (2010), 156–166.

[31] M. Droste and H. Vogler. “Weighted Tree Automata and Weighted Logics”. In:
Theoretical Computer Science 366(3) (2006), 228–247.

https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://doi.org/10.1016/j.ins.2010.05.020
https://doi.org/10.1016/j.ins.2010.05.020
http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://www.sciencedirect.com/science/article/pii/S0022000070800411
https://link.springer.com/chapter/10.1007/11523468_42
https://www.sciencedirect.com/science/article/pii/S0304397507001582
https://link.springer.com/chapter/10.1007/978-3-642-01492-5_5
https://link.springer.com/book/10.1007/978-3-642-01492-5
https://link.springer.com/book/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-319-23021-4_9
https://doi.org/10.1007/978-3-319-23021-4_9
https://link.springer.com/article/10.1007/s00224-004-1096-z
https://link.springer.com/article/10.1007/s00224-004-1096-z
https://doi.org/10.1016/j.ins.2009.09.003
https://doi.org/10.1016/j.ins.2009.09.003
https://doi.org/10.1016/j.tcs.2006.08.025

Other references 109

[32] M. Droste and H. Vogler. “Weighted automata and multi-valued logics over
arbitrary bounded lattices”. In: Theoretical Computer Science 418 (2012), 14–
36.

[33] S. Eilenberg. Automata, Languages, and Machines – Volume A. Vol. 59. Pure
and Applied Mathematics. Academic Press, 1974.

[34] J. Engelfriet. Tree automata and tree grammars. Tech. rep. DAIMI FN-10. see
also: arXiv:1510.02036v1 [cs.FL] 7 Oct 2015. Aarhus, Denmark: Inst. of Math-
ematics, University of Aarhus, Department of Computer Science, 1975.

[35] Z. Ésik and W. Kuich. Modern Automata Theory. see: https : / / www . dmg .
tuwien.ac.at/kuich/mat.pdf.

[36] Z. Ésik and W. Kuich. “Formal Tree Series”. In: Journal of Automata, Languages
and Combinatorics 8(2) (2003), 219–285.

[37] Z. Ésik and G. Liu. “Fuzzy tree automata”. In: Fuzzy Sets and Systems 158(13)
(2007), 1450–1460.

[38] Z. Fülöp. “Local Weighted Tree Languages”. In: Acta Cybernetica 22(2)
(2015), 393–402.

[39] Z. Fülöp, A. Maletti, and H. Vogler. “A Kleene theorem for weighted tree au-
tomata over distributive multioperator monoids”. In: Theory of Computing Sys-
tems 44 (2009), 455–499.

[40] Z. Fülöp, T. Stüber, and H. Vogler. “A Büchi-like theorem for weighted tree
automata over multioperator monoids”. In: Theory of Computing Systems 50
(2012), 241–278.

[41] Z. Fülöp and H. Vogler. “Weighted tree automata and tree transducers”. In:
Handbook of Weighted Automata. Ed. by M. Droste, W. Kuich, and H. Vogler.
EATCS Monographs in Theoretical Computer Science. Springer-Verlag, 2009.
Chap. 9, 313–403.

[42] Z. Fülöp and H. Vogler. Weighted Tree Automata – May it be a little more? see:
arXiv:2212.05529v1 [cs.FL] 11 Dec 2022. 2022.

[43] F. Gécseg and M. Steinby. Tree Automata. see also: arXiv:1509.06233v1 [cs.FL]
21 Sep 2015. Akadémiai Kiadó, Budapest, 1984.

[44] P. Gillibert. “The finitness problem for automaton semigroups is undecidable”.
In: International Journal of Algebra and Computation 24(1) (2014), 1–9.

[45] J.S. Golan. Semirings and their Applications. Dordrecht: Kluwer Academic Pub-
lishers, 1999.

[46] Saul Gorn. “Explicit definitions and linguistic dominoes”. In: Proceedings of
the Systems and Computer Science Conference. University of Western Ontario,
1965, 77–115.

https://doi.org/10.1016/j.tcs.2011.11.008
https://doi.org/10.1016/j.tcs.2011.11.008
https://www.elsevier.com/books/automata-languages-and-machines/eilenberg/978-0-12-234001-7
https://doi.org/10.48550/arXiv.1510.02036
https://www.dmg.tuwien.ac.at/kuich/mat.pdf
https://www.dmg.tuwien.ac.at/kuich/mat.pdf
https://www.dmg.tuwien.ac.at/kuich/mat.pdf
https://doi.org/10.25596/jalc-2003-219
https://doi.org/10.1016/j.fss.2007.02.016
https://doi.org/10.14232/actacyb.22.2.2015.10
https://doi.org/10.1007/s00224-007-9091-9
https://doi.org/10.1007/s00224-007-9091-9
https://doi.org/10.1007/s00224-010-9296-1
https://doi.org/10.1007/s00224-010-9296-1
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.48550/arXiv.2212.05529
https://doi.org/10.48550/arXiv.1509.06233
https://doi.org/10.1142/S0218196714500015

110 Other references

[47] G. Grätzer. Universal Algebra. D. van Nostrand Comp., 1968.

[48] G. Grätzer. General Lattice Theory. 2nd. Birkhäuser Verlag, 2003.

[49] A. Habel and H.-J. Kreowski. “Some structural aspects of hypergraph lan-
guages generated by hyperedge replacement”. In: Annual Symposium on The-
oretical Aspects of Computer Science (STACS 1987). Ed. by F.J. Brandenburg,
G. Vidal-Naquet, and M. Wirsing. Vol. 247. LNCS. Springer Berlin Heidelberg,
1987, 207–219.

[50] U. Hebisch and H.J. Weinert. Semirings - Algebraic Theory and Applications in
Computer Science. World Scientific, 1993.

[51] L. Herrmann. “A Medvedev Characterization of Recognizable Tree Series”. In:
21th Int. Conf. on Developments in Language Theory (DLT 2017). Ed. by É.
Charlier, J. Leroy, and M. Rigo. Vol. 10396. Lecture Notes in Computer Sci-
ence. Springer, Cham, 2017, 210–221.

[52] L. Herrmann. Weighted Tree Automata with Storage. Ph.D. Thesis, 2020, TU
Dresden, Germany). 2020.

[53] W. M. L. Holcombe. Algebraic automata theory. Cambridge University Press,
1982.

[54] W. G. van Hoorn and B. van Oozela. “Fundamental notions in the theory of
seminear-rings”. In: Compositio Mathematica 18 (1967), 65–78.

[55] K. Culik II and A. Salomaa. “On the Decidability of Homomorphism Equiv-
alence for Languages”. In: Journal of Computer and System Sciences 17
(1978), 163–175.

[56] Y. Inagaki and T. Fukumura. “On the description of fuzzy meaning of context-
free languages”. In: Fuzzy Sets and Their Applications to Cognitive and Decision
Processes. Academic Press, New York, 1975, 301–328.

[57] I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. “Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton”. In: Theo-
retical Computer Science 327(3) (2004), 349–373.

[58] K. V. Krishna. “Near-Semirings: Theory and Applications”. PhD thesis. New
Delhi, India: IIT Delhi, 2005.

[59] W. Kuich. “Formal power series over trees”. In: 3rd International Conference on
Developments in Language Theory (DLT 1997), Thessaloniki, Greece. Ed. by S.
Bozapalidis. Aristotle University of Thessaloniki, 1998, 61–101.

https://doi.org/10.1007/BFb0039608
https://doi.org/10.1007/BFb0039608
https://doi.org/10.1007/978-3-319-62809-7_15
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-740685
https://doi.org/10.1016/0022-0000(78)90002-8
https://doi.org/10.1016/0022-0000(78)90002-8
https://doi.org/10.1016/B978-0-12-775260-0.50018-9
https://doi.org/10.1016/B978-0-12-775260-0.50018-9
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1016/j.tcs.2004.02.049

Other references 111

[60] W. Kuich. “Linear systems of equations and automata on distributive multi-
operator monoids”. In: Contributions to General Algebra 12 - Proceedings of
the 58th Workshop on General Algebra “58. Arbeitstagung Allgemeine Algebra”,
Vienna University of Technology. June 3-6, 1999. Ed. by D. Dorninger, G. Eigen-
thaler, M. Goldstern, H. K. Kaiser, W. More, and W. B. Müller. Verlag Johannes
Heyn, 1999, 1–10.

[61] O. Louscou-Bozapalidou. “Some remarks on recognizable tree series”. In: In-
ternational Journal of Computer Mathematics 70 (1999), 649–655.

[62] M. Magidor and G. Moran. Finite Automata over Finite Trees. Tech. rep. 30.
Hebrew University, Jerusalem, 1969.

[63] A. Mandel and I. Simon. “On finite semigroups of matrices”. In: Theoretical
Computer Science 5 (1977), 101–111.

[64] G. H. Mealy. “A Method for Synthesizing Sequential Circuits”. In: The Bell
System Technical Journal 34(5) (1955), 1045–1079.

[65] M. Mohri. “Minimization algorithms for sequential transducers”. In: Theoreti-
cal Computer Science 234(1–2) (2000), 177–201.

[66] D. Radovanović. “Weighted tree automata over strong bimonoids”. In: Novi
Sad Journal of Mathematics 40(3) (2010), 89–108.

[67] G. Rahonis. “Fuzzy languages”. In: Handbook of Weighted Automata. Ed. by M.
Droste, W. Kuich, and H. Vogler. EATCS Monographs in Theoretical Computer
Science. Springer-Verlag, 2009. Chap. 12, 481–517.

[68] A. Restivo and C. Reutenauer. “Rational Languages and the Burnside Prob-
lem”. In: Theoretical Computer Science 40 (1985), 13–30.

[69] W. C. Rounds. “Mappings and grammars on trees”. In: Mathematical Systems
Theory 4(3) (1970), 257–287.

[70] M. P. Schützenberger. “On the definition of a family of automata”. In: Informa-
tion and Control 4 (1961), 245–270.

[71] J. W. Thatcher. “Characterizing derivation trees of context-free grammars
through a generalization of finite-automata theory”. In: Journal of Computer
and System Sciences 1(4) (1967), 317–322.

[72] J. W. Thatcher. “Generalized sequential machine maps”. In: Journal of Com-
puter and System Sciences 4(4) (1970), 339–367.

[73] J. W. Thatcher and J. B. Wright. “Generalized finite automata theory with
an application to a decision problem of second-order logic”. In: Mathematical
Systems Theory 2(1) (1968), 57–81.

https://doi.org/10.1080/00207169908804780
https://doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1016/S0304-3975(98)00115-7
https://sites.dmi.uns.ac.rs/nsjom/Papers/40_3/NSJOM_40_3_089_108.pdf
https://doi.org/10.1007/978-3-642-01492-5_12
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/0304-3975(85)90156-2
https://doi.org/10.1016/0304-3975(85)90156-2
https://doi.org/10.1007/BF01695769
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1016/S0022-0000(70)80017-4
https://link.springer.com/article/10.1007/BF01691346
https://link.springer.com/article/10.1007/BF01691346

112 Other references

Summary

In this PhD thesis we investigate weighted tree automata over strong bimonoids.
Fundamentally, a strong bimonoid is a semiring in which the distributivity laws need
not hold. Moreover, the model of weighted tree automaton is a natural extension
of the model of classical finite-state tree automaton by associating to each possible
transition and to each state of a finite-state tree automaton a unique weight, i.e.,
an element of the underlying strong bimonoid. We mention that, since the strong
bimonoid is not necessarily distributive, we cannot apply convenient algebraic meth-
ods to study weighted tree automata over strong bimonoids. Thus, we apply only
combinatorial approaches for our investigations, and hence, consider only the run
semantics of weighted tree automata.

The run semantics of a weighted tree automaton is a mapping from the set of
input trees to the carrier set of the underlying strong bimonoid. Each such mapping
is called a weighted tree language (or formal power series). In order to calculate
the run semantics, we consider runs of the weighted tree automaton. A run is a
mapping from the set of positions of an input tree to the set of states of the weighted
tree automaton. To calculate the weight of a run, we multiply the transition weights
in a fixed order determined by the run using the multiplication operation of the
underlying strong bimonoid. Then, to calculate the run semantics of the weighted
tree automaton for an input tree, we sum up all weights of runs on that input tree
multiplied by the root weight using the addition operation of the underlying strong
bimonoid.

In Chapter 1, we give a brief introduction to the theory of finite-state tree au-
tomata and to the theory of weighted tree automata. In Chapter 2 we discuss the
preliminaries, i.e., the necessary notions, notations, and results of the theory of finite-
state tree automata and of the theory of universal algebra.

In Chapter 3, we recall fundamental notions, notations, and results of weighted
tree languages and weighted tree automata. Moreover, we present our pumping
lemmas for runs of weighted tree automata. With a pumping lemma one can achieve
structural implications on small or particular large trees. Since such pumping lemmas
already exist for weighted tree automata, the question may arise why we present
another pumping lemmas. The existing setting deals with bottom-up deterministic
weighted tree automata over semirings and employs initial algebra semantics, but in

113

114 Summary

our setting we deal with (arbitrary) weighted tree automata over strong bimonoids
and employ run semantics. Nevertheless, if we consider the class of all bottom-up
deterministic weighted tree automata over semirings, then the two settings coincide.

In Chapter 4 we deal with weighted tree generating regular systems. In the lit-
erature, the equivalence of finite-state tree automata and tree generating regular
systems is already proven. A tree generating regular system is a particular ground
term rewriting system extended with a set of designated trees, also known as axioms.
The ground term rewrite relation induced by a tree generating regular system is de-
fined in the standard way. Moreover, the derivation semantics of a tree generating
regular system is the set of those input trees, which can be reached from an axiom
by applying the transitive and reflexive closure of the induced ground term rewrite
relation.

In this chapter we recall the concept of weighted tree generating regular systems
such that (a) each weighted tree generating regular system over the Boolean semiring
is “equivalent” to a tree generating regular system, and vice versa; and (b) under
some mild conditions, each weighted tree generating regular system is equivalent to
a weighted tree automata, and vice versa.

Unfortunately, the derivation semantics of tree generating regular systems allows
replacements at incomparable positions in an arbitrary order. Since the addition op-
eration of a strong bimonoid is not necessarily idempotent, introducing the concept
of weighted tree generating regular systems with the generalized derivation seman-
tics is not suitable for our purposes. More precisely, if we associated a weighted tree
generating regular system to a weighted tree automaton and considered the deriva-
tion semantics of the weighted tree generating regular system, then more than one
computation of the weighted tree generating regular system would correspond to a
single run of the weighted tree automaton. Consequently, the derivation semantics of
the weighted tree generating regular system and the run semantics of the weighted
tree automaton would differ.

In order to avoid that phenomenon, we advocate an alternative, but essentially
equivalent semantics, called reduction semantics, for tree generating regular systems
and introduce the concept of weighted tree generating regular system only with the
generalization of this alternative semantics. The reduction semantics of tree gener-
ating regular systems has the following two characteristics:

(i) It is based on the restriction of the induced ground the term rewriting relation.
In this case the restriction means that replacements can be performed only at
the minimal position with respect to the depth-first post-ordering of positions
at which a replacement is possible.

(ii) It reverses the direction of the computation, i.e., the reduction semantics of a
tree generating regular system is the set of those input trees, from which can
be reached an axiom by applying the transitive and reflexive closure of the

Summary 115

restricted ground term rewrite relation.

Surprisingly, the derivation semantics and the reduction semantics of tree gener-
ating regular systems are essentially equivalent as follows. For each tree generating
regular system, we can construct another tree generating regular system such that
the derivation semantics of the former and the reduction semantics of the latter co-
incide. Similarly, for each tree generating regular system, we can construct another
tree generating regular system such that the reduction semantics of the former and
the derivation semantics of the latter coincide. Moreover, introducing the concept
of weighted tree generating regular system with the generalized reduction semantics
fulfills the aforementioned requirements (a) and (b).

Finally, in Chapter 5, we deal with the crisp-determinization problem of weighted
tree automata. We call a weighted tree automaton crisp-deterministic if it is total
and bottom-up deterministic, and each of its transitions carries either the additive or
the multiplicative unit element of the underlying strong bimonoid; weights different
from these unit elements may occur only as final (or root) weights. Moreover, we say
that a weighted tree automaton is crisp-determinizable if there exists a run seman-
tically equivalent crisp-deterministic weighted tree automaton. Although, the defini-
tion of crisp-deterministic weighted tree automaton is quite restrictive, it is worth to
study them, because they have several desirable properties such as they are bottom-
up deterministic, their run semantics has a finite image, etc. Moreover, each fuzzy
tree automaton can be considered as a particular crisp-determinizable weighted tree
automaton.

In the literature there is a sufficient condition for crisp-determinization, but only
for weighted string automaton. Since each weighted string automaton can be consid-
ered as a weighted tree automaton over a particular ranked alphabet, in a straight-
forward way we generalize that sufficient condition from strings to trees.

Moreover, we prove undecidability (decidability) results regarding the crisp-
determinization problem of weighted tree automata. In particular, we show that it is
undecidable, for an arbitrary weighted tree automaton, whether that weighted tree
automaton satisfies the sufficient condition. Furthermore, also in a straightforward
we generalize the characterization of crisp-determinization from strings to trees, and
prove that it is undecidable, for an arbitrary weighted tree automaton, whether that
weighted tree automaton is crisp-determinizable.

Eventually, we identify two subclasses of all weighted tree automata, for which
the crisp-determinization problem is decidable. In order to do that, we advocate a
new subclass of all strong bimonoids, called past-finite monotonic strong bimonoids.
Basically, a past-finite monotonic strong bimonoid is a strong bimonoid of which
the carrier set is a partially ordered set, each element has finitely many predeces-
sors, and the addition and the multiplication operation have a nondecreasing effect.
Such weight structures have several desirable properties such they are positive, one-

116 Summary

product free, one-summand free etc. Furthermore, well known weights structures,
like the semiring of natural numbers or the max-plus semiring, belong to this sub-
class as well. Then, for an arbitrary weighted tree automaton over an additively
locally finite and past-finite monotonic strong bimonoid (respectively, an unambigu-
ous weighted tree automaton over a past-finite monotonic strong bimonoid), it is
decidable, whether that weighted tree automaton is crisp-determinizable.

Összefoglalás

Ebben a disszertációban erős bimonoidok feletti súlyozott faautomatákkal
foglalkozunk. Alapvetően egy erős bimonoid egy olyan félgyűrű, amelyben a
disztributivitási azonosságok nem feltétlenül teljesülnek. Továbbá a súlyozott faau-
tomata a véges faautomata természetes kiterjesztése az által, hogy a faautomata
minden lehetséges átmenetéhez és minden állapotához egy egyedi súlyt, az erős
bimonoid egy elemét, rendeljük. Megemlítjük, hogy mivel az erős bimonoid nem
feltétlenül disztributív, ezért nem tudjuk alkalmazni a szokásos algebrai módszereket
a súlyozott faautomaták tanulmányozása során. Ezért a vizsgálataink során csak
kombinatorikus megközelítéseket használunk, továbbá, csak a súlyozott faautomata
futási szemantikájával foglalkozunk.

Egy súlyozott faautomata futási szemantikája egy leképezés a bemenetet alkotó
fák halmazából a súlyozott faautomata alatti erős bimonoid tartóhalmazába. Minden
ilyen leképezést súlyozott fanyelvnek (vagy formális hatványsornak) nevezünk. A
futási szemantika kiszámításához a súlyozott faautomata futásait vesszük alapul. Egy
futás egy leképezés egy bemeneti fa pozíciójának halmazából a súlyozott faautomata
állapotainak halmazába. Egy futás súlyának kiszámítása során az egyes átmenetek
súlyát szorozzuk össze az erős bimonoid szorzás műveletét alkalmazva a futás által
meghatározott sorrendben. Egy fa súlyának kiszámításához pedig összeadjuk az erős
bimonoid összeadás műveletét alkalmazva a bemeneti fán lévő összes futás súlyát
megszorozva a gyökérsúllyal.

Az 1. fejezetben egy rövid bevezetőt adunk a véges faautomaták és a súlyozott
faautomaták elméletébe. A 2. fejezetben áttekintjük a véges faautomaták és az
univerzális algebra elméletéhez tartozó szükséges fogalmakat, jelöléseket, és ered-
ményeket.

A 3. fejezetben felidézzük a súlyozott fanyelvekhez és a súlyozott faautomatákhoz
kapcsolódó fogalmakat, jelöléseket, és eredményeket. Továbbá, megadjuk a súlyozott
faautomaták futásaira vonatkozó pumpáló lemmáinkat. Egy pumpáló lemma segít-
ségével lehetőségünk nyílik arra, hogy szerkezeti következtetéseket fogalmazzunk
meg kicsi vagy éppen nagyon nagy fákat illetően. Mivel hasonló pumpáló lemmák
már léteznek súlyozott faautomatákra, felmerül a kérdés, hogy miért bizonyítunk
be újabb pumpáló lemmákat. A meglévő pumpáló lemmák félgyűrű feletti deter-
minisztikus leszálló súlyozott faautomatákra vonatkoznak és az iniciális algebra sze-

117

118 Összefoglalás

mantikát vizsgálják, azonban mi (tetszőleges) erős bimonoid feletti súlyozott faau-
tomatákkal foglalkozunk és a futási szemantikát tanulmányozzuk. Jóllehet, ha a fél-
gyűrű feletti összes determinisztikus leszálló súlyozott faautomaták osztályát nézzük,
akkor az eredmények egybeesnek.

A 4. fejezetben súlyozott fageneráló reguláris rendszerekkel foglalkozunk. A
szakirodalomban már régóta be van bizonyítva, hogy a véges faautomaták és a
fageneráló reguláris rendszerek ekvivalensek. Egy fageneráló reguláris rendszer
egy speciális alaptermátíró rendszer kiegészítve kijelölt fák, más néven axiómák,
egy halmazával. A fageneráló reguláris rendszer által indukált alaptermátíró relá-
ciót a szokásos módon definiáljuk. Továbbá, egy fageneráló reguláris rendszer de-
rivációs szemantikája a bemenetet alkotó fák azon halmaza, amelyek elérhetőek
egy axiómából az indukált alaptermátíró reláció reflexív és tranzitív lezártjának
alkalmazásával.

Ebben a fejezetben felidézzük a súlyozott fageneráló reguláris rendszerek fo-
galmát úgy, hogy (a) minden Boole félgyűrű feletti súlyozott fageneráló reguláris
rendszer “ekvivalens” legyen egy fageneráló reguláris rendszerrel, és viszont; (b)
néhány gyenge feltétel teljesülése esetén, minden súlyozott fageneráló reguláris
rendszer ekvivalens legyen egy súlyozott faautomatával, és viszont.

Sajnálatos módon, a fageneráló reguláris rendszer derivációs szemantikája
megengedi, hogy összehasonlíthatatlan pozíciók esetén a helyettesítéseket tet-
szőleges sorrenben végezzük el. Mivel az erős bimonoid összeadás művelete
nem feltétlenül idempotens, a súlyozott fageneráló reguláris rendszer fogalmá-
nak bevezetése az általánosított derivációs szemantikával nem megfelelő a cél-
jainknak. Pontosabban fogalmazva, ha egy súlyozott faautomatához egy súlyozott
fageneráló reguláris rendszert társítunk és vesszük a súlyozott fageneráló reguláris
rendszer derivációs szemantikáját, akkor a súlyozott fageneráló reguláris rendszer
számításai közül egynél több is megfelelhet a súlyozott faautomata egy futásának.
Következésképpen a súlyozott fageneráló reguláris rendszer derivációs szemantikája
és a súlyozott faautomata futási szemantikája eltérhet.

Annak érdekében, hogy elkerüljük ezt a jelenséget, egy másik, de az eredetivel
ekvivalens szemantika, a redukciós szemantika, bevezetését javasoljuk a fageneráló
reguláris rendszerekhez, valamint a súlyozott fageneráló reguláris rendszer fogalmát
csak ennek a másik szemantikának az általánosításával vezetjük be. A fageneráló
reguláris rendszer redukciós szemantikája a következő két jellegzetességgel ren-
delkezik:

(i) Az indukált alaptermátíró reláció megszorításán alapszik. Ebben az esetben a
megszorítás azt jelenti, hogy a helyettesítések csak a mélységikeresés-utórende-
zésre nézve minimális lehetséges pozíciókban végezhetőek el.

(ii) Megfordítja a számítás irányát, azaz egy fageneráló reguláris rendszer reduk-
ciós szemantikája a bementet alkotó fák azon halmaza, amelyekből elérhető

Összefoglalás 119

egy axióma a megszorított alaptermátíró reláció reflexív és tranzitív lezártjá-
nak alkalmazásával.

Meglepő módon a fageneráló reguláris rendszerek derivációs szemantikája és a re-
dukciós szemantikája lényegében ekvivalens a következőképpen. Minden fageneráló
reguláris rendszerhez meg tudunk konstruálni egy másik fageneráló reguláris rend-
szert úgy hogy az előbbi derivációs szemantikája egybeesik az utóbbi redukciós sze-
mantikájával. Hasonlóképpen, minden fageneráló reguláris rendszerhez meg tudunk
konstruálni egy másik fageneráló reguláris rendszert úgy, hogy az előbbi redukciós
szemantikája egybeesik az utóbbi derivációs szemantikájával. Továbbá, a súlyozott
fageneráló reguláris rendszer fogalmának bevezetése az általánosított redukciós sze-
mantikával kielégíti a korábban említett (a) és (b) követelményeket.

Végül az 5. fejezetben a súlyozott faautomaták egységdeterminizálásával
foglalkozunk. Egy súlyozott faautomatát egységdeterminisztikusnak nevezünk, ha
totális determinisztikus leszálló, és minden átmenete az erős bimonoid additív vagy
multiplikatív egységelemével van súlyozva; az egységelemektől eltérő súlyok csak
gyökérsúlyként fordulhatnak elő. Továbbá azt mondjuk, hogy egy súlyozott faau-
tomata egységdeterminizálható, ha létezik vele futási szemantika szerint ekvivalens
egységdeterminisztikus súlyozott faautomata. Jóllehet az egységdeterminisztikus sú-
lyozott faautomata definíciója elég korlátozó, mégis megéri tanulmányozni őket,
mert számos kívánatos tulajdonsággal rendelkeznek, például az ilyen súlyozott faau-
tomaták egyben determinisztikus leszálló súlyozott faautomaták is, a futási szeman-
tikájuk képe véges, stb. Továbbá, minden fuzzy faautomata felfogható egy speciális
egységdeterminizálható súlyozott faautomatának.

A szakirodalomban létezik az egységdeterminizálhatóságra vonatkozó ele-
gendőségi feltétel, de csak súlyozott automatára. Mivel minden súlyozott automata
felfogható egy speciális rangolt ábécé feletti súlyozott faautomatának, egyszerűen
általánosítjuk az elegendőségi feltételt szavakról fákra.

Továbbá az egységdeterminizálásra vonatkozó eldönthetetlenségi
(eldönthetőségi) eredmények bizonyítunk be. Megmutatjuk, hogy tetszőleges
súlyozott faautomatára nézve eldönthetetlen, hogy a súlyozott faautomata
kielégíti-e az elegedőségi feltételt. Valamint, szintén egyszerűen általánosítjuk
az egységdeterminizáció karakterizációját szavakról fákra, és bebizonyítjuk, hogy
tetszőleges súlyozott faautomatára nézve eldönthetetlen, hogy a súlyozott faau-
tomata egységdeterminizálható-e.

Legvégül megmutatunk a súlyozott faautomatáknak olyan két részosztályát, ame-
lyekre eldönthető az egységdeterminizálhatóság problémája. Ennek érdekében, az
erős bimonoidok egy új részosztályát, a véges-sok-előd monoton erős bimonoidokat,
javasoljuk. Egy véges-sok-előd monoton erős bimonoid egy olyan erős bimonoid,
amelynek tartóhalmaza egy parciálisan rendezett halmaz, minden elemnek véges sok
elődje van, és az összeadás és szorzás műveletek nemcsökkentő hatással bírnak. Az

120 Összefoglalás

ilyen súlystruktúrák számos kívánatos tulajdonsággal rendelkeznek úgy mint pozitiv-
itás, egyszorzatmentesség, egyösszegmentesség, stb. Továbbá ismert súlystruktúrák,
mint például a természetes számok félgyűrűje vagy a max-plusz félgyűrű, is ebbe a
részosztályba tartoznak. Ekkor, tetszőleges additívan lokálisan véges és véges-sok-
előd monoton erős bimonoid feletti súlyozott faautomatára (valamint véges-sok-előd
monoton erős bimonoid feletti egyértelmű súlyozott faautomatára) eldönthető, hogy
az adott súlyozott faautomata egységdeterminizálható-e.

Acknowledgments

First and foremost, I would like to thank my supervisor, Professor Zoltán Fülöp, for
infecting me with his enthusiasm for weighted tree automata, for accepting me as
his PhD student, and for supervising my PhD studies. From Professor Fülöp, I have
learnt that, despite our best efforts, flaws may remain easily in our papers. Therefore,
it is always worth to read through my papers once again, because the devil is in the
details.

I would also like to thank Professor Heiko Vogler and Professor Manfred Droste for
treating me as an equal research fellow from the beginning of our cooperation. Un-
fortunately, the COVID-19 pandemic interfered with our plans, and hence, we could
not conduct our research in person. But, come rain or shine, we have proceeded with
our research and achieved our goals.

I am grateful to Professor Vogler for teaching me how to grab the essence of
the results to prepare informative and also digestible slides for conferences. From
Professor Droste, I have learnt that, though we have to finish our papers, there is
always one more question, which is worth to be considered. Moreover, I am amazed
and inspired by these three professors’ solid work ethic, diligence, and perfectionism.

Last but not least, I would like to thank my mother, Zsuzsa, my grandparents,
Ilona and József, my aunt, Anikó, her husband, Andor, and my cousin, Bori for en-
couraging and supporting me on this long, delightful, but sometimes exhausting jour-
ney with their constant love.

121

Alphabetical Index

A
AM 89
Amax 26
Aσ 27
Asplit 28
[[A]] 26
absorption axioms 16
accepting run 12, 25
additively locally finite 18
algebra 15

computable 15
congruence 15
finite 15
homomorphism 15
isomorphism 15
lattice 20
locally finite 15
monoid 17
quotient algebra 15
semigroup 17
semiring 19
strong bimonoid 18
subalgebra 15

generated by a set 15
smallest 15

alphabet 8
associative 16
ATransM 92

B
B 18
B-weighted set 23
B� 94

bi-locally finite 18
bijective 9
binary operation 16

absorption axioms 16
associative 16
commutative 16
distributive 16
idempotent 16
identity element 16
left distributive 16
right distributive 16

binary relation 8
Boole 20
Boolean semiring 20
bottom-up deterministic

finite-state tree automaton 12
weighted tree automaton 24

bounded 20
bu deterministic

finite-state tree automaton 12
weighted tree automaton 25

C
chain production 42
commutative

binary operation 16
monoid 17
semigroup 17
strong bimonoid 18

complete
lattice 20
monoid 17
semiring 19

123

124 Alphabetical Index

strong bimonoid 18
composition 9
computable 15
computation 39
concatenation

languages 8
strings 8

congruence 15
context 11

power 11
CΣ 11
cn 11
contracting

production 42
tree generating regular system 44
weighted tree generating regular

system 54
crisp-deterministic 74
crisp-determinizable 74

D
DA 74
d-equivalence 39
d-generated 39
∆-gtrs 38
depth-first post-ordering 40
DerS(ξ) 39
DerS(ζ, ξ) 39
derivation 39
derivation semantics 39
distributive

binary operation 16
strong bimonoid 18

E
effective tests 98
≡prdA 76
equivalence

finite-state tree automata 13
Mealy machines 87
tree generating regular systems 39, 40
weighted tree automata 26

weighted tree generating regular
systems 51

expansive
production 42
tree generating regular system 42

F
FA 77
family 10
finite

additive order 74
algebra 15
order 74

finite-reductional 50
finite-state tree automaton 11

bottom-up deterministic 12
bu deterministic 12
equivalence 13
fta-hypergraph 13
run 12
semantics 13
total 12

fta 11
fta-hypergraph

finite-state tree automaton 13
weighted tree automaton 26

G
Γ-translation 87
ground term rewriting system 38

computation 39
production 38

gtrs 38

H
#max 23
#σ 24
height 10
homomorphism 15

isomorphism 15

I
idempotent 16

Alphabetical Index 125

strong bimonoid 18
identity element 16
idxA 76
idxB(b) 76
injective 9
isomorphism 15

J
JA 76

L
lc,θ 30
LangΓ 20
language 8

concatenation 8
L(A) 13
Ld(S) 39
Lr(S) 40
lattice 20

bounded 20
complete 20

lcm 76
left distributive

binary operation 16
strong bimonoid 18

linear ordering 9
locally finite 15
loop 30

power 33
small 97
small valid 97

M
〈M〉 88
{〈M〉} 88
M3 21
mapping 9

bijective 9
composition 9
injective 9
surjective 9

MaxPlus 20
Mealy machine 87

equivalence 87
semantics 87
submonoid 88

MinPlus 20
monoid 17

commutative 17
complete 17

monotonic 94
past-finite 94

multiplicatively locally finite 18

N
nξ 77
Nat 20

O
Oξ(q, b) 78
Ops(A) 9
Ops(k)(A) 9
ordering

linear 9
partial 9

P
partial ordering 9
partitioning 10
past-finite monotonic 94
prdA 76
prdB(b) 76
πξ 77
pos 10
positive 18
power

context 11
loop 33

�dp 40
production 38

chain 42
contracting 42
expansive 42
rewrite relation 38

production complete 67

126 Alphabetical Index

Q
quotient algebra 15

R
rc,θ 30
r-equivalence

tree generating regular systems 40
weighted tree generating regular

systems 51
r-generated

tree language 40
weighted tree language 51

r-reduced 60
r-useful 60
rank mapping 10
ranked

alphabet 10
set 10
subset 60

Real(Γ) 87
(Real(Γ), ◦, idΓ∗) 87
realizable 87
recognizable

weighted language 103
weighted tree language 26

RedS(ζ) 40
RedS(ζ, ξ) 40
RedS(ζ, ξ) 50
Reds

S(ζ, ξ) 50
Redv

S(ζ, ξ) 50
reduced 60
reduction 40

successful 50
valid 50
weight 50

reduction semantics 40
regular tree grammar 60

reduced 60
rel(A) 68
rel(p) 42
rel(P ′) 42
rel(S) 43
rel(S) 68

related
tree generating regular systems 43
weighted tree automaton and

weighted tree generating regular
system 68

rewrite relation 38
p→ 38

right distributive
binary operation 16
strong bimonoid 18

⇒S 39
⇒S,dp 40
rtg 60
run

accepting 12, 25
combination 30
induced at a position 25
of finite-state tree automaton 12
of weighted string automaton 103
of weighted tree automaton 25
valid 12, 25
weight 25, 103

RunA(q, c, p) 30
RunA(q, ζ) 25
Runa

A(q, ζ) 25
RunA(q, ξ) 12
Runa

A(q, ξ) 12
RunA(q, ξ, b) 77
Runv

A(q, ξ) 12
Runv

A(q, c, p) 30
Runv

A(q, ζ) 25

S
semantics

finite-state tree automaton 13
Mealy machine 87
tree generating regular system 39, 40
weighted string automaton 103
weighted tree automaton 25
weighted tree generating regular

system 50
[[A]] 25
[[S]] 50

Alphabetical Index 127

semigroup 17
commutative 17

semiring 19
complete 19

Σ 10
Σ-algebra 15
(Σ,B)-weighted tree language 23
(Σ,B)-wta 24
(Σ,B)-wtgrs 50
Σ-fta 11
Σ-hypergraph 13
ΣM 88
Σ-rtg 60
Σ-term algebra 15
Σ-tgrs 39
simple

tree generating regular system 42
weighted tree generating regular

system 54
single nonterminal axiom

tree generating regular system 42
weighted tree generating regular

system 54
size 10
split 24
string 8

concatenation 8
length 8

string ranked alphabet 10
strong bimonoid 18

additively locally finite 18
bi-locally finite 18
commutative 18
complete 18
distributive 18
effective tests 98
idempotent 18
left distributive 18
monotonic 94
multiplicatively locally finite 18
one-product free 95
one-summand free 95
past-finite monotonic 94

positive 18
right distributive 18
zero-divisor free 18
zero-sum free 18

subalgebra 15
generated by a set 15
smallest 15

successful 50
suppB 23
suppB(S) 52
support 23

tree generating regular system 52
surjective 9

T
TM 88
τM 87
TermΣ 15
tgrs 39
θn 33
θ[ρ] 30
total

finite-state tree automaton 12
weighted tree automaton 24

TransM 88
translation 87

realizable 87
tree 10

height 10
label 11
position 10
replacement of subtree 11
size 10
subtree 11

tree generating regular system 39
contracting 44
derivation 39
derivation semantics 39
expansive 42
reduction 40
reduction semantics 40
related 43
simple 42

128 Alphabetical Index

single nonterminal axiom 42
support 52
underlying 50

tree language 10
d-generated 39
r-generated 40
recognizable 13

TΣ 10
trim 98

U
unambiguous 99
useful 98

V
valid

reduction 50
run 12, 25

W
weight

reduction 50
run 25

wtA(ζ, ρ) 25
wtS(r) 50
weighted language 102

recognizable 103
weighted set 23

support 23
weighted string automaton 102

run 103
semantics 103

weighted tree automaton 24
bottom-up deterministic 24
bu deterministic 25
crisp-deterministic 74
crisp-determinizable 74

equivalence 26
finite order 74
fta-hypergraph 26
related to weighted tree generating

regular system 68
run 25
semantics 25
small valid loops have weight 1 97
total 24
trim 98
unambiguous 99
useful state 98

weighted tree generating regular system
50

contracting 54
finite-reductional 50
production complete 67
r-reduced 60
related to weighted tree automaton

68
simple 54
single nonterminal axiom 54
support tree generating regular

system 52
underlying tree generating regular

system 50
weighted tree language 23

r-generated 51
recognizable 26
sum 90

wta 24
wtgrs 50

Z
zero-divisor free 18
zero-sum free 18
ζ

d
 ξ 39

	Introduction
	Preliminaries
	Basic concepts
	Trees and contexts
	Finite-state tree automata
	Weight structures

	Weighted tree automata and pumping lemmas
	The model
	Pumping lemmas

	Weighted tree generating regular systems
	The problem
	Tree generating regular systems
	The model
	Equivalence of the d-semantics and the r-semantics
	Normal forms of tgrs with r-semantics

	Weighted tree generating regular systems
	The model
	Equivalence of tgrs and wtgrs over the Boolean semiring
	Normal forms of wtgrs

	Equivalence of wta and wtgrs

	Crisp-determinization of wta
	The problem
	A sufficient condition for crisp-determinization
	Undecidability of crisp-determinization
	Decidability of crisp-determinization
	Undecidability and decidability results for weighted string automata

	Publications of the author
	Other references
	Summary
	Összefoglalás
	Acknowledgments
	Alphabetical Index

