Weighted Tree Generating Regular
Systems and Crisp-Determinization of
Weighted Tree Automata

PhD Thesis

David Kdszdé
Supervisor: Zoltan Fiilop, DSc

Doctoral School of Computer Science
Department of Foundations of Computer Science

Faculty of Science and Informatics

University of Szeged

Contents

(1_Introductionl 3
[2__Preliminaries| 7
2.1 Basicconcepts|. e 7
2.2 Treesandcontexts 10
2.3 Finite-state tree automatalo e e e e 11
2.4 Weight structures| e 14

[3 Weighted tree automata and pumping lemmas 23
BI Themodell. 23
(3.2 Pumping lemmas| 29

4 Weighted tree generating regular systems| 35
4.1 Theproblem| 35
4.2 Tree generating regular systems|, 38
[4.2.1 Themodel. 38

{4.2.2 Equivalence of the d-semantics and the r-semantics| 42

[4.2.3 Normal forms of tgrs with r-semantics| 44

4.3 Weighted tree generating regular systems| 49
[4.3.1 Themodell. 50

{4.3.2 Equivalence of tgrs and wtgrs over the Boolean semiring 52

[4.3.3 Normal formsofwtegrs| 54

4.4 Equivalence of wtaand wtgrs| 67

[5 Crisp-determinization of wta| 73
[5.1 Theproblem| 73
[5.2 A sufficient condition for crisp-determinization| 74
[5.3 Undecidability of crisp-determinization|. 86
[5.4 Decidability of crisp-determinization| 94

[5.5 Undecidability and decidability results for weighted string automata| . 102

[Publications of the author 105

[Other references|

(Osszefoglalas|

IAcknowledgments|

|Alphabetical Index

ii

107

113

117

121

123

List of Figures

(2.1 lustrations of the >.-trees over {L1} given in Example[2.2.1| 12
[2.2 The fta-hypergraph ¢4 of the Y-fta A defined in Example|2.3.3]. 14
[2.3 Runs of the Y-fta A defined in Example [2.3.3/on the Y-tree &| 14
[2.4 Visualization of the bounded lattice M5 given in Example [2.4.7/(2)| . . . 21
[3.1 The fta-hypergraph of the (X, MaxPlus)-wta A,,.x defined in Exam- |
| ple[3.1.4. 27
[3.2 Runs of the (32, MaxPlus)-wta A, defined in Example(3.1.4 28
13.3 The fta-hypergraph of the (X, M3)-wta A, given in Example[3.1.6] . . 29
13.4 lustration of mappings [y and r.p (cf. [2, Fig. 3])| 31
[3.5 TIllustration of the decomposition of the tree ¢’ in the proof of Theo- |
| rem [3.2.4| along the positions v and uv (cf. [2, Fig. 2])| 34
4.1 An a-computation of P for the tree o(o(o,0(a,a)),o(a,)) under |
| =g,. Observe that we may replace the symbols « in an arbitrary order. |
| (cf T4 Fig. ID] . o o o e 36
4.2 A o(o(a,0(a,a)),0(a,a))-computation of P’ for a under =g, 4, (cf. |
| [4, Fig. 2]) | o e 38
4.3 The C-derivation of S defined in Example [4.2.1[for the tree &; (¢f. [4] |
| Fig. 3D - o o o e e 41
4.4 A (-reduction of the tgrs S’ constructed in Example|4.2.11[to Zy| 45
4.5 A (-reduction of the tgrs S” defined in Example(4.2.14{to 7o 47
4.6 A (-reduction of the tgrs S constructed in Example(4.2.18[to 7| 49
4.7 Reductions of the (X, MaxPlus)-wtgrs S constructed in Example|4.3.1] . 52
[5.1 lustration of the index idxg(b) and the period prdg(b) of bin B (cf. [3} |
| Fig. 1D . . o o e e 76
[5.2 The fta-hypergraph of the crisp-deterministic (X, M3)-wta A, con-
| structed in Example [5.2.13[note that each depicted transition has
| weight i, and hence, the transition weights are omitted intentionally| . 85
[5.3 Loops of the (¥, MaxPlus)-wta .4 defined in Example [3.1.4] on some |
| powers of the Y-context ¢ = o(L], o) defined in Example|5.4.6] 97

List of Figures

Chapter 1

Introduction

In computer science, a tree is a widely used abstract data type. In particular, we can
use trees to represent or manipulate hierarchical data. For instance, each of the fol-
lowing applications involves a tree-like abstract data type: the directory structure of
each file system, the class-hierarchy in object-oriented programming without allow-
ing multiple inheritance, abstract syntax trees for computer languages, parse trees in
Natural Language Processing (NLP), Document Object Models (“DOM tree”) of XML
and HTML documents, etc. Interestingly, even JSON and YAML documents can be
considered as trees, but they are typically represented in a different way.

In this PhD thesis we deal only with finite trees over ranked alphabets. A ranked
alphabet ¥ is a finite and nonempty set of symbols in which we associate with each
symbol a unique rank, i.e., a nonnegative integer. For each nonnegative integer k,
we denote the set of all symbols in X of rank k by ©(*). Then a tree over ¥ is a finite,
labeled, and ordered tree such that if a node of the tree has k children, then that
node is labeled by an element of X*), The set of all trees over ¥ is denoted by Tiy..
Furthermore, each subset of Ty, is called a tree language over X..

The classical model of finite-state tree automata (for short: fta) [62} 69,71, 72]
was invented to recognize a tree language over some ranked alphabet. An fta A
over a ranked alphabet . consists of a finite and nonempty set) (states), a family
§ = (0x | k is an integer) of relations &, C Q* x %) x Q (k-ary transitions), and a set
F C @ (root states). Then a tree £ over X is recognized by A if we can associate to each
node of ¢ a state in the following way: (1) if a node is labeled by a symbol o € ©*)
and the states associated to that node and its % children are ¢ and ¢, .. ., g, respec-
tively, then (q1,...,qx, 0,¢q) is a k-ary transition in J;, and (2) the state associated to
the root of ¢ is a root state. The tree language recognized by A is called a recognizable
tree language. Moreover, two fta are said to equivalent if they recognize the same tree
language. It is well known that with fta qualitative properties of recognizable tree
languages can be described, such as emptiness, finiteness, etc.. For surveys on the
theory of fta we refer to [22} 34, [43].

4 Introduction

In parallel and later, further concepts were introduced and proved to be equiv-
alent to fta such as tree generating regular systems (for short: tgrs) [|18]; rational
tree languages [|34, 43, |73]; monadic second-order logic for trees [24, 73]; regular
tree grammars [18], 43]; representable tree languages [43]]. It is also known that a
tree language is recognizable by an fta if and only if it is the image of a local tree
language under a deterministic tree relabeling [34, 43, (71].

Later the idea came up to describe not only qualitative but also quantitative prop-
erties of recognizable tree languages, like degree of ambiguity or costs of acceptance.
Clearly, each tree language can be considered as a mapping from the set of input
trees to the Boolean semiring {0, 1}. Moreover, by replacing the Boolean semiring in
such a mapping by any other semiring B, and allowing that the mapping associates
arbitrary elements of B to the trees, a way was opened to describe also those quan-
titative properties. More precisely, each quantitative property can be interpreted as a
mapping from the set of input trees to some semiring or more generally to the carrier
set of some weight structure. Mappings describing quantitative properties of tree
languages are called weighted tree languages (or formal power series over trees). To
recognize such weighted tree languages, the model of weighted tree automata (for
short: wta) was invented. The concept of wta is a natural extension of the concept
of fta by adding weights to each transition and to each state; then the operations
of the weight algebra allow to combine the transition weights while processing the
input tree. The first such wta over a complete distributive lattice was introduced in
[56] (also see [37]) under the name fuzzy tree automata. Over the years, several
other weight algebras were used to enrich the expressive power of wta: e.g., fields
[[10], commutative semirings [7], multioperator monoids [39, {40, 59, 60], strong
bimonoids [1}, 3, 66], and tree-valuation monoids [|28]. In this thesis we will con-
sider the model of wta over strong bimonoids. A strong bimonoid [21, 30, 32, 66] is
basically a semiring in which the distributivity laws need not hold.

The theory of wta has a huge literature. Several questions have been studied
throughout the years, e.g., the pumping lemma for wta [13]] and the determinization
problem for wta [16, (19, |41]]. Furthermore, similarly to the unweighted case, addi-
tional concepts were invented and shown to be equivalent to wta, see e.g., weighted
regular tree grammars [7] and the Kleene theorem for wta [7, |29]; monadic second-
order logic and the Biichi-Elgot-Trakhtenbrot’s theorem for recognizable weighted
tree languages [31, |40] (cf [25-27] for the string case); and weighted representable
tree languages [51, 52]. It is also known that each each weighted tree language rec-
ognized by a wta is the image of a local weighted tree language under a deterministic
tree relabeling [38]. For a survey on the theory of wta we refer to [35, 41, 42].

In this thesis we will consider the following two topics. The first one is the equiv-
alence of wta and weighted tree generating regular systems (for short: wtgrs) over
semirings. In [4] the concept of wtgrs over a strong bimonoid was introduced as a

natural extension of the concept of tree generating regular system (for short: tgrs)
[18] to the weighted case. The semantics of wtgrs was not defined as a straight-
forward generalization of the original semantics of tgrs. In fact, an alternative, but
essentially equivalent semantics was introduced for tgrs, of which the generalization
to the weighted case opens a way to prove the equivalence of tgrs and Boolean wtgrs,
and the desired equivalence of wta and wtgrs (like the equivalence of fta and tgrs in
[[18]]). We recall the main results of [4] in Chapter [4] (¢f Theorems [4.2.8/ and 4.3.4

and [4.4.5).

The second topic is the crisp-determinization problem. The determinization prob-
lem shows up if we wish to specify a problem (e.g., a tree language) in a nonde-
terministic way and to calculate its solution (e.g., membership) in a deterministic
way. More precisely, the determinization problem asks the following: for a given
nondeterministic device A of a given type (or class), does there exist a bottom-up
deterministic device A’ of the same type which is equivalent to .A'?

It is well known that the determinization problem is solved positively for the class
of all fta (cf, e.g., [73, Thm. 1], [34, Thm. 3.8], and [43, Thm. 2.2.6]), i.e., for each
fta A, there is an equivalent bottom-up deterministic fta A’. The construction of A’
from A is called powerset construction. However, the situation changes drastically
if we consider the class of all wta. More precisely, there exists a wta to which there
does not exist an equivalent bottom-up deterministic wta [7, 10, |36, |59]. On the
other side, there are subclasses of he class of all wta for which the determinization
problem can be solved positively [16, Cor. 4.9 and Thm. 4.24], [[41, Thm. 3.17], and
[19, Thm. 5.2].

A special case of determinization of wta is when we require that the resulting
deterministic wta is crisp-deterministic. We call a wta over a strong bimonoid crisp-
deterministic if it is total and bottom-up deterministic, and each of its transitions car-
ries either the additive or the multiplicative unit of the underlying strong bimonoid;
weights different from these units may only appear at the root of the given input tree.
Then the crisp-determinization problem (of wta over strong bimonoids) deals with the
following question: for a given wta A, does there exist a crisp-deterministic wta A’
such that 4’ is equivalent to A? If the answer to this question is “yes”, i.e., such a
wta A’ exists, then we say that the wta A is crisp-determinizable.

Without doubt, the notion of crisp-deterministic wta is quite restrictive. However,
in spite of this fact, it is worth to investigate crisp-deterministic wta as they have a
strong relationship with fuzzy questions (c¢f. [42, Ch. 19]). In Chapter |5, we give
a sufficient condition for wta to be crisp-determinizable (¢f Theorems [5.2.8| and
5.2.12)), and also we prove both undecidability and decidability results regarding the
crisp-determinization problem (cf. Theorems|5.3.7/and [5.3.14{and |5.4.15|). To prove
the decidability results, we need new pumping lemmas for wta. We show them in
Section [3.2] (¢f. Theorems[3.2.3]and [3.2.4).

6 Introduction

We close the introduction with the following notes to the reader. In this thesis
we will give several constructions, each of them takes some object(s) as input and
delivers some other object(s) as output. We will use the expression “can construct”
in the following sense. There is an algorithm, i.e., a finite number of exact, finite
instructions, such that for each input given effectively('] the algorithm terminates
after a finite number of steps and produces a correct output.

Finally, in order to avoid many repetitions of similar conditions like “Let X be a
ranked alphabet.” or “Let B be a strong bimonoid”, etc., we will use general conven-
tions to fix such conditions (c¢f. p. |15 and etc.) Moreover, in order to empha-
size the main results of the thesis, we put them into a gray colored box. For such
statements, we do not use the mentioned conventions but show all the necessary
conditions inside the box.

1t is difficult to give an exact definition of the expression “given effectively” as its definition cru-
cially depends on the class of input objects and on the algorithm for which we define it. Hence, in this
thesis the expression “given effectively” means that each restriction in the smallest set of reasonable
restrictions, which are crucial for the termination of the algorithm on each input, is satisfied.

Chapter 2

Preliminaries

In this chapter we recall fundamental notions and notations. In most of the cases,
we follow the formalism used in the corresponding parts of [42]. We organize this
chapter as follows. In Section we introduce general notations and recall basic
concepts. In Section [2.2| we recall some fundamental notions and notations from the
theory of formal tree languages, and then, in Section from the theory of finite-
state tree automata and recognizable tree languages. Finally, in Section |2.4, we
recall basic notions and notations from the theory of universal algebra, and consider
particular algebras, which satisfy certain algebraic laws.

2.1 Basic concepts

General notations. We denote by N the set {0,1,2,...} of natural numbers, by
N, the set N\ {0}, and by Z the set of integers. For every m,n € N, we define
[m,n] = {i € N | m <i<n}. Moreover, we abbreviate [1, n] by [n]. Note that [0] = (.

For every a,b € N, we denote by max(a,b) and min(a,b) the maximum and the
minimum of ¢ and b with respect to <, respectively. In the usual way, we extend
max and min to each finite subset of N. For each N C N, we denote by max(V)
(respectively, min(/N)) the maximum (the minimum, respectively) of N.

Sometimes we use the set NU{oco}. We abbreviate that set by N, and, in the nat-
ural way, we extend the operations + and min to N, i.e., we set a + oo = 00 + a = 00
and min(a, c0) = min(co,a) = a for each a € N. In a similar way we proceed with
an extension of N by —oo and the operations + and max.

Let A be a set. We denote by | A| the cardinality of A, by P(A) the set of all subsets
of A, and by Py, (A) the set of all finite subsets of A. Evidently, if A is finite, then we
have P(A) = Paan(A).

Letn € Nand A,,..., A, be sets. The Cartesian product of Ay, ..., A,, denoted by
A x ... x Ay, is the set {(a1,...,a,) | a; € A, for each i € [n]}. Moreover, the n-fold
Cartesian product of A is the Cartesian product of A x...x A, where A appears exactly

7

8 Preliminaries

n times. As usual, we abbreviate A x ... x A by A". In particular, A° = {()}. Let V be
a subset of A; x ... x A,. Sometimes we call V' a relation (on A4, ..., A,). Moreover,
for each i € [n|, we call the mapping pr; : V' — A, defined, for each (a4,...,a,) €V,
by pr,(as,...,a,) = a;, the ith projection mapping of V into A;.

Strings. A string over A is a finite sequence w = a; - - - a,, with n € N and a; € A for
each i € [n]. In this case we call n the length of the string w, and denote it also by
len(w). For every k, ¢ € [n] with k < ¢, we define w(k) = a and w(k...) = ag - - - ay.
The empty string, denoted by ¢, is the string of length 0. For each n € N, we denote
by A" the set of strings over A of length n. Moreover, we denote by A* the set of
all strings over A, ie., we have A* = (J, . A". Furthermore, for every strings v
and w in A*, we denote by vw the concatenation of v and w and by prefix(v) the set
{v' € A*| (3u € A*) : v = v'u} of prefixes of v.

Observe that, for each n € N, the notation A" is overloaded in the following
sense: it denotes both (a) the n-fold Cartesian product of A and (b) the set of strings
over A of length n. Of course, formally these sets are different, but since there exists
a bijection between them, we find it acceptable to use the same notation.

An alphabet is a finite and nonempty set. Let A be an alphabet. Then each subset
L C A* is called a (formal) language over A. For every languages [, and L, over A,
the concatenation of L, and L, denoted by L; - Lo, is the language

Ll . LQ = {w1w2 ’ wy € Ll,’LUQ € LQ}

over A.

Binary relations. Let A and B be sets. A binary relation (on A and B) is a subset
of A x B. Let R be a binary relation on A and B. For each pair (a,b) in A x B, we
sometimes write aRb to indicate that (a,b) € R. Moreover, for each a € A, we define
R(a) = {b € B | aRb}, and furthermore, for each A’ C A, we set R(A") = U, R(a).
The inverse of R, denoted by R, is the binary relation {(b,a) | aRb} on B x A. If
A = B, then we call R a binary relation (on A).

Let R be a binary relation on A. We say that R is

* reflexive if aRa for every a € A,

» symmetric if aRb implies that bRa for every a,b € A,

* antisymmetric if aRb and bRa imply that a = b for every a,b € A, and

* transitive if aRb and bRc imply that aRc for every a,b, c € A.

We call R an equivalence relation (on A) if it is reflexive, symmetric, and transitive.
If R is an equivalence relation, then, for each a € A, the equivalence class of a with
respect to R, denoted by [a]g, is the set [a]r = {b € A | aRb}, and furthermore, the
factor set of A modulo R, denoted by A/R, is the set {[a]r | a € A}.

2.1 Basic concepts 9

A binary relation on A is said to be a partial ordering (on A) if it is reflexive,
antisymmetric, and transitive. Let < be a partial ordering on A. For every (a,b) € A?,
we denote by a < b that a < b and a # b. We call (A, <) a partially ordered set (with
respect to <) (for short: poset). Let A’ C A and p € A. We say that p is an upper
bound of A’ (a lower bound of A’) if a < p (respectively, p < a) for each a € A’. We
call p the supremum of A’ (with respect to <), denoted by sup.(A’), if p is an upper
bound of A’ and p < b for every upper bound b of A’. We say that p is the infimum of
A" (with respect to <), denoted by inf<(A’), if p is a lower bound of A" and b < p for
each lower bound b of A'.

A partial ordering < on A is called a linear ordering (on A) if, for each (a,b) € A2,
we have a < bor b < a. Let < be a linear ordering on A. For every subset A’ C A and
element a € A’, we say that a is minimal in A" if a = inf4(A’). Clearly, if A’ is finite
and nonempty, then there exists a unique minimal element in A’, which we denote
by min<(A’).

Mappings. Let B # () and f C A x B. We say that f is a mapping (from A to B),
denoted by f : A — B, if, for each a € A, there exists a unique b € B such that afb.
In this case we write f(a) = b as usual. Let f : A — B be a mapping. For every a € A

and b € B, if we have f(a) = b, then sometimes we denote this fact also by a s bor
just by a — b if f is clear from the context. We say that f is

* injective if a # b implies that f(a) # f(b) for every a,b € A,

* surjective if, for each b € B, there exists a € A such that f(a) = b,

* bijective if f is injective and surjective.

Note that if f is bijective, then |A| = |B].

The image of f, denoted by im(f), is the set im(f) = {f(a) | « € A}. For each
subset A’ C A, the restriction of f to A’, denoted by f| 4/, is the mapping f|4 : A’ — B
defined, for each a € A’, by f|a/(a) = f(a). We denote the set of all mappings from A
to B by BA. For every mappings fi, f» € B4, we write f; = f, if, for each a € A, we
have fi(a) = f2(a).

Let C be a nonempty set, and g : B — C. The composition of f and g, denoted by
go f,is the mapping (go f) : A — C defined, for each a € A, by (go f)(a) = g(f(a)).

Let A be nonempty. For every k € N and mapping h : A¥ — A, we say that A is
a k-ary operation on A. For each k € N, we denote by Ops")(A) the set of all k-ary
operations on A, and furthermore, by Ops(A) the set |J, . Ops*)(A). The identity
mapping on A, denoted by id, is the mapping id, € Ops'") defined, for each a € A,
by ida(a) = a.

For every subsets A C A and O C Ops(A), we say that A’ is closed under the
operations in O if, for every k € N, k-ary operation h € O, and (ay,...,a;) € (A)F,
we have h(ay,...,a;) € A’. We denote by (A’), the smallest subset of A, of which A’
is subset and which is closed under the operations in O.

10 Preliminaries

Let I be a set. An [-indexed family over A (or just: a family over A) is a mapping
f I — A. Let f be an [-indexed family over A. Sometimes we denote f also
by (a; | i € I) where a; = f(i) for each i € I. We say that f is finite if [is finite.
Moreover, we also say that [is the index set of f. Let f = (A; | i € I) be an /-indexed
family over P(A). We say that f is a a partitioning of A (with respect to I) if we have
Uie; Ai = A,and A, N A; = 0 for every i, j € I with i # j.

2.2 Trees and contexts

Here we recall some fundamental notions and notations from the theory of formal
tree languages [22, 34, 43]].

Ranked sets. A ranked set is a pair (3, rky) in which ¥ is a finite (and possibly
empty) set and rky : ¥ — N is a mapping, called rank mapping. Let (X, rky) be a
ranked set. For each k € N, the set of all k-ary symbols in ¥, denoted by ¥(¥), is the
set X*¥) = {o € ¥ | tky(0) = k}. Sometimes we write o*) to indicate that ¢ € X*)
for some k € N. We define maxrk(¥) = max{k € N | ¥*) # (}. Each ranked set
(3, rky), in which ¥ is an alphabet, is called a ranked alphabet. Furthermore, a ranked
alphabet (3, rky) is called a string ranked alphabet if ¥ = (XM U x©), |xM)] > 1, and
X = 1.

In the rest of this PhD thesis, ¥ will abbreviate an arbitrary ranked set
(3, rky) such that) = () if not specified otherwise.

Trees and tree languages. Let H be a set disjoint from Y. The set of Y-trees over
H, denoted by Ty (H), is the smallest set 7" such that

(i) H is a subset of T" and

(i) if keN,oc e ¥ and (&,...,&) € TF, then o(&,, ..., &) € T.
If H is clear from the context, then we refer to each element of Tx;(H) as a >-tree (or
just: tree). As usual, for each a € %), we sometimes abbreviate the tree () by a.
Moreover, we write Ty, for Tx(()). We call each subset L of Ty, a X-tree language (or
just: tree language).

The set of positions (or: Gorn addresses [46]) of trees is defined by the mapping

pos : Tx(H) — Pan(N?%), where, for each { € Ty (H), we define pos(&) as follows:

(i) if ¢ is in ©(® U H, then we let pos(¢) = {¢} and

(ii) if ¢ = o(&1,...,&) forsome k € N, 0 € ¥ and &,..., & € Tx(H), then we

let pos(§) = {e} U {iv | i € [k],v € pos(&)}.

The height and the size of a tree £ € Tx(H) are height(£) = max({len(v) | v € pos(§)})
and size(&) = | pos(§)|, respectively.

2.3 Finite-state tree automata 11

Let £ and ¢ be in Ty (H), and v € pos(§). The label of £ at v, denoted by £(v),
the subtree of £ at v, denoted by £|,, and the replacement of the subtree of ¢ at v by (,
denoted by £[(],, are defined as follows:

(i) if ¢ isin ¥ U H, then v = ¢ and we let £(¢) = £|. = €, and ¢[¢]. = ¢ and
(i) if ¢ =0(&,...,&) forsome k € Ny, 0 € X% and &,...,& € Tx(H), then
e forv=c¢,welet{(ec) =0, ¢. =&, and {[(]. = ¢ and
» forv =4 with i € [k] and v" € pos(§;), we let {(v) = &(v'), £|, = &, and
¢l =0 (&1y -5 &1, GilClors Sinns - -5 &)
Let 0 be in ¥ U H. We denote the set {v € pos(§) | £(v) = o} by pos,(£). Moreover,
we say that o occurs in & if pos, (£) # 0.

Contexts. Let [J be a symbol such that [0 ¢ . For each { € Tx({(J}) and each
v € pos(§), we abbreviate the tree £[(J], by £|”. The set of all ¥-contexts, denoted by
Cy, is the set Cy = {¢ € Tx({O}) | posg(&) = 1}. Hence, each -context is a >-tree
over the set {{J} in which [J appears precisely once, as a leaf. We mention that the
set Cy, of all ¥-contexts can be defined also inductively as follows:
(i) Oisin Cx,
(i) o(&h,..., &1, ¢,&41,...,&) is in Cy whenever k € N, 0 € X 4 ¢ [k],
(&1, &1, &40, -, &) € (Tg)* 1, and ¢ € Cy, and
(iii) every X-context can be obtained by applying the rules (i) and (ii) a finite num-
ber of times.

Let ¢ € Cyx with {v} = pos(c), and ¢ be in Tx, U Cy. We abbreviate c[(], by ¢[(].
Thus, we obtain ¢[(] from the Y-context ¢ by replacing the leaf (J by (. Clearly, if ¢ is
a Y-context, then so is ¢[¢]. Moreover, for each n € N, we define the n-th power of c,
denoted by ¢, by induction as follows: ® = O and "™ = ¢[¢"].

Example 2.2.1. Let ¥ = {0 AW @ O} Figure shows Y-trees over {{J}
as follows. Figure [2.1](a) illustrates the Z-tree £ = o(y(a), o (7(53), «)) together with
its positions in gray color and dashed lines. Observe that, e.g., we have £(2) = o,
la = o(v(B),), and pos, (&) = {e,2}, i.e, o occurs in ¢. Figure 2.I(b) depicts
the replacement of the subtree of ¢ at position 2 by the X-tree v(o(f,3)). Finally,
Figure [2.1](c) shows the Z-context y(o(v(D), o (a, B))). JAN

2.3 Finite-state tree automata

In this section we recall basic notions and notations from the theory of finite-state
tree automata and recognizable tree languages from [22, 34, |43].

Finite-state tree automata. A finite-state tree automaton over Y (for short: X-fta,
or just fta) [34}143] is a triple A = (Q, 6, ') where

12 Preliminaries

o= o Y
Y 1 ! (\72 Y 8 9
a 1‘1 Y -21/ oz\-'zz a g Y o
| / N\ | /\
B211 15} 15 O o 15}
(a) a X-tree together with its (b) replacement of the subtree |, (c) a X-context
positions by the X-tree v(o (5, 3))

Figure 2.1. Illustrations of the X-trees over {{J} given in Example

* () is a finite nonempty set (states) such that Q N'Y = 0,

e § = (6 | k € N) is a family of relations 6, C Q* x £ x Q (transition relations),
where we consider Q¥ as a set of strings over () of length %, and

* F C ((set of root states).

Let A = (Q,0, F) be a ¥-fta. We call A total (respectively, bottom-up deterministic
or for short: bu deterministic) if, for every k € N, w € Q*, and o € ¥, there exists
at least (respectively, at most) one ¢ € () such that (w, g, q) € dy.

Semantics. We mention that, for fta, two semantics can be defined: the initial
algebra semantics [34, 42, 43]] and the run semantics [22, |42]. We recall that the
two kinds of semantics coincide, cf, e.g., [42, Lm. 2.13.1]. In this thesis we use only
the run semantics.

For this, let £ € Tx. A run of A on ¢ is a mapping p : pos(§) — Q. Let p be a run
of Aon ¢, and g € Q. We say that p is

* agrunif p(e) =g,

* valid if, for every v € pos(&), it holds that (p(v1) - - - p(vk),&(v), p(v)) €) where

£(v) € 2™ for some k € N, and

* accepting if p is valid and p(¢) € F.
We denote the set of all ¢-runs (all valid ¢-runs, all accepting g-runs) of A on £ by
Runa(g, &) (respectively, Run’y (¢, £) and Run’(q, £)). Moreover, we set

Runs(€) = [Runa(g,§) , Run}(¢) = [Run}(¢,¢) , and
q€Q q9€Q

Run (§) = U Runf(q,§) .
qe@

2.3 Finite-state tree automata 13

Then the semantics of A, denoted by L.(A), is the YX-tree language defined by

L(A) ={¢ € Ty | Run} () # 0} .

We say that two -fta A and A’ are equivalent if L(A) = L(A’). Furthermore, a ¥-tree
language L is recognizable if there exists a >-fta A such that L.(A) = L. For the theory
of recognizable Y-tree languages we refer to [22, 34, 43]]. Next we recall two well
known results on X-fta.

Lemma 2.3.1. ¢f. [43, Thm. 2.4.2] For every recognizable Y-tree languages L; and
L, also the Y-tree language L; U L is recognizable. O

Lemma 2.3.2. c¢f [43, Thm. 2.2.6] For each Y-fta A, we can construct a total and bu
deterministic X-fta A’ such that A and A’ are equivalent. O

Now we recall that each Y-fta can be depicted as a particular 3-hypergraph.

Fta-hypergraphs. Formally, a >-hypergraph (cf [9, 23, 49]) is a pair g = (Q, F),
where @ is a finite set (nodes) and E C |J, . Q" x ©%*) x Q is a finite set (hyperedges).
For two Y-hypergraphs ¢ = (Q, F) and ¢ = (Q', E’), we write g C ¢’ (respectively,
g=¢") ifwehave Q C " and F C £’ (respectively,) = Q"' and F = E).

We can illustrate a ¥-hypergraph as a picture in the following way cf. [42]. Let
g = (@, F') be a ¥-hypergraph. We represent each node ¢ € () as a circle with ¢ in its
center. Furthermore, we depict each hyperedge (¢; - - - qx, 0, ¢) € E as a box with ¢ in
its center; this box has exactly one outgoing arrow that leads to the representation
of the node ¢, and it has k£ incoming arrows which come from the representations
of the nodes ¢, ..., qx, respectively. The string ¢; - - - ¢, determines the order among
q1,---,qr as follows: starting from the unique outgoing arrow and moving counter-
clockwise around the box, the i-th incoming arrow comes from the representation of
the i-th component of the string ¢ - - - ¢.

Finally, for each ¥-fta A = (Q, §, F'), the fta-hypergraph of A, denoted by g4, is the

S-hypergraph g4 = (Q, Ujen 0r)-
Example 2.3.3. Let ¥ = {¢®, a(¥}. We consider the X-fta

A={a, ¢ a5 @},0,{as})

with transition relations 0, = {(q¢ 0, 9¢), (¢-¢,0.q), (419, 0,4f), (GG, 0, @)},
do ={(e,,q), (,,¢.)}, and 6y = 0 for every k € (N\ {0,2}). Clearly, since both
(e,a,q) and (e, o, q,) are in Jy, the ¥-fta A is not bu deterministic. Moreover, since,
for the string ¢;¢; in Q2 and o € X2, there does not exist ¢ € {q;, ¢, s, ¢:} such that
(@qr,0,q) € 69, the fta A is not total either. Figure depicts the fta-hypergraph
of A.

14 Preliminaries

Figure 2.2. The fta-hypergraph g of the ¥-fta A defined in Example

o qdf o i o 4y
o (] o qr o i o (r o 4df o Ar
/N /N /N
o qt o qr o 4t o qr o 497 o qr
/N /N /N
o ¢ o qf o G o Gr o G o qr
(a) anotvalid g¢-run (b) avalid but not accepting (¢) an accepting q¢-run
qi-run

Figure 2.3. Runs of the YX-fta A defined in Example on the Y-tree &3

Next we represent runs of A as pictures as follows. Let ¢ = o(0J,). Obviously, ¢
is a Y-context. For each n € N, we define the Y-tree ¢, by ¢, = ¢"[a]. Figure
illustrates the Y-tree &3 with three runs of the Y¥-fta A in gray color and dashed
lines in the following way. Figure [2.3|(a) shows a ¢;-run p of A. Note that, since
(p(11)p(12),0,p(1)) = (@:4r, 0,) is not in Jy, this run p is not valid, and thus, it is
not accepting either. Figure [2.3|(b) illustrates a valid ¢,-run; however, since ¢, is not
a root state, this is not accepting either. Finally, Figure [2.3](c) depicts an accepting

¢p-run.
In fact, for each ¢ € Ty, we have £ € {¢, | n € N, } if and only if there exists a
unique accepting run of A on . Thus, L(A) = {&, | n € N, }. JAN

2.4 Weight structures

Here we recall some fundamental notions and notations from the theory of universal
algebra [20, [47], and consider particular algebras which satisfy certain algebraic

2.4 Weight structures 15

laws.

Universal algebra. A Y-algebra is a pair A = (A, 0) which consists of a nonempty
set A (carrier set) and a Y-indexed family 6 over Ops(A) (3-interpretation or inter-
pretation of X.) such that, for every k € N and o € ©*), we have (o) € Ops™*(A).
We denote by 6(X) the set {#(c) | o € X} of operations.

Let A = (A, 0) be a X-algebra. A subalgebra of A is a ¥-algebra (A’,¢’) such that
A" C A, the set A’ is closed under the operations in #(X), and, for every £ € N and
o € X®, we have 0'(0) = 0(0)| 4. For each A’ C A, the subalgebra of A generated by
A’ is the subalgebra ((A’)g(s), 0) of A. The smallest subalgebra of A is the subalgebra
of A generated by (.

We say that A is finite if the set A is finite, and it is locally finite, if, for each finite
subset A" C A, the set (A’)yy) is finite. Moreover, we call A computable if A is a
recursively enumerable set with tests for equality and, for each o € 3, the operation
0(o) is computable (e.g. by a Turing machine).

Let ~ be an equivalence relation on A. We call ~ a congruence relation on A if, for
every k € N, 0 € ¥, and (ai,...,az), (b1,...,b;) € A*, the relation a; ~ b; for each
i € [k] implies that we have 6(o)(ay,...,ax) ~ 0(o)(by, ..., bg).

Let ~ be a congruence relation on A. The quotient algebra of A modulo ~
is the X-algebra A/ ~= (A/~,0/ ~), where A/ ~ is the factor set of A modulo
~ and 0/ ~ is defined, for every k € N, ¢ € ¥, and (ay,...,a;) € A*, by
0/~)(o)(la1]~, - -, [ak]~) = [0(0)(aq, ..., ax)]~. For the well-definedness of 6/~ we
refer to [47, p. 36].

Let A; = (A41,6,) and A, = (A, 05) be Y-algebras. Furthermore, let h : A; — A,
be a mapping. We say that h is a Y-algebra homomorphism (from A; to A,) if, for
every k € N, 0 € X% and (ay,...,a) € (A;)*, we have

h(61(o)(a,...,ar)) = 0s(c)(h(ar),...,h(ag)) .

If h is bijective, then h is a -algebra isomorphism. If there exists such an isomorphism
h, then we say that A, and A, are isomorphic, and we denote this fact by A; = A,.
Let A = (A,0) be a X-algebra, and ~ be a congruence on A. Then the mapping
h: A — A/~ defined, for each a € A, by h(a) = [a]. is a X-algebra homomorphism
from A to A/~.
Next we give two examples of Y-algebras.

Example 2.4.1. One of the well known 3-algebras is the X-term algebra
Termy = (Tx, fs), where 0s(0)(&1, ..., &) = o(&1,...,&) forevery k € N, 0 €),
and (51, - ,fk) S (Tg)k A

16 Preliminaries

In the rest of this thesis, if ¥ = {o1,...,0,} for some n € N, and it is
clear from the context, then we sometimes denote a X-algebra (A,0) by
(A,0(01),...,0(0,)) and refer to it as an algebra.

Example 2.4.2. We consider the algebra Nt = (N, +, -, 0), where + and - denote the
usual addition and multiplication over N, respectively. Furthermore, we consider the
algebra 0, . = ({0}, +,-,0), where + and - are the usual addition and multiplication
over N restricted to the set {0}. Clearly, 0, . is a finite subalgebra of Nt generated by
the set {0}. Interestingly, 0. . coincides with the smallest subalgebra of Nt. However,
the subalgebra of Nt generated by the set {0, 1} equals Nt.

Let k£ € N, and =, be a binary relation on N defined, for every m,n € N, by

m =, n iff both m and n give the same remainder when they are divided by % .

Trivially, =, is a congruence relation on Nt. Now we consider the quotient algebra
Nt/Ek - (N/Eka +ka ‘k [O]Ek)

of Nt modulo =, where N/=, = {[0]z,,[l]=,,...,[k — 1]z}, and 4+, and - are the
usual addition and multiplication modulo %, respectively. Note that the mapping
h : N — N/=; defined, for each n € N, by h(n) = [n]=,, is @a homomorphism from Nt
to Nt/=. A

Properties of binary operations. Let B be a nonempty set. Each element in
Ops'?(B) is called a binary operation. Let ® be a binary operation on B. We say
that © is

* associative if (a ©b) ® c=a ® (b ©® ¢) for every a, b, c, € B,

* commutative if a © b =0 ® a for every a,b € B, and

* idempotent if a ©® a = a for each a € B.
An element e € B is an identity element (of ©®) ife©a =a® e = a for everya € B. If
e € B is an identity element, then it is unique.

Let & and ® be two binary operations on B, and let a, b, c € B. We say that ® is

* right distributive (with respect to @) if (a b)) Rc=(a®c) ® (b X c),

* left distributive (with respect to ®) if a® (b @ ¢) = (a ® b) ® (a ® ¢), and

* distributive (with respect to @) if it is both right distributive and left distributive

(with respect to P).

Furthermore, @ and ® satisfy the absorption axioms if a®(a®b) = a and a®(a®b) = a.

Example 2.4.3. We consider the Y-algebra Nt defined in Example Obviously,
both + and - are associative and commutative operations. The identity elements of
+ and - are 0 and 1, respectively. Moreover, - is distributive with respect to +. JAN

2.4 Weight structures 17

Semigroups and monoids. A semigroup is an algebra (B, ®) such that ® is an as-
sociative binary operation on B. Moreover, a monoid is an algebra (B, ®, e) such
that (B, ®) is a semigroup and the nullary operation e is an identity of ®. A semi-
group (B, ®) is commutative if ® is commutative. Similarly, we define commutative
monoids.

Let (B,®,e) be a monoid. We extend ® to finitely many arguments. Let [be a
finite set with [= {4y,...,i;} for some k € N. If (a) I C Nand i; < --- < it or (b)
© is commutative, then we define the operation (), : B’ — B such that, for each
I-indexed family (b; | i € I) of elements in B, we have

@I(biHEI):{biIQ‘“@bik if 140

e otherwise .

We abbreviate (), (b; | i € I) by (O(b; | @ € I) or just by (), b;. Moreover, if I = []
for some k& € N, then sometimes we denote (), b also by OF_, b;. Note that, in

particular, we have @le bi=b1®...0 b, foreach k € N, and (), _,b; = e.

ich
Let (B,®,e) be a commutative monoid. We say that (B, ®, e) is complete if, for

®
each index set /, there exists a mapping Z . B! — B such that for each I-indexed

I
family (b; | « € I) over B, the following statements hold true (cf [33} p. 124]):
o if I = {j}, then S b = by,
ie{j} .
e if I ={j,;j'}, then Z b; =b; ® by, and

ie{4.i'}
* for each set J and each partitioning (/, | j € J) of I, we have

PORED SO BNOR

icl jeJ i€l

© ®

where Z b; is an abbreviation for Z (b; | i € I). Let (b; | i € I) be a finite
il I

I-indexed family of elements of B. It is easy to see that, if (B, ®, e) is complete, then

©] . . ©] .
we have Z b; = @ b;. Sometimes we also write Z b; for @ b; even if (B, ®, e)
iel iel icl iel
is not complete.

Next we give an example of a complete monoid.

Example 2.4.4. The commutative monoid (N, +, 0) is complete with the mapping

ST (Nw)' = N with
I

18 Preliminaries

S n; if{n;|i€I} CNand.J={iel|n;#0}is finite

00 otherwise .

Strong bimonoids. A strong bimonoid [21, |30, 32, 66] is an algebra
B = (Ba@>®7071) s

where (B, @, 0) is a commutative monoid, (B,®,1) is a monoid, 0 # 1, and 0 is an
annihilator for ®, i.e., b® 0 = 0 ® b = 0 holds true for every b € B. The operations &
and ® are called addition and multiplication, respectively. Let B = (B, ®,®,0,1) be
a strong bimonoid. We say that B is

* commutative if ® is commutative,

* idempotent if @ is idempotent,

* right distributive if ® is right distributive (with respect to @),

* left distributive if ® is left distributive (with respect to &),

e distributive if it is right distributive and left distributive,

* gero-sum free if a ® b = 0 implies a = b = O for every a,b € B,

* gero-divisor free if a ® b = 0 implies a = 0 or b = O for every a,b € B,

* positive if it is zero-sum free and zero-divisor free,

* complete if (B, ®,0) is complete,

* additively locally finite if (B, ®,0) is locally finite,

» multiplicatively locally finite if (B, ®,1) is locally finite, and

* bi-locally finite if it is additively locally finite and multiplicatively locally finite.

For every n € N and b € B, we define the elements nb and 4" in B by induction
as follows: 0b = 0 and (n + 1)b = b @ nb, and b° = 1 and b"™! = b ® b, respectively.

Example 2.4.5. c¢f. [30, Ex. 1] and [42, Ex. 2.6.10] Here we recall some examples of
strong bimonoids.

1. The algebra PlusMin = (N, +, min, 0, 00) is a commutative strong bimonoid.
Moreover, it is also complete (¢f. Example [2.4.4). However, it is not bi-locally
finite. Furthermore, it is not distributive, because there exist a, b, ¢ € N, such
that min(a, b + ¢) # min(a, b) + min(a, c) (e.g., take a = b = ¢ # 0).

2. Let (C,+,0) be a commutative monoid, and B = {f € Ops"(C) | f(0) = 0}.
We extend + to B by a pointwise addition on elements of B, i.e., for every
f,g € B and ¢ € C, we define (f + g)(¢) = f(¢) + g(c). Moreover, we de-
fine the operation ¢ on B such that, for every f,g € B and ¢ € C, we have
(fog)(c) = g(f(c)). Finally, we denote by 0 the mapping 0 : C' — C such that

0(c) = 0 for each ¢ € C. Then the algebra (B, +,¢,0,id¢) is a strong bimonoid.
We mention that this algebra is called a near semiring (over C) [54, 58]. Ob-

2.4 Weight structures 19

serve that the condition f(0) = 0 guarantees that (f o 0) = 0. Also, note that,
except for trivial cases, the operation ¢ is left distributive over +, but not right
distributive.
3. We consider the algebra (I'* U {oo}, A, -, 00, €), where
* A is the longest common prefix operation,
* . is the usual concatenation of strings, and
* o0 is a new element such that s A\oco = o0 As=sand s- 0o =005 = 0
for each s in I'* U {oo}.
Obviously, it is a left distributive but not right distributive strong bimonoid
(consider, e.g., if I' = {a, b, ¢}, then abc = (a A ab) - be # (a - be) A (ab - be) = ab).
We note that this strong bimonoid occurs in investigations for natural language
processing, see [65].
4. We recall the strong bimonoid Stb = (N, ®, ®, 0, 1) from [30, Ex. 25], where the
two commutative operations & and ® on N are defined as follows. For every
aceN,let0®a=a,00a=0,and 1 ® a = a. Moreover, let

b if b is even
a®db=
b+1 ifbisodd |,

for every a,b € N with a < b, and let

b+1 ifbiseven
a®b=
if bis odd |,

for every a,b € (N \ {1}) with a < b, where + denotes the usual addition on

N. Clearly, it is not distributive (e.g. 20 (2®3) =5#4=(202)® (2 3)).
Moreover, it is bi-locally finite but not locally finite, see [42, Ex. 2.6.10].

For further examples of strong bimonoids we refer to [30, Ex. 1], [21} Ex. 2.2],

[32, Ex. 2.1], and [42] Ex. 2.6.10]. A

Semirings. A semiring [[45, 50] is a distributive strong bimonoid. A semiring
S=(5,4,®,0,1) is complete (as a semiring) if it is complete as a strong bimonoid
and the following equalities hold for every index set I, [-indexed family (s; | i € I),
and s € S (cf, e.g., [133, p. 125] and [36]):

Z®s®si:s®(2®3i) and Zeasi@s:(zeasi)@s.
iel iel il il

In the rest of this thesis, if we say that a semiring S is complete, then we
mean by that S is complete as a semiring.

20 Preliminaries

Example 2.4.6. cf. [42, Ex. 2.6.9]. Here we show some examples of semirings.
1. The Boolean semiring Boole = (B, V, A, 0, 1), where B = {0, 1} (the truth values)
and Vv and A denote disjunction and conjunction, respectively. Furthermore, it
is complete with the mapping

SUiB' 5B with (b|iel)—

I

1 if there exists i € I such that b, = 1
0 otherwise .

2. The algebra Nt = (N, +, -, 0) given in Example extended with the identity
element 1 of - is, in fact, a semiring. Hence, in the rest of this thesis we write
Nat = (N, +,-,0, 1), and refer to that algebra as the semiring of natural numbers.

3. The semiring Int = (Z,+, -, 0, 1) of integers.

. The semiring MaxPlus = (N_.,, max, +, —00, 0).

5. The semiring MinPlus = (N, min, +, 0o, 0). It is complete with the mapping

N

S (NG = No with (ng | i€ 1) = inf(ng | i€ 1) .
1

6. The semiring Lang, = (P(I'*),U, -, 0, {e}) of formal languages where - denotes
the concatenation of languages. It is complete with the mapping

ST PI)) — PY) with (Liie D) | L .

1 iel

Each semiring except 6 is commutative. Moreover, the semirings 1-2 and 4-6 are
positive. The Boolean semiring is finite, and hence, it is bi-locally finite. Furthermore,
also the semirings 4-6 are additively locally finite. For further examples of semirings
we refer to [42], Ex. 2.6.9]. A

Lattices. Here we recall some basic notions from the theory of lattices [[12, 48]] and
[20, Ch. 1]. A lattice is an algebra L = (L, V, A) in which V (the join) and A (the meet)
are binary operations, (L, V) and (L, A) are commutative semigroups, the operations
V and A are idempotent and satisfy the absorption axioms.

LetL = (L, V, A) be a lattice. We say that L is bounded if there exist elements 0 and
lin L suchthat 0V a =a and 1 Aa = a for every a € L. We denote a bounded lattice
also by L = (L,V,A,0,1). Recall that each bounded lattice is a bi-locally finite and
commutative strong bimonoid [30, Ex. 1]. Hence, a bounded lattice (L, Vv, A,0,1) is
said to be complete as a strong bimonoid if (L,V,0) is complete. If this is the case,
then we have Zv a; = 0.

Here we shoi/?/ two examples of lattices.

2.4 Weight structures 21

Figure 2.4. Visualization of the bounded lattice M3 given in Example 2)

Example 2.4.7. cf. [42, Ex. 2.6.15].
1. Let A be a set. Then PS, = (P(A),U,N, D, A) is a bounded lattice. Moreover,
since the monoid (P(A), U, () is complete with the mapping

S P S PA) with (4 i D) (A

I il

the lattice PS, is also complete.
2. [48| Fig. 2] and [20, Fig. 5] Let M3 = {o0,a,b,c,i} be a set with five elements.
Moreover, we consider the binary relation < on M3 such that

o<a<1 and o<b<i and o<c<1i

and = A y for any other combination x,y € Mj. Obviously, < is a partial

ordering, i.e., (M3, <) is a poset. Then we consider the binary operations V and
A on M3 defined, for every =,y € M3, by

rVy=sup<({r,y}) and xAy= infzi({z,y}) .

Clearly, the algebra M3 = (M3, V, A, 0,17) is a bounded lattice, which is not dis-
tributive. The lattice Mj is visualized on Figure
For further examples of lattices we refer to [42), Ex. 2.6.15]. A

In the rest of this thesis, B = (B, ®,®,0,1) is an arbitrary strong bimonoid
if not specified otherwise.

22

Preliminaries

Chapter 3

Weighted tree automata and pumping
lemmas

This chapter is organized as follows. In Section 3.1}, we recall fundamental notions,
notations, and results of weighted tree languages and weighted tree automata from
[41, 42]. Moreover, in Section we present our pumping lemmas for runs of
weighted tree automata.

3.1 The model

In order to recall the fundamental notions and notations, we adopt the formalism
used in the corresponding part of [42].

Weighted sets and weighted tree languages. Let Abe aset,and f: A — Bbea
mapping. We also say that f is a B-weighted set (or just: weighted set). The support of
f with respect to B, denoted by suppg(f), is defined by suppg(f) = {a € A | f(a) # 0}.
A (3, B)-weighted tree language (or just: weighted tree language) is a B-weighted set
77D Ty — B.

Next we give some examples of weighted tree languages. Each of them is con-
nected to the set of positions. Firstly, we give the weighted tree language #,... For
this, we assume that ¥ contains two binary symbols ¢ and w. Then the weighted tree
language #.... assigns to each tree ¢ € Ty, the number of occurrences of that symbol
out of o and w, which occurs the most times in .

Example 3.1.1. Let ¥ = {0c@® w® a®} Then we consider the mapping
Humax : Ts — N_ defined, for each ¢ € Ty, by

#max(€) = max(| pos, (€)], | pos, (§)]) -

23

24 Weighted tree automata and pumping lemmas

Obviously, #...x is a (3, MaxPlus)-weighted tree language, where MaxPlus is the
semiring defined in Example [2.4.6/(4). A

Our second example is a variant of the above one. We assume that ¥ contains a
binary symbol . Then it counts, for each ¢ € Ty, how many times o occurs in £. For
that, this time we consider a different ranked alphabet, and use a different strong
bimonoid as weight structure.

Example 3.1.2. [4, Ex. 2] Let ¥ = {0¢® a®}. Then we consider the mapping
#, : Ty — N4 defined, for each ¢ € Ty, by

#q(€) = [pos,(§)] -

Evidently, #, can be considered as a (X, MinPlus)-weighted tree language, where
MinPlus is the semiring defined in Example |2.4.6(5). A

As the last example we define a weighted tree language split, which partitions the
set Ty into four subsets as follows. We assume that ¥ contains a binary symbol o
and a unary symbol . Then split splits T, into four partitions: (1) the set of trees in
which none of o and v occurs, (2) and (3) the set of trees in which only o and only ~
occurs, respectively, and (4) the set of trees in which both ¢ and 7 occur. As weight
structure, we consider the bounded lattice M.

Example 3.1.3. Let & = {¢? 7 o}, We consider the bounded lattice M3 given
in Example [2.4.7|(2). Next we define the mapping split : Ty, — M, for each ¢ € Ty,
as follows:

i iféE=a,
if £ € (Tpa :
b if &€ (Tpyap\{a}) ,
o otherwise .
Clearly, split is a (32, M3)-weighted tree language. A

Weighted tree automata. A weighted tree automaton over ¥ and B (for short:
(3, B)-wta, or just: wta) [41], 42] is a triple A = (Q, §, F'), where

* () is a finite and nonempty set (states) such that Q N'Y = (),

* § = (6 | k € N) is a family of mappings d; : Q* x ¥®) x Q — B (transition

mappings)[l, where we consider Q" as a set of strings over @ of length &, and

* F:(@Q — B is amapping (root weight mapping).
Let A = (Q,9, F) be a (X,B)-wta. Sometimes, for each ¢ €), we abbreviate F'(q)
by F,. We say that A is total (respectively, bottom-up deterministic, or for short:

IFor each k € N with k > maxrk(X), since ©(*) = (), we have 6 :) — B.

3.1 The model 25

bu deterministic) if, for every k € N, w € Q*, and 0 € X(¥), there exists at least
(respectively, at most) one ¢ € () such that 6, (w, o, q) # 0.

Semantics. We mention that, for A, the following two semantics can be defined:
the initial algebra semantics and the run semantics [3, 41, 42, 66]. In general, the
two kinds of semantics may differ [|30]; however, if B is a semiring or A is bu deter-
ministic, then they coincide [14, Lm. 4.1.13] and [66, Thm. 4.1] and [3, Thm. 3.10].
In this PhD thesis we deal only with the run semantics.

In order to define the run semantics, the concept of run of A on a tree £ € Ty, is
crucial. However, to prove our pumping lemmas (cf. Theorems|3.2.3|and (3.2.4)), we
need a more general definition of the run. For this, let { € Tx({d}). Arun of Aon ¢
is a mapping p : pos(¢) — Q. Let p be a run of A on (, and ¢ € (). We say that p is

e agrunifp(e) =g,
* valid if 6, (p(vl) - - - p(vk),((v), p(v)) # O for every v € pos(¢) with ((v) € T®
for some k € N, and
* accepting if it is valid and F),) # 0.
We denote the set of all ¢-runs (all valid g-runs, all accepting q-runs) of A on (by
Run(q,) (respectively, Run’(q,¢) and Run?%(¢, ¢)). Furthermore, we define the
following sets

Runy(¢) = U Runa(q,{) , Run%(() = U RunY%(¢,¢) , and
q€Q q€Q

Run’(¢) = U Run®(¢,¢) .

q€Q

Let v € pos(¢). We define the mapping p|, : pos(¢|,) — @ such that, for each
v" € pos(¢|,), we have p|,(v") = p(vv'). Obviously, p|, € Run((|,), and thus, we call
it the run induced by p at position v.
The weight of the run p of A for (, denoted by wt4((,p), is the element in B
defined by induction on the structure of ¢ as follows:
(i) if ¢ =0, then wt4(J, p) = 1 and
(i) if ¢ = 0(C1,...,¢) for some k € N, 0 € ¥®), and (¢1,...,¢) € (Ts({O})F,
then

k
W) = (@ wtalGipl)) @ 3(p(1) - p(k).0p(e)) . B.D)

If confusion is ruled out, then sometimes we drop the index A from wt4((, p) and
write just wt((, p) for the weight of p.

The (run) semantics of A, denoted by [A], is the (X, B)-weighted tree language

26 Weighted tree automata and pumping lemmas

[A] : Ts — B defined, for each ¢ € Ty, by

pERun 4 ()

Note that, for every ¢ € Ty, and p in Run4(€) \ Run’ (§), either there exists v € pos(¢)
with £(v) € X% for some k € N such that & (p(vl)--- p(vk),((v), p(v)) =0, Le.,
p & Run’y (&), or we have F),y = 0, and thus, wt(&, p) ® Fj,) = 0. For this, we have

@ Wt<£7 p) ® Fp(e) = @ Wt(é? p) ® FP(E) = @ Wt(£7 p) X Fp(a) .

pERunA(€) pERuNY (€) peRun’ (€)

Moreover, if A is total and bu deterministic, then, for each £ € Ty, there is a unique
valid run p¢ of A on &, i.e., we have {p¢} = Run}y(§), with [A](&) = wt (£, pe) ® F ()
cf [42, Lm. 4.2.1(3b)]. We will use the above equalities without any reference.

For two (X, B)-wta A and A’, we say that .4 and A’ are equivalent if [A] = [A].
Furthermore, for each (X, B)-weighted tree language ¢ : Ty, — B, we say that r is
(run) recognizable if there exists a (X, B)-wta A such that r = [A].

Representation of wta by fta-hypergraphs. Recall that in Section we have
defined Y -hypergraphs, and shown that each Y-fta A can be represented by a partic-
ular ¥-hypergraph, which we call the fta-hypergraph of A. Now we show that also
each (X, B)-wta can be represented by an fta-hypergraph but only with extra anno-
tations ¢f [42]. For this, let A = (Q,6, F) be a (X, B)-wta. We first consider the
Y-hypergraph
g4 = (Q, | suppg(6)) -
keN

Then we add to g4 the weights of transitions and the root weights of A as follows.
For each ¢ €) with F|, # 0, we add F, to the node which represents ¢q. Otherwise,
if we have F, = 0, then we do not illustrate F}, in the picture. Moreover, for each
transition of A with non-0-weight, i.e., element in | J, .\ supp(dx), we add its weight
to its representing hyperedge. We call g4 the fta-hypergraph of A.

Here we give some examples of wta and their fta-hypergraphs. Firstly, we show
that the (3, MaxPlus)-weighted tree language #,... defined in Example is rec-
ognizable.

Example 3.1.4. Let & = {0® w® o}, Then we construct the (3, MaxPlus)-wta

Amax - ({%&w;%};& F)

with 65(¢545,0,45) = 02(qulu,w,) = 02(4sqs,0,qs) = 02(qsqs,w,qs) = 1, and
50(5,04,(]0—) = 50(€7aaQw) = 50(5,0[,(]5) = 52((]0'(]0"("}’(]0') = 52((]&)(]&)70_7 qw) = OJ and

3.1 The model 27

0

o

0

T)

Figure 3.1. The fta-hypergraph of the (3, MaxPlus)-wta A,,. defined in Example

every other transition has weight —oco, and F,, = F,, = 0 and F,, = —oo. Fig-
ure shows the fta-hypergraph of A,,... Observe that, since both dy(e, o, ¢,) and
do(e, @, q,,) have weight 0, the wta A, is not bu deterministic. Moreover, since
02(¢oqw, 0, q) = —oc for each q € {q,, qu, ¢s}, the wta A, is not total either.

Next we illustrate some runs of A, in the following way. For this, let

E=o(o(a,0(a,a)),o(a,a)) .

Figure depicts the Y-tree ¢ with three runs of the wta A,,., in gray color and
dashed lines as follows. Figure [3.2)(a) shows a not valid ¢,-run (consider, e.g.,
62(¢oqu, 0, qs) = —00). Figure[3.2|(b) illustrates a valid but not accepting g,-run (recall
that F,, = —o0). Moreover, Figure (c) depicts an accepting ¢,-run.

Finally, we examine the semantics of A,... Let £ € Tx. Clearly, on ¢ there are
exactly three valid runs, which are as follows. For each tag € {o,w, s}, we denote by
Prag the run of A, on £ such that pi.e(v) = ¢rae for each v € pos(¢). Then we have
wt(&, po) = | Pos, (§)], Wt(€, pu) = | pos,(£)], and wt(€, ps) = | pos,(§)| + [pos, (§)]-

Note that, since F;,, = —oo, out of the three valid runs, only p, and p,, are accept-
ing. Hence, we have

[Amax] (§) = max(wt(&, pg) + Fo,, Wh(E, pu) + Fo)
= max(| pos, (§)], | pos, (§)]) = #max(&)

i.e., #max is recognizable. A

In the following example, we prove that the (X, MinPlus)-weighted tree language
#. defined in Example is recognizable.

Example 3.1.5. Let ¥ = {¢®, a(?}. Then we construct the (3, MinPlus)-wta

A, = ({q}75a F))

28 Weighted tree automata and pumping lemmas

O (o g (s o (o

o s W G o s w s o o W 9o
/NN /NN /SN /N
o (s 0 (s & Gu o Gu o (s 0 (s o (s o (s & (o 0 o X o 0 (o

/N /N /N

o o Gu o (s o (s o o o (o
(a) a not valid g,-run (b) avalid but not accepting (c) an accepting q,-run

gs-run

Figure 3.2. Runs of the (X, MaxPlus)-wta A,,.x defined in Example

where dy(e, v, q) = 0, d2(qq,0,q) = 1, and F, = 0. (Note that in the fta-hypergraph
shown in Figure if we consider the state ¢, without the transition ds(¢,4,,w, ¢,)
and identify ¢, with ¢, then we obtain the fta-hypergraph of A,.) Obviously, A, is
both total and bu deterministic. Then, for each ¢ € Ty, there is exactly one run of A,
on ¢, which denote by p.. Moreover, for each ¢ € Ty, that run p; is accepting, and
hence, [A,](§) = wt(&, pe) + F, = | pos,(§)| = #,(§), i.e., the (X, MinPlus)-weighted
tree language #, is recognizable. A

Finally, we show that also the (X, M3)-weighted tree language split defined in
Example is recognizable.

Example 3.1.6. Let © = {0 7 o} We consider the bounded lattice M3 shown
in Example [2.4.7/(2). We construct the (X, M3)-wta

Asplit = ({Q}>5a F)

such that dy(e, a, ¢) =1, d1(q,7,q) = b, d2(qq, 0,q) = a, and F, = i. Figure depicts
the fta-hypergraph of Ay Note that Ay is both total and bu-deterministic as well.

Evidently, for each £ € Ty, there is a unique run of Ay, on &, which we denote
by p¢. Next we prove by induction on the structure of ¢ the following statement:

for each £ € Ty, we have wt(&, pe) = split(¢) . (3.2)

Induction base: For £ = o, we can calculate as follows:

Wt(av Pa) = 50(57 a, q) =1= Spht(a) :

Induction step: We proceed by case analysis. Firstly, assume that £ = ~(&)
for some ¢ € Tyx. Recall that we have wt(¢, pe) = wt(&, pe,) A 01(q, 7, ¢), where
d1(q,v,q9) = b. Moreover, by LH., we have wt(&,pe,) = split(§), and thus,

3.2 Pumping lemmas 29

Figure 3.3. The fta-hypergraph of the (X, M3)-wta Ay given in Example

wt (&, pe) = b if pos, (&) = 0, and wt(€, p¢) = o otherwise. Consequently, in this
case wt(&, pe) = split(£) holds true.

Alternatively, now assume that £ = o (3, &) for some &, &, € Tyx. Clearly, we have
wt (&, pe) = wt(&q, pey) A Wt (&a, pe,) A 02(qq, 0, q), where 62(qq, 0,q) = a. Furthermore,
by I.H., we have wt(&;, pe,) = split(¢;) for each i € {1,2}, and hence, wt(§, p¢) = a
if pos, (&) = 0 for each i € {1,2}, and wt(¢, p) = o otherwise. This completes the
proof of (3.2). Then, for each ¢ € Ty, we have

[Aspiic] (§) = Wt (&, pe) A Fy = wt(§, pe) = split(§)

where the second equality is due to the fact that F|, = ¢, and the last equality follows

from (3.2). A

Now we recall a well known result from the theory of wta.

Lemma 3.1.7. [41, Thm. 3.9] and [42, Lm. 10.9.2] Let B; = (B4, ®1,®1,04,1;) and
By = (Ba, @2, ®9, 05, 15) be strong bimonoids, and h : B; — B, be a strong bimonoid
homomorphism. Then, for each (3, B;)-wta .A, we can construct a (X, By)-wta h(.A)
such that [A(A)] = ho [A]. O

3.2 Pumping lemmas

Here we prove pumping lemmas for runs of wta. We will use them in Section |5.4
With a pumping lemma one can achieve structural implications on small or particular
large trees (c¢f [43, Lm. 2.10.1] and []13, Lm. 5.5]). Since such pumping lemmas al-
ready exist for wta (c¢f [13, Sect. 5]), the question may arise why we present another
pumping lemmas. To answer that question we note that Borchardt’s setting in [13]
deals with bu deterministic wta over semirings and employs initial algebra seman-
tics, whereas in our setting we deal with (arbitrary) wta over strong bimonoids and
employ run semantics. Nevertheless, if we consider the class of all bu deterministic

30 Weighted tree automata and pumping lemmas

wta over semirings, then the two settings coincide. In order to prove our pumping
lemmas, we first recall some fundamental notions and notations from [2].

Loops of wta. Let A = (Q,6,F) be a (X,B)-wta. Furthermore, let ¢ € Cy with
{v} = posp(c) and @ € Runu(q,c) with (v) = p for some p € Q). We call 0 a
(¢,p)-run of A on c. For each p €), we denote the set of all (q,p)-runs (all valid
(g,p)-runs) of A on ¢ by Runy(q, c,p) (respectively, RunY (¢, c,p)). Clearly, we have
Run4(q, ¢) = U,eq Runa(g, ¢, p). Moreover, each run ¢ € Runu(q, ¢, ¢) is called a loop.

Combinations of runs of wta. Let ¢ € Cy with {v} = posy(c), ¢ € Tx({O}),
¢,q€Q, 0 € Rung(¢,c,q), and p € Runy(q,(). The combination of 6 and p (at
v), denoted by 0[p], is the ¢'-run 0[p] : pos(c[(]) — @ of A on ¢[(] defined, for
each u € pos(c[(]), as follows: if u = vw for some w € pos(¢), then we define
0[p](u) = p(w), otherwise we define 0[p|(u) = 0(u).

Left- and right subproducts. Let ¢ € Cy with {v} = posy(c), and § € Runy(c). We
define two mappings [.y : prefix(v) — B and r.y : prefix(v) — B inductively on the
length of their arguments (cf. [[13, p. 526] for bu deterministic wta). Intuitively, we
can split the product yielding the element wt(c,) in B into a left subproduct
lco(e) and a right subproduct r.4(¢), where the border is given by the factor 1 coming
from the weight of [J. Figure shows the illustration of mappings l.» and r.g.

Formally, let w € prefix(v). Then, assuming that ¢(w) = o, rky(c) = k for some
ke N,and b = 6 (0(wl)---0(wk), o,0(w)), we let

1 ifw=v
l6,9<w) = i—1
Q-1 Wt(Clwgs Olwj) @ lep(wi) if wi € prefix(v) for some i € N,
1 ifw=v
rcre<w) = . k . . .
Tep(Wi) @ Qi) Wh(cluwj, Olwj) @b if wi € prefix(v) for some i € N .

In the sequel, for every (3, B)-wta A, Y-context ¢, and run 6 of A on ¢, we
will abbreviate l.9(c) and r.4(¢) by l.o and r.y, respectively.

Lemma 3.2.1. [[1, Obs. 6] and [2, Obs. 5.1] Let A = (Q, 6, F') be a (3, B)-wta. Then,
for every ¥-context ¢ and run 0 of A on ¢, we have wt(c,0) = l.g @ r.g.

Proof. We prove our statement by induction on the structure of c.
Induction base: Then we have ¢ = O with pos(dJ) = {¢}, and thus, l.y = 7.y = 1.
Moreover, since wt([J, #) = 1, our statement evidently holds true.

31

3.2 Pumping lemmas

([€ 81 [Z] ‘) 7.4 pup 0°) sSurddpw fo uonv.ysny)y ¢ 2an3ig

AT?&ST (17 g ‘1|

&S_% Fw%:_ova%. R ® AQLLV

32 Weighted tree automata and pumping lemmas

Induction step: There exist k € N, ¢ € X%, ¢ € Cy, i € [k], and
S

(&, &t Gty - - &) € (T)®Y such that ¢ = 0(51, o &iond i, &), Fur-
thermore, we have

Wt(CI,9|)—l/9‘ ®TC/0| —ZCG()®TCG() s

where the first equality holds true by I.H., and the second one is due to the facts that
ler g = leo(i) and 7w g, = reg(i). Then, by assuming that

a= Q_i)wt(éj,@!j) and b= ® wt(&;,0];) @ 6x(0(1) - - 8(k), 0,0(¢)) |

we can calculate as follows:
wt(c,0) =a@wt(d,0];)) b =a®R1.9(1) @7cp(i) Rb=1.p D 7Tcy ,

where the first equality is due to (3.1)), the second equality follows from I.H., and the
last equality holds true by the definitions of /.y and r.¢. This completes our proof. [

Lemma 3.2.2. [1, Lm. 7] and [2, Lm. 5.2] (also ¢f [13, Lm. 5.1]) Let A = (Q, 6, F)
be a (¥, B)-wta. Then, for every ¥-context ¢, Y-tree &, states ¢’ and ¢ in @, (¢/, ¢)-run
6 of A on ¢, and ¢-run p of A on &, we have wt(c[¢],0[p]) = l.o @ Wt(E, p) @ Tep.

Proof. Similarly, we prove our statement by induction on the structure of c.

Induction base: Clearly, in this case we have ¢ = [0 and ¢’ = ¢. Thus, we have
O] = € and 0[p] = p with wt(O[¢],0[p]) = wt(&, p). Consequently, we can calculate
as follows:

wt (O[], 0[p]) = wt(€,p) = L@ Wt(E, p) ® L = Iy @ Wt(£, p) @ 1000

where the last equality is due to the definitions of Iy and rp.

Induction step: There exist k € N, ¢ € X%, ¢ € Cy, i € [k], and
(&1, &1, &1y, &) € (Te)B7Y such that ¢ = o0&, &1, i, &)
Clearly, we have c[{] = o(&,..., &1, €], &iv1,s -, &), and (6];)[p] is @ 6(4)-run of
A on ('[£]. Moreover, we have

Wt(cl[f]v H‘l[p]) = lC’ﬂli ® Wt(f» p) ® Te bl = lcﬂ(i) ® Wt(S? p) ® rCﬂ@))

where the first equality is due to I.H., and the second one follows from the facts that
le g, = leo(t) and 7o g, = reo(i). Then by assuming that

k

a=®wt(§j’9|g‘) and b= (X) wt(&;,0];) @ 6x(6(1)---0(k), 0,0(c))

j=1 j=i+1

3.2 Pumping lemmas 33

we can calculate as follows:

wt(c[¢], 0lp]) = a @ wt('[E], (0]:)[p]) @ b= a@l.4(i) @ Wt({, p) @ 1cp(i) @b
=g @Wt(&,p) @7y

where the first equality is due to (3.1)), and the last one follows from the definition
of Iy and 7. . This finishes our proof. O

Let A = (Q, 4, F) be a (3, B)-wta. Then, for every ¥-context ¢, state ¢ in (), and
loop # in Run4(q, ¢, ¢), and nonnegative integer n € N, the nth power of 6, denoted
by 6, is the (¢, ¢)-run on ¢" defined by induction as follows: (i) §° = (¢ + ¢q) (recall
that we have ¢ = [J) and (ii) 6" = 0[6"].

7

Theorem 3.2.3. [1, Thm. 8] and [2, Lm. 5.3] (also cf. [13, Lm. 5.3]) Let ¥ be
a ranked alphabet such that X©) # (), and B be a strong bimonoid. Moreover; let
A=(Q,0,F)bea (X,B)-wta. Then, for every Y-contexts ¢’ and ¢, ¥-tree &, states
¢ and qin Q, (¢',q)-run ' of Aon ¢, (q,q)-run 6 of A on ¢, and g-run p of A on
&, and for each n € N, we have

wt(c'["[E]], 00" [p]]) = lo g ® (lep)" @ WE(E, p) @ (Tep)" @ Ter g -

Proof. We first prove by induction the following statement:

wi(c"[], 0"[p]) = (lep)" @ WH(E, p) © (re)" - (3.3)

Induction base: If n = 0, then we have ¢ = (0 and ¢° = (¢ — ¢), and thus,
O[] = ¢ and (e — ¢)[p] = p. Hence, we can calculate as follows:

wt(O[E], (e = q)[p]) = wt(&,p) = 1@ Wt(E, p) @ L = (lep)’ @ WH(E, p) ® (rep)’

where the last equality is due to the facts that (I.4)° = 1 and (r.4)° = 1.

Induction step: Assume that holds true for n. Now we consider Y¥-context
"1, and the (g, ¢)-run 6" of A on ¢"*!. Then we have ¢"*! = ¢[c"] and §""! = §[6"],
and hence, "™ [¢] = c[c"[€]] and 6" [p] = O[0"[p]]. Thus, we can calculate as follows:

wi(c[c"[€]], 010" [p]]) = lep @ wi(c"[E], 0"[p]) @ 7cp
=l @ (lep)" @WE(E, p) @ (1) @ Tep
= (leg)"" @ Wt(E, p) @ (1),

where the first equality follows from Lemma (3.2.2) the second one holds true by
LH., and the last one is due to the facts that we have (I.4)"™ = (l.o ® (I.)") and

34 Weighted tree automata and pumping lemmas

<@

Figure 3.5. Illustration of the decomposition of the tree &' in the proof of Theorem
along the positions u and uv (cf. [2, Fig. 2])

(1ep)™™ = ((rep)™ ® rep). This completes the proof of (3.3). Now we prove the
statement of the lemma as follows:

wt (¢ [c"[E]], 00 [p]]) = Lo @ wt(c"[E], 07[p]) @ T o
= 10’79' ® (lc,e)n ® Wt(€> p) ® (Tcﬂ)n ® Teror

where the first equality is due to Lemma [3.2.2] and the second one follows from
(3.3). This completes our proof.]

Theorem 3.2.4. [1, Thm. 9] and [2, Thm. 5.4] (also cf. [13, Lm. 5.5]) Let X be
a ranked alphabet such that (¥ + (), and B be a strong bimonoid. Moreover, let
A= (Q,0,F) be a (X,B)-wta. For every Y-tree &, state ¢’ in), and ¢'-run p’ of
Aon &, if height (&) > |Q)|, then there exist Y-contexts ¢ and ¢, Y-tree &, state q
in Q, (¢,q)-run 0" of Aon ¢, (¢,q)-run 0 of A on ¢, and g-run p of A on & such
that the following conditions hold true: &' = '[c[¢]], p' = 0'[0]p]], height(c) > 0,
height(c[{]) < |Q|, and, for each n € N, we have

wt(["[€]], 0'[6"[p]]) = leror ® (lep)" @ WH(E, p) @ (rep)” @ Tergr -

.

Proof. Assume that height(¢’) > |Q|. Then there exist u,v € N7 such that
wv € pos(&’), |v| > 0, height(¢'|.) < |Q], and p'(u) = p'(uv). Hence, we let ¢ = (¢'|*),
c= ((¢)]"), and £ = &'|,,. Obviously, we have ¢ = /[c[{]]. Figure shows the
decomposition of ¢’ along the positions u and ww.

Moreover, we let 6 = (p'|pos(e)), 0 = ((p'|u)lpos(e))> and p = (p'|uww). Then our
statement follows from Theorem This concludes our proof. O

Chapter conclusion. The author of this PhD thesis declares that his contribution to
Theorems [3.2.3| and [3.2.4 is significant, and also that Theorems (3.2.3|and [3.2.4] are
published in [1, 2]].

Chapter 4

Weighted tree generating regular
systems

In this chapter we will discuss the results on weighted tree generating regular sys-
tems presented in [4]. In Section we explain why we introduce an alternative
semantics, called reduction semantics, for tree generating regular systems, and why
we define the concept of weighted tree generating regular system by the generaliza-
tion of the reduction semantics to the weighted case.

In Section [4.2] we recall the concept of tree generating regular system with its
derivation semantics and related results from [18]]. Furthermore, we introduce our
alternative semantics, show the equivalence of the two semantics, and prove normal
form lemmas with our alternative semantics.

In Section [4.3|we introduce the concept of weighted tree generating regular sys-
tem over a strong bimonoid, define its reduction semantics, and show the equivalence
of tree generating regular systems and weighted tree generating regular systems over
the Boolean semiring.

Finally, in Section |4.4|we prove the equivalence of wta and weighted tree gener-
ating regular systems.

4.1 The problem

In [4] the concept of weighted tree generating regular system (for short: wtgrs) was
introduced and a further characterization of recognizable weighted tree languages
was given. As weight structures of wtgrs, strong bimonoids [21, |30, 66]] were used.
The aim of that paper was to show that wtgrs and wta are equivalent (correspond-
ingly to the fact that tgrs of [18] and fta are equivalent).

More precisely, (3, B)-wtgrs were defined such that the following two require-

35

36 Weighted tree generating regular systems

v SN SN v SN ee SN
INCN NN
CY/ \Oé

Figure 4.1. An a-computation of P for the tree o(o(«,0(a, @), o(e, o)) under =g,.
Observe that we may replace the symbols « in an arbitrary order. (cf. [4, Fig. 1])

ments were fulfilled:

(a) Each (3, Boole)-wtgrs S is "equivalent" to a ¥-tgrs .S, and vice versa,
where Boole is the Boolean semiring given in Example [2.4.6|(1).
(b) Under some mild conditions, each (3, B)-wtgrs S is equivalent to a “4.1)

(32, B)-wta A, and vice versa.

In this chapter we recall the results of that paper. To fully understand those results,
here we briefly recall the concept of tgrs and its derivation semantics introduced
by Brainerd [18]. Moreover, we show that the seemingly natural generalization of
the derivation semantics to the weighted case does not work, i.e., it does not fulfill
Requirement (4.1))(b). Finally, we explain the two characteristics of our alternative
semantics, called reduction semantics, given in Subsection for tgrs. In fact, the
reduction semantics is essentially the same as the derivation semantics (cf. Theo-

rem [4.2.8).

A Y-tgrs (or just tgrs) S [|18] consists of a ground term rewriting system [8, 22]] P
over some ranked alphabet A and a finite subset Z of designated trees over A. The
ranked alphabet A is partitioned into as follows: the ranked alphabet ¥ of terminals
and the ranked set N of nonterminals. Moreover, we call elements of P productions
and elements of Z axioms. The ground term rewrite relation =g induced by S is de-
fined in the standard way (cf. [|8, Def. 3.1.8]). Furthermore, the derivation semantics
of S (for short: d-semantics of S) is the set of trees £ over ¥ such that there exist an
axiom (€ Z and a (-computation of P for ¢ under =g, i.e., (=% £ In order to
illustrate the d-semantics of tgrs, Figure shows an example of the tgrs Sq where

¥ consists of the terminals ¢(® and «”); the ranked set N of nonterminals is

empty,

* 7 is a singleton set consisting of the axiom «, and

* P contains only the production o« — o(«,).

If in certain steps of a (-computation d of P for { under =5 we could replace

4.1 The problem 37

at incomparable positiond!} then there may exist several other ¢-computations of P
for £ under = 5. For instance, we can obtain another a-computation of P for the tree
in Figure if in the second step we replace the leftmost « in o(«, a).

Moreover, we define a (X, B)-wtgrs to be a ¥-tgrs in which to each production and
to each axiom a weight in B is associated, i.e., a (3, B)-wtgrs S consists of a >-tgrs
S = (N, Z, P), amapping wt : P — B (production weight mapping), and a mapping
X : Z — B (axiom weight mapping). The natural generalization of the d-semantics
of tgrs to the weighted case, i.e., the d-semantics of S, would be as follows. For
a tree £ over ¥ and an axiom (€ Z, and for a (-computation d of P for £ under
=g, to calculate the weight of d, we would multiply the weights of the productions
in a fixed order determined by d by applying the multiplication operation ® of B.
Then we calculate the d-semantics of S for a tree £ over X as follows: by using the
addition operation @ of B we sum up all weights of (-computations of P for £ under
= multiplied by the axiom weight X(¢). However, this is not suitable to fulfill
Requirement (4.1 (b) for the following reason. When we associate a (%, B)-wtgrs S
to a (X, B)-wta A, more than one computation of P may correspond to a single run of
A. Furthermore, since the addition operation @ of B is not necessarily idempotent,
this may yield that the d-semantics of S and the semantics of A differ.

In order to avoid this phenomenon, we advocate an alternative semantics, called
reduction semantics (for short: r-semantics), given in Subsection for tgrs. The
d-semantics and the r-semantics of tgrs are essentially equivalent (¢f Theorem4.2.8]).
Moreover, we introduce the concept of wtgrs with the natural generalization of the
r-semantics of tgrs to the weighted case (¢f Subsection [4.3.1)). The r-semantics of a
tgrs S has two characteristics:

(i) it is based on a restriction of the term rewriting relation, denoted by =g 4p,
in which replacements can be performed only at the minimal position (with
respect to the depth-first post-ordering of positions) at which a replacement is
possible and -

(i) the r-semantics of S is the set of trees { over ¥ such that there exist an axiom &
and a ¢(-computation of P for £ under =g qp,.

Figure shows an example of a computation by the rewrite relation =g, 4, of the
Y-tgrs S;, where ¥ = {0 o}, N =0, Z = {a}, and P’ = {o(a,a) = a}.

In conclusion, we introduce the r-semantics for the following reasons. Firstly,
for each tgrs S there exists a tgrs S’ such that the d-semantics of S is equal to the
r-semantics of S’ (see Figures and [4.2)). Vice versa, for each tgrs S there ex-
ists a tgrs S’ such that the r-semantics of S is equal to the d-semantics of S’. This
equivalence of the d-semantics and the r-semantics of tgrs is described in Subsec-
tion Secondly, the concept of wtgrs introduced with the natural generalization
of the r-semantics of tgrs to the weighted case fulfills Requirements (a) and (b)

!We call two positions of a tree incomparable if none of them is a prefix of the other one.

38 Weighted tree generating regular systems

o o o o

0/ \U = Sedp g/ \U :>Sr,dpa/\g :>Sr,dpa/\a:>5r’dp o
NN

D

Figure 4.2. A o(o(w,0(a,)),o(a, a))-computation of P’ for o under =g, ap (cf. [4
Fig. 2])

(¢f. Subsection and Section 4.4} respectively).

4.2 Tree generating regular systems

This section consists of three parts. In Subsection [4.2.1| we recall the concept of
ground term rewriting system from [8]] and the concept of tree generating regular
system with its derivation semantics from [18]. Moreover, we introduce our alter-
native semantics, called reduction semantics, for tree generating regular systems. In
Subsection [4.2.2| we show the equivalence of the derivation semantics and the re-
duction semantics. Finally, in Subsection we prove normal form lemmas for
tree generating regular systems with reduction semantics. These normal form lem-
mas will be used to prove corresponding normal form lemmas for weighted tree
generating regular systems over strong bimonoids with reduction semantics (¢f. Sub-
section |4.3.3)).

4.2.1 The model

Ground term rewriting systems. As already mentioned in Section a tree gen-
erating regular system is a particular ground term rewriting system. For this, let
(A,rka) be a ranked alphabet. Formally, a ground term rewriting system over A (for
short: A-gtrs, or just: gtrs) [8,[22] is a finite set P of (Tx)?.

Let P be a A-gtrs, and p = (n,x) € P. We call p a production, and, as usual, we
denote it also by n — k. The left-hand side of p, denoted by lhs(p), and the right-hand
side of p, denoted by rhs(p), are n and &, respectively.

We define the rewrite relation of p, denoted by %, as the binary relation on Tx
such that

forevery (,£ € Tx :
¢ % ¢ if there exists v € pos(¢) such that ¢|, = and & = ([x], .

4.2 Tree generating regular systems 39

Sometimes we also write ¢ =5 ¢ to make explicit the position v at which the produc-
tion p is applied.

Later we will employ two subsets of =: one will be used in the definition of
derivation semantics (using the full set %) and one will be used in the definition
of reduction semantics (a strict subset of). Since both definitions use the same
concept of computation, in order to avoid repetitions, we introduce a parameter.
Formally, let ~»= (~%| p € P) be a family of binary relations <> on T, such that
4> C%. Moreover, for each k € N, we consider P* as a set of strings over P of length
k. Now let (,£ € Ta. A (-computation of P for £ under ~~ is a string d = py - - - py,
in P* with k& € N and p; € P for each i € [k] such that there exist (;, € T and
(Ciy-- -+ G) € (Ta)* with

* C = CO)
* (i ¥ ¢ for each i € [k], and
* =&

We denote a (-computation d of P for £ under ~~ also by (4 ¢ to make explicit the
computation.

Tree generating regular systems. For every ranked set (N,rky) with X NN = (),
we define the ranked alphabet (X U N, rkyyy) such that, for each ¢ in ¥ U N, we
let tkyun(0) = rks(o) if 0 € ¥ and rkyun(0) = rky (o) otherwise. A tree generating
regular system over 3 (for short: Y-tgrs, or just: tgrs) [18] is a triple S = (N, Z, P),
where

e N is a ranked set (of nonterminals) such that X N N = 0,

e 7 C Tsuy is a finite set (of axioms), and

e Pisa (XU N)-gtrs, i.e., a finite set (of productions).

Now we recall the derivation semantics and define the reduction semantics. For
this, let S = (N, Z, P) be a X-tgrs.

Derivation semantics. We define =¢= (£| p € P) to be a family of binary re-
lations =g on Tyyy such that £¢=5. Let (,6 € Tyuy. A (-derivation of S for
¢ is a (-computation of P for £ under =5. We denote by Derg((, &) the set of all
(-derivations of S for &, and furthermore, by Ders(§) the set |J.., Ders(¢,§). The
derivation semantics of S (for short: d-semantics of S), denoted by L4(5), is the
Y-tree language

Lq(S) = {£ € Tx | Ders(§) # 0} .

Two X-tgrs S and S’ are d-equivalent if L4(S) = Lq4(S’). Moreover, for each Y-tree
language L, we say that L is d-generated if there exists a ¥.-tgrs S such that L = L4(5).

40 Weighted tree generating regular systems

Reduction semantics. For the reduction semantics, we define a particular subfam-
ily of the family =g¢= (24| p € P). We obtain it by requiring that productions may
be applied at positions which are minimal, with respect to the depth-first post-order,
among those positions at which a production can be applied. Formally, let { € Ty.
The depth-first post-ordering on pos((), denoted by =4, is the linear ordering defined,
for every w,v € pos(¢), by

w =qp v iff (v € prefix(w)) V (u € prefix(w) N prefix(v))(Ji, 7 € Ny) :
(ui € prefix(w)) A (uj € prefix(v)) A (i < j) .

We let w <q4p, v if (w =g, v) and (w # v). Then, in particular, min_, (pos(¢)) is the
leftmost leaf of (.

In the rest of this chapter, we will abbreviate <4, and <g4, by < and =,
respectively.

Let Ihs(P) = {Ihs(p) | p € P}. We define the family = g4,= (Z5.4,| p € P), where
:p>s,dp is the binary relation on Ty such that

for every (, £ € Tsun
¢ Lgap€ ¢ ¢and w = min({v € pos(C) | ¢l € Is(P)}) -

Let ¢, ¢ € Tyun. A (-reduction of S to is a (-computation of P for { under =g 4p.
We denote by Reds((, &) the set of all (-reductions of S to &, and furthermore, by
Reds(() the set .., Reds(C,€). The reduction semantics of S (for short: r-semantics
of S), denoted by L,(S), is the ¥-tree language

L:(5) ={¢ € Tz | Reds(¢) # 0} .

Two X-tgrs S and S’ are r-equivalent if L,(S) = L,(S"). Furthermore, for each X-tree
language L, we say that L is r-generated if there exists a ¥.-tgrs S such that L = L,(95).
Observe that, for every Y-tgrs .S, a (-derivation of S for ¢ starts with an axiom (
and ends in a Y-tree &; however, a (-reduction of S to ¢ starts with a Y-tree (and
ends in an axiom &.
Here we give some examples of tgrs. Our first example shows that the tree lan-
guage L(A) recognized by the fta A defined in Example is d-generated.

Example 4.2.1. [4, Ex. 6] (also ¢f [18, Ex. 3.4]) Let ¥ = {¢®, a(9}. We consider
the X-tgrs
S = ({C(O)}, {CH{C—0o(Ca), C—ola,a)}) .

Next we examine the d-semantics of S. For this, let ¢ = o([J,), and for each n € N,
we define the Y-tree &, by &, = ¢"[a]. Figure shows the C-derivation of S for &;.

4.2 Tree generating regular systems 41

« C/U\Oz e J/U\a s J/J\a &
/\ /\
Cc « o «
a/ \oz

Figure 4.3. The C-derivation of S defined in Example for the tree &3 (cf. [4,
Fig. 3])

Clearly, we have Ly4(S) = {&, | n € N1} = L(A), ie., the X-tree language L(A) is
d-generated. JAN

The next example shows that the d-semantics and the r-semantics do not always
coincide.

Example 4.2.2. [4, Ex. 7] Let ¥ = {¢® a(®}. We consider the Y-tgrs

Sa=0.{a},{ a=ola,a) }) .

Let ¢ = o(o(a,0(e,)),0(a, a)). Figure shows the a-derivation of S, for ¢. Evi-
dently, we have L4(S4) = Tx. However, in case of the r-semantics, the axiom « must
occur at the end of a reduction, but this cannot be achieved with the production
a — o(a,a). Thus, we have L,(Sq) = {a}, i.e., La(Sq) # L.(Sa).

Although, the two semantics of Sy differ, interestingly, we can give another tgrs
S, such that the r-semantics of S; and the d-semantics of Sy are the same. For this,
it is sufficient to exchange the left-hand side and the right-hand side of the unique
production o« — o(«, «). Thus, we consider the Y-tgrs

Sy = (0,{a},{ o(la,a) > a }) .

Figure illustrates the ¢-reduction of S, to a. Obviously, we have
L. (S;) = Ty = Lq(Sq), i.e., the X-tree language is not just d-generated but also
r-generated. JAN

Later we will see that the phenomenon described in Example holds true
in general as well (¢f Lemma [4.2.7). Now from [|18] we recall a result on the
equivalence of fta and tgrs with d-semantics.

Theorem 4.2.3. [18, Thm. 4.9] For each L C Ty, the >-tree language L is recognizable
if and only if it is d-generated.

42 Weighted tree generating regular systems

Next, also from [|18], we recall normal forms of tgrs and corresponding nor-
mal form lemmas for tgrs with d-semantics. Let S = (N, Z, P) be a ¥-tgrs, and
let p = (n — k) be in P. We say that p is

* expansive if n = Aand k = o(Ay, ..., Ax),

* contracting if n = o(A;,...,A;) and k = A, and

* a chain production if n = Aand k = A’
for some k € N, 0 € 2 (A;,..., A;) € (NO) and A, A’ € NO), For every A € N
and p € P, we say that A occurs in the left-hand side (right-hand side) of p if A occurs
in lhs(p) (rhs(p), respectively). Moreover, we say that .S

* has a single nonterminal axiom if Z = { A} for some A € N, and there do not
exist productions p; and p, in P such that A occurs in the left-hand side of p;
and in the right-hand side of p,,

* is simple if each production in P has the form either A — o(A,..., Ax), or
o(Ay,...,A) = A,or A — A with A, A € NO ke N,o € (XUN)®, and
(A,..., Ay) € (N and

* is expansive if each production in P is expansive.

Note that each expansive tgrs is obviously a simple tgrs.

For each ¥-tgrs S = (N, Z, P), if S has a single nonterminal axiom, then
we emphasize this fact by writing Z, instead of Z, i.e., S = (N, Zy, P), and
identify Z, with its unique element.

The corresponding normal form lemmas for tgrs with d-semantics are the following.

Lemma 4.2.4. [18, Lm. 3.10] For each X-tgrs S, we can construct a Y-tgrs S’ such
that S’ has a single nonterminal axiom and it is d-equivalent to S. O

Lemma 4.2.5. [18, Lm. 3.12] For each X-tgrs S, which has a single nonterminal
axiom, we can construct a ¥-tgrs S’ such that also S’ has a single nonterminal axiom,
and furthermore, it is simple and d-equivalent to S. O

Lemma 4.2.6. [18, Lm. 3.15] For each simple X-tgrs S, which has a single nonter-
minal axiom, we can construct a 3-tgrs S’ such that also S’ has a single nonterminal
axiom, and furthermore, it is expansive and d-equivalent to S. O]

4.2.2 Equivalence of the d-semantics and the r-semantics

We devote this subsection to show the equivalence of the d-semantics and the
r-semantics of tgrs. For this, the following notations and definition are necessary.

Let S = (N,Z,P) be a X-tgrs. For each production p = (n — k) in P, we
denote by rel(p) the production x — 7. Moreover, for each subset P’ of P, we let
rel(P") = {rel(p) | p € P'}.

4.2 Tree generating regular systems 43

For two X-tgrs S = (N, Z,P) and S’ = (N, Z,rel(P)), we say that S and S’ are
related. For instance, the two X-tgrs Sq and S, defined in Example are related.
Clearly, for each Y-tgrs S, there exists exactly one Y-tgrs S’ such that S and S’ are
related. We denote this S” also by rel(S). Moreover, for each >-tgrs S, we have
S = rel(rel(S)). Later we will use this fact without any reference.

Lemma 4.2.7. [4, Lm. 14] For each Y-tgrs S, the following statements hold true: 1.
Lq(S) = Ly(rel(S)) and 2. L,(S) = Lq(rel(S)).

Proof. We first prove Statement 1. By Lemmas [4.2.4, 4.2.5 and 4.2.6, we may as-
sume that S has a single nonterminal axiom and it is expansive. Let S = (N, Zy, P)
and rel(S) = (V, Zy, rel(P)). Then we prove, by induction on the structure of ¢, the
following statement:

for every ¢ € Ty, and A € N(©:

: (4.2)
we have Derg(A, () # 0 iff Red,es)(¢,A4) #0 .

Induction base: Then we have (= o for some o € %), Moreover, since S is
expansive, and S and rel(S) are related, we have

Derg(A,a) # 0 iff (A—«a)e P iff (o — A) erel(P) iff Reduas)(o, A) #0 .

Induction step: Then there exist k € N;, ¢ € ¥ and (,...,¢ € Ty such
that (= o(¢y,...,(x). Since S is expansive, and S and rel(S) are related, for every
Ay,..., A, € NO we have

(A—o(Ay,...,Ap) € P iff (0(Ay,..., Ax) = A) € rel(P) .

Moreover, by I.H., for each i € [k] and each A; € N, we have Derg(4;, ;) # 0 iff
Redei(s)(Gi, A;) # 0. Thus, we have

Derg(A,¢) # 0
iff there exist A;,..., A € N such thatp = (A — o(A,,...,A;)) € P
and Derg(A;, (;) # 0 for each i € [k] with
ARG o(An, . A) B Beo(C,...,G)=C,
where d; € Derg(A;,(;) for each i € [k]
iff there exist A, ..., A, € N9 such that rel(p) = (0(Ay, ..., A;) — A) € rel(P)
and Red,ei(s) (¢, A;) # 0 for each ¢ € [k] with

Tk rel(p)
C = U(Cla cee 7Ck> rel(S),dp * " grel((Ala s >Ak) prel(S),dp A)
where 7; € Redei(s)(¢;,4,) for eachi € []

44 Weighted tree generating regular systems

iff Redrel(s)(g, A) 7’é @ .
This completes the proof of (4.2)). Finally, for each (€ Ty, we have
¢ € Lq(S) iff Derg(Zy,¢) #0 iff") Redws)(C, Zo) # 0 iff ¢ € Li(rel(S)) ,

where at (x) we apply (4.2). This finishes the proof of Statement 1. To prove State-
ment 2, it is sufficient to see that we have

L. (S) = Ly(rel(rel(S))) = Lqg(rel(.5))

where the second equality is due to Statement 1. O

The main result of this subsection is as follows, i.e., the d-semantics and the
r-semantics of tgrs are equivalent.

Theorem 4.2.8. [4, Thm. 15] Let ¥ be a ranked alphabet such that © = ().
Then, for each L C Ty, the Y-tree language L is d-generated if and only if it is
r-generated.

4.2.3 Normal forms of tgrs with r-semantics

In this subsection, we first define a new normal form for tgrs, called contracting tgrs.
Then we prove normal form lemmas for tgrs with r-semantics. One may notice that
these new normal form lemmas can be proven in a very similar way as Brainerd
proves the corresponding normal form lemmas for tgrs with d-semantics in [[18].
Hence, in order to avoid repetitions, we build up our proofs on the corresponding
ones in [[18] and exploit the equivalence of the d-semantics and the r-semantics of
tgrs described in Subsection

Let S = (N, Z, P) be a ¥-tgrs. We say that S is contracting if each production in
P is contracting. Clearly, each contracting tgrs is a simple tgrs. Moreover, for each
Y-tgrs S, if S is contracting, then rel(.S) is expansive, and vice versa.

Construction 4.2.9. [18, in the proof of Lm. 3.10] Let Sq = (N, Z, P;) be a X-tgrs.
We construct the ¥-tgrs S, = (', Zy, P}) such that
* 7, consists of a single new nonterminal of rank 0, i.e., N N Z, = (),
* we identify Z, with its one and only element, and
« N'=NUZy,and P, = PyU{Zy = | €€ 2}
A

Lemma 4.2.10. [4, Lm. 17] (also ¢f [18, Lm. 3.10]) For each X-tgrs S,, we can
construct a X-tgrs S! such that S has a single nonterminal axiom and it is r-equivalent
to S..

4.2 Tree generating regular systems 45

o o
_ 2,p €,p2 g,p1
¢= /\ = 51.dp /\ Zordp @ = srdp 20
o O a
o

Figure 4.4. A (-reduction of the tgrs S’ constructed in Example to Zy

Proof. If S, already has a single nonterminal axiom, then we let S = S, and we are
done, otherwise we proceed as follows.

Let Sq = rel(S;). By applying Lemma to Sy, we can construct a X-tgrs S/
such that S/, has a single nonterminal axiom and it is d-equivalent to S4. (In fact, we
obtain S/, by applying Construction to Sq.) Let S! = rel(S)). Obviously, since S}
and 5] are related, also S/ has a single nonterminal axiom. Then we have

L:(S:) = La(Sa) = La(83) = L:(5))

where the equalities follow from Lemma [4.2.7(2), Lemma [4.2.4, and
Lemma [4.2.7|(1), respectively. O

In the following example we show an application of Lemma [4.2.10

Example 4.2.11. [4, Ex. 18] Let ¥ = {0 a(®}. We consider the X-tgrs S, con-
structed in Example Evidently, S, does not have a single nonterminal axiom.
However, by following the proof of Lemma |4.2.10, we can construct the >-tgrs

S = {2, Zo,{ @ = Zy , ola,a) = a }) .

p1 p2

Obviously, S’ has a single nonterminal axiom. Furthermore, by Lemma it is
r-equivalent to S,. Note that, for each Y-tree (, there is exactly one reduction in
Redgs (¢) = Redg (¢, Zy). For the X-tree (= o(«o,0(w,), Figure shows that
¢-reduction of S} to Z;. A

Construction 4.2.12. [18, in the proof of Lm. 3.12] Let Sq = (N, Zo,{p1,-.-,pn}) be

a Y-tgrs with n € N such that Sy has a single nonterminal axiom. For each i € [n],

we let p;, = (7, — k;). We can construct the 3-tgrs S, = (N', Zy, P}) such that N’
contains of the following nonterminals:

 for every i € [n| and v € pos(n;), let E;, be a new symbol such that £;, ¢ N
and E;, € N’ with rky/(E;,) =0,

 for every i € [n] and u € pos(k;), let F;, be a new symbol such that F;, ¢ N
and F;, € N' with rky/(F;,) =0,

46 Weighted tree generating regular systems

e forevery A € N, welet A € N’ with rky/(A) = rky(A), and
* there is no other nonterminal in N’;
and the set P} consists of the following productions:

« for every i € [n| and v € pos(n;) with o = 7;(v) and k = rkyn(0):
Pi1w = (0(Eiv1y ., Eivk) = E;p) isin Py . (4.3a)
. for every i € [n]:
Pioe = (Eie — Fic)isin Py . (4.3b)
. for every i € [n] and u € pos(k;) with w = k;(u) and £ = rkyn(w):

Dilu = (Fl,u — (JJ(F’Z‘7U1, c. 7E,u€)) is in Pé . (4.3C)
Moreover, for each i € [n], we define

(Pa)i = {pi-10 | v € pos(n:) } U{pioe} U{pitw | u € pos(ki)} -
Observe that the family ((P;); | ¢ € [n]) is a partitioning of P;. A

Lemma 4.2.13. [4, Lm. 19] (also ¢f [18, Lm. 3.12]) For each X-tgrs S,, we can
construct a >-tgrs S/ such that it is simple and r-equivalent to S,. Moreover, if S, has
a single nonterminal axiom, then S] has that as well.

Proof. If S, already has a single nonterminal axiom, then we continue; otherwise,
by Lemma we may assume that S, has a single nonterminal axiom. If S,
is already simple, then we let S/ = S,, and we are done. Otherwise, we proceed
as follows.

Let Sq = rel(S,). By applying Lemma to S4, we can construct a X-tgrs S/
such that also S, has a single nonterminal axiom, and furthermore, it is simple and
d-equivalent to S,. (As a matter of fact, we obtain S by applying Construction4.2.12]
to Sq.) Now we let S} = rel(S}). Clearly, since S; and S; are related, also S has a
single nonterminal axiom and it is simple. Hence, we have

L.(S) = La(Sa) = La(5)) = L:(Sy)

where the equalities follow from Lemma [4.2.7(2), Lemma [4.2.5, and
Lemma [4.2.7|(1), respectively. O

The following example shows an application of Lemma |4.2.13

4.2 Tree generating regular systems 47

g
Lph 11 \ 214’2 1,1 \ 22,p, 1,2 \ 2,05 1,
/ \ :>S§’,dp / = S dp / = S dp . / =S7.dp

2 1 g 2,1 g
o o« Fy1 Fyo
2,pt 2,pt 2,pt &,p
/ \ :2>OS€// dp / \ élssu dp / \ 2:> 152// .dp / \ 2:155” dp
1 Fo, Fy1 B, o o« 21 Faop
7p ’p 7p 7p 7p
F2,€ é}osi/ dp EQ,E élsau dp 1:>1515// d Fl,E :1>OSE// dp ELE :1>ISE// d ZO

Figure 4.5. A (-reduction of the tgrs S/’ defined in Example 4.2.14|to Z,

Example 4.2.14. [4, Ex. 20] Let ¥ = {c®, a(O}. We consider the ¥-tgrs S’ given in
Example Recall that S] has a single nonterminal axiom. Moreover, observe
that S} is not simple as both lhs(p2) and rhs(ps) are in Ty,. Nevertheless, by following
the proof of Lemma we can construct the ¥-tgrs S = (N”, Zy, P!'), where N”
consists of the following nonterminals

* from p; we obtain E1 . and F1 o

* from p, we obtain Eé) FQ(?, F2(f)1), and Fég), and

* inherited from S} we have Z)

and (P!) is partitioned by the family ((P/); | i € {1,2}) with

(Prll)lz{ a—>F1,57 F1,5_>E1,i7 \E’175—>Z(1)} and

/ / /
P11 P10, P1ae

(Pr//)zz{ a—Fyy , a—Fyy 0(F2,1>F2,2)—>F2,g , o = Fy, , Br, =« } .

-

/ / / / /
P2 11 Pa 12 Pa 1. P20, Paae

Clearly, S” has a single nonterminal axiom and it is simple. Moreover, it is
r-equivalent to S’ by Lemma Observe that, for each Y-tree (, there is ex-
actly one reduction in Redgs,({) = Redgr((, Zy). For the ¥-tree (= o(a,0(a,a)),
Figure depicts that (-reduction of S/ to Z'. JAN

Lemma 4.2.15. [18, Lm. 3.13] Let Sy = (N, Zy, Py) be a X-tgrs such that Sy has a
single nontermmal axiom and it is simple. Then it is decidable, for arbitrary A € N (0),
keN,oex® and (Ay,...,4;) € (NO)* whether the set Derg, (A4, 0(A, ..))
is not empty.

48 Weighted tree generating regular systems

Construction 4.2.16. [18, in the proof of Lm. 3.15] Let Sq = (N, Zy, P,) be a 3-tgrs
such that Sq has a single nonterminal axiom and it is simple. We can construct a
Y-tgrs S = (N, Zy, P}) such that

forevery Ac NO, ke N, o e x®, and (A;,..., A;) € (N~
if the set Derg, (A, 0(4, ..., A;)) is not empty, 4.4)
then we put the production A — o(Ay,...,Ay) in P} .

We note that, by Lemma [4.2.15] the condition of (4.4)) is decidable. A

Lemma 4.2.17. [4, Lm. 21] (also ¢f [18, Lm. 3.15]) For each X-tgrs S,, we can
construct a X-tgrs S’ such that S/ is contracting and r-equivalent to S,. Moreover, if
Sy has a single nonterminal axiom, then 5] is so.

Proof. If S, already has a single nonterminal axiom, then we continue; otherwise, by
Lemma we may assume that S, has a single nonterminal axiom. Moreover, if
S, is already simple, then we continue; otherwise, by Lemma [4.2.13] we may assume
that S, is simple. If S, is already contracting, then we let S/ = S,, and we are done.
Otherwise, we proceed as follows.

Let Sq = rel(S;). By applying Lemma to S4, we can construct a X-tgrs S}
such that also S has a single nonterminal axiom, and furthermore, it is expansive
and d-equivalent to Sy. (In fact, we obtain S by applying Construction to
Sq.) Next we let S/ = rel(S)). Evidently, since S, has a single nonterminal axiom and
it is expansive, and since S; and S] are related, the tgrs S! has a single nonterminal
axiom as well and it is contracting. Thus, we have

L:(8) = La(Sa) = La(83) = L:(5))

where the equalities follow from Lemma [4.2.7(2), Lemma [4.2.6, and
Lemma [4.2.7|(1), respectively. O

In the following example we show an application of Lemma [4.2.17

Example 4.2.18. [4, Ex. 22] Let & = {¢® a(9}. We consider the ¥-tgrs S” shown
in Example Recall that S/ has a single nonterminal axiom and it is simple.
However, S}’ is not contracting as the production p| , . is not contracting.

We follow the proof of Lemma 4.2.17, and thus, we first consider the X-tgrs
S =rel(S!). In order to construct the expansive X-tgrs S|’ d-equivalent to S, now
we consider particular derivations of Sy. For this, we let p; ;. = rel(p; ;) for every
i € {1,2}and j € {-1,0,1}, and py1,; = rel(py_, ;) for each i € {1,2}. Then these
particular derivations of S] as follows:

P1,—1,e P1,0.e D2,0,e D2,1,e

P1,1,e DP2,—1,e
Zo Say B Sen Pl sy a Sy By San Foo =gy o(Fan, Fap)

4.3 Weighted tree generating regular systems 49

o
/N s / \ =S dp / \ TS/ \ =Sy dp

«Q o Fop o Fon o
/\ / \ /\ /N
(0] « F271 (6 F271 F272
o
/N s Zg
Fy1 Fyo

Figure 4.6. A (-reduction of the tgrs S constructed in Example 4.2.18|to Z,

p2,1,1

Fs, =g« =>s” E,. :>s” F. =>s” U(FQ 1,F22) , and

p2,1,2 P2,0,e P2,1,e

Fy, =>s"04 =>s“ E,. :>s” F. :>s" U(F217F22) .

Hence, the set Dergs(A4,0(A;,Ap)) is not empty for every A € N,
Ay €{Fon, Ba FoL), and Ay € {Fap, Fae, Iy }; and also the set Dergy (4,) is
not empty for each A in N” \ {E,., F,.}. Then we can construct the >-tgrs
S = (N",Zy, P"), where

Pr/// _ ((U {O'(Al,AQ) N A}) U (U {04 — A})) .
A1€e{F21,E2¢,F2c} AEN"\{E2,F2 .}
Ase{F22,FE3,F> .}
AeN"

Evidently, S!” has a single nonterminal axiom and it is contracting. Moreover, by
Lemma [4.2.17] it is r-equivalent to S”. Note that, for each ¥-tree (, there are more
than one (-reduction of S/ to Z,. E.g., for the X-tree (= o(«, o(a, «)), Figure
illustrates a ¢-reduction of S}” to Z;. A

4.3 Weighted tree generating regular systems

This section is built up as follows. In Subsection {4.3.1 we introduce the concept
of weighted tree generating regular system with reduction semantics. In Subsec-
tion [4.3.2] we prove the equivalence of tgrs and weighted tree generating regular sys-
tem over the Boolean semiring. Finally, in Subsection we define normal forms
for weighted tree generating regular systems and prove corresponding normal form
lemmas. These normal form lemmas will be used to prove the equivalence of wta and
weighted tree generating regular systems over strong bimonoids (c¢f Section [4.4)).

50 Weighted tree generating regular systems

4.3.1 The model

A weighted tree generating regular system over ¥ and B (for short: (X, B)-wtgrs, or
just: wtgrs) [4] is a triple S = (S, wt, X), where

e S=(N,Z, P)isa X-tgrs,

* wt: P — B is the production weight mapping, and

* X : Z — B is the axiom weight mapping.
We call S the tgrs underlying S. Moreover, sometimes, for each £ € Z, we abbreviate
X (&) by Xe.

Observe that, since each (3, B)-wtgrs S is, basically, an extension of some
Y.-tgrs, the concepts and abbreviations defined for tree generating regular
systems are also available for weighted tree generating regular systems. In
particular, we may write = s 4, instead of =g qp.

Let S = (S, wt, X) bea (X, B)-wtgrs with S = (N, Z, P). Moreover, let (,{ € Txun.
Then we define Reds((, &) = Reds(¢,). From now on, for every r € Reds((,€), we
denote ¢ also by 7. Letr = (p1---pr) € Reds(¢,€) with £ € N and p; € P for each
i € [k]. We say that r is

* valid if wt(p;) # O for each i € [k] and

* successful if it is valid and £ € supp(X).

We denote the set of all valid (successful) (-reductions of S to £ by Red§(¢,) (respec-
tively, Red$((, £)). Furthermore, we define the sets

Reds(¢) = | JReds(¢,€) and Redy(¢) = | JRedg(¢,€) and

§ez ez

Red3(¢) = | Red3(¢,€) -

£ez

The weight of r, denoted by wts(r), is the element in B defined by

wts(r) = ®U”5(pi) :

In particular, if (= &, then k& = 0, and thus, wts(r) = 1.

We say that S is finite-reductional if, for each (€ Ty, the set Red%(() is finite. If S
is finite-reductional or B is complete, then the (reduction) semantics of S, denoted by
[S], is the (X, B)-weighted tree language [S] : T, — B defined, for each ¢ € Ty, by

1510 = > wis(r) @ Xz .

r€Red%(C)

Note that, for every (€ Ty and r = (p; - - - pn) € Reds(¢) with n € N and p; € P for

4.3 Weighted tree generating regular systems 51

each i € [n], if r € Red$((), then either there is an i € [n] such that wt(p;) = 0, or we
have 7 ¢ suppg(X), i.e., X- = 0. Consequently, we have

ZEB Wts(r) ®X? = @ Z th ®X§ .

reRed%(() &esuppg(X) r€Red$(¢,€)

Later, we will use this fact without any reference.

For two (X, B)-wtgrs S and &', we say that S and S’ are r-equivalent if [S] = [S'].
Moreover, for each (X, B)-weighted tree language), we say that ¢ is r-generated if
there exists a (X, B)-wtgrs S such that [S] = 1.

The following example shows that the weighted tree language #,,., defined in

Example is r-generated.
Example 4.3.1. Let & = {0® w® a0}, We first construct the X-tgrs

S = ({AD, AD, AP} {A;, A}, P)
where P consists of the following productions:

P ={ a—=A,, 0d(4, A,) = A, , w4, A,) = A,
W—/ ~ ~ N\ ~
P1 P2 P3

a— A, , 0(As,AL) = Ay, w(Ay, Ay) = A
H/_/ J ~ J/

-~ -~

P4 D5 Pe6
a— A, 0(As, Ag) = Ay, w(Ag, As) = Ay, w(As, Ay) = Ay
— X ~- ~ ~~ N ~~

p7 D8 P9 P10

Then we construct the (X, MaxPlus)-wtgrs S = (S, wt, X) such that wt(p;) = 0 for
each i € {1,3,4,5,7}, wt(p;) = 1 for each i € {2,6,8,9}, wt(pyp) = —o0, and
X(A,) = X(Ay) =0.

Let (= o(o,w(a,). Next we consider some reductions in Reds(¢) as follows (cf
Figure [4.7). Figure [4.7|(a) shows a not valid reduction in Reds(¢, A,). Figure [4.7|(b)
illustrates a valid but not successful reduction in Reds((, A;). Finally, Figure [4.7/(c)
depicts a successful reduction in Reds((, A,).

Now we examine the semantics of S. For this, let (€ Tx. Obviously, there are
exactly two reductions in Red3(¢): one ends in A, and the other one in A,, ie.,
{ro} = Red%((, A,) and {r,} = Red%((, A,). Hence, S is finite-reductional. Observe
that wts(r,) = | pos,(¢)| and wts(r,) = | pos,({)|. Moreover, we have

[S1(C) = max(wts(rs) + X (Aq), whs(re) + X (Au))
= max(| pos, (C)], | pos, (¢)]) = #max(C)

i.e., #mayx is r-generated. A

52 Weighted tree generating regular systems

(o g g (o2 g
/ \ %57(11) / \ ggS,dp / \ g4>S,dp / \ Igs,dp / \ ggS,dp AU’
w A w A w A A, A,

\ " "N -
a o o« Ay o Ay, AL

(a) a not valid reduction

/ \ gsvdp / \ ggS,dp / \ ggS,dp / \ ggS,dp /\ %S7dp Asg
« w A w A w A A, A

a/ \a | a/ \a | A/ \a i

/\
Ay A,

(b) a valid but not successful reduction

g g g g g
/ \ ggé»',dp / \ ggS,dp / \ géS,dp / \ g%S,dp / \ %S,dp AU
«@ w A w A w A w A, A,

/\ TN TN SN
a A, o

a o AO'AO'

(¢) a successful reduction

Figure 4.7. Reductions of the (X, MaxPlus)-wtgrs S constructed in Example

The following example proves that the weighted tree language #, defined in
Example is also r-generated.

Example 4.3.2. [4, Ex. 23] Let ¥ = {c® a®}. We consider the ¥-tgrs S, con-
structed in Example Then we construct the (3, MinPlus)-wtgrs S, = (S;, wt, X)
where wt(o(o,) - a) = 1 and X, = 0. Recall that in case of =, 4, replacements
can be performed only at the minimal position. Hence, for each Y-tree (, there is
exactly one reduction in Red} (¢), i.e., S; is finite-reductional. Moreover, we have

[[Sr]] = #a- A

4.3.2 Equivalence of tgrs and wtgrs over the Boolean semiring

Next we show that >-tgrs and (X, Boole)-wtgrs are essentially the same, i.e., Require-
ment (4.1))(a) is fulfilled. To prove the equivalence of Y-tgrs and (X, Boole)-wtgrs,
the following concept is necessary. For each (X,B)-wtgrs S = (S,wt, X) with
S = (N, Z, P), the support tgrs of S, denoted by suppg(S), is the >-tgrs

suppg(S) = (IV, suppg(X), suppg(wt)) .

4.3 Weighted tree generating regular systems 53

Note that, for every ¢ € Ty and £ € suppg(X), we have Red$((,) = Redsuppg(s) (¢, €),
and thus, Red(¢) = Redsuppg(s)(¢). We will use this fact without any reference.

Lemma 4.3.3. [4, Lm. 24] For a (X, Boole)-wtgrs S, we have

SuppBooIe([[S]]) = Lr(suppBoole(s)> :

Proof. Let S = (S, wt, X) with S = (N, Z, P). Moreover, in the rest of this proof we
abbreviate suppg,e by supp. We first prove the following statement:

for every ¢ € Ty, £ € supp(X), and r € Reds(¢, §):

. (4.5)
we have wts(r) # 0 iff € Redgypps)(¢,€) -

Letr = p;---p, with £ € N and p; € P for each i € [k]. Then we have

wts(r) #0 iff we have wt(p;) # 0 for each i € [£]
iff we have p; € supp(wt) for each i € [£]
iff we have r € Redgypp(s)(¢,€)

where the second equivalence follows from the fact that the semiring Boole is zero-
divisor free. This completes the proof of (4.5). Now recall that the semiring B is
complete (cf. Example|2.4.6|(1)). Then, for each { € Ty, we have

¢ esupp([S]) iff S wts(r) A X=) #0

r€Red%(¢)
iff*) (3¢ € supp(X))(Ir € Reds((,€)) - wts(r) # 0
iff (3¢ € supp(X)) : Redsupp(s)(¢, &) # 0 iff ¢ € Ly(supp(S)) ,

where at (x) we use the fact that the semiring Boole is positive; and the last but one
equivalence is due to (4.5). O

Theorem 4.3.4. [4, Thm. 25] Let . be a ranked alphabet such that X(© # (.
Moreover, let L be a Y-tree language. Then the following statements are equiva-
lent.

1. We can construct a Y-tgrs such that 1,(S) = L.

2. We can construct a (X, Boole)-wtgrs such that suppg,..([S]) = L.

Proof. In the rest of this proof, we abbreviate suppg,.. by supp.
(1 = 2). Let S = (N, Z, P). We can construct the (X, Boole)-wtgrs S = (S, wt, X)
such that supp(X) = Z and supp(wt) = P. Clearly, we have S = supp(S). Moreover,

by Lemma [4.3.3] we have L,(S) = L,(supp(S)) = supp([S]).

54 Weighted tree generating regular systems

2=1). Let S = (S,wt,X) with S = (N,Z,P). Evidently, we can con-
struct the Y-tgrs supp(S) as described above. Then, by Lemma [4.3.3, we have
Ly (supp(S)) = supp([S]). O

4.3.3 Normal forms of wtgrs

In the rest of this section we define three normal forms of wtgrs and prove corre-
sponding normal form lemmas. For each (X, B)-wtgrs S = (S, wt, X), we say that S
has a single nonterminal axiom (is simple or is contracting) if S has a single nontermi-
nal axiom (respectively, is simple or is contracting).

Lemma 4.3.5. [4, Lm. 26] For each (3, B)-wtgrs S such that S is finite-reductional
or B is complete, we can construct a (X, B)-wtgrs &’ such that S’ has a single nonter-
minal axiom and it is r-equivalent to S. Moreover, if S is finite-reductional, then &’
is so.

Proof. If S already has a single nonterminal axiom, then we let S’ = S, and we are
done. Otherwise, we proceed as follows.

Let S = (S,,wt, X) with S, = (N, Z, P,). By applying Lemma to S, we can
construct a X-tgrs S; such that S/ has a single nonterminal axiom and it is r-equivalent
to S,. By following the denotations of Construction we let S! = (N, Zy, P)),
where P/ = rel(P}). Then, we can construct the (X, B)-wtgrs S’ = (S], wt’, X’) such
that X'(Z,) = 1, and wt’ is defined as follows:

* wt'(rel(Zy — £)) = X, for each ¢ € Z (¢f. Construction [4.2.9) and

* wt'(p) = wt(p) for each p € P,.

Clearly, S! has a single nonterminal axiom. Next, for each (€ Ty, we define the
mapping ¢, : Red5(¢) — Red% (¢), for each r € Red3((), by ¢¢(r) = r(7 = Zy),
where (7 — Zy) = rel(Zy — 7). Then we prove the following statement:

for every ¢ € Ty and r € Red3(¢): we have wts(r) ® X= = wts(@¢(r)) . (4.6)
Since (1) = r(7 — Zy), we can compute as follows:
wts(r) @ X= = wts(r) ® wt' (7 = Zy) = wts/ (r(T = Zy)) = wts (¢c(r))
and thus, we finish the proof of (4.6). Now we prove the following statement:

for each ¢ € Ty, the mapping ¢, : Red(¢) — Red, (¢) is bijective, 4.7)
i.e., it is (a) injective and (b) surjective. '

For this, we first show that Statement (a) holds true. Evidently, if | Red%(¢)| < 1,
then ¢ is injective. Hence, we may assume that | Red3(¢)| > 1. Let 1,y € Red%(()

4.3 Weighted tree generating regular systems 55

such that » # r,. Then we have ¢ ¢ Z, and thus, len(r;) > 1 for each
i € {1,2}. Since r; # 7, there exist an integer 7 in [len(r;)] N [len(r2)] such that
ri(l...i—1)=ro(1...7—1) and (i) # r2(i).

Let i € {1,2}. Moreover, let p; = (r; — Z,). Obviously, we have p; € P/. Since
ri € Reds((), we have X= # 0, and thus, wt'(p;) # 0. Then we have ¢¢(r;) = rp;
such that ¢ %5/7dp ?: %Slvdp Zy. Then, since r; # ry, we have p¢(r1) # @¢(ra), L.e., ©¢
is injective. This concludes the proof of Statement (a), i.e., . is injective.

Now we prove Statement (b). Since S’ has a single nonterminal axiom,
we have Red% () = Red% ((,Zp). Obviously, if Red% (¢,Zy) = 0, then we
also have Red3(¢) =0. Thus, we may assume that Red% (¢, Z,) # 0. Let
r' = (p}---pl) € Red% (¢, Zp) with £ € N, and p, € P/ for each i € [k]. It follows
from our construction that we have lhs(p},) € Z with X(lhs(p,)) = wt'(p,) # O, ie.,
lhs(p),) € suppg(X). Moreover, since S’ has a single nonterminal axiom, for each
i € [k — 1], the nonterminal Z, does not occur in the left-hand side of +/(i). Hence,
r = p)---pj_, is in Red5(¢). Note that we have ¢(r) = r’. This finishes the proof
of Statement (b), i.e., ¢ is surjective. Furthermore, it concludes the proof of (4.7).
Finally, for each ¢ € Ty, we have

SI0 = 37 ws() @ Xz = 3 whs(pc(r) @ (X)),

r€Red (¢) r€Red5(¢)
®
= Y wis () @ (X4 = [81(0) .
T’GRedz, ©)

where the second equality holds true by (4.6]); and the last but one equality is due to
(4.7) and the fact that family

({r(€ = Z) | r € Reds (€,)} | £ € Z)

is a partitioning of Red%, (¢, Zy). Also, observe that, by (4.7), for each (€ Ty, we
have |Red3(¢)|] = |Red% (¢)|. Thus, if S is finite-reductional, then S’ is so. This
completes our proof. O

In the following example we show an application of Lemma [4.3.5

Example 4.3.6. [4, Ex. 27] Let ¥ = {c®,a(®}. We consider (3, MinPlus)-wtgrs S,
constructed in Example Clearly, S does not have a single nonterminal axiom.
Thus we follow the proof of Lemma Firstly, by applying Lemma to
Sy, we construct the >-tgrs S/ such that S/ has a single nonterminal axiom and it is
r-equivalent to S, (¢f Example [4.2.11). Then we construct the (X, MinPlus)-wtgrs
S = (S, wt’, X') such that wt'(p;) = W, = 0, wt'(p2) = wt(p2) = 1, and X'(Z,) = 0.
Evidently, S/ has a single nonterminal axiom. Moreover, by Lemma S, is
r-equivalent to S,. Note that, since S, is finite-reductional, S/ is so. Recall that,

56 Weighted tree generating regular systems

since S is an extension of S/, Figure shows a successful o(a, o(«, a))-reduction
of §' to Z,. A

Lemma 4.3.7. [4, Lm. 28] Let S be a (X, B)-wtgrs such that S is finite-reductional
or B is complete. We can construct a (X, B)-wtgrs S’ such that S’ is simple and
r-equivalent to S. Moreover, if S is finite-reductional, then &’ is so. Similarly, if S has
a single nonterminal axiom, &’ has so.

Proof. If S already has a single nonterminal axiom, then we proceed; otherwise, by
Lemma [4.3.5, we may assume that S has a single nonterminal axiom. If S is already
simple, then we let S’ = S, and we are done. Otherwise, we continue as follows.

Let S = (Sp,wt, X) with S, = (N, Zy, P,) and P, = {(k1 — m),..-, (kn — mn)}
for some n € N. Firstly, by applying Lemma to S;, we can construct a >-tgrs
S! such that also S/ has a single nonterminal axiom, and furthermore, it is simple
and r-equivalent to S,. As already mentioned in the proof of Lemma [4.2.13] in order
to construct S/, we apply Construction to rel(S;). Hence, by following the
denotations of Construction [4.2.12] and that in the proof of Lemma we have
S, = (N', Zy, P!), where P! = rel(P}). Secondly, we can construct the (X, B)-wtgrs
S’ = (5], wt’, X), and we define wt’ as follows:

 for every i € [n] and v € pos(n;), the production p; 1, defined in in
Construction is in P}, and hence, the production p;, , = rel(p;_1,) is in
P} and we set wt'(p;) = 1,

» for each i € [n], the production p;, . defined in (4.3b) in Construction
is in Pj, and thus, the production p;,. = rel(pio.) is in P/ and we set
wt'(pj o) = wt(k; — n;), and

 for every i € [n] and u € pos(k;), the production p;;, defined in in
Construction is in P, and so, the production pj _, , = rel(p;1,,) is in P
and we set wt'(p} ;) = 1.

Moreover, for every i € [n|, we define

(F)i = {Pi1u | v € pos(ri)} U{pio } U{pi1, [v € pos(m)}

Note that the family ((P!); | i € [n]) is a partitioning of P/. Furthermore, S’ has a
single nonterminal axiom and it is simple.

Next we establish a relationship between successful reductions of S and that of S’.
For every w € N* and i € [n], and each u € pos(x;), we define a string over N* x (P);,
denoted by L(wu, x|,), inductively as follows: assuming that «;(u) € (X U N)® for
some ¢ € N, we let

L(wu, kil,) = L(wul, £i]ur1) - - - L(wud, /fl-]ug)(wu,p;_l’u))

Moreover, for every w € N and i € [n], and each v € pos(n;), we define a

4.3 Weighted tree generating regular systems 57

string over N*% x (P/);, denoted by R(wwv, 1;|,), inductively as follows: assuming that
n:;(v) € (XU N)® for some k € N, we let

R(wo,mifw) = (wv, pyy o) R(wvl, milor) - - R(wok, miluk) -

Let (€ Ty. We define a mapping ¢, : Red5(¢) — Reds (¢) as follows. Re-
call that we have Red%(¢) = Red%((, Zy) and Redy, (¢) = Red%/((, Zy). Assume that
Red$((, Zo) is not empty. Then let r = ((kj, — n;,) -~ (Kj,, — M;.)) € Reds((, Zo)
with m € N and j; € [n] for each i € [m] such that

w1,(k5; =0) Wiy (K =M)
C :>S,dp %57(1;) ZO

Now we consider the string

s = L(wy, k5,) (wr, pj, 0.0) R(we,m3,) -+ L(wm, 55, (Wi, 5, 0.0) R(wi,) (4.8)

over N* x P!. Let N = len(s,). Observe that, since r is successful, for each i € [NV,
we have wt/(pry(s,.(i))) # 0. Moreover, we have X (Z;) # 0. Nevertheless, it is eas-
ily possible that pry(s,(1))- - pry(s.(N)) is not a (-reduction of S’ to Z,, because by
decomposing the productions in P, (cf Construction 4.2.12)), we may apply a pro-
duction pr,(s, (7)) for some i € [N] at a position pr, (s, (7)), which is not minimal, with
respect to the depth-first post-order, among those positions at which a production
can be applied. That phenomenon is quite possible. Thus, we pause the proof of
Lemma (4.3.7, and we give an example of this phenomenon here. However, for the
sake of simplicity, we consider only the support tgrs of wtgrs.

Example 4.3.8. We consider the X-tgrs S/ constructed in Example and the
Y-tgrs S” given in Example Note that each of them can be considered as
a support tgrs of some wtgrs. Moreover, S/ is not simple, but S is so. Recall
that S/ is r-equivalent to S} (¢f Example 4.2.14). Now we consider the success-
ful o (o, o(a,))-reduction r of S/ to Z, shown in Figure and construct the string
s, as described above. Then we have

Sy :(217PIQ,—1,1)(227pg,—1,2)(27pl2,—1,5>(27p,2,0,5>(27p,2,1,s)(1apl2,—1,1)(2aPlz,—1,2)(57pl2,—1,s)
(€7p/2,0,5)(€7p/2,1,s)<87p/1,71,5>(€7p/1,0,€)<87p/1,1,5) .
Note that pry(s,(1)) - - - pry(s,(13)) isnot a o(«a, o(a, a))-reduction of S/ to Z,, because
the position pry(s,(1)) = 21 is not minimal, with respect to the depth-first post-order,

among those positions of o(«, o(«, o)) at which a production can be applied. In this
case that minimal position is pr,(s,(6)) = 1. A

After the brief pause, we proceed with the proof of Lemma Recall that

58 Weighted tree generating regular systems

we can apply a production only at a position, which is minimal, with respect to
the depth-first post-order, among those positions at which a production can be ap-
plied. Moreover, the decomposition of the productions in P, (c¢f Construction 4.2.12)
also determine which production can be applied next. Thus, there exists a unique
permutation s, of s.(1),...,s.(IN) such that pry(s.(1))---pry(s.(N)) is a successful
(-reduction of S’ to Z, and every other permutation of s,(1),...,s,(N) is not even a
(-reduction of S’ to Z,. Note that, in some cases we have s/ = s,; however, if s/ # s,,
then we can obtain s; by moving some productions p; , , with i € [n] and u € pos(x;)
with wt'(p; _,,,) = 1 forward. Then we let ¢ (r) = pry(s,(1)) - - pray(s,(N)). Now we
pause the proof of Lemma |4.3.7|again, and give an example where s, # s/.

Example 4.3.9. Here we continue Example Thus, we consider the string
s, constructed in Example Then we consider the unique permutation s, of
sy(1),...,s.(13) which is as follows:

3; :<17p/2,—1,1>(217p/2,—1,1)(227p/2,—1,2)<27pIQ,—l,a)(27pIQ,O,a)(27p/2,175)<27pIQ,—1,2)(57p/2,—1,£)
(57 p/Q,O,s)(Ev pé,l,a) (8’ pll,—l,s)(gv pll,O,a) (67 pll,l,e) :

Observe that pry(s)(1)) - - - pry(s.(13)) is a successful (o, o(c, v))-reduction of S/ to
Zy (cf Figure 4.5). As a matter of fact, the only difference between s, and s/, is that
(1,p5 1) occurs at the beginning of the string s;. A

After our small example, we continue the proof of Lemma Next we show
properties of the mapping ¢.. Thus we first prove the following statement:

for every (€ Ty, and r € Red((): we have wts(r) = wts/(pc(r)) . 4.9)

Clearly, we have wt(r(i)) # 0 for each ¢ € [len(r)]. Consequently, it follows
from our construction that wt'(¢¢(r)(:)) # 0 for each i € [len(yp¢(r))]. Moreover,
observe that, for every i € [len(p¢(r))], if w¢(r)(i) € {Pio. | j € [n]}, then we have
wt'(¢¢(r)(i)) = 1, i.e., we can leave the weight of the production ¢ (r)(7) out of our
calculation. Assume that r = (k;, = n;,) - (kj,, = 1;,.) with m € N and j; € [n] for
each i € [m]. Furthermore, assume that ¢ (r)(k;) = P}, 0 and oc(r)(ke) = P}, 0. for
some ki, ks € [len(¢¢(r))] and 41,42 € [m]. By the definition of ¢, we have i; < i, iff
ki < ko. Thus, we have

ws(r) = @ wt(;, = 15) = Qut (8, 0.) = whar(c(r)) -

=1

4.3 Weighted tree generating regular systems 59

This completes the proof of (4.9). Now we prove the following statement:

for each ¢ € Ty, the mapping ¢, : Red$(¢) — Redy (¢) is bijective, (4.10)
i.e., it is (a) injective and (b) surjective. '

We first prove Statement (a). Obviously, if | Red$(¢)| < 1, then ¢, is injective. Hence,
we may assume that | Red%(¢)| > 1. Let r, 75 € Red(() such that # ry. Obviously,
we have s, # s,,, and thus, s, # s, . This completes the proof of Statement (a), i.e.,
©¢ 1s injective.

Now we show that Statement (b) holds true. Evidently, if Red%, (() = 0, then we
have Red$(¢) = () as well. Thus, we may assume that Red%, (¢) # 0. Let ' € Red%, (¢)
with N = len(’). Assume that, for each i € [N], we apply the production /(i)
at w; for some w; € N’. By our construction, there exists a unique permutation
s, of (wy,r'(1)),..., (w)y,r"(N)) of the form described in (4.8). Then the reduction
r = (kj, = nj)-(Kj,, = 15, is in Reds(¢). Moreover, we have ¢.(r) = r’. This
concludes the proof of Statement (b), i.e., ¢ is surjective. Moreover, this completes
the proof of (4.10). Finally, since, for each ¢ € Ty, we have Red3(¢) = Red$(¢, Zo)
and Red% (¢) = Red% (¢, Zy), we can calculate as follows:

[S](¢) = @ wis(r) ® Xz, = @ wtsr (p¢(r)) @ Xz,

reRed%(C) r€Red5(¢)
= B W)Xz =510 .
r’€Reds,, (¢)

where the second equality is due to (4.9); and the third one follows from the fact ¢,
is a bijection between the sets Red%(¢) and Red%, (¢) by (4.10). Moreover, since, for
each ¢ € Ty, the mapping ¢, is a bijection between the sets Red(¢) and Red5% (¢), if
S is finite-reductional, then S’ is so. O

The following example demonstrates an application of Lemma [4.3.7

Example 4.3.10. [4, Ex. 29] Let & = {0 a(9}. We consider the (3, MinPlus)-wtgrs
S! given in Example Evidently, S! has a single nonterminal axiom (c¢f the
production p;). Thus, we follow the proof of Lemma Firstly, by applying
Lemma[4.2.13|to S, we construct the X-tgrs S’ such that S/ has a single nonterminal
axiom, it is simple and r-equivalent to S/ (¢f Example [4.2.14). Secondly, we can
construct the (3, MinPlus)-wtgrs S = (S;, wt”, X') such that wt"(p}, . ;) = wt'(p2) = 1,
and every other production has weight 0. Clearly, S/ has a single nonterminal axiom
and it is simple. Moreover, by Lemma[4.3.7, it is r-equivalent to &/, and furthermore,
since &S] is finite-reductional, S is so. Note that, since S/ is an extension of the tgrs
S, Figure depicts a successful o(a, o(a,))-reduction of S to Z,. A

60 Weighted tree generating regular systems

In order to be able to construct a semantically equivalent contracting wtgrs (cf.
Lemma [4.3.16|(2)) for a wtgrs S, it is crucial that each nonterminal of S of rank zero
is r-useful, i.e., it occurs in at least one successful reduction of S. Fortunately, for a
wtgrs S, we can construct another wtgrs S’, of which each nonterminal of rank zero
is r-useful (c¢f Lemma [4.3.13). To construct &', the following notions, notations, and
result (¢f Lemma 4.3.12)) are necessary.

Let S = (S,wt, X) be a (X, B)-wtgrs with S = (N, Zy, P) such that S has a single
nonterminal axiom and it is simple. For each A € N, we say that A is r-useful (in S) if
there exist (€ Ty, £ € Txun, r € Red3((,), and 7’ € Red§(€, Zy) such that A occurs
in ¢ and (rr') € Red%((, Zy). Moreover, we say that S is r-reduced if each A € N(© is
r-useful.

Example 4.3.11. Let © = {¢®, a®}. We consider the (3, MinPlus)-wtgrs S” con-
structed in Example 4.3.10, Observe that, each nonterminal in S/ of rank zero is
r-useful, and thus, S is r-reduced. A

For each ranked set (N’, rky), we say that (N', rky-) is a ranked subset of (N, rky)
if N C N and rky/(A) = rky(A) for each A € N'.

A regular tree grammar over ¥ (for short: Y-rtg, or just: rtg) [22, 34, 43] is a
Y-tgrs G = (N, Z, P) such that N = N, Z C N, |Z| = 1, and each production in P
has the form A — k, where A € N and k € Ty y. Let G = (N, Z, P) be a X-rtg. For
each A € N, we say that A is useful (in) if there exist (€ Ty y and £ € Ty, such
that A occurs in ¢, Derg(Zy, () # 0, and Derg((, €) # 0. Furthermore, we say that G
is reduced if each A € N is useful.

Lemma 4.3.12. ¢f [22, Prop. 2.1.3] For each ¥-rtg G, we can construct a Y-rtg G’
such that ¢/ is reduced and it is d-equivalent to G. O

Lemma 4.3.13. Let S be a (3, B)-wtgrs such that S is finite-reductional or B is com-
plete. We can construct a (X, B)-wtgrs S’ such that &’ is r-reduced and r-equivalent to
S. Moreover, if S has one of the following properties, then so does §’: having single
nonterminal axiom, simple, and finite-reductional.

Proof. If S already has a single nonterminal axiom, then we continue; otherwise, by
Lemma |4.3.5, we may assume that. Then, if S is already simple, then we proceed;
otherwise, by Lemma we may assume that. If S is already r-reduced, then we
set S’ = S and we are done.

Otherwise, we proceed as follows. Let S = (S, wt, X) with S = (N, Z,, P). Recall
that we have suppg(S) = (N, suppg(X), suppg(wt)). Clearly, if either suppg(X) = 0
or suppg(wt) =, then we have suppg([S]) = 0. If this is the case, then we let
S = ({Z(()O)}, Zo,0)and S’ = (S',wt’, X’) with wt' :) — B and X'(Z,) = 1. Obviously,
S’ has a single nonterminal axiom, and it is simple, finite-reductional, r-reduced and
r-equivalent to S; and we are done.

4.3 Weighted tree generating regular systems 61

Consequently, in the rest of this proof we may assume that neither suppg(X) = 0
nor suppg(wt) = (. By following the proof of Lemma we can construct the
S-tgrs S = (N, Z, rel(P})) such that S is contracting (cf Construction and it
is r-equivalent to suppg(S).

We consider the ranked subset (Ny,1ky,) of (N,rky) such that Ny = N, and
then, we can construct the ¥-rtg G = (Ny, Zo, P}). Next we prove, by induction on
the structure of (, the following statement:

forevery (€ Ty, and A € Ny:

] (4.11)
we have Derg(A,() #0 iff Red$((,A) #0 .

Induction base: There exists o € ©(?) such that ¢ = . Then we have

Derg(A,a) #0 iff (A— a)€ P}
i (0 A) crel(P) iff Redi(a, A) £0 |

where the last equivalence follows from our construction and from the proof of

Lemmal4.2.171

Induction step: Then there exist k € N, 0 € ¥® and (i,...,(€ Ty, such that
¢ =o0((,...,C). Evidently, for every A;,..., Ay € Ny, we have

(A= o(Ay,...,A)) € Py iff (0(Ay,..., Ap) = A) €rel(P))
iff Redi(o(Ay, ..., Ar),A) #0

where the second equivalence follows from our construction and from the proof of
Lemma (4.2.17, Moreover, by L.H., for each i € [k], and each A; € N,, we have
Derg(A;, ¢;) # 0 iff Red$((;, A;) # 0. Thus, we have

Derg(A,¢) # 0

iff there exist A;,..., Ay € Nysuch thatp = (A — o(Ay,...,Ax)) € P}
and Derg(A;, ¢;) # 0 for each i € [k] with
ALg oA A) B Ba oGy G) =
where d; € Derg(A;, ;) for each i € [k]

iff there exist A,..., Ay € Ny such that r € Red§(o(Ay, ..., Ag), A)
and Red}((;, A;) # 0 for each i € [k] with
(=0(Cr) sap - =sap 0(A, ., Ap) Zsap A
where r; € Reds((;, A;) for each i € [k]

iff Red3(¢,A) #0 .

62 Weighted tree generating regular systems

This completes the proof of (4.11]). Moreover, by and its proof, for ¢ € Ty, we
have Derg(Zy, ¢) # 0 iff Red$(¢, Zo) # 0, i.e., G is reduced iff S is r-reduced.

By Lemma [4.3.12] we can construct a X-rtg G’ such that G’ is reduced and
d-equivalent to G. As a matter fact, it follows from the proof of [22, Prop. 2.1.3]
(¢f Lemma [4.3.12)) that we have G’ = (N, Z,, P’) such that N’ C N, and P’ C P).
Observe that we have N’ C N©), Let P, be a subset of suppg(wt) such that

s forevery k € N, 0 € (SUN)®, (Ay,...,A) € (Np)*, and A € N,, if the

production p = (o(A;,...,Ax) = A) is in suppg(wt), o0 € (XU (N \ Ny) UN'),
(Ay,..., Ay) € (N)*, and A € N, then we put p in Py,
 for every A, B € N, if the production p = (A — B) is in suppg(wt), and both
A and B are in N’, then we put p in F,, and
s forevery A€ Ny, k €N, o € (XUN)® and (A4,,..., Ay) € (Ny)*, if the produc-
tionp = (A — o(Ay,..., Ay)) is in suppg(wt), A€ N', 0 € (XU (N \ No) UN'),
and (A, ..., Ag) € (N')¥, then we put p in F.
We define N = {A € N | (3p € B) : A occurs in lhs(p) or in rhs(p)}, i.e., N consists
of all the nonterminals occurring in the left-hand side or in the right-hand side of
the productions in Fy. Then we consider the ranked subset (]\A/ ,1kg) of (N, rky).
Now we can construct the Y-tgrs Sy = (]V , 20, Py). Moreover, we can construct the
(32, B)-wtgrs S’ = (Sy, wty, X), where wty(p) = wt(p) for each p € Fy. Note that, since
G’ is reduced, the wtgrs S’ is r-reduced.

It follows from our construction that, for each (€ Ty, we have
Red%(¢) = Red%/(¢). Furthermore, for every ¢ € Ty and r € Red$(¢), we have
wts(r) = wts(r). Thus, for each ¢ € Ty, we can compute as follows:

[SIO) = 37 ws) @ Xz = > whs(r) ® Xz = [S(C) -

reRed% () r€Redy, (¢)

This concludes our proof. O

Our example shows an application of Lemma [4.3.13

Example 4.3.14. Let ¥ = {0, a(9}. We consider the ¥-tgrs

Then we construct the (X, MinPlus)-wtgrs S = (S, wt, X) such that wt(a — B) = 0,
wt(o(B,B) — B) = 2, wt(A(B,B,B) — B) = 3, and X(C') = 1. Evidently, S has a
single nonterminal axiom, and it is simple. Moreover, since, for each { € Ty, the set
Red3(¢) = 0, the wtgrs S is finite-reductional.

Evidently, the nonterminal B is not r-useful, i.e., S is not r-reduced. There-
fore, by following the proof of Lemma we can construct a (X, MinPlus)-wtgrs

4.3 Weighted tree generating regular systems 63

S = ({09} {C},0),wt', X) with wt' : § — B. Clearly, S’ r-reduced, and by
Lemma it is r-equivalent to S. A

Let S = (S,wt, X) be a (3, B)-wtgrs with S = (N, Z, P). We say that S has nullary
nonterminal axioms if Z C N©). Obviously, if S has a single nonterminal axiom, then
S has nullary nonterminal axioms.

Lemma 4.3.15. ¢f [4, Lm. 16] Let S be a (X, B)-wtgrs such that S has nullary
nonterminal axioms and it is contracting. Then § is finite-reductional.

Proof. Let § = (S,wt, X) with S = (N, Z, P). We first prove, by induction on the
structure of ¢, the following statement:

for every ¢ € Ty, and A € N, the set Reds((, A) is finite . (4.12)

Induction base: Then we have (= a for some o € X9, Furthermore, since S is
contracting, Reds(a, A) C {(a« — A)}, i.e., the set Reds(«, A) is finite as required.

Induction step: Then there exist k € N;, 0 € ¥® and (i,...,(; € Ty, such that
¢ =0(C,...,¢). By LH, for each i € [k] and each A; € N, the set Redg((;, 4;) is
finite. Thus, we have

[Reds(¢, 4)| < Y (\Redg(cl,A1)|-...-|RedS(Ck,Ak)|>.

This completes the proof of (4.12]). Let (€ Tx. Then, since S has nullary nonterminal
axioms, we have Red3(() C Reds(¢) = Uyc, Reds(¢, A). Moreover, by (4.12), for
each A € Z, the set Reds((, A) is finite. Consequently, Red%(() is finite, ie., S is
finite-reductional as desired. O]

Lemma 4.3.16. [4, Lm. 30] Let B be a semiring and S be a (3, B)-wtgrs such that S
is finite-reductional or B is complete.
1. There exists a (X, B)-wtgrs S’ such that S’ has a single nonterminal axiom, and
it is contracting and r-equivalent to S.
2. If, in addition, B is computable and S is finite-reductional, then we can con-
struct S'.

Proof. We first prove Statement 1. If S already has a single nonterminal axiom, then
we proceed; otherwise, by Lemma we may assume that. Similarly, if S is
already simple, then we continue; otherwise, by Lemma [4.3.7, we may assume that.
If S is already contracting, then we set S’ = S, and we are done. Otherwise, we
proceed as follows.

By Lemma 4.3.13] we may assume that S is r-reduced. Let S = (S,, wt, X') with
Sy = (N, Zy, P). If we have (a) suppg(wt) = 0 or (b) suppg(X) = 0, then, by the proof
of Lemma[4.3.13] we have P = (), i.e., S is contracting, and thus, we set S’ = S, and

64 Weighted tree generating regular systems

we are done. Hence, we may assume that neither Assumption (a) nor Assumption (b)
holds true. Firstly, by applying Lemma to S, we can construct the -tgrs S!
such that also S/ has a single nonterminal axiom, and furthermore, it is contracting
and r-equivalent to S,. As already mentioned in the proof of Lemma[4.2.17] to obtain
S’ we apply Construction to S,. Thus, by following the denotations of Con-
struction[4.2.16)and the denotations of Lemma4.2.17] we have S, = (N, Zy, rel(P})).
Next we can construct the (3, B)-wtgrs &’ = (S,, wt’, X') such that wt’ is defined as
follows:

forevery k e N, o € ™ (Ay,..., Ay) € (NO) and A € N©:

if the production p = (0(A4, ..., Ay) — A) isinrel(P)) , 4.13)

S
then we set wt'(p) = Z wis(r) .
reRedy (o (A, Ak),A)

Obviously, since S/ has a single nonterminal axiom and it is contracting, also S’
has these properties. Moreover, since S’ has a single nonterminal axiom, i.e., it has
nullary nonterminal axioms, by Lemma , &' is finite-reductional regardless of
whether § is finite-reductional or not. Next we prove, by induction on the structure
of (, the following statement:

for every (€ Ty, and A € N© -
we have Z® wts(r) = Z@ wts (') . (4.14)

reRed} (¢,A) r'€RedY, (¢,A)

Induction base: Clearly, there exists a € (¥ such that (= o. Then, by the proof of
Lemma [4.2.17] we have Reds(a, A) # 0 iff (« — A) € rel(P}). If Reds(«, A) = 0 and
(o« — A) & rel(P}), then, respectively, we have

Z® Wts(r)>:O and (Z@ thf(r'))zo,

r€Red} (o, A) r'€RedY, (a,A)

where the latter follows from the fact that S’ is contracting, i.e., Reds/(a, A) = 0.
Consequently, our statement holds true. Now assume that we have Reds(«, A) #)
and (o« — A) € rel(P}). Then we have

Z® wts(r) = wt'(a = A) = Z@ wts (1),

reRed}(a,A) r’€Red}, (a,A)

where the first equality is due to (4.13), and the second one follows from the fact
that &’ is contracting.

Induction step: Then there exist k € N;, 0 € ¥® and (;,...,{, € Ty such that

4.3 Weighted tree generating regular systems 65

¢ =0((,. ..,). By the proof of Lemma|4.2.17, for every 4, ..., A, € N©, we have
Reds(o (A1, ..., Ax), A) # 0 iff (0(Ay, ..., Ax) — A) € rel(P}). Moreover, by I.H., for
each i € [k], and each A; € N, we have Red%((;, 4;) # () iff Red% (¢, A;) # 0, and

ZEB wts(r;) = Z@ wts/ (7).

TiERedé(Q,Ai) T‘;ERedé, (<Z7A7,)

Thus, we can compute as follows:

S wis(r)

reRed%(¢,A)
k

=Y (@ wis) ©wis(r)

(A1, Ap)€(N Ok =1
Vielk]:r;€Red§ (i, As)
reRed}(o(Ar1,...,Ar),A)

—) <® (Z wts(r; > Z@ wts(r)>

(A1,.., AR)e(N®)k —i=1 r;cRed%(¢:,A;) reRedy (o (A1,...,Ap),A)

- b (R S wtelr D) @ wt(o(As,..., Ay) = A))

(A1, AENO)k =1 rieRed}, ((i,As)
>

(A1, A) E(NO))F =
vie[k]:rj€Red, (G, Aq)

— ZEB wtsr (7’/) ,

r'€RedY, (¢,A)

N

Ed

(ms,()) @ wt'(0(Ar,. .., Ay) — A))

/N
.
\®A~
—

where the second and the last but one equalities follow from the fact that B is a
semiring; and third equality is due to I.H. and (4.13). This completes the proof of
(4.14). Finally, for each ¢ € Ty, we can compute as follows:

SIO)= 3 wistheXsn= Y ws()® Xz =[S1Q) .

reRed%(C) ' €Red?, (€)

where the second equality is due to (4.14) and the fact that B is a semiring. This
concludes the proof of Statement 1. Now we show that also Statement 2 holds true.
We first prove, by contradiction, the following statement:

foreveryk e N,o € X% (4, ... A) € (NO) and A e NO |

- (4.15)
the set Red§(o(Ay,. .., Ax), A) is finite .

66 Weighted tree generating regular systems

Note that, by Construction [4.2.16, we have
Reds(o(Ay, ..., Ap), A) #0 iff (o(Ay,..., Ar) — A) erel(Py) .

Moreover, recall that we have suppg(wt) = (and suppg(X) # 0. Moreover, let
¢ € Tg. Then we have

Reds (¢, Z5) # 0
iff there exists 7' = (p1 -+ pn) € Red$ (¢, Zo) with n € N and p; € suppg(wt’)
for each i € [n]
iff there exists r = (ry---1,) € Reds(¢, Zp) with n € N and
r; € Red}(lhs(p;), rhs(p;)) for some p; € suppg(wt') for each i € [n]
iff Reds(C, Zo) #0 .

Hence, if there exists i € [n] such that the set Red§(lhs(p;), rhs(p;)) is not finite, then
S is not finite-reductional. It is a contradiction. This completes the proof of (4.15)).
Moreover, since B is computable, for each production o(A4,...,A;) — A, we can
compute wt'(o(Ay, ..., Ay) = A) in (4.13). Thus, we can construct the wtgrs §’. [

The following example shows an application of Lemma |4.3.16

Example 4.3.17. [4, Ex. 31] Let ¥ = {0®,a®}. Note that the semiring
MinPlus given in Example [2.4.6/(5) is computable and complete. We consider the
(X, MinPlus)-wtgrs S” constructed in Example Obviously, &’ has a single
nonterminal axiom and it is simple; however, it is not contracting. For this, we fol-
low the proof of Lemma Observe that S” is r-reduced (c¢f. Example [4.3.11).
Firstly, by Lemma4.2.17}, we can construct a ¥-tgrs S!” such that also S!” has a single
nonterminal axiom, and furthermore, it is contracting and r-equivalent to S (cf. Ex-
ample[4.2.18). Next, to compute the weights of productions of S!” in S”, we consider
the following reduction of S/, where we use a left brace to show three different ways
to finish that reduction:

/
Py 1,1

o . p,,,
0(Fae, Fop) Zimap 0(Fae, Fop) Znap o(a, Fap) Ssnap o(Fay, Fay)

/
P2 1,2

2 4
gg;',dp o(For, Es) 2=J>§;',dp o(Fo1,a) Sspap 0(Fon, o)

/ /
Po 1. P20,e
= S//,dp Fy . =S! dp Ese

/
Py 1.1

= srap Fo
p/2 l,e p/
L 2,-1,2
7S¢ dp @ = srap 122
p/l,—l,s pll,O,s pll,l,e

=srap Fle =srap B =srap Zo -

4.4 Equivalence of wta and wtgrs 67

Recall that we have wt'(p,,.) = 1 and every other production of S} has weight 0 in
S!. Then we can construct the (X, MinPlus)-wtgrs S = (S, wt”, X') such that

e for each production p = (0(4;,42) — A) with 4, € {Fy1,Eq.},
Ay € {Fy9, By}, weset wt”(p) =1if A e (N"\ {Fs.}), and wt”(p) = 0 other-
wise;

e for each production p = (0(A;, A3) — A) such that the pair (A4;, As) is in
the set {(Fac, Fh2), (Faq, For), (Bae, For), (Foe, Eac)}, we set wt”(p) = 2 if

A€ (N"\{Fs.}), and wt"(p) = 1 otherwise; and
e for each production p = (o(Fy.,Fo.) — A), we set wt’(p) = 3 if

A e (N"\{Fs.}), and wt"(p) = 2 otherwise; and
e for each production p = (o« — A) with A € (N"\{Es., F5.}), we set wt”(p) = 0.
Evidently, S has a single nonterminal axiom and it is contracting. Recall that, by
Lemma (4.3.15] it is finite-reductional. Finally, by Lemma [4.3.16| it is r-equivalent
to S/ A

4.4 Equivalence of wta and wtgrs

In this section we first define another normal form for wtgrs and prove a correspond-
ing form lemma (¢f. Lemma [4.4.1)). This normal form is crucial to prove the equiva-
lence of wta and wtgrs. Moreover, we show that, if a wta and a wtgrs are related (cf.
Definition [4.4.3)), then their semantics coincide (¢f Lemma [4.4.4). Finally, we show
that a weighted tree language is recognizable iff it is r-generated (cf. Theorem |4.4.5)).

For each (3, B)-wtgrs S = (S, wt, X) with S = (N, Z, P), we say that S is (con-
tracting) production complete [4] if, for every k € N, 0 € £, (A;,... A) € (NO)k,
and A € N, the production o(Ay,..., A;) — Aisin P.

Lemma 4.4.1. ¢f [4, Lm. 32] Let S be a (X, B)-wtgrs such that S has nullary non-
terminal axioms and it is contracting. We can construct a (X, B)-wtgrs S’ such that
also &’ has nullary nonterminal axioms and it is contracting, and furthermore, it is
production complete and r-equivalent to S.

Proof. If S is already production complete, then we let S’ = S, and we are done.
Otherwise, we proceed as follows. Let S = (S,wt, X) with S = (N, Z, P). Then
we construct the (X, B)-wtgrs &' = (5", wt’, X) with S’ = (N, Z, P') such that,
for every k € N, 0 € X%, (A},...,A;) € (NO), and A € N©, we put the
production p = (o(A,...,Ax) — A) in P/, and set wt'(p) = wt(p) if p € P, and
wt'(p) = 0 otherwise. Evidently, S’ has nullary nonterminal axioms and it is contract-
ing. Now let ¢ € Ty. Finally, since each production in P’ \ P has weight 0, we have
Red%(¢) = Red% ((), and furthermore, wts(r) = wtg/(r) for each r € Red%(¢). Thus,
we have [S](¢) = [S'](C)- 0

68 Weighted tree generating regular systems

Next we show an application of Lemma [4.4.1]

Example 4.4.2. Let ¥ = {c®, a(®}. We consider the (X, MinPlus)-wtgrs S con-
structed in Example Recall that S has nullary nonterminal axioms and it is
contracting. Observe that S}” is not production complete as o(Zy, Zy) — Z, is not a
production of the underlying tgrs of S””. However, by Lemma we can construct
the (X, MinPlus)-wtgrs S/ such that S has nullary nonterminal axioms and it is
contracting, and furthermore, it is production complete and r-equivalent to S/”. A

Now we explain when we say that a wta and a wtgrs are related.

Definition 4.4.3. Let A = (Q, 0, F') be a (X, B)-wta. Moreover, let S = (S, wt, X) be
a (3, B)-wtgrs with S = (N, Z, P) such that S has nullary nonterminal axioms and
it is contracting and production complete. We say that A and S are related if the
following conditions are satisfied:

e Q=N=NO,

* Z =suppg(F),
P={o(w)—=qlkeN,ocecx® weQFqecqQ},
wt(o(w) — q) = 6(w, 0,q) forevery k € N, 0 € ¥, w € Q*, and ¢ € @, and
e X = F‘Z .

A

Clearly, for each (3, B)-wta A, there is exactly one (3, B)-wtgrs S such that A and
S are related. We denote this S also by rel(.A). Also, vice versa, for each contracting
and production complete (¥, B)-wtgrs S such that S has nullary nonterminal axioms,
there is exactly one (¥, B)-wta A such that A and S are related. We denote this A
also by rel(S).

Lemma 4.4.4. [4, Lm. 33] Let A be a (£, B)-wta and S be a (3, B)-wtgrs such that
A and S are related. Then we have [A] = [S].

Proof. Since A and S are related, conditions of Definition |4.4.3| are satisfied. Hence,
we use the denotations of Definition

For every € = o(£y,...,&) withk € N, 0 € X% and (&,...,&) € TS, and ¢ € Q,
we define the mapping ¢, : Run%(¢,&) — Reds(¢, ¢), for each p € Run'(q,€), as
follows: by assuming that ¢; = (i) for each i € [k] we set

eq(p) = Ver.a(Ph) - e a (PlE) (0 (qr, - ax) = q) -

Next we show properties of the mapping ¢ ,. Firstly, we prove, by induction on the
structure of &, the following statement:

for every £ € Ty, ¢ € @, and p € Runy(¢,§) :

(4.16)
we have wt (¢, p) = wts(peq(p)) -

4.4 Equivalence of wta and wtgrs 69

Induction base: Then there exists a € £ such that ¢ = a. Obviously, we have
p= (e q)and ¢, 4(p) = (o« — ¢). Hence, we can calculate as follows:

wta(a, p) = do(e; @, q) = wi(a = q) = Wts(ay(p))

where the second equality follows from the fact that A and S are related (cf. Defini-
tion 4.4.3)).

Induction step: Then there exist k € N, 0 € X% and &,...,&, € Ty, such that
& =o0(&,...,&). Foreach i € [k], let ¢; = p(i). Since A and S are related, by the
definition of ¢ ,, the production p = (c(¢: - - - qx) — ¢) is in P, and furthermore, for
each i € [k], there exists ; € Red3(&;, ¢;) such that ¢, ,.(p|;) = r;. Thus, we can
calculate as follows:

WtAf p) (®WtA fzap’ >®5k<Q1"'Qk>U7q)

- (@mg%,%(mi») @ wt(p) = whs(eq(p))

where the second equality is due to IL.H. and the fact that we have
Oe(qr - gk, 0,q) = wt(p) (cf Definition [4.4.3). This finishes the proof of (4.16). Next
we prove, also by induction on the structure of &, the following statement:

for every £ € Ty, and ¢ €), the mapping ¢, , is injective . 4.17)

Induction base: Then there exists o € %(*) such that £ = o. Note that we have
Run'y(¢, @) C {e — ¢}. Clearly, since | Run' (¢, a)| < 1, the mapping ¢, , is injective.

Induction step: Then there exist k € Ny, o0 € X%, and &,...,&, € Ty, such that
E=0(&,...,&). Obviously, if | RunY(¢,£)| < 1, then ¢ , is injective. Hence, assume
that | Run’ (¢, &)| > 1. Let py, po € RunY(¢, &) such that p; # p,. Then there exists

€ (pos(§) \ {€}) such that ,01() # pa(v). We proceed by case analysis. If v = i
for some i € [k], then (pi(1)---p1(k)) # (p2 ().+ pa(k)), Le., ge, is injective. Oth-
erwise, ie., if v = iv’ for some i € [k] and v’ € (pos(gi) \ {¢}), then, since we have
Perm(i) = Perpati AN G,y (o I injective, we have @e, (o (p1) # e, pno(o2:), and
thus, ¢ ,(p1) # g%q(pg). Thls completes the proof of (4.17). Now we prove, also by
induction on the structure of ¢, the following statement:

for every ¢ € Ty, and ¢ € (), the mapping ¢, , is surjective . (4.18)

Induction base: Then ¢ = a for some o € X, Since S is contracting, we have
Red$(«, q) C {a — ¢}. If Red3(e, q) = (), then, since A and S are related, we also
have Red’ (¢, @) = 0. Otherwise, i.e., if Red3(a, ¢) = {a — ¢}, then the production

70 Weighted tree generating regular systems

p = (a — ¢) is in P with wt(p) # 0. Since A and S are related, we have dy(e, v, q) # 0
(¢f Definition [4.4.3)), and thus, we have Run'j(¢,) = {¢ — ¢}. More precisely, we
have ¢, ,(¢ — q) = (a — ¢) as desired.

Induction step: Then ¢ = o(¢y,...,&) for some k € Ny, 0 € ¥, and
&,...,& € Tx. Similarly, if Red$(¢,q) = 0, then, since A and S are related, by
L.H., we have Run(¢,£{) = 0. Hence, we may assume that Redg({,q) # 0. Let
r € Reds(&, ¢). Since S is contracting, there exist ¢; € @ and r; € Reds(¢;, ¢;) for each
i € [k] such that the production p = (o(q1,...,q) — ¢) is in P with wt(p) # 0 and
r=ry---11p, L.e., We have

E=0(&, &) Bsap sap 0(qus -, Q) Dsap G -

Then, by I.H., for each i € [k], there exists p; € Run’(¢;, &;) such that ¢, 4, (p;) = 7.
Furthermore, since A and S are related, we have d0;(q; - - - qx,0,q9) # 0 (cf. Defini-
tion [4.4.3)). Thus, we can consider the run p € RunY(g, £) such that p|; = p; for each
i € [k]. Obviously, we have ¢ ,(p) = r. This completes the proof of (4.18). Moreover,
this concludes the proofs of the properties of the mapping ¢, ,. Finally, since A and
S are related (cf. Definition [4.4.3)), for each ¢ € Ty, we can calculate as follows:

[Al)= P wu&peFn=P P wuaneF,

pERuN? (€) q€Z peRunY (¢,)

=@ D s eoX, =P B wts(heX,
q€Z peRunY (¢,€) q€Z reRed$(€,9)

= P wtstr) @ Xz =[S](€) .
r€Red%(§)

where the third equality is due to (4.16); and the fourth one follows from the fact
that the mapping ¢, is a bijection between the sets Run'(¢,£) and Red3(&, ¢) by

@17) and @.18). O

In the following theorem we prove the equivalence of wta and wtgrs.

Theorem 4.4.5. cf. [4, Thm. 34] Let 3. be a ranked alphabet such that (0 7é 1}
Then, for every semiring B and (X, B)-weighted tree language v, the following
statements hold true.
1. If B is complete, then 1) is recognizable iff it is r-generated.
2. If B is computable, then we can construct a (3, B)-wta A such that [A] =
iff we can construct a finite-reductional (X, B)-wtgrs S such that [S] = @Z)

Proof. We first prove Statement 1. Assume that ¢ is recognizable. Then there exists
a (3,B)-wta A such that [[A] = . Moreover, we can construct the (X, B)-wtgrs

4.4 Equivalence of wta and wtgrs 71

rel(A) such that A and rel(.A) are related. Recall that, by Definition rel(A) has
nullary nonterminal axioms and it is contracting. Thus, by Lemma rel(A) is
finite-reductional. Finally, since A and rel(.A) are related, by Lemma we have
[rel(A)] = [A] = ¢, i.e., 9 is r-generated.

Now we prove the other direction. Assume that ¢ is r-generated. Then there
exists a (3, B)-wtgrs S such that [S] = «. Firstly, by Lemma [4.3.5| we can construct
a (X, B)-wtgrs &’ such that S’ has a single nonterminal axiom and it is r-equivalent
to §’. Moreover, if S is finite-reductional, then S’ is so. Hence, we may assume that
S has a single nonterminal axiom.

By Lemma we can construct a (X, B)-wtgrs &’ such that &’ is simple and
r-equivalent to S. Since S has a single nonterminal axiom, &’ also has that. Fur-
thermore, if S is finite-reductional, then S’ is so. Thus, we may assume that S has a
single nonterminal axiom and it is simple.

By Lemma [4.3.16|(1), there exists a (X, B)-wtgrs S’ such that S’ has a single non-
terminal axiom, and furthermore, it is contracting and r-equivalent to S. (Observe
that, by Lemma S’ is finite-reductional.) Therefore, we may assume that S
has a single nonterminal axiom, and it is contracting and finite-reductional.

By Lemma |4.4.1], we can construct a (3, B)-wtgrs S’ such that &’ is contracting,
and furthermore, it is production complete and r-equivalent to S. Since S has a
single nonterminal axiom, &’ has nullary nonterminal axioms. Moreover, since S is
finite-reductional, by the proof of Lemma S’ is so. Therefore, we may assume
that S has nullary nonterminal axioms, and it is contracting, finite-reductional, and
production complete.

Lastly, we can construct the (3, B)-wta rel(S) such that rel(S) and S are related.
Then, by Lemma we have [rel(S)] = [S] = ¢, ie., v is recognizable. This
concludes the proof of Statement 1.

Now we prove Statement 2. Note that it can be proven in a similar way as State-
ment 1. Hence, in order to avoid repetitions, here we consider the proof of State-
ment 1, and address only the differences. In fact, to prove Statement 2, in the proof
of Statement 1 we replace the expression “there exists” by the expression “we can
construct” three times as follows. Evidently, both of the parts “Assume that ¢ is rec-
ognizable. Then there exists a (X, B)-wta A such that [A] = ¢.” and “Assume that 1)
is r-generated. Then there exists a (X, B)-wtgrs S such that [S] = v.” can be replaced
by the sentences “We can construct a (X, B)-wta A such that [.A] = ¢.” and “We can
construct a finite-reductional (X, B)-wtgrs S such that [S] = .”, respectively (cf
the conditions of Statement 2). Finally, in case of Statement 2 the wtgrs S is finite-
reductional, and thus, in case of the application of Lemma we can replace
the expression “there exists” by “can construct” if we extend Lemma [4.3.16(1) with
Lemma [4.3.16/(2). This finishes the proof of Statement 2. O

In the following example, we show two applications of Theorem Note that

72 Weighted tree generating regular systems

the semiring MinPlus given in Example [2.4.6|(5) is both complete and computable.

Example 4.4.6. [4, Ex. 35] Let & = {0, a®}. We consider the (X, MinPlus)-wta
A, constructed in Example Recall that we have [A,] = #,, where #, is the
(3, MinPlus)-weighted tree language shown in Example

Then we can construct the (3, MinPlus)-wtgrs S, = (S,, wt, X) with the >-tgrs
So = ({4} {q}.{ o(qq) = ¢ , @ — ¢ }), and weights wi(o(qq) — ¢) = 1 and
wt(a — q) = X, = 0. Obviously, S, has a single nonterminal axiom, and it is
contracting, finite-reductional, and production complete. Moreover, since A, and S,
are related, by Lemma we have [S,] = [A,]- JAN

Example 4.4.7. [4, Ex. 36] Let & = {o® a(9}. We consider the (3, MinPlus)-wtgrs
S shown in Example Recall that S]” has nullary nonterminal axioms, it is
contracting, finite-reductional, and production complete. Also, recall that we have
[S""] = #., where #, is the (X, MinPlus)-weighted tree language given in Exam-
ple Now we can construct the (3, MinPlus)-wta A = (N”, 6, F') such that
e forevery A, € {Fy1, s} and Ay € {Fyo, Es .}, we set d2(A; As, 0, F.) = 0 and
02(A1As,0,A) = 1foreach A € (N"\ {F,.}),
e for each pair (A1, Ay) € {(Far, Foo), (Fon, For), (Boe, For), (Foe, Eo)}, wWe set
92(A1As,0,F>) =1 and 62(A1A,0,A) =2 foreach A € (N”\ {Fao.}),
o 0o(Foe, Iy 0, Fy.) =2and 0y(Fop, Foo,0,A) =3 foreach A € (N”\ {Fa.}),
e foreach A € (N"\ {E.., Fy.}), we set dp(e, o, A) = 0, and
* every other transition has weight —co.
Finally, since A and S/ are related, by Lemma we have [A] = [S/]. JAN

Chapter conclusion. The author of this PhD thesis declares that Theorems 4.2.8]
14.3.4] and [4.4.5|are due to his own work, and those results are published in [4].

Chapter 5

Crisp-determinization of wta

We organize this chapter in the following way. In Section we explain why it is
worth to study crisp-deterministic wta. In Section we introduce the notion of
crisp-deterministic wta, define the crisp-determinization problem, and give a suffi-
cient condition for wta to be crisp-determinizable. In Section we present two
undecidability results related to the crisp-determinization problem. We first show
that, in general, it is undecidable whether an arbitrary wta satisfies our sufficient
condition or not. Then we go one step further and prove that it is also undecid-
able whether an arbitrary wta is crisp-determinizable or not. In Section we give
positive decidability results as we identify two subclasses of wta, for which the crisp-
determinization problem is decidable. Finally, in Section |5.5, we show that each of
our undecidability and decidability results holds for weighted string automata.

5.1 The problem

A crisp-deterministic wta .4 over B has several desirable properties such as [.A] has a
finite image (called finite-image property) or, for each b € B, the set of all trees with
weight b under [A] is a recognizable tree language (called preimage property). In fact,
the class of all crisp-deterministic wta can be characterized using only those two prop-
erties cf. Lemma (see also [30, 3]]). For further properties of crisp-deterministic
wta we refer to [42]. Moreover, it is worth to study crisp-deterministic wta also for
the following reason. Fuzzy automata, languages, and grammars have been of inter-
est for a long time e.g. [17, 37, 56]; for a survey we refer to [67]. The underlying
weight structure of these formal models is some bounded lattice. Recall that, each
bounded lattice is a bi-locally finite strong bimonoid (cf Section[2.4). In Section
we show that each wta over a bi-locally finite strong bimonoid satisfies our sufficient
condition to be crisp-determinizable, i.e., advantages of crisp-deterministic wta are
available when we investigate such fuzzy formal models.

Fortunately, there are subclasses of all wta for which the crisp-determinization

73

74 Crisp-determinization of wta

problem is solved positively [21, 30]. However, in those identified subclasses there
are only wta over string ranked alphabets, i.e., weighted string automata (for short:
wsa) cf. [42, Lm. 3.3.3]. One of our aims is to extend some of those positive results
to further subclasses of all wta.

Moreover, we deal with decidability questions related to the crisp-determinization
problem. In the literature there are some promising partial results regarding the
undecidability (decidability) of crisp-determinization. These results justify the rele-
vance of such questions, and create a solid base for further investigations. For in-
stance, each wsa over a finite semiring and over the semiring Nat of natural numbers
(¢f Example [2.4.6/(2)) has the preimage property, and each wsa over a commuta-
tive ring which has the finite-image property also has the preimage property [11,
31, 61]]. Furthermore, for each wsa over any subsemiring of the rational numbers,
the finite-image property is decidable [63]] (also cf. the classical Burnside property
for semigroups [68]). Keeping in mind these existing partial results, our other aim
is to prove undecidability (decidability) results related to the crisp-determinization
problem. For this, in this chapter we consider selected results presented in [|1-3]].

5.2 A sufficient condition for crisp-determinization

In this section we give a straightforward generalization of the results given in [21,
Sect. 8] from strings to trees. Firstly, we generalize the concept of crisp-deterministic
wsa to wta, and introduce the concept of the finite-order property of wta. Inter-
estingly, if a (X, B)-wta A has finite order, then A is crisp-determinizable (cf. The-
orem [5.2.8). If, in addition, B is computable, then we can even construct a crisp-
deterministic (X, B)-wta, which is equivalent to A (c¢f Theorem [5.2.12]).

For each b € B, we say that b has finite additive order (in B) if the set

({0}) @y = {nb|n € N}
is finite. Furthermore, for every B;, B, C B, we define
B, ® By :{b1®bg | b1 € By,by € BQ} .

Let A = (Q,0,F) be a (X,B)-wta. We define im(5§) = J,nim(dx). Then we
say that A is crisp-deterministic [3} p. 9] (also ¢f [21, Sect. 5]) if it is total and bu
deterministic, and im(0) C {0, 1}. Furthermore, we say that A is crisp-determinizable
if there exists a crisp-deterministic (X, B)-wta .4’ such that A’ is equivalent to A.

Let us abbreviate the notation (im(d)){g} by D4. Then we say that A has finite
order (in B) if

* D4 is finite and

5.2 A sufficient condition for crisp-determinization 75

* each bin D4 ® im(F) has finite additive order.
In particular, if B is bi-locally finite, then each (X, B)-wta has finite order.

In the following example we consider the three wta defined in Examples
and, for each of them, we examine whether it has finite order or not.

Example 5.2.1. Clearly, for the (3, MaxPlus)-wta A, given in Example the
set Dy,.. = ({—00,0,1}){43 = N_ is not finite, and thus, A,,,. does not have
finite order. Similarly, for the (3, MinPlus)-wta A, defined in Example the set
D4, = ({0,1})(+; = N is not finite either, and hence, also .4, does not have finite
order. However, the bounded lattice M3 shown in Example [2.4.7/(2) is finite, hence
it is bi-locally finite. Thus the (3, M;)-wta A,y given in Example has finite
order. A

Let A = (Q,9, F) be a (3, B)-wta such that A has finite order. Then, for each
¢ € Ty, and each p € Runy(§), the element wt(&, p) ® F,) is in D4 ® im(F). Hence,
[A](¢) is a sum over the finite set D4 ® im(F'). Actually, the fact that each element
in D4 ® im(F) has a finite additive order guarantees that any sum over D4 ® im(F')
is equal to a finite sum over this set. In the rest of this section we formalize that
phenomenon. For this, the following notions and results are necessary.

Lemma 5.2.2. Let B be computable and A = (Q, d,) be a (X, B)-wta such that A
has finite order. Then we can compute both D4 and D 4 ® im(F).

Proof. Since A has finite order, both of the sets D4 and D4 ® im(F) are finite. More-
over, since B is computable, for every b, 0’ € B, we can compute the product b ® b'.

Firstly, we prove that the set D4 can be computed. For this, we let Dy = im(J),
and D,y = D;U(D;®im(J)) for each : € N. Evidently, we have Dy C D; C ... C D 4.
It is easy to see that

for each integer i € N: if D; = D;{, then D;, 1 = D, . (5.1)

Furthermore, it is obvious that

k
forevery k € N, and by,...,b; € im(d) : we have <®bj> € D1 .

i=1

Since D, is a finite set, we can find a least number i, € N such that D;, = D, .1,
and, by (5.1), we have D,, = D, for each i € N with ¢ > i,. Then it is easy to see that
we have D4 = (|J;2, D;). Since we can compute the set (| J;>, D;), the set D4 can be

computed as well. Moreover, we can compute also the set D4 ® im(F). N

Let b € B such that b has finite additive order in B. Then there exists a least
number i € N, such that ib = (i + k)b for some & € N,, and there exists a least

76 Crisp-determinization of wta

prdg(b)

)
o— Se—3 ... Ho;o/\.
b 2 idxg(b)b = (idxg(b) + prdg(b))b

idx(b)

Figure 5.1. Illustration of the index idxg(b) and the period prdg(b) of b in B (cf. [3,
Fig. 1])

number p € N, such that ib = (i + p)b. We call 7 and p the index (of b in B) and the
period (of b in B), respectively, and denote them by idxg(b) and prdg(b), respectively.
Moreover, we call idxg(b) + prdg(b) — 1, i.e., the number of elements of ({b}) s}, the
order (of b in B). Figure illustrates the index and the period of b, where each
directed arrow means the addition of b.

For each finite subset X' C N,, we denote the least common multiple of K by
lem(K). Let A = (Q,6,F) be a (X, B)-wta such that 4 has finite order. Then we
define the integers

idx 4 = max({idxg(b) € N; | bisin D4 ®im(F)}) and
prd, = lem({prdg(b) € N |bisin D4 ®@im(F)}) .

Moreover, we define the mapping J4 : N — [0,idx 4 + prd 4, —1], for each n € N, by

L4(n) n if n <idxy
n)=
A idxyg +((n —idx4) mod prdy) ifn >idxy ,

where (n—idx4) mod prd, denotes the remainder when n—idx 4 is divided by prd 4.
In the first case J4(n) < idx4, and in the second case idx 4 < J4(n) < idx4+prd, —1,
and thus, .J is well defined. Note that in both cases n =,.q, Ja(n), where =4, de-
notes the congruence relation on the semiring Nat given in Example [2.4.6|(3) modulo
prd 4. Moreover, for every n € Nand b € (D4 ® im(F')), we have nb = J4(n)(b).

Lemma 5.2.3. Let B be computable, and A = (Q, , ') be a (X, B)-wta such that A
has finite order. Then we can compute the integers idx 4 and prd 4.

Proof. By Lemma(5.2.2] we can compute the set D4 ® im(F’). Let b be in D 4 ® im(F).
Since B is computable, for each n € N, we can compute nb. Moreover, since b has
finite additive order, there exists a least number ny in N, \ {1} such that nyb = nb for
some n € [ng — 1]. Then we have idxg(b) = n and prdg(b) = ny — n. Moreover, since
D4 ®im(F) is a finite set, we can compute the integers idx 4 and prd 4. O

5.2 A sufficient condition for crisp-determinization 77

Next, for each Y-tree £, we define a partitioning of runs of A on ¢ with respect to
the elements in () x D 4. Formally, let A = (Q, 4, F') be a (X, B)-wta such that .4 has
finite order. Since D 4 is finite, the set) x D4 is also finite. For every { € Ty and
(g,b) in Q x D 4, we define the set of all g-runs of A on & with weight b, denoted by
Runy(q, &, b), as the set

Run(g, €,b) = {p € Rung(q,€) | wt(€, p) = b} .

From now on, for each (X, B)-wta A, which has finite order, we denote the
set ([0, idx 4 + prd —1])@*P4) by F 4.

Moreover, for each ¢ € Ty, we define the mappings n, € (N@*Pa)y and e € Fa, for
each (¢,b) in Q x D4, by

ne(q,0) = [Runa(g,€,0)] and me(g,b) = Ja(ne(g; b)) -

Lemma 5.2.4. Let B be computable and A be a (X, B)-wta such that 4 has finite
order. Then, for each ¢ € Ty, we can compute the mappings n, and 7.

Proof. Let A = (Q, 9, F'). Note that, for every £ € Ty and ¢ € @, since @ is a finite
set, also the set Runy4(q, £) is finite and we can compute it. By Lemma we can
compute the set D4, and thus, we can also compute the set () x D 4. Furthermore,
since B is computable, for every £ € Ty and (¢,b) in Q x D4, we can compute the
set Runy(q,&,b). Since @ x D 4 is finite, and the set Run 4(q, £, b) can be computed
for every ¢ € Ty, and (¢,b) in @ x D4, we can compute the mapping n,. Moreover,
by Lemma |5.2.3, we can compute the integers idx 4 and prd 4, and hence, for every
n € N, the integer J4(n). Again, since () x D 4 is finite set, we can also compute the
mapping . [

In the following definition, for each (3, B)-wta A = (Q, ¢, F') such that A has
finite order, we give a (X,B)-wta A" = (@', ¢, F”) such that im(¢’) = {0,1} and
im(F’") = im([A]).

Definition 5.2.5. Let A = (Q,0, F) be a (X,B)-wta such that A has finite order.
Clearly, we have {7 | £ € Ty} C F4, and since F4 is finite, also {7 | £ € Ty} is
finite. Moreover, the set {m; | £ € Ty} is not empty obviously. Then we define the
(X,B)-wta A" = (Q', 0, F') where

¢ Q= {m|EeTs),

e forevery k € N, (&1,...,&) € (Tx)*, 0 € X®), and tree ¢ € Ty, we set

1 if T = To(Ey,....E)

0 (g, =+ T, 0,) =
o & ¢ 0 otherwise ,

78 Crisp-determinization of wta

» for every ¢ € Ty, we set

F.= D maheer).
(a:D)e(@xD.a)

A

Next we show that in fact, the (X, B)-wta A" = (Q', &', F’) given in Definition[5.2.5|
is crisp-deterministic (¢f. Lemma(5.2.7). Since we have im(¢") C {0, 1}, it is sufficient
to show that A’ is total and bu deterministic. In order to prove Lemma the
following notions, notations, and results (¢f Lemma|5.2.6]) are necessary.

Let A = (Q,4,F) be a (3,B)-wta such that A has finite order. For each
k € N, we consider (Q x D4)* as a set of strings over () x D4 of length k.
Let £ =0(&y,...,&) €Ty with k € N, 0 € %, and (¢,...,&) € (Tx)F, and
(q,0) € (Q x D). Now we define the set O¢(q,b) C (Q x D)" as follows:

for every string (qi,b1) - - - (qx, br) in (Q x D4)*
we have (g1,01) - - - (g, bi) € Oe(gq, b)

if 7, (q;, b;) > 0 for each i € [k] and ((QF_, b;) @ dx(q1-- -, 0,9)) = b .

Lemma 5.2.6. [3, Lm. 7.2] (also ¢f [21, Lm. 8.1]) Let A = (Q, 4, F') be a (X, B)-wta
such that A has finite order. Then, for every ¢ € Ty, and (q,b) € (Q x D 4), we have

len(w)

ne(g.0) =y] ne(w(@) .

weOe () i=1

Proof. Letk € N, 0 € ¥ and (&,...,&) € (Tx)* such that ¢ = o(£y,...,&). Recall
that we have O¢(q,b) C (Q x D4)*. Then, for each string w = (q1,b1) - - (qx, bx) in
O¢(q,b), we define the set

Rung(w, q,&) = {p € Runa(q,) | pl; € Runa(g;, &, b;) for each i € [k]} .

Note that the family (Run4(w,q,&) | w € O¢(q,b)) is a partitioning of Run4(q,&,b).
Consequently, we have

ng(q, b) = ’ RunA(CLf?b)’ = Z | RUDA(U),Q, 6)’
w€O¢(g,b)

k
—(Z H | Runa(gi, &, bi)|

(q1,b1) -~ (g, by) in O¢(q,b) =1

= Z Hnéi(%, bi)

(q1,b1) -~ (qr, br) in O¢(q,b) =1

5.2 A sufficient condition for crisp-determinization 79

where at () we use the fact that | Run(w, ¢,€)| = []_, | Runa(g:, &, b;)| if we have
w = (th1>(Qkabk) D

Lemma 5.2.7. [3, p. 30-31] Let A = (Q, d, F') be a (3, B)-wta such that .4 has finite
order. Moreover, let A’ = (Q', ¢, F') be the (X, B)-wta defined in Definition [5.2.5]
obtained from .4. Then A’ is a crisp-deterministic (3, B)-wta.

Proof. Recall that we have im(¢’) C {0,1}. Hence, it is sufficient to show that A’ is
total and bu deterministic. For this, let k € N, 0 € X®)_ and (¢1,...,&),(&, ..., &)
n (Ty)" such that m;, = 7 for each i € [k]. Moreover, we let & = o(&,...,&)
and ¢ =o(&,...,§,). Obviously, it is sufficient to show that 7, = my. Let
(g,b) € (Q x D 4). Observe that we have O¢(q,b) = O (q,b), and thus, in the rest of
this proof we denote that set simply by O. Furthermore, recall that O C (Q x D4).

Case (a): We have 7¢(q,b) < idx4 or me(q,b) < idx4. Without loss of gener-
ality we may assume that 7m¢(¢,b) < idx4. Evidently, we have n¢(q,b) = m(q,b).
Let (g1,b1)- - (qx,bx) € O. Clearly, by Lemma for each i € [k], we have
ne), (¢i, bi) < idx 4, and thus,

where the first equality is due to the fact n¢|,(¢;, b;) < idx4, the second one is due to
our assumption, and the last one holds true because ¢/, (4, »,) < idx4. Hence, we can
calculate further as follows:

me(q,0) = nelg,0) =) H”sl => H”a = ng (g, 0) = me (¢, 0)
weO i=1 we i=1

where the second and the last but one equalities follow from Lemma |5.2.6
Case (b): Assume now that idx4 < 7¢(q,b), me/(q,b) < idx4 + prd 4 —1. Then, for
each (q1,b1) - - (g, bx) € O and each i € [k], we have
ne, (¢, bi) =prd 4 e, (i, bi) = Wg;(%‘, bi) =prdy ngg(% bi)

where the second equality is due to our assumption. Since =4, iS a congruence
relation on the semiring Nat of natural numbers (cf. Example [2.4.6/(2)), we have

Wﬁ(Qa b) =prdy nf Q7 Z anz

weO i=1

=pa, O | [ne(w(i) = ne(q,0) Spra, 7e(a,0)

weO i=1

where the equalities are due to Lemma Since, by our assumption, we have

80 Crisp-determinization of wta

idx 4 < me(q,b), mer(q,b) < idxa+prd, —1, we conclude that ¢ (g, b) = me (g, b).]

The next result shows that, for each (X, B)-wta A such that A has finite order, the
(X, B)-wta A’ defined in Definition obtained from A is a semantically equivalent
crisp-deterministic (X, B)-wta.

Theorem 5.2.8. [3, Thm. 7.3] (also cf. [21, Thm. 8.2]) Let ¥ be a ranked
alphabet such that £°) # (), and B be a strong bimonoid. Moreover, let A be a
(3, B)-wta such that A has finite order. Then there exists a (2, B)-wta A’ such
that A’ is crisp-deterministic and it is equivalent to A.

Proof. Let A’ be the (X, B)-wta obtained by applying Definition[5.2.5|to .A. We follow
the denotations of Definition[5.2.5] i.e., we have A = (Q, 4, F') and A" = (Q', ¢, F).
By Lemma A’ is a crisp-deterministic (X, B)-wta. Hence, for each ¢ € Ty,
there is a unique valid run p¢ of A’ on ¢, i.e., we have {p¢} = Run’, (¢).
Now we prove, by induction on the structure of £, the following statement:

for each ¢ € Ty, the run p; is a me-run . (5.2)

Induction base: Then there exists o € X9 such that ¢ = «. Then, since A’ is
crisp-deterministic, by Definition we have §)(e, o, 7,) = 1 and &)(s, a, me) = 0
for each 7, € (@' \ {m.}) with £ € Tyx. Furthermore, since p, is valid, we have
Pa(€) = Ta-

Induction step: Then there exist k € N;, 0 € ¥ and &, ...,&, € Ty such that
¢ = o(&,...,&). By LH,, for each i € [k|, the run pg, is a m,-run. Then, since
A’ is crisp-deterministic, by Definition we have 6 (¢, - ¢, 0,m) = 1 and
0 (me, - e, 0,me) = 0 for each 1 € (Q'\ {m¢}) with ¢ € Tyx,. Moreover, since p
is valid, we have p(¢) = 7 as needed. This completes the proof of (5.2)). Finally, for
each ¢ € Ty, we can calculate as follows:

[A]() = @ WtA(f,p)(@Fp(s) = @ @ b® I,

pERun4(§) (g,b) in QxD 4 p€Run4(g,€,b)
= P e F)= @ mlabhbeF)
(¢,b) in QXD 4 (¢,b) in @xD 4

= P = wtw (&, pe) @ Fr, = [A(E)
where the second equality easily follows from the fact that the family
(Runa(q,€,0) | (¢,b) € @ x D)

is a partitioning of Run 4(¢); the third and the fourth ones are due to the definitions
of ne(q,b) and m¢(q, b), respectively; the fifth one follows from Definition [5.2.5} the

5.2 A sufficient condition for crisp-determinization 81

Algorithm 1: The mapping calc (¢f [3, Alg. 2] and [21, Alg. 8.4])
Input: a (3, B)-wta A = (Q, J, F') such that B is computable and .4 has finite order,
keN,oex® and (ng,,...,m¢,) € (Fa)* for some (&1,...,&) € (Tx)*
Macro: ¢ = o(&q, ..., &)
Variables: ¢ : Q x Dg; w: (Q x D4)*; and ng : N(@*DPa)
Output: 7 € Fy

foreach e € (Q x Dy4) do ng(e) - 0
foreach e € (Q x D 4) do
foreach string w € O¢(e) do
| nee) = nele) + Ja([Ti, me, (w(i))
end
me(e) < Ja(ne(e))
end
output ¢

© N Ul A WN =

sixth one is due to (5.2)) and the fact that im(¢’) C {0, 1}; and the seventh one holds
true by Lemma O

The following result is an immediate consequence of Theorem and the fact
that each wta over a bi-locally finite strong bimonoid has finite order.

Corollary 5.2.9. [3, Cor. 7.5] (also cf. [|30, Thm. 11]) Let B be bi-locally finite. Then,
for each (X, B)-wta A, there exists a crisp-deterministic (X, B)-wta .4’ equivalent to .A.

Note that, since the strong bimonoid Stb given in Example [2.4.5/(4) is bi-locally
finite, by Corollary[5.2.9] each (X, Stb)-wta is crisp-determinizable.

Next we prove an effective version of Theorem [5.2.8 If, in addition, B is com-
putable, then, for each (3, B)-wta A such that A has finite order, we can construct a
crisp-deterministic (3, B)-wta .4’ equivalent to .A. Hence, we give a mapping and an
algorithm as follows.

By considering Algorithm [1} we note that the mapping calc takes the following
data as input: a (3, B)-wta A = (Q, 6, F) such that B is computable and A has finite
order, k € N, 0 € ©®, and (mg,,...,m,) € (Fa)* for some (¢y,...,&) € (Tx);
and it outputs the mapping 7 € F4 with ¢ = o(&,...,&,). But, compared to the
proof of Lemma[5.2.4} calc do not use the family (Run(g,&,b) | (¢,b) in Q x D) for
computing 7. Nevertheless, it can compute 7¢ as the following lemmas prove that.

Lemma 5.2.10. Let B be computable, and A = (Q, J, F') be a (3, B)-wta such that .4
has finite order. Then, for every £ € Ty and (¢,b) in Q x D4, we can compute the
set Og¢(q, b).

Proof. By Lemmal|5.2.2| we can compute the set D 4, and hence, we can compute also
the set Q x Dy. Let & = o(&,..., &) withk € N, 0 € X® and (&,...,&) € (Tx)k.
Since Q x D is finite, also the set (Q x D 4)* is finite, and we can compute it.

82 Crisp-determinization of wta

Let (q1,b1) - - - (qx, by,) be a string in (Q x D4)*. By Lemma(5.2.4] for each i € [k],
we can compute the mapping ¢, and thus, it is decidable whether ¢, (¢;,0;) > 0
holds true or not. Moreover, since B is computable, we can compute the product
((QF_, b)) @ r(qu - qx, 0, q)), and hence, it is decidable whether that product equals
b or not. Therefore, it is decidable whether the string (q1, 1) - - - (gx, bx) is in Og¢(q, b)
or not. Furthermore, since (@) x D4)* is finite, we can compute the set O¢(q,b). O

Lemma 5.2.11. [3} Cor. 7.8] Let A = (Q, 0, F') be a (3, B)-wta such that .4 has finite
order. Then, for every ¢ € Ty and e € (Q x D4), we have

len(w)

=J4(22 (1T mawi@))

weO¢ (e)

Proof. Obviously, we can calculate as follows

len(w) len(w
me(e) = Jatng(e) = Ja(30 T nen(w@)) =Ja(3 Ja(H ne,(w(i))))
weO(e) i=1 weOk(e)
len(w) len(w)
=Ja(2 LTI Jatma o)) = 2a(32 2a((TT mautwiin))
weOg (e) weOg(e)

where the second equality is due to Lemma [5.2.6; and the third and the fourth ones
follow from the fact that =4, is a congruence relation on the semiring Nat.]

Theorem 5.2.12. Let ¥ be a ranked alphabet such that X(©) # (), and B be
a computable strong bimonoid. Moreover, let A be a (3, B)-wta such that A
has finite order. Then we can construct a (3, B)-wta A" such that A’ is crisp-
deterministic and it is equivalent to A.

. J

Proof. Recall that, by the proof of Theorem the (%, B)-wta A’ defined in Defi-
nition [5.2.5|is crisp-deterministic and it is equivalent to .A. Thus, here we prove only
that we can construct that wta A’. For this, we follow Algorithm |2/ and consider its
denotations.

Now we consider the family (¢g; | ¢ € N) of X-hypergraphs ¢, = (Q;, E;) con-
structed in lines[111]. Obviously, we have gy C ¢g; C ... C g . Now we prove by case
analysis the following statement:

for each integer i € N : if g; = g;41, then g; 11 = giyo . (5.3)

Case (a): Let 7 € (;.o. By Lemma [5.2.11} there exist k € I, ¢ € X®, and
(71, ..., m) € (Qir1)" such that m = calc(A, k, o, (1, ...,m)) (¢f the application of

5.2 A sufficient condition for crisp-determinization 83

Algorithm 2: Construction of a crisp-deterministic (¥, B)-wta A’, which is
equivalent to the (X, B)-wta A (cf [3, Alg. 3] and [21} Alg. 8.3])
Input: a (3, B)-wta A = (Q, J, F') such that B is computable and .4 has finite order
Macro: [= [0, maxrk(3)]
Variables: i : N; family (g; | i € N) of ¥-hypergraphs g; = (Q;, E;) with Q; : P(F.a)
and E; : P(Upe; (Q)* x W) x Q); b+ I; 0 S (.o)« (Fa)%s w0 Fus
X :P(Fa); and Y : P(Upe (XF x 2H) x X))
Output: a crisp-deterministic (X, B)-wta A" = (@', ', F’) such that [A'] = [A]

1 Qo<+ Vand Ey < 0 % this forms the -hypergraph g
21+0

3 repeat

4 X<+ PandY «+ 0

s | foreverykcI,ocX® and (ry,...,m) € (Q;)* do

6 7+ cale(A, k, o, (m1,..., 7)) % cf. Algorithm
7 X« XU{rtand Y « Y U{(m1 - 7p,0,m)}

8 end

9 Qi1+ Q;UXand E; 1 « E;UY % this forms the ¥-hypergraph g¢; 11
10 14—1+1

11 until g; = g; ¢
12 we can construct A’ as follows:
Q' =Q,
* ' = (0}, | k € N) with suppg(d},) = {(m1 -+ -1, 0,7) | (w1 -+ - 7, 0,7) € E;} and
im(d;,) = {0,1}, and
* Fr =@ nexny (@, b)(b® Fy) foreach m € Q" .

Algorithm [1) in line [6). Moreover, since, by our assumption, we have g; = g1, Le.,

Qi = Qi1, we also have (y,...,m,) € QF, and thus, 7 € Q;, as desired.
Case (b): Let (m---mp,0,m) € FEio with ¥k € I, o € X® and
(71, ...,) € (Qiy1)¥, and ™ € Q;1o. Since, by our assumption, we have g; = g;,1,

ie, Q; = Qiy1, we have (m---m,) € QF as well. Moreover, by Case (a), we have
Qi1 = Qisa, le., T € Qiy1. Thus, we have (m -+, 0,m) € E;; 1. This completes
the proof of (5.3). Next we prove, by induction on the structure of £, the following
statement:

for each ¢ € Ty, we have ¢ € Qheight(e)+1 - (5.4)

Induction base: Then there exists o € (%) such that £ = . Moreover, recall that
height(a)+1 = 1. By Lemmal5.2.11] we have 7, = calc(A, 0, , ()) (c¢f the application
of Algorithm [1]in line [6]), and hence, 7, € Q.

Induction step: Clearly, there exist k € I, 0 € £, and &,,..., &, € Ty such that
§ =0(&,...,&). Then, by LH., for each j € [k], we have 7, € Queigne(e,)+1- Hence,
we let m = (max({height(§;) | j € [k]}) + 1). Note that we have height(§{) = m.
Since ¢; C g, for each i € [0,m], i.e., Q; C Q,, for each i € [0, m], we then have

84 Crisp-determinization of wta

Teys -3 Tg, € Q. Moreover, by Lemma [5.2.11] 7 = calc(A, k, o, (mg,, ..., 7,)) (cf.
the application of Algorithm [I}in line [6)), and thus, m¢ € Q,,11. This concludes the
proof of (5.4). Now we prove the following statement:

there exists a least number i € N such that g; = g4 . (5.5)

Recall that we have ¢g; C g4 . Hence, it is sufficient to show that g4 C ¢;. Moreover,
recall that g4 = (Q', ey Suppg(d},)). We proceed by case analysis.

Case (a): Let m¢ € @' for some ¢ € Tx. Then, by (5.4), we have m¢ € Queight(e)+1-
If height(§) + 1 < ¢, then, since g; C g; for each j € [0,i], i.e., Q; C @, for each
j € [0,i], we have 7 € @),;. Otherwise, if i < height(§) + 1, then, by the (repeated)
application of (5.3), we have g; = gneight(¢)+1, L-€-, Qi = Qheight(¢)+1, and thus, we also
have 7 € Q;.

Case (b): Let e = (mg, - - - ¢, , 0, m¢) be in suppg(d}) for some k € I, o € ¥*), and
(&15---5&k) € (Tx)* such that £ = o(&, ..., &). By following the proof of and
Algorithm we have e € Eyigni(¢)+1. If height(£) 4+ 1 < 4, then, since g; C g; for each
j € [0,i], we have e € E;. Otherwise, if i < height(£) + 1, then, by the (repeated)
application of (5.3), we have g; = Gheight(¢)+1,> -6, Ei = Eheight(¢)+1, and hence, we
have e € E; as well. This finishes the proof of (5.5]). Since, by (5.5)), we can compute
the Y-hypergraph g¢;, we can compute the X-hypergraph g4 as well, and hence, we
can construct A’. This concludes our proof. O

Finally, we give an application of Theorem [5.2.12, Recall that the (X, M3)-wta
Aspie given in Example has finite order (c¢f Example|5.2.1). Since the bounded
lattice M3 is computable, we can give the wta Ag,;; to Algorithm [2| as input; and
the algorithm outputs a semantically equivalent crisp-deterministic (3, M3)-wta A,
as follows.

Example 5.2.13. Let X = {0 1) o}, We consider the (%, M3)-wta A, shown
in Example Evidently, since im(d) = {a,b,i} Z {o,i}, the wta Ay, is not crisp-
deterministic. Moreover, we have

Dy_.. = {a,b,i})n ={0,a,b,i} = D N im(F)

split
and thus, ({q} x Da,y,.) = {(¢.0). (¢ 0), (4,0), (.)}.

Next, for every { € Ty and e € ({¢} X D4,), we calculate the values n¢(e) and
m¢(e). Observe that we have idxy_,, = prd, . =1, and hence, Ju_,,(n) € {0,1} for
each n € N, i.e. 7¢ is a mapping from {q} x D4, to {0, 1} for each { € Ts.

Now we introduce three notations. We denote by £, an arbitrary tree £ € Ty, such
that pos, (§) # 0 and pos_ (§) = 0, by &, an arbitrary tree { € Ty, such that pos, (§) = 0
and pos,(£) # 0, and by &, an arbitrary tree { € Ty such that pos,(§) # 0 and

5.2 A sufficient condition for crisp-determinization 85

{ b
[a}—{ 7o (7] fj me,
o]

3

Figure 5.2. The fta-hypergraph of the crisp-deterministic (3, Mz)-wta A(;; constructed
in Example |5.2.13; note that each depicted transition has weight i, and hence, the
transition weights are omitted intentionally.

posv(g) # (). Evidently, for each ¢ € Ty, we have either £ = a, or else £ = &,, or else
E=¢,,orelse { =¢&,,, i.e., Ty can be partitioned into four sets.

Note that, for each f € {n,n}, we have

folq,9) = fe,(q,a) = fe,(q,0) = fe,,(q,0) =1 ;

and, for every mapping f € {ngm} with ¢ € {o,&.¢,,&,}, and each
e € ({q¢} x Da,,), if f(e) is not listed above, then we have f(e) =0, e.g., na(q,0) = 0
and m¢_(q,a) = 0, etc.

Then we can construct the (¥, M3)-wta

/!

split — ({71—&7 Mgy Teys 7T€o‘,’y}7 6/7 F,))

where F'(7,) = o, F'(m¢,) = a, F'(me,) = b, and F'(m¢,) = 4, and the family ¢’ is as
follows:

86 Crisp-determinization of wta

e (e, a,my) =14,

* 53(6) = Z for eaCh € E {(Tra’ ,}/7 Trf'y)’ (Trfa ? 77 Trgo,'y)’ (ﬂ-g'y’ ’77 7T§'y)7 (ﬂ-go,'w 77 Trfo,'y)}’
* 04(e) =1 for each e in the set

(TaTa, 0, e,), (TaTe,, 0, T,), (TaTe,, 0, e,), (TaTe,,, 0, e, .,),
(7T£07TCV7 U? 7T£a')7 (7T£c7 WEG‘? 0-7 Trfc‘)’ (ﬂ-éo' 7T£'y7 U? 7T£o',’y)7 (ﬂ-go' 7T£a,'y7 U? 7T£cr,'y)7
(Wéwﬂaa g, Wﬁg,y)a (ﬂ_f'yﬂ—&aa g, W&a,'y)? (’n—{'y/]rg'y? g, ﬂ—&;,»y)a (Wﬁw Teo s 0, 7T§g,»y)7
(

TeonTas O, 7T§a,—y)7 (ﬂ-fo,»yﬂ—ﬁoa g, Wfa,w)? (Wfo,yﬂ-ﬁw g, ﬂ-fg,»y)v (WEU,»YWEU,W g, 7"-507»,)

every other transition in ¢’ not listed above has weight o. Clearly, A, is crisp-
deterministic. Figure depicts the fta-hypergraph of A’ .., where each depicted

split?
transition has weight i, and hence, transition weights are omitted intentionally. Note
that, by Theorem [5.2.8, A{ ;; is equivalent to Agpj;. A

5.3 Undecidability of crisp-determinization

In this section we deal with decidability questions related to crisp-determinization of
wta. Recall that, by the results of Section a wta A is crisp-determinizable if A
has finite order. Hence, in particular, we are interested in the following ones:

(Q1) Is it decidable for an arbitrary wta A, whether A has finite order?

(Q2) Isit decidable for an arbitrary wta A, whether A is crisp-determinizable?

We show that the answer to both questions is negative.

We prove these undecidability results in the way that we reduce each to the finite-
ness problem of the submonoid T,, generated by an arbitrary Mealy machine M,
which is known to be undecidable (c¢f. [44, Thm. 3.13]).

Hence, we first recall Mealy machines with initial states. Then, for each Mealy ma-
chine M, we construct a ranked alphabet X3,,, a computable and idempotent semiring
Trans,,, and a (y/, Trans,,)-wta Ay, (c¢f. Construction as follows:

* the states of M become the symbols of ¥,,,

* Transy, is the semiring of which the carrier set is the finite subsets of the trans-
lations in the submonoid T,; generated by M, and its operations are the usual
union of sets and the composition extended to sets, and

 the image of [.A,] is bijective to the carrier set (M) of the submonoid T,
generated by M (¢f Lemma|5.3.5)).

Then we recall that translations realized by Mealy machines are closed under
composition (¢f Lemma [5.3.1)), and the equivalence of Mealy machines is decidable
(¢f Lemma|5.3.2), and show that Trans,, is computable.

Due to its construction, .4, has finite order if and only if im([.A,,]) is finite (cf
Lemma [5.3.5). By exploiting the bijectivity of im([.Aj]) and the carrier set (Af)
of the submonoid T,,, the wta A,, has finite order if and only if the submonoid

5.3 Undecidability of crisp-determinization 87

Ty generated by M is finite (¢f Corollary[5.3.6). Thus we answer Question (Q1)
negatively (cf Theorem|5.3.7)).

Then we proceed with Question (Q2). For this, we first give a characterization of
crisp-determinizability (¢f Lemma [5.3.9). Here we can give a X),-algebra ATrans;,
(¢f Construction to which [A,,] is a X,,-algebra homomorphism from the
Yy-term algebra (¢f Lemma [5.3.11). Then we recall a result on algebraic charac-
terization of recognizable tree languages (¢f Lemma [5.3.12)). By combining these
results, we prove an equivalence of the crisp-determinizability of .A), and the finite-
ness of the submonoid T, generated by M (¢f Lemma [5.3.13). Finally, we answer

Question (Q2) negatively (cf. Theorem [5.3.14).

In the rest of this section I" will denote an arbitrary alphabet.

Mealy machines. For each mapping 7 : ['* — I'*, we also say that 7 is a translation
over I' (for short: I'-translation, or just translation). A Mealy machine over I' [43, 641
is a quadruple M = (Q, qo, i, A), where

* () is a finite and nonempty set (states),

* o € Q (initial state),

* 1:Q xT — @ is a mapping (transition mapping), and

* \: @ xI'—TI'is a mapping (output mapping).

Let M = (@, qo, 1, A) be a Mealy machine over I'. As usual, we extended the
mappings and A to mappings p* : Q x I'* — @ and * : @ x I'* — T'*, respectively,
forevery ¢ € Q, w € I'*, and a € I, as follows:

(i) p*(¢g,e) = qand X*(¢,e) = ¢ and

(i) p*(q,wa) = p(p* (g, w), a) and A*(q, wa) = X* (g, w)A(1* (¢, w), a).
The semantics of M, denoted by 7,,, is the I'-translation defined, for each w € I'*,
by Ty (w) = A*(qo, w). In particular, 75,(¢) = €. For every Mealy machines M and
M’ over I', we say that M and M’ are equivalent if 7,; = ;.. Furthermore, for each
I'-translation 7, we say that 7 is realizable if there exists a Mealy machine M such
that 7 = 7,. We denote the set of all realizable T'-translations by Real(T").

Next we recall that translations realized by Mealy machines over I' are closed
under composition.

Lemma 5.3.1. ¢f [53, p. 207-208] and [43, Thm. 4.3.8] For every Mealy ma-
chines M; and M, over I', we can construct a Mealy machine M over I' such that

T = (Tary © Tary)- =

Clearly, by Lemma(5.3.1], the set Real(T") is closed under the operation o. Moreover,
o is an associative binary operation on Real(I'). Hence, (Real(I'),0) is a semigroup.
Finally, since idr- € Real(T"), the algebra (Real(T"), o, idr+) is a monoid.

Next we show that the monoid (Real(T"), o, idp+) is computable. The set Real(T")
is recursively enumerable as we can enumerate all the Mealy machines of one state

88 Crisp-determinization of wta

over I', and then, all the Mealy machines of two states over I", and so on. Moreover,
by Lemma the binary operation o is computable. Evidently, also the nullary
operation idr- is computable. Hence, it remains to recall that the equivalence of
Mealy machines is decidable.

Lemma 5.3.2. ¢f [/55, Thm. 3.5] and [[43, Thm. 1.7.3] It is decidable, for arbitrary
Mealy machines M and M’ over I', whether M and M’ are equivalent. O

Hence, (Real(I'),o,idp+) is a computable monoid. Now let M = (Q,qo, i,)
be a Mealy machine over I". For each ¢ € (@, we define the Mealy machine
M?=(Q,q,u,\) over I'. Furthermore, for the subset {7y« | ¢ € Q} C Real(T),
we denote the set ({7 | ¢ € Q})(oiap.} DY (M), i.e., we have

(M) = J{rmm o comum | (g, an) € QY (5.6)
keN
where (7pa © ... 0 Tya) = idps if & = 0. Observe that, for each £ € N,

the set {rpm o...0Tya | (q1,-..,qr) € Q¥} is in Pu,((M)). The submonoid of
the monoid (Real(T"),o,idr+) generated by M, denoted by T, is the submonoid
Ty = ((M),0,idr+) generated by the set {ry« | ¢ € Q}. Moreover, we denote the
set {{r} | 7 € (M)} by {(M)}.

In this section the following undecidability result plays a key role as we prove our
undecidability results by reducing them to this one.

Lemma 5.3.3. [44, Thm. 3.13] It is undecidable, for an arbitrary Mealy machine M
over I', whether the submonoid T,, generated by M is finite. O

Now, from a Mealy machine M over I, we can construct the ranked alphabet X,,,
the semiring Trans,,, and the (3,,, Transy,)-wta A, as follows.

Construction 5.3.4. Let M = (@, qo, it, A) be a Mealy machine over T'. Firstly, we
can construct the ranked alphabet X, such that ¥,, = EE&} U 253 with 25\14) =Q
and Eg&) = {e}, where ¢ ¢ Q is a new symbol. Evidently, ¥, is a string ranked
alphabet.

Then, inspired by the semiring Lang;. given in Example [2.4.6/(6), we extend the
submonoid T,, generated by M to a semiring as follows. We consider the strong
bimonoid

Transy, = (Pan((M)), U, 0,0, {idp+}) ,

where o is extended to sets as usual, i.e., for every 71,7, € Pg,((M)), we define
TooTy ={momn | €11,1 € Ty}. Obviously, U is idempotent, and o is distributive
with respect to U, and hence, Trans), is an idempotent semiring. Finally, we show
that Trans), is computable as follows. Clearly, by (5.6), (M) is a recursively enu-
merable set because, for each k € N and (q1,...,q) € Q, we can enumerate the

5.3 Undecidability of crisp-determinization 89

translations 7psa o ... o Tpa.. Then Py, ((M)) is recursively enumerable, because the
set of finite subsets of each recursively enumerable set is also recursively enumer-
able. Moreover, by a straightforward generalization of Lemma to finite sets,
Prn((M)) is a recursively enumerable set with tests for equality. Observe that both U
and the extended operation o is computable (for the latter ¢f Lemma [5.3.1]). Also,
the nullary operations () and {idr-} are computable. Thus, Trans,, is computable. We
call Trans,, the semiring of translations realized by M.

Finally, we can construct the (X, Transy,)-wta Ay = ({L}, dar, Far) as follows:

* | is a new symbol such that | ¢ ¥,

* (dm)ole, e, L) ={idr} and (dar)1(L,q, L) = {rae} for each g € @, and

* (Fu)r = {idr-}.
Observe that A, is total and bu deterministic. JAN

In the following lemma we show that im([A4,]) = {(M)}.

Lemma 5.3.5. ¢f [3, Lm. 8.2] Let M be a Mealy machine over I'. Then we have
im([An]) = Da,, = {{M)}.

Proof. By following the denotations of Construction |5.3.4, we let M = (Q, qo, it, \)
and Ay = ({L},dm, Fu). Since Ay, is total and bu deterministic, for each £ € Ty,
there is a unique valid run p; of Ay, on ¢, i.e., {p¢} = Runy, ().

In the rest of this proof, for every ¢q € 25\14) and ¢ € Ty,,, we abbreviate the tree
q(&) by ¢¢. Furthermore, we define the mapping eval : Tyx,, — Ps,((M)) inductively
as follows: eval(e) = {idr«}, and eval(§) = {7} o eval({') if & = ¢&’ for some ¢ € Q)
and ¢ € Ty,,. We first prove, by induction on the structure of ¢, the following
statement:

for each ¢ € Ty,,,, we have wt(¢, pe) = eval(€) . (5.7)

Induction base: Then we have ¢ = ¢, and thus, we can calculate as follows:

wt(e, pe) = (dnr)o(e, e, L) = {idp« } = eval(e) .

Induction step: Then there exist ¢ € @) and ¢’ € Ty, such that £ = ¢£’. Hence, we
can calculate in the following way:

wi (S, pe) = (Gn)1 (L g, L) oWt (S, per) = {7asa} 0 eval(¢') = eval(§)

where, by I.H. and the fact that (d,/):(L,q, L) = {ram.}, the second equality holds
true. This concludes the proof of (5.7). Then, for every k € Nand £ = ¢; -+ - qxe in
Ts,, with (g1, ..., q.) € QF, we have

[AM](E) = (Fr) L o Wt(&, pe) = (Fir) 1 o eval(§)

= {idp+} o {7ppar 0 ... 0o Tpgar 0 idp+} = {Tpya1 0. .. O TR |

(5.8)

90 Crisp-determinization of wta

where the second equality is due to (5.7)). Furthermore, we have

1m(|1,AM]]) = U{{T]\/qu o ...OTqu} ’ (ql,...,qk) € Qk}

= {{(M)} = (im(0n)) ey = Day

where the first equality follows from (5.8)). O
Then, as a consequence of Lemma [5.3.5} we obtain the following result.

Corollary 5.3.6. Let M be a Mealy machine over I'. Then A, has finite order if and
only if the submonoid T,, generated by M is finite.

Proof. Firstly, due to Lemma and the fact that im(F}),) = {{idr-}} by Construc-
tion [5.3.4, we have Dy,, = {(M)} = (im(Fy) o Dy4,,). Moreover, since Trans), is
idempotent, each {7} in {(M)} has finite additive order. Consequently, we have

Ay has finite order <= the set {(M)} is finite
<= the submonoid T,, generated by M is finite . O

Now we can show that, in general, the Question (Q1) is undecidable.

Theorem 5.3.7. cf. [3, Thm. 8.9] It is undecidable, for arbitrary string ranked
alphabet ¥, computable and idempotent semiring S, and bottom-up deterministic
(3,S)-wta A, whether A has finite order

Proof. We prove our statement by contradiction. For this, we assume that it is decid-
able, for arbitrary string ranked alphabet ¥, computable and idempotent semiring S,
and bu deterministic (X, S)-wta A, whether A has finite order.

Now let M be a Mealy machine over I'. Then, by following Construction|[5.3.4}, we
can construct the string ranked alphabet X,;, consider the semiring Trans,,, and can
construct the total and bu deterministic (3, Trans,;)-wta A,;. By Corollary
A, has finite order if and only if the submonoid T, generated by M is finite.

Then, by our assumption, it is decidable whether the submonoid T,; generated
by M is finite. This contradicts to Lemma5.3.3} i.e., our assumption is wrong. O

In the rest of this section, we deal with Question (Q2). For this, the following
notions and results are crucial. To give a characterization of crisp-determinizability;, it
is necessary to recall that weighted tree languages recognized by crisp-deterministic
wta are closed under sum. For every (X, B)-weighted tree languages v, and 1),
the sum of ¢, and 1),, denoted by (¢; @ v»), is the (X, B)-weighted tree language

(1/}1 D 77[)2) : TE — B dEﬁned, for eachf € Tz, by (¢1 D wg)(f) = ¢1(§) D 77[)2(5)

5.3 Undecidability of crisp-determinization 91

Lemma 5.3.8. [42, Thm. 10.4.1(3)] For every two crisp-deterministic (%, B)-wta
A; and Ay, we can construct a crisp-deterministic (X,B)-wta A such that
[A] = [A] @ [As]. O

The following result gives a characterization of crisp-determinizability.

Lemma 5.3.9. [3, Lm. 5.3] (also ¢f [30, Lm. 8 and Prop. 9]) Let ¢ be a
(32, B)-weighted tree language. Then the following statements are equivalent.

1. There exists a crisp-deterministic (X, B)-wta A such that ¢) = [A].

2. im(v) is finite and, for each b € B, the Y-tree language ¢)~!(b) is recognizable.

Proof. (1 = 2). Let A = (Q,9, F'). Clearly, since A is crisp-deterministic, we have
im(¢y) C im(F), i.e., im(¢)) is finite. Hence, it is sufficient to show that, for each b € B,
the Y-tree language ¢ ~!(b) is recognizable. Evidently, if b ¢ im(v)), then ¢ ~1(b) = 0,
and thus, ¢~ (b) is recognizable.

Hence, we may assume that b € im(¢). For each ¢ €), we can construct the
Y-fta A, = (Q,9,{q}), where 0, = suppg(dx) for each £ € N. Obviously, since A
is crisp-deterministic, the fta A, is total and bu deterministic. Moreover, for every
£ € Ty and ¢ € Q, we have Run}y(§) = Run} _(§), and thus, we also have

¢eL(4, ifandonlyif pc(e)=¢q,

where p; is the unique valid run of A on ¢, i.e., we have {p.} = Run’;(¢). Then, for
each ¢ € Ty, we have

[A](¢) =b ifandonlyif pe(c) € F7'(b) ifandonlyif ¢e U L(A,) .

qE€F~1(b)

Thus, we have

q€F~1(b)

where, by Lemma the right-hand side of the equality is a recognizable X-tree
language. Therefore, the Y-tree language [.A] ' (b) is recognizable.

(2 = 1). Here we generalize the direction = of [30, Lm. 8] from the string case
to the tree case. Trivially, we have im(¢)) #). For this, let im(¢)) = {by,...,b,} for
some n € N,. Observe that, for each b € (B \ im(¢))), we have p=1(b) = 0, ie.,
we do not have to deal with it any further. Moreover, by our assumption, for each
i € [n], the X-tree language v~ '(b;) is recognizable, i.e., there exists a X-fta A; such
that L(4;) = 1 ~%(b;). Note that, by Lemma for each i € [n], we may assume
that A, is total and bu deterministic.

Let i € [n]. Moreover, let A; = (Q;, d;, F;). Then we can construct the (3, B)-wta
A; = (Q;, 0}, F!) such that

 for each k& € N, we set suppg((0})x) = (6;)x and im((0})x) € {0,1} and

92 Crisp-determinization of wta

 for each ¢ € Q;, we set F/(q) = b; if ¢ € F}, and F/(q) = 0 otherwise.
Since the fta A; is total and bu deterministic, and we have im((d});) € {0,1} for
each & € N, the wta A; is crisp-deterministic. Moreover, for each £ € Ty, we have
Run} (§) = Runy (). Consequently, for each £ € Ty, we have

¢ e€L(A;) ifandonlyif pe(e) € F; ifandonlyif [A;](&)=0; ,

where p; is the unique valid run of 4; on ¢, i.e., we have {p:} = Runj; (£). Further-
more, by Lemma |5.3.8], we can construct a crisp-deterministic (X, B)-wta .4 such that
[A] = @®,c}, [A:]- Then, for each £ € Ty, we have

Y(&) =P b = [A©) .

iEIg
where I = {i € [n] | £ € ¢ (&)}, and the last equivalence follows from
Lemma This concludes our proof.]

Next we give a X),-algebra ATrans,,, of which the carrier set coincides with the
carrier set of Trans);, and of which the operations correspond roughly to the transi-
tions of A,,.

Construction 5.3.10. Let M = (Q, qo, 1, A) be a Mealy machine over I". We first
recall the string ranked alphabet ¥,, given in Construction Then we consider
the XJ,,-algebra

ATransy = (Pan({(M)), O1rans,,)

such that frans,, () = {idr+} and Orans,, (¢)(T)) = ({7ae} o T') for every ¢ € @ and
T € Psun((M)), where o is extended to sets as above (cf. Construction|5.3.4)). A

The following result justifies that [.A,,] is a ¥,,-algebra homomorphism.

Lemma 5.3.11. ¢f [3, Lm. 8.3] Let M be a Mealy machine over I'. Then [A,] is a
Y.)r-algebra homomorphism from the ¥,,-algebra Termy,, to ATrans,,.

Proof. We use the denotations of Construction|5.3.4/and |5.3.10, Recall that we have
Termy,, = (Tyx,,,0s,,) such that 6y, (e) = e and 0y, (q)(§) = ¢(&) for every g € @ and
¢ € Ty,, (¢f Example[2.4.1)). Then, by assuming ¢, = [Ay/], we have

¢M(02A{ (6)) = IZJM(B) = {ldr*} = QTra"ISM <€>)

and, for every ¢ € () and ¢ € Ty;,,, we have

Ut (05, (@)(©) = ¥ar(a(€)) =T {mara} 0 ¥ar(€) = Oriansy, (a) (Vas (€)),

where at (1) we apply (5.8)). This completes our proof. O

5.3 Undecidability of crisp-determinization 93

Now we recall an algebraic characterization of recognizable tree languages as
follows.

Lemma 5.3.12. [43, Cor. 2.7.2] For every L C Ty, the Y-tree language L is recog-
nizable if and only if there exist a finite >-algebra A = (A, 0), a ¥-algebra homomor-
phism & from Termy, to A, and a subset A’ C A such that L = h=(A’). O

Now we prove the equivalence of crisp-determinizability of A,; and finiteness of
the submonoid T,; generated by M.

Lemma 5.3.13. ¢f [3, Lm. 8.4] Let M be a Mealy machine over I". Then the following
statements are equivalent.

1. im([.Ay]) is finite and [A,] ' (T) is recognizable for each T' € Py, ((M)).

2. The submonoid T,; generated by M is finite.

Proof. (1 = 2). By Lemma [5.3.5} our statement trivially holds true.

(2 =1). By Lemma|5.3.5| im([.A)/]) is finite. Hence, it is sufficient to show that,
for each T' € Py, ((M)), the X),-tree language [Ay] ' (T') is recognizable. Evidently,
for every T in Py, ((M)) \ im([.Ap]), we have [Ay] H(T) = 0, which is clearly rec-
ognizable. Hence, we may assume that 7" € im([.Ay/]). Since im([A,,]) is finite,
the set Py, ((M)) is finite as well, i.e., ATrans,, is a finite 3,,-algebra. Moreover,
by Lemma [Axf] is a Xj-algebra homomorphism from Termy,, to ATrans,,.
Finally, by Lemma [5.3.12} [Ay/] ' ({T}) = [Aux]~}(T) is recognizable. O

Eventually, we prove that, in general, Question (Q2) is undecidable.

Theorem 5.3.14. cf. [3, Thm. 8.5] It is undecidable, for arbitrary string ranked
alphabet ¥, computable and idempotent semiring S, and bottom-up deterministic
(X,S)-wta A, whether A is crisp-determinizable.

Proof. We prove our statement by contradiction. For this, we assume that it is decid-
able, for arbitrary string ranked alphabet ¥, computable and idempotent semiring S,
and bu deterministic (3, S)-wta A, whether A is crisp-determinizable.

Now let M be a Mealy machine over I'. By following Construction |5.3.4, we
can construct the string ranked alphabet X:,,, consider the semiring Trans,,, and can
construct the total and bu deterministic (X, Trans,,)-wta A,;. Then the following
holds true.

A,y is crisp-determinizable
<= there exists a crisp-deterministic (3,;, Trans,;)-wta A, with [A,/] = [A)/]
<= im([Ax]) is finite and [A,,] ' (T) is recognizable for each T € Py, ((M))
<= the submonoid T, generated by M is finite,

94 Crisp-determinization of wta

where the second equivalence follows from Lemma |5.3.9} and the last one is due to
Lemma 5.3.13| Then, due to our assumption, it is decidable whether the submonoid
T, generated by M is finite. This contradicts to Lemma|5.3.3| i.e., our assumption is
wrong.]

5.4 Decidability of crisp-determinization

In this section we identify two subclasses of wta, for which the crisp-determinization
problem is decidable. We first introduce the concept of past-finite monotonic strong
bimonoid. These particular weight structures have several desirable properties (cf:
Lemmas|5.4.2|and [5.4.4). Hence, if B is past-finite monotonic, then we can simplify
the characterization of crisp-determinizability given in Lemma(5.3.9}: for an arbitrary
(3, B)-wta A, the wta A is crisp-determinizable if and only if im([.A]) is finite.

To characterize finiteness of im([.A]), we consider a structural property of .4. More
precisely, certain Y-contexts and loops of A on those Y-contexts are of interest. If A
has that structural property, then the weight of any run on any Y-tree corresponds to
a weight of a run on a small X-tree (c¢f. Lemma[5.4.7).

To formalize a relationship between that structural property of A and finiteness
of im([A]) (¢f Lemma [5.4.13), it is crucial that A has only useful states, i.e., each
state of A is a part of at least one accepting run. However, that normal form of A can
be obtained easily (c¢f. Lemmas|5.4.9]and [5.4.11).

Finally, since it is decidable whether 4 has that structural property, we can de-
cide also whether im([.A]) is finite (¢f Lemma [5.4.14), ie., whether A is crisp-
determinizable (¢f Theorem [5.4.15).

In [[15, Def. 12] the concept of monotonic semiring is introduced. In the spirit of
that definition, we define past-finite monotonic strong bimonoid as follows cf. [1,
p. 42] and [22, Def. 2.1].

Definition 5.4.1. For every partial ordering < on B, we say that B is monotonic with
respect to <, denoted by B, if the following conditions hold true:

(i) for every by, by € B, we have b; < b; @ by, and

(ii) for every by,bo, b3 in B\ {0} with by # 1, we have b; ® by < by ® by ® b3 .
Let B be monotonic with respect to some partial ordering < on B. We call B past-
finite if, for each b € B, the set past(b) = {a € B | a < b} is finite. A

In the rest of this section, < denotes an arbitrary partial ordering on B such
that B is monotonic with respect to =< if not specified otherwise.

Note that the notation B is overloaded in the following sense: it denotes (a) the
strong bimonoid B and (b) the fact that B is monotonic with respect to <.

5.4 Decidability of crisp-determinization 95

In the following two lemmas we prove desirable properties of (past-finite) mono-
tonic strong bimonoids.

Lemma 5.4.2. ¢f [[15, Lm. 14] and [42, Lm. 16.2.9] The following statements hold
true.

We have 0 < b foreach b € B, and 1 < b for each b € (B \ {0}).

We have 0° < b' < v? < ... foreachb € (B\ {0,1}).

B is positive, i.e., it is zero-sum free and zero-divisor free.

B< is one-summand free, i.e., a & b = 1 implies a,b € {0, 1} for every a,b € B.
B is one-product free, i.e., a ® b = 1 implies a = 1 = b for every a,b € B.

ahwWbdE

Proof. Statements 1 and 3-5 hold true due to [[15, Lm. 14] and the fact that in the
proof of [15, Lm. 14] the distributivity laws are not exploited.

Finally, we prove Statement 2. For each n € N, by Condition (ii) of Defini-
tion[5.4.1/for b, =1, by = b, and b; = b*, we have i" = 1 @I < 1 ®@b® b = b1,
Then, since < is transitive, our statement follows.]

Note that, by Lemma [5.4.2/(2), if | B| > 2, then By is not finite. Moreover, there
is exactly one monotonic strong bimonoid with finite carrier set: the semiring Boole
(¢f Example [2.4.6/(1)) with its natural order.

Example 5.4.3. Here we show examples and counterexamples of past-finite mono-
tonic strong bimonoids. In order to do that, we consider the semirings given in
Example The semiring Nat is past-finite monotonic with respect to the usual
linear ordering < on N. Similarly, the semiring MaxPlus is past-finite monotonic with
respect to the usual linear ordering < on N_,,. However, the semiring Int (respec-
tively, MinPlus) is not past-finite monotonic with respect to the usual linear ordering
< on Z (respectively, on N,.) as past(—1) (respectively, past(oc)) is not finite. In fact,
in case of the semiring MinPlus, there does not exist a partial ordering < on N, such
that MinPlus is past-finite monotonic with respect to < (cf [2, Ex. 7.6]).

Moreover, the semiring Lang is past-finite monotonic with respect to the partial
ordering <, where < is defined, for every L, Ly € Py, (I'™*), by L; = L, if there is an
injective mapping f : L1 — L, such that w is a substringl] of f(w) for each w € L,
[[15]. A

Next we show that, if B< is past-finite, then, for every (3, B<)-wta .A and b € B,
the Y-tree language [.A] ' (b) is recognizable. By Lemma 5.3.9} this implies that A is
crisp-determinizable if and only if im([.A]) is finite.

Lemma 5.4.4. [[1, Lm. 11] and [2, Thm. 6.10] Let B be past-finite. Moreover, let .4
be a (3, B<)-wta. Then, for each b € B, the X-tree language [.A] ~!(b) is recognizable.
If, in addition, B< is computable, then, for each b € B, we can construct a ¥-fta A,
such that L(A4,) = [A] ().

!We say that w is a substring of f(w) if there exist v,u € I'* such that f(w) = vwu.

96 Crisp-determinization of wta

Proof. We put C = {a € B | a A b}. Moreover, let ~ be the equivalence relation on
B defined such that B/<= ({{a} | a € past(b)} U (), i.e., its classes are the singleton
sets {a} for each a € past(b), and the set C. Now we prove the following statement:

~ is a congruence relation on B . (5.9)

Obviously, it is sufficient to show that C' is a congruence class. For this, let b/, t, € C
and ¥’ € B. Since B< is monotonic, by Condition (i) of Definition for each
i € {1,2}, we have b, < 0} @ V', and hence, (b, ® V') € C. Moreover, if b’ # 0, then,
by Condition (ii) of Definition for each i € {1,2}, we have b, < ¥, ® I/ and
b, < b ®¥b;, and thus, we also have (V) ® t/) € C and (V' ® ;) € C, respectively.

Consequently, C' is a congruence class. This concludes the proof of (5.9).
Then, by (5.9), we consider the quotient strong bimonoid

B/N: (B/N7 EB/N7 ®/N7 [O}N, [1]~)

of B modulo ~, where [b]. & /~ [ba]~ = [b1 ® by~ and [b1]. ® /~ [ba]~ = [b1 ® bo]~
for every by,b, € B. Evidently, B/~ is finite. Moreover, we consider the mapping
h : B — B/~ defined, for each ¥ € B, by h(t/) = [V/].. Trivially, i is a strong
bimonoid homomorphism from B to B/~. Then, by Lemma [3.1.7, we can construct
a (X, B/~)-wta h(.A) such that [h(A)] = (h o [A]).

Since B/~ is finite, the wta h(.A) has finite order. Hence, by Theorem there
exists a crisp-deterministic (2, B/~)-wta h(.A)’ such that h(.A)’ is equivalent to h(A).
Thus, we can calculate as follows:

[A]7'(0) = (ho [AD) 7 ([B]) = [A(A)] (b)) = [R(A)T([B]~)

where the second equality is due to Lemma [3.1.7, and the last one follows from
Theorem Moreover, since, by Lemma [5.3.9(1 = 2), the X-tree language
[R(A)]~t([b]~) is recognizable, [.A]~!(b) is recognizable as well.

Finally, we show that, for each b € B, we can construct a X-fta A, such that
L(Ay) = [A]7*(b). In order to do that, we assume that, in addition, B is com-
putable. Then also B/~ is computable. Hence, by Theorem we can con-
struct the crisp-deterministic (X,B/.)-wta h(A). Moreover, by following the proof
of Lemmal5.3.9(1 = 2), for each b € B, we can construct a X-fta A, such that
L(4,) = [A]7' (). 0

In the following example we check whether we can apply Lemma to the
three wta which appear in Examples 3.1.6

Example 5.4.5. Firstly, we consider the (X, MaxPlus)-wta A,,., shown in Exam-
ple Recall that, by Example |5.4.3 the semiring MaxPlus is past-finite mono-

5.4 Decidability of crisp-determinization 97

o Gu
0 (o a (o O (o o (o
o (s o« qu o Gu a (o 0 (o o (o
% o quw (] 9% o s 9% o 4o
(a) neither small nor valid (b) small but not valid loop (¢) small and valid loop on
loop on the -context 3 on the X-context c? the X-context c?

Figure 5.3. Loops of the (X, MaxPlus)-wta A defined in Example on some powers
of the Y-context ¢ = o(0J, o) defined in Example

tonic with respect to the usual linear ordering <. Then, by Lemma for each
n € N_, the X-tree language [A...] ' (n) is recognizable.

But, also by Example the semiring MinPlus is not past-finite monotonic with
respect to any partial ordering < on N,. Hence, if we consider the (3, MinPlus)-wta
A, constructed in Example then we cannot apply Lemma to show that,
for each n € N, the -tree language [A,]'(n) is recognizable.

Similarly, the bounded lattice M3 given in Example (2) is not monotonic,
because, by Condition (ii) of Definition for b, = i = by and b, = a, we should
have i =i A7 < i A aAi= a, but that does not hold true. Thus, for the (X, M3)-wta
Agpiic shown in Examples we cannot apply Lemma either. A

Let A = (Q,6,F) be a (X,B)-wta. For every ¢ € Ty, ¢ € @, and loop
p € Runy(q, ¢, q), we call p a small loop if height(c) < |@Q]. Moreover, we say that
small valid loops of A have weight 1 if, for every ¢ € Ty, g €), and p € RunY(¢, ¢, q),
we have wt(c,0) = 1.

Example 5.4.6. Let ¥ = {0® w® a®}, We consider the (3, MaxPlus)-wta Ay
constructed in Example[3.1.4] Moreover, let ¢ = o(0J, o). Then Figure[5.3|shows some
loops of A, on ¢ for some n € N as follows. The loop depicted in Figure [5.3|(a) is
neither small (as height(c®) > |{¢s, qu, ¢s }|), nor valid (as d2(q.q., 0, qs) = —o0). The
loop illustrated in Figure[5.3|(b) is small but not valid as d>(¢,¢s, 7, ¢.,) = —occ. Finally,
the loop shown in Figure (c) is small and valid. AN

Lemma 5.4.7. [1, Lm. 12] (also ¢f. [2, Lm. 5.5]) Let A = (@, 4, F') be a (X, B<)-wta
such that small valid loops of A have weight 1. Then, for every ¢’ € Ty, ¢ € Q,
and p € Runjy(q,¢'), there exist {, € Ty and pg € Runj}(¢,&g) such that

height(£o) < |Q[and wt (&', p') = wt (&g, po)-

98 Crisp-determinization of wta

Proof. Trivially, if height(¢') < |@|, then we let {; = ¢ and pg = p/, and we are done.
Hence, we may assume that height(¢') > |Q|. By applying Theorem there exist
d,c€Cy, £ €Ty, qeQ, 0 € Runy(d,d,q), 0 € Runy(q,c,q), and p € Runy(q, &)
such that the conditions mentioned in Theorem hold true, and, in particular,
we have

wt (&', p') =wt(d[c[€]], O'10]p]]) = lo o @ lep @ WH(E, p) @ Tep @ Tw e and
WH(CTEL O = Loy © WH(E,) @7

Observe that, since p’ is valid, each of the runs ¢, 6, and p is valid. Then we have
(lqg &® ’I“c,g) = Wt(C, 9) =1,

where the first equality follows from Lemma [3.2.1} and the second one is due to the
fact that small valid loops of A have weight 1. Moreover, since, by Lemma [5.4.2)(5),
B~ is one-product free, we have l.y = 1.y = 1, i.e., wt(¢', p') = wt([€], 0'[p]). Note
that we have ¢'[p] € Run (¢, ¢[¢]) and size(c'[§]) < size(¢'). If height(c'[¢]) < |Q],
then we let {p = ¢/[¢] and pg = ¢'[p], and we are done. Otherwise, we continue with
the ¢'[¢], ¢/, and ¢'[p] as before, and after finitely many steps, we obtain the ¥-tree &
with height(§g) < |@Q|, and the run pg as required. O

The following notions are crucial to construct a trim wta. For each B’ C B, we
say that B has effective tests for B’ if, for every b € B and I/ € B’, we can decide
whether b = ¥'. Let A = (Q, 0, F') be a (3, B)-wta. For each ¢ €), we call g useful (in
A) if there exist £ € Ty and p € Run% (&) such that ¢ € im(p). We say that A has a
useful state if there exists ¢ € () such that ¢ is useful. Moreover, A is said to be trim if
each of its states is useful. Now, by some examples, we illustrate the notions defined
above.

Example 5.4.8. Let ¥ = {0@ w® a®}., Moreover, we consider the
(3, MaxPlus)-wta A,,.. defined in Example Let £ € Ty. Recall that, by Ex-
ample there are exactly three valid runs of A,,.x on . But, out of the three
valid runs A,,.x on &, only two are accepting. Moreover, for each p € Run’(§), we
have ¢, ¢ im(p). Consequently, ¢, is not useful, i.e., A, is not trim.

Nevertheless, both the wta A, given in Example and the wta A, con-
structed in Example are trim ab ovo. A

Since deciding whether an arbitrary (X, B)-wta A has a useful state is technical
rather than hard if B has effective tests for {0}, we just show the following result
without its proof.

Lemma 5.4.9. [2, Lm. 4.1] Let B have effective tests for {0}. It is decidable, for
arbitrary (X, B)-wta A, whether A has a useful state. O

5.4 Decidability of crisp-determinization 99

Next we recall unambiguous wta. Let A = (Q,0, F') be a (¥,B)-wta. We call
A unambiguous if, for each { € Ty, we have |Run?(§)| < 1. If this is the case,
then, for each { € Ty, either (a) Run%({) = 0, and thus, [A]({) = O, or else
(b) there is a unique run p in Run%(&), i.e., we have {p} = Run?({), such that
[A](§) = wt(&, p) ® F). Obviously, each bu deterministic wta is unambiguous; how-
ever, there are easy examples of unambiguous wta, to which there does not exist an
equivalent bu deterministic wta cf. [|57]]. Then, by an example, we demonstrate the
unambiguous wta.

Example 5.4.10. We consider the wta A,,,, shown in Example As already
mentioned, on each tree, there are exactly two accepting runs of A,,.., and hence,
Aax 1S not unambiguous.

This is not the case if we consider either the wta A, defined in Example or
the wta Ay, given in Example as on each tree there is exactly one accepting
run of both wta, i.e., both A, and A,y are unambiguous. A

Similarly, since, for an arbitrary (3, B)-wta A with a useful state, constructing a
semantically equivalent trim (X, B)-wta is technical rather than hard if B has effective
tests for {0}, we just give also the following result without its proof.

Lemma 5.4.11. [1, Lm. 5] and [2, Thm. 4.2] Let B have effective tests for {0}.
Moreover, let A = (Q,6,F) be a (X,B)-wta. If A has a useful state, then we can
construct a (X, B)-wta A’ such that A’ is trim and it is equivalent to A. If, in addition,
A is unambiguous, then A’ is so. O

Here we give an example of the application of Lemma(5.4.11

Example 5.4.12. Here we continue Example Let ¥ = {6@ w® o}, Fur-
thermore, we consider the (3, MaxPlus)-wta A,,., defined in Example Since ¢,
is not useful, but the states ¢, and ¢, are so, by Lemma we can construct the
(33, MaxPlus)-wta

Al = {0, a0}, 0 F)

where 56 (57 «, QU) = 66<57 a, Qw> = 5&((]0(]07 w, QU) = 55((]wa7 g, Qw) = O;
05(4o 90, 0, ¢5) = 05(4wqu,w, q») = 1, and every other transition in ¢ has weight —oco,
and I, = F; =0. Trivially, A, is trim. A

Lemma 5.4.13. [1, Thm. 13] (also ¢f [2, Thm. 7.1]) Let B< be past-finite. Moreover,
let A= (Q,6, F) be a trim (X, B<)-wta such that B« is additively locally finite or A is
unambiguous. Then the following statements are equivalent.

1. The set im([.A]) is finite.

2. Small valid loops of A have weight 1.

100 Crisp-determinization of wta

Proof. (1 = 2). We prove, by contraposition, our statement. In order to do that,
assume that there exist ¢ € Ty, ¢ € @, and small § € RunY(g,c,q) such that
wt(c,0) # 1. Since 6 is valid, and since B< is zero-divisor free and one-product
free by Lemma we have 1 < wt(c,6). Moreover, since A is trim, the state g
is useful, and hence, there exist ¢ € Ty, £ € Ty, ¢ € Q, ¢ € Run% (¢, ¢,q), and
p € RunYy(q, &) such that 0'[0]p]] € Run’ (<[¢[£]]).

By Lemma (3.2.1] we have wt(c,6) = l.y9 ® .. Moreover, since 1 < wt(c, §), we
have 1 < l.p or 1 < r.y. Here we consider the case where 1 < [.5. (Observe that the
other case is symmetrical.) Then, for each n € N, we have

wt([c"[€]], 0'[0"[p]]) = leror @ (leyp)™ @ WH(E, p) @ (re0)" @ Tergr
<D lug @ (leg)" ™ @ WHE, p) @ (1ep)" @ Ter
<D 1y @ (leo)" ™ @WHE p) @ (rep)" ™ @ 1000
]

= wt ([[E]], 010" l)

where the first and the last equalities follow from Theorem at (1) we ap-
ply Condition (ii) of Definition for by = (lvg ® (lep)™), ba = l.p, and
by = (Wt(&, p) ® (rep)" ® re g); and at (1) we apply Condition (ii) of Definition [5.4.1]
for by = (lvg @ (lep)" ™ @ Wt(&, p) @ (1)), by = Tcp, and by = ry o. Furthermore,
since, < is transitive, we have

wt (<[], 0'10°pl]) < we ([[€]]. 00 [pl]) < - (5.10)

Next we construct an infinite sequence &1, &, &3, . . . of Y-trees such that the elements
[A] (&), [A](&2), [A] (&), - - - in B are pairwise different as follows. We let £; = ¢/[c[¢]].
Since B is past-finite, the set P, = past([.A](&1)) is finite. By (5.10), there ex-
ists ny € N such that wt(c'[c"*[¢]], 0'[67*[p]]) ¢ P1. Thus, we let & = J[¢™[¢]] and
p2 = 0'[0"p]]. Slnce p2 € Run’ (¢, &) and B is monotonic, by Conditions (ii) and (i)
of Definition [5.4.1], we have

wi(Eo,p2) WG p2) @ Fy = D wi(boph) ® Fy = [A(&)

pheRun (é2)

where F,, may be 1, and Run%(&) may equal {p,}. Consequently, we have
[A](&2) € Pi. Now we put P, = past([.A](&2)). By (5.10), there exists n3 € N such
that wt(c'[¢"3[¢]], 0'[0™[p]]) ¢ (P1 U P2). By continuing this process, we obtain the
desired sequence of Y-trees. Therefore the set im([.4]) is not finite.

2 = 1). Let &’ € Ts. Recall that [AJ(") = @yco Dyeruny(gen WHE F) © Fy.
Since small valid loops of A have weight 1, by Lemma [5.4.7], for every ¢ € () and
p' € RunY(¢,¢'), there exist a Y-tree {, and a run py € Run’(¢’, &) such that

5.4 Decidability of crisp-determinization 101

height(&g) < |Q] and wt(¢', p') = wt (&g, po). Hence, we consider the set

H = {wt(8q, pq) @ Fy | & € Ty, height(&g) < |Q,¢" € Q, pg € Run}(q,&q)} -

Observe that H is a finite set. Now we proceed by case analysis.
B< is additively locally finite: Then the set (H)q 0y is finite as well, and, since we
have [A](¢') € (H) g0}, i.e., im([A]) C (H)q,0}, the set im([.A]) is finite as required.
A is unambiguous: Then either [A4](¢') = 0, or else there is a unique accepting
run p’ of Aon ¢, i.e., we have {p'} = Run’(¢’), such that [A] (') = wt(&', p') @ F(e).
Thus, we have im([.A]) C H, i.e., the set im([.A]) is finite as desired. O

Lemma 5.4.14. [1, Cor. 14] (also c¢f [2, Thms. 7.5 and 7.7]) Let B< be past-finite
and have effective tests for {1}. It is decidable, for arbitrary trim (X, B<)-wta .4 such
that B is additively locally finite or .A is unambiguous, whether im([.A4]) is finite.

Proof. Let A = (Q, 6, F). By Lemma|5.4.13] we have

im([A]) is finite if and only if ~small valid loops of A have weight 1 .

The latter property is decidable for the following reasons. Since there are only finitely
many contexts in Cy, of height less than |Q)|, there are only finitely many small and
valid loops of A. Moreover, for each small and valid loop 6 € Run(q, ¢, q) for some
¢ € Cy and ¢ € Q, we have wt(c,§) = 1if and only if 6, (6(v1) - - - (vk), c(v),0(v)) = 1
for every k € N and v € pos(c) with c(v) € %), where the right-hand side of the
equivalence is decidable as B« has effective tests for {1}. This concludes our proof.

O

Theorem 5.4.15. [1, Thm. 10] Let ¥ be a ranked alphabet such that © = §).
Moreover, let B = (B, ®,®,0,1) be a strong bimonoid and < be a partial ordering
on B such that B is past-finite monotonic with respect to =<, and B has effective
tests for {0, 1}. Then the following statements hold true.
1. If, in addition, B is additively locally finite, then it is decidable, for arbitrary
(X, B)-wta A, whether A is crisp-determinizable.
2. It is decidable, for arbitrary unambiguous (3, B)-wta A, whether A is crisp-
determinizable.

Proof. Let A be an arbitrary (X, B<)-wta such that B« is additively locally finite or A
is unambiguous. By Lemma it is decidable whether A has a useful state. If the
answer is “no”, then im([.4]) = {0}. Obviously, we can construct a crisp-deterministic
(2, B<)-wta A’ such that [A] = [A'].

102 Crisp-determinization of wta

Otherwise, i.e., if A has a useful state, then, by Lemma [5.4.11, we may assume
that A is trim. Then

A is crisp-determinizable
< there exists a crisp-deterministic (3, B<)-wta A’ such that [A] = [A]
<= im([A]) is finite,

where the second equivalence follows from Lemmas [5.3.9| and [5.4.4. Moreover,
by Lemma [5.4.14, it is decidable, whether im([.4]) is finite. Hence, it is decidable
whether A is crisp-determinizable. This concludes our proof. O

Now we show an application of Theorem |5.4.15|as follows.

Example 5.4.16. Let & = {0® w® o(®}. We consider the (3, MaxPlus<)-wta Ay
defined in Example Since, the semiring MaxPlus< is past-finite and addi-
tively locally finite, we can apply Theorem [5.4.15|(1) to the (X, MaxPlus<)-wta A,x.
Hence, by Lemma we first construct the trim (3, MaxPlus<)-wta A/ such
that A, . is equivalent to A, (¢f Example[5.4.12)). Then, by considering the con-
text ¢ = (0, o) and the (¢, ¢,)-run 6 of A,,., on ¢ such that #(2) = ¢,, we have a
small and valid loop with 1 < wt(c, §). Consequently, Theorem [5.4.15|(1) delivers a

“no”, i.e., Apnayx is not crisp-determinizable. A

Moreover, note that even though the semiring MinPlus given in Example [2.4.6{(4)
is additively locally finite, it is not past-finite monotonic by Example and thus,
we cannot apply Theorem [5.4.15/(1) to the (X, MinPlus)-wta A, shown in Exam-
ple Similarly, by Example also the bounded lattice M is not past-finite
monotonic, and hence, we cannot apply Theorem [5.4.15|(2) to the unambiguous
(2, M3)-wta Ag,; constructed in Example

5.5 Undecidability and decidability results for
weighted string automata

Here we recall the concept of weighted string automata and show that each of our
undecidability (respectively, decidability) results holds for weighted string automata
as well.

Let I" be a nonempty alphabet. A (I', B)-weighted language (or just: weighted
language) is a B-weighted set ¢ : I'* — B. A weighted string automaton (over I' and
B) (for short: (I", B)-wsa, or just: wsa) [33,70] is a quadruple A = (@, I, 0, F'), where

* () is a finite and nonempty set (states) such that Q N T" = (),

* [:(@Q — B is a mapping (initial weight mapping),

* 0:Q xI'xQ — Bisamapping (transition mapping), and

5.5 Undecidability and decidability results for weighted string automata 103

* F': () — B is amapping (final weight mapping).

Let A= (Q,1,6,F)bea (I',B)-wsa. We define the (run) semantics of .A as follows.
Let w = a; ---a, be a string in I'* with n € N and @, € I for each i € [n]. Arun of A
onwisastring p = qo---q, in Q", and the weight of p for w, denoted by wt 4(w, p),
is the element of B defined by

wta(w, p) = 1(q0) ® 6(qo,a1,q1) @ ... ®@ 6(Gn-1, n> @) ® F(aqn) -

Then the (run) semantics of A is the weighted language [A] : I'* — B defined, for
each w € I'¥, by
Alw) = P wtalw,p) .
pEQlen(w)+1
In particular, we have [A](¢) = D, (1(¢) ® F(g)). A (I', B)-weighted language ¢ is
recognizable if there exists a (I', B)-wsa A such that ¢ = [A].

In [42, Lm. 3.3.3], it is shown that the concept of (I', B)-wsa and the concept of
(33, B)-wta, where ¥ is a string ranked alphabet, are essentially the same. In fact, for
each (I', B)-wsa A4, there exist a string ranked alphabet ¥, a bijection tree : I'* — Ty,
and a (X, B)-wta Ay such that [A](w) = (Agee o tree)(w) for each w € I'*. Moreover,
the inverse of that statement also holds true.

Since the ranked alphabet in Theorems|5.3.7/and |5.3.14|is a string ranked alpha-
bet, according to the equivalence described above, the corresponding undecidability
results hold for weighted string automata. Furthermore, Theorem holds, in
particular, for any string ranked alphabet. Hence, by the above, it also holds for
weighted string automata.

Concluding remarks. We consider the (X, Trans,,)-wta A,; constructed in Con-
struction Recall that Trans,, is idempotent, i.e., Trans,, is additively locally
finite, and A, is bu deterministic, i.e., A), is unambiguous. Compared to The-
orem Theorem shows that dropping the condition “B is past-finite
monotonic with respect to some partial ordering < on B” results in undecidability.
The author of this PhD thesis declares that his contribution to Theorems |5.2.8]
[5.2.12] [5.3.7, [5.3.14 and is decisive, that Theorems and are
published in [3]] and []1], respectively, and also that Theorems [5.3.7| and |5.3.14 are
slightly stronger than [[3, Thm. 8.9] and [3, Thm. 8.5], respectively, but are based on
the same ideas. Finally, we mention that [2, Thm. 6.6], [5, Thms. 7 and 11], and []2,
Thms. 7.5, 7.7, and 7.15] supersede Theorems|5.2.8] and[5.4.15], respectively,

but the contribution of the author to those stronger results is not decisive.

104 Crisp-determinization of wta

Publications of the author

On the subjects of the thesis

[1]

[2]

[3]

[4]

M. Droste, Z. Fiilop, D. Kdész6, and H. Vogler. “Crisp-Determinization of
Weighted Tree Automata over Additively Locally Finite and Past-Finite Mono-
tonic Strong Bimonoids Is Decidable”. In: Descriptional Complexity of Formal
Systems (DCFS 2020). Ed. by G. Jirdskova and G. Pighizzini. Vol. 12442. Lec-
ture Notes in Computer Science. Springer Nature Switzerland, 2020, 39-51.

M. Droste, Z. Fiilop, D. Kdszd, and H. Vogler. “Finite-image property of
weighted tree automata over past-finite monotonic strong bimonoids’”. In: The-
oretical Computer Science 919 (2022), 118-143.

Z. Filop, D. Koszo, and H. Vogler. “Crisp-determinization of weighted tree
automata over strong bimonoids. In: Discrete Mathematics & Theoretical Com-
puter Science 23(1) (2021), #18.

D. Kdsz6. “Weighted Tree Generating Regular Systems over Strong Bimonoids
with Reduction Semantics”. In: Journal of Automata, Languages and Combina-
torics 27(4) (2022), 271-307.

Further related publications

[5]

[6]

M. Droste, Z. Fiilop, and D. Kész6. “Decidability Boundaries for the Finite-
Image Property of Weighted Finite Automata”. In: International Journal of
Foundations of Computer Science (To appear).

D. Kdsz4. “Tree generating context-free grammars and regular tree grammars
are equivalent”. In: Annales Mathematicae et Informaticae 56 (2022), 58-70.

105

https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.1016/j.tcs.2022.03.036
https://doi.org/10.1016/j.tcs.2022.03.036
https://doi.org/10.46298/dmtcs.5943
https://doi.org/10.46298/dmtcs.5943
https://doi.org/10.25596/jalc-2022-271
https://doi.org/10.25596/jalc-2022-271
https://doi.org/10.33039/ami.2022.12.007
https://doi.org/10.33039/ami.2022.12.007

106 Publications of the author

Other references

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Alexandrakis and S. Bozapalidis. “Weighted grammars and Kleene’s theo-
rem”. In: Information Processing Letters 24(1) (1987), 1-4.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge: Cambridge
University Press, 1998.

M. Bauderon and B. Courcelle. “Graph expressions and graph rewritings”. In:
Mathematical Systems Theory 20(1) (1987), 83-127.

J. Berstel and C. Reutenauer. “Recognizable formal power series on trees”. In:
Theoretical Computer Science 18(2) (1982), 115-148.

J. Berstel and Ch. Reutenauer. Rational Series and Their Languages. Vol. 12.
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

G. Birkhoff. Lattice Theory. 3rd. Vol. 25. Colloquium Publications. American
Mathematical Society, 1993.

B. Borchardt. “A pumping lemma and decidability problems for recognizable
tree series’. In: Acta Cybernetica 16(4) (2004), 509-544.

B. Borchardt. The Theory of Recognizable Tree Series. (Ph.D. thesis, 2004, TU
Dresden, Germany). Verlag fiir Wissenschaft und Forschung, 2005.

B. Borchardt, Z. Fiilop, Z. Gazdag, and A. Maletti. “Bounds for tree automata
with polynomial costs”. In: Journal of Automata, Languages and Combinatorics
10(2-3) (2005), 107-157.

B. Borchardt and H. Vogler. “Determinization of finite state weighted tree
automata”. In: Journal of Automata, Languages and Combinatorics 8(3)
(2003), 417-463.

S. Bozapalidis and O. Louscou-Bozapalidou. “Fuzzy tree language recogniz-
ability”. In: Fuzzy Sets and Systems 161 (2010), 716-734.

W. S. Brainerd. “Tree Generating Regular Systems”. In: Information and Con-
trol 14 (1969), 217-231.

M. Biichse, J. May, and H. Vogler. “Determinization of weighted tree automata
using factorizations”. In: Journal of Automata, Languages and Combinatorics
15(3-4) (2010), 229-254.

107

https://doi.org/10.1016/0020-0190(87)90190-6
https://doi.org/10.1016/0020-0190(87)90190-6
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/BF01692060
https://doi.org/10.1016/0304-3975(82)90019-6
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3640
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3640
https://doi.org/10.25596/jalc-2005-107
https://doi.org/10.25596/jalc-2005-107
https://doi.org/10.25596/jalc-2003-417
https://doi.org/10.25596/jalc-2003-417
https://doi.org/10.1016/j.fss.2009.08.008
https://doi.org/10.1016/j.fss.2009.08.008
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.25596/jalc-2010-229
https://doi.org/10.25596/jalc-2010-229

108

Other references

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Ed. by
P.R. Halmos, F.W. Gehring, and C.C. Moore. First Edition. Vol. 78. Graduate
Texts in Mathematics. Corrected version available at https: //www . math .
uwaterloo.ca/ “snburris/htdocs/ualg. html. New York: Springer-Verlag,
1981.

M. Ciri¢, M. Droste, J. Ignjatovi¢, and H. Vogler. “Determinization of weighted
finite automata over strong bimonoids”. In: Information Sciences 180(18)
(2010), 3479-3520.

H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez, S.
Tison, and M. Tommasi. Tree Automata Techniques and Applications. Available
on: http://tata.gforge.inria.fr. 2008.

B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Vol. 138. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2012.

J. Doner. “Tree acceptors and some of their applications”. In: Journal of Com-
puter and System Sciences 4 (1970), 406—451.

M. Droste and P. Gastin. “Weighted Automata and Weighted Logics”. In: 32nd
Int. Colloquium Automata, Languages and Programming (ICALP 2005). Ed. by
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung. Vol. 3580.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2005, 513—
525.

M. Droste and P. Gastin. “Weighted automata and weighted logics”. In: Theo-
retical Computer Science 380(1-2) (2007), 69-86.

M. Droste and P. Gastin. “Weighted Automata and Weighted Logics”. In: Hand-
book of Weighted Automata. Ed. by M. Droste, W. Kuich, and H. Vogler. Mono-
graphs in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
2009. Chap. 5.

M. Droste, D. Heusel, and H. Vogler. “Weighted unranked tree automata over
tree valuation monoids and their characterization by weighted logics”. In: Al-
gebraic Informatics (CAI 2015). Vol. 9270. Lecture Notes in Computer Science.
Springer, 2015, 90-102.

M. Droste, Chr. Pech, and H. Vogler. “A Kleene Theorem for Weighted Tree
Automata”. In: Theory of Computing Systems 38 (2005), 1-38.

M. Droste, T. Stiiber, and H. Vogler. “Weighted finite automata over strong
bimonoids”. In: Information Sciences 180(1) (2010), 156-166.

M. Droste and H. Vogler. “Weighted Tree Automata and Weighted Logics”. In:
Theoretical Computer Science 366(3) (2006), 228-247.

https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://doi.org/10.1016/j.ins.2010.05.020
https://doi.org/10.1016/j.ins.2010.05.020
http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://www.sciencedirect.com/science/article/pii/S0022000070800411
https://link.springer.com/chapter/10.1007/11523468_42
https://www.sciencedirect.com/science/article/pii/S0304397507001582
https://link.springer.com/chapter/10.1007/978-3-642-01492-5_5
https://link.springer.com/book/10.1007/978-3-642-01492-5
https://link.springer.com/book/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-319-23021-4_9
https://doi.org/10.1007/978-3-319-23021-4_9
https://link.springer.com/article/10.1007/s00224-004-1096-z
https://link.springer.com/article/10.1007/s00224-004-1096-z
https://doi.org/10.1016/j.ins.2009.09.003
https://doi.org/10.1016/j.ins.2009.09.003
https://doi.org/10.1016/j.tcs.2006.08.025

Other references 109

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Droste and H. Vogler. “Weighted automata and multi-valued logics over
arbitrary bounded lattices”. In: Theoretical Computer Science 418 (2012), 14—
36.

S. Eilenberg. Automata, Languages, and Machines — Volume A. Vol. 59. Pure
and Applied Mathematics. Academic Press, 1974.

J. Engelfriet. Tree automata and tree grammars. Tech. rep. DAIMI FN-10. see
also: arXiv:1510.02036v1 [cs.FL] 7 Oct 2015. Aarhus, Denmark: Inst. of Math-
ematics, University of Aarhus, Department of Computer Science, 1975.

Z. Esik and W. Kuich. Modern Automata Theory. see: https : / /www . dng .
tuwien.ac.at/kuich/mat.pdf.

Z. Esik and W. Kuich. “Formal Tree Series”. In: Journal of Automata, Languages
and Combinatorics 8(2) (2003), 219-285.

Z. Esik and G. Liu. “Fuzzy tree automata”. In: Fuzzy Sets and Systems 158(13)
(2007), 1450-1460.

Z. Filop. “Local Weighted Tree Languages’. In: Acta Cybernetica 22(2)
(2015), 393-402.

Z. Fiilop, A. Maletti, and H. Vogler. “A Kleene theorem for weighted tree au-
tomata over distributive multioperator monoids”. In: Theory of Computing Sys-
tems 44 (2009), 455-499.

Z. Fiilop, T. Stiiber, and H. Vogler. “A Biichi-like theorem for weighted tree
automata over multioperator monoids”. In: Theory of Computing Systems 50
(2012), 241-278.

Z. Fiilop and H. Vogler. “Weighted tree automata and tree transducers”. In:
Handbook of Weighted Automata. Ed. by M. Droste, W. Kuich, and H. Vogler.
EATCS Monographs in Theoretical Computer Science. Springer-Verlag, 2009.
Chap. 9, 313-403.

Z. Filop and H. Vogler. Weighted Tree Automata — May it be a little more? see:
arXiv:2212.05529v1 [cs.FL] 11 Dec 2022. 2022.

F. Gécseg and M. Steinby. Tree Automata. see also: arXiv:1509.06233v1 [cs.FL]
21 Sep 2015. Akadémiai Kiadd, Budapest, 1984.

P. Gillibert. “The finitness problem for automaton semigroups is undecidable”.
In: International Journal of Algebra and Computation 24(1) (2014), 1-9.

J.S. Golan. Semirings and their Applications. Dordrecht: Kluwer Academic Pub-
lishers, 1999.

Saul Gorn. “Explicit definitions and linguistic dominoes”. In: Proceedings of
the Systems and Computer Science Conference. University of Western Ontario,
1965, 77-115.

https://doi.org/10.1016/j.tcs.2011.11.008
https://doi.org/10.1016/j.tcs.2011.11.008
https://www.elsevier.com/books/automata-languages-and-machines/eilenberg/978-0-12-234001-7
https://doi.org/10.48550/arXiv.1510.02036
https://www.dmg.tuwien.ac.at/kuich/mat.pdf
https://www.dmg.tuwien.ac.at/kuich/mat.pdf
https://www.dmg.tuwien.ac.at/kuich/mat.pdf
https://doi.org/10.25596/jalc-2003-219
https://doi.org/10.1016/j.fss.2007.02.016
https://doi.org/10.14232/actacyb.22.2.2015.10
https://doi.org/10.1007/s00224-007-9091-9
https://doi.org/10.1007/s00224-007-9091-9
https://doi.org/10.1007/s00224-010-9296-1
https://doi.org/10.1007/s00224-010-9296-1
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.48550/arXiv.2212.05529
https://doi.org/10.48550/arXiv.1509.06233
https://doi.org/10.1142/S0218196714500015

110

Other references

[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

G. Gratzer. Universal Algebra. D. van Nostrand Comp., 1968.
G. Grétzer. General Lattice Theory. 2nd. Birkhduser Verlag, 2003.

A. Habel and H.-J. Kreowski. “Some structural aspects of hypergraph lan-
guages generated by hyperedge replacement”. In: Annual Symposium on The-
oretical Aspects of Computer Science (STACS 1987). Ed. by F.J. Brandenburg,
G. Vidal-Naquet, and M. Wirsing. Vol. 247. LNCS. Springer Berlin Heidelberg,
1987, 207-219.

U. Hebisch and H.J. Weinert. Semirings - Algebraic Theory and Applications in
Computer Science. World Scientific, 1993.

L. Herrmann. “A Medvedev Characterization of Recognizable Tree Series”. In:
21th Int. Conf on Developments in Language Theory (DLT 2017). Ed. by E.
Charlier, J. Leroy, and M. Rigo. Vol. 10396. Lecture Notes in Computer Sci-
ence. Springer, Cham, 2017, 210-221.

L. Herrmann. Weighted Tree Automata with Storage. Ph.D. Thesis, 2020, TU
Dresden, Germany). 2020.

W. M. L. Holcombe. Algebraic automata theory. Cambridge University Press,
1982.

W. G. van Hoorn and B. van Oozela. “Fundamental notions in the theory of
seminear-rings”. In: Compositio Mathematica 18 (1967), 65-78.

K. Culik II and A. Salomaa. “On the Decidability of Homomorphism Equiv-
alence for Languages’. In: Journal of Computer and System Sciences 17
(1978), 163-175.

Y. Inagaki and T. Fukumura. “On the description of fuzzy meaning of context-
free languages’. In: Fuzzy Sets and Their Applications to Cognitive and Decision
Processes. Academic Press, New York, 1975, 301-328.

I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. “Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton”. In: Theo-
retical Computer Science 327(3) (2004), 349-373.

K. V. Krishna. “Near-Semirings: Theory and Applications”. PhD thesis. New
Delhi, India: IIT Delhi, 2005.

W. Kuich. “Formal power series over trees”. In: 3rd International Conference on
Developments in Language Theory (DLT 1997), Thessaloniki, Greece. Ed. by S.
Bozapalidis. Aristotle University of Thessaloniki, 1998, 61-101.

https://doi.org/10.1007/BFb0039608
https://doi.org/10.1007/BFb0039608
https://doi.org/10.1007/978-3-319-62809-7_15
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-740685
https://doi.org/10.1016/0022-0000(78)90002-8
https://doi.org/10.1016/0022-0000(78)90002-8
https://doi.org/10.1016/B978-0-12-775260-0.50018-9
https://doi.org/10.1016/B978-0-12-775260-0.50018-9
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1016/j.tcs.2004.02.049

Other references 111

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

W. Kuich. “Linear systems of equations and automata on distributive multi-
operator monoids”. In: Contributions to General Algebra 12 - Proceedings of
the 58th Workshop on General Algebra “58. Arbeitstagung Allgemeine Algebra”,
Vienna University of Technology. June 3-6, 1999. Ed. by D. Dorninger, G. Eigen-
thaler, M. Goldstern, H. K. Kaiser, W. More, and W. B. Miiller. Verlag Johannes
Heyn, 1999, 1-10.

O. Louscou-Bozapalidou. “Some remarks on recognizable tree series”. In: In-
ternational Journal of Computer Mathematics 70 (1999), 649-655.

M. Magidor and G. Moran. Finite Automata over Finite Trees. Tech. rep. 30.
Hebrew University, Jerusalem, 1969.

A. Mandel and I. Simon. “On finite semigroups of matrices”. In: Theoretical
Computer Science 5 (1977), 101-111.

G. H. Mealy. “A Method for Synthesizing Sequential Circuits”. In: The Bell
System Technical Journal 34(5) (1955), 1045-1079.

M. Mohri. “Minimization algorithms for sequential transducers”. In: Theoreti-
cal Computer Science 234(1-2) (2000), 177-201.

D. Radovanovi¢. “Weighted tree automata over strong bimonoids”. In: Novi
Sad Journal of Mathematics 40(3) (2010), 89-108.

G. Rahonis. “Fuzzy languages”. In: Handbook of Weighted Automata. Ed. by M.
Droste, W. Kuich, and H. Vogler. EATCS Monographs in Theoretical Computer
Science. Springer-Verlag, 2009. Chap. 12, 481-517.

A. Restivo and C. Reutenauer. “Rational Languages and the Burnside Prob-
lem”. In: Theoretical Computer Science 40 (1985), 13-30.

W. C. Rounds. “Mappings and grammars on trees”. In: Mathematical Systems
Theory 4(3) (1970), 257-287.

M. P. Schiitzenberger. “On the definition of a family of automata’. In: Informa-
tion and Control 4 (1961), 245-270.

J. W. Thatcher. “Characterizing derivation trees of context-free grammars
through a generalization of finite-automata theory”. In: Journal of Computer
and System Sciences 1(4) (1967), 317-322.

J. W. Thatcher. “Generalized sequential machine maps”. In: Journal of Com-
puter and System Sciences 4(4) (1970), 339-367.

J. W. Thatcher and J. B. Wright. “Generalized finite automata theory with
an application to a decision problem of second-order logic”. In: Mathematical
Systems Theory 2(1) (1968), 57-81.

https://doi.org/10.1080/00207169908804780
https://doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1016/S0304-3975(98)00115-7
https://sites.dmi.uns.ac.rs/nsjom/Papers/40_3/NSJOM_40_3_089_108.pdf
https://doi.org/10.1007/978-3-642-01492-5_12
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/0304-3975(85)90156-2
https://doi.org/10.1016/0304-3975(85)90156-2
https://doi.org/10.1007/BF01695769
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1016/S0022-0000(70)80017-4
https://link.springer.com/article/10.1007/BF01691346
https://link.springer.com/article/10.1007/BF01691346

112 Other references

Summary

In this PhD thesis we investigate weighted tree automata over strong bimonoids.
Fundamentally, a strong bimonoid is a semiring in which the distributivity laws need
not hold. Moreover, the model of weighted tree automaton is a natural extension
of the model of classical finite-state tree automaton by associating to each possible
transition and to each state of a finite-state tree automaton a unique weight, i.e.,
an element of the underlying strong bimonoid. We mention that, since the strong
bimonoid is not necessarily distributive, we cannot apply convenient algebraic meth-
ods to study weighted tree automata over strong bimonoids. Thus, we apply only
combinatorial approaches for our investigations, and hence, consider only the run
semantics of weighted tree automata.

The run semantics of a weighted tree automaton is a mapping from the set of
input trees to the carrier set of the underlying strong bimonoid. Each such mapping
is called a weighted tree language (or formal power series). In order to calculate
the run semantics, we consider runs of the weighted tree automaton. A run is a
mapping from the set of positions of an input tree to the set of states of the weighted
tree automaton. To calculate the weight of a run, we multiply the transition weights
in a fixed order determined by the run using the multiplication operation of the
underlying strong bimonoid. Then, to calculate the run semantics of the weighted
tree automaton for an input tree, we sum up all weights of runs on that input tree
multiplied by the root weight using the addition operation of the underlying strong
bimonoid.

In Chapter |1, we give a brief introduction to the theory of finite-state tree au-
tomata and to the theory of weighted tree automata. In Chapter [2| we discuss the
preliminaries, i.e., the necessary notions, notations, and results of the theory of finite-
state tree automata and of the theory of universal algebra.

In Chapter |3 we recall fundamental notions, notations, and results of weighted
tree languages and weighted tree automata. Moreover, we present our pumping
lemmas for runs of weighted tree automata. With a pumping lemma one can achieve
structural implications on small or particular large trees. Since such pumping lemmas
already exist for weighted tree automata, the question may arise why we present
another pumping lemmas. The existing setting deals with bottom-up deterministic
weighted tree automata over semirings and employs initial algebra semantics, but in

113

114 Summary

our setting we deal with (arbitrary) weighted tree automata over strong bimonoids
and employ run semantics. Nevertheless, if we consider the class of all bottom-up
deterministic weighted tree automata over semirings, then the two settings coincide.

In Chapter 4 we deal with weighted tree generating regular systems. In the lit-
erature, the equivalence of finite-state tree automata and tree generating regular
systems is already proven. A tree generating regular system is a particular ground
term rewriting system extended with a set of designated trees, also known as axioms.
The ground term rewrite relation induced by a tree generating regular system is de-
fined in the standard way. Moreover, the derivation semantics of a tree generating
regular system is the set of those input trees, which can be reached from an axiom
by applying the transitive and reflexive closure of the induced ground term rewrite
relation.

In this chapter we recall the concept of weighted tree generating regular systems
such that (a) each weighted tree generating regular system over the Boolean semiring
is “equivalent” to a tree generating regular system, and vice versa; and (b) under
some mild conditions, each weighted tree generating regular system is equivalent to
a weighted tree automata, and vice versa.

Unfortunately, the derivation semantics of tree generating regular systems allows
replacements at incomparable positions in an arbitrary order. Since the addition op-
eration of a strong bimonoid is not necessarily idempotent, introducing the concept
of weighted tree generating regular systems with the generalized derivation seman-
tics is not suitable for our purposes. More precisely, if we associated a weighted tree
generating regular system to a weighted tree automaton and considered the deriva-
tion semantics of the weighted tree generating regular system, then more than one
computation of the weighted tree generating regular system would correspond to a
single run of the weighted tree automaton. Consequently, the derivation semantics of
the weighted tree generating regular system and the run semantics of the weighted
tree automaton would differ.

In order to avoid that phenomenon, we advocate an alternative, but essentially
equivalent semantics, called reduction semantics, for tree generating regular systems
and introduce the concept of weighted tree generating regular system only with the
generalization of this alternative semantics. The reduction semantics of tree gener-
ating regular systems has the following two characteristics:

(i) Itis based on the restriction of the induced ground the term rewriting relation.
In this case the restriction means that replacements can be performed only at
the minimal position with respect to the depth-first post-ordering of positions
at which a replacement is possible.

(ii) It reverses the direction of the computation, i.e., the reduction semantics of a
tree generating regular system is the set of those input trees, from which can
be reached an axiom by applying the transitive and reflexive closure of the

Summary 115

restricted ground term rewrite relation.

Surprisingly, the derivation semantics and the reduction semantics of tree gener-
ating regular systems are essentially equivalent as follows. For each tree generating
regular system, we can construct another tree generating regular system such that
the derivation semantics of the former and the reduction semantics of the latter co-
incide. Similarly, for each tree generating regular system, we can construct another
tree generating regular system such that the reduction semantics of the former and
the derivation semantics of the latter coincide. Moreover, introducing the concept
of weighted tree generating regular system with the generalized reduction semantics
fulfills the aforementioned requirements (a) and (b).

Finally, in Chapter[5], we deal with the crisp-determinization problem of weighted
tree automata. We call a weighted tree automaton crisp-deterministic if it is total
and bottom-up deterministic, and each of its transitions carries either the additive or
the multiplicative unit element of the underlying strong bimonoid; weights different
from these unit elements may occur only as final (or root) weights. Moreover, we say
that a weighted tree automaton is crisp-determinizable if there exists a run seman-
tically equivalent crisp-deterministic weighted tree automaton. Although, the defini-
tion of crisp-deterministic weighted tree automaton is quite restrictive, it is worth to
study them, because they have several desirable properties such as they are bottom-
up deterministic, their run semantics has a finite image, etc. Moreover, each fuzzy
tree automaton can be considered as a particular crisp-determinizable weighted tree
automaton.

In the literature there is a sufficient condition for crisp-determinization, but only
for weighted string automaton. Since each weighted string automaton can be consid-
ered as a weighted tree automaton over a particular ranked alphabet, in a straight-
forward way we generalize that sufficient condition from strings to trees.

Moreover, we prove undecidability (decidability) results regarding the crisp-
determinization problem of weighted tree automata. In particular, we show that it is
undecidable, for an arbitrary weighted tree automaton, whether that weighted tree
automaton satisfies the sufficient condition. Furthermore, also in a straightforward
we generalize the characterization of crisp-determinization from strings to trees, and
prove that it is undecidable, for an arbitrary weighted tree automaton, whether that
weighted tree automaton is crisp-determinizable.

Eventually, we identify two subclasses of all weighted tree automata, for which
the crisp-determinization problem is decidable. In order to do that, we advocate a
new subclass of all strong bimonoids, called past-finite monotonic strong bimonoids.
Basically, a past-finite monotonic strong bimonoid is a strong bimonoid of which
the carrier set is a partially ordered set, each element has finitely many predeces-
sors, and the addition and the multiplication operation have a nondecreasing effect.
Such weight structures have several desirable properties such they are positive, one-

116 Summary

product free, one-summand free etc. Furthermore, well known weights structures,
like the semiring of natural numbers or the max-plus semiring, belong to this sub-
class as well. Then, for an arbitrary weighted tree automaton over an additively
locally finite and past-finite monotonic strong bimonoid (respectively, an unambigu-
ous weighted tree automaton over a past-finite monotonic strong bimonoid), it is
decidable, whether that weighted tree automaton is crisp-determinizable.

Osszefoglal4s

Ebben a disszertacioban er6s bimonoidok feletti sulyozott faautomatakkal
foglalkozunk. Alapvetéen egy erds bimonoid egy olyan félgytlir(i, amelyben a
disztributivitasi azonossagok nem feltétleniil teljesiilnek. Tovabba a sulyozott faau-
tomata a véges faautomata természetes kiterjesztése az altal, hogy a faautomata
minden lehetséges dtmenetéhez és minden dllapotdhoz egy egyedi sulyt, az erds
bimonoid egy elemét, rendeljiik. Megemlitjiik, hogy mivel az er6s bimonoid nem
feltétlentil disztributiv, ezért nem tudjuk alkalmazni a szokasos algebrai mddszereket
a sulyozott faautomatdk tanulmdnyozasa sordn. Ezért a vizsgdlataink sordn csak
kombinatorikus megkozelitéseket haszndlunk, tovabb4d, csak a sulyozott faautomata
futdsi szemantikdjdval foglalkozunk.

Egy sulyozott faautomata futdsi szemantikdja egy leképezés a bemenetet alkoto
fak halmazabdl a stlyozott faautomata alatti er6s bimonoid tartéhalmazaba. Minden
ilyen leképezést sulyozott fanyelvnek (vagy formdlis hatvdnysornak) neveziink. A
futasi szemantika kiszamitasahoz a stlyozott faautomata futasait vessziik alapul. Egy
futas egy leképezés egy bemeneti fa poziciéjanak halmazabdl a stlyozott faautomata
allapotainak halmazaba. Egy futds sulyanak kiszamitdsa sordn az egyes dtmenetek
sulyat szorozzuk 0ssze az er6s bimonoid szorzas muiveletét alkalmazva a futas altal
meghatdrozott sorrendben. Egy fa stlydnak kiszamitdsdhoz pedig 0sszeadjuk az erds
bimonoid 6sszeadas miveletét alkalmazva a bemeneti fan 1év6 Osszes futds sulyat
megszorozva a gyokérsullyal.

Az (1] fejezetben egy rovid bevezet6t adunk a véges faautomatdk és a sulyozott
faautomatak elméletébe. A [2| fejezetben attekintjiik a véges faautomatdk és az
univerzalis algebra elméletéhez tartozé sziikséges fogalmakat, jeloléseket, és ered-
ményeket.

A[3] fejezetben felidézziik a silyozott fanyelvekhez és a stilyozott faautomatédkhoz
kapcsolodé fogalmakat, jeloléseket, és eredményeket. Tovabba, megadjuk a stulyozott
faautomatdak futdsaira vonatkozé pumpalé lemmadinkat. Egy pumpdlé lemma segit-
ségével lehetéségiink nyilik arra, hogy szerkezeti kovetkeztetéseket fogalmazzunk
meg kicsi vagy éppen nagyon nagy fakat illetéen. Mivel hasonlé pumpalé lemmak
mar léteznek sulyozott faautomatdkra, felmeriil a kérdés, hogy miért bizonyitunk
be djabb pumpdlé lemmakat. A meglévé pumpdld lemmadk félgytirt feletti deter-
minisztikus leszallé sulyozott faautomatdkra vonatkoznak és az inicidlis algebra sze-

117

118 Osszefoglalas

mantikat vizsgaljak, azonban mi (tetszoleges) erés bimonoid feletti sulyozott faau-
tomatdkkal foglalkozunk és a futdsi szemantikdt tanulmanyozzuk. Jéllehet, ha a fél-
gylrt feletti 6sszes determinisztikus leszalld sulyozott faautomatédk osztdlyat nézziik,
akkor az eredmények egybeesnek.

A 4] fejezetben sulyozott fagenerdld reguldris rendszerekkel foglalkozunk. A
szakirodalomban mar régdta be van bizonyitva, hogy a véges faautomatak és a
fageneralé reguldris rendszerek ekvivalensek. Egy fagenerdld reguldris rendszer
egy specidlis alaptermatiré rendszer kiegészitve kijelolt fak, mds néven axiémadk,
egy halmazaval. A fagenerdld reguldris rendszer altal indukdlt alaptermatiré rela-
ciét a szokdsos médon definialjuk. Tovabba, egy fagenerald regularis rendszer de-
rivacidés szemantikdja a bemenetet alkotd fak azon halmaza, amelyek elérhet6ek
egy axidmabdl az indukalt alaptermatiré reldcio reflexiv és tranzitiv lezartjdnak
alkalmazasaval.

Ebben a fejezetben felidézziik a sulyozott fageneralé reguldris rendszerek fo-
galmat ugy, hogy (a) minden Boole félgytiri feletti sulyozott fagenerald reguldris
rendszer “ekvivalens” legyen egy fagenerdlé regularis rendszerrel, és viszont; (b)
néhany gyenge feltétel teljesiilése esetén, minden silyozott fagenerald regularis
rendszer ekvivalens legyen egy sulyozott faautomataval, és viszont.

Sajnédlatos mddon, a fagenerdld regularis rendszer derivacidés szemantikdja
megengedi, hogy Osszehasonlithatatlan poziciék esetén a helyettesitéseket tet-
szOleges sorrenben végezziik el. Mivel az erés bimonoid Osszeadds miivelete
nem feltétleniil idempotens, a sulyozott fageneralé regularis rendszer fogalma-
nak bevezetése az 4ltalanositott derivacidés szemantikdval nem megfelel6 a cél-
jainknak. Pontosabban fogalmazva, ha egy sulyozott faautomatdhoz egy stlyozott
fagenerdld reguldris rendszert tarsitunk és vessziik a sulyozott fageneral6 reguldris
rendszer derivacios szemantikajat, akkor a stlyozott fagenerald regularis rendszer
szamitasai koziil egynél tobb is megfelelhet a stulyozott faautomata egy futdasanak.
Kovetkezésképpen a sulyozott fagenerdlé reguldris rendszer derivacids szemantikdja
és a sulyozott faautomata futdsi szemantikaja eltérhet.

Annak érdekében, hogy elkeriiljiik ezt a jelenséget, egy masik, de az eredetivel
ekvivalens szemantika, a redukcids szemantika, bevezetését javasoljuk a fagenerdld
regularis rendszerekhez, valamint a sulyozott fagenerald regularis rendszer fogalmat
csak ennek a masik szemantikdnak az dltalanositasaval vezetjiik be. A fagenerald
regularis rendszer redukcids szemantikdja a kovetkez6 két jellegzetességgel ren-
delkezik:

(i) Az indukdlt alaptermdtird reldcié megszoritdsan alapszik. Ebben az esetben a
megszoritds azt jelenti, hogy a helyettesitések csak a mélységikeresés-utérende-
zésre nézve minimalis lehetséges poziciokban végezhetbek el.

(ii) Megforditja a szdmitds iranyat, azaz egy fagenerald reguldris rendszer reduk-
ciés szemantikdja a bementet alkot6 fak azon halmaza, amelyekbdl elérhet6

Osszefoglalas 119

egy axioma a megszoritott alaptermatird relacio reflexiv és tranzitiv lezartja-
nak alkalmazasdaval.

Meglep6 mddon a fagenerald reguldris rendszerek derivacids szemantikaja és a re-
dukcids szemantikdja lényegében ekvivalens a kovetkez6képpen. Minden fagenerdld
regularis rendszerhez meg tudunk konstrualni egy masik fageneral6 regularis rend-
szert ugy hogy az el6bbi derivacids szemantikdja egybeesik az utébbi redukcids sze-
mantikdjaval. Hasonloképpen, minden fagenerdlé reguldris rendszerhez meg tudunk
konstrudlni egy masik fageneral6 reguldris rendszert gy, hogy az elébbi redukcids
szemantikdja egybeesik az utébbi derivacids szemantikdjaval. Tovabbd, a sulyozott
fagenerdld regularis rendszer fogalmanak bevezetése az altaldnositott redukcids sze-
mantikdval kielégiti a kordbban emlitett (a) és (b) kovetelményeket.

Végiil az fejezetben a sulyozott faautomatdak egységdeterminizaldasaval
foglalkozunk. Egy sulyozott faautomatat egységdeterminisztikusnak neveziink, ha
totalis determinisztikus leszallg, és minden atmenete az er6s bimonoid additiv vagy
multiplikativ egységelemével van sulyozva; az egységelemektdl eltéré sulyok csak
gyokérsulyként fordulhatnak el6. Tovabba azt mondjuk, hogy egy stlyozott faau-
tomata egységdeterminizalhatod, ha létezik vele futasi szemantika szerint ekvivalens
egységdeterminisztikus sulyozott faautomata. Jollehet az egységdeterminisztikus su-
lyozott faautomata definicidja elég korlatozd, mégis megéri tanulmanyozni Oket,
mert szamos kivanatos tulajdonsaggal rendelkeznek, példaul az ilyen sulyozott faau-
tomatak egyben determinisztikus leszallo sulyozott faautomatak is, a futasi szeman-
tikajuk képe véges, stb. Tovabba, minden fuzzy faautomata felfoghaté egy specidlis
egységdeterminizdlhato sulyozott faautomatdnak.

A szakirodalomban létezik az egységdeterminizalhatésagra vonatkozd ele-
genddségi feltétel, de csak sulyozott automatdra. Mivel minden sulyozott automata
felfoghatd egy specidlis rangolt abécé feletti sulyozott faautomatdnak, egyszertien
altalanositjuk az elegenddségi feltételt szavakrol fakra.

Tovabba az egységdeterminizaldsra vonatkozé eldonthetetlenségi
(eldonthet6ségi) eredmények bizonyitunk be. Megmutatjuk, hogy tetszdleges
sulyozott faautomatdra nézve eldonthetetlen, hogy a sulyozott faautomata
kielégiti-e az elegeddségi feltételt. Valamint, szintén egyszer(ien altaldnositjuk
az egységdeterminizacié karakterizdcidjat szavakrol fakra, és bebizonyitjuk, hogy
tetszéleges sulyozott faautomatdra nézve eldonthetetlen, hogy a sulyozott faau-
tomata egységdeterminizalhaté-e.

Legvégiil megmutatunk a sulyozott faautomatdknak olyan két részosztdlyat, ame-
lyekre eldonthet6 az egységdeterminizalhatésag problémaja. Ennek érdekében, az
er0s bimonoidok egy 1j részosztalyat, a véges-sok-el6d monoton erdés bimonoidokat,
javasoljuk. Egy véges-sok-el6d monoton erés bimonoid egy olyan erés bimonoid,
amelynek tartohalmaza egy parcidlisan rendezett halmaz, minden elemnek véges sok
el6dje van, és az 0sszeadds és szorzds miiveletek nemcsokkent6 hatdssal birnak. Az

120 Osszefoglalas

ilyen sulystrukturak szamos kivanatos tulajdonsaggal rendelkeznek gy mint pozitiv-
itds, egyszorzatmentesség, egyosszegmentesség, stb. Tovabbd ismert sulystrukturak,
mint példdul a természetes szdmok félgytirlije vagy a max-plusz félgytrd, is ebbe a
részosztalyba tartoznak. Ekkor, tetszoleges additivan lokalisan véges és véges-sok-
el6d monoton erds bimonoid feletti stlyozott faautomatara (valamint véges-sok-el6d
monoton er6s bimonoid feletti egyértelm stilyozott faautomatdra) eldonthetd, hogy
az adott sulyozott faautomata egységdeterminizalhaté-e.

Acknowledgments

First and foremost, I would like to thank my supervisor, Professor Zoltan Fiilop, for
infecting me with his enthusiasm for weighted tree automata, for accepting me as
his PhD student, and for supervising my PhD studies. From Professor Fiilop, I have
learnt that, despite our best efforts, flaws may remain easily in our papers. Therefore,
it is always worth to read through my papers once again, because the devil is in the
details.

I would also like to thank Professor Heiko Vogler and Professor Manfred Droste for
treating me as an equal research fellow from the beginning of our cooperation. Un-
fortunately, the COVID-19 pandemic interfered with our plans, and hence, we could
not conduct our research in person. But, come rain or shine, we have proceeded with
our research and achieved our goals.

I am grateful to Professor Vogler for teaching me how to grab the essence of
the results to prepare informative and also digestible slides for conferences. From
Professor Droste, I have learnt that, though we have to finish our papers, there is
always one more question, which is worth to be considered. Moreover, I am amazed
and inspired by these three professors’ solid work ethic, diligence, and perfectionism.

Last but not least, I would like to thank my mother, Zsuzsa, my grandparents,
Ilona and Jozsef, my aunt, Anikd, her husband, Andor, and my cousin, Bori for en-
couraging and supporting me on this long, delightful, but sometimes exhausting jour-
ney with their constant love.

121

Alphabetical Index

A

Am

Amax

.AU

Asplit

[A]

absorption axioms

accepting run

additively locally finite

algebra
computable
congruence
finite
homomorphism
isomorphism
lattice
locally finite
monoid
quotient algebra
semigroup
semiring
strong bimonoid
subalgebra

generated by a set
smallest

alphabet

associative

ATrans),

B

B

B-weighted set
B

Ix

N B HEEEESEHEBEE R EEEEREREERE

EEE

123

bi-locally finite
bijective
binary operation
absorption axioms
associative
commutative
distributive
idempotent
identity element
left distributive
right distributive
binary relation
Boole
Boolean semiring
bottom-up deterministic
finite-state tree automaton
weighted tree automaton
bounded
bu deterministic
finite-state tree automaton
weighted tree automaton

C

chain production
commutative
binary operation
monoid
semigroup
strong bimonoid
complete
lattice
monoid
semiring

B EBmld BEHE R & BEE e

HE BEE

kS

ElSIS|E

Els]S

124

Alphabetical Index

strong bimonoid
composition
computable
computation
concatenation
languages
strings
congruence
context
power
Cs

'

HEEHdwwm [HlEdwlE

C
contracting
production
tree generating regular system
weighted tree generating regular
system
crisp-deterministic
crisp-determinizable

EE

HEE

D

D4

d-equivalence
d-generated

A-gtrs

depth-first post-ordering
Ders (&)

Ders (¢, §)

derivation
derivation semantics

B EEEEEEEE

distributive
binary operation
strong bimonoid
E
effective tests
=prdy
equivalence

finite-state tree automata

Mealy machines

tree generating regular systems
weighted tree automata

REEE

weighted tree generating regular
systems
expansive
production
tree generating regular system

F

Fa

family

finite
additive order
algebra
order

finite-reductional

finite-state tree automaton
bottom-up deterministic
bu deterministic
equivalence
fta-hypergraph
run
semantics
total

fta

fta-hypergraph
finite-state tree automaton
weighted tree automaton

G

I'-translation

ground term rewriting system
computation
production

gtrs

H

#max

#o

height

homomorphism
isomorphism

I

idempotent

=

R[S

B[S

FE HEEEEEEEEBHGEE

EIEEEIS

GEERE

Alphabetical Index

N
9

strong bimonoid
identity element
idx 4
idxg(b)
injective
isomorphism

J
Ja

L
lc,9
Langr
language
concatenation
L(A)
La(5)
L,(9)
lattice
bounded
complete
lem
left distributive
binary operation
strong bimonoid
linear ordering
locally finite
loop
power
small
small valid

M

(M)

{(M)}

M3

mapping
bijective
composition
injective
surjective

MaxPlus

Mealy machine

[H [

B

SIEEISEEE=-EE

SIS|EElEEEE

QA Brorome e N[

equivalence
semantics
submonoid

MinPlus

monoid
commutative
complete

monotonic
past-finite

multiplicatively locally finite

N
£33
Nat

0

O¢(gq,b)

Ops(A4)

Ops®)(A4)

ordering
linear
partial

P

partial ordering
partitioning
past-finite monotonic
prd 4
prdg(b)
T
pos
positive
power
context
loop
jdp
production
chain
contracting
expansive
rewrite relation
production complete

o cerols BlIRPNSISISEREIS]S

EEREARREE e

HEREEEEEE

126

Alphabetical Index

Q

quotient algebra

R
Tc,0
r-equivalence
tree generating regular systems
weighted tree generating regular
systems
r-generated
tree language
weighted tree language
r-reduced
r-useful
rank mapping
ranked
alphabet
set
subset
Real(T")
(Real(T"), o, idp~)
realizable
recognizable
weighted language
weighted tree language

reduction
successful
valid
weight
reduction semantics
regular tree grammar
reduced

1

b3

ERE

3

EBBEE

=) [=
SIE

[
IEEEEEEEEEEEEEEEEERE aEEs

related
tree generating regular systems
weighted tree automaton and

weighted tree generating regular

system
rewrite relation 38
L B8
right distributive
binary operation
strong bimonoid
=S B9
:>S,dp @
rtg [60]
run
accepting 12]
combination 30
induced at a position
of finite-state tree automaton 12

of weighted string automaton
of weighted tree automaton
valid

weight

semantics
finite-state tree automaton
Mealy machine

IS

5
—
EEREEREEEEEEE

1

EEE

tree generating regular system

weighted string automaton
weighted tree automaton
weighted tree generating regular
system
[A]
[5]

—
I8E EE

Alphabetical Index

1

N
N

semigroup
commutative
semiring
complete
by
Y -algebra
(3, B)-weighted tree language
(2, B)-wta
(X, B)-wtgrs
Y-fta
Y-hypergraph
XM
d-rtg
3-term algebra
>-tgrs
simple
tree generating regular system
weighted tree generating regular
system
single nonterminal axiom
tree generating regular system
weighted tree generating regular
system
size
split
string
concatenation
length
string ranked alphabet
strong bimonoid
additively locally finite
bi-locally finite
commutative
complete
distributive
effective tests
idempotent
left distributive
monotonic
multiplicatively locally finite
one-product free
one-summand free
past-finite monotonic

ElEREEISEINEEIEEELS]E

& § E

NEEER = ENE S E = el =t S

positive

right distributive

zero-divisor free

zero-sum free
subalgebra

generated by a set

smallest
successful

Suppbp
suppg(S)
support
tree generating regular system
surjective

T
Ty
T™
Termy.
tgrs
0“
0[p]
total
finite-state tree automaton
weighted tree automaton
Transy,
translation
realizable
tree
height
label
position
replacement of subtree
size
subtree
tree generating regular system
contracting
derivation
derivation semantics
expansive
reduction
reduction semantics
related
simple

ra (B[[R[H B E[EHE & 6l

EEEERE

& B 8 EREEEEEBEEEEEERBERE

128 Alphabetical Index
single nonterminal axiom equivalence
support finite order 74
underlying fta-hypergraph

tree language
d-generated
r-generated
recognizable

Ty

trim

U

unambiguous
useful

\%

valid
reduction
run

A\

weight
reduction
run

wta(C, p)

wts(r)

weighted language
recognizable

weighted set
support

weighted string automaton
run
semantics

weighted tree automaton
bottom-up deterministic
bu deterministic
crisp-deterministic
crisp-determinizable

BEEEEEEMEE

B

S
3

[= [
RREREEEEEEE SR

related to weighted tree generating

regular system
run
semantics 23
small valid loops have weight 1
total
trim
unambiguous
useful state

weighted tree generating regular system

00

contracting

finite-reductional

production complete

r-reduced

related to weighted tree automaton
68

simple

single nonterminal axiom

support tree generating regular

[E[F

EE

system 52
underlying tree generating regular
system [50]
weighted tree language
r-generated
recognizable
sum 90
wta 24
wtgrs [50]
Z
zero-divisor free 18]
zero-sum free 18
¢He 39

	Introduction
	Preliminaries
	Basic concepts
	Trees and contexts
	Finite-state tree automata
	Weight structures

	Weighted tree automata and pumping lemmas
	The model
	Pumping lemmas

	Weighted tree generating regular systems
	The problem
	Tree generating regular systems
	The model
	Equivalence of the d-semantics and the r-semantics
	Normal forms of tgrs with r-semantics

	Weighted tree generating regular systems
	The model
	Equivalence of tgrs and wtgrs over the Boolean semiring
	Normal forms of wtgrs

	Equivalence of wta and wtgrs

	Crisp-determinization of wta
	The problem
	A sufficient condition for crisp-determinization
	Undecidability of crisp-determinization
	Decidability of crisp-determinization
	Undecidability and decidability results for weighted string automata

	Publications of the author
	Other references
	Summary
	Összefoglalás
	Acknowledgments
	Alphabetical Index

