INTERACTION BETWEEN HYDROGEN SULPHIDE (H₂S) AND NITRIC OXIDE (NO) IN LEFT VENTRICULAR HYPERTROPHY AND THEIR EFFECT ON RESPONSIVENESS OF ALPHA 1-ADRENERGIC RECEPTORS SUBTYPES IN THE RAT KIDNEY

by

ASHFAQ AHMAD

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

June 2016

My mother Kaniz Fatima, my wife Tabinda Fatima and my sister sister Nusrat Perveen and all members of my happy family

То

ACKNOWLEDGEMENT

First of all I would like to pay extensive thank to Almighty ALLAH, who brought me on this track of research.

I would like to pay my gratitude and tribute to my supervisor Prof. Dr. Munavvar Zubaid Abdul Sattar for his kind supervision during my PhD research work. Indeed his advice, guidance, availability of his experience and knowledge in this field has made my job easier. I feel myself blessed as I joined his laboratory which is well equipped and techniques adopted are acknowledged throughout the world. His supervision style and impressive scientific career always fascinated me to be like him in any stage of my career.Scientific techniques which I learnt from his laboratory heightened my confidence to accelerate my career. Other than a scientific person, he supported me a lot to improve my quality of life in Malaysia. I will never forget the time before and after my open heart surgery when he supported me. I will always keep it in heart as long as it will beat.

I acknowledge the contribution of Dr. Hassaan Anwer Rathore for cosupervising this project. I cannot forget your contribution in my research project and lessons which I learnt from you.

I would like to especially thank Professor Emeritus Dr. Edward Jones, University College Cork, Ireland. I am very lucky to have a great scientist like him who always guided the junior fellows with his valuable suggestions all the way. He was my biggest support during every step in my studies. I wish to thank the Dean of the School of Pharmaceutical Sciences and the Dean of IPS along with their staff who helped me in one way or the other. I would like to acknowledge IPS for providing me graduate assistant (GA) and USM Fellowship award (APEX (1002/JHEA/ATSG4001). I would be unable to complete my research without these supports provided by USM. I also acknowledge the support given by non-academic staff of the School of Pharmaceutical Sciences for their assistance. High appreciation to my CRP laboratory friends Safia Akhtar Khan, Fayyaz Hashmi, Ibrahim Lazhari, Sheryar Afzal and Tan. We spend good time and worked together in amicable way. We built relations for lifelong with each other. My friends group "NAAGS" you people were the reason for fun in life and acceleration of career. I am in love with you people.

Special thanks to Prof. Munavvar Zubaid, Dr. Hassaan Anwer Rathore, Dr. Fahad Saleem, Dr. Imran Masood, Dr. Mohammad Atif, Dr. Amer Hayat Khan, Dr. Haroon Khalid, Dr. Muhammad Adnan Iqbal, Atif Usman, Dr. Ihtisham Omer, Romaisa Lee, Sheryar Afzal and all members of my CRP lab who supported me when I was in need of their support at the time of my open heart surgery. Indeed you people are great human beings and I will keep you in my prayers. Other than this, we enjoyed the golden times of our life together.

My all love and services for my Happy Family. You all members are great and my words cannot express my love and attachment with you people. Last but not least my sincere thanks to my beloved wife Tabinda Fatima and my daughter Zainab Fatima for their patience and sacrifice during my research time. Without their remarkable support and understanding it would be difficult to finish the task.

TABLE OF CONTENTS

Dedic	cation	Ii
Ackn	owledgement	Iii
Table	e of contents	v
List o	f figures	Xii
List o	f tables	Xl
List o	fabbreviations	Xli
Abstr	ak (Bahasa Malaysia)	Xlv
Abstr	act (English)	Xlvii
CHA	PTER 1 – INTRODUCTION	1
1.1	Cardiovascular system	2
1.2	Functional anatomy of heart	3
1.3	Physiology of the heart	5
1.4	Molecular mechanism for the development of left ventricular hypertrophy	6
1.5	Regulation of heart by different systems	9
	1.5.1 Contribution in heart Autonomic nervous system	10
	1.5.1.(a) Role of sympathetic and parasympathetic nervous system in	
	cardiovascular system and left ventricular hypertrophy	10
	1.5.1.(b) Physiological functions of adrenoreceptors	16
	1.5.1.(c) G-protein coupled receptors and Second messenger pathway system for adrenergic receptor	19
1.5.2	Role of rennin angiotensin aldosterone system in LVH	22
	1.5.2.(a) The role of rennin in the development of LVH	25
	1.5.2.(b) Role of angiotensin II in development of LVH	26

	1.5.2.	(c) Role of aldosterone in development of LVH	27
	1.5.2.((d) Aldosterone antagonism	31
1.5.3	Oxida	ative stress	31
	1.5.3. 1.5.3.	(a) Free radicals and reactive oxygen species(b) Antioxidants	32 35
1.5.4	Cont	ribution of oxidative stress in the development of LVH	35
1.6	Diffe	erent types of animal model for the induction of LVH	36
	1.6.1	Spontaneously Hypertensive rats	36
	1.6.2	Renal artery occlusion	38
	1.6.3	Pressure loading by outflow constriction	38
	1.6.4	Catecholamine induced model of LVH	39
1.7	Electr	ical conductivity in heart and electrocardiogram	42
1.8	Kidne	y .	43
	1.8.1	Adrenergic receptors	45
	1.8.2	α_1 -adrenergic receptors subtypes	47
	1.8.3	Renal a1-adrenergic receptors subtypes	48
1.9	Litera	ture survey of hydrogen sulphide (H ₂ S)	49
	1.9.1	History and background of Hydrogen sulphide	49
	1.9.2	Hydrogen sulphide (H ₂ S) in hypertension and inflammation	53
	1.9.3	Hydrogen sulphide (H ₂ S) in oxidative stress and kidney	56
	1.9.4	Review of hydrogen sulphide (H ₂ S) in LVH leading to heart failure	58
1.10	Nitric	oxide background and production	59
	1.10.1	Role of nitric oxide in hypertension	60
	1.10.2	Role of nitric oxide in kidney	62
	1.10.3	Role of nitric oxide in Left ventricular hypertrophy (LVH)	63
1.11	Interac	ction between hydrogen sulphide (H_2S) and nitric oxide (NO)	65
1.12	Alterat	tion in expression of Cystathione y lyase (CSE) in LVH	68

	1.12.1	Determinatio	on of expression of CSE by estimating CSE mRNA	
	by usi	ng different te	chniques	69
	1.12.2	Alteration in	expression of endothelial nitric oxide synthase	
	(eNO	S)		71
1.13	Resea	rch outline		73
	1.13.1	Effect of hyd	lrogen sulphide (H ₂ S) in amelioration of left	
		ventricular hy	pertrophy induced by isoprenaline and caffeine	73
		1.13.1.(a)	Objective	73
		1.13.1.(b)	Hypothesis	74
	1.13.2	The impact of	of LVH on the kidney and beneficial effects of	
		hydrogen sul	phide (H ₂ S) in renal hemodynamics and functional	
		contribution	of adrenergic receptors in the kidney	74
		1.13.2.(a)	Objective	74
		1.13.2.(b)	Hypothesis	75
1.	13.3	Impact of LV	'H on oxidative stress and arterial dysfunction	
1.	13.3	Impact of LV and effect of	'H on oxidative stress and arterial dysfunction bydrogen sulphide (H_2S) in attenuation of oxidative	e
1.	13.3	Impact of LV and effect of stress and ar	⁷ H on oxidative stress and arterial dysfunction ⁵ hydrogen sulphide (H ₂ S) in attenuation of oxidative terial dysfunction	e 75
1.	.13.3	Impact of LV and effect of stress and ar 1.13.3.(a)	⁷ H on oxidative stress and arterial dysfunction ⁵ hydrogen sulphide (H ₂ S) in attenuation of oxidative terial dysfunction Objective	e 75 76
1.	.13.3	Impact of LV and effect of stress and ar 1.13.3.(a) 1.13.3.(b)	⁷ H on oxidative stress and arterial dysfunction ⁵ hydrogen sulphide (H ₂ S) in attenuation of oxidative terial dysfunction Objective Hypothesis	e 75 76 76
1.	13.3	Impact of LV and effect of stress and ar 1.13.3.(a) 1.13.3.(b) Impact of LV	 ⁷H on oxidative stress and arterial dysfunction ⁵hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase 	e 75 76 76
1.	13.3	Impact of LV and effect of stress and ar 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myo	 ⁷H on oxidative stress and arterial dysfunction ⁵hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁵boardium and kidney and effect exogenous 	e 75 76 76
1.	13.3	Impact of LV and effect of stress and ar 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myo administratio	 ⁷H on oxidative stress and arterial dysfunction ⁵hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁶cardium and kidney and effect exogenous ⁶on of hydrogen sulphide (H₂S) in modulation of 	e 75 76 76
1.	13.3	Impact of LV and effect of stress and ar 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myo administration	 ⁷H on oxidative stress and arterial dysfunction ⁶hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁶cardium and kidney and effect exogenous ⁶n of hydrogen sulphide (H₂S) in modulation of ⁶CSE in myocardium and kidney 	75 76 76
1.	13.3	Impact of LV and effect of stress and art 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myc administratic expression of 1.13.4.(a)	 ⁷H on oxidative stress and arterial dysfunction ⁶hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁶coardium and kidney and effect exogenous ⁶on of hydrogen sulphide (H₂S) in modulation of ⁶CSE in myocardium and kidney Objective 	75 76 76 76 77
1.	13.3	Impact of LV and effect of stress and art 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myo administratio expression of 1.13.4.(a) 1.13.4.(b)	 ⁷H on oxidative stress and arterial dysfunction ⁶hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁷Ocardium and kidney and effect exogenous ⁶on of hydrogen sulphide (H₂S) in modulation of ⁷CSE in myocardium and kidney ⁷Objective ⁷Hypothesis 	75 76 76 76 77 77
1.	.13.3	Impact of LV and effect of stress and ar 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myc administratic expression of 1.13.4.(a) 1.13.4.(b) Effect of nitri	 ⁷H on oxidative stress and arterial dysfunction ⁵hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁷Decardium and kidney and effect exogenous ⁷CSE in myocardium and kidney ⁷Objective ⁷Hypothesis ⁷CSE in myocardium and kidney 	75 76 76 76 77 77
1. 1. 1.	.13.3	Impact of LV and effect of stress and art 1.13.3.(a) 1.13.3.(b) Impact of LV (CSE) in myo administratio expression of 1.13.4.(a) 1.13.4.(b) Effect of nitri hypertrophy	 ⁷H on oxidative stress and arterial dysfunction ⁷hydrogen sulphide (H₂S) in attenuation of oxidative terial dysfunction Objective Hypothesis ⁷H on molecular expression of cystathione γ lyase ⁷ocardium and kidney and effect exogenous ⁸on of hydrogen sulphide (H₂S) in modulation of ⁹CSE in myocardium and kidney Objective Hypothesis ⁹c oxide (NO) in amelioration of left ventricular ⁹induced by isoprenaline and caffeine 	75 76 76 77 77 77

	1.13.5.(b)	Hypothesis	78
1.13.6	The impact o	of LVH on the kidney and beneficial effects of	
	nitric oxide (NO) in renal hemodynamics and functional	
	contribution	of adrenergic receptors in the kidney.	78
	1.13.6.(a)	Objective	79
	1.13.6.(b)	Hypothesis	79
1.13.7	Impact of LV	H on oxidative stress and arterial dysfunction	
	and effect of	nitric oxide (NO) in attenuation of oxidative stress	
	and arterial dy	vsfunction	79
	1.13.7.(a)	Objective	80
	1.13.7.(b)	Hypothesis	80
1.13.8	Impact of LV	'H on molecular expression of endothelial nitric	
	oxide synthas	se (eNOS) in myocardium and kidney and effect of	
	nitric oxide ()	NO) in modulation of expression of endothelial	
	nitric oxide s	synthase (eNOS) in myocardium and kidney	80
	1.13.8.(a)	Objective	81
	1.13.8.(b)	Hypothesis	81
1.13.9	Combined eff	fect of hydrogen sulphide (H ₂ S) and nitric oxide	
	(NO) in amel	ioration of left ventricular hypertrophy induced by	
	isoprenaline a	and caffeine	81
	1.13.9.(a)	Objective	81
	1.13.9.(b)	Hypothesis	82
1.13.10	Impact of LV	H on the kidney and combined beneficial effects	
	of hydrogen	sulphide (H_2S) and nitric oxide (NO) in renal	
	hemodynamic	es and functional contribution of adrenergicreceptor	S
	in the kidney		82
1.13.1	0.(a) Objectiv	ve	82

	1.13.11	Impact of LV	H on oxidative stress and arterial dysfunction	
		and combined	effect of hydrogen sulphide (H ₂ S) and nitric oxide	
		in attenuation	of oxidative stress and arterial dysfunction	83
		1.13.11.(a)	Objective	83
		1.13.11.(b)	Hypothesis	83
	1.13.12	Impact of LV	H on molecular expression of cystathione γ lyase	
		(CSE) in myo	cardium and kidney and combined effect of	
		hydrogen sulp	whide (H_2S) and nitric oxide in modulation of	
		expression of	CSE in myocardium and kidney	84
		1.13.12.(a)	Objective	84
		1.13.12.(b)	Hypothesis	84
	1.13.13	Interdependab	le production of hydrogen sulphide (H_2S) and	
		Nitric oxide (1	NO) in plasma and molecular expression of	
		Cystathione γ	lyase (CSE) and endothelial nitric oxide	
		synthase (eN	OS) in myocardium and kidney of Control	
		and LVH rats		84
		1.13.13.(a)	Objective	85
		1.13.13.(b).	Hypothesis	85
СНА	PTER 2	– MATERIA	LS AND METHODS	87
2.1	Study s	scheme		87
2.2	Antiox	idant potential	of NaHS, L-arginine and combined effect of NaHS	

2.2	Antio	xidant potential of NaHS, L-arginine and combined effect of NaHS	
	and L-	arginine	89
	2.2.1	Chemicals	89
	2.2.2	Formation of solutions	89

	2.2.3	DPPH radical-scavenging activity	89
	2.2.4	Percentage inhibition of linoleic acid peroxidation for NAHS, L-arginine and combination of NAHS+NO	91
	2.2.5 I	Reducing power assay for NAHS, L-arginine and combination of NAHS+ L-arginine	91
2.3	In vivo	experiment for left ventricular hypertrophy and intra-renal study	92
	2.3.1	Experimental animals	92
	2.3.2	Induction of left ventricular hypertrophy (LVH)	93
	2.3.3	Experimental groups	93
	2.3.4	Exogenous hydrosulfide (NaHS, donor of H ₂ S) treatment	96
	2.3.5	Exogenous nitric oxide (L-arginine, donor of NO) treatment	96
	2.3.6	Combined treatment by exogenous hydrosulfide (NaHS, donor of H_2S) plus nitric oxide (L-arginine , donor of NO) treatment	96
2.4	Renal	hemodynamic study	96
2.5	Baselin	ne physiological data and ECG for follow up study	97
2.6	Measu	rement of non-invasive blood pressure (NIBP)	97
2.6	System	nic hemodynamic study	102
	2.6.1	Echocardiogram (ECG) recording in anaesthetized rats	102
	2.6.2	Preparation and surgical procedure for acute experiment	102
	2.6.3	Renal vasoconstrictor responses experiment	104
2.7	Measu	rements	106
	2.7.1	Measurement of ECG	106
	2.7.2	Measurement of pulse wave velocity (PWV)	107
	2.7.2.(a	a) Measurement of propagation distance	107
	2.7.2.(t	b) Measurement of propagation time	108
2.8	Measur	rement of kidney, heart and left ventricle indices	108
2.9	Physiol	logical data collection	108

2.10	Measu	rement of plasma and urine creatinine levels	109
	2.10.1	Urine creatinine level	109
	2.10.2	Plasma creatinine level	111
	2.10.3	Estimation of sodium, potassium levels in plasma and urine	111
	2.10.4	Determination of hydrogen sulphide (H_2S) concentration in plasma and urine	112
		2.10.4.(a) Step-1: Traping of H ₂ S	112
		2.10.4.(b) Step –II: Processing of sample	113
		2.10.4.(c) Step III: Precipetation of protein	113
		2.10.4.(d) Step IV: Centrifugation of sample	113
		2.10.4.(e) Construction of standard curve of H ₂ S	114
		2.10.4.(f) Determination of concentration of nitric oxide (NO) in plasma samples	116
	2.10.5	Measurement of ex vivo study antioxidant activity	118
		2.10.5.(a) Plasma Superoxide Dismutase (SOD) levels	118
		2.10.5.(b) Plasma Maleic Dialdehyde (MDA) levels	120
		2.10.5.(c) Plasma Total Antioxiant Capcity (T-AOC)	122
		2.10.5.(d) Glutathione (GSH) in plasma	123
2.11 C	alculati	on of renal function parameters	124
	2.11.1	Urine flow rate	125
	2.11.2	Creatinine clearance (ml/min/100 g of BW)	125
	2.11.3	Absolute creatinine clearance	126
	2.11.4	Absolute sodium and absolute potassium excretion	
	2.11.5	Fractional excretions of sodium (FE_{Na^+}) and potassium (FE_K^+)	126
	2.11.6	Urinary sodium to potassium ratio ($U_{Na+/K+}$)	127
2.12 H	istopath	nological study of heart and kidney tissues	127
	2.12.1	Tissue sectioning	128
	2.12.2	Tissue processing	128

2.12.2.(a) Tissue fixation	129
2.12.2.(b) Tissue dehydration	129
2.12.2.(c) Tissue clearing	129
2.12.3 Tissue trimming and sectioning	130
2.12.4 Tissue floating bath and fixation	132
2.12.5 Tissue staining with hematoxylin and eosin	132
2.12.6 Histopathology of heart and kidney tissue by using Picrosirus	
Red Stain Kit	133
2.13 Realtive quantification of gene of Cystathione γ lyase (CSE) and endothelial nitric oxide synthase (eNOS) mRNAs using quantitative Real-time PCR	134
2.13.1 Relative Quantification	134
2.13.2 Study design	135
2.13.3 Estimation of mRNA expression by using qPCR	136
2.13.3.(a) Extraction of target tissue from animal	137
2.13.3.(a).(i) Disruption and homogenization of samples	137
2.13.3.(b) Isolation, purification and quantification of mRNA	138
2.13.3.(b).(i) Phase of binding washing and elution of RNA	
from sample	139
2.13.3.(b).(ii) Analyzing RNA yield	140
2.13.4 Conversion of RNA to cDNA by Reverse Transcription Kit	140
2.13.5 Amplification of cDNA	143
2.13.5.(a) Construction of standard curve	143
2.13.5.(b) Preparation of reaction mixture for mRNA	
Amplification 144	
2.13.6 Real-time fluorescent PCR chemistry	147
2.13.7 TaqMan [®] Assay for CSE, eNOS and βactin	148
2.13.8 Data analysis from (qPCR) experiment ($\Delta\Delta C_T$ method)	148

2.13.9 Normalization method	150
2.14 Preparation of drugs	152
2.15 List of chemicals	153
2.16 List of instruments	155
2.17 Data analysis	156.
2.17.1 Acute hemodynamic, renal hemodynamic and physiological data	
	156
2.17.2 Renal vasoconstrictor responses to adrenergic agonists	157
2.17.3 Quantitative StepOnePlus real-time PCR data analysis	157
CHAPTER 3 – RESULTS	159
3.1 In vitro study	159
3.1.1 DPPH free radical scavenging assay of NaHS, L-arginine	
and combination of NaHS + L-arginine	159
3.1.2 Linoleic acid peroxidation inhibition by NAHS, L-arginine	
and combination of NAHS+ L-arginine	160
3.1.3 Reducing power assay by NaHS, L-arginine and combination	
of NaHS + L-arginine	160
3.2 In vivo experiments	161
3.2.1 Physiological baseline and follow up data	161
3.2.1.(a) Body weight	161
3.2.1.(b) Water intake	162
3.2.1.(c) Urine output	162
3.2.2 Renal functional parameters	163
3.2.2.(a) Urine flow rate	163

3.2.2.(b) Sodium concentration in plasma	164
3.2.2.(c) Sodium concentration in urine	165
3.2.2.(d) Absolute sodium excretion	166
3.2.2.(e) Fractional excretion of sodium	167
3.2.2.(f) Potassium concentration in plasma	168
3.2.2.(g) Potassium concentration in urine	169
3.2.2.(h) Absolute Potassium excretion	170
3.2.2.(i) Fractional excretion of potassium	171
3.2.2.(j) Urinary sodium to potassium ratio	172
3.2.2.(k) Creatinine concentration in plasma	172
3.2.2.(1) Creatinine concentration in urine	173
3.2.2.(m) Creatinine Clearance	174
3.2.3 Non-invasive blood pressure measurement (NIBP)	175
3.2.3.(a) Systolic blood pressure, Diastolic blood pressure, Mean arterial pressure and Heart rate	175
3.2.4 Acute experiment data	177
3.2.4.(a) Measurement of electrocardiogram (ECG)	177
3.2.4.(b) Measurement of systemic hemodynamic (SBP, DBP,	
MAP, HR and PP)	179
3.2.5 Physical indices of heart and kidney	183
3.2.6 Changes in geometry of heart and left ventricle	187
3.2.6.(a) Thickness of myocardium	187
3.2.6.(b) Internal diameter of LV chamber	188
3.2.7 Measurement of renal cortical blood perfusion	189
3.2.8 Measurement of pulse wave velocity	190
3.2.9 Measurement of ex-vivo antioxidant activity	190
3.2.9.(a) Measurement of plasma malonodialdehyde (MDA)	
Levels 190	
3.2.9.(b) Measurement of plasma superoxide dismutase (SOD)	
activity	191

3.2.9.(c) Measurement of plasma glutathione (GSH) levels	192
3.2.9.(d) Measurement of plasma total antioxidant capacity	
(T-AOC)	193
3.2.9.(e) Measurement of plasma nitric oxide (NO) levels	193
3.2.10 Measurement of hydrogen sulphide (H_2S) and nitric oxide	
(NO) concentration	195
3.2.10.(a) Hydrogen Sulphide (H ₂ S) in plasma	195
3.2.10.(b) Hydrogen Sulphide (H ₂ S) in urine	196
3.2.10.(c) Nitric oxide (NO) in plasma	196
3.2.11 Acute renal vasoconstriction experiments	197
3.2.11.(a) The contribution of α_{1A} -adrenergic receptors subtype	
in renal vasculature of Control WKY and LVH-WKY rats	198
3.2.11.(a).(i) The baseline mean arterial pressure and renal cortica	al
blood perfusion during acute experiment	198
3.2.11.(a).(ii) Renal cortical vasoconstrictor responses	199
3.2.11.(b) The contribution of α_{1B} -adrenergic receptors subtype	
in renal vasculature of Control WKYand LVH-WKY	
rats	203
3.2.11.(b).(i) The baselines mean arterial pressure and renal cortic	cal
blood perfusion during acute experiment	203
3.2.11.(b).(ii) Renal cortical vasoconstrictor responses	204
3.2.11.(c) The contribution of α_{1D} adrenergic receptors subtype	
in renal vasculature of Control WKY and LVH-WKY	
rats	208
3.2.11.(c).(i) The baselines mean arterial pressure and renal	
cortical bloodperfusion during acute experiment	208
3.2.11.(c).(ii) Renal cortical vasoconstrictor responses	209

3.2.11.(d) The contribution of α_{1A} -adrenergic receptors subtype in

renal vasculature of Control-H ₂ S and LVH-H ₂ S rats	213
3.2.11.(e) The contribution of α_{1B} -adrenergic receptors subtype	
in renal vasculature of Control-H ₂ S and LVH-H ₂ S rats	216
3.2.11.(f) The contribution of α_{1D} -adrenergic receptors subtype	
in renal vasculature of Control-H ₂ S and LVH-H ₂ S rats	220
3.2.11.(g) The contribution of α_{1A} -adrenergic receptors subtype	
in renal vasculature of Control-NO and LVH-NO rats	223
3.2.11.(h) The contribution of α_{1B} adrenergic receptors subtype	
in renal vasculature of Control-NO and LVH-NO rats	227
3.2.11.(i) The contribution of α_{1D} -adrenergic receptors subtype	
in renal vasculature of Control-NO and LVH-NO rats	231
3.2.11.(j) The contribution of α_{1A} -adrenergic receptors subtype	
in renal asculature of Control-H ₂ S+NO and LVH-H ₂ S	
+NO rats	234
3.2.11.(k)The contribution of α_{1B} -adrenergic receptors subtype	
in renal vasculature of Control-H ₂ S+NO and LVH-H ₂ S+N	10
rats	238
3.2.11.(1) The contribution of α_{1D} adrenergic receptors subtype	
in renal vasculature of Control- H_2S+NO and LVH- H_2S+NO rats	O 242
3.2.12 Histopathology of heart and kidney tissue	246
3.2.12.(a) Histopathology of heart tissue by using hematoxyllin	
and eosin staining	247
3.2.12.(b) Histopathology of kidney tissue by using hematoxyllin	
and eosin staining	247
3.2.12.(c) Histopathology of heart tissue by using Picrosirius Red	
stain	248
3.2.12.(d) Histopathology of kidney tissue by using Picrosirius	
Red Stain	248
3.3 Quantitative real-time PCR study	247

3.3.1 Standard Curve	248
3.3.1.(a) Kidney CSE, eNOS and β -actin	248
3.3.2 Relative quantification of gene expression	249
3.3.2.(a) Relative quantification of kidney CSE in WKY, H_2S ,	
NO and H ₂ S+NO groups of Control and LVH	249
3.3.2.(b) Relative quantification of kidney eNOS in WKY, H_2S ,	
NO and H ₂ S+NO groups of Control and LVH	251
3.3.2.(c) Relative quantification of heart CSE in WKY, H ₂ S,	
NO and H ₂ S+NO groups of Control and LVH	252
3.3.2.(d) Relative quantification of heart eNOS in WKY, H_2S ,	
NO and H ₂ S+NO groups of Control and LVH	253

CHAPTER 4- DISCUSSION

360

4.1 Antioxidant potential of sodium hydrogen sulphide (NaHS), L-arginine		
and combination of NaHS + L-arginine: An in vitro study	360	
4.1.1 Proposed mechanism of NaHS + L-arginine	362	
4.2 Physiological baseline and follow up data	363	
4.2.1 Body weight	363	
4.2.2 Renal function	365	
4.3 Acute experiments	372	
4.3.1 Electrocardiogram at the end of 5 weeks of study	372	
4.3.2 Systemic hemodynamics during acute experiments	374	
4.3.3 Measurement of physical indices	379	
4.3.4 Measurement of renal cortical blood perfusion	383	
4.3.5 Measurement of pulse wave velocity	387	
4.3.6 Measurement of ex-vivo antioxidant activity	391	
4.3.7 Measurement of H ₂ S and NO	393	
4.3.8 Acute vasoconstrictor responses	398	

4.3.8.(a).(i) Functional contribution of α_{1A} -adrenergic	
receptors subtype in the renal vasculature of Control	
and LVH WKY.	398
4.3.8.(a).(ii) Functional contribution of α_{1A} -adrenergic	
receptors subtype in the renal vasculature of	
Control-H ₂ S and LVH-H ₂ S.	402
4.3.8.(a).(iii) Functional contribution of α_{1A} -adrenergic	
receptors subtype in the renal vasculature of	
Control-NO and LVH-NO.	405
4.3.8.(a).(iv) Functional contribution of α_{1A} -adrenergic receptors	
subtype in the renal vasculature of Control-H ₂ S+NO	
and LVH- H_2S +NO.	408
4.3.8.(b).(i) Functional contribution of α_{1B} -adrenergic receptors	
Subtype in the renal vasculature of Control WKY and	
LVH-WKY.	411
4.3.8.(b).(ii) Functional contribution of α_{1B} -adrenergic receptors	
subtype in the renal vasculature of Control- H_2S and	
LVH-H ₂ S.	416
4.3.8.(b).(iii) Functional contribution of α_{1B} -adrenergic receptors	
subtype in the renal vasculature of Control-NO and	
LVH-NO	419
4.3.8.(b).(iv) Functional contribution of α_{1B} -adrenergic receptors	
subtype in the renal vasculature of Control- H_2S+NO and	
LVH-H ₂ S+NO	423
4.3.8.(c).(i) Functional contribution of α_{1D} -adrenergic receptors	
subtype in the renal vasculature of Control WKY and	
LVH WKY	427

4.3.8.(c).(ii) Functional contribution of α_{1D} -adrenergic receptors	
subtype in the renal vasculature of Control-H ₂ S and	
LVH-H ₂ S	430
4.3.8.(c).(iii)Functional contribution of α_{1D} -adrenergic receptors	
subtype in the renal vasculature of Control-NO and	
LVH-NO	433
4.3.8.(c).(iv) Functional contribution of α_{1D} -adrenergic receptors	
subtype in the renal vasculature of Control-H ₂ S+NO and	
LVH-H ₂ S+NO	437
4.4 Histopathological evidences from heart and kidney tissue	
4.4.1 Histopathological evidence from heart and kidney tissue	
WKY, H ₂ S, NO and combination of H ₂ S+NO groups of Control	
and LVH	439
4.4.2 Histopathological evidence from heart and kidney WKY, H ₂ S,	
NO and combination of H ₂ S+NO groups of Control and LVH	
using Picro sirius Red Stain	441
4.5 Expression of renal and cardiac CSE mRNA and eNOS mRNA in Control	
and LVH groups	442
4.5.1 CSE mRNA and eNOS mRNA expression in heart of WKY, H ₂ S,	
NO and H ₂ S+NO groups of Control and LVH	442
4.5.2 Renal expression of CSE and eNOS mRNA in Control and	
LVH groups	445
4.6 Interchangeable production of hydrogen sulphide and nitric oxide:	
A 'cross-talk'.	446

CHAPTER 5- CONCLUSION	451
REFERENCES	458

APPENDICES

LIST OF PUBLICATIONS

LIST OF FIGURES

Page

Figure 1.1	Anatomy of heart	4
Figure 1.2	Scheme showing steps involved in the development of LVH at molecular level	8
Figure 1.3	Difference between pressure overload hypertrophy and volume load hypertrophy.	9
Figure 1.4	Functional organization of nervous system	12
Figure 1.5	Classification and various functions mediated by adrenoreceptors	16
Figure 1.6	Locations of adrenoreceptors in various parts of body and their physiological functions	17
Figure 1.7	Structure of few catecholamine responsible for hyperactivity of sympathetic nervous system	18
Figure 1.8 (A, B, C and D)	Illustration of mechanism of G-protein coupled receptors and second messenger pathway activation	20,21
Figure 1.9	General effects of angiotensin II in different parts of the body	22
Figure 1.10	Effects of aldosterone in different parts of the body	23
Figure 1.11	Schematic pathway of Renin-Angiotensin Aldosterone System (RAAS)	24
Figure 1.12	Different action of angiotensin II on cardiovascular system	26
Figure 1.13	Various functions of aldosterone	29
Figure 1.14	Chemical pathway of aldosterone (AD) synthesis	30

Figure 1.15	The sequence of reaction in oxidation process and its effects on biological system	34
Figure 1.16	The sequence of events take place from hypertrophic stimulus to the onset of hypertrophy	37
Figure 1.17	Typical identifiable waves generated during ECG	43
Figure 1.18	Anatomy of the kidney	44
Figure 1.19	Classification of adrenergic receptors with respect to functional, molecular cloning and current pharmacological research	46
Figure 1.20	Schematic presentation of H ₂ S production in human body by involving 3 different pathways	50
Figure 2.1	The schematic diagram of overall study design	88
Figure 2.2	Experimental groups for LVH and intra-renal study	95
Figure 2.3	Assembly containing amplifier, restrainer, thermostat and data acquisition system (B) Volume Pressure Recording (Sensor) (C) O-occlusion Cuff (O-Cuff)	98
Figure 2.4	Scheme for the study of left ventricular hypertrophy	100
Figure 2.5	Summary of acute intra-renal experiment	101
Figure 2.6	Procedure of acute experiment	103
Figure 2.7	Calibration curve for H ₂ S	116
Figure 2.8	Microtome machine (Accu-Cut, Sakura, USA) for trimming and sectioning of the tissue.	131
Figure 2.9	Embedding instrument (Shandon-Histocenter -3, Thermo, USA) for embedding of the tissue containing melting region for wax and cooling.	131
Figure 2.10	Experimental design for the molecular expression of CSE and eNOS.	135

Figure 2.11	Quantitative real-time PCR study flow chart	151
Figure 3.1	DPPH free radical scavenging of NaHS. L-arginine and combination of NaHS+ L-arginine at different dose ranging from minimum to maximum doses	257
Figure 3.2	% inhibition of Linoleic acid peroxidation by using NaHS. L-arginine and combination of NaHS+L-arginine at therapeutic doses	258
Figure 3.3	Reducing potential of NaHS, L-arginine and combination of NaHS+L-arginine at different doses	259
Figure 3.4	The changes in body weight of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	260
Figure 3.5	The changes in water intake of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	260
Figure 3.6	The changes in urine output of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	261
Figure 3.7	The changes in urine flow rate of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	261
Figure 3.8	The changes in plasma sodium concentration of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	262
Figure 3.9	The changes in urine sodium concentration of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	262
Figure 3.10	The changes in absolute sodium excretion of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	263
Figure 3.11	The changes in fractional excretion of sodium of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	263

Figure 3.12	The changes in plasma Potassium concentration of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	264
Figure 3.13	The changes in urine Potassium concentration of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	264
Figure 3.14	The changes in absolute potassium excretion of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	265
Figure 3.15	The changes in fractional excretion of potassium of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	265
Figure 3.16	The changes in urinary sodium to potassium ratio of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	266
Figure 3.17	The changes in plasma creatinine concentration of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	266
Figure 3.18	The changes in urine creatinine concentration of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	267
Figure 3.19	The changes in creatinine clearance of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0 and 35	267
Figure 3.20	The Non-invasive measurement of baseline systolic blood pressure of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0	268
Figure 3.21	The Non-invasive measurement of baseline diastolic blood pressure of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0	268
Figure 3.22	The Non-invasive measurement of baseline mean arterial blood pressure of WKY, H ₂ S, NO and H ₂ S+ NOgroups of Control and LVH groups taken on days 0	269
Figure 3.23	The Non-invasively measurement of baseline heart rate of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 0	269

Figure 3.24	The R-R interval changes of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 35	270
Figure 3.25	The changes in R amplitude of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 35	270
Figure 3.26	The changes in QRS interval of WKY, H ₂ S, NO and H ₂ S+ NOgroups of Control and LVH groups taken on days 35	271
Figure 3.27	The changes in QT interval of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken on days 35	271
Figure 3.28	The changes in systolic blood pressure of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken during acute experiment on days 35	272
Figure 3.29	The changes in diastolic blood pressure of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken during acute experiment on days 35	272
Figure 3.30	The changes in mean arterial pressure of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken during acute experiment on days 35	273
Figure 3.31	The changes in heart rate of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken during acute experiment on days 35	273
Figure 3.32	The changes in pulse pressure of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken during acute experiment on days 35	274
Figure 3.33	The changes in heart weight of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	274
Figure 3.34	The changes in LV weight of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	275
Figure 3.35	The changes in kidney weight of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	275
Figure 3.36	The changes in heart indices of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	276

Figure 3.37	The changes in LV indices of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	276
Figure 3.38	The changes in kidney indices of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	277
Figure 3.39	The changes in thickness of myocardium of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	277
Figure 3.40	The changes in internal diameter of LV of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	278
Figure 3.41	The changes in renal cortical blood perfusion of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken after 45 minutes of stabilization in acute experiment on days 35	278
Figure 3.42	The changes in pulse wave velocity of WKY, H_2S , NO and H_2S + NOgroups of Control and LVH groups taken at the end of acute experiment on days 35	279
Figure 3.43	The changes in plasma levels of malanodialdehyde of WKY, H_2S , NO and H_2S +NO groups of Control and LVH groups taken on days 35	279
Figure 3.44	The changes in plasma levels of superoxide dismutase of WKY, H_2S , NO and H_2S +NOgroups of Control and LVH groups taken on days 35	280
Figure 3.45	The changes in plasma levels of glutathione of WKY, H_2S , NO and H_2S +NOgroups of Control and LVH groups taken on days 35	280
Figure 3.46	The changes in plasma total antioxidant capacity of WKY, H_2S , NO and H_2S +NOgroups of Control and LVH groups taken on days 35	281
Figure 3.47	The changes in plasma nitric oxide concentration of WKY, H_2S , NO and H_2S +NOgroups of Control and LVH groupstaken on days 35	281
Figure 3.48	The changes in plasma hydrogen sulphide concentration of WKY, H ₂ S, NO and H ₂ S+NOgroups of Control and LVH	282

groups taken on days 35

Figure 3.49	The changes in hydrogen sulphide concentration in urine of WKY, H_2S , NO and H_2S +NOgroups of Control and LVH groups taken on days 35	282
Figure 3.50	The changes in plasma nitric oxide concentration of WKY, H_2S , NO and H_2S +NOgroups of Control and LVH groups taken on days 35	283
Figure 3.51	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control WKY rats during saline phase, low dose phase and high dose phase of 5- MeU	284
Figure 3.52	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-WKY rats during saline phase, low dose phase and high dose phase of 5- MeU	284
Figure 3.53	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control WKY rats during saline phase, low dose phase and high dose phase of 5- MeU	285
Figure 3.54	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-WKY rats during saline phase, low dose phase and high dose phase of 5- MeU	285
Figure 3.55	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control WKY rats during saline phase, low dose phase and high dose phase of 5- MeU	286
Figure 3.56	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-WKY rats during saline phase, low dose phase and high dose phase of 5- MeU	286
Figure 3.57	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control WKY rats during saline phase, low dose phase and high dose phase of CEC	287
Figure 3.58	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-WKY rats during saline, low dose and high dose phases of CEC	287

Figure 3.59	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control WKY rats during saline phase, low dose phase and high dose phase of CEC	288
Figure 3.60	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-WKY rats during saline phase, low dose phase and high dose phase of CEC	288
Figure 3.61	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control WKY rats during saline phase, low dose phase and high dose phase of CEC	289
Figure 3.62	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-WKY rats during saline phase, low dose phase and high dose phase of CEC	289
Figure 3.63	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control WKY rats during saline phase, low dose phase and high dose phase of BMY 7378	290
Figure 3.64	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-WKY rats during saline phase, low dose phase and high dose phase of BMY 7378	290
Figure 3.65	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control WKY rats during saline phase, low dose phase and high dose phase of BMY 7378	291
Figure 3.66	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-WKY rats during saline phase, low dose phase and high dose phase of BMY 7378	291
Figure 3.67	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control WKY rats during saline phase, low dose phase and high dose phase of BMY 7378	292
Figure 3.68	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-WKY rats during saline phase, low dose phase and high dose phase of BMY 7378	292

Figure 3.69	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control- H_2S rats during saline phase, low dose phase and high dose phase of 5-MeU	293
Figure 3.70	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-H ₂ S rats during saline phase, low dose phase and high dose phase of 5-MeU	293
Figure 3.71	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control- H_2S rats during saline phase, low dose phase and high dose phase of 5-MeU	294
Figure 3.72	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in $LVH-H_2S$ rats during saline phase, low dose phase and high dose phase of 5-MeU	294
Figure 3.73	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control-H ₂ S rats during saline phase, low dose phase and high dose phase of 5- MeU	295
Figure 3.74	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-H ₂ S rats during saline phase, low dose phase and high dose phase of 5- MeU	295
Figure 3.75	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control- H_2S rats during saline phase, low dose phase and high dose phase of CeC	296
Figure 3.76	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-H ₂ S rats during saline phase, low dose phase and high dose phase of CeC	296
Figure 3.77	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control- H_2S rats during saline phase, low dose phase and high dose phase of CeC	297
Figure 3.78	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-H ₂ S rats during saline phase, low dose phase and high dose phase of CeC	297

Figure 3.79	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control- H_2S rats during saline phase, low dose phase and high dose phase of CeC	298
Figure 3.80	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-H ₂ S rats during saline phase, low dose phase and high dose phase of CeC	298
Figure 3.81	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control- H_2S rats during saline phase, low dose phase and high dose phase of BMY	299
Figure 3.82	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-H ₂ S rats during saline phase, low dose phase and high dose phase of BMY	299
Figure 3.83	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control-H ₂ S rats during saline phase, low dose phase and high dose phase of BMY	300
Figure 3.84	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in $LVH-H_2S$ rats during saline phase, low dose phase and high dose phase of BMY	300
Figure 3.85	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control- H_2S rats during saline phase, low dose phase and high dose phase of BMY	301
Figure 3.86	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in $LVH-H_2S$ rats during saline phase, low dose phase and high dose phase of BMY	301
Figure 3.87	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control-NO rats during saline phase, low dose phase and high dose phase of 5-MeU	302
Figure 3.88	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-NO rats during saline phase, low dose phase and high dose phase of 5-MeU	302
Figure 3.89	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control-NO rats during saline phase, low dose phase and high dose phase of 5-MeU	303
Figure 3.90	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-NO rats during saline phase, low dose phase and high dose phase of 5-MeU	303

Figure 3.91	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control-NO rats during saline phase, low dose phase and high dose phase of 5-MeU	304
Figure 3.92	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-NO rats during saline phase, low dose phase and high dose phase of 5-MeU	304
Figure 3.93	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control-NO rats during saline phase, low dose phase and high dose phase of CEC	305
Figure 3.94	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-NO rats during saline phase, low dose phase and high dose phase of CEC	305
Figure 3.95	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control-NO rats during saline phase, low dose phase and high dose phase of CEC	306
Figure 3.96	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-NO rats during saline phase, low dose phase and high dose phase of CEC	306
Figure 3.97	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in Control-NO rats during saline phase, low dose phase and high dose phase of CEC	307
Figure 3.98	Dose response curve of renal vasoconstriction responses to set of doses of methoxamine in LVH-NO rats during saline phase, low dose phase and high dose phase of CEC	307
Figure 3.99	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control-NO rats during saline phase, low dose phase and high dose phase of BMY	308
Figure 3.100	Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-NO rats during saline phase, low dose phase and high dose phase of BMY	308
Figure 3.101	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in Control-NO rats during saline phase, low dose phase and high dose phase of BMY	309
Figure 3.102	Dose response curve of renal vasoconstriction responses to set of doses of phenylephrine in LVH-NO rats during saline phase, low dose phase and high dose phase of BMY	309

- Figure 3.103 Dose response curve of renal vasoconstriction responses to 310 set of doses of methoxamine in Control-NO rats during saline phase, low dose phase and high dose phase of BMY Figure 3.104 Dose response curve of renal vasoconstriction responses to 310 set of doses of methoxamine in LVH-NO rats during saline phase, low dose phase and high dose phase of BMY **Figure 3.105** Dose response curve of renal vasoconstriction responses to 311 set of doses of noradrenaline in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of 5-MeU Figure 3.106 Dose response curve of renal vasoconstriction responses to 311 set of doses of noradrenaline in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of 5-MeU Figure 3.107 Dose response curve of renal vasoconstriction responses to 312 set of doses of phenylephrine in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of 5-MeU Dose response curve of renal vasoconstriction responses to 312 **Figure 3.108** set of doses of phenylephrine in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of 5-MeU Figure 3.109 Dose response curve of renal vasoconstriction responses to 313 set of doses of methoxamine in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of 5-MeU Figure 3.110 Dose response curve of renal vasoconstriction responses to 313 set of doses of methoxamine in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of 5-MeU 314 Figure 3.111 Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of CEC 314 Figure 3.112 Dose response curve of renal vasoconstriction responses to set of doses of noradrenaline in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of CEC Dose response curve of renal vasoconstriction responses to 315 **Figure 3.113** set of doses of phenylephrine in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of CEC Figure 3.114 Dose response curve of renal vasoconstriction responses to 315 set of doses of phenylephrine in LVH-H₂S+NO rats during
 - xxxii

saline phase, low dose phase and high dose phase of CEC

- Figure 3.115 Dose response curve of renal vasoconstriction responses to 316 set of doses of methoxaminein Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of CEC Dose response curve of renal vasoconstriction responses to Figure 3.116 316 set of doses of methoxamine in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of CEC Figure 3.117 Dose response curve of renal vasoconstriction responses to 317 set of doses of noradrenaline in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of BMY **Figure 3.118** Dose response curve of renal vasoconstriction responses to 317 set of doses of noradrenaline in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of BMY Figure 3.119 Dose response curve of renal vasoconstriction responses to 318 set of doses of phenylephrine in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of BMY Figure 3.120 Dose response curve of renal vasoconstriction responses to 318 set of doses of phenylephrine in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of BMY **Figure 3.121** Dose response curve of renal vasoconstriction responses to 319 set of doses of methoxamine in Control-H₂S+NO rats during saline phase, low dose phase and high dose phase of BMY Dose response curve of renal vasoconstriction responses to Figure 3.122 319 set of doses of methoxamine in LVH-H₂S+NO rats during saline phase, low dose phase and high dose phase of BMY Bar graph showing the overall mean of % drop in renal 320 **Figure 3.123** cortical blood perfusion in response to NA in Control WKY and LVH-WKY rats during saline, 5-MeU low dose and 5-MeU high dose phases Figure 3.124 Bar graph showing the overall mean of % drop in renal 320 cortical blood perfusion in response to PE in Control WKY and LVH-WKY rats during saline, 5-MeU low dose and 5-MeU high dose phases Bar graph showing the overall mean of % drop in renal 321 Figure 3.125 cortical blood perfusion in response to ME in Control WKY
 - cortical blood perfusion in response to ME in Control WKY and LVH-WKY rats during saline, 5-MeU low dose and 5-MeU high dose phases

- Figure 3.126 Bar graph showing the overall mean of % drop in renal 321 cortical blood perfusion in response to NA in Control WKY and LVH-WKY rats during saline, CEC low dose and CEC high dose phases
- Figure 3.127 Bar graph showing the overall mean of % drop in renal 322 cortical blood perfusion in response to PE in Control WKY and LVH-WKY rats during saline, CEC low dose and CEC high dose phases
- Figure 3.128 Bar graph showing the overall mean of % drop in renal 322 cortical blood perfusion in response to ME in Control WKY and LVH-WKY rats during saline, CEC low dose and CEC high dose phases
- Figure 3.129 Bar graph showing the overall mean of % drop in renal 323 cortical blood perfusion in response to NA in Control WKY and LVH-WKY rats during saline, BMY low dose and BMY high dose phases
- Figure 3.130 Bar graph showing the overall mean of % drop in renal 323 cortical blood perfusion in response to PE in Control WKY and LVH-WKY rats during saline, BMY low dose and BMY high dose phases
- Figure 3.131 Bar graph showing the overall mean of % drop in renal 324 cortical blood perfusion in response to ME in Control WKY and LVH-WKY rats during saline, BMY low dose and BMY high dose phases
- Figure 3.132 Bar graph showing the overall mean of % drop in renal 325 cortical blood perfusion in response to NA in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, 5-MeU low dose and 5-MeU high dose phases
- Figure 3.133 Bar graph showing the overall mean of % drop in renal 325 cortical blood perfusion in response to PE in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, 5-MeU low dose and 5-MeU high dose phases
- Figure 3.134 Bar graph showing the overall mean of % drop in renal 326 cortical blood perfusion in response to ME in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, 5-MeU low dose and 5-MeU high dose phases

- Figure 3.135 Bar graph showing the overall mean of % drop in renal 326 cortical blood perfusion in response to NA in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, CEC low dose and CEC high dose phases
- Figure 3.136 Bar graph showing the overall mean of % drop in renal 327 cortical blood perfusion in response to PE in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, CEC low dose and CEC high dose phases
- Figure 3.137 Bar graph showing the overall mean of % drop in renal 327 cortical blood perfusion in response to ME in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, CEC low dose and CEC high dose phases
- Figure 3.138 Bar graph showing the overall mean of % drop in renal 328 cortical blood perfusion in response to NA in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, BMY low dose and BMY high dose phases
- Figure 3.139 Bar graph showing the overall mean of % drop in renal 328 cortical blood perfusion in response to PE in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, BMY low dose and BMY high dose phases
- Figure 3.140 Bar graph showing the overall mean of % drop in renal 329 cortical blood perfusion in response to ME in Control, LVH, Control-H₂S and LVH-H₂S rats during saline, BMY low dose and BMY high dose phases
- Figure 3.141 Bar graph showing the overall mean of % drop in renal 329 cortical blood perfusion in response to NA in Control, LVH, Control-NO and LVH-NO rats during saline, 5-MeU low dose and 5MeU high dose phases
- Figure 3.142 Bar graph showing the overall mean of % drop in renal 330 cortical blood perfusion in response to PE in Control-NO and LVH-NO rats during saline, 5-MeU low dose and 5MeU high dose phases
- Figure 3.143 Bar graph showing the overall mean of % drop in renal 330 cortical blood perfusion in response to ME in Control, LVH, Control-NO and LVH-NO rats during saline, 5-MeU low dose and 5MeU high dose phases

- Figure 3.144 Bar graph showing the overall mean of % drop in renal 331 cortical blood perfusion in response to NA in Control, LVH, Control-NO and LVH-NO rats during saline, CEC low dose and CEC high dose phases
- Figure 3.145 Bar graph showing the overall mean of % drop in renal 331 cortical blood perfusion in response to PE in Control-NO and LVH-NO rats during saline, CEC low dose and CEC high dose phases
- Figure 3.146 Bar graph showing the overall mean of % drop in renal 332 cortical blood perfusion in response to ME in Control, LVH, Control-NO and LVH-NO rats during saline, CEC low dose and CEC high dose phases
- Figure 3.147 Bar graph showing the overall mean of % drop in renal 332 cortical blood perfusion in response to NA in Control, LVH, Control-NO and LVH-NO rats during saline, BMY low dose and BMY high dose phases
- Figure 3.148 Bar graph showing the overall mean of % drop in renal 333 cortical blood perfusion in response to PE in Control, LVH, Control-NO and LVH-NO rats during saline, BMY low dose and BMY high dose phases
- Figure 3.149 Bar graph showing the overall mean of % drop in renal 333 cortical blood perfusion in response to ME in Control, LVH, Control-NO and LVH-NO rats during saline, BMY low dose and BMY high dose phases
- Figure 3.150 Bar graph showing the overall mean of % drop in renal 334 cortical blood perfusion in response to NA in Control, LVH, Control-H₂S+NO and LVH-H₂S+NO rats during saline, 5-MeU low dose and 5-MeU high dose phases
- Figure 3.151 Bar graph showing the overall mean of % drop in renal 334 cortical blood perfusion in response to PE in Control, LVH, Control-H₂S+NO and LVH-H₂S+NO rats during saline, 5-MeU low dose and 5-MeU high dose phases
- Figure 3.152 Bar graph showing the overall mean of % drop in renal 335 cortical blood perfusion in response to ME in Control, LVH, Control-H₂S+NO and LVH-H₂S+NO rats during saline, 5-MeU low dose and 5-MeU high dose phases
| Figure 3.153 | Bar graph showing the overall mean of % drop in renal cortical blood perfusion in response to NA in Control, LVH, Control-H ₂ S+NO and LVH-H ₂ S+NO rats during saline , CEC low dose and CEC high dose phases | 335 |
|--------------|--|-----|
| Figure 3.154 | Bar graph showing the overall mean of % drop in renal cortical blood perfusion in response to PE in Control, LVH, Control-H ₂ S+NO and LVH-H ₂ S+NO rats during saline , CEC low dose and CEC high dose phases | 336 |
| Figure 3.155 | Bar graph showing the overall mean of % drop in renal cortical blood perfusion in response to ME in Control, LVH, Control-H ₂ S+NO and LVH-H ₂ S+NO rats during saline , CEC low dose and CEC high dose phases | 336 |
| Figure 3.156 | Bar graph showing the overall mean of % drop in renal cortical blood perfusion in response to NA Control, LVH, in Control-H ₂ S+NO and LVH-H ₂ S+NO rats during saline , BMY low dose and BMY high dose phases | 337 |
| Figure 3.157 | Bar graph showing the overall mean of % drop in renal cortical blood perfusion in response to PE in Control, LVH, Control-H ₂ S+NO and LVH-H ₂ S+NO rats during saline , BMY low dose and BMY high dose phases | 337 |
| Figure 3.158 | Bar graph showing the overall mean of % drop in renal cortical blood perfusion in response to ME in Control, LVH, Control- H_2S+NO and LVH- H_2S+NO rats during saline , BMY low dose and BMY high dose phases | 338 |
| Figure 3.159 | Light microscopy of heart tissue of Control WKY group | 339 |
| Figure 3.160 | Light microscopy of heart tissue, LVH-WKY group | 339 |
| Figure 3.161 | Light microscopy of heart tissue (5 micron thickness) of Control- H_2S | 340 |
| Figure 3.162 | Light microscopy of heart tissue (5 micron thickness) of $LVH-H_2S$. | 340 |
| Figure 3.163 | Light microscopy of heart tissue, group Control-NO | 341 |
| Figure 3.164 | Light microscopy of heart tissue, group LVH-NO | 341 |

Figure 3.165	Light microscopy of heart tissue of Control-H ₂ S+NO	342
Figure 3.166	Light microscopy of heart tissue shows hypertrophied cardiac muscle fibres of LVH-H ₂ S+NO	342
Figure 3.167	Light microscopy of kidney tissue (5 micron thickness) of Control WKY	343
Figure 3.168	Light microscopy of kidney tissue (5 micron thickness) of LVH-WKY	343
Figure 3.169	Light microscopy of kidney tissue (5 micron thickness) of Control- H_2S	344
Figure 3.170	Light microscopy of kidney tissue (5 micron thickness) of $LVH-H_2S$	344
Figure 3.171	Light microscopy of kidney tissue (5 micron thickness) of Control-NO	345
Figure 3.172	Light microscopy of kidney tissue (5 micron thickness) of LVH-NO	345
Figure 3.173	Light microscopy of kidney tissue (5 micron thickness) of Control- H_2S+NO	346
Figure 3.174	Light microscopy of kidney tissue (5 micron thickness) of $LVH-H_2S+NO$	346
Figure 3.175	Light microscopy of heart tissue (5 micron thickness) of Control WKY	347
Figure 3.176	Light microscopy of heart tissue (5 micron thickness) of LVH-WKY	347
Figure 3.177	Light microscopy of heart tissue (5 micron thickness) of Control- H_2S	348
Figure 3.178	Light microscopy of heart tissue (5 micron thickness) of $LVH-H_2S$	348
Figure 3.179	Light microscopy of heart tissue (5 micron thickness) of Control-NO	349
Figure 3.180	Light microscopy of heart tissue (5 micron thickness) of LVH-NO	349

Figure 3.181	Light microscopy of heart tissue (5 micron thickness) of Control- H_2S+NO	350		
Figure 3.182	Light microscopy of heart tissue (5 micron thickness) of $LVH-H_2S+NO$	351		
Figure 3.183	Light microscopy of kidney tissue (5 micron thickness) of Control WKY	351		
Figure 3.184	Light microscopy of kidney tissue (5 micron thickness) of LVH-WKY	352		
Figure 3.185	Light microscopy of kidney tissue (5 micron thickness) of Control- H_2S	352		
Figure 3.186	Light microscopy of kidney tissue (5 micron thickness) of $LVH-H_2S$	353		
Figure 3.187	Light microscopy of kidney tissue (5 micron thickness) of Control-NO	353		
Figure 3.188	Light microscopy of kidney tissue (5 micron thickness) of LVH-NO	354		
Figure 3.189	Light microscopy of kidney tissue (5 micron thickness) of Control- H_2S+NO	354		
Figure 3.190	Light microscopy of kidney tissue (5 micron thickness) of $LVH-H_2S+NO$	354		
Figure 3.191	Standard curve of kidney CSE. CT value vs. log amount of _C DNA	355		
Figure 3.192	Standard curve of kidney eNOS. CT value vs. log amount of _C DNA	356		
Figure 3.193	Standard curve of kidney β -actin. CT value vs. log amount of _C DNA	357		
Figure 3.194	Relative quantification of kidney CSE (mRNA) of WKY, H ₂ S, NO, and H ₂ S+NO groups of Control and LVH rats	358		
Figure 3.195	Relative quantification of kidney eNOS (mRNA) of WKY, H_2S , NO, and H_2S +NO groups of Control and LVH rats			
Figure 3.196	Relative quantification of heart CSE (mRNA) of WKY, H_2S , NO, and H_2S+NO groups of Control and LVH rats	359		

Figure 3.197 Relative quantification of heart eNOS (mRNA) of WKY, 359 H₂S, NO, and H₂S+NO groups of Control and LVH rats

LIST OF TABLES

n

		Page
Table 2.1	Organization of experimental groups.	94
Table 2.2	Components for determination of urine creatinine concentration	110
Table 2.3	Spectrophotmetric absorbance of known concentrations of NaHS ($3.125-100\mu M$) for construction of calibration curve of NaHS	115
Table 2.4	Assay protocol for the measurement of NOx	117
Table 2.5	Assay protocol for measurement of SOD levels	119
Table 2.6	Assay protocol for measurement of MDA levels	121
Table 2.7	Assay protocol for measurement of T-AOC levels	122
Table 2.8	Assay protocol for gluthione assay	124
Table 3.1	Baseline MAP (mmHg) of 5MeU treated Control WKY and LVH-WKY groups	254
Table 3.2	Baseline RCBP (bpu) of 5MeU treated control WKY and LVH-WKY groups	254
Table 3.3	Baseline MAP (mmHg) of CEC treated control WKY and LVH-WKY groups	255
Table 3.4	Baseline RCBP (bpu) of CEC treated control WKY and LVH-WKY groups	255
Table 3.5	Baseline MAP (mmHg) of BMY treated control WKY and LVH-WKY groups	256
Table 3.6	Baseline RCBP (bpu) of BMY treated control WKY and LVH-WKY groups	256

LIST OF ABBREVIATIONS

LVH	Left ventricular hypertrophy			
CHF	Congestive heart failure			
CVS	Cardiovascular system			
AV	Atrio-ventricle valves			
МАР	Mean arterial pressure			
CO	Cardiac output			
RAAS	Renin angiotensin aldosterone system			
SNS	Sympathetic nervous system			
PNS	Parasympathetic nervous sytem			
Ach	A cetylecholine			
NA	Noradronalina			
HD	Hoart rote			
n adrementai a reconter	Alaba ana adampangia nagantan			
B adrenergic receptor	Alpha one adrenergic receptor			
μ_1 -adrenergic receptor	Beta one adrenergic receptors			
IPR	l otal peripheral resistance			
GDP	Guanosine di phosphate			
GIP	Guanosine tri phosphate			
IP3	Inositol 1, 4, 5- triphosphate			
DAG	Diacylglycerol			
AD	Aldosterone			
MAPK	Mitogen activated protein kinase			
HT	Hypertension			
LDL	Low density lipoprotein			
DM	Diabetes mellitus			
ACTH	Adrenocorticotropic hormone			
DHEA	Dihydroepiandroandrenosterone			
ROS	Reactive oxygen species			
ACEi	Angiotensin converting enzyme inhibitor			
NADPH oxidase Nicotinamide adenine dinucleo				
	phosphate-oxidase			
H_2O_2	Hudrogen peroxide			
SOD	Superoxide dismutase			
TNF	Tumor necrosis factor			
SHR	Spontaneously hypertensive rats			
I/C	Isoprenaline/caffeine			
S/C	Sub-cutaneous			
RSNA	Renal sympathetic nerve activity			
SA node	Sino-arterial node			
AV node	Arterio-ventricle node			
ECG	Electrocardiogram			
PCT	Provimal convoluted tubules			
DCT	Distal convoluted tubules			
MeU	Methyluranidil			
CEC	Chloroethylclonidine			
BMV	(8 (2 [4 (2 methoxymbonyl) 1 ninerazinyl)			
	(0-(2-[4-(2-n)(n)(n)(y))-(2-n)(n)(y)) ethyl]-8-azaspiro (4.5) decane 7.0-dione			
	dihydrochloride			
	uniyulochloride			

H ₂ S	Hydrogen sulphide
NO	Nitric oxide
СО	Carbon monoxide
MST	Mercaptopyruvate sulphur transferase
3-MP	3 Mercaptopyruvate
CAT	Cystein amino transferase
CSE	Cystathion gamma lyase
CBS	Cystathione beta synthase
KCL	Potassium chloride
Mm	Micromole
Mm	Milimole
MMP	Matrix metalloproteinase
TIMP	Inhibitor of matrix metalloproteinase
NOS	Nitric oxide synthase
BH₄	Tetrahydrobiotin
L-NMMA	NG-monomethyl-L-arginine
EDRF	Endothelium derived relaxing factor
L-NAME	L-N ^G -Nitroarginine methyl ester
Enos	Endothelial nitric oxide synthase
TAC	Transverse aortic constriction
MI	Myocardial infarction
GSH	Glutathione reductase
T-AOC	Total antioxidant canacity
MDA	Malanodialdehyde
STZ	Streptozotocin
μg	Micro gram
Ng	Nano gram
NIBP	Non invasive blood pressure
mmHg	Millimeter mercury
mg /dl	Milligram per desiliter
mL/min/kg	Millilitre per minute per kilogram
mg/kg	Milligram per kilogram
i.p.	Intraperitoneal
mL	Millilitre
%	Percentage
PWV	Pulse Wave velocity
m/s	Meter per second
μM	Micro moles
nmol/mL	Nano moles per millilitre
μL	Microliter
Ucr.	Urinary creatinine
Pcr.	Plasma creatinine
Bw	Body weight
MAP	Mean arterial blood pressure
SBP	Systolic blood pressure
HR	Heart rate
$U_{Na}V$	Absolute sodium excretion
U _k V	Absolute notacsium exerction
	Absolute potassium excretion
FE _{Na}	Fractional sodium excretion

BPUBlood perfusion unitRCBPRenal cortical blood perfusionU/mLUnits per millilitrePCRPolymerase chain reactionqPCRReal-time PCRRTReverse transcriptionRT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	UFR	Urine flow rate
RCBPRenal cortical blood perfusionU/mLUnits per millilitrePCRPolymerase chain reactionqPCRReal-time PCRRTReverse transcriptionRT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	BPU	Blood perfusion unit
U/mLUnits per millilitrePCRPolymerase chain reactionqPCRReal-time PCRRTReverse transcriptionRT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	RCBP	Renal cortical blood perfusion
PCRPolymerase chain reactionqPCRReal-time PCRRTReverse transcriptionRT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	U/mL	Units per millilitre
qPCRReal-time PCRRTReverse transcriptionRT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	PCR	Polymerase chain reaction
RTReverse transcriptionRT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	qPCR	Real-time PCR
RT-PCRReverse transcription polymerase chain reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	RT	Reverse transcription
reactionRNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	RT-PCR	Reverse transcription polymerase chain
RNARibonucleic acidmRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid		reaction
mRNAMessenger Ribonucleic acidDNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	RNA	Ribonucleic acid
DNADeoxyribonucleic acidcDNAComplementary Deoxyribonucleic acid	mRNA	Messenger Ribonucleic acid
cDNA Complementary Deoxyribonucleic acid	DNA	Deoxyribonucleic acid
	cDNA	Complementary Deoxyribonucleic acid

INTERAKSI YANG KETARA ANTARA HIDROGEN SULFIDA DAN NITRIK OKSIDA TERHADAP HIPERTROPI VENTRIKEL KIRI DAN TINDAK BALAS RESEPTOR ADRENERGIC SUBJENIS ALFA-1 DALAM GINJAL TIKUS

ABSTRAK

Penyelidikan ini telah dijalankan untuk menyiasat kesan rangsangan hipertrofi ventrikel kiri (LVH) ke atas reseptor adrenergik subjenis α_1 terhadap stimulus adrenergik di dalam tikus. Peranan sistem hidrogen sulphida (H2S) dan nitrik oksida (NO) dan interaksinya dalam perkembangan LVH telah dikaji dengan memeriksa kesan pengubahsuaian ekspresi cistation y liase (CSE mRNA) dan enzim endotelial nitrogen oksida sintase (eNOS mRNA) di dalam jantung semasa LVH. Parameter kardiovaskular seperti geometri kardiak, tekanan oksidatif, kekejangan arteri dan rangsangan vaskular kepada stimulus vasoaktif telah dikaji. Di samping itu, kajian ini telah memeriksa fungsi perkumuhan ginjal, haemodinamik dan perubahan histologi selepas NaHS, iaitu penderma H₂ S, L-arginine, iaitu penderma NO dan kombinasi NaHS dan Larginine yang diberi secara eksogenus. Tikus Wistar-Kyoto (WKY) telah dibahagikan kepada dua kumpulan utama iaitu kawalan dan LVH. LVH telah menggunakan isoprenalin (5mg/kg, melalui suntikan secara dengan diaruh subkutaneus setiap 7 jam selama 2 minggu) dan kafein (62mg/L di dalam air minuman selama 2 minggu). Kumpulan ini telah dipecah bahagian lagi kepada 8 kumpulan yang berdasarkan rawatan. NaHS (56µM/kg disuntik secara intraperitoneal selama 5 minggu) atau L-arginine (1.25g/L diberi selama 5 minggu di dalam air minuman) kumpulan kawalan yang dirawat atau kumpulan-kumpulan LVH. Reseptor adrenergik subjenis alfa-1 telah dikaji melalui pemeriksaan tindak balas kepada noradrenalin (NA), fenilefrin (PE) dan metoxamin (ME) di dalam kehadiran latar belakang infusi intraginjal oleh reseptor penghalang adrenergik subjenis alfa-1 yang selektif (5-metilurapidil (5-MeU), kloroetilclonidin (CEC) dan BMY 7378). Data masa-sebenar tindakan rantaian polymerase kuantitatif (telah dinormalisasikan kepada β-actin dan relatif kepada WKY) telah dikira melalui cara $2^{-\Delta\Delta CT}$. Data mewakili min ± S.E.M telah dianalisis menggunakan ANOVA satu-hala atau dua-hala yang bersesuaian dan diikuti dengan ujian pos hoc dengan singnifikasi P<0.05. Tikus LVH yang dirawat dengan H₂S, NO dan kombinasi H₂S dan NO telah menunjukkan peningkatan CSE, eNOS dan eNOS mRNA masing-masing yang signifikan (P<0.05) di dalam myocardium. Di samping itu, terdapat pengurangan yang signifikan (semua adalah P<0.05) di dalam jisim jantung, parameter tekanan oksidatif di dalam plasma dan kekejangan arteri di dalam kumpulan tikus LVH yang dirawat dengan H₂S dan kumpulan tikus LVH yang dirawat dengan NO. Tindak balas reseptor adrenergik subjenis alfa-1 kepada stimulus adrenergik telah menunjukkan peningkatan yang signifikan (semua adalah P<0.05) di dalam LVH-H₂S, LVH-NO atau LVH-H2S+NO. Kesimpulannya, parameter normal kardiak dan parameter fungsi ginjal bergantung kepada system H₂ S dan NO yang utuh. Di dalam kumpulan tikus LVH, pengurangan ekpresi eNOS dan CSE mRNA didapati dalam jantung dan ginjal. Walaubagaimanapun, rawatan dengan H₂S dan NO telah membaikpulihkan ekpresi eNOS dan CSE dan telah meningkatkan parameter fungsi ginjal dan kardiovaskular. Sesungguhnya, dapatan ini menunjukkan kepentingan eNOS dan CSE di dalam patofisiologi model penyakit jantung ini.

INTERACTION BETWEEN HYDROGEN SULPHIDE (H₂S) AND NITRIC OXIDE (NO) IN LEFT VENTRICULAR HYPERTROPHY AND THEIR EFFECT ON RESPONSIVENESS OF ALPHA 1-ADRENERGIC RECEPTORS SUBTYPES IN THE RAT KIDNEY

ABSTRACT

The present study investigated the effect of left ventricular hypertrophy (LVH) on the responsiveness of α_1 -adrenergic receptor subtypes to adrenergic stimuli in the rat. The role of hydrogen sulphide (H₂S) and nitric oxide (NO) systems and their interaction in the progression of LVH was studied by examining the effect of altered expression of cystathione γ lyase (CSE mRNA) and endothelial nitric oxide synthase (eNOS mRNA) in the heart during LVH. Cardiovascular parameters such as cardiac geometry, oxidative stress, arterial stiffness and vascular responsiveness to vasoactive stimuli were studied. In addition, this study examined renal excretory functions, haemodynamics and histopathological changes after exogenous administration of NaHS, an H₂S donor, L-arginine, an NO donor and a combination of NaHS and L-arginine. Wistar-Kyoto (WKY) rats were divided into two major groups of Control and LVH. These groups were then subdivided into 8 groups based on treatment. NaHS (56µM/kg I.P. for 5 weeks) or L-arginine (1.25g/L for 5 weeks in drinking water) treated control or LVH groups. LVH was induced using isoprenaline (5mg/kg, S.C. every 72 hours for 2 weeks) and caffeine (62mg/L in drinking water for 2 weeks). The α_1 -adrenergic receptors subtypes was studied by examining the responsiveness to noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) in the presence of a background intrarenal infusion of selective α_1 -adrenergic receptors blockers (5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378). Real-time quantitative PCR data (normalized to β -actin and relative to WKY) were calculated by $2^{-\Delta\Delta CT}$ method. Data, mean±SEM were subjected to one or two-way ANOVA when appropriate followed by a *post hoc* test with significance at P<0.05. Treatment of LVH rats with H₂S, NO and combination of H₂S+NO enhanced significantly (P<0.05) the expression of CSE, eNOS and eNOS mRNAs in the myocardium respectively. In addition, there was a significant decrease (all P<0.05) in heart mass, oxidative stress parameters in the plasma and arterial stiffness in H₂S and NO groups of LVH rats. The responsiveness of α_1 adrenergic receptors to adrenergic stimuli was significantly enhanced (all P<0.05) in LVH-H₂S, LVH-NO or LVH-H₂S+NO. In conclusion, the normal cardiac and renal functional parameters are dependent on intact H₂S and NO systems. In the LVH rats, there is a down regulation of eNOS and CSE mRNA expressions in the heart and kidney. However, treatment with H₂S and NO restored the expression of eNOS and CSE and enhanced the renal and cardiovascular functional parameters. These findings indicate the importance of eNOS and CSE in the pathophysiology of this model of heart disease.

CHAPTER 1

INTRODUCTION

Left ventricular hypertrophy (LVH) is an inflammatory and compensatory mechanism of heart as a result of elevated afterload. Physiological adaptations in structure lead to pathologically malfunction of heart which ultimately worsens the cardiovascular morbidity and mortality. In compensatory mechanism, heart has to pump more blood against elevated afterload so in this effort left ventricle walls have to stretch more than the normal force of contraction leading to dilation of left ventricle walls thickness. Starting from adaptation to increased work load LVH contributes to increased cardiovascular events by affecting ventricular dysfunction, coronary circulation and arrythmogenesis (Clement et al., 1993).

The prevalence of LVH is age dependent and it is found to be increasing from 6 % under the age of 30 years in Framingham subjects to 43% in those \geq 70 years old (LEVY et al., 1988). Hypertension also contributes to development of LVH (Breslin et al., 1966; Frohlich et al., 1971; Kannel et al., 1969; Savage et al., 1979) which further worsen the cardiovascular system that is evident of hypertensive target organ damage (Dunn et al., 1977; Frohlich et al., 1992; Frohlich, Tarazi, & Dustan, 1971). Severity of hypertension leads to prevalence of LVH ranging from less than 20 % in mild hypertension to \geq 50 % in severe hypertension (Hammond et al., 1986; Savage et al., 1979). Overlooked diagnosis or inappropriate treatment outcomes will make LVH as harbinger of cardiovascular events. Conversely, reduction in LVH may lead to reduced cardiovascular morbidity (Verdecchia et al., 1998).

LVH usually leads to heart hypertrophy leading to congestive heart failure (CHF) associated with increased risk of cardiovascular morbidity and mortality (de Simone et al., 2008; Levy et al., 1990; Vakili et al., 2001). Therefore, diagnosing the cause of LVH is important for targeted therapeutic outcome. Induction of LVH results in many geometrical changes in the heart and pathological changes in cardiovascular system. Lower incidences of cardiovascular events have been reported with the reduction of LVH (Dahlöf et al., 2002; Okin et al., 2006).

The understanding of cardiovascular system is important to know about development, complications and prognosis of LVH.

1.1 Cardiovascular system

The cardiovascular system (CVS) is responsible for the circulation of blood from heart to different parts of body along with the nutritional supply to different organs. The CVS also contributes to theremoval of waste materials from blood by filtration through kidneys and diffusion via lungs. The heart, vessels, red blood cells, white blood cells and platelets collectively constitute the CVS and responsible for the release of several hormones.

1.2 Functional anatomy of the heart

The heart is the organ responsible to pump blood to different organs through the blood vessels. It is enclosed in a thin membrane called the pericardium and located in thoracic cavity just above the diaphragm. Heart muscles form a functional syncitium.

The heart consists of four chambers, the upper two are called atria while thelower two chambers are called ventricles. Heart usually receives deoxygenated blood from different parts of body through vena cavas in right atrium and oxygenated blood into left atrium. Ventricles are usually larger in size than atria because ventricles are responsible to receive blood from atria and pump it to elsewhere. In this effort both ventricles undergo physiological hypertrophy. As such atria are specialized in receiving blood while both ventricles pump the blood to different parts of body. Whole heart muscle is called myocardium and narrow lower portion is called apex while upper broader part is called the base of heart.

Figure 1.1: Functional anatomy of heart (Adopted from Guyton 2006)

The blood is received from superior and inferior vena cava into the right atrium which pumps the blood into right ventricle. The right atrium and right ventricle are connected with a tricuspid valve as shown in Figure 1.1. The right ventricle pushes deoxygenated blood into the lungs by means of pulmonary artery. This deoxygenated blood is oxygenated in the lungs and received into the left atrium of the heart through pulmonary vein. In this respect, pulmonary artery is the onlyartery containing deoxygenated blood while pulmonary vein is the only vein containing oxygenated blood. The left atrium and left ventricles are connected by biscupid mitral valve. Oxygenated blood is pushed into the left ventricle and from here it is pushed to different organs through aorta. The opening of aorta also has semilunar valve as in the pulmonary vein. The left ventricle has to pump blood with great force and eventually undergoes functional hypertrophy and this is the reason for greater chamber size and mass as compared to right ventricle. The backflow of blood into their respective atrial chamber is prevented by mitral valve. Tricuspid and biscuspid valves are collectively knownas atrio-ventricle valves (AV valves). As both the ventricles are subjected to enormous pressure, there are chances that these AV valves cusps may merge into respective atrium. This situation is called prolapsed and can be avoided by attaching AV valves cusps by strands of connective tissue called chordate tendineae to the papillary muscles of the ventricle

1.3 **Physiology of the heart**

The ability of the heart to pump the blood depends upon contraction and relaxation of ventricles. Contraction of the ventricle is termed systole while the relaxation diastole. The pressure exerted by blood on unit area of blood vessels is termed as blood pressure (BP). The blood pressure consists of the systolic (SBP) and diastolic blood (DBP) pressures. Normal values of blood pressure is around 120-140 mmHg for SBP and 70-90 mmHg for DBP. The average pressure or force required to pump the blood into the blood vessels is knownas mean arterial blood pressure (MAP). The value of MAP is measured by one third of SBP plus two third of DBP and value is generally between 90-110 mmHg.

Blood pressure can be calculated by multiplying heart rate (HR) and total peripheral resistance (TPR). The normal HR is 70-80 beats per minutes (BPM). When this rate is increased (above 100 bpm) it is called as tachycardia and when heart rate is decreased (below 60 bpm) is called as bradycardia. The chronotropic action of the heart is controlled by the β_1 -adrenoreceptors.

5

The beginning of one heart beat to the beginning of other is knownas cardiac cycle. Each cardiac cycle is initiated by spontaneous generation of an action potential at the sinus node (SA node). The amount of blood pumped by heart in one minute is called as cardiac output (CO) and its average value is 5.6 L/min. in healthy individual in males while this value is around 4.9 L/min. in females.

1.4 Molecular mechanism for the development of left ventricular hypertrophy

The increased workload on the heart due to increased demand of body for blood and nutrition is most common reason for the onset of LVH. Increased activity of the heart is linked with increased physiological needs such as when doing physical exercise (Russell et al., 2000). Thus, as a result of increased activity there are changes in the structure of heart as a result of new demand. The LVH comprises of structure changes due to increased dimensions of cardiomyocyte, the proliferation of interstitial tissues and rarefaction of coronary circulation (Wollert & Drexler, 2002). When cardiomyocyte are stimulated by any hypertrophic agent or stimulus, it is translated inside the body as second (cytosolic) and third (nucleus) messengers responsible for their actions inside the cells thus regulating the process of transcription. This transcription will cause expression of specific genes responsible for LVH. This is shown in Figure 1.2.

The growth of myocardium cells in LVH may occur either by the addition of sarcomeres in parallel position (pressure overload hypertrophy) or by series addition

(volume overload hypertrophy). This allows the myocardium either to increase in length or increase in diameter leading to eccentric or concentric hypertrophy respectively (Kempf & Wollert, 2004). Hypertrophy due to volume overload may be adaptive (physiological) or may be maladaptive (pathological) (Kempf & Wollert, 2004). The physiological hypertrophy can be observed during adolescence stage, pregnancy and exercise due to transient volume overload while persistent volume overload can lead to pathological hypertrophy as shown in Figure. 1.3.

These anatomical and molecular changes not only occur in the heart but also in the vasculature and intercellular matrix (Gradman & Alfayoumi, 2006). Following pressure load due to aortic stenosis, valvular disease or hypertension the heart is exposed to increased hemodynamic overload (Lorell & Carabello, 2000). Thickness of the myocardium is increased due to persistent volume load. Thus in pressure load hypertrophy (concentric hypertrophy) the thickness of myocardium to chamber dimension ratio is increased (Lorell & Carabello, 2000).

LVH is not only the hypertrophy of the muscle but some molecular and structural changes also occur. Along with muscle hypertrophy, the cardiac vasculature undergo as remodelling (Gradman & Alfayoumi, 2006). The extracellular matrix of the heart is disturbed and elastin to collagen ratio is altered. Major changes occur in interstitium where increased amount of collagen is observed in the heart (Gao et al., 2005). It is of interest that hypertrophy of the cardiomyocyte without fibrosis or vascular changes do not appear to have adverse prognosis (Gradman & Alfayoumi, 2006).

7

Figure 1.2: Scheme showing steps involved in the development of LVH at molecular level

Figure 1.3: Difference between pressure overload hypertrophy and volume load hypertrophy.

1.5 Regulation of heart by different systems

The heart's function involves many systems like sympathetic nervous system and parasympathetic nervous system. In myocardial infarction (F Lombardi et al., 1987) and cardiac failure (Cohn et al., 1984) both the systems are present with abnormalities. The heart is also regulated by renin-angiotensin aldosterone system (RAAS) as hypertension upregulates AT₁ receptors which results in vascular remodelling and heart hypertrophy (Dzau & Braunwald, 1991; Lips et al., 2003; Lombardi et al., 1999; Ruiz-Ortega et al., 2001). Oxidative stress, although not an established system, is an important contributor of cardiovascular disorder. Prooxidants and antioxidants play a vital role in pathogenesis and treatment of cardiovascular ailments.

1.4.1 Contribution of autonomic nervous system in the development of LVH

Autonomic nervous system is one of the components of the nervous system and is responsible for various functions of body. Anatomical division of this system is shown in Figure 1.4.

The autonomic nervous system regulates a number of cardiovascular and renal physiology like myocardial contractility, heart rate, tone of vessels and retention of electrolyte especially sodium. The sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) collectively constitute autonomic nervous system which is responsible for the regulation of normal cardiovascular system. Normally the parasympathetic nervous system is dominant over the SNS with the regulation of vascular tone and cardiac output. It has been observed that abnormalities in sympathetic and parasympathetic nervous systems exist in cardiovascular disease states like heart failure (HF) (Casolo et al., 1989; Cohn et al., 1984; Hasking et al., 1986; Kaye et al., 1995) and myocardial infarction (MI) (Lombardi et al., 1987). Studies have demonstrated that in myocardial infarction and heart failure the degree of abnormality in the autonomic nervous system dysfunction is strong and can be an indicator of prognosis (Nolan et al., 1998; Rovere et al., 1998).

1.5.1.(a) Role of Sympathetic and parasympathetic nervous system in cardiovascular system and left ventricular hypertrophy

There are two neurotransmitters of the autonomic nervous system, acetyl choline (Ach) and noradrenaline (NA). The Ach is released from parasympathetic post ganglionic neurons while NA is released from post ganglionic neurons of the sympathetic nervous system. Ach produces its pharmacological action by binding to receptors called cholinergic receptors. NA produces its pharmacological actions by binding to receptors called adrenergic receptors. The autonomics nervous system regulates different actions of the body by acting on these cholinergic and adrenergic receptors. However, with the development of cardiovascular receptors complications, the SNS predominates over PNS. This heightened SNS activity leads to several pathologies like vasoconstriction, sodium reabsorption and ventricular hypertrophy thus leading to heart failure. Adrenergic receptors are divided into two main categories (1) α -adrenoreceptors (2) β -adrenoreceptors. These receptors are further classified into sub-categories. These receptors exhibit various functions and are shown in Figure 1.4, whereas the location of these adrenoreceptors and their physiological action on different organs are shown in Figure 1.5.

Figure 1.4: Anatomical organization of the nervous system

The sympathetic nervous system plays a key role in the pathogenesis of LVH and its activation is implicated in the occurance of LVH (Julius, 1998; Mancia et al., 1999). Noradrenaline (NA), a neurotransmitter of the SNS, and is involved in the hypertrophy by stimulating the growth of myocyte protein. It has been proventhat SNS and RAS contribute to the development of LVH and are involved in regression of LVH by antihypertensive drugs (Pfeffer et al., 1982). In cardiac tissue, the regional concentration of NA contributes to the development of LVH in early stages (Dang et al., 1999). Some studies suggested that SNS is important in the early stages of development of LVH and hypertension in SHR (Adams et al., 1989; Bevan, 1984; Folkow, 1982; Folkow et al., 1972). The sympathetic hyperactivity results in the imbalance of the ANS in LVH and heart failure (HF) is reflected by the betablockade which reduces the heart rate (HR) that is marked as twice than the control (Coumel et al., 1991). Another study documented that LVH with hypertension is associated with increased sympathetic activity that is confined to the heart, suggesting cardiac NA is responsible for the development of LVH (Schlaich et al., 2003).

There is an increasing body of evidence that suggests non hemodynamic factors of stimulate the LVH (Kelm et al., 1996; Patel et al., 1991). However, these findings have not been seen in humans. Animal experimental data have shown that NA is linked to the mass of LVH and thus, called a myocardial hypertrophic neurohormone (Patel et al., 1991; Simpson, 1983). An increasing number of studies account the SNS for the onset of LVH. NA concentration in regional cardiac tissue as well as systemic circulation is considered to increase the mass of LV by stimulating cell myocyte protein. Noradrenaline is a neurotransmitter of the SNS and

excitation of sympathetic nervous system causes the release of catecholamines. These catecholamines have effects on the heart and peripheral tissues. On the heart, locally they enhances the cardiac stimulation by acting on β_1 receptors which increases the heart rate along with regional cardiac tissue proliferation. An increase in the systemic concentration elevates the total peripheral resistance by constricting the arteries by its actionon α -adrenergic receptors. The different functions of α and β receptors and their classification is shown in Figure 1.5. The involvement and functions of SNS and PNS in different organ is shown in Figure 1.6.

The activity of the heart is controlled by β_1 adrenoreceptors which are located on the heart. These adrenoreceptors are responsible for chronotropic, ionotropic and dromotropic activities as shown in Figure 1.4. The establishment of LVH is due to an overactivity of heart, which results in over performance of the left ventricle. This enhanced activity is due to the excited β_1 adrenoreceptor which is under direct control of SNS. As such in LVH, over stimulation or excitation is expected to trigger LVH and offset the SNS and PNS activities. Noradrenaline acts on β_1 , α_1 and α_2 receptors. Thus, NA not only increases the heart rate but also the total peripheral resistance. It is thought that the heart contractility is increased by NA acting on β_1 receptors which ultimately makes left ventricle to pump more blood into the peripheral parts of the body and increase the thickness of the left ventricle. This action of NA in the onset of LVH along with angiotensin II is supported by the literature (Huang et al., 2012; Kelm et al., 1996). Conversly, total peripheral resistance increases the afterload and makes the left ventricle to apply more pressure to force blood out of the heart. Hence, increased contractility and increased after load contributes to the onset of LVH. Furthermore, another function of NA is myocyte proliferation. Hence, by acting on the SNS, NA contributes to the onset of LVH and systemic elevation of NA contributes to damage of other key organs like kidneys. This notion can be supported by the evidence that plasma noradrenaline level predicts the survival and incidence of cardiovascular events in end stage renal disease (Zoccali et al., 2002).

It has been reported in the data that an increase in LV mass is related to renal nerve sympathetic activity in LVH model of isoprenaline and caffeine (Burns et al., 2007). It can be predicted that any drug having sympathetic inhibition activity can be an effective therapeutic option in LVH. In human, renal denervation technique by means of sympathoinhibition result in amelioration of heart mass and LV function (Mathias C Brandt et al., 2012). Although catecholamines are considered the culprit for cardiovascular abnormality, reported data shown that central activation of SNS is associated with human LV mass irrespective of the fact that this increase is categorized as LVH (Burns et al., 2007).

1.5.1.(b) Physiological functions of adrenoreceptors

 α -Adrenoreceptors have been classified into α_1 -adrenoreceptors and α_2 -adrenoreceptors.

Figure 1.5: Classification and various functions mediated by adrenoreceptors

	Functions	Dominant Receptor	SNS Adrenergic responses	PNS Cholinergic responses
Heart	Rate of contraction	βι	High	Low
	Force of contraction	βι	Increase	None
	Conduction velocity	βι	Faster	Slower
Еуе	Pupil size	α1	Mydriasis	Miosis
Bronchial smooth muscle		β ₂	Relaxation	Contraction
Veins				
GIT	Tone, motility and secretory activity	α_2, β_2	Decrease	Increase
Skeletal muscle		α_{1},β_{2}	Contraction	No enervation
Urinary bladder	Detrusor muscle	В	Relaxation	Contraction
Liver		α ₁ ,β ₂	Increase adrenergic activity	None
Renin secretion		βι	Increase	None
Insulin secretion		a ₂	Decrease	Increase

Figure 1.6: Locations of adrenoreceptors in various parts of body and their physiological functions (drawn by using MS word)

Figure 1.7: Structure of few noradrenaline, adrenaline and isoproterenol responsible for hyperactivity of sympathetic nervous system.

It is established that heart hypertrophy or LVH is due to over activity of the heart due to increased work load. This work load could be the consequence of increased peripheral resistance or due to increased excitability of the heart. In the former situation α_1 receptors are responsible for increased vasoconstriction in peripheral parts of the body. However, in the latter case, β_1 adrenergic receptors are responsible for chronotropic action. The therapeutic option may either decrease the total peripheral resistance (TPR) or decrease the chronotropic action of the heart. It is reported that blocking either α_1 or β_1 receptors resulted in partial reduction of trophic responses while trophic responses were abolished by blocking both receptorss (Zierhut & Zimmer, 1989). Hence, inhibition of hyperactivities of the heart will not only reduce TPR and HR but also attenuate SNS which is implicated in LVH. The

SNS activation is due to increased release of norepinephrine and hyperactivation of β receptors. Thus continuous exposure to NA leads to ventricular remodelling (Adams, 2004). It is also worthwhile mentioning that adrenergic receptors are G-protein coupled receptors and exhibit their responses by acting on G protein.

1.5.1.(c) G-protein coupled receptors and second messenger pathway system for adrenergic receptor

Each subtype of adrenergic receptors has specific affinity for G-protein type either Gq or Gi. α_1 adrenoceptors show preference for Gq, α_2 adrenoceptors link with Gi while β_2 adrenoceptors also couple with Gi (Kirstein & Insel, 2004). G proteins having subunits, an α subunit that bind to guanosine triphosphate (GTP) and $\beta\gamma$ subunits. The binding of an appropriate ligand to the receptors on the extracellular surface activates G proteins. This activation leads to the replacement of GDP by GTP on α subunit so α -GTP and $\beta\gamma$ subunits act on the other cellular effectors called second messenger as shown in Figure 1.7. A common pathway for the activation of Gs protein is activation of adenylyl cyclase by α -GTP that results in the production of cyclic adenosine mono phosphate (cAMP). This cAMP is second messenger and involved in protein phosphorylation. Other than cAMP, G protein also activates phospholipase C responsible for the generation of inositol-1,4,5- triphosphate (IP3) and diacylglycerol (DAG). These effectors regulate the calcium concentration in the cell. This family of receptor transduce signals from light, odors and neurotransmitter like norepinephrine, dopamine, serotonin and acetylecholine.

Figure 1.8(A and B): Illustration of mechanism of G-protein coupled receptor and second messenger pathway activation by neurotransmitter when adenylyl cyslase inactive.

Figure 1.8 (C and D) Illustration of mechanism of G-protein coupled receptor activation (C) by adenylyl cyclase and second messenger pathway activation (D).

1.5.2 Role of renin angiotensin aldosterone system in LVH

The renin angiotensin aldosterone system (RAAS) is a complex system consisting ofrenin, angiotensin and aldosterone. The RAAS is an important system in the regulation of blood pressure. Huge body of data reported that RAAS is involved in the pathogenesis of many cardiovascular diseases. In this system most of the information is derived from the understanding of the vast and broad role of angiotensin in cardiovascular system. Historically angiotensin II hormone was considered to regulate blood pressure, renin release and sodium retention (Ruiz-Ortega et al., 2001). Now it is considered to activate the cells which are responsible for the expression of many substances like cytokines, chemokines and adhesion molecule thatare involved in cell growth, apoptosis, fibrosis and inflammation (Egido, 1996; Matsubara, 1998; Ruiz-Ortega et al., 2001; J Sadoshima, 2000) as shown in Figure 1.9.

Figure 1.9: General effects of angiotensin II in the body

Figure 1.10: Effects of aldosterone in the body

The activation of this pathway start from renin and is completed with the secretion of aldosterone (AD). The AD has substantial importance in RAAS as a controlling mechanism of renal hemodynamics by altering renal reabsorptions and excretions. Various functions of AD are shown in figure 1.10. Different steps involved in this system are shown in figure 1.11.

The RAAS is a multicomponent system with a broad role in different biological systems. The cardiovascular system is mainly controlled by SNS and RAAS. Of the component of RAAS, angiotensin II and aldosterone are more important as shown in figure 1.10 and are involved in the regulation of CVS.

Figure 1.11: Schematic pathway of Renin-Angiotensin Aldosterone System (RAAS)

The RAAS is considered to have an inverse relationship with LV systolic functions in primary and secondary hypertension (Devereux et al., 1987).