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INTERAKSI YANG KETARA ANTARA HIDROGEN SULFIDA DAN

NITRIK OKSIDA TERHADAP HIPERTROPI VENTRIKEL KIRI DAN

TINDAK BALAS RESEPTOR ADRENERGIC SUBJENIS ALFA-l DALAM

GINJAL TIKUS

ABSTRAK

Penyelidikan ini telah dijalankan untuk menyiasat kesan rangsangan

hipertrofi ventrikel kiri (LVH) ke atas reseptor adrenergik subjenis a I terhadap

stimulus adrenergik di dalam tikus. Peranan sistem hidrogen sulphida (H2 S)

dan nitrik oksida (NO) dan interaksinya dalam perkembangan LVH telah

dikaji dengan memeriksa kesan pengubahsuaian ekspresi cistation y liase (CSE

mRNA) dan enzim endotelial nitrogen oksida sintase (eNOS mRNA) di

dalam jantung semasa LVH. Parameter kardiovaskular seperti geometri

kardiak, tekanan oksidatif, kekejangan arteri dan rangsangan vaskular kepada

stimulus vasoaktif telah dikaji. Di samping itu, kajian ini telah memeriksa fungsi

perkumuhan ginjal, haemodinamik dan perubahan histologi selepas NaHS, iaitu

penderma H2 S, L-arginine, iaitu penderma NO dan kombinasi NaHS dan L-

arginine yang diberi secara eksogenus. Tikus Wistar-Kyoto (WKY) telah

dibahagikan kepada dua kumpulan utama iaitu kawalan dan LVH. LVH telah

diaruh dengan menggunakan isoprenalin (Smg/kg, melalui suntikan secara

subkutaneus setiap 7 jam selama 2 minggu) dan kafein (62mglL di dalam air

minuman selama 2 minggu). Kumpulan ini telah dipecah bahagian lagi kepada 8

kumpulan yang berdasarkan rawatan. NaHS (S6JlMlkg disuntik secara

intraperitoneal selama S minggu) atau L-arginine (1.2SglL diberi selama S minggu

di dalam air minuman) kumpulan kawalan yang dirawat atau kumpulan-kumpulan

LVH. Reseptor adrenergik subjenis alfa-1 telah dikaji melalui pemeriksaan tindak

balas kepada noradrenalin (NA), fenilefrin (PE) dan metoxamin (ME) di dalam
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kehadiran latar belakang infusi intraginjal oleh reseptor penghalang adrenergik

subjenis alfa-I yang selektif (5-metilurapidil (5-MeU), kloroetilclonidin (CEC)

dan BMY 7378). Data masa-sebenar tindakan rantaian polymerase kuantitatif

(telah dinormalisasikan kepada p-actin dan relatif kepada WKY) telah dikira

melalui cara TM CT. Data mewakili min ± S.E.M telah dianalisis menggunakan

ANOYA satu-hala atau dua-hala yang bersesuaian dan diikuti dengan ujian pos

hoc dengan singnifikasi P<O.05. Tikus LVH yang dirawat dengan H2S, NO

dan kombinasi H2 S dan NO telah menunjukkan peningkatan CSE, eNOS

dan eNOS mRNA masing-masing yang signifikan (P<O.05) di dalam

myocardium. Di samping itu, terdapat pengurangan yang signifikan (semua

adalah P<O.05) di dalam jisim jantung, parameter tekanan oksidatif di dalam

plasma dan kekejangan arteri di dalam kumpulan tikus LVH yang dirawat dengan

H2 S dan kumpulan tikus LVH yang dirawat dengan NO. Tindak balas reseptor

adrenergik subjenis alfa-I kepada stimulus adrenergik telah menunjukkan

peningkatan yang signifikan (semua adalah P<O.05) di dalam LYH-H2S, LVH-NO

atau LYH-H2S+NO. Kesimpulannya, parameter normal kardiak dan parameter

fungsi ginjal bergantung kepada system H2 S dan NO yang utuh. Di dalam

kumpulan tikus LYH, pengurangan ekpresi eNOS dan CSE mRNA didapati dalam

jantung dan ginjal. Walaubagaimanapun, rawatan dengan H2 S dan NO telah

membaikpulihkan ekpresi eNOS dan CSE dan telah meningkatkan parameter

fungsi ginjal dan kardiovaskular. Sesungguhnya, dapatan ini menunjukkan

kepentingan eNOS dan CSE di dalam patofisiologi model penyakit jantung ini.
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INTERACTION BETWEEN HYDROGEN SULPHIDE (H2S) AND NITRIC

OXIDE (NO) IN LEFT VENTRICULAR HYPERTROPHY AND THEIR

EFFECT ON RESPONSIVENESS OF ALPHA I-ADRENERGIC

RECEPTORS SUBTYPES IN THE RAT KIDNEY

ABSTRACT

The present study investigated the effect of left ventricular hypertrophy

(LVH) on the responsiveness of (II-adrenergic receptor subtypes to adrenergic

stimuli in the rat. The role of hydrogen sulphide (H2S) and nitric oxide (NO) systems

and their interaction in the progression of LVH was studied by examining the effect

of altered expression of cystathione y lyase (CSE mRNA) and endothelial nitric

oxide synthase (eNOS mRNA) in the heart during LVH. Cardiovascular parameters

such as cardiac geometry, oxidative stress, arterial stiffness and vascular

responsiveness to vasoactive stimuli were studied. In addition, this study examined

renal excretory functions, haemodynamics and histopathological changes after

exogenous administration of NaHS, an H2S donor, L-arginine, an NO donor and a

combination of NaHS and L-arginine. Wistar-Kyoto (WKY) rats were divided into

two major groups of Control and LVH. These groups were then subdivided into 8

groups based on treatment. NaHS (56JlM/kg I.P. for 5 weeks) or L-arginine (1.25g1L

for 5 weeks in drinking water) treated control or LVH groups. LVH was induced

using isoprenaline (Smg/kg, S.c. every 72 hours for 2 weeks) and caffeine (62mglL

in drinking water for 2 weeks). The uj-adrenergic receptors subtypes was studied by

examining the responsiveness to noradrenaline (NA), phenylephrine (PE) and

methoxamine (ME) in the presence of a background intrarenal infusion of selective

uj-adrenergic receptors blockers (5-methylurapidil (5-MeU), chloroethy1clonidine

(CEC) and BMY 7378). Real-time quantitative peR data (normalized to �-actin and

relative to WKY) were calculated by 2-MCT method. Data, mean±SEM were
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subjected to one or two-way ANOYA when appropriate followed by a post hoc test

with significance at P<O.05. Treatment of LYH rats with H2S, NO and combination

of H2S+NO enhanced significantly (P<O.05) the expression of eSE, eNOS and

eNOS mRNAs in the myocardium respectively. In addition, there was a significant

decrease (all P<O.05) in heart mass, oxidative stress parameters in the plasma and

arterial stiffness in H2S and NO groups of LYH rats. The responsiveness of al­

adrenergic receptors to adrenergic stimuli was significantly enhanced (all P<O.05) in

LYH-H2S, LYH-NO or LYH-H2S+NO. In conclusion, the normal cardiac and renal

functional parameters are dependent on intact H2S and NO systems. In the LYH rats,

there is a down regulation of eNOS and eSE mRNA expressions in the heart and

kidney. However, treatment with H2S and NO restored the expression of eNOS and

eSE and enhanced the renal and cardiovascular functional parameters. These

findings indicate the importance of eNOS and eSE in the pathophysiology of this

model of heart disease.
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CHAPTER I

INTRODUCTION

Left ventricular hypertrophy (LVH) is an inflammatory and compensatory

mechanism of heart as a result of elevated afterload. Physiological adaptations in

structure lead to pathologically malfunction of heart which ultimately worsens the

cardiovascular morbidity and mortality. In compensatory mechanism, heart has to

pump more blood against elevated afterload so in this effort left ventricle walls have

to stretch more than the normal force of contraction leading to dilation of left

ventricle walls thickness. Starting from adaptation to increased work load LVH

contributes to increased cardiovascular events by affecting ventricular dysfunction,

coronary circulation and arrythmogenesis (Clement et al., 1993).

The prevalence of LVH is age dependent and it is found to be increasing

from 6 % under the age of 30 years in Framingham subjects to 43% in those � 70

years old (LEVY et al., 1988). Hypertension also contributes to development of

LVH (Breslin et al., 1966; Frohlich et al., 1971; Kannel et al., 1969; Savage et al.,

1979) which further worsen the cardiovascular system that is evident of hypertensive

target organ damage (Dunn et al., 1977; Frohlich et al., 1992; Frohlich, Tarazi, &

Dustan, 1971). Severity of hypertension leads to prevalence of LVH ranging from

less than 20 % in mild hypertension to � 50 % in severe hypertension (Hammond et

al., 1986; Savage et al., 1979). Overlooked diagnosis or inappropriate treatment
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outcomes will make LYH as harbinger of cardiovascular events. Conversely,

reduction in LYH may lead to reduced cardiovascular morbidity (Yerdecchia et aI.,

1998).

LYH usually leads to heart hypertrophy leading to congestive heart failure

(CHF) associated with increased risk of cardiovascular morbidity and mortality (de

Simone et al., 2008; Levy et aI., 1990; Vakili et aI., 2001). Therefore, diagnosing the

cause of LYH is important for targeted therapeutic outcome. Induction of LYH

results in many geometrical changes in the heart and pathological changes in

cardiovascular system. Lower incidences of cardiovascular events have been

reported with the reduction ofLYH (Dahlof et aI., 2002; Okin et aI., 2006).

The understanding of cardiovascular system IS important to know about

development, complications and prognosis of LYH.

1.1 Cardiovascular system

The cardiovascular system (CYS) is responsible for the circulation of blood

from heart to different parts of body along with the nutritional supply to different

organs. The CYS also contributes to theremoval of waste materials from blood by

filtration through kidneys and diffusion via lungs. The heart, vessels, red blood

cells, white blood cells and platelets collectively constitute the CYS and responsible

for the release of several hormones.
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1.2 Functional anatomy of the heart

The heart is the organ responsible to pump blood to different organs through

the blood vessels. It is enclosed in a thin membrane called the pericardium and

located in thoracic cavity just above the diaphragm. Heart muscles form a functional

syncitium.

The heart consists of four chambers, the upper two are called atria while

thelower two chambers are called ventricles. Heart usually receives deoxygenated

blood from different parts of body through vena cavas in right atrium and

oxygenated blood into left atrium. Ventricles are usually larger in size than atria

because ventricles are responsible to receive blood from atria and pump it to

elsewhere. In this effort both ventricles undergo physiological hypertrophy. As such

atria are specialized in receiving blood while both ventricles pump the blood to

different parts of body. Whole heart muscle is called myocardium and narrow lower

portion is called apex while upper broader part is called the base of heart.
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Figure 1.1: Functional anatomy of heart (Adopted from Guyton 2006)

The blood is received from superior and inferior vena cava into the right

atrium which pumps the blood into right ventricle. The right atrium and right

ventricle are connected with a tricuspid valve as shown in Figure 1.1. The right

ventricle pushes deoxygenated blood into the lungs by means of pulmonary artery.

This deoxygenated blood is oxygenated in the lungs and received into the left atrium

of the heart through pulmonary vein. In this respect, pulmonary artery is the

onlyartery containing deoxygenated blood while pulmonary vein is the only vein

containing oxygenated blood. The left atrium and left ventricles are connected by

biscupid mitral valve. Oxygenated blood is pushed into the left ventricle and from

here it is pushed to different organs through aorta. The opening of aorta also has

semilunar valve as in the pulmonary vein. The left ventricle has to pump blood with

great force and eventually undergoes functional hypertrophy and this is the reason

for greater chamber size and mass as compared to right ventricle. The backflow of

blood into their respective atrial chamber is prevented by mitral valve. Tricuspid and
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biscuspid valves are collectively knownas atrio-ventricle valves (AV valves). As

both the ventricles are subjected to enormous pressure, there are chances that these

AV valves cusps may merge into respective atrium. This situation is called prolapsed

and can be avoided by attaching AV valves cusps by strands of connective tissue

called chordate tendineae to the papillary muscles of the ventricle

1.3 Physiology of the heart

The ability of the heart to pump the blood depends upon contraction and

relaxation of ventricles. Contraction of the ventricle is termed systole while the

relaxation diastole. The pressure exerted by blood on unit area of blood vessels is

termed as blood pressure (BP). The blood pressure consists of the systolic (SBP) and

diastolic blood (DBP) pressures. Normal values of blood pressure is around 120-140

mmHg for SBP and 70-90 mmHg for DBP. The average pressure or force required to

pump the blood into the blood vessels is knownas mean arterial blood pressure

(MAP). The value ofMAP is measured by one third of SBP plus two third of DBP

and value is generally between 90-110 mmHg.

Blood pressure can be calculated by multiplying heart rate (HR) and total

peripheral resistance (TPR). The normal HR is 70-80 beats per minutes (BPM).

When this rate is increased (above 100 bpm) it is called as tachycardia and when

heart rate is decreased (below 60 bpm) is called as bradycardia. The chronotropic

action of the heart is controlled by the p I-adrenoreceptors.
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The beginning of one heart beat to the beginning of other is knownas cardiac

cycle. Each cardiac cycle is initiated by spontaneous generation of an action

potential at the sinus node (SA node). The amount of blood pumped by heart in one

minute is called as cardiac output (CO) and its average value is 5.6 L'min. in healthy

individual in males while this value is around 4.9 L'min. in females.

1.4 Molecular mechanism for the development of left ventricular

hypertrophy

The increased workload on the heart due to increased demand of body for

blood and nutrition is most common reason for the onset of LVH. Increased activity

of the heart is linked with increased physiological needs such as when doing physical

exercise (Russell et aI., 2000). Thus, as a result of increased activity there are

changes in the structure of heart as a result of new demand. The LVH comprises of

structure changes due to increased dimensions of cardiomyocyte, the proliferation of

interstitial tissues and rarefaction of coronary circulation (Wollert & Drexler, 2002).

When cardiomyocyte are stimulated by any hypertrophic agent or stimulus, it is

translated inside the body as second (cytosolic) and third (nucleus) messengers

responsible for their actions inside the cells thus regulating the process of

transcription. This transcription will cause expression of specific genes responsible

for LVH. This is shown in Figure 1.2.

The growth ofmyocardium cells in LVH may occur either by the addition of

sarcomeres in parallel position (pressure overload hypertrophy) or by series addition
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(volume overload hypertrophy). This allows the myocardium either to increase in

length or increase in diameter leading to eccentric or concentric hypertrophy

respectively (Kempf& Wollert, 2004). Hypertrophy due to volume overload may be

adaptive (physiological) or may be maladaptive (pathological) (Kempf & Wollert,

2004). The physiological hypertrophy can be observed during adolescence stage,

pregnancy and exercise due to transient volume overload while persistent volume

overload can lead to pathological hypertrophy as shown in Figure. 1.3.

These anatomical and molecular changes not only occur in the heart but also

in the vasculature and intercellular matrix (Gradman & Alfayoumi, 2006). Following

pressure load due to aortic stenosis, valvular disease or hypertension the heart is

exposed to increased hemodynamic overload (Lorell & Carabello, 2000). Thickness

of the myocardium is increased due to persistent volume load. Thus in pressure load

hypertrophy (concentric hypertrophy) the thickness of myocardium to chamber

dimension ratio is increased (Lorell & Carabello, 2000).

LVH is not only the hypertrophy of the muscle but some molecular and

structural changes also occur. Along with muscle hypertrophy, the cardiac

vasculature undergo as remodelling (Gradman & Alfayoumi, 2006). The

extracellular matrix of the heart is disturbed and elastin to collagen ratio is altered.

Major changes occur in interstitium where increased amount of collagen is observed

in the heart (Gao et aI., 2005). It is of interest that hypertrophy of the cardiomyocyte

without fibrosis or vascular changes do not appear to have adverse prognosis

(Gradman & Alfayoumi, 2006).
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1.5 Regulation of heart by different systems

The heart's function involves many systems like sympathetic nervous system

and parasympathetic nervous system. In myocardial infarction (F Lombardi et al.,

1987) and cardiac failure (Cohn et a1., 1984) both the systems are present with

abnormalities. The heart is also regulated by renin-angiotensin aldosterone system

(RAAS) as hypertension upregulates ATl receptors which results in vascular

remodelling and heart hypertrophy (Dzau & Braunwald, 1991; Lips et a1., 2003;

Lombardi et a1., 1999; Ruiz-Ortega et a1., 2001). Oxidative stress, although not an

established system, is an important contributor of cardiovascular disorder. Pro-

oxidants and antioxidants play a vital role in pathogenesis and treatment of

cardiovascular ailments.
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1.4.1 Contribution of autonomic nervous system in the development of LVH

Autonomic nervous system is one of the components of the nervous system

and is responsible for various functions of body. Anatomical division of this system

is shown in Figure 1.4.

The autonomic nervous system regulates a number of cardiovascular and

renal physiology like myocardial contractility, heart rate, tone of vessels and

retention of electrolyte especially sodium. The sympathetic nervous system (SNS)

and parasympathetic nervous system (PNS) collectively constitute autonomic

nervous system which is responsible for the regulation of normal cardiovascular

system. Normally the parasympathetic nervous system is dominant over the SNS

with the regulation of vascular tone and cardiac output. It has been observed that

abnormalities in sympathetic and parasympathetic nervous systems exist in

cardiovascular disease states like heart failure (HF) (Casolo et al., 1989; Cohn et al.,

1984; Hasking et al., 1986; Kaye et al., 1995) and myocardial infarction (MI)

(Lombardi et al., 1987). Studies have demonstrated that in myocardial infarction and

heart failure the degree of abnormality in the autonomic nervous system dysfunction

is strong and can be an indicator of prognosis (Nolan et al., 1998; Rovere et al.,

1998).
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1.5.1.(a) Role of Sympathetic and parasympathetic nervous system in

cardiovascular system and left ventricular hypertrophy

There are two neurotransmitters of the autonomic nervous system, acetyl

choline (Ach) and noradrenaline (NA). The Ach is released from parasympathetic

post ganglionic neurons while NA is released from post ganglionic neurons of the

sympathetic nervous system. Ach produces its pharmacological action by binding to

receptors called cholinergic receptors. NA produces its pharmacological actions by

binding to receptors called adrenergic receptors. The autonomies nervous system

regulates different actions of the body by acting on these cholinergic and adrenergic

receptors receptors. However, with the development of cardiovascular

complications, the SNS predominates over PNS. This heightened SNS activity leads

to several pathologies like vasoconstriction, sodium reabsorption and ventricular

hypertrophy thus leading to heart failure. Adrenergic receptors are divided into two

main categories (1) u-adrenoreceptors (2) p-adrenoreceptors. These receptors are

further classified into sub-categories. These receptors exhibit various functions and

are shown in Figure 1.4, whereas the location of these adrenoreceptors and their

physiological action on different organs are shown in Figure 1.5.
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Figure 1.4: Anatomical organization of the nervous system
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The sympathetic nervous system plays a key role in the pathogenesis of LVH

and its activation is implicated in the occurance of LVH (Julius, 1998; Mancia et al.,

1999). Noradrenaline (NA), a neurotransmitter of the SNS, and is involved in the

hypertrophy by stimulating the growth of myocyte protein. It has been proventhat

SNS and RAS contribute to the development of LVH and are involved in regression

of LVH by antihypertensive drugs (Pfeffer et al., 1982). In cardiac tissue, the

regional concentration of NA contributes to the development of LVH in early stages

(Dang et al., 1999). Some studies suggested that SNS is important in the early stages

of development of LVH and hypertension in SHR (Adams et aI., 1989; Bevan, 1984;

Folkow, 1982; Folkow et al., 1972). The sympathetic hyperactivity results in the

imbalance of the ANS in LVH and heart failure (HF) is reflected by the beta­

blockade which reduces the heart rate (HR) that is marked as twice than the control

(Coumel et al., 1991). Another study documented that LVH with hypertension is

associated with increased sympathetic activity that is confined to the heart,

suggesting cardiac NA is responsible for the development of LVH (Schlaich et al.,

2003).

There is an increasing body of evidence that suggests non hemodynamic

factorsto stimulate the LVH (Kelm et al., 1996; Patel et a1., 1991). However, these

findings have not been seen in humans. Animal experimental data have shown that

NA is linked to the mass of LVH and thus, called a myocardial hypertrophic

neurohormone (Patel et al., 1991; Simpson, 1983). An increasing number of studies

account the SNS for the onset of LVH. NA concentration in regional cardiac tissue

as well as systemic circulation is considered to increase the mass of LV by

stimulating cell myocyte protein. Noradrenaline is a neurotransmitter of the SNS and
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excitation of sympathetic nervous system causesthe release of catecholamines. These

catecholamines have effects on the heart and peripheral tissues. On the heart, locally

they enhances the cardiac stimulation by acting on P I receptors which increases the

heart rate along with regional cardiac tissue proliferation. An increase in the

systemic concentration elevates the total peripheral resistance by constricting the

arteries by its actionon a-adrenergic receptors. The different functions of a and p

receptors and their classification is shown in Figure 1.5. The involvement and

functions of SNS and PNS in different organ is shown in Figure 1.6.

The activity of the heart is controlled by PI adrenoreceptors which are located

on the heart. These adrenoreceptors are responsible for chronotropic, ionotropic and

dromotropic activities as shown in Figure 1.4. The establishment of LYH is due to

an overactivity of heart, which results in over performance of the left ventricle. This

enhanced activity is due to the excited PI adrenoreceptor which is under direct

control of SNS. As such in LYH, over stimulation or excitation is expected to trigger

LYH and offset the SNS and PNS activities. Noradrenaline acts on PI, al and a2

receptors. Thus, NA not only increases the heart rate but also the total peripheral

resistance. It is thought that the heart contractility is increased by NA acting on PI

receptors which ultimately makes left ventricle to pump more blood into the

peripheral parts of the body and increase the thickness of the left ventricle. This

action of NA in the onset of LYH along with angiotensin II is supported by the

literature (Huang et aI., 2012; Kelm et al., 1996).
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Conversly, total peripheral resistance increases the afterload and makes the

left ventricle to apply more pressure to force blood out of the heart. Hence, increased

contractility and increased after load contributes to the onset of LVH. Furthermore,

another function of NA is myocyte proliferation. Hence, by acting on the SNS, NA

contributes to the onset of LVH and systemic elevation ofNA contributes to damage

of other key organs like kidneys. This notion can be supported by the evidence that

plasma noradrenaline level predicts the survival and incidence of cardiovascular

events in end stage renal disease (Zoccali et aI., 2002).

It has been reported in the data that an increase in LV mass is related to renal

nerve sympathetic activity in LVH model of isoprenaline and caffeine (Burns et al.,

2007). It can be predicted that any drug having sympathetic inhibition activity can be

an effective therapeutic option in LVH. [n human, renal denervation technique by

means of sympathoinhibition result in amelioration of heart mass and LV function

(Mathias C Brandt et aI., 2012). Although catecholamines are considered the culprit

for cardiovascular abnormality, reported data shown that central activation of SNS is

associated with human LV mass irrespective of the fact that this increase is

categorized as LVH (Bums et al., 2007).
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1.5.1.(b) Physiological functions of adrenoreceptors

n-Adrenoreceptors have been classified into al-adrenoreceptors and a2-

adrenoreceptors.

-+ al

Adrenoreceptors 1--1
a2

-

� JJI

- JJ2-

1. Vasoconstriction
2. Increased peripheral

resistance
3. Increased blood pressure
4. Mydriasis
5. Increased closure of internal

sphincter of bladder

I. Inhibition of noradrenaline
release (presynapse)

2. Inhibition of insulin release

1. Tachycardia
2. Increased lipolysis
3. Increased myocardial

contractility
4. Increased release of renin

1. Vasodilation
2. Slightly decreased

peripheral resistance
3. Increased muscle and liver

glycogenolysis
4. Increased release of

glucagon
5. Relaxed uterine smooth

muscle

Figure 1.5: Classification and various functions mediated by adrenoreceptors
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Functions Dominant SNS PNS

Receptor Adrenergic Cholinergic
responses responses

Heart Rate of contraction f31 High Low

Force of contraction f31 Increase None

Conduction velocity f31 Faster Slower

Eye Pupil size (lI Mydriasis Miosis

Bronchial f32 Relaxation Contraction

smooth
muscle

Veins

GIT Tone, motility and (l2,f32 Decrease Increase

secretory activity
Skeletal (lI. f32 Contraction No enervation

muscle

Urinary Detrusor muscle B Relaxation Contraction

bladder

Liver (lI. f32 Increase None

adrenergic
activity

Renin f31 Increase None
secretion

Insulin (l2 Decrease Increase

secretion

Figure 1.6: Locations of adrenoreceptors in various parts of body and their

physiological functions (drawn by using MS word)
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Adrenaline
Noradrenaline

OH

OH

OH

Isoproterenol

Figure 1.7: Structure of few noradrenaline, adrenaline and isoproterenol responsible

for hyperactivity of sympathetic nervous system.

It is established that heart hypertrophy or LVH is due to over activity of the

heart due to increased work load. This work load could be the consequence of

increased peripheral resistance or due to increased excitability of the heart. In the

former situation al receptors are responsible for increased vasoconstriction in

peripheral parts of the body. However, in the latter case, PI adrenergic receptors are

responsible for chronotropic action. The therapeutic option may either decrease the

total peripheral resistance (TPR) or decrease the chronotropic action of the heart. It is

reported that blocking either alor Plreceptors resulted in partial reduction of trophic

responses while trophic responses were abolished by blocking both receptorss

(Zierhut & Zimmer, 1989). Hence, inhibition of hyperactivities of the heart will not

only reduce TPR and HR but also attenuate SNS which is implicated in LVH. The
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SNS activation is due to increased release of norepinephrine and hyperactivation of p

receptors. Thus continuous exposure to NA leads to ventricular remodelling (Adams,

2004). It is also worthwhile mentioning that adrenergic receptors are G-protein

coupled receptors and exhibit their responses by acting on G protein.

l.S.l.(c) G-protein coupled receptors and second messenger pathway system for

adrenergic receptor

Each subtype of adrenergic receptors has specific affinity for G-protein type

either Gq or Gi. al adrenoceptors show preference for Gq, a2 adrenoceptors link with

Gi while P2 adrenoceptors also couple with Gi (Kirstein & Insel, 2004). G proteins

having subunits, an a subunit that bind to guanosine triphosphate (GTP) and py

subunits. The binding of an appropriate ligand to the receptors on the extracellular

surface activates G proteins. This activation leads to the replacement of GDP by

GTP on a subunit so a-GTP and py subunits act on the other cellular effectors called

second messenger as shown in Figure 1.7. A common pathway for the activation of

Gs protein is activation of adenylyl cyclase by a-GTP thatresults in the production of

cyclic adenosine mono phosphate (cAMP). This cAMP is second messenger and

involved in protein phosphorylation. Other than cAMP, G protein also activates

phospholipase C responsible for the generation of inositol-l ,4,5- triphosphate (IP3)

and diacylglycerol (DAG). These effectors regulate the calcium concentration in the

cell. This family of receptor transduce signals from light, odors and neurotransmitter

like norepinephrine, dopamine, serotonin and acetylecholine.
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Hormone or Neurotransmitter Inactive adenylyl cyclase

t

Unoccupied receptor Gs protein with bound GDP Cell membrane

Hormone or Neurotransmi tter Inactive adenylyl cycla e

,

Cell membrane

nnnnn
UlJUlW

Occupied receptor

Figure 1.8(A and B): lllustration of mechanism of G-protein coupled receptor and
second messenger pathway activation by neurotransmitter when adenylyl cyslase
inactive.
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Hormone or Neurotransmitter Active adenylyl cyclase

,

I
Occupied receptors

ATP
---+

cAMP +PPi

a subunit along with GTP attached with
inactive adenvlvl cvclise to make it active

__C_Y�C_liC__�__� ��
l

r l
Diacylglycerol�

'\

Inositol triphosphate(IP3)

/
Regulation of free calcium
concentration within the cell

Figure 1.8 (C and D) Illustration of mechanism of G-protein coupled receptor
activation (C) by adenylyl cyclase and second messenger pathway activation (D).
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1.5.2 Role of renin angiotensin aldosterone system in LVH

The rerun angiotensin aldosterone system (RAAS) is a complex system

consisting ofrenin, angiotensin and aldosterone. The RAAS is an important system in

the regulation of blood pressure. Huge body of data reported that RAAS is involved

in the pathogenesis of many cardiovascular diseases. In this system most of the

information IS derived from the understanding of the vast and broad role of

angiotensin m cardiovascular system. Historically angiotensin II hormone was

considered to regulate blood pressure, renin release and sodium retention (Ruiz-

Ortega et aI., 200 l). Now it is considered to activate the cells which are responsible

for the expression of many substances like cytokines, chemokines and adhesion

molecule thatare involved in cell growth, apoptosis, fibrosis and inflammation

(Egido, 1996; Matsubara, 1998; Ruiz-Ortega et aI., 2001; J Sadoshima, 2000) as

shown in Figure 1.9.

Expression ofCytokines
Expression of
AdhesionExpression of Chemokines J /

�( Apoptosis )
<J Angiotensin II

( Fibrosis

b
[Cell growth ][�_m__fl_anuna_t1_'o_n J�--------�----------,�------------�

Endothelial dysfunction

Left Ventricular

Hypertrophy

I>
------------

Secretion of

Aldosterone

Figure 1.9: General effects of angiotensin II in the body
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( Reabsorption ofwater )

Accelerate Ang II induced
MAPKactivation

Figure 1.10: Effects of aldosterone in the body

The activation of this pathway start from renin and is completed with the

secretion of aldosterone (AD). The AD has substantial importance in RAAS as a

controlling mechanism of renal hemodynamics by altering renal reabsorptions and

excretions. Various functions of AD are shown in figure 1.10. Different steps

involved in this system are shown in figure 1.11.

The RAAS IS a multicomponent system with a broad role in different

biological systems. The cardiovascular system IS mainly controlled by SNS and
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RAAS. Of the component of RAAS, angiotensin II and aldosterone are more

important as shown in figure 1.10 and are involved in the regulation ofCVS.

Decreased

Renin (Kidney)

Angiotensin I

Different

pharmacological
responses

Angiotensin converting
enzyme (lungs)

Angiotensin II

Stimulates zona glomerulosa cells
in adrenal cortex

III ( Aldosterone synthase )

Figure 1.11: Schematic pathway ofRenin-Angiotensin Aldosterone System (RAAS)

The RAAS is considered to have an inverse relationship with LV systolic

functions in primary and secondary hypertension (Devereux et aI., 1987).
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