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REGULARITY AND INVERSE THEOREMS FOR UNIFORMITY

NORMS ON COMPACT ABELIAN GROUPS AND NILMANIFOLDS

PABLO CANDELA AND BALÁZS SZEGEDY

Abstract. We prove a general form of the regularity theorem for uniformity norms,

and deduce an inverse theorem for these norms which holds for a class of compact

nilspaces including all compact abelian groups, and also nilmanifolds; in particular

we thus obtain the first non-abelian versions of such theorems. We derive these

results from a general structure theorem for cubic couplings, thereby unifying these

results with the Host–Kra Ergodic Structure Theorem. A unification of this kind

had been propounded as a conceptual prospect by Host and Kra. Our work also

provides new results on nilspaces. In particular, we obtain a new stability result for

nilspace morphisms. We also strengthen a result of Gutman, Manners and Varjú, by

proving that a k-step compact nilspace of finite rank is a toral nilspace (in particular,

a connected nilmanifold) if and only if its k-dimensional cube set is connected. We

also prove that if a morphism from a cyclic group of prime order into a compact finite-

rank nilspace is sufficiently balanced (i.e. equidistributed in a certain quantitative

and multidimensional sense), then the nilspace is toral. As an application of this,

we obtain a new proof of a refinement of the Green–Tao–Ziegler inverse theorem.

1. Introduction

The inverse theorem for the Gowers norms is a major result in arithmetic combina-

torics, with remarkable applications (see for instance [16, 17]), and is central to the

theory known as higher-order Fourier analysis, initiated by Gowers in his seminal paper

[14] (see also the survey [13]). The inverse theorem was proved in the breakthrough

paper [19] by Green, Tao and Ziegler in the case of finite cyclic groups (more precisely,

finite intervals of integers), and analogous results were obtained for vector spaces over

a finite field of fixed characteristic in [1, 40, 41].

The Gowers norms can be defined on any compact abelian group, and these norms

are special cases of more general uniformity norms, which can also be defined on nil-

manifolds (see Definition 1.4, or [27, Ch. 12, §2]). The uniformity norms also have

counterparts in other areas, especially in ergodic theory, where seminorms of a similar

kind were introduced by Host and Kra in [26]. The main result regarding these semi-

norms, known as the Ergodic Structure Theorem (established in [26, Theorem 10]; see

also [27]), is an analogue of, and was in fact an inspiration for, the inverse theorem for

the Gowers norms, notably in its use of nilmanifolds.

An approach to higher-order Fourier analysis different from that in [19] was initia-

ted by the second named author in [36], inspired on one hand by the work of Host and

Kra, especially their introduction of parallelepiped structures [28], and on the other

hand by the non-standard analysis viewpoint in graph limit theory [9]. This approach

led to the development of the theory of nilspaces by Antoĺın Camarena and the second

named author in [2], and initial applications of this theory to higher-order Fourier
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analysis were given in [37, 38]. The theory of nilspaces has since been detailed further;

see for instance the treatment in [3, 4] detailing in particular the measure-theoretic

aspects, and also the development by Gutman, Manners and Varjú in [20, 21, 22] with

more emphasis on topological aspects and applications in dynamics. Nilspace related

topics have now grown to generate an active research area, which has found further

uses in ergodic theory [5, 24], probability theory [7], and topological dynamics [23].

It became conceivable that more conceptual light could be shed on higher-order

Fourier analysis by unifying the nilspace approach from [37, 38] with the ergodic theo-

retic methods from [26], a prospect raised notably by Host and Kra in [27, end of

Ch. 17]. In [7], a framework for such a unification was put forward, based on the

concept of a cubic coupling, inspired especially by the cubic measures from [26, §3.1].

A first application of cubic couplings was given in [7] by recovering and extending

the Ergodic Structure Theorem of Host and Kra in this framework. Another central

application was announced in the same paper [7], namely a result extending the inverse

theorem from [19] to compact abelian groups and also to nilmanifolds and more general

nilspaces. The main purpose of this paper is to prove this result. Let us emphasize that

while the combination of nilspace theory with non-standard analysis in the preprints

[37, 38] already yielded inverse theorems for uniformity norms, these were markedly

less general than those presented here, and the results in the present paper follow a

more conceptual approach using solely the material from the published (or to appear)

papers [3, 4, 7]. Crucially, it is the use of the cubic coupling framework here which

enables the extension of the inverse theorem beyond abelian groups and its unification

with the Ergodic Structure Theorem.

Let us set up some terminology. First we describe the class of nilspaces involved

in our main results. This class consists essentially of filtered (possibly disconnected)

nilmanifolds. Such a nilmanifold can always be viewed as a nilspace, by equipping

it with the cube sets determined by the filtration; see [4, Definition 1.1.2]. Since we

shall work in the category of nilspaces, we want to capture precisely these nilmanifolds

within this category, which we do with Definition 1.1 below.

Recall that X is a compact finite-rank nilspace (abbreviated to cfr nilspace) if

X is a compact nilspace and every structure group of X is a Lie group [4, Definition

2.5.1]. (Following [2] and [4], we assume compact spaces to be second-countable, unless

specifically stated otherwise. cfr nilspaces are called Lie-fibred nilspaces in [22].)

Definition 1.1 (cfr coset nilspaces). We say that a k-step cfr nilspace is a coset

nilspace if it is isomorphic to a nilmanifold G/Γ (thus G is a nilpotent Lie group

and Γ is a discrete cocompact subgroup of G) equipped with cube sets of the form

Cn(G•)/C
n(Γ•), n ≥ 0, where G• = (Gi)i≥0 is a filtration of degree at most k of

closed subgroups Gi ⊳ G, and Γ• = (Γi)i≥0 is a filtration on Γ where Γi = Γ ∩ Gi is

cocompact in Gi, i ≥ 0.
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Our main results concern the class of compact nilspaces that are inverse limits of

cfr coset nilspaces (see [4, §2.7] for the inverse limit construction in this category).

This includes all compact abelian groups, and more generally all inverse limits of

nilmanifolds.

We deduce the inverse theorem from a regularity theorem for functions on nilspaces

in the above class, namely Theorem 1.5. Regularity results in arithmetic combinatorics

are inspired by the well-known regularity lemmas from graph theory, and have hitherto

focused on functions on abelian groups (see for instance [16, Theorem 1.2]). The point

of Theorem 1.5 below is that a bounded measurable function on a cfr coset nilspace

can always be decomposed into a sum of a structured function plus two errors, one

error being very small in a prescribed uniformity norm, and the other being negligible

in the L1-norm. The structured function is a nilspace polynomial of bounded com-

plexity, a generalization of nilsequences that was introduced in [37]. To define nilspace

polynomials, we first recall a general notion of complexity for cfr nilspaces. Recall

that there are countably many cfr nilspaces up to isomorphism; see [2, Theorem 3],

[4, Theorem 2.6.1].

Definition 1.2. By a complexity notion for cfr nilspaces, we mean a bijection from

the countable set of isomorphism classes of cfr nilspaces to N. Having fixed such a

bijection, for m > 0 we say that a cfr nilspace X has complexity at most m, and write

Comp(X) ≤ m, if its image under the bijection is at most m.

Similarly to [19], in this paper we do not pursue explicit bounds for our main results,

so we do not need to be specific about the complexity notion being used. In fact our

results hold for any prescribed complexity notion.

Definition 1.3 (Nilspace polynomials). Let X be a compact nilspace. A function

f : X → C is a nilspace polynomial of degree k if f = F ◦φ where φ : X → Y is a

continuous morphism, Y is a k-step cfr nilspace, and F is continuous; f has complexity

≤ m, denoted Comp(f) ≤ m, if F has Lipschitz constant ≤ m and Comp(Y) ≤ m.

The Lipschitz constant here relates to a Riemannian metric that we fix from the start

on each cfr nilspace, using the fact that these spaces are finite-dimensional manifolds

[4, Lemma 2.5.3]. Our regularity theorem ensures also that the morphism involved

in the structured part satisfies a strong quantitative equidistribution property that we

call balance (following [38]). This useful property has a technical definition (concerning

morphisms and also nilspace polynomials), which we detail later; see Definition 5.1.

Definition 1.4 (Uniformity seminorms on compact nilspaces). For d ≥ 2, the Ud-

seminorm of a bounded Borel function f : X → C on a compact nilspace X is defined

by ‖f‖Ud =
( ∫

c∈Cd(X)

∏
v∈{0,1}d C

|v|f(c(v)) dµ(c)
)1/2d

, where µ is the Haar measure1 on

the cube set Cd(X), C denotes the complex conjugation operator, and |v| =
∑d

i=1 v(i).

1This refers to the canonical Borel probability measure on a cube set in nilspace theory; see [4, §2.2.2].
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For a proof of the seminorm properties, and a discussion of when these quantities are

norms, see Lemma A.4. We can now state our main result.

Theorem 1.5 (Regularity). Let k ∈ N and let D : R>0 × N → R>0 be an arbitrary

function. For every ǫ > 0 there exists N = N(ǫ,D) > 0 such that the following holds.

For every compact nilspace X that is an inverse limit of cfr coset nilspaces, and every

Borel function f : X → C with |f | ≤ 1, there is a decomposition f = fs + fe + fr and

number m ≤ N such that the following properties hold:

(i) fs is a D(ǫ,m)-balanced nilspace polynomial of degree k, |fs| ≤ 1, Comp(fs) ≤ m,

(ii) ‖fe‖L1 ≤ ǫ,

(iii) ‖fr‖Uk+1 ≤ D(ǫ,m), |fr| ≤ 1 and max{|〈fr, fs〉|, |〈fr, fe〉|} ≤ D(ǫ,m).

Here 〈f, g〉 denotes the inner product
∫
X f g dµX where µX is the Haar measure on X.

We use the term 1-bounded function for a function f : X → C with modulus at most

1 everywhere (denoted |f | ≤ 1). Using Theorem 1.5, we obtain our next main result.

Theorem 1.6 (Inverse theorem). Let k ∈ N and δ ∈ (0, 1]. Then there is m > 0

such that for every compact nilspace X that is an inverse limit of cfr coset nilspaces,

and every 1-bounded Borel function f : X → C with ‖f‖Uk+1 ≥ δ, there is a 1-bounded

nilspace polynomial F ◦φ of degree k and complexity ≤ m such that 〈f, F ◦φ〉 ≥ δ2
k+1

/2.

As detailed below, we deduce Theorem 1.5 from results on cubic couplings from [7]. In

particular, this yields directly that the nilspace polynomial in this result is arbitrarily

well balanced in relation to its complexity (this then holds also in the inverse theorem;

see Theorem 5.2). In the case of finite cyclic groups, a property implying the balance

property, called irrationality, can be added a posteriori to the regularity theorem,

using separate arguments; see [16]. Let us emphasize also that to obtain the extension

beyond abelian groups in Theorem 1.6, our proof differs markedly from that in [38]; see

Section 3, in particular Remark 3.3, and Remark 3.11 on possible further extensions.

After proving Theorems 1.5 and 1.6, we focus on the important case where X

consists of a cyclic group Zp of prime order p, in order to show that in this case Theorem

1.6 implies a refinement of the Green–Tao–Ziegler inverse theorem. More precisely, we

obtain the following version of [19, Conjecture 4.5]. This uses the notation poly(Z, G•)

for the group of polynomial maps Z → G relative to a filtration G• (see [30, 18]).

Theorem 1.7. Let k ∈ N and let δ ∈ (0, 1]. There exists a finite set Mk,δ of con-

nected filtered nilmanifolds (G/Γ, G•), each equipped with a smooth Riemannian me-

tric dG/Γ, and a constant Ck,δ > 0, with the following property. For every prime p

and 1-bounded function f : Zp → C with ‖f‖Uk+1 ≥ δ, there exists G/Γ ∈ Mk,δ,

a polynomial g ∈ poly(Z, G•) that is p-periodic mod Γ, and a continuous 1-bounded

function F : G/Γ → C with Lipschitz constant at most Ck,δ relative to dG/Γ, such that

|Ex∈Zpf(x)F (g(x)Γ)| ≥ δ2
k+1

/2.
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Remark 1.8. Theorem 1.7 refines [19, Theorem 1.3] in that g is directly ensured to

be p-periodic mod Γ (i.e. g(n)−1g(n + p) ∈ Γ for all n ∈ Z), thus yielding a well-

defined morphism Zp → G/Γ. This periodicity was first established in the inverse

theorem in [37], and is a notable (though not exclusive) feature of the nilspace approach

(periodicity is not obtained directly in [19, Theorem 1.3], but it is obtained in the more

recent proof in [33]). Periodicity can also be included a posteriori in [19, Theorem 1.3]

with additional arguments; see [32]. Another useful refinement that our proof can add

directly to Theorem 1.7 is that the nilsequence is arbitrarily well balanced in relation

to the complexity of G/Γ (for the same reason mentioned above for Theorem 5.2).

Remark 1.9. Let us elaborate on how Theorem 1.6 relates to previous non-quantitative

inverse theorems such as [19, Theorem 1.3] or [38, Theorem 2]. One aspect is that

Theorem 1.6 extends these results via its premise, by being applicable to functions f

on domains more general than compact abelian groups. Another aspect concerns how

the theorem’s conclusion relates to the conclusions of previous such results, and more

precisely how the bounded-complexity nilspace polynomials, obtained as correlating

harmonics in Theorem 1.6, relate to harmonics such as the nilsequences in [19, Theo-

rem 1.3]. The cfr nilspaces, underlying nilspace polynomials, are generalizations of

nilmanifolds which still have strong structural properties akin to several of the most

useful properties of nilmanifolds (such properties include an iterated-bundle structure

with compact abelian Lie fibers [4, §2.5], [3, §3.2.3]; a nilpotent Lie group action com-

patible with the cube structure [4, §3.2.4 and Theorem 2.9.10]; and related tools in

nilspace theory). Moreover, a key fact detailed in this paper is that when one restricts

these nilspaces to the setting of previous results such as [19, Theorem 1.3], one re-

covers exactly the more explicit structure of nilmanifolds. More precisely, the crux of

Theorem 1.7, compared to Theorem 1.6, is that in the specific Zp setting of the former,

the balanced nilspace polynomials obtained from the general setting are shown to be

precisely nilsequences generated by p-periodic orbits on connected nilmanifolds (these

nilsequences are the same thing as nilspace polynomials from Zp into connected cfr

coset nilspaces). This is established in Theorem 6.1.

Recall that a compact nilspace is toral if its structure groups are tori [4, Definition

2.9.14] (it is then also a connected nilmanifold [4, Theorem 2.9.17]). A key element in

our proof of Theorem 6.1 is the following new result about compact nilspaces.

Theorem 1.10. A k-step cfr nilspace is toral if and only if its k-cube set is connected.

A result in the direction of Theorem 1.10 was observed in [22]. Namely, [22, Theorem

1.22] was noted to imply that if all the cube sets of a cfr nilspace are connected then

the nilspace is toral. Theorem 1.10 strengthens this result: the connectedness of the

set of k-cubes suffices. The proof of Theorem 1.10 is given in Appendix A.
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Remark 1.11. Following terminology from [38], we say that a family of finite abelian

groups (Zi)i∈N is of characteristic 0 if for every prime p there are only finitely many

indices i such that p divides the order of Zi. Our proof of Theorem 1.7 can be adapted

in a straightforward way to yield an analogue of this theorem where the groups Zp are

replaced by any family of characteristic 0. We omit the details in this paper.

In the quantitative direction, a proof of the inverse theorem in the case of cyclic groups

Zp was given with reasonable bounds in a recent breakthrough by Manners [33], and in

the case of vector spaces Fn
p , in another recent breakthrough by Gowers and Milićević

[15]. As mentioned in [33], currently these quantitative results cannot be made to

overlap. On a conceptual level, the present paper shows that the notion of nilspace

polynomials (and nilspace theory more generally) offers a framework in which a more

general inverse theorem can be obtained, valid in particular for any compact abelian

group (namely Theorem 1.6), from which more specific inverse theorems such as the

Green–Tao–Ziegler theorem can be fully recovered and extended.

The structure of the paper is as follows. In Section 2 we recall some background

on analysis in ultraproducts, and we outline its use in proving Theorem 1.5. In Section

3, we analyze ultraproducts of cfr coset nilspaces to locate certain factors that have a

cubic coupling structure. This will enable us to apply our structure theorem from [7],

as a crucial step in our proof of Theorem 1.5. In Section 4, we prove a new stability

result for morphisms into cfr nilspaces, Theorem 4.2, which is central to our proof of

Theorem 1.5 and seems to be also of intrinsic interest. In Section 5 we combine the

above elements to prove Theorems 1.5 and 1.6. In Section 6 we prove Theorem 1.7.

Acknowledgements. We thank Terence Tao for useful feedback. The first-named

author received funding from Spain’s MICINN project MTM2017-83496-P. The second-

named author received funding from the European Research Council under the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement

617747. The research was supported partially by the NKFIH “Élvonal” KKP 133921

grant and partially by the Mathematical Foundations of Artificial Intelligence project

of the National Excellence Programme (grant no. 2018-1.2.1-NKP-2018-00008). We

also thank the anonymous referee for valuable feedback helping to improve this paper.

2. Ultraproducts of nilspaces, and an outline of the main proof

We begin by recalling some basic notions concerning ultraproducts and the Loeb mea-

sure. We do so primarily to gather the required terminology and notation. For more

background on these tools we refer to standard texts such as [35], or more recent treat-

ments such as [39, §1.7, §2.10]. More detail on the use of these tools specifically in

higher-order Fourier analysis can also be found in [42].

For each i ∈ N let Xi be a set equipped with a σ-algebra Bi and a probability

measure λi on Bi. We also fix from now on a non-principal ultrafilter ω on N (see [39,



A GENERALIZATION OF THE GREEN–TAO–ZIEGLER THEOREM 7

§1.7.1]). We denote by
∏

i→ω Xi the ultraproduct of the sets Xi, that is, the quotient of

the cartesian product
∏

i∈N Xi under the equivalence relation (xi)i ∼ (yi)i ⇔ {i ∈ N :

xi = yi} ∈ ω. We often denote such ultraproducts using boldface, thus X =
∏

i→ω Xi.

We can equip X with a σ-algebra and a probability measure as follows. A set B ⊂ X

is called an internal set if B =
∏

i→ω Bi for some sequence of sets Bi ⊂ Xi, i ∈ N, and

is an internal measurable set if {i : Bi ∈ Bi} ∈ ω. For each internal measurable set

B, we define the real number λ(B) ∈ [0, 1] to be the standard part of the ultralimit

(see [39, Definition 1.7.9]) of the numbers λi(Bi), that is λ(B) = st
(
limi→ω λi(Bi)

)
.

More generally, for any compact Hausdorff space Y , for every sequence of functions

fi : Xi → Y we can define a function X → Y , x 7→ st
(
limi→ω fi(xi)

)
, where (xi)i

is any representative of the class x, the value of this function being the unique point

y ∈ Y such that2 for every open set U ∋ y we have {i : fi(xi) ∈ U} ∈ ω. As in several

texts in this area, we shorten the notation st
(
limi→ω fi

)
; we denote this by limω fi.

Definition 2.1. Given probability spaces (Xi,Bi, λi), i ∈ N, and a non-principal ultra-

filter ω on N, we define the corresponding Loeb measure to be the probability measure

λ obtained by applying the Hahn–Kolmogorov extension theorem to the premeasure
∏

i→ω Bi 7→ limω λi(Bi) defined on internal measurable subsets of X (see [35, Theorem

2.1], [39, Theorem 2.10.2]). The corresponding Loeb σ-algebra, denoted by LX, is the

completion of the σ-algebra on X generated by the internal measurable sets.

Recall that for any sequence of functions (fi : Xi → Y )i∈N into a compact set Y ⊂ C, if

fi is Bi-measurable for all i in some set S ∈ ω, then limω fi : X → Y is LX-measurable

(see [35, Theorem 5.1]).

We now focus on ultraproducts of nilspaces. If each set Xi is a nilspace, with cube

sets Cn(Xi), n ≥ 0 (where C0(Xi) = Xi), then it is easily checked that the ultraproduct

X equipped with cube sets Cn(X) :=
∏

i→ω C
n(Xi) satisfies the nilspace axioms as well.

Let us now outline the proof of Theorem 1.5, and especially our use of ultrapro-

ducts. We argue by contradiction, supposing that there is a sequence of 1-bounded

Borel functions fi : Xi → C that disproves the theorem (thus for some ǫ > 0 and real

numbers Ni → ∞ as i → ∞, for each i the required decomposition fails for fi, ǫ and

Ni). We then consider the 1-bounded function f = limω fi : X → C, and analyze this

using results on cubic couplings from [7]. To detail this further, we need to recall the

notion of a cubic coupling. To this end we first recall the following notation from [7].

We write JnK for the discrete n-cube {0, 1}n. Two (n − 1)-faces F0, F1 ⊂ JnK are

adjacent if F0 ∩ F1 6= ∅. For finite sets T ⊂ S and a system of sets (Av)v∈S , we write

pT for the coordinate projection
∏

v∈S Av →
∏

v∈T Av. Given a probability space

2To see the existence of y, note that if no such y existed then using compactness we could cover Y with

finitely many open sets U with {i : fi(xi) ∈ U} 6∈ ω, which would contradict that ω is an ultrafilter.

The uniqueness follows from the Hausdorff property and a similar use of the ultrafilter’s properties.
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Ω = (Ω,A, λ), we write AS for the product σ-algebra
⊗

v∈S A =
∨

v∈S p
−1
v (A) on

ΩS (where, given σ-algebras Bv on a set,
∨

v∈S Bv denotes their join, i.e. the smallest

σ-algebra on this set that includes Bv for all v ∈ S). We write AS
T for the sub-

σ-algebra of AS consisting of sets depending only on coordinates indexed in T , i.e.

AS
T =

∨
v∈T p

−1
v (A). We write B0 ∧λ B1 for the meet of σ-algebras B0,B1 ⊂ A (see

[7, Definition 2.6]), and B0⊥⊥λ B1 for the relation of conditional independence, which

holds if and only if ∀f ∈ L∞(B0), E(f |B1) ∈ L∞(B0); see [7, Proposition 2.10]. (We

omit the subscript λ from ∧λ,⊥⊥λ when the measure λ is clear.) Inclusion and equality

up to λ-null sets are denoted by ⊂λ and =λ respectively [7, §2.1]. We write Cg(Ω,S)

for the space of self-couplings of Ω indexed by S [7, Definition 2.20]. Finally, given

µ ∈ Cg(Ω,S) and an injection φ : R→ S, we write µφ for the subcoupling of µ along φ

[7, Definition 2.26]. Let us now recall the notion of a cubic coupling [7, Definition 3.1].

Definition 2.2. A cubic coupling on a probability space Ω = (Ω,A, λ) is a sequence(
µJnK ∈ Cg(Ω, JnK)

)
n≥0

satisfying the following axioms for all m,n ≥ 0:

1. (Consistency) If φ : JmK → JnK is an injective cube morphism then µ
JnK
φ = µJmK.

2. (Ergodicity) The measure µJ1K is the product measure λ× λ.

3. (Conditional independence) For every pair of adjacent faces F0, F1 of codimension

1 in JnK, we have A
JnK
F0

⊥⊥µJnK A
JnK
F1

and A
JnK
F0

∧µJnK A
JnK
F1

=µJnK A
JnK
F0∩F1

.

Given any cubic coupling, one can define an associated family of uniformity seminorms

that generalize the Gowers norms [7, Definition 3.15]. The structure theorem for cubic

couplings [7, Theorem 4.2] tells us that the characteristic factor corresponding to the k-

th order uniformity seminorm on a cubic coupling is a k-step compact nilspace. Given

the functions fi : Xi → C that we started with above, which were supposed not to

satisfy the decomposition in Theorem 1.5, our goal is to apply the structure theorem

to some suitable cubic coupling obtained using X and f , in order to obtain eventually

the contradiction that some function fi does in fact satisfy the required decomposition.

To carry out the above argument, our first main task is to obtain such a cubic

coupling using X and f . Now each compact nilspace Xi has an associated cubic-

coupling structure, given by the Haar measures µCn(Xi) on the cube sets Cn(Xi),

n ≥ 0 (see [4, §2.2] for background on these Haar measures). More precisely, the

cubic coupling in question is the sequence (µ
JnK
Xi

)n≥0 where µ
JnK
Xi

is defined to be µCn(Xi)

viewed as a measure on X
JnK
i , i.e. for any set B in the product σ-algebra B(Xi)

JnK

(where B(Xi) is the Borel σ-algebra on Xi) we define µ
JnK
Xi

(B) := µCn(Xi)

(
B ∩Cn(Xi)

)
.

The fact that (µ
JnK
Xi

)n≥0 is a cubic coupling is established in [7, Proposition 3.6]. We

can then apply the Loeb measure construction to the sequence of probability spaces

(X
JnK
i ,B(Xi)

JnK, µ
JnK
Xi

), i ∈ N, and thus obtain the Loeb probability space that we

shall denote by (XJnK,L
XJnK , µJnK). Note that the ultraproduct of cube sets Cn(X) :=

∏
i→ω C

n(Xi) is a subset of XJnK, and that µJnK is concentrated on Cn(X).
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As we shall see in the next section, the cubic coupling axioms hold to some extent

for these measures µJnK. However, two problems prevent this construction from forming

a genuine cubic coupling.

The first (and main) problem is that, for a sequence of measures (µJnK)n≥0 to form

a cubic coupling, the σ-algebras involved in satisfying the three axioms (especially

the third axiom) must be the product σ-algebras AJnK (where A is the σ-algebra of the

original probability space Ω). For Ω = X, this requires that the axioms be satisfied, not

with the Loeb σ-algebras L
XJnK obtained above, but rather with the product σ-algebras

L
JnK
X

=
⊗

v∈JnK LX. However, we then face an analogue in the present setting of a well-

known fact about Loeb measure spaces, namely, we face the fact that L
JnK
X

⊂ L
XJnK

and that this inclusion may be strict (i.e. with L
JnK
X

6= L
XJnK). Indeed, the inclusion

L
JnK
X

⊂ L
XJnK can be seen using that each measure µ

JnK
Xi

is a coupling of µ
J0K
Xi

, and

standard properties of ultralimits (e.g. by applying for each v ∈ JnK Lemma B.6 with

πi the projection pv : X
JnK
i → Xi, to deduce that the projection pv : XJnK → X satisfies

p−1
v (LX) ⊂ L

XJnK , and then concluding that L
JnK
X

=
∨

v∈JnK p
−1
v (LX) ⊂ L

XJnK). The

possible strictness of this inclusion can be seen already for n = 1, where the associated

measure µJ1K can be seen to be the product measure µJ0K × µJ0K, and where we then

have examples of this strict inclusion such as [8, Example 3.13] (see also [39, Remark

2.10.4]). Given the above fact, we cannot ensure directly that the third axiom in

Definition 2.2 is satisfied with L
JnK
X

as required. This problem occupies us for most of

the next section, where we show that if the nilspaces Xi are cfr coset nilspaces then

the cubic coupling axioms do hold with the smaller σ-algebras L
JnK
X

, as required.

The second problem is that the Loeb measure spaces are typically not separable,

thus failing to be Borel probability spaces (i.e. probability spaces (Ω,A, λ) where the

measurable space (Ω,A) is standard Borel; see [7, Definition 2.15]), which is required

in [7, Theorem 4.2]. This problem is addressed in the second part of the next section,

using the given function f to generate a suitable separable factor of X which still

satisfies the axioms in Definition 2.2.

3. The cubic coupling axioms for ultraproducts of cfr coset nilspaces

Recall that for each compact nilspace X and n ≥ 0, we write µ
JnK
X for the measure

B 7→ µCn(X)

(
B ∩Cn(X)

)
on B(X)JnK, where µCn(X) is the Haar probability measure on

the cube set Cn(X). (Note that µ
J0K
X is just the Haar measure µX on X.)

Our main aim in this section is to prove the following result.

Proposition 3.1. For each i ∈ N let Xi be a k-step cfr coset nilspace. For n ≥ 0 let

µJnK be the Loeb measure on (XJnK,L
XJnK) corresponding to the measures µ

JnK
Xi

. Then

the measures µJnK restricted to the σ-algebras L
JnK
X

satisfy the axioms in Definition 2.2.

The first two axioms hold in fact for all compact nilspaces.



10 PABLO CANDELA AND BALÁZS SZEGEDY

Lemma 3.2. For each i ∈ N let Xi be a k-step compact nilspace. For n ≥ 0 let µJnK

be the Loeb measure on (XJnK,L
XJnK) corresponding to the measures µ

JnK
Xi

. Then the

measures µJnK restricted to the σ-algebras L
JnK
X

satisfy axioms 1, 2 in Definition 2.2.

Proof. We first check the ergodicity axiom. The σ-algebra L
J1K
X

= LX⊗LX is generated

by rectangles of the form E1 × E2 where Ei ∈ LX. By part 4 of [35, Theorem 2.1]

applied to µJ0K, there are internal measurable sets F1 =
∏

i→ω F1,i, F2 =
∏

i→ω F2,i

such that µJ0K(Ei∆Fi) = 0 for i = 1, 2. Compact nilspaces are known to satisfy the

ergodicity axiom, so µ
J1K
Xi

= µXi×µXi , whence µ
J1K(F1×F2) = limω µXi(F1,i)µXi(F2,i) =

µJ0K(F1)µ
J0K(F2). Note also that E1 ×E2 ∈ L

XJ1K and µJ1K(E1 ×E2) = µJ1K(F1 × F2)

(these facts are seen similarly to the inclusion L
JnK
X

⊂ L
XJnK in Section 2, using Lemma

B.6). The ergodicity axiom follows.

To check the consistency axiom, we need to show that given any injective morphism

φ : JmK → JnK, we have µ
JnK
φ = µJmK. This holds on the larger σ-algebra L

XJmK , because

µJnK is the Loeb measure associated with the measures µ
JnK
Xi

and the consistency axiom

holds for (µ
JnK
Xi

)n≥0 (note that the measurability of the map XJnK → XJmK, c 7→ c ◦φ

with respect to L
XJnK , LXJmK is itself ensured by the fact that the measures µ

JnK
Xi

obey

the consistency axiom, and Lemma B.6). But then the equality µ
JnK
φ = µJmK holds also

in the smaller σ-algebra L
JmK
X

, since if B ∈ L
JmK
X

and F := φ(JmK) ⊂ JnK, then p−1
F (B)

is in L
XJnK and so µJnK

(
p−1
F (B)

)
= µJmK(B). �

We turn to the main task, i.e. to check that the conditional independence axiom holds

not only with the σ-algebras L
XJnK , but also with the smaller ones L

JnK
X

. As recalled

in Section 2, for F ⊂ JnK we denote by (LX)
JnK
F the σ-algebra

∨
v∈F p

−1
v (LX) ⊂ L

JnK
X

.

Remark 3.3. In the special case of Proposition 3.1 where each Xi is a compact abelian

group (equipped with its standard cubes; see [3, Proposition 2.1.2]), the ultraproduct

X is also an abelian group. This can be used to prove the conditional independence

axiom with an argument that is markedly simpler than the one we use below for the

more general case. Indeed, in the abelian case, the group structure on X yields a

useful expression for the conditional expectation E
(
f |(LX)

JnK
Fi

)
, namely that this is

almost-surely equal to the function x 7→
∫
X
f(x + tFi) dλ(t), where tFi is the element

of the group XJnK with tFi(v) = t if v ∈ Fi and t
Fi(v) = 0 otherwise. These integral

expressions for these expectation operators make it easy to see that for the two faces

F0, F1 the operators commute. This implies the conditional independence axiom (via

[7, Proposition 2.10], say). While this case is much simpler than the argument in the

general case, it still has significant content, and looking at its details can be helpful to

understand the rest of this section.

Let us introduce a simplified notation for σ-algebras for the rest of this section. For

S ⊂ JnK, when the ultraproduct nilspace X and the dimension n are clear from the
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context, we write simply A for (LX)
JnK, and AS for (LX)

JnK
S . Similarly, we write B for

L
XJnK and BS for the σ-algebra p−1

S (LXS ) on XJnK. By the explanation at the end of

Section 2 we see that AS ⊂ BS (and this inclusion may be strict).

Our main task, then, is to prove that for any adjacent faces F0, F1 ⊂ JnK of

codimension 1, we have AF0 ⊥⊥µJnK AF1 and AF0 ∧µJnK AF1 = AF0∩F1 .

We say that two faces of codimension 1 in JnK are opposite faces if they are not

adjacent (i.e. if their intersection is empty). Given a σ-algebra X on a set X, and a

finite set S, we say an X S-measurable function f : XS → C is a rank 1 function if

f =
∏

v∈S fv ◦pv where each fv : X → C is X -measurable.

We begin by reducing our main task as follows.

Lemma 3.4. The conditional independence axiom holds with A, µJnK (∀n ∈ N) if the

following statement holds: ∀n ∈ N, for any opposite faces F0, F1 ⊂ JnK of codimension

1, every rank 1 bounded AF0-measurable function f satisfies E(f |BF1) ∈ L∞(AF1).

Here and below, in notions involving equality up to null sets, unless otherwise stated

these are null sets relative to µJnK and are allowed to be from the largest ambient

σ-algebra on Xn, i.e. LXn . Thus “E(f |BF1) ∈ L∞(AF1)” here means that E(f |BF1)

agrees with some AF1-measurable bounded function outside some µJnK-null set (recall

that E(f |BF1) is defined up to µJnK-null sets anyway). Similarly, equalities between

conditional expectations are meant up to a null-set in the ambient measure (if there is

danger of confusion, we indicate the measure by a subscript in the equality).

Proof. To confirm that the conditional independence axiom holds, we have to show

that for any adjacent faces F ′
0, F

′
1 ⊂ JnK of codimension 1 we have AF ′

0
⊥⊥µJnK AF ′

1
and

AF ′
0
∧µJnK AF ′

1
=µJnK AF ′

0∩F
′
1
. By [7, Lemma 2.30], it suffices to prove that if f is

a rank 1 bounded AF ′
0
-measurable function then E(f |AF ′

1
) ∈ L∞(AF ′

0∩F
′
1
). We have

E(f |AF ′
1
) = E(E(f |BF ′

1
)|AF ′

1
), since AF ′

1
⊂ BF ′

1
. We also have E(f |BF ′

1
) = E(f |BF ′

0∩F
′
1
)

because the conditional independence axiom holds for the measures µ
JnK
Xi

, and this

is then seen to imply the same property for µJnK on B using Lemma B.3. Hence

E(f |AF ′
1
) = E(E(f |BF ′

0∩F
′
1
)|AF ′

1
). Therefore, if we prove

E(f |BF ′
0∩F

′
1
) ∈ L∞(AF ′

0∩F
′
1
), (1)

then E(f |BF ′
0∩F

′
1
) = E(f |AF ′

0∩F
′
1
) (since BF ′

0∩F
′
1
⊃ AF ′

0∩F
′
1
), which implies that E(f |AF ′

1
)

= E(E(f |AF ′
0∩F

′
1
)|AF ′

1
) = E(f |AF ′

0∩F
′
1
), so E(f |AF ′

1
) ∈ L∞(AF ′

0∩F
′
1
) as required.

Since f is a rank 1 function
∏

v∈F ′
0
fv ◦pv, and

∏
v∈F ′

0∩F
′
1
fv ◦pv isAF ′

0∩F
′
1
-measurable,

we have E(f |BF ′
0∩F

′
1
) = (

∏
v∈F ′

0∩F
′
1
fv ◦pv)E(

∏
v∈F ′

0\F
′
1
fv ◦pv|BF ′

0∩F
′
1
). Hence, if it

holds that E(
∏

v∈F ′
0\F

′
1
fv ◦pv|BF ′

0∩F
′
1
) ∈ L∞(AF ′

0∩F
′
1
) then (1) follows. But this is

indeed seen to hold by relabeling F ′
0 as JnK, F ′

0 \F
′
1 as F0, and F

′
0∩F

′
1 as F1, and using

the statement in the lemma. �
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To prove the statement in Lemma 3.4, we work with the σ-algebra I := BF0∧µJnK BF1 ⊂

L
XJnK . First we note the following expression for I in terms of a σ-algebra I ′ ⊂ L

XJn−1K .

Lemma 3.5. Let F0, F1 be opposite faces of codimension 1 in JnK. Let I ′ be the

σ-algebra of sets A′ ∈ L
XJn−1K such that p−1

F0
(A′) =µJnK p−1

F1
(A′). Then we have

p−1
F0

(I ′) =µJnK p−1
F1

(I ′) =µJnK I.

Proof. It is clear from the definitions that p−1
F0

(I ′) =µJnK p−1
F1

(I ′) ⊂µJnK I, so it suffices

to prove that I ⊂µJnK p−1
F0

(I ′). The idea is that the analogous inclusion is known to hold

for the nilspaces Xi, and the inclusion for I then follows by straightforward arguments

with ultraproducts. More precisely, let Bi denote the Borel σ-algebra on Xi for each

i ∈ N, and recall that the cubic Haar measures µ
JmK
Xi

, m ≥ 0 form a cubic coupling [7,

Proposition 3.6], so by [7, Lemma 3.4] the measure µ
JnK
Xi

is an idempotent coupling, and

so by [7, Lemma 2.62 (iii) and Proposition 2.66] we have (Bi)
JnK
F0

⊥⊥
µ

JnK
Xi

(Bi)
JnK
F1

, for each

i ∈ N. By Lemma B.3, for every A ∈ I there are sets Ai ∈ (Bi)
JnK
F0

∧
µ

JnK
Xi

(Bi)
JnK
F1

, i ∈ N,

such that A =µJnK

∏
i→ω Ai. Then by [7, Lemma 2.62 (iii)], there is A′

i ∈ B
Jn−1K
i such

that p−1
F0

(A′
i) =µ

JnK
i

Ai =µ
JnK
i

p−1
F1

(A′
i). Now A′ :=

∏
i→ω A

′
i is in I ′ and A =

µ
JnK
i

p−1
F0

(A′).

The desired inclusion follows. �

Using this expression of I, we now perform a second reduction, using Lemma 3.4.

Lemma 3.6. The conditional independence axiom holds with (A, µJnK) if the following

statement holds. For every pair of opposite faces F0, F1 of codimension 1 in JnK, the

σ-algebra I = BF0 ∧µJnK BF1 satisfies AF0 ⊥⊥µJnK I.

Proof. By Lemma 3.4, it suffices to prove that for every rank 1 boundedAF0-measurable

function f we have E(f |BF1) ∈ L∞(AF1). We claim that BF0 ⊥⊥BF1 . As in the proof of

Lemma 3.5, this follows from a similar property holding for the nilspaces Xi. Indeed,

as recalled in that proof, for each i the coupling µ
JnK
Xi

is idempotent. By [7, Lemma

2.62 (iii) and Proposition 2.66] the claimed conditional independence holds for the

analogues of BF0 ,BF1 on X
JnK
i . Our claim then follows by Lemma B.3. Now, since f is

BF0-measurable (as BF0 ⊃ AF0), by BF0 ⊥⊥BF1 we have E(f |BF1) = E(f |BF0 ∧ BF1) =

E(f |I). Hence, it suffices to prove that E(f |I) ∈ L∞(AF1).

We now claim that I ∧AF0 =µJnK I ∧AF1 . Confirming this claim would complete

the proof. Indeed, by assumption AF0 ⊥⊥I, so we would have E(f |I) ∈ L∞(AF0 ∧I) =

L∞(AF1 ∧I) ⊂ L∞(AF1), as required. To prove the claim, let σ be the reflection map

on XJnK induced by the reflection on JnK that permutes F0 and F1. By Lemma 3.5,

for every U ∈ I we have σ(U) =µJnK U . Since σ(AF0) = AF1 , if follows that for every

U ∈ I ∧ AF0 we have U =µJnK σ(U) ∈ σ(AF0) = AF1 , so I ∧ AF0 ⊂µJnK I ∧ AF1 .

Similarly I ∧ AF1 ⊂µJnK I ∧ AF0 . �
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To prove the statement in Lemma 3.6, we now work towards a useful description of I

in terms of an invariance under a certain group action. For this, we start using the

coset nilspace structure. Thus, we now suppose that X is an ultraproduct of cfr coset

nilspaces Xi = (G(i)/Γ(i), G
(i)
• ), i ∈ N. Note that X is then a coset nilspace (G/Γ, G•)

(in the algebraic sense of [3, Proposition 2.3.1]), where G, Γ are the groups
∏

i→ωG
(i),

∏
i→ω Γ

(i) respectively, and G• = (Gj)j≥0 is a filtration with Gj =
∏

i→ωG
(i)
j .

Given a filtration G• and ℓ ∈ N, we denote by G+ℓ
• the shifted filtration whose j-th

term is Gj+ℓ (strictly speaking, this is a prefiltration; see [6, Apppendix C]). We use the

notion of a 1-arrow of cubes on a nilspace X [3, Definition 2.2.18]: for c0, c1 ∈ Cn(X),

the 1-arrow 〈c0, c1〉1 ∈ XJn+1K is defined by 〈c0, c1〉1(v, j) = cj(v), j = 0, 1.

Given any nilspace X, we define an equivalence relation ∼ on Cn−1(X) by decla-

ring that c0 ∼ c1 if 〈c0, c1〉1 ∈ Cn(X). The following result gives a useful algebraic

description of this relation when X is a coset nilspace (G/Γ, G•) (the purely algebraic

definition of a coset nilspace can be recalled from [3, Proposition 2.3.1]).

Lemma 3.7. Let X = (G/Γ, G•) be a coset nilspace. Then c0 ∼ c1 if and only if there

exist c̃0, c̃1 ∈ Cn−1(G•) with ci = πΓ ◦ c̃i, i = 0, 1, and c̃−1
0 c̃1 ∈ Cn−1(G+1

• ). Thus, the

equivalence classes of ∼ are the orbits of the action of Cn−1(G+1
• ) on Cn−1(X).

Here πΓ denotes the canonical quotient map G→ G/Γ.

Proof. Suppose that c0 ∼ c1. Thus 〈c0, c1〉1 ∈ Cn(X), so there is c ∈ Cn(G•) such that

〈c0, c1〉1 = πΓ ◦c. For i ∈ {0, 1} let c̃i be the restriction of c to the face {v ∈ JnK :

v(n) = i}. Then πΓ ◦ c̃i = ci. Since 〈c̃0, c̃1〉1 = c is a cube, we have by [3, Lemma 2.2.19]

that c̃−1
0 c̃1 ∈ Cn−1(G+1

• ). The backward implication is also clear, using the backward

implication in [3, Lemma 2.2.19]. For the last claim, suppose that c̃0Γ
Jn−1K ∼ c̃1Γ

Jn−1K,

and note that c̃1Γ
Jn−1K = c̃0(c̃

−1
0 c̃1)Γ

Jn−1K = g c̃0Γ
Jn−1K, where g := c̃0(c̃

−1
0 c̃1)c̃

−1
0 is in

Cn−1(G+1
• ) since this is a normal subgroup of Cn−1(G•). �

We use this algebraic expression of the relation ∼ to prove the following description of

the σ-algebra I ′ from Lemma 3.5, as a key step toward the proof of Proposition 3.1.

Lemma 3.8. For each i ∈ N let Xi be a cfr coset nilspace (G(i)/Γ(i), G
(i)
• ). Let H be

the ultraproduct group
∏

i→ω C
n−1

(
(G(i))+1

•

)
. Then a set A ∈ L

XJn−1K is in I ′ if and

only if g ·A =µJn−1K A for every g ∈ H.

To prove this we first obtain the following analogous result for cfr coset nilspaces.

Lemma 3.9. Let X be a cfr coset nilspace (G/Γ, G•), let H = Cn−1(G+1
• ), and let

J be the σ-algebra of Borel sets A ⊂ XJn−1K such that p−1
F0

(A) =
µ

JnK
X

p−1
F1

(A). Then a

Borel set A ⊂ XJn−1K is in J if and only if g ·A =
µ

Jn−1K
X

A for every g ∈ H.

Recall that µ
JnK
X denotes the Haar measure on Cn(X) viewed as a measure on XJnK.
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Proof. Assume that p−1
F0

(A) =
µ

JnK
X

p−1
F1

(A), and let A′ = A∩Cn−1(X). Note that every

element in p−1
F0

(A′) that lies in Cn(X) is of the form 〈c0, c1〉1 for c0 ∼ c1, with c0 ∈ A′.

Since µ
JnK
X is concentrated on Cn(X), we have p−1

F0
(A) =

µ
JnK
X

p−1
F0

(A′) =
µ

JnK
X

{〈c0, g ·c0〉1 :

c0 ∈ A′, g ∈ H}, by Lemma 3.7. Letting H ′ denote the group {〈idH , g〉1 : g ∈ H}, it

follows that p−1
F0

(A) =
µ

JnK
X

g′ ·p−1
F0

(A) for every g′ = 〈idH , g〉1 ∈ H ′. By our assumption,

this implies p−1
F1

(A) =
µ

JnK
X

g′ · p−1
F1

(A). Moreover g′ · p−1
F1

(A) =
µ

JnK
X

g′ · {〈h · c1, c1〉1 : c1 ∈

A′, h ∈ H} and this equals {〈h · c1, c1〉1 : c1 ∈ g · A′, h ∈ H} =
µ

JnK
X

p−1
F1

(g · A). Hence

p−1
F1

(A) =
µ

JnK
X

p−1
F1

(g ·A), which implies that A =
µ

Jn−1K
X

g · A as required.

Conversely, if A =
µ

Jn−1K
X

g · A for all g ∈ H, then by [31, Theorem 3] there is

A′ =
µ

Jn−1K
X

A such that g · A′ = A′ for every g ∈ H. Using Lemma 3.7 as above yields

p−1
F0

(A′) =
µ

JnK
X

{〈c0, c1〉1 : c0, c1 ∈ A, c0 ∼ c1} =
µ

JnK
X

p−1
F1

(A′), whence S ∈ J . �

Proof of Lemma 3.8. We first prove the forward implication. If A ∈ I ′, then by de-

finition Ã := p−1
F0

(A) =µJnK p−1
F1

(A), so in particular Ã ∈ BF0 ∧ BF1 . By Lemma B.3

there are Borel sets Ãi ∈ Bi,F0 ∧ Bi,F1 , i ∈ N, such that Ã =µJnK

∏
i→ω Ãi (where Bi,F0

is the analogue of BF0 for Xi). For each i, combining the idempotence of µ
JnK
Xi

with [4,

Lemma 2.62] as in previous proofs, we obtain Borel sets Ai ∈ X
Jn−1K
i such that Ãi =µ

JnK
Xi

p−1
F0

(Ai) =µ
JnK
Xi

p−1
F1

(Ai). Hence p−1
F0

(A) =µJnK

∏
i→ω p

−1
F0

(Ai) =µJnK p−1
F0

(
∏

i→ω Ai). Con-

sequently A =µJn−1K

∏
i→ω Ai. By Lemma 3.9 every such set Ai is Hi-invariant for

Hi := Cn−1
(
(G(i))+1

•

)
). It follows that A is H-invariant as required.

Conversely, if µJn−1K(A∆h · A) = 0 for all h ∈ H, then by [35, Theorem 2.1]

there are Borel sets Ai ⊂ X
Jn−1K
i such that A =µJn−1K

∏
i→ω Ai. For each i let si =

suph∈Hi
µ

Jn−1K
Xi

(
Ai∆(h · Ai)

)
. We claim that for every ǫ > 0 we have {i : si < ǫ} ∈ ω.

Otherwise there is ǫ > 0 such that {i : si ≥ ǫ} ∈ ω, so for every such i there is hi ∈ Hi

such that µ
Jn−1K
Xi

(
Ai∆(hi · Ai)

)
≥ ǫ/2. Letting h = limi→ω hi ∈ H, we would have

µJn−1K
(
A∆(h ·A)

)
≥ ǫ/2 > 0, a contradiction. This proves our claim. Hence, for every

ǫ > 0, for every i such that si < ǫ, by Lemma B.4 there is an Hi-invariant set A
′
i such

that µ
Jn−1K
Xi

(
Ai∆A

′
i) ≤ 5ǫ1/4. Let A′ =

∏
i→ω A

′
i. Then µJn−1K

(
A∆A′) ≤ 5ǫ1/4. Since

A′
i ∈ Ji, we have A′ ∈ I ′ by Lemma B.3. Letting ǫ→ 0, we deduce that A ∈ I ′. �

We can now complete the proof of Proposition 3.1, by proving the following result.

Proposition 3.10. For every pair of opposite faces F0, F1 of codimension 1 in JnK,

the σ-algebra I = BF0 ∧ BF1 satisfies AF0 ⊥⊥I.

Proof. As AF0 = p−1
F0

(L
Jn−1K
X

) and I =µJnK p−1
F0

(I ′), it suffices to show that L
Jn−1K
X

⊥⊥I ′.

For this proof let A denote L
Jn−1K
X

. Let f ∈ L∞(I ′) and h ∈ H. Then fh =µJn−1K f ,

by Lemma 3.8 (where fh(x) := f(h · x)), so E(f |A) =µJn−1K E(fh|A). Note the global

invariance Ah =µJn−1K A, since gh ∈ L∞(A) for every g ∈ L∞(A) of rank 1. Hence

E(fh|A) =µJn−1K E(fh|Ah). As h is measure preserving, E(fh|Ah) =µJn−1K E(f |A)h, so

E(f |A) =µJn−1K E(f |A)h. This holds for all h, so E(f |A) ∈ L∞(I ′). Hence I ′⊥⊥A. �
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Remark 3.11. To prove Proposition 3.1, we have made significant use of the transitive

group action present on a cfr coset nilspace. We do not know whether the cubic

coupling axioms can be proved for ultraproducts of more general compact nilspaces,

where such a group action is not necessarily available. If the axioms still hold in such a

setting, then this may yield an extension of Theorem 1.5 valid for all compact nilspaces.

3.1. Locating a separable factor yielding a Borel cubic coupling.

Given a probability space (Ω,A, λ), we say that a σ-algebra X ⊂ A is separable if

L1
λ(X ) is separable as a metric space. In this subsection we prove the following result.

Proposition 3.12. Let (Xi)i∈N be a sequence of cfr coset nilspaces. Then for every

separable σ-algebra X0 ⊂ LX there is a separable σ-algebra X ⊂ LX such that X0 ⊂ X

and such that the Loeb measures µJnK on the σ-algebras X JnK form a cubic coupling.

The proof relies on the following couple of lemmas.

Lemma 3.13. Let (Ω,A, λ) be a probability space and let S be a finite set. For each

v ∈ S let Xv be a sub-σ-algebra of A, and let C ⊂
∨

v∈S Xv be a separable σ-algebra.

Then there are separable σ-algebras X ′
v ⊂ Xv for v ∈ S such that C ⊂λ

∨
v∈S X ′

v.

Proof. The separability of C implies that there is a dense sequence of functions (fℓ)ℓ∈N

in L1(C). By [7, Lemma 2.2], for each ℓ there is a sequence of functions (fk,ℓ)k∈N,

where for each k we have ‖fk,ℓ − fℓ‖L1 ≤ 1/k and fk,ℓ is a finite sum of bounded

rank 1 functions, i.e. fk,ℓ =
∑mk,ℓ

j=1

∏
v∈S gv,j,k,ℓ where gv,j,k,ℓ ∈ L∞(Xv) for every j.

Let X ′
v be the separable sub-σ-algebra of Xi generated by the collection {gv,j,k,ℓ :

ℓ, k ∈ N, j ∈ [mk,ℓ]}. This collection is countable, so X ′
v is separable. Now given any

f ∈ L1(C), for any ǫ > 0 there is ℓ such that ‖f − fℓ‖L1 < ǫ/2, and there is k such

that ‖fℓ − fℓ,k‖L1 < ǫ/2, so ‖f − fk,ℓ‖L1 < ǫ, and by construction fk,ℓ ∈ L
1(
∨

v∈S X ′
v).

Letting ǫ → 0, we deduce that C ⊂λ

∨
v∈S X ′

v. �

Let us single out the adjacent faces Fn,0 := {0}× Jn− 1K, Fn,1 := Jn− 1K×{0} in JnK.

For p ∈ [1,∞] we denote by Up(A) the unit ball of Lp(A).

Lemma 3.14. Let C be a separable sub-σ-algebra of LX. There is a separable σ-algebra

D with C ⊂ D ⊂ LX, such that for every n ∈ N, for every system (fv)v∈Fn,0 of bounded

C-measurable functions fv, we have E
(∏

v∈Fn,0
fv ◦pv|(LX)

JnK
Fn,1

)
∈ L∞(D

JnK
Fn,0∩Fn,1

).

Proof. By assumption the metric space L1(C) is separable, and therefore so is the

subset U∞(C) ⊂ L1(C), so there is a sequence S ⊂ U∞(C) that is dense in U∞(C)

relatively to the L1-norm. Recall that A denotes L
JnK
X

. Let 〈C〉n denote the sub-

σ-algebra of AFn,1 generated by all expectations E(
∏

v∈Fn,0
gv ◦pv|AFn,1) for systems

(gv)v∈Fn,0 of functions in S. Since 〈C〉n is generated by countably many functions,

it is separable. By the conditional independence axiom (Proposition 3.1) we have
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E(
∏

v∈Fn,0
gv ◦pv|AFn,1) ∈ L∞(AFn,0∩Fn,1). Hence 〈C〉n ⊂λ AFn,0∩Fn,1 . By Lemma

3.13, there is a separable σ-algebra Dn ⊂ LX such that 〈C〉n ⊂λ (Dn)
JnK
Fn,0∩Fn,1

. Let

D = C ∨
(∨

n∈NDn

)
. Fix any system

(
fv ∈ U∞(C)

)
v∈Fn,0

. For every ǫ > 0, for

each v there is gv ∈ S such that ‖fv − gv‖L1 ≤ ǫ. Using telescoping sums we have

‖E(
∏

v∈Fn,0
fv ◦pv|AFn,1) − E(

∏
v∈Fn,0

gv ◦pv|AFn,1)‖L1 ≤ 2n ǫ. Letting ǫ → 0 yields

E(
∏

v∈Fn,0
fv ◦pv|AFn,1) ∈ L

1
(
(Dn)

JnK
Fn,0∩Fn,1

)
⊂ L1(D

JnK
Fn,0∩Fn,1

). The result follows. �

Proof of Proposition 3.12. The consistency and ergodicity axioms hold with LX (by

Lemma 3.2), so they clearly hold also for any sub-σ-algebra of LX. In particular, for

each n we have to check the conditional independence axiom (for the suitable separable

σ-algebra X ⊂ LX) only for Fn,0, Fn,1, rather than for all pairs of adjacent (n − 1)-

faces in JnK (indeed, the consistency axiom implies conditional independence for every

such pair of faces, once we have it just for Fn,0, Fn,1). So let us prove that there

is a separable σ-algebra X ⊂ LX such that for each n, for every system (fv)v∈Fn,0 in

L∞(X ), we have E(
∏

v∈Fn,0
fv ◦pv|AFn,1) ∈ L∞(X

JnK
Fn,0∩Fn,1

) (this is enough, since by [7,

Lemma 2.2] every integrable X
JnK
Fn,0

-measurable function is a limit of finite sums of rank 1

functions
∏

v∈Fn,0
fv ◦pv). If we prove this, then we also have E(

∏
v∈Fn,0

fv ◦pv|X
JnK
Fn,1

) ∈

L∞(X
JnK
Fn,0∩Fn,1

), since X
JnK
Fn,0∩Fn,1

⊂ X
JnK
Fn,1

⊂ AFn,1 . To obtain X , we argue as follows:

let X0 be the initial separable σ-algebra in the proposition, and let (Xi)i∈N be the

increasing sequence of separable sub-σ-algebras of LX defined inductively by letting

Xi be the σ-algebra D obtained by applying Lemma 3.14 with C = Xi−1. Let X =
∨

i≥0Xi. To see that this has the required property, fix any n and let (fv)v∈Fn,0 be

any system of functions in L∞(X ). We have to check that E(
∏

v∈Fn,0
fv ◦pv|AFn,1) ∈

L∞(X
JnK
Fn,0∩Fn,1

). It clearly suffices to do this assuming that fv ∈ U∞(X ). Fix any

ǫ > 0. For each v there is f ′v ∈ U∞(Xi) for some i = i(v) such that ‖fv − f ′v‖L1 < ǫ

(indeed we can take f ′v to be a version of E(fv|Xi)). Letting j = maxv∈Fn,0 i(v), we

have f ′v ∈ U∞(Xj) for all v. It then follows by construction and Lemma 3.14 that

E(
∏

v∈Fn,0
f ′v ◦pv|AFn,1) ∈ L∞

(
(Xj+1)

JnK
Fn,0∩Fn,1

)
⊂ L∞

(
X

JnK
Fn,0∩Fn,1

)
. As in the previous

proof, this expectation converges to E(
∏

v∈Fn,0
fv ◦pv|AFn,1) as ǫ → 0, so the latter

expectation is also X
JnK
Fn,0∩Fn,1

-measurable modulo null sets, as required. �

4. Stability of morphisms into compact finite-rank nilspaces

By a compatible metric on a topological space X we mean a metric d on X which

generates the given topology on X. Given such a metric d on X, for any x, y ∈ X and

ǫ > 0 we write x ≈ǫ y to mean that d(x, y) ≤ ǫ. Recall that if G is a compact group

acting continuously on a metric space X with metric d, then we can always define a

compatible metric d′ on X which is also G-invariant, meaning that for all x, y ∈ X

and g ∈ G we have d′(gx, gy) = d′(x, y) (see [34, Proposition 1.1.12]).
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Given compact nilspaces X,Y, with a compatible metric d on Y, we define a

pseudometric d1 on the space of Borel measurable functions φ : X → Y by the formula

d1(φ1, φ2) =
∫
X d(φ1(x), φ2(x)

)
dµX(x).

Definition 4.1. Let X,Y be k-step compact nilspaces, and let d be a compatible

metric on Y. For δ > 0, a (δ, 1)-quasimorphism from X to Y (relative to d) is a Borel

measurable map φ : X → Y satisfying

µ
Jk+1K
X

(
{c ∈ Ck+1(X) : ∃ c′ ∈ Ck+1(Y), ∀ v ∈ Jk + 1K, φ ◦c(v) ≈δ c

′(v)}
)
≥ 1− δ, (2)

where µ
Jk+1K
X denotes the Haar probability measure on Ck+1(X).

We write “(δ, 1)-quasimorphism”, rather than just “δ-quasimorphism”, to distinguish

this notion from the quasimorphisms defined in [4, Definition 2.8.1], which we call here

(δ,∞)-quasimorphisms; these are defined by replacing property (2) with the uniform

(and stronger) property ∀ c ∈ Ck+1(X), ∃ c′ ∈ Ck+1(Y), ∀ v ∈ Jk+1K, φ ◦c(v) ≈δ c
′(v).

In our proof of Theorem 1.5 in Section 5, a key ingredient is the following stability

(or rigidity) result for morphisms.

Theorem 4.2. Let Y be a k-step cfr nilspace with compatible metric d. For every

ǫ > 0 there exists δ = δ(ǫ,Y) > 0 such that if X is a compact nilspace and φ : X → Y

is a (δ, 1)-quasimorphism, then there exists a continuous morphism φ′ : X → Y such

that d1(φ, φ
′) ≤ ǫ.

This theorem is an analogue, for (δ, 1)-quasimorphisms, of the uniform stability result

for (δ,∞)-quasimorphisms given in [2, Theorem 5] (see also [4, Theorem 2.8.2]). Indeed,

we obtain the statement of this uniform stability result by replacing in Theorem 4.2

every “1” by “∞” (where d∞(φ1, φ2) = supx∈X d(φ1(x), φ2(x)).

4.1. Cocycles close to the 0 cocycle are coboundaries.

Recall that the group Aut(JkK) of automorphisms of the cube JkK is generated by

permutations of [k] = {1, 2, . . . , k} and coordinate reflections. For θ ∈ Aut(JkK) we

write r(θ) for the number of reflections involved in θ. Equivalently, r(θ) is the number

of coordinates equal to 1 of θ(0k). Two n-cubes c1, c2 on a nilspace are adjacent if

c1(v, 1) = c2(v, 0) for all v ∈ Jn − 1K; we can then form their concatenation, which is

the n-cube c such that c(v, 0) = c1(v, 0) and c(v, 1) = c2(v, 1) for all v ∈ Jn − 1K (see

[3, Lemma 3.1.7]).

We now recall the definition of a nilspace cocycle, which is fundamental to the

structural analysis of nilspaces (see [2, Definition 2.14] or [3, Definition 3.3.14]).

Definition 4.3. Let X be a nilspace, Z an abelian group, and k ∈ Z≥−1. A Z-valued

cocycle of degree k on X is a function ρ : Ck+1(X) → Z with the following properties:

(i) If c ∈ Ck+1(X) and θ ∈ Aut(Jk + 1K), then ρ(c ◦θ) = (−1)r(θ)ρ(c).

(ii) If c3 is the concatenation of cubes c1, c2 ∈ Ck+1(X) then ρ(c3) = ρ(c1) + ρ(c2).
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We recall also that for any n ∈ N and any group G we denote by σn the Gray-

code map GJnK → G from [3, Definition 2.2.22]; in particular if G is abelian we have

σn(g) :=
∑

v∈JnK(−1)|v|g(v) for every g : JnK → G. Using this notation, we say that a

cocycle ρ of degree k on X is a coboundary (of degree k) if there is a function f : X → Z

such that ρ(c) = σk+1(f ◦c) for every c ∈ Ck+1(X). We refer to [3, §3.3.3] for more

background on cocycles and coboundaries.

The proof of Theorem 4.2, given in Subsection 4.2, relies on the following stability

result for cocycles, which is the main result in this subsection.

Proposition 4.4. Let Z be a compact abelian group, and let dZ be a compatible

Z-invariant metric on Z. There exists ǫ > 0 such that the following holds. If X

is a compact nilspace and ρ : Ck(X) → Z is a Borel cocycle such that d1(0, ρ) :=
∫
Ck(X) dZ

(
ρ(c), 0Z

)
dµCk(X)(c) ≤ ǫ, then ρ is a coboundary.

A key element in the proof of Proposition 4.4 is the following result.

Lemma 4.5. Let X be a compact nilspace, let Z be a compact abelian group with

compatible Z-invariant metric dZ, let ρ : Ck(X) → Z be a Borel measurable cocycle, let

0 < ǫ < 2−4k, and suppose that d1(ρ, 0) ≤ ǫ. Then there is a Borel set S ⊂ X such that

µX(S) > 1− ǫ1/2 and dZ(ρ(c), 0) ≤ 2kǫ1/4 for every c ∈ Ck(X) ∩ SJkK.

The proof employs tricubes, which are very useful tools in nilspace theory ([3, §3.1.3]),

especially because they enable an operation akin to convolution (called tricube com-

position) to be performed with cubes (see [3, Lemma 3.1.16]). A crucial property

of cocyles, which is used repeatedly in this section, is that they commute with this

operation in the sense captured in [2, Lemma 2.18] (see also [3, Lemma 3.3.31]).

Proof of Lemma 4.5. Let

S =
{
x ∈ X : µCk

x(X)

(
{c ∈ Ck

x(X) : dZ(ρ(c), 0) ≤ ǫ1/4}
)
≥ 1− ǫ1/4

}
,

where Ck
x(X) := {c ∈ Ck(X) : c(0k) = x}, and µCk

x(X) denotes the Haar probability

measure on Ck
x(X) (see [4, Lemma 2.2.17]). By Markov’s inequality, we have

µX(X \S) ǫ1/2 <

∫

X

∫

Ck
x(X)

dZ(ρ(c), 0) dµCk
x(X)(c) dµX(x) = d1(ρ, 0) ≤ ǫ.

Hence µX(S) > 1− ǫ1/2.

Now if c ∈ Ck(X)∩SJkK, then for each v ∈ JkK, by definition of S there is a measure

at least 1 − ǫ1/4 of cubes c′ ∈ Ck
c(v)(X) such that dZ(ρ(c

′), 0) ≤ ǫ1/4. Recall that the

restricted tricube space T (c) := homc ◦ω−1
k
(Tk,X), being an iterated compact abelian

bundle, has a Haar measure (see [4, Lemma 2.2.12], and see [3, Definition 3.1.15] for

the notion of the outer-point map ωk). Let us denote this Haar measure by µT (c). For

each v ∈ JkK the map T (c) → Ck
c(v)(X), t 7→ t ◦Ψv takes this measure µT (c) to the
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Haar measure on Ck
c(v)(X) (see [4, Corollary 2.2.22], and see [3, Definition 3.1.13] for

the maps Ψv). It follows from this and the union bound that

µT (c)

({
t ∈ T (c) : ∀ v ∈ JkK, dZ

(
ρ(t ◦Ψv), 0

)
≤ ǫ1/4

})
≥ 1− 2kǫ1/4.

Our assumption for ǫ implies that this measure is positive, so there exists t ∈ T (c)

with this property, namely such that dZ
(
ρ(t ◦Ψv), 0

)
≤ ǫ1/4 for every v ∈ JkK. For this

tricube t, we apply the formula ρ(c) =
∑

v∈JkK(−1)|v|ρ(t ◦Ψv), which holds for every

tricube in T (c) by [3, Lemma 3.3.31]. By the triangle inequality and Z-invariance of

dZ, we obtain dZ(ρ(c), 0) ≤
∑

v∈JkK dZ(ρ(t ◦Ψv), 0) ≤ 2kǫ1/4, as claimed. �

Using the set S provided by Lemma 4.5, we can define a function g : X → Z such that,

subtracting the coboundary c 7→ σk(g ◦c) from ρ, we obtain a new cocycle ρ′ whose

values are uniformly close to 0 (not just close in d1), as follows.

Lemma 4.6. Let X be a compact nilspace, let Z be a compact abelian group with

compatible Z-invariant metric dZ, let C denote the diameter of Z relative to dZ, let

ρ : Ck(X) → Z be a Borel cocycle, let ǫ ∈ (0, 2−4k), and suppose that d1(ρ, 0) ≤ ǫ.

Then there is a Borel function g : X → Z with d1(g, 0) ≤ (2 + C)4kǫ1/4 such that

ρ′ : c 7→ ρ(c)− σk(g ◦c) satisfies dZ(ρ
′(c), 0) ≤ 8kǫ1/4, ∀ c ∈ Ck(X).

Proof. Let S be the subset of X given by Lemma 4.5.

We claim that for every x ∈ X there exists an element g(x) ∈ Z such that

µCk
x(X)

({
c ∈ Ck

x(X) : dZ
(
ρ(c), g(x)

)
≤ 4kǫ1/4

})
> 1− 4kǫ1/2. (3)

To see this, fix any x ∈ X, and note that for each v 6= 0k, the map Ck
x(X) → X,

c 7→ c(v) preserves the Haar measures (by [4, Lemma 2.2.14] with n = k, P = JkK,

P1 = {0k}, P2 = {v}). Since µ(S) > 1 − ǫ1/2, by the union bound we therefore have

µCk
x(X)

({
c ∈ Ck

x(X) : ∀ v 6= 0k, c(v) ∈ S
})

> 1− (2k − 1)ǫ1/2. Fix any cube c0 ∈ Ck
x(X)

with c0(v) ∈ S for every v 6= 0k. Combining the last inequality with the fact (used in

the previous proof) that the map T (c0) → Ck
c0(v)

(X), t 7→ t ◦Ψv preserves the Haar

measures, we deduce by the union bound that

µT (c0)

({
t ∈ T (c0) : ∀ v 6= 0k, t ◦Ψv ∈ SJkK

})
> 1− (2k − 1)2ǫ1/2 > 1− 4kǫ1/2.

Let g(x) := ρ(c0), and note that c0 can be chosen to make the function g : X → Z

Borel, by [29, Theorem (12.16), (12.18)] and the continuity of the map c 7→ c(0k).

For every tricube t in the above set, we have ρ(c0) =
∑

v∈JkK(−1)|v|ρ(t ◦Ψv) and,

for every v 6= 0k, since t ◦Ψv ∈ SJkK, we have dZ(ρ(t ◦Ψv), 0) ≤ 2kǫ1/4 by Lemma 4.5.

We deduce that dZ
(
g(x), ρ(t ◦Ψ0k)

)
≤ 4kǫ1/4. Hence

µT (c0)

({
t ∈ T (c0) : g(x) ≈4kǫ1/4 ρ(t ◦Ψ0k)

})
> 1− 4kǫ1/2. (4)

Since the map T (c0) → Ck
x(X), t 7→ t ◦Ψ0k preserves the Haar measures, we have that

(4) is equivalent to (3), which proves our claim.
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Define the coboundary f : Ck(X) → Z by f(c) = σk(g ◦c). Fix any cube c ∈ Ck(X).

By the measure-preserving properties used earlier, the union bound, and (3), we have

µT (c)

({
t ∈ T (c) : ∀ v ∈ JkK, dZ

(
ρ(t ◦Ψv), g ◦c(v)

)
≤ 4kǫ1/4

})
> 1− 8kǫ1/2.

By our assumption on ǫ we have 8kǫ1/2 < 1, so there exists t ∈ T (c) with the above

property. Applying the formula ρ(c) =
∑

v∈JkK(−1)|v|ρ(t ◦Ψv) for this t, and the trian-

gle inequality (and shift invariance of dZ), we deduce that dZ
(
ρ(c), f(c)

)
≤ 8kǫ1/4, as

required. Finally, we have

d1(g, 0) =

∫

X
dZ(g(x), 0) dµX(x) =

∫

X

∫

Ck
x(X)

dZ(g(x), 0) dµCk
x(X)(c) dµX(x)

≤

∫

X

∫

Ck
x(X)

dZ(g(x) − ρ(c), 0) dµCk
x(X)(c) dµX(x) +

∫

Ck(X)
dZ(ρ(c), 0) dµCk(X)(c).

The latter integral is d1(ρ, 0), and by (3) the former integral is at most (1 +C)4kǫ1/4.

Hence d1(g, 0) ≤ d1(ρ, 0) + (1 + C)4kǫ1/4 ≤ (2 + C)4kǫ1/4, as required. �

We can now complete the proof of the stability result for cocycles.

Proof of Proposition 4.4. We know by [4, Lemma 2.5.7] that there exists ǫ0 > 0 depen-

ding only on Z and k such that if a cocycle ρ′ : Ck(X) → Z takes all its values within

distance ǫ0 of 0Z, then ρ
′ is a coboundary. Applying Lemma 4.6 with ǫ sufficiently small

in terms of ǫ0 and k, we conclude that ρ − f is a coboundary, where f(c) = σk(g ◦c).

Since f is also a coboundary, it follows that ρ is a coboundary. �

4.2. Proof of the stability result for morphisms.

Given a k-step nilspace X, for j ∈ [k] we denote by Xj the j-th factor of X (also denoted

by Fj(X), with Fk(X) = X), and by πj the factor map X → Xj (see [3, Lemma 3.2.10]).

If X is compact, with a compatible Zk-invariant metric d, we can always metrize Xk−1

with the quotient metric corresponding to d the standard way (see [4, (2.2)]).

We shall use the following rectification result for cubes (see [4, Lemma 2.8.3]).

Lemma 4.7. Let X be a k-step compact nilspace with compatible Zk-invariant metric

d, and let d′ be the quotient metric on Xk−1. For every ǫ > 0 there exists δ > 0 such

that the following holds. If c ∈ Ck+1(X) satisfies d′
(
πk−1 ◦c(·, 0), πk−1 ◦c(·, 1)

)
≤ δ on

JkK, then there is c′ ∈ Ck+1(X) with c ≈ǫ c
′ and πk−1 ◦c

′(·, 0) = πk−1 ◦c
′(·, 1) on JkK.

Recall from [3, Definition 2.2.30] the notation Dk(Z) for the degree-k nilspace structure

on an abelian group Z. In our proof of Theorem 4.2, we argue by induction on k. Each

step of the induction uses the following special case of the theorem.

Lemma 4.8. Let Z be a compact abelian Lie group equipped with a compatible Z-

invariant metric dZ, and let k ∈ Z≥0. For every ǫ > 0 there exists δ = δ(ǫ, k,Z) > 0

such that if φ is a (δ, 1)-quasimorphism from a compact k-step nilspace X to Dk(Z),

then there is a morphism φ′ : X → Dk(Z) such that d1(φ, φ
′) ≤ ǫ.
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Proof. Let C be the diameter of Z relative to dZ. Let δ
′ ∈

(
0, ǫ/(2+C)

)
be sufficiently

small for the conclusion of [4, Theorem 2.8.2] to hold with initial parameter ǫ/2, for

every (δ′,∞)-quasimorphism X → Dk(Z). Let 0 < δ < δ′4/
(
84(k+1)(2k+1 + C)

)
.

Let ρ be the coboundary c 7→ σk+1(φ ◦c). From our assumption, inequality (2),

and the definition of the cube structure on Dk(Z) (see [3, formula (2.9)]) it follows that

d1(ρ, 0) ≤ (2k+1 + C)δ. By Lemma 4.6 applied with ǫ0 = (2k+1 + C)δ, there exists

a Borel function g : X → Z such that dZ
(
ρ(c) − σk+1(g ◦c), 0

)
≤ 8k+1ǫ

1/4
0 < δ′ for

every cube c ∈ Ck+1(X). Equivalently, the map φ1 : X → Z, x 7→ φ(x)− g(x) satisfies

dZ
(
σk+1(φ1 ◦c), 0

)
≤ δ′. Let c′ ∈ Ck+1

(
Dk(Z)

)
be the cube such that c′(v) = φ1 ◦c(v)

for v 6= 0k+1 and c′(0k+1) = φ1 ◦c(0
k+1) − σk+1(φ1 ◦c) (note that c′ is indeed in

Ck+1
(
Dk(Z)

)
since σk+1(c

′) = 0). We clearly have dZ
(
c′(v), φ1 ◦c(v)

)
≤ δ′ for every

v ∈ Jk + 1K. We have thus shown that φ1 is a (δ′,∞)-quasimorphism.

We can thus apply [4, Theorem 2.8.2] to conclude that there is a continuous

morphism φ′ : X → Dk(Z) such that dZ
(
φ1(x), φ

′(x)
)
≤ ǫ/2 for all x ∈ X. Hence

d1(φ, φ
′) ≤ d1(φ, φ1) + d1(φ1, φ

′) ≤ d1(g, 0) + ǫ/2. By Lemma 4.6 we have d1(g, 0) ≤

(2 + C)4k+1ǫ
1/4
0 = (2+C)δ′

2k+1 ≤ ǫ/2. �

We need one more lemma before the proof of Theorem 4.2. This lemma enables us to

lift certain Borel maps, and is useful for the inductive step in the proof of the theorem.

Lemma 4.9. Let Y be a k-step cfr nilspace, with k-th structure group Zk, let d be a

Zk-invariant compatible metric on Y, with corresponding quotient metric d′ on Yk−1.

For every ǫ > 0 there exists δ > 0 such that the following holds. Let X be a k-step

compact nilspace, let φ : X → Y be a Borel map, let φ1 = πk−1,Y ◦φ : X → Yk−1, and

let φ2 : X → Yk−1 be a continuous map such that for some Borel set A ⊂ X we have

d′(φ1(x), φ2(x)) < δ for every x ∈ A. Then there is a Borel map φ3 : X → Y such that

for every x ∈ X, πk−1,Y ◦φ3(x) = φ2(x), and for every x ∈ A, d(φ(x), φ3(x)) < ǫ.

Proof. By Gleason’s slice theorem Y is a locally trivial Zk-bundle over Yk−1 (see [4,

Proposition 2.5.2]). Hence, for each y ∈ Yk−1 there is δy > 0 such that the Zk-

bundle Y trivializes over the closed ball Bδy(y) ⊂ Yk−1. Thus we have a Zk-bundle

isomorphism θy : π−1
k−1

(
Bδy(y)

)
→ Bδy(y) × Zk, w 7→ (πk−1(w), z), i.e., θy is a Zk-

equivariant homeomorphism (where the action of Zk on Bδy(y) × Zk is defined by

z′ · (πk−1(w), z) = (πk−1(w), z + z′)). By uniform continuity of θ−1
y on the compact

set Bδy(y) × Zk, there is δ′y > 0 such that, letting d′′ denote the metric d′ + dZk
on

Bδy(y)×Zk (with dZk
the metric on Zk), we have d

′′
(
θy(w), θy(w

′)
)
≤ δ′y ⇒ d(w,w′) ≤ ǫ.

Since the balls Bδy/2(y) cover Yk−1, by compactness there is a finite subcover by

balls Bδi/2(yi), i ∈ [M ], where δi = δyi . Thus Y trivializes over each ball Bδi(yi).

Let δ < 1
2 min{δi, δ

′
yi : i ∈ [M ]}. Then, for each x ∈ X, there is i ∈ [M ] such

that d′(φ2(x), yi) < δi/2, whence if x ∈ A then d′
(
φ1(x), yi

)
≤ d′

(
φ1(x), φ2(x)

)
+
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d′
(
φ2(x), yi

)
< δ + δi/2 < δi. In particular, for every x ∈ A there is i ∈ [M ] such that

φ1(x), φ2(x) ∈ Bδi(yi).

Now we claim that for each i ∈ [M ] there is a Borel function fi : φ
−1
2

(
Bδi/2(yi)

)
→

Y such that πk−1 ◦fi = φ2 and d
(
fi(x), φ(x)

)
≤ ǫ for all x ∈ A∩φ−1

2

(
Bδi/2(yi)

)
. To see

this, let θi = θyi : π
−1
k−1

(
Bδi(yi)

)
→ Bδi(yi) × Zk, y 7→ (πk−1(y), z) be the trivializing

bundle isomorphism. Fix any x ∈ X, and let i be such that φ2(x) ∈ Bδi/2(yi). If

x ∈ A then, since φ1(x) ∈ Bδi(yi), there is zx ∈ Zk such that θi ◦φ(x) = (φ1(x), zx).

In this case let fi(x) := θ−1
i (φ2(x), zx). If x ∈ φ−1

2

(
Bδi/2(yi)

)
\ A, then we just let

fi(x) = s ◦φ2(x), where s : Yk−1 → Y is a fixed Borel cross section for Y (which

always exists for such bundles, see [4, Lemma 2.4.5]). Thus clearly πk−1 ◦fi = φ2. We

can see that fi is Borel as follows. Let p2 denote the projection to the Zk component on

Bδi(yi)×Zk. Let g denote the function which “corrects” the Zk component of s ◦φ2(x),

namely g : x 7→ θi ◦s ◦φ2(x) +
(
p2 ◦θi ◦φ(x) − p2 ◦θi ◦s ◦φ2(x)

)
= (φ2(x), zx). Then g

is Borel, and fi(x) = θ−1
i ◦g(x) for x ∈ A, so fi is also Borel. Let us now confirm that

d
(
fi(x), φ(x)

)
≤ ǫ for all x ∈ A ∩ φ−1

2

(
Bδi/2(yi)

)
. Since θi ◦fi(x) and θi ◦φ(x) have

the same Zk-component zx (by construction of fi), we have d′′(θi ◦fi(x), θi ◦φ(x)) =

d′
(
φ2(x), φ1(x)

)
≤ δ. Hence, since δ < δ′i, we have d(fi(x), φ(x)) ≤ ǫ by the choice of

δ′i above. This proves our claim.

We can greedily form a Borel partition of the domain of φ2 out of the sets

φ−1
2 (Bδi/2(yi)). Thus with each x in this domain we associate a unique i ∈ [M ] such

that φ2(x) ∈ Bδi/2(yi). We set φ3(x) := fi(x), which makes φ3 a Borel function. �

Proof of Theorem 4.2. We argue by induction on k. The case k = 0 is trivial (a

non-empty 0-step nilspace is a one-point nilspace). For k > 0, let φ : X → Y be a

(δ, 1)-quasimorphism relative to the given compatible metric d. Note that letting d̃

be the corresponding Zk-invariant metric on Y (see [4, Lemma 2.1.11]), the identity

map on Y is uniformly continuous (Y, d) → (Y, d̃), so φ is a (δ̃, 1)-quasimorphism

relative to d̃ for some δ̃(δ) > 0 with δ̃ = o(1)δ→0, and therefore we may relabel d̃, δ̃

as d, δ and assume without loss of generality that d was already Zk-invariant. Now

let φ′1 = πk−1 ◦φ, and note that φ′1 is also a (δ, 1)-quasimorphism relative to the

quotient metric d′ on Yk−1. By induction, for some positive δ1 = δ1(δ) = o(1)δ→0,

there exists a continuous morphism φ2 : X → Yk−1 such that d1(φ2, φ
′
1) ≤ δ1. This

implies by Markov’s inequality that for some Borel set A ⊂ X with µX(A) ≥ 1 − δ
1/2
1

we have d′(φ2(x), φ
′
1(x)) ≤ δ

1/2
1 for all x ∈ A. Applying Lemma 4.9 with initial

parameter δ2 > 0, we obtain a Borel map φ3 : X → Y such that φ2 = πk−1 ◦φ3

and d(φ(x), φ3(x)
)
≤ δ2 = o(1)δ→0 for every x ∈ A, which implies that d1(φ, φ3) <

δ2 + δ
1/2
1 C, where C is the diameter of (Y, dY). Note that this implies that φ3 is

also a (δ′, 1)-quasimorphism for some positive δ′ = o(1)δ→0, and what we have gained

compared to φ is that φ3 is a lift of the morphism φ2 (i.e. πk−1 ◦φ3 = φ2). We shall
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now use this to show that φ2 can in fact be lifted to a continuous morphism ψ : X → Y

(not just to a quasimorphism like φ3).

Let W be the fiber product {(x, y) ∈ X×Y : φ2(x) = πk−1,Y(y)}. This is a

compact sub-nilspace of the product nilspace X×Y, i.e.W is a k-step compact nilspace

if we equip it with the cubes c on the product nilspace X×Y such that c takes values

in W (see the proof of [5, Lemma 4.2], applied taking ψ1 in that proof to be πk−1,Y

here). Note that this k-step nilspace W is an extension of degree k of X by the abelian

group Zk(Y), because the action of Zk(Y) on the Y-component of W is transitive on

each fiber of the projection π :W → X, (x, y) 7→ x (recall [3, Definition 3.3.13]).

The map φ3 induces a Borel cross section s : X → W , x 7→ (x, φ3(x)). With this

cross section we can associate a cocycle following [3, Lemma 3.3.21], namely the cocycle

ρs : C
k+1(X) → Zk(Y) defined by c 7→ σk+1(s ◦c− c′) for any cube c′ ∈ Ck+1(W ) such

that π ◦c′ = c. It then follows from the definitions that ρs(c) = σk+1(φ3 ◦c− c′′) for

any c′′ ∈ Ck+1(Y) such that πk−1,Y ◦c′′ = φ2 ◦c. Since d1(φ, φ3) < δ2 + δ
1/2
1 C, and

φ is a (δ, 1)-quasimorphism, we deduce using Lemma 4.7 that d1(ρs, 0) < δ3, where

δ3 > 0 tends to 0 as δ → 0 (recall that δ1, δ2 are both o(1)δ→0). By Proposition 4.4,

ρs is a coboundary, so W is a split extension of X, whence there is a Borel morphism

ψ : X → Y such that πk−1 ◦ψ = φ2, and ψ is then continuous by [4, Theorem 2.4.6].

Let φ4 : X → Dk(Zk(Y)), x 7→ φ3(x)−ψ(x), where the subtraction here is enabled

by the fact that φ3(x), ψ(x) lie in the same fiber of πk−1 in Y (every such fiber is an

affine copy of the group Zk(Y); see [3, Corollary 3.2.16]). Note that φ4 is a (δ4, 1)-

quasimorphism for some positive δ4 = δ4(δ) = o(1)δ→0. By Lemma 4.8 there is a

continuous morphism φ5 : X → Dk(Zk) such that d1(φ4 − φ5, 0) < δ5 for some positive

δ5 = δ5(δ) = o(1)δ→0. Now let φ′ : X → Y, x 7→ ψ(x) + φ5(x). Then φ
′ is a continuous

morphism and d1(φ, φ
′) ≤ d1(φ,ψ+ φ4) + d1(ψ+ φ4, φ

′) = d1(φ, φ3) + d1(φ4 − φ5, 0) <

δ2 + δ
1/2
1 C + δ5, which is less than ǫ for δ sufficiently small. �

5. Proof of the regularity and inverse theorems

Recall that given a Polish space Y, the space P(Y) of Borel probability measures on Y

equipped with the weak topology is metrizable, and is in fact a Polish space (see [29,

Theorems (17.23) and (17.19)]). Given a nilspace morphism φ : X → Y and n ∈ N, we

denote by φJnK the map Cn(X) → Cn(Y), c 7→ φ ◦c.

In the decomposition given by Theorem 1.5, the structured part is guaranteed to

have the following useful property.

Definition 5.1 (Balance). Let Y be a k-step compact nilspace. For each n ∈ N fix a

metric dn on the space P(Cn(Y)). Let X be a compact nilspace, and let φ : X → Y be

a continuous morphism. Then for b > 0 we say that φ is b-balanced if for every n ≤ 1/b

we have dn
(
µCn(X) ◦(φ

JnK)−1, µCn(Y)

)
≤ b. A nilspace polynomial F ◦φ is b-balanced if

the morphism φ is b-balanced.



24 PABLO CANDELA AND BALÁZS SZEGEDY

The balance property is an approximate form of multidimensional equidistribution: the

image of φJnK, n ∈ [1/b], tends toward being equidistributed in Cn(Y) as b decreases.

This property is useful in problems involving averages of functions over certain config-

urations. It appeared in [38], and is related to a property of approximate irrationality

from [16]. In fact, from results in the latter paper it follows that, for nilsequences, high

irrationality implies b-balance for small b (see [16, Theorem 3.6], or [6, Theorem 4.1]).

Proof of Theorem 1.5. We begin by noting that it suffices to prove the result for cfr

coset nilspaces. Indeed, if X is an inverse limit of such nilspaces, then the preimages of

the Borel σ-algebras on these spaces under the limit maps form an increasing sequence

of σ-algebras Bi on X such that
∨

i∈N Bi =µX
BX, the Borel σ-algebra on X. By

standard results E(f |Bi) → f in L1 as i → ∞. This implies (using [7, Lemma 2.17])

that given any ǫ > 0, there is a limit map ψ : X → X′, i.e. a continuous fibration

onto a cfr coset nilspace X′, and a 1-bounded Borel function f ′ : X′ → C, such that

h := f − f ′ ◦ψ satisfies ‖h‖L1 ≤ ǫ/2. Let f ′ = f ′s + f ′e + f ′r be the decomposition for f ′

applied with initial parameter ǫ/2 and with D′(ǫ,m) := D(2ǫ,m), and let fs = f ′s ◦ψ,

fe = h + f ′e ◦ψ, fr = f ′r ◦ψ. We have (using that ψ is a Haar-measure-preserving

morphism [4, Corollary 2.2.7]) that f = fs + fe + fr is a valid decomposition for ǫ, D.

To prove the theorem for cfr coset nilspaces, we argue by contradiction. Suppose

that the theorem fails for some ǫ > 0. This means that there is a sequence of functions

(fi)i∈N where fi : Xi → C is Borel measurable on a compact coset nilspace Xi with

|fi| ≤ 1, such that fi does not satisfy the statement with ǫ and N = i. Let ω be a

non-principal ultrafilter on N and let X be the ultraproduct
∏

i→ω Xi equipped with

the Loeb probability measure λ′ on LX. Let f : X → C be the Loeb measurable

function limω fi, and let B0 be the separable sub-σ-algebra of LX generated by f .

By Proposition 3.12 there is a σ-algebra B′ ⊂ LX including B0 such that the

probability space Ω′ = (X,B′, λ′) is separable, and such that the sequence of measures

µJnK on (XJnK,B′JnK) form a cubic coupling. By [29, (17.44), iv)], the measure algebra of

Ω′ is isomorphic to the measure algebra of a Borel probability space Ω = (Ω,B, λ). By

[11, 343B(vi)] (using [10, 211L(a)-(c)] and [11, 324K(b)]) there is a mod 0 isomorphism

θ : Ω′ → Ω realizing this measure-algebra isomorphism. Moreover, by [7, Proposition

A.11] the images of the measures µJnK under the maps θJnK form a cubic coupling on

Ω. From now on we identify f and f ◦θ−1, so we view f as a function on Ω.

Let Fk be the k-th Fourier σ-algebra on Ω (see [7, Definition 3.18]). Then we have

f = fs + fr, where fs = E(f |Fk), and fr = f − E(f |Fk) satisfies ‖fr‖Uk+1 = 0. We

now apply the structure theorem for cubic couplings [7, Theorem 4.2]. More precisely,

applying this theorem to the above cubic coupling
(
Ω, (µJnK)n≥0

)
, we obtain a k-step

compact nilspace Y, and a measurable map γk : Ω → Y such that γ
JnK
k takes µJnK to

the Haar measure µCn(Y) for each n ≥ 0. Moreover, this nilspace Y is related to Fk in

the sense that, letting BY denote the Borel σ-algebra on Y, we have that the σ-algebra
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γ−1
k (BY) equals Fk modulo null sets (see [7, Lemma 3.42]). Then by [7, Lemma 2.17]

there is a Borel function g : Y → C such that fs =λ g ◦γk.

By [4, Theorem 2.7.3], the nilspace Y is an inverse limit of k-step cfr nilspaces

Yj , j ∈ N, where the limit maps ψj : Y → Yj are continuous fibrations. Let Yj

denote the σ-algebra on Y generated by ψj. Arguing as in the first paragraph of

the proof, there is j ∈ N such that gj := E(g|Yj) satisfies ‖g − gj‖1 ≤ ǫ/3. For

this j let γ = ψj ◦γk : Ω → Yj. As fibrations take cube sets onto cube sets in a

measure-preserving way, the map γ has the same measure-preserving properties as γk.

Furthermore, by Lusin’s theorem combined with [12, Theorem 1], there is a continuous

function h : Yj → C with |h| ≤ 1 and with finite Lipschitz constant C such that

‖gj − h‖L1(Y) ≤ ǫ/3. Let q = h ◦γ : Ω → C. The measure-preserving properties of γk

and ψj imply that ‖fs−q‖L1(Ω) = ‖g−h ◦ψj‖L1(Y) ≤ 2ǫ/3. Let fe = fs−q = f−q−fr.

Next, we show that there are continuous morphisms φi : Xi → Yj, i ∈ N, such

that γ =λ limω φi. Note that since γ is LX-measurable, by [35, Corollary 5.1] it has

a lifting, i.e. there are Borel maps gi : Xi → Yj, i ∈ N such that γ =λ limω gi. This

together with the measure-preserving property of γJk+1K implies that the preimage of

Ck+1(Yj) under (limω gi)
Jk+1K has µJk+1K-probability 1. For each i let δi = inf{t :

gi is a (t, 1)-quasimorphism} ∈ [0, 1]. Then limω δi = 0. Indeed, otherwise for some

δ > 0 the set S1 = {i ∈ N : gi is not a (δ, 1)-quasimorphism} is in ω. Then for each

i ∈ S1 there is a Borel set Bi ⊂ Ck+1(Xi) of measure at least δ such that for every

c ∈ Bi the image gi ◦c is δ-separated from cubes, that is for every c′ ∈ Ck+1(Yj) we

have maxv∈Jk+1K dYj (gi ◦c(v), c
′(v)) ≥ δ. Since S1 ∈ ω, we can take B =

∏
i→ω Bi ⊂ Ω,

and we have µJk+1K(B) ≥ δ. Then, for every c ∈ B the composition (limω gi) ◦c is also

δ-separated from cubes, so it cannot be in Ck+1(Yj). This contradicts the above fact

that (limω gi)
Jk+1K maps almost every c ∈ Ck+1(Ω) into Ck+1(Yj), so we indeed have

limω δi = 0. Hence there is a sequence (δ′i > 0)i∈N with limω δ
′
i = 0 such that gi

is a (δ′i, 1)-quasimorphism for each i. Theorem 4.2 implies that for each i there is a

continuous morphism φi : Xi → Yj such that µXi({x ∈ Xi : φi(x) ≈ǫi gi(x)}) ≥ 1− ǫi,

where limω ǫi = 0. Hence limω gi =λ limω φi, as required. Indeed, otherwise we have

λ(limω gi 6= limω φi) > 0, which implies (using monotonicity of λ) that λ(limω gi ≈η

limω φi) < 1 − η for some η > 0. But this event limω gi ≈η limω φi is
{
(xi) ∈ Ω : {i :

gi(xi) ≈η φi(xi)} ∈ ω
}
, and this includes the set

∏
i→ω

{
xi ∈ Xi : gi(xi) ≈ǫi φi(xi)}

(using that ǫi < η for a cofinite set of integers i); but the latter set has λ-measure 1,

since µXi({x ∈ Xi : φi(x) ≈ǫi gi(x)}) ≥ 1− ǫi, and this contradicts that η > 0.

There is a sequence (bi > 0)i∈N such that φi is bi-balanced for all i and limω bi = 0.

Indeed, otherwise some b > 0, S′
2 ∈ ω satisfy that ∀ i ∈ S′

2, φi is not b-balanced. Then

there is S2 ⊂ S′
2 with S2 ∈ ω, and n ∈ [1/b], with dn

(
µCn(Xi) ◦(φ

JnK
i )−1, µCn(Yj)

)
≥ b for

all i ∈ S2. As γ
JnK is measure-preserving, we have limω dn

(
µCn(Xi) ◦(φ

JnK
i )−1, µCn(Yj)

)
=

limω dn
(
µCn(Xi) ◦(φ

JnK
i )−1, µJnK ◦(γJnK)−1

)
= 0 (using Lemma B.5), a contradiction.
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For each i let fs,i = h ◦φi, and apply [35, Corollary 5.1] again to obtain a sequence

of Borel functions (fr,i : Xi → C)i∈N such that limω fr,i =λ fr. Let fe,i = fi−fs,i−fr,i.

Since limω gi =λ limω φi, we have limω fs,i =λ q, whence limω fe,i =λ fe. We also have

limω ‖fr,i‖Uk+1 = ‖fr‖Uk+1 = 0. Since q and fe are both Fk-measurable, we have 〈fr, q〉

and 〈fr, fe〉 both 0, and therefore limω〈fr,i, fs,i〉 = 〈fr, q〉 = 0 and limω〈fr,i, fe,i〉 =

〈fr, fe〉 = 0. Let m be the maximum of C and the complexity of Yj . Combining the

properties in this paragraph and the previous one, we deduce that there is a set S ∈ ω

such that for every i ∈ S the decomposition fi = fs,i+fr,i+fe,i satisfies the properties

in the theorem with this value of m, the initial ǫ, and the corresponding value D(ǫ,m).

This gives a contradiction for i ∈ S with i ≥ m. �

We deduce the following inverse theorem, which clearly implies Theorem 1.6.

Theorem 5.2. Let k ∈ N, and let b : R>0 → R>0 be an arbitrary function. For every

δ ∈ (0, 1] there is M > 0 such that for every compact nilspace X that is an inverse

limit of cfr coset nilspaces, and every 1-bounded Borel function f : X → C such that

‖f‖Uk+1 ≥ δ, for some m ≤M there is a b(m)-balanced 1-bounded nilspace-polynomial

F ◦φ of degree k and complexity at most m such that 〈f, F ◦φ〉 ≥ δ2
k+1

/2.

Proof. We apply Theorem 1.5 with ǫ = ǫ(δ) > 0 and D to be fixed later. By property

(ii) in the theorem and the fact that |fs| ≤ 1, we have |〈fe, fs〉| ≤ ǫ, and by property

(iii) we have |〈fr, fs〉| ≤ D(ǫ,m). Therefore, taking the inner product of fs with each

side of the decomposition f = fs + fe + fr, we obtain 〈f, fs〉 ≥ 〈fs, fs〉 − ǫ−D(ǫ,m).

We also have ‖fe‖L1 ≤ ǫ and |fe| ≤ 3, whence ‖fe‖Uk+1 ≤ (32
k+1−2ǫ2)1/2

k+1
≤

3ǫ1/2
k
. Combining this with the above decomposition of f and the bound ‖fr‖Uk+1 ≤

D(ǫ,m), we deduce that ‖fs‖Uk+1 ≥ δ − 3ǫ1/2
k
−D(ǫ,m). This together with |fs| ≤ 1

implies that 〈fs, fs〉 = ‖fs‖
2
L2 ≥ ‖fs‖

2k+1

Uk+1 ≥ (δ − 3ǫ1/2
k
−D(ǫ,m))2

k+1
.

We now fix ǫ =
(
δ
3(1 − (56 )

1/2k+1
)
)2k

, and choose D so that the following hold:

firstly, so that D(ǫ,m) ≤ b(m); secondly, so that by the last inequality in the previous

paragraph we have 〈fs, fs〉 ≥ 2δ2
k+1

/3; finally, so that ǫ + D(ǫ,m) ≤ δ2
k+1

/6, which

implies, by the last inequality in the first paragraph, that 〈f, fs〉 ≥ δ2
k+1

/2. We can

then let M be the number N given by Theorem 1.5 for this choice of ǫ and D. �

6. The case of simple abelian groups

In this final section we use Theorem 1.5 to prove Theorem 1.7.

Recall that Definition 5.1 presupposes that for each n a metric has been fixed on

the space P(Cn(X)) of Borel probabilities on Cn(X) (equipped with the weak topology).

For the proof of Theorem 1.7 it is convenient to fix the metrics in a process by induction

on the step k of X as follows: having already defined a metric dn,k−1 on P(Cn(Xk−1)),

we first let d′n,k be a metric on P(Cn(X)) defined the standard way (see [29, Theorem

(17.19)]), and then we define dn,k for µ, ν ∈ P(Cn(X)) by

dn,k(µ, ν) = d′n,k(µ, ν) + dn,k−1

(
µ ◦(π

JnK
k−1)

−1, ν ◦(π
JnK
k−1)

−1
)
. (5)
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This construction is convenient for the proof because if φ is b-balanced relative to the

metrics dn,k, then πk−1 ◦φ is automatically b-balanced relative to the metrics dn,k−1.

For the remainder of this section, we suppose that we have fixed what we call a factor-

consistent metrization for cubic measures on cfr nilspaces, by which we mean the

result of the following process: first we fix a sequence of metrics dn,1 on P(Cn(X))

(n ≥ 0) for each 1-step cfr nilspace X, then we fix metrics dn,2 on P(Cn(X)) for each

2-step cfr nilspace X using (5) as above, and so on for increasing k.

In the proof of Theorem 1.7, a key ingredient is the following result, which ensures

that the morphism that we obtain from Theorem 5.2 takes values in a toral nilspace.

Theorem 6.1. Fix any complexity notion and any factor-consistent metrization for

cubic measures on cfr nilspaces. Then for every M > 0 there exist b > 0 and p0 > 0

with the following property. Let Y be a k-step cfr nilspace of complexity at most M ,

and let φ : Zp → Y be a b-balanced morphism for a prime p > p0. Then Y is toral.

This section is mostly devoted to the proof of this result. The proof of Theorem 1.7 is

a simple combination of Theorems 6.1 and 5.2, and is given at the end of this section.

Recall that a nilspace X can be equipped with a filtration of translation groups

Θi(X), i ≥ 0 (see [3, Definition 3.2.27]), and that for cfr nilspaces these translation

groups are Lie groups (see [4, Theorem 2.9.10]).

In the proof of Theorem 6.1, we shall argue by induction on k. This will enable

us to assume that Yk−1 is toral, and we shall then use the following characterization

of such nilspaces, which will be very convenient for the rest of the argument.

Theorem 6.2. Let X be a k-step cfr nilspace such that the factor Xk−1 is toral. Let

G denote the Lie group Θ(X), let G• denote the degree-k filtration (Θi(X))i≥0, and

for an arbitrary fixed x ∈ X let Γ = StabG(x). Then X is isomorphic as a compact

nilspace to the coset nilspace (G/Γ, G•).

This theorem tells us essentially that such a nilspace X must be a cfr coset nilspace,

but it also gives us groups G,Γ and a filtration G• with which we can represent X.

The proof is an adaptation of [4, Theorem 2.9.17]; see Theorem A.1 in Appendix A.

Given Theorem 6.2, for the proof of Theorem 6.1 we can focus on coset nilspaces.

This is useful thanks to the following description of morphisms from Zp into such

nilspaces.

Proposition 6.3. Let X = (G/Γ, G•) be a coset nilspace. For a positive integer N let

φ : ZN → G/Γ be a morphism (relative to the standard degree-1 cube structure on ZN ).

Then for every homomorphism β : Z → ZN there is a polynomial map g ∈ poly(Z, G•)

such that φ ◦β = πΓ ◦g.

The proof, adapting an argument from [38], is given at the end of Appendix A.

In the proof of Theorem 6.1, we use the following lemma in the inductive step.
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Lemma 6.4. Let X be a cfr coset nilspace (G/Γ, G•), and let Y be the coset nilspace

(G/(G0 Γ), G•) where G0 is the identity component of G. Then the quotient map

q : G/Γ → G/(G0 Γ) is a morphism of compact nilspaces, and Y is in bijection with

the set of connected components of X. In particular Y is a finite (discrete) nilspace.

Proof. It is clear that q is a (continuous) morphism, because any cube c ∈ Cn(X)

lifts to a cube c̃ ∈ Cn(G•), i.e. we have c = c̃ΓJnK (by definition of the coset nilspace

structure), so q ◦c = c̃(G0 Γ)JnK is indeed a cube on Y.

We claim that the quotient map πΓ : G→ G/Γ induces a bijection from the set of

cosets of G0Γ (i.e. the set Y) to the set of connected components of G/Γ. First note

that the image under πΓ of any coset of G0Γ is open, because G0 is open (as G is a

Lie group) and πΓ is an open map. Since these images cover the compact set G/Γ,

and clearly two distinct cosets of G0Γ are mapped to disjoint such images by πΓ, these

images form a finite partition of G/Γ. Moreover, the image of every coset gG0Γ is

connected in G/Γ (indeed for any points gg1γ1, gg2γ2 in this coset there are paths from

ggiγi to gγi via G
0 for i = 1, 2, and then gγ1, gγ2 are identified in the quotient), so each

such image is included in one of the components of G/Γ, and therefore must be the

whole component (otherwise this component would be a disjoint union of at least two

such images, which are open sets, contradicting the connectedness of the component).

This shows that each component of G/Γ is an image under πΓ of a unique coset of

G0Γ, which proves our claim. �

We need two more lemmas before we can prove Theorem 6.1.

Lemma 6.5. Let Y be a coset nilspace, let N ∈ N and let φ : ZN → Y be a morphism.

Then for each k ∈ N the map φJkK : c 7→ φ ◦c is a nilspace morphism Ck(ZN ) → Ck(Y).

Proof. We are assuming that Y is the coset space G/Γ, for some filtered group (G,G•)

and Γ ≤ G, and that Ck(Y) = {c ΓJkK : c ∈ Ck(G•)}. We view the abelian group

Ck(ZN ) as a nilspace by equipping it with the standard cubes, and we view Ck(Y)

as the coset nilspace G̃/Γ̃ where G̃, Γ̃ denote the group Ck(G•) and subgroup Ck(Γ•)

respectively (with Γi := Γ ∩ Gi), and where G̃ is equipped with the filtration G̃• =(
G

JkK
i ∩ Ck(G•)

)
i≥0

. By Proposition 6.3 there is a polynomial map g ∈ poly(Z, G•)

such that, identifying ZN with the set of integers [0, N − 1] with addition mod N , we

have φ(n) = g(n)Γ for all n (in particular g is N -periodic mod Γ). Define

g(k) : Zk+1 → G̃, n = (n0, n1, . . . , nk) 7→
(
g(n0 + v · (n1, . . . , nk))

)
v∈JkK

. (6)

The group isomorphism θ : Zk+1
N → Ck(ZN ), n 7→

(
n0 + v · (n1, . . . , nk) mod N

)
v∈JkK

is a nilspace isomorphism. Hence φJkK is a morphism if and only if the map n 7→

g(k)(n)ΓJkK is a morphism Z
k+1
N → Ck(Y) (since the latter map is φJkK ◦θ). Recall that

the morphisms between two group nilspaces are the polynomial maps between the fil-

tered groups [3, Theorem 2.2.14]. Hence it suffices to prove that g(k) ∈ poly(Zk+1, G̃•),



A GENERALIZATION OF THE GREEN–TAO–ZIEGLER THEOREM 29

as then g(k) is a morphism into G̃ and then g(k)(n)ΓJkK is a morphism as required.

By Lemma A.5, there is a unique expression g(n) = g0g
n
1 · · · g

(nk)
k , where gi ∈ Gi.

Substituting this expression into (6) and expanding, we see that g(k)(n) is a pointwise

product of maps hj : Z
k+1 → G̃, j ∈ [0, k], of the form hj(n) =

(
g
(n0+v·(n1,...,nk)

j )
j

)
v∈JkK

.

By Leibman’s theorem [30], polynomial maps form a group under pointwise multipli-

cation, so it suffices to show that for every j ∈ [0, k] we have hj ∈ poly(Zk+1, G̃•).

We have
(n0+v·(n1,...,nk)

j

)
=

∑
i=(i0,...,ik)∈Z

k+1
≥0 ,|i|=j

(n0

i0

)(v1n1

i1

)
· · ·

(vknk
ik

)
, by the identity of

Chu–Vandermonde. Letting i′ = (i1, . . . , ik) be the restriction of i to its last k co-

ordinates, we note that
(
n0
i0

)(
v1n1
i1

)
· · ·

(
vknk
ik

)
gives a non-zero contribution to the last

sum above only if supp(i′) ⊂ supp(v). We deduce that hj(n) =
∏

i, |i|=j g

(n0

i0

)
···
(nk
ik

)

i
,

where gi is the element of GJkK with gi(v) = gj if supp(v) ⊃ supp(i′), and gi(v) = idG

otherwise. Now observe that, since | supp(i′)| ≤ j, the set {v : supp(v) ⊃ supp(i′)} is

a face of codimension at most j in JkK. Since gj ∈ Gj , it follows that gi ∈ G̃j .

We have shown that hj is a pointwise product of maps of the form n 7→ g
(n
i
)

i
, where(

n

i

)
=

(n0

i0

)(n1

i1

)
· · ·

(nk
ik

)
. It is known that these maps are polynomial (see the proof of

[18, Lemma 6.7]). This proves that g(k) ∈ poly(Zk+1, G̃•), and the result follows. �

Remark 6.6. In Lemma 6.5 we equipped the cube set Ck(Y) itself with a natural

nilspace structure, but note that this was enabled by the specific coset-nilspace nature

of Y. There is in fact a cubespace structure that one can define on Ck(X) for a general

nilspace X: given a map c : JmK → Ck(X), v 7→ c(v) (where c(v) is itself a cube

w 7→ c(v)(w) in Ck(X)), we declare c to be an m-cube on Ck(X) if for every w ∈ JkK,

the map JmK → X, v 7→ c(v)(w) is in Cm(X). It seems to be an interesting question

whether this cubespace structure satisfies the completion axiom and thus defines a

nilspace structure. The answer is affirmative when X is a coset nilspace, because it

can be checked that in this case this structure is equivalent to the one used on Ck(Y)

above. This fact can be used to give an alternative proof of Lemma 6.5.

Lemma 6.7. Let Z1, Z2 be finite abelian groups with coprime orders, and let ℓ ∈ N.

Then every morphism D1(Z1) → Dℓ(Z2) is constant.

Proof. We argue by induction on ℓ. For ℓ = 1, note that a morphism φ : D1(Z1) 7→

D1(Z2) satisfies ∆s∆tφ(x) = 0 for every s, t, x ∈ Z1 (see [3, formula (2.9)]), which

means that φ is an affine homomorphism Z1 → Z2, so the map ψ : x 7→ φ(x)− φ(0) is

a homomorphism. By standard group theory, the order |ψ(Z1)| divides both |Z1 | and

|Z2 |, so we must have |ψ(Z1)| = 1, so φ is constant. For ℓ > 1, note that for every

morphism φ : D1(Z1) → Dℓ(Z2), for every t ∈ Z1 the map ∆tφ : x 7→ φ(x+ t)− φ(x) is

a morphism D1(Z1) → Dℓ−1(Z2), so by induction ∆tφ is a constant function of x, for

each t. Hence ∆s∆tφ(x) = 0 for all s, t, x ∈ Z1. Arguing as for ℓ = 1, we deduce that

φ is constant. �
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We can now prove the characterization of balanced morphisms on Zp.

Proof of Theorem 6.1. By Theorem 1.10 it suffices to show that Ck(Y) is connected.

We prove this by induction on k. The base case k = 0 is trivial.

Let k ≥ 1, and suppose for a contradiction that Ck(Y) is disconnected.

We have that πk−1 ◦φ is also b-balanced (by our choice of a factor-consistent

metrization), so we can assume by induction that Yk−1 is toral. Hence Y is iso-

morphic to a compact coset nilspace (G/Γ, G•), by Theorem 6.2. Letting G̃ = Ck(G•)

with the filtration G̃• =
(
G

JkK
j ∩ Ck(G•)

)
j≥0

, and Γ̃ = Ck(Γ•), we have that Ck(Y) is

homeomorphic to the compact coset space G̃/Γ̃, which we equip with the coset nilspace

structure determined by G̃•. By Lemma 6.5, the map φJkK : Ck(Zp) → Ck(Y), c 7→ φ ◦c

is a morphism. We apply Lemma 6.4 to Ck(Y), and let q : G̃/Γ̃ 7→ G̃/(G̃0Γ̃) be the

resulting quotient morphism. Then q ◦φJkK is a morphism from Ck(Zp) to a discrete

nilspace Ỹ of finite cardinality equal to the number of connected components of Ck(Y).

We claim that for b sufficiently small (depending only on M), for every such

component C we have φJkK
(
Ck(Zp)

)
∩C 6= ∅. Indeed, by Lemma A.3 the finitely many

connected components of Ck(Y) all have equal Haar measure ν > 0. Hence, for any

such component C, it follows from the Portmanteau Theorem [29, (17.20)] (using that

C is open) that the measure µCk(Zp)
◦(φJkK)−1(C) is at least ν−o(1)b→0 (where µCk(Zp)

is the Haar measure on Ck(Zp)), so for b sufficiently small this measure is positive,

which proves our claim. This claim implies that q ◦φJkK is surjective.

Now let Ỹi be the nilspace factor of Ỹ for the minimal i ∈ [k] such that Ỹi is

not the 1-point nilspace. In particular, it follows from minimality of i that Ỹi is a

finite abelian group Z with the degree-i nilspace structure Di(Z). Since the factor map

πi : Ỹ → Ỹi is a surjective morphism, it follows that the map ψ := πi ◦q ◦φ
JkK is a

surjective morphism Ck(Zp) → Ỹi. For p sufficiently large in terms of M , the orders

|Ck(Zp)| = pk+1 and |Ỹi| are coprime, so by Lemma 6.7 the morphism ψ must be

constant, and therefore cannot be surjective, so we have a contradiction. �

Finally, having proved Theorem 6.1, we can prove the inverse theorem for Zp.

Proof of Theorem 1.7. We first note that, having fixed an arbitrary complexity notion

for cfr nilspaces Y, there is a function h : N → N (which can be assumed to be

increasing) such that if Comp(Y) ≤ m then Y has at most h(m) connected components.

Now suppose that ‖f‖Uk+1(Zp) ≥ δ. We apply Theorem 5.2 with δ, with a function b to

be specified later and with X = Zp. Let M = M(k, δ, b) > 0 be the resulting number

and let F ◦φ be the resulting nilspace polynomial, for an underlying cfr nilspace Y

with Comp(Y) ≤ m ≤ M , and with the morphism φ : Zp → X being b(m)-balanced.

If p > h(m) and b(m) is sufficiently small, then it follows by Theorem 6.1 that X is

toral. In particular, it is a connected nilmanifold, and by Proposition 6.3 the nilspace

polynomial is a p-periodic nilsequence as required. Thus, for p > h(m) we obtain the
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conclusion of Theorem 1.7 with Ck,δ =M . For p ≤ h(m) we also obtain the conclusion,

but for a simpler reason: letting φ be the homomorphism embedding Zp as a discrete

subgroup of the circle group R/Z, and letting F : R/Z → C be some function with

Lipschitz constant Op(1) that extends the function f ◦φ
−1 from φ(Zp) to all of R/Z, we

then have 〈f, F ◦φ〉 = ‖f‖2L2(Zp)
≥ ‖f‖2

k+1

Uk+1(Zp)
≥ δ2

k+1
, and the conclusion of Theorem

1.7 follows with constant Ck,δ still depending only on k and δ. �

Appendix A. Results from nilspace theory

In this appendix our first and main aim is to prove Theorem 1.10. We also gather some

results from nilspace theory which are adaptations of results from previous works.

We begin with the following useful description of cfr k-step nilspaces whose k−1

factor is toral, which was stated as Theorem 6.2.

Theorem A.1. Let X be a k-step cfr nilspace such that the factor Xk−1 is toral. Let

G denote the Lie group Θ(X), let G• denote the degree-k filtration (Θi(X))i≥0, and

for an arbitrary fixed x ∈ X let Γ = StabG(x). Then X is isomorphic as a compact

nilspace to the coset space G/Γ with cube sets Cn(X) = (Cn(G•) · Γ
JnK)/ΓJnK, n ≥ 0.

To prove this we adapt the proof of [4, Theorem 2.9.17].

Proof. Fix x ∈ X and let Γ = StabG(x).

We first claim that Γ is discrete. Indeed, letting h : Θ(X) → Θ(Xk−1) be the

natural continuous homomorphism defined by h(α)(y) = πk−1(α(x)) (see [4, Lemma

2.9.3]), note that h(Γ) is a subgroup of the stabilizer of πk−1(x) in Θ(Xk−1), and since

Xk−1 is toral, this stabilizer is discrete (see the proof of [4, Theorem 2.9.17]), so h(Γ)

is discrete. Then, since h−1(h(Γ)) is a union of cosets of ker(h), it suffices to show that

Γ∩ ker(h) is discrete. This follows from [4, Lemma 2.9.9], since no non-trivial element

of τ(Zk) stabilizes x.

By [4, Corollary 2.9.12] the Lie group Θ(X)0 acts transitively on the connected

components of X, and since Xk−1 is toral, it follows that 〈Θ(X)0,Zk〉 acts transitively

on X. Indeed, if x, y ∈ X are in different components, then there is g′ ∈ Θ(Xk−1)
0 such

that g′πk−1(x) = πk−1(y). Then there is g ∈ Θ(X)0 such that h(g) = g′, and since g

is path-connected to the identity in G, it follows that gx is in the same component as

x. Moreover, by definition of h we have πk−1(gx) = g′πk−1(x) = πk−1(y). There is

therefore z ∈ Zk such that zgx = y, which proves the claimed transitivity. Now since

G ⊃ 〈Θ(X)0,Zk〉, we have that G also acts transitively on X, whence X is homeomor-

phic to the coset space G/Γ (see [25, Ch. II, Theorem 3.2]). In particular, since X is

compact, we have that Γ is cocompact.

Recall from [3, Definition 3.2.38] that two cubes c1, c2 ∈ Cn(X) are said to be

translation equivalent if there is an element c ∈ Cn(G•) such that c2(v) = c(v) · c1(v).

We now show that Cn(X) = π
JnK
Γ

(
Cn(G•)

)
, i.e., that every cube on X is translation
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equivalent to the constant x cube. First we claim that for every cube c ∈ Cn(X) there

is a cube c′ ∈ Cn(X) that is translation equivalent to the constant x cube and such

that πk−1 ◦c = πk−1 ◦c
′. Indeed, given c ∈ Cn(X), we have πk−1 ◦c ∈ Cn(Xk−1), and

since X is toral the latter cube is translation equivalent to the cube with constant value

x′ = πk−1(x), i.e. πk−1 ◦c = c̃ · x′ for some cube c̃ on the group Θ(Xk−1)
0 with the

filtration
(
Θi(Xk−1)

0
)
i≥0

. By the unique factorization result for these cubes [3, Lemma

2.2.5], we have c̃ = g̃F0
0 · · · g̃

F2n−1

2n−1 where g̃j ∈ Θcodim(Fj)(Xk−1)
0. By [4, Theorem 2.9.10

(ii)], for each j ∈ [0, 2n) there is gj ∈ Θcodim(Fj)(X)
0 such that h(gj) = g̃j . Let c∗ be

the cube in Cn(Θ(X)0) defined by c∗ = g0
F0 · · · g2n−1

F2n−1 . Let c′ = c∗ ·x. This is in

Cn(X), and is translation equivalent to the constant x cube. By construction πk−1 ◦c
′

= π
JnK
k−1(c

∗ ·x) =
(∏

j h(gj)
Fj
)
· x′ =

(∏
j g̃

Fj

j

)
· x′ = c̃ · x′ = πk−1 ◦c, as we claimed.

It follows from [3, Theorem 3.2.19] and the definition of degree-k bundles (in

particular [3, (3.5)]) that c− c′ ∈ Cn(Dk(Zk)). But then, using translations from

τ(Zk) = Θk(X), we can correct c′ further to obtain c, thus showing that c is itself a

translation cube with translations from Θ(X). (Such a correction procedure has been

used in previous arguments, see for instance the proof of [3, Lemma 3.2.25].)

We have thus shown that Cn(X) ⊂ π
JnK
Γ

(
Cn(G•)

)
. The opposite inclusion is clear,

by definition of the groups Θi(X). �

We can now prove Theorem 1.10, which we restate here.

Theorem A.2. Let X be a k-step cfr nilspace. If Ck(X) is connected, then X is toral.

Proof. We argue by induction on k. For k = 1 the statement is clear. For k > 1, first

note that Ck(Xk−1) is connected (by continuity of πk−1), and so (since projection to a

k−1 face of a k cube is a continuous map) we have also that Ck−1(Xk−1) is connected,

so by induction we have that Xk−1 is toral. Now suppose for a contradiction that X is

not toral. Then the last structure group Zk must be a disconnected compact abelian

Lie group. By quotienting out the torus factor of Zk if necessary, we can assume that

X now has k-th structure group Zk being a finite abelian group of cardinality greater

than 1. We shall now deduce that Ck(X) must be disconnected, a contradiction.

By Theorem A.1 we have that X is isomorphic to the coset nilspace (G/Γ, G•)

where G = Θ(X) and Γ = StabG(x) for some fixed point x ∈ X. Hence Ck(X) =

Ck(G•)/Γ
JkK. Let σk be the Gray code map on GJkK[3, Definition 2.2.22], and recall

that restricted to Ck(G•) this map takes values in Gk (see [4, Proposition 2.2.25]) and

that Gk
∼= Zk (see [3, Lemma 3.2.37]). We know that shifting any value c(v) of a cube

c ∈ Ck(G•) by any element of Zk still gives a cube in Ck(G•) (see [3, Remark 3.2.12]).

It follows that σk maps Ck(G•) onto Zk. On the other hand, the map σk only takes the

value idG on ΓJkK, since Γ ∩Gk = {idG} (as the action of Gk
∼= Zk is free). Now let C

denote the identity component of Cn(G•). It is standard that C is normal in Cn(G•).

We also have σk(C · ΓJkK) = {idG}. Indeed, since σk is continuous and Zk is discrete,
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for every element c · γ ∈ C ·ΓJkK we have σk(γ) = 0, and c · γ is in the same component

as γ, so we must also have σk(c · γ) = 0. But then the product set C · ΓJkK must be

a proper subgroup of Cn(G•) (otherwise its image under σk would be Gk). Thus we

have shown that Cn(G•)/C · ΓJkK is not the one point space. Hence there are at least

two disjoint cosets of C · ΓJkK forming a cover of Cn(G•). Since the latter group is a

Lie group, C is open, and therefore these covering cosets of C ·ΓJkK are open sets. But

then the quotient map q : Cn(G•) → Cn(G•)/Γ
JkK (which is open) sends these cosets

to disjoint open sets covering Ck(G•)/Γ
JkK, so Ck(X) is disconnected. �

We add the following lemma concerning the Haar measures on cube sets.

Lemma A.3. Let X be a k-step cfr nilspace such that Xk−1 is toral. Then for every

integer n ≥ 0 the connected components of Cn(X) have equal positive Haar measure.

Proof. Recall that Cn(X) is a compact abelian bundle with base Cn(Xk−1), bundle

projection π := π
JnK
k−1, and structure group Z̃k := Cn(Dk(Zk)), where Zk is the k-

th structure group of X (see[4, Lemma 2.2.12]). The Haar measure µ on Cn(X) is

invariant under the continuous action of Z̃k, by construction (see [4, Proposition 2.2.5]).

Assuming that there is more than one component of Cn(X), let c1, c2 be any points

in distinct components C1, C2 respectively. Then, since Xk−1 is toral, by [4, Theorem

2.9.17] there is a cube c ∈ Cn(Θ(Xk−1)
0
•) such that c ·π(c1) = π(c2). By [4, Theorem

2.9.10] there is a cube c̃ ∈ Cn(Θ(X)0•) such that π(c̃ · c1) = π(c2). There is therefore

z ∈ Z̃k such that c̃·c1 + z = c2. Note that c̃·c1 is still in C1, since the map c1 7→ c̃·c1 is a

composition of multiplications by face-group elements of the form gF where F is a face

in JnK and g is in the connected Lie group Θcodim(F )(X)
0. Hence (C1 + z) ∩C2 is non-

empty (containing c2), so C1 + z ⊂ C2 (since C1 + z is connected and C2 is a maximal

connected set), whence µ(C1) = µ(C1 + z) ≤ µ(C2). Similarly µ(C2) ≤ µ(C1). �

Next, we prove the properties of the Ud-seminorms from Definition 1.4.

Lemma A.4. For every k-step compact nilspace X and every d ≥ 2, the function

f 7→ ‖f‖Ud is a seminorm on L∞(X).

The case of this lemma for compact abelian groups is given in several sources, all

based essentially on the original argument of Gowers in [14, Lemma 3.9]. The case

of nilmanifolds appears in [27, Ch. 12, Proposition 12]. These two cases already yield

(via inverse limits) the result for the class of nilspaces concerned in our main results.

Below we recall another proof from [7], which works at the more general level of cubic

couplings. Let us mention also that ‖ · ‖Ud is non-degenerate (and is therefore a norm

on L∞(X)) when the step k of X is less than d. For compact abelian groups this

follows from the fact that ‖f‖Ud ≥ ‖f‖U2 = ‖f̂‖ℓ4 , and for nilmanifolds it is given in

[27, Ch. 12, Theorem 17]. For general compact nilspaces, the non-degeneracy follows

from results in nilspace theory; as it is not needed in this paper, we omit the details.
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Proof of Lemma A.4. The lemma follows from results in [7], namely [7, Proposition

3.6], which shows that the Haar measures µJnK on Cn(X) form a cubic coupling, and [7,

Corollary 3.17], which yields the seminorm properties for a general cubic coupling. �

We close this appendix with a proof of Proposition 6.3. Recall the following basic

useful description of polynomial sequences (see for instance [6, Lemma 2.8]).

Lemma A.5 (Taylor expansion). Let g ∈ poly(Z, G•), where G• has degree at most

s. Then there are unique Taylor coefficients gi ∈ Gi such that for all n ∈ Z we

have g(n) = g0g
n
1 g

(n2)
2 · · · g

(ns)
s . Conversely, every such expression defines a map g ∈

poly(Z, G•). Moreover, if H ≤ G and g is H-valued then gi ∈ H for each i.

Proof of Proposition 6.3. Since φ ◦β is a morphism Z → G/Γ, it suffices to prove

the following statement: for every morphism φ : Z → G/Γ, there is a morphism

ψ : Z → G (whence ψ ∈ poly(Z, G•)) such that πΓ ◦ψ = φ. We prove this by

descending induction on j ∈ [k + 1], showing that the statement holds for maps φ

taking values in (GjΓ)/Γ. For j = k + 1, since Gk+1 = {idG}, the map φ is constant

and the statement is trivially verified letting ψ be a constant Γ-valued map. For

j < k + 1, suppose that the statement holds for j + 1 and that φ takes values in

(GjΓ)/Γ. It follows from the filtration property that Gj+1Γ is a normal subgroup of

GjΓ and that the quotient GjΓ/(Gj+1Γ) is an abelian group. Denoting this abelian

group by Aj , let qj : (GjΓ)/Γ → Aj be the quotient map for the action of Gj+1 on

(GjΓ)/Γ. Note that qj is a nilspace morphism. More precisely, for every cube cΓJnK

on (GjΓ)/Γ (where c ∈ G
JnK
j ∩ Cn(G•)), we have qj ◦(c Γ

JnK) = (q̃j ◦c)Γ
JnK where q̃j

is the quotient homomorphism Gj → Gj/Gj+1; this implies that every (j + 1)-face of

qj ◦(c Γ
JnK) has value 0 under the Gray-code map σj+1, so qj is a morphism into Dj(Aj).

It follows that qj ◦φ is a morphism Z → Dj(Aj), and is in particular a polynomial map

of degree at most k, so by Lemma A.5 we have qj ◦φ(x) =
∑k

ℓ=0 aℓ
(x
ℓ

)
for x ∈ Z, for

some aℓ ∈ Aj , and binomial coefficients
(
x
ℓ

)
. Since qj is surjective, there exist elements

b0, b1, . . . , bk in Gj such that qj(bℓΓ) = aℓ for each ℓ. Let α : Z → G be the polynomial

map α(x) =
∏k

ℓ=0 b
(xℓ)
ℓ , and note that qj(α(x)Γ) = qj ◦φ(x) for all x. It follows

that the map α−1φ is a morphism Z → (Gj+1Γ)/Γ, so by induction there is a map

ψ′ ∈ poly(Z, G•) such that α−1(x)φ(x) = ψ′(x)Γ for all x. Then ψ(x) := α(x)ψ′(x) is

a map in poly(Z, G•) with the required property. �

Appendix B. Miscellaneous measure-theoretic results

Lemma B.1. Let (Ω,A, λ) be a probability space, let B be a sub-σ-algebra of A, and

suppose that S ∈ A satisfies ‖1S − E(1S |B)‖L2 ≤ ǫ. Then S′ = {x ∈ Ω : E(1S |B)(x) >

ǫ1/2} satisfies λ(S∆S′) < 5ǫ1/2.

Proof. We first observe that λ(S′ \ S) ǫ1/2 <
∫
Ω(1 − 1S)E(1S |B) dλ, which equals∫

Ω E(1S |B) − 1SE(1S |B) dλ = λ(S) − ‖E(1S |B)‖
2
L2 . Moreover, from the assumption
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and the triangle inequality we have ‖E(1S |B)‖L2 ≥ ‖1S‖L2 − ǫ, whence ‖E(1S |B)‖
2
L2 ≥

‖1S‖
2
L2 − 2ǫ = λ(S)− 2ǫ. Therefore λ(S′ \ S) < 2ǫ1/2.

On the other hand, we have λ(S) − 2ǫ ≤ ‖E(1S |B)‖
2
L2 = 〈E(1S |B),E(1S |B)〉 =

〈1S ,E(1S |B)〉 ≤
∫
S∩S′ E(1S |B) dλ+

∫
S\S′ E(1S |B) dλ ≤ λ(S ∩S′)+ ǫ1/2, so λ(S′ ∩S) ≥

λ(S)− 3ǫ1/2, whence λ(S \ S′) ≤ 3ǫ1/2.

Combining the main two inequalities above, the result follows. �

We use this lemma to prove the following fact about mod 0 intersections of conditionally

independent σ-algebras.

Lemma B.2. Let (Ω,A, λ) be a probability space, let B0,B1 be sub-σ-algebras of A

such that B0 ⊥⊥λ B1, let Si ∈ Bi, i = 0, 1, and suppose that λ(S0∆S1) ≤ ǫ. Then there

exists C ∈ B0 ∧ B1 such that λ(C∆Si) ≤ 10ǫ1/4 for i = 0, 1.

Proof. The assumption ‖1S0−1S1‖
2
L2 ≤ ǫ implies ‖1S0−E(1S0 |B1)‖L2 ≤ ‖1S0−1S1‖L2+

‖1S1 − E(1S0 |B1)‖L2 ≤ ǫ1/2 + ‖E(1S1 − 1S0 |B1)‖L2 ≤ 2ǫ1/2. The assumption B0⊥⊥λ B1

implies that E(1S0 |B1) is B0∧B1-measurable (in particular E(1S0 |B1) = E(1S0 |B0∧B1)).

By Lemma B.1 with B = B0 ∧ B1 and A = B0, the set C = {x ∈ Ω : E(1S0 |B1) >

(2ǫ1/2)1/2} is in B0 ∧ B1 and satisfies λ(C∆S0) ≤ 5(2ǫ1/2)1/2 ≤ 10ǫ1/4. Similarly, by

Lemma B.1 with A = B1 instead of A = B0, this set C satisfies λ(C∆S1) ≤ 10ǫ1/4. �

We can use this lemma in turn to prove the following fact about ultraproducts of

conditionally independent σ-algebras.

Lemma B.3. Let (X,A, λ) be the ultraproduct of probability spaces (Xi,Ai, λi). For

each i let Bi,0,Bi,1 be sub-σ-algebras of Ai such that Bi,0⊥⊥λi
Bi,1. For j = 0, 1 let Bj

be the Loeb σ-algebra corresponding to the sequence (Bi,j)i∈N, and let C be the Loeb

σ-algebra corresponding to (Bi,0 ∧λi
Bi,1)i∈N. Then B0 ∧λ B1 =λ C and B0⊥⊥λ B1.

Proof. The inclusion B0 ∧λ B1 ⊃λ C is clear, for if A ∈ C then there are sets Ai ∈

Bi,0 ∧λi
Bi,1 such that A =λ

∏
i→ω Ai, so

∏
i→ω Ai is in Bj up to a null set, j = 0, 1,

whence A ∈ B0 ∧λ B1. For the opposite inclusion, let Q be in B0 ∧λ B1, so for j = 0, 1

there are sets Qi,j ∈ Bi,j for each i ∈ N such that Q =λ
∏

i→ω Qi,j. Then 0 =

λ
(
(
∏

i→ωQi,0)∆(
∏

i→ω Qi,1)
)
= λ

(∏
i→ω(Qi,0∆Qi,1)

)
, so letting ǫi = λi(Qi,0∆Qi,1),

we have limω ǫi = 0. By Lemma B.2, for each i there is Ci ∈ Bi,0 ∧λi
Bi,1 such that

λ(Ci∆Qi,j) ≤ 10ǫ
1/4
i for j = 0, 1. Let R =

∏
i→ω Ci. By construction R ∈ C, and by

the last inequality we have R =λ Q, so the required inclusion holds. Finally, the desired

conclusion B0⊥⊥λ B1 can be seen to follow from Bi,0⊥⊥λi
Bi,1, i ∈ N, using the definition

of conditional independence [7, Definition 2.9] and basic facts about Loeb probability

spaces. More precisely, by [7, Theorem 2.4 and Remark 2.5] it suffices to show that

every function f in L∞(B1) satisfies E(f |B0) =λ E(f |B0 ∧λ B1). To show this, we use

first that f is λ-almost-surely equal to a measurable function of the form f ′ = limω f
′
i

(see [35, Corollary 5.1]), and then we prove the equality E(f ′|B0) =λ E(f ′|B0∧λB1), by
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deducing it from the fact that, by the assumption Bi,0⊥⊥λi
Bi,1, the analogous equality

holds for the f ′i . This last deduction is enabled by the fact that E(·|B0) = limω E(·|Bi,0),

a fact which is confirmed in a straightforward way by checking that for any function of

the form g = limω gi ∈ L1(A) (with each gi measurable) we have that limω E(gi|Bi,0)

satisfies the defining property of the conditional expectation E(g|B0), i.e. that for every

h ∈ L1(B0) we have
∫
X
h g dλ =

∫
X
h limω E(gi|Bi,0) dλ. This last equality is seen using

an S-integrable lifting of h (see [35, Theorem 6.4]), commuting ultralimit and integrals

as afforded by [35, Theorem 6.2, part 4], and basic properties of ultralimits. �

We also prove the following approximation result for measure-preserving group actions.

Lemma B.4. Let G be an amenable group acting on a Borel probability space (Ω,A, λ)

by measure-preserving transformations, and let S ∈ A be such that for some ǫ > 0 we

have λ
(
S∆(g ·S)

)
≤ ǫ for every g ∈ G. Then there exists S′ ∈ A such that g ·S′ =λ S

′

for all g ∈ G and λ(S∆S′) ≤ 5ǫ1/4.

Proof. We first suppose that G is countable. Let (Fj)j∈N be a Følner sequence in G

and for each j let hj = Eg∈Fj1g·S . By the mean ergodic theorem for amenable groups

[43, Theorem 2.1], letting B be the σ-algebra of G-invariant sets in A, and f be a

version of E(1S |B), we have ‖f − hj‖L2 → 0 as j → ∞. Note that for every j we

have ‖1S − f‖L2 ≤ ‖1S − hj‖L2 + ‖hj − f‖L2 ≤ ‖hj − f‖L2 + Eg∈Fj‖1S − 1g·S‖L2 ≤

‖hj − f‖L2 + ǫ1/2, so letting j → ∞ yields ‖1S − f‖L2 ≤ ǫ1/2. By Lemma B.1, the set

S′ = {x ∈ Ω : f(x) > ǫ1/4} satisfies λ(S∆S′) ≤ 5ǫ1/4, and since f is G-invariant, we

have g · S′ =λ S
′ for every g ∈ G.

We now reduce the general case to the countable case. It suffices to prove that if

G is a group acting on a separable metric space (X, d) by isometries, then there is a

countable group G0 ≤ G such that if x ∈ X is a fixed point for G0 then it is a fixed

point for G (we then apply this with X the measure algebra of A). Let (xi)i be a dense

sequence in X. For each i, the orbit G ·xi is itself separable, so there is a countable set

Si ⊂ G such that Si ·xi is dense in this orbit. Let G0 be the subgroup of G generated by
⋃

i Si. Observe that for every i ∈ N, g ∈ G and ǫ > 0, there is g′ ∈ Si ⊂ G0 such that

d(g ·xi, g
′ ·xi) < ǫ. Suppose for a contradiction that there is x ∈ X that is G0-invariant

but not G-invariant, so d(g · x, x) = ǫ > 0. Then by the density of (xi)i there is i such

that d(x, xi) < ǫ/100, so d(g · xi, xi) ≥ d(g · xi, x) − d(x, xi) ≥ d(g · x, x) − d(g · xi, g ·

x)− d(x, xi), which by the isometry property equals d(g · x, x) − 2d(x, xi) ≥ 98ǫ/100.

Hence d(g · xi, xi) ≥ 98ǫ/100. By the earlier observation, there is g′ ∈ G0 such that

d(g · xi, g
′ · xi) < ǫ/100, so d(g′ · xi, xi) ≥ d(g · xi, xi) − d(g · xi, g

′ · xi) ≥ 97ǫ/100.

Combining this last inequality with d(x, xi) < ǫ/100 and the triangle inequality and

isometry property, we deduce that d(g′ · x, x) ≥ d(g′ · xi, xi) − 2d(x, xi) ≥ 95ǫ/100,

which contradicts that x is G0-invariant. �
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Lemma B.5. Let Y be a compact Polish space, let d be a metric compatible with the

weak topology on P(Y), and let (Xi, λi)i∈N be a sequence of Borel probability spaces.

For each i ∈ N let fi : Xi → Y be a Borel function, and let ω be a non-principal

ultrafilter on N. Then, letting f = limω fi, we have limω d(λi ◦f
−1
i , λ ◦f−1) = 0.

Proof. As shown in [29, Theorem (17.19)], one can always metrize this space of proba-

bility measures with a metric of the form d′(µ, ν) =
∑

r∈N
1
2r |

∫
hr dµ−

∫
hr dν|, for a

sequence of continuous functions hr : Y → C with ‖hr‖∞ ≤ 1, r ∈ N. Since d and d′

metrize the same topology, it suffices to prove that limω d
′(λi ◦f

−1
i , λ ◦f−1) = 0.

Suppose for a contradiction that for some b ∈ (0, 1) and some set S ∈ ω, for

every i ∈ S we have d′(λi ◦f
−1
i , λ ◦f−1) > b. Then, for each i ∈ S, a short ar-

gument by contradiction shows that there exists r = r(i) ∈ [1, 2⌈log2(2/b)⌉ ] such

that |
∫
Xi
hr ◦fi dλi −

∫
X hr ◦f dλ| ≥ b/2. Using the ultrafilter properties, we then

deduce that for some fixed integer r there is a set S′ ⊂ S with S′ ∈ ω such that

for all i ∈ S′ we have |
∫
Xi
hr ◦fi dλi −

∫
X hr ◦f dλ| ≥ b/2. Now we have two ex-

haustive possibilities. The first one is that some S′′ ⊂ S′ with S′′ ∈ ω satisfies∫
Xi
hr ◦fi dλi ≥

∫
X hr ◦f dλ+ b/2 for all i ∈ S′′; but then, commuting ultralimit and

integrals (as in the proof of Lemma B.3), we obtain
∫
X hr ◦f dλ = limω

∫
Xi
hr ◦fi dλi ≥∫

X hr ◦f dλ+b/2 >
∫
X hr ◦f dλ, a contradiction. The other option is that some S′′ ⊂ S′

with S′′ ∈ ω satisfies
∫
X hr ◦f dλ ≥

∫
Xi
hr ◦fi dλi + b/2 for all i ∈ S′′; then we deduce

similarly that
∫
X hr ◦f dλ = limω

∫
Xi
hr ◦fi dλi ≤

∫
X hr ◦f dλ − b/2 <

∫
X hr ◦f dλ,

obtaining again a contradiction. �

We finish with a lemma concerning the interaction of the Loeb-measure construction

with products, when the underlying measures are couplings on Borel probability spaces.

Lemma B.6. Let (Xi)i∈N, (Yi)i∈N be sequences of Polish spaces, and for each i ∈ N

let µi be a Borel probability measure on B(Xi) and νi be a Borel probability measure on

B(Xi)⊗B(Yi). Let (X,LX, µ), (X×Y,LX×Y, ν) be the corresponding Loeb probability

spaces. Suppose that the projection πi : Xi ×Yi → Xi, (x, y) 7→ x is measure preserving

for every i ∈ N. Then the projection π : X ×Y → X, (x, y) 7→ x is measurable with

respect to LX, LX×Y, and is measure-preserving with respect to µ, ν.

Proof. The preimage under π of any internal measurable set in X is an internal mea-

surable set in X × Y, and it is also clear that if A is an internal measurable subset

of X then ν ◦π−1(A) = µ(A). (These claims follow from the fact the projections πi

are measure-preserving maps and that taking ultraproducts commutes with taking

preimages under the projections.) Now LX consists precisely of sets S such that for

every ǫ > 0 there exist internal measurable sets Ai, Ao ⊂ X with Ai ⊂ S ⊂ Ao and

µ(Ao \Ai) < ǫ [35, §2.1]. This combined with the properties already established for π

for internal sets implies that π−1(LX) ⊂ LX×Y and µ ◦π−1 = ν, as required. �
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[21] Y. Gutman, F. Manners, P. P. Varjú, The structure theory of nilspaces II: Representation as

nilmanifolds, Trans. Amer. Math. Soc. 371 (2019), no. 7, 4951–4992.
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