
Multidiszciplináris tudományok, 10. kötet. (2020) 3 sz. pp. 277-284 https://doi.org/10.35925/j.multi.2020.3.33

277

TOOLS, PROCESSES AND FACTORS

INFLUENCING OF CODE REVIEW

Nasraldeen Alnor Adam Khleel

PhD student, Institute of Information Science, University of Miskolc

Address: 3515 Miskolc, Miskolc-Egyetemváros, Hungary, e-mail: nasr.alnor@uni-miskolc.hu

Károly Nehéz

associate professor, Institute of Information Science, University of Miskolc

Address: 3515 Miskolc, Miskolc-Egyetemváros, Hungary, e-mail: aitnehez@uni-miskolc.hu

Abstract

Code review is the most effective quality assurance strategy in software development where reviewers

aim to identify defects and improve the quality of source code of both commercial and open-source

software. Ultimately, the main purpose of code review activities is to produce better software prod-

ucts. Review comments are the building blocks of code review. There are many approaches to conduct

reviews and analysis source code such as pair programming, informal inspections, and formal inspec-

tions. Reviewers are responsible for providing comments and suggestions to improve the quality of the

proposed source code modifications. This work aims to succinctly describe code review process, giv-

ing a framework of the tools and factors influencing code review to aid reviewers and authors in the

code review stages and choose the suitable code review tool.

Keywords: code review, the code review process, code review tools, formal code reviews, modern

code reviews.

1. Introduction

Software development projects frequently apply code review phase in their development process [4].

Code Review is an important practice at software companies and open source projects, as it has been

proven to enhance software quality, increase awareness, and spread knowledge [15]. The use of ana-

lytical methods to examine and revise source codes for error detection was a standard development

practice. This process can be accomplished manually and automatically. With automation, where

software tools provide help with code review and inspection. By static code analysis or dynamic ap-

proach. In the case of static code analysis, source code is analysed without build and execution. [5].

the dynamic method essentially implements the code, executing the program, and dynamically check-

ing for inconsistencies of the presented results [14].

2. Code review

Code review is a well-established software engineering practice [7], where developers submits their

code modifications to peers to judge its eligibility to be integrated into the main project codebase [18].

And a software quality assurance activity, that reviews aim to identify defects and improve the quality

of the source codes, ultimately, the main purpose of code reviews is to produce a better software prod-

uct [4]. Using knowledge transfer of design and implementation solutions applied by others [7]. Code

mailto:aitnehez@uni-miskolc.hu
https://doi.org/10.35925/j.multi.2020.3.33

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

278

review is the manual or automatic assessment of source code by humans or software, a manual inspec-

tion of source code will be done by developers, and this helps in improving the quality of software

projects [10]. The person, who does the verification process or reviews the code, called "reviewer" [2].

The primary goal of code reviews is most often to improve the quality of software and reduce defects

or enhance the maintainability of source codes [6]. That will be done by carefully inspecting the sub-

mitted code for the problem. Code review does not just help build knowledge of application code, but

it also enables developers to continuously review changes to the infrastructure [8].

3. Code Review Characteristics and Practice

The purpose of code review characteristics the analysis to understand their relationship with integra-

tion decisions. Adequate code reviews can detect bugs, increase productivity, and improve documenta-

tion [9]. In practical terms during code review, the developers are performing the role of reviewers and

verification process. Reviewers are responsible for providing comments to improve the quality of the

proposed corrections. Besides, reviewers also assess whether the corrections are useful to fix prob-

lems/defects without breaking the behavior of the system. Then, if the code corrections meet the speci-

fied criteria, they can be merged into the main repository [12].

Figure 1. The architecture of code review and analysis [8]

4. The code review process

The process of analyzing and verification source code written by another developer on the project to

judge whether it is of sufficient quality to be merged into the master project repository [6]. The code

review process depending on the components of a review as provided by code review tools [7]. These

processes include: code review tools provide an ID and a status for each code review, which are used

to track the code change and know whether it has been merged and also allow authors to include a tex-

tual description of the code change, to provide reviewers with more information on the rationale and

behavior of the change. The second component of a typical code review tool is a view on the technical

meta-data on the change under review. This meta-information includes author and committer of the

source code modification, commit ID, origin commit ID, and modification ID, that can be used to

track the submitted modification over the history of the project, reports about the information on who

are the reviewers assigned for the inspection of the submitted code change, lists the source code files

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

279

modified in the commit, Finally, the root component for source code review tool and that involves

most collaborative parts, reports about the discussion that the author and reviewers are having on the

submitted code change. Reviewers can ask clarifications or recommend improvements to the author,

who can instead reply to the comments and propose alternative solutions [7]. Figure 2 presents general

processes of code review. Code review by the author begins with submitting the code modification (1).

The reviewers then verify this modification (2). Based on the project's quality and standards, the re-

viewers will provide some comments and communicate this to the author (3). If modifying the code

meets the project requirements, the reviewers will incorporate the modification directly into the code

repository (4). Conversely, if modifying the code does not meets the project requirements, the review-

ers reject the modification and the code review is abandoned (5).

Figure 2. General code review process [11]

5. Principal categories of code reviews

Code review is a systematic check of software code. It is purpose is to find errors overlooked in the

initial development stage, improving the overall quality of software, and reducing the risk of errors

among other benefits [8]. The main building blocks of code reviews and analysis are comments that

make the reviewers add and merge their notes and proposal for a modification that the code review

author can address. Comments generally can help authors making higher quality modification to the

repository, enhance author's development skills and knowledge [6]. There are various approaches to

reviews and analysis are such as pair programming, informal inspections, and formal inspections [8].

In general, there are two general approaches to source code reviews: formal inspections (Fagan Inspec-

tion) and lightweight source code reviews with an emphasis on efficiency, referred to as modern code

reviews (MCR) [2].

5.1. Formal Inspection

Formal code review known as software inspection or Fagan-inspection was first formalized by Fagan

in 1976, as manual inspection of source code by developers other than the author for software inspec-

tion practice, a structured process for reviewing source code with the single goal of finding defects,

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

280

usually conducted by groups of reviewers in extended meetings [11,19]. Formal code review has been

an effective quality improvement practice for a long time, and despite their initial success with the

many benefits offered by Formal inspections, but relatively high cost and formal requirements have

reduced the use it by soft-ware teams adopt them [6]. So, the Fagan inspections method has many

limitations that hinder their continuous and popular use across software organizations: they mandate a

lot of formal requirements that do not fit well to agile methods, and the waterfall process [2].

5.2. Modern or Contemporary Code Review (MCR)

Modern code review is a collaborative process of code inspection that is often supported by special

tools [23]. To ensure that the proposed code modifications are of enough quality and fit the project’s

progress, the reviewers and authors conduct an asynchronous online discussion [7]. Where the devel-

opers read and assess each other’s code change before it is integrated into the mainstream line of code

towards a release [18]. (MCR) is characterized by little formal requirements, and include tool support,

and a strive to make reviews more efficient and less time-consuming. These features allowed many

organizations to switch from an occasional to mandatory, continuous employment of reviews [2]. This

has shown progress in both industrial and open-source systems [6]. MCR appears a less formal method

of conducting source code reviews and analysis, which has been a practice in software engineering for

several decades. During source code reviews, developers intend to enhance project quality by fixing

errors or making the code easier to be maintained. Developers often use tools that facilitate the code

review process [12]. Many factors influence review participation in the MCR process. Where an un-

derstanding of these factors helps the team to better manage the code review process [16]. MCR repre-

sents a lightweight process, where it is considered (1) informal (in dissimilarity to Fagan-style), (2)

tool-based, (3) asynchronous, and (4) focused on inspecting new suggestion source code modification

rather than the whole codebase [7, 10, and 19]. Nowadays, many organizations adopt lightweight code

review practices to reduce the shortcomings of inspections. There is a clear trend towards using the

tools developed to support code review [19]. There are two types of Modern code review tool-base:

5.2.1. Static analysis tools

Static code analysis is an analysis of a computer program that is performed without the actual imple-

mentation of the programs built from that software. This means reviewing the source code, and check-

ing compliance with specific rules; basically, static code analysis is performed by two main approach-

es: self-reviews and third-party reviews, that will be done by the personal software process or team

software process [1]. Static analysis tools examine the error code, including those that may lead to

software vulnerabilities and issue diagnostic messages ("alerts") indicating the location of the alleged

defect in the source code, the nature of the defect, and often include additional contextual information

[3]. Many static code analyzers work in different ways. Some static code analyzers work on the source

code, while others check the intermediate code and the established libraries. Another difference is the

fact that different static analyzers operate on different programming languages [5]. Static code analysis

is an activity involving the inspection of source code for quality and security it helps the software de-

velopers and testers in detecting and making out several types of flaws. Static code analysis uncovers

"hard" bugs before runtime which may be impossible to detect during runtime [14]. There are some

advantages and disadvantages of static code analysis, static analysis has many advantages. Where we

find that the program to be analyzed does not have to be complete. Also, static analysis can be used

early in the software development life cycle. Thus, a report on software quality is received early. This

reduces the cost of rework and increases productivity. Test cases do not need to be designed and

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

281

"hard" bugs can be detected. The tool has full access to code, that is, it has full access to all possible

behaviors of the program. So, it does not need to estimate or understand behavior. Static analysis also

has many disadvantages like the production of false positives. Tools like Flaw finder, RATS, ITS4

report many false positives [14].

5.2.2. Dynamic analysis tools

Automated Static Analysis (ASA) can identify common coding problems early in the development

process with a tool that automatically checks the source code [5]. (ASA) reports potential source code

anomalies, which we call alerts, like a null pointer, dereferences, buffer overflows, and style inconsist-

encies. Developers inspect each alert to determine if the alert is an indication of an anomaly important

enough for the developer to fix [13]. The automated code review software checks the source code to

guarantee these source codes confirm with a pre-defined set of principles or best practices. The code

review program generally displays a list of warnings and can also provide methods to correct existing

problems automatically. Many static code analysis tools can be applied to help automated source code

review [17]. Examples to dynamic analysis tools: Data fusion, Graph theory, Machine learning algo-

risms, Mathematical and statistical models, Dynamic detection tools, Contextual information, and

model checking [13].

6. Examples of popular Code Review tools

Bitbucket Server is a Git server and web interface product. It allows users to perform basic Git opera-

tions (such as reviewing or merging code) while controlling access to reading and writing the code.

The collaborator is a good commercial code and document review. It is used by teams to standardize

their review process, reduce defects early, and speed up their development timelines. Crucible is a

platform for collaborative code review software. And Web-based code quality tool, it is not open

source. It is specially designed for distributed teams and facilitates asynchronous review and comment

code. It also integrates with Git and Subversion. Helix TeamHub is a collaboration and hosting tool

for code development and tools that support development in Git environments, as well as Apache

Subversion and Mercurial. Gerrit is an open-source code, lightweight tool, web-based platform, col-

laboration tool, and integrates with the Git tool. GitHub is a global platform that provides hosting for a

distributed version control system using Git. It provides all the functions of Distributed Release Con-

trol and Source Code Management (SCM) for Git as well as adding its features. Where provides many

collaboration features like bug tracking, management of task, wiki service and provides access control.

GitLab is a web-based platform that provides repositories, and issue-tracking system features. Rhode-

Code is a platform for open-source code and hosting for firewall source code management. Provides

central control over Git, Mercurial, and Subversion repositories within the organization, with shared

authorization and authorization management. RhodeCode allows forgery, withdrawal requests, and

code reviews via a web interface. Phabricator is an open-source source code, a suite of web-based

software development collaboration tools and integrates with version control system tools such as Git,

Mercurial, and Subversion. Review Board is a collaborative web and secure code review tool, it is

used for code review and document review, Review Board integrates with Bazaar, ClearCase, CVS,

Git, Mercurial, Perforce, and Subversion [17].

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

282

Table 1. Comparison of code review tools [17]

Code Review

Software(tools)

Version Control System Tools

Integrates

Repository Model Platform Support-

ed

RhodeCode Git, Subversion, Mercurial Distributed and

Client-server

Python

Review Board CVS, Subversion, Git (partial),

Mercurial, Bazaar, Perforce,

ClearCase, Plastic SCM

Distributed and

Client-server

Python

Collaborator Git, Subversion, Perforce, Clear-

Case, Mercurial, Rational Team

Concert, TFS, Synergy

Distributed and

Client-server

Windows, Mac

OSX, Linux

GitHub Git Distributed Windows, Mac

OSX, Linux

GitLab Git Distributed Ruby on Rails

Phabricator
Git, Subversion, Mercurial

Distributed and

Client-server

PHP

Helix TeamHub Git, Subversion, Mercurial Distributed and

Client-server

Windows, Mac

OSX, Linux

Gerrit Git Distributed Java EE

Crucible CVS, Subversion, Git, Mercurial,

Perforce

Distributed and

Client-server

Java

Bitbucket Serv-

er Git
Distributed Java

7. Factors Influencing Code Review

In all software development projects, code review considered an essential part of their development

process. Code review aims to enhance the quality of source code modifications made by developers

before they are committed to the source code repository. In principle, code review is a transparent pro-

cess that aims to assess the quality of corrections objectively and promptly; however, in practice, the

implementation of this process can be affected by several different factors, technical and non-technical

[21]. Most Factors are Influencing Code Review:

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

283

Patch Size (LOC): refer to the number of lines of code added or modified in a commit and thus

need to be reviewed [22], Patch size under review is the most starting point for any analysis, as it is

intuitive that large spots are more difficult to review, and therefore require more time; in fact [21].

Software inspection effectiveness depends on code unit factors such as code size, or functionality [6].

Review Participation (Teams): Teams refer to the many distinct teams associated with the author and

invited reviewers [22], Code review is a task that requires the involvement of practitioners to critique

new software changes [16]. Locations: includes many distinct geographically distributed development

location related to the author and reviewers. Learning of the author: Reviews are expected to trigger

the learning of the authors: They get to know their weaknesses, furthermore, they learn new possibili-

ties to solve certain problems. Learning of the reviewer: Reviews are expected to trigger the learning

of the reviewers: they gain skills and knowledge about the specific modification and efficiency module

[20]. The characteristics of the reviewers and their team, studies suggest that reviewer characteristics

can influence review usefulness [6].

8. Conclusion

Code review is a systematic check of the program source code that intended to find errors overlooked

in the initial development stage, improving the overall quality of the project and reducing the risk of

bugs among other benefits, also can detect bugs, increase productivity, and improve documentation

Code review is the manual or automatically assessment of source code by humans or software. This

paper helps the researchers in the field of Code review data to know the current tools and process of

code review, Factors Influencing Code Review, and how we can selected code review tools depending

on version control system tools, Repository model, and Platform supported to identify common coding

problems early in the development process.

References
[1] Gomes, I., et al.: An overview on the static code analysis approach in software development,

Faculdade de Engenharia da Universidade do Porto, Portugal (2009).

[2] Beller, M., et al.: Modern code reviews in open-source projects: which problems do they fix?,

in Proceedings of the 11th Working Conference on Mining Software Repositories - MSR 2014.

2014. p. 202-211. https://doi.org/10.1145/2597073.2597082

[3] Flynn, L., et al.: Prioritizing alerts from multiple static analysis tools, using classification mo-

dels, in Proceedings of the 1st International Workshop on Software Qualities and Their Depen-

dencies - SQUADE '18. 2018. p. 13-20. https://doi.org/10.1145/3194095.3194100

[4] Luxton-Reilly, A., Lewis, A., Plimmer, B.: Comparing sequential and parallel code review

techniques for formative feedback, in Proceedings of the 20th Australasian Computing Educa-

tion Conference on - ACE '18. 2018. p. 45-52. https://doi.org/10.1145/3160489.3160498

[5] Jernej, N., Krajnc, A.: Taxonomy of static code analysis tools, The 33rd International Con-

vention MIPRO. IEEE, 2010.

[6] Bosu, A., Greiler, M., Bird, C.: Characteristics of Useful Code Reviews: An Empirical Study at

Microsoft, in 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories.

2015. p. 146-156. https://doi.org/10.1109/MSR.2015.21

[7] Pascarella, L., et al.: Information Needs in Contemporary Code Review. Proceedings of the

ACM on Human-Computer Interaction, 2018. 2(CSCW): p. 1-27.

https://doi.org/10.1145/3274404
[8] Naglot, D., et al.: Code review and analysis using deep learning, International Journal of Rese-

https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/3194095.3194100
https://doi.org/10.1145/3160489.3160498
https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1145/3274404

Khleel, N. A. A., Nehéz, K. A framework for tools, processes and factors influencing

284

arch and Analytical Reviews (IJRAR). 2019, Volume 6, Issue 2.

[9] Zanaty, F. E., et al.: An empirical study of design discussions in code review, in Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Meas-

urement - ESEM '18. 2018. p. 1-10. https://doi.org/10.1145/3239235.3239525

[10] Sadowski, C., et al.: Modern code review, in Proceedings of the 40th International Conference

on Software Engineering Software Engineering in Practice - ICSE-SEIP '18. 2018. p. 181-1

https://doi.org/10.1145/3183519.3183525
[11] Ebert, F., et al.: Confusion in code reviews: Reasons, impacts, and coping strategies, 2019

IEEE 26th International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2019. https://doi.org/10.1109/SANER.2019.8668024

[12] Panichella, S., et al.: Would static analysis tools help developers with code reviews?, 2015

IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering

(SANER). IEEE, 2015. https://doi.org/10.1109/SANER.2015.7081826

[13] Heckman, S., Williams, L.: A systematic literature review of actionable alert identification

techniques for automated static code analysis. Information and Software Technology, 2011.

53(4): p. 363-387. https://doi.org/10.1016/j.infsof.2010.12.007

[14] Brar, Hanmeet Kaur, and Puneet Jai Kaur: Comparing detection ratio of three static analysis

tools, International Journal of Computer Applications 124.13 (2015).

https://doi.org/10.5120/ijca2015905749
[15] Bird, C., Carnahan, T., Greiler M.: Lessons Learned from Building and Deploying a Code Re-

view Analytics Platform, in 2015 IEEE/ACM 12th Working Conference on Mining Software

Repositories. 2015. p. 191-201. https://doi.org/10.1109/MSR.2015.25

[16] Thongtanunam, P., et al.: Review participation in modern code review: An empirical study of

the Android, Qt, and OpenStack projects (journal-first abstract), in 2018 IEEE 25th Internatio-

nal Conference on Software Analysis, Evolution and Reengineering (SANER). 2018. p. 475-

475. https://doi.org/10.1109/SANER.2018.8330241

[17] https://en.wikipedia.org/wiki/Code_review, accessed 2020. January

[18] Asri, I. E., et al.: An empirical study of sentiments in code reviews. Information and Software

Technology, 2019. 114: p. 37-54. https://doi.org/10.1016/j.infsof.2019.06.005

[19] Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review, 2013

35th International Conference on Software Engineering (ICSE). IEEE, 2013.

https://doi.org/10.1109/ICSE.2013.6606617
[20] Baum, T., et al.: Factors influencing code review processes in industry, in Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering -

FSE 2016. 2016. p. 85-96. https://doi.org/10.1145/2950290.2950323

[21] Baysal, O., et al.: Investigating technical and non-technical factors influencing modern code

review. Empirical Software Engineering, 2015. 21(3): p. 932-959.

https://doi.org/10.1007/s10664-015-9366-8
[22] dos Santos, E. W., Nunes, I.: Investigating the effectiveness of peer code review in distributed

software development based on objective and subjective data. Journal of Software Engineering

Research and Development, 2018. 6(1). https://doi.org/10.1186/s40411-018-0058-0

[23] Ruangwan, S., et al.: The impact of human factors on the participation decision of reviewers in

modern code review. Empirical Software Engineering, 2018. 24(2): p. 973-1016.

https://doi.org/10.1007/s10664-018-9646-1

https://doi.org/10.1145/3239235.3239525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/SANER.2019.8668024
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.5120/ijca2015905749
https://doi.org/10.1109/MSR.2015.25
https://doi.org/10.1109/SANER.2018.8330241
https://doi.org/10.1016/j.infsof.2019.06.005
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/2950290.2950323
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1186/s40411-018-0058-0
https://doi.org/10.1007/s10664-018-9646-1

