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Abstract 

This paper presents the theoretical and 

experimental investigation of the dynamics of a 

single degree-of-freedom robotic arm subjected to 

digital position control. The experimental setup 

consists of an industrial robot axis, a micro-

controller based low-level control unit, and a high-

level Matlab/Simulink position controller. The stable 

domain of operation is calculated in the parameter 

space of the sampling time and the gains of the 

applied proportional-derivative (PD) controller. The 

calculated stability charts are verified by experiments, 

and the paper reports the limitations on system 

stability caused by the digital effects and the applied 

control setup. 

1. Introduction 

Fast and accurate motion/position control is an 

important objective in various robotic applications. 

This is typically achieved by using high gain, 

decentralized controllers that operate at high 

sampling rates. Often the digital effects, like the 

temporal and spatial discretization (sampling and 

quantization) are neglected in the control design, and 

these systems are treated as continuous-time systems. 

However, in some situations these effects can have a 

strong influence on the dynamics of the controlled 

system. For example, sophisticated control 

algorithms may require considerable computational 

time, which result in a slower sampling rate. In this 

case, digital effects can cause an intricate dynamic 

behavior. Moreover, the non-smooth effects, like 

quantization, dry friction, backlash may lead to 

chaotic motions even at high sampling rates [1,2]. 

The use of high sampling frequencies may be 

limited by the control hardware in low cost 

applications, where the sensor readings and the 

control calculations are implemented on 

microcontrollers. In this paper we investigate the PD 

digital position control of a robotic arm controlled 

by a custom, microcontroller based hardware. A 

single axis of an industrial robotic arm is controlled 

by a microcontroller, and Simulink® Real-Time 

Workshop® [3] is used to provide a flexible user 

interface for setting the desired positions of the 

robot. This architecture has the advantage of 

developing an easy-to-use experimental setup, but it 

may cause further processing delay and 

synchronization problems that can lead to 

instabilities. This is confirmed in the second part of 

the paper, where an explanation is also provided for 

the differences observed between the theoretical and 

practical stability limits. 

2. Experimental Setup 

The investigated experimental setup consist of a 

single axis robotic arm (HIRATA MB-H230) 

controlled by a custom-, self-developed control unit. 

This low-level controller is based on a PIC 

microcontroller (24FJ128GA010) that communicates 

with a Simulink Real-Time Workshop (RTW) based 

high-level controller by using RS-232 protocol. The 

microcontroller based platform processes the 

measured data from the motor encoders, and 

transmits the calculated angle to the PC. The RTW 

based control software determines the necessary 

control force, and transmits it via the microcontroller 

based platform to the H-bridge in the form of a 

pulse-width-modulation (PWM) signal. The 

schematic of the experimental setup can be seen in 

Fig.1. Here, the single axis industrial robotic arm is 

shown as a ball screw which is connected to the shaft 

of the DC motor by a rigid clutch. 
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The lead of the ball screw is = 20 mml  which 

gives the travelled distance along the robot axis per 

motor revolutions. 

 
Fig.1. Schematic of the Experimental Setup 

Assuming an ideal (lossless) force-torque 

transmission of the ball screw, the end-effector force 

is = ,tf r M  where M is the applied motor torque, 

and π π= =2 / 100tr l  is the transmission ratio. The 

motor torque can be approximated by considering 

the steady state motor characteristics. Then applying 

the Biot-Savart’s Law [4] the motor torque is 

= ,mM k i  where = 0.1187 Nm/ Amk  is the motor 

constant and = /mi U R  is the current that flows 

through the motors windings. Here, = Ω1.1R  is the 

terminal resistance and mU  is the supply voltage of 

the motor. 

Based on Lenz’s Law [4] the motor supply 

voltage is proportional to its angular velocity. Thus a 

simple way to control the speed of a DC motor is 

using a PWM signal to set the average supply voltage. 

It can be written as = 0 /m c mU U p p , where 

=0 24 VU  is the supply voltage of the H-bridge, cp  

is the calculated duty cycle, and = 730mp  is the 

maximum of the PWM duty cycle. Note, that the 

value of mp  is limited by the settings (e.g., selected 

PWM frequency) of the microcontroller, and the 

quantization of the control force is inversely 

proportional to this value. 

In voltage control mode, the motor torque 

calculated so far is reduced by the back electromotive 

force. According to Faraday’s Law of Induction [4], 

this force (torque) is proportional to the angular 

velocity of the motor shaft. Therefore, it may be 

considered as a viscous damping force in modeling 

the actuated robot axis, while the force component 

proportional to the modulated supply voltage may be 

seen as the exogenous control force. 

By using the previous derivations, this control 

force can be determined with respect to the duty 

cycle of the pulse width modulation signal as 

 = =0 0.9845t m
c c

m

r k U
F p p

Rp
. (1) 

3. The Equivalent Mechanical Model 

By using voltage control, and modeling the back 

EMF effect as a viscous damping element, the 

simplified mechanical model of the experimental 

setup is shown in Fig.2. 

 
Fig.2. Equivalent Mechanical Model 

The equation of motion of this model is 

 ( )+ + =&& & &sgn ,mx bx C x F  (2) 

where m is the effective mass that represents the 

robot’s inertia, and b is the damping induced by the 

back EMF effect. Parameter 20 NC ≈  is the 

measured Coulomb friction force, while the control 

force F is defined by eq. (1). 

The effective parameters of this model were 

identified in two simple experiments: (a) accelerating 

with constant force, and (b) measuring how the 

system comes to rest due to the viscous damping and 

dry friction only. By considering a constant positive 

control force, ( ) =&sgn 1x  in eq. (2), then the general 

solution of the equation of motion becomes 

 ( )
− −= + +1 2 e ,

b
t

m
F C

x t c c t
b

 (3) 

where 1 2andc c  are the constant that depend on the 

initial conditions. By appropriately selecting the 

initial position, 1c  can be canceled, while the 

exponential term vanishes by time. For a constant 

force input, the steady state solution is 

 ( ) −= .
F C

x t t
b

 (4) 

Therefore the effective viscous damping can be 

calculated as = − ≈( )/ 1443 Ns/ m,bb F C s  where 

0 0.492 m/ sbs v≡ ≈  is the slope of the linear 

segment (the steady state velocity) in Fig.3. 
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Fig.3. Typical robot motion in  

parameter identification experiments 

The steady state velocity can be seen as the initial 

velocity of our second experiment with zero control 

force. The corresponding decelerating motion starts 

at P1 in Fig. 3., where also a new coordinate frame is 

introduced to describe this motion. Point P2 is the 

point where the robot stops due to dry friction and 

viscous damping. The corresponding time 

93 mssτ ≈  was determined as the mean of some 

uncertain values in the region where the tangent of 

the curve in Fig 3. becomes zero. Based on eq. (3), in 

the new ( , )τ ξ  frame the displacement of the 

decelerating robot is given by the general solution 

 1 2( ) e .
b

m
C

c c
b

τ
ξ τ τ

−
= + −  (5) 

Then, with the initial conditions ( )ξ τ = =0 0  

and ( ) 0d / d 0 vξ τ τ = =  the displacement function 

becomes 

 
τ

ξ τ τ
−  = + − −     

0( ) 1 .
b

m
m C C

v e
b b b

 (6) 

By differentiating this expression with respect to 

τ  and considering the stop condition 

( )ξ τ τ τ= =d / d 0,s  the effective mass of the model 

in eq. (2) can be estimated as 

 
τ= ≈

 + 
 

0

37 kg .

ln 1

sb
m

bv

C

 (7) 

4. Controlled Dynamics 

For the analysis of the dynamics of the digitally 

controlled system we neglect, the otherwise 

stabilizing, dry friction in eq. (2) and we introduce 

the control force  

 
− −

− +

−
= − − ∈

∆
1 2

1 1, [ , ),
j j

p j d j j

x x
F k x k t t t

t
 (8) 

where pk  and dk  are the control gains, ∆t  is the 

sampling time and jt  denotes the j-th sampling 

instant. In addition, − −=1 1( )j jx x t  and 

− −=2 2( )j jx x t  represent the sampled and delayed 

position feedback data [5,6]. The considered single 

sampling period delay in eq. (8) corresponds to the 

fact that the Simulink RTW model always transmits 

the output force first, and processes the received 

input later in the same control cycle [3]. 

With these assumptions, the piecewise linear 

system of equations (2) and (8) can be solved for the 

consecutive sampling instant, and a linear mapping 

can be created in the form 

 + =1 ,j jz A z  (9) 

where 
T

1 2j j j j jx x t x x− − = ∆ z &  is the 

discrete state vector [7,8], and the leading matrix 

 

1 1
1 ( )

0 1 ( )

1 0 0 0

0 0 1 0

d p d

d p d

ε εε
β β

εβ ε ε

− − + 
 

− − +=  
 
 
  

A  (10) 

is called the (state) transition matrix. Here, 

(1 e )/βε β−= − , and = ∆ 2 /pp k t m , = ∆ /dd k t m  

and β = ∆ /b t m  are the dimensionless proportional 

and differential gains and the dimensionless viscous 

damping, respectively. To obtain this compact form 

we defined the elements of the discrete state vector 

with homogeneous units, i.e., the velocity is scaled by 

the sampling time. By using eq. (9) with eq. (10) the 

time series of discrete state values can be determined 

for any initial condition 0z , and via that the discrete 

time dynamics of the system can be investigated. 
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For the proper selection of the control gains the 

stable domain of operation has to be determined. 

Since eq. (9) define a multi-dimensional geometric 

series, by using the trial solution λ=( ) tt K ez , it can 

be shown that the system is asymptotically stable if, 

and only if, the magnitude of largest eigenvalue 

{ }λµ λ∆= <, Re 0te  of the transition matrix A  is 

less than one. The corresponding stability conditions 

can analytically further be analyzed by using the 

Moebius transformation as shown in [9,10]. For 

brevity, here we restrict the investigation to the 

numerical computation of the stable domains. 

The system has three control parameters: p, d and 

∆t . With these two practically useful 2D stability 

charts can be generated. By fixing the sampling time 

(to its smallest possible value) the stable domain is 

represented as a D-shaped area in the p–d parameter 

plane. 

In voltage control mode, when there is large 

internal damping due to the back EMF effect, a 

simple proportional controller is also a valid choice. 

In this case, the stability chart can be plotted in the 

pt k∆ −  plane (with dimensional parameters) instead 

of  using the t p∆ −  plane. These stability charts are 

illustrated in Fig. 5. and Fig. 6. 
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Fig.5. Dimensionless stability chart in p – d plane 

 
Fig.6. Dimensionless stability chart in ∆t – kp plane 

5. Measurement Results 

The dynamic analysis presented in the previous 

section does not consider the effect of the 

input/output quantization. This effect, however, can 

have serious effect on the dynamics. Velocity 

estimation from sampled and quantized position data 

introduces an error which results in a noisy signal. 

To eliminate this noise, filtering is necessary which 

would introduce time delay (phase lag) in the system. 

In the recent paper, we would like to focus on the 

possible effects of position quantization only, and we 

only consider a proportional controller for the 

experiments. The use of advanced velocity estimators 

and the effect of quantization noise will be the 

subject of future investigations. 

The theoretical and experimentally identified 

stability charts are compared in Fig. 7., where ∆t  is 

the sampling time, and = ⋅ 50.5 10 pP k  is the scaled 

proportional gain that was used during our 

experiments. This scaling includes the position 

quantization and P has the unit of [N/encoder 

count]. Note, that the resolution of the motor 

encoder is 1000 cpr which together with the lead 

0.02 m / revolutionl =  gives −⋅ 52 10  m/count 

position resolution for the linear motion of the robot 

axis. 
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Fig.7. Measured stability chart 

The results of our initial experiments are shown 

in Fig. 7. Here, the theoretical stability boundary is 

represented by the solid line and the dots show the 

limits found experimentally at different sampling 

times. It can be seen that the measured data fit very 

well to the theoretical boundary in the range of larger 

(0.01 – 0.004 s) sampling times. For smaller sampling 

times the system unexpectedly became unstable at 

lower gains. In addition, it was observed that at 

∆ = 1 mst  and 2 mst∆ =  the instability occurs 

exactly at the same gains. These problems could 

partially be explained by the default settings of the 

serial communication blocks used in our Simulink 

RTW model. According to [3], the serial 

communication block by default has the maximum 

sampling frequency of 500 Hz. This explains the 

same dynamic behavior for the experiments with 

1 ms and 2 ms sampling times. For smaller sampling 

times, the RTW documentation [3] suggests the use 

of the option "direct port access". This option is not 

documented in detail and the possible improvement 

is said to be hardware dependent. 

Using the direct port access option the 

experimental results are shown in Fig. 8. From this 

figure it is apparent that stability was improved in the 

range 4 ms 2 mst> ∆ > . The points below 

2 mst∆ =  seem to fit to a different stability 

boundary corresponding to the same PD controller 

with two sampling time delays. This additional delay 

may be explained by the effect of quantization of the 

motor encoder. At high sampling rates, the controller 

may read the same position data repeatedly while the 

output force remains unchanged. Depending on the 

measured signal this results in different effective 

sampling times. The average dynamic behavior may 

be approximated by a model with two (or more) 

sampling time delays. This was observed in our 

experiments, where we used the simplest quadrature 

(detecting the rising edges only) to process the 

encoder signals. To increase stability for smaller 

sampling times the encoder resolution can be 

improved by quadrature 4X encoding. This is 

planned as future work. 

 

Fig.8. Measured stability chart (with direct port access) 

5. Conclusions 

In this paper the effect of sampling and 

quantization was investigated on the system stability 

in case of a single axis robot subjected to PD digital 

position control. The theoretical results were 

compared to experiments conducted on a device 

with a microcontroller based control unit that 

interfaces the robot to a high-level Simulink RTW 

controller.  

In case of the investigated experimental setup, 

the effect of output (force) quantization and dry 

friction did not have important influence on the 

system stability. This may be explained by the large 

viscous damping. On the other hand, it was observed 

that sampling and input (position) quantization can 

cause unexpected instability problems even in case of 

high sampling frequencies. 

It is also noted that using a commercial software, 

like Simulink Real-Time Workshop, the default 

options, and the applied real-time update mechanism 

have important effects on system stability which 

requires careful testing and analysis. 
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