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Abstract. The existence of non-Fourier heat conduction is known for a long
time in small and low temperature systems. The deviation from Fourier’s law
has been found at room temperature in heterogeneous materials like rocks and
metal foams [1, 2]. These experiments emphasized that the so-called Guyer-
Krumhansl equation is adequate for modeling complex materials. In this paper
an analytic solution of Guyer-Krumhansl equation is presented considering
boundary conditions from laser flash experiment. The solutions are validated
with the help of a numerical code [3] developed for generalized heat equations.

1. Introduction

The existence of non-Fourier heat conduction under various conditions is exper-
imentally proved in several different ways. First, the Maxwell-Cattaneo-Vernotte
equation (MCV) [4, 5, 6],

τq∂ttT + ∂tT = α∂xxT, (1)
is used to describe the dissipative wave form of heat propagation called second
sound. Here, τq is the relaxation time, α stands for the thermal diffusivity, ∂t
denotes the time derivative and ∂xx denotes the second spatial derivative in one
dimension. It is the simplest extension of Fourier’s law and there are several differ-
ent theorems in the literature which lead to this type of hyperbolic generalization
[7, 8, 9, 10, 11, 12, 13, 3, 14, 15, 16]. The existence of second sound was pre-
dicted by Tisza and Landau [17, 18], earlier than the experimental discovery. Then
Peshkov managed to measure it in superfluid He [19] and enhanced the researches
in that respect. Later on, several new ideas have developed how to measure similar
phonemena in different materials. One of the most important result is related to
Guyer and Krumhansl who derived the so-called window condition, significantly
supporting the measurement of second sound in solids [20].

The next extension of Fourier’s equation bears their names, called Guyer-Krumhansl
(GK) equation [21, 22, 23],

τq∂ttT + ∂tT = α∂xxT + κ2∂txxT, (2)
where κ2 is the dissipation parameter [3], strongly related to the mean free path
from the aspect of kinetic theory [12]. It contains the MCV equation (1), however,
it is a parabolic type model and is able to recover the solution of Fourier equation
when κ2/τ = α holds, called Fourier resonance [1, 2, 24]. Despite of the disad-
vantageous infinite propagation speed of parabolic models, it is still a valid and
thermodynamically consistent realisation of non-Fourier heat conduction at room
temperature [1, 2, 25].
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Regarding the experiments, one should mention the ballistic-type heat conduc-
tion measured by Jackson et al. [26, 27, 28, 29] in NaF crystals and modeled by
several authors [30, 31, 32, 33]. The most recent one can be found in [34] where
quantitative agreement is obtained between the theory and experiments. The the-
ory is based on non-equilibrium thermodynamics with internal variables and Nyíri
multipliers [3, 14, 35].

The experimental success of measuring the second sound and the universal the-
ory of non-equilibrium thermodynamics has motivated the researchers to find non-
Fourier heat conduction in wave form described by the MCV equation (1) at room
temperature. For example, such an endeavor is related to the experiments of Mitra
et al. [36] where a frozen meat is used to find similar phenomenon. Unfortunately,
no one was able to reproduce these experimental results and the measurements of
Mitra et al. are widely criticized [37, 38, 39]. However, it turned out that the GK
equation could be the relevant measurable extension of Fourier’s law, the related
non-Fourier effects are measured several times in different materials [1, 2]. In many
other cases the dual phase lag model is considered also as an adequate general-
ization [40, 41, 42, 43, 44], however, this model is contradictory to basic physical
principles [25] and its validity is questionable [45, 46, 47, 48, 49, 50, 51].

All the aforementioned experiments are the heat pulse type, the underlying prin-
ciple is the same, only the equipment is different. It is a standard method to measure
the thermal diffusivity and is used widely in engineering practice. The importance
of Guyer-Krumhansl equation (2) in the evaluation of such experiments indicated
the need to find an analytic solution.

The work of Zhukovsky has to be mentioned here [52, 53, 54, 55]. Recently,
Zhukovsky obtained an exact solution of GK equation using operational method
for infinite spatial domain. Moreover, different initial conditions are considered,
the wave-like initial condition together with decaying boundary conditions have
greater importance. Despite of these valuable results, it is still quite far from the
experiments. Therefore, the goal of this paper is to complement the results of
the aforementioned papers to be more applicable for real experimental setup like
described below.

2. Experimental setup and boundary conditions

Measurements finding non-Fourier heat conduction in heterogeneous materials
are performed on room temperature as it is described in detail in the papers [1, 2]
have the following setup, see Fig. 1.

The front side boundary condition depicts the heat pulse which excites the het-
erogeneous sample. The pulse has a finite length, given as tp = 0.01 s [1, 2]. The
exact shape of the pulse has not been taken in account in [1, 2] during the evaluation
process, nevertheless, its length is critical and greatly influences the solution [56].
As it is highlighted and applied in [1, 2, 3, 57], the following function is considered
to model the heat pulse,

q(x = 0, t) =
{

qmax

(
1− cos

(
2π · ttp

))
if 0 < t ≤ tp,

0 if t > tp,

that is, the front side boundary condition is given by prescribing the heat flux in
time, here qmax is the amplitude of the signal. When the experimental results
are evaluated, the cooling on boundary had to be considered. Nevertheless it is
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Figure 1. Arrangement of the experiment, original figure from [2].

crucial to model these effects, in the analytic solution it is neglected to simplify the
mathematical problem. Thereby adiabatic condition is applied to the rear side for
every time instant q(x = L, t) = 0. Regarding the initial conditions, all the time
derivatives are zero at the initial state and the sample is in equilibrium with its
environment, i.e. T (x, t = 0) = T0.

3. Dimensionless quantities

In order to ease the solution of GK equation dimensionless quantities are used
(see [3] for details). From now on, the same formalism is applied, that is, the
following parameters are introduced,

t̂ = αt

L2 with α = λ

ρc
; x̂ = x

L
;

T̂ = T − T0

Tend − T0
with Tend = T0 + q̄0tp

ρcL
;

q̂ = q

q̄0
with q̄0 = 1

tp

∫ tp

0
q0(t)dt, (3)

where L is the length of the sample, λ, ρ and c are the thermal conductivity, mass
density and specific heat, respectively. The time averaged heat flux q̄0 is used to
define the equilibrium temperature Tend. The material parameters converted with

τ̂∆ = αtp
L2 ; τ̂q = ατq

L2 ; κ̂ = κ

L
, (4)

where τ̂∆ stands for the dimensionless heat pulse length and τ̂q denotes the relax-
ation time related to the heat flux. For the sake of simplicity, the notation “hat” is
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omitted and let us restrict ourselves only for dimensionless quantities. Using these
formalism the GK-type heat equation reads as

τq∂ttT + ∂tT = ∂xxT + κ2∂txxT, (5)
which can be decomposed into two equations containing the balance equation of
internal energy

τ∆∂tT + ∂xq = 0, (6)
and the GK-type consititutive equation is:

τq∂tq + q + τ∆∂xT − κ2∂xxq = 0. (7)
Since the boundary conditions are prescribed as a given heat flux in time it is
suitable to eliminate T from the equations (6) and (7):

τq∂ttq + ∂tq = ∂xxq + κ2∂txxq. (8)
After obtaining the solution for q(x, t) one can use eq. (6) to integrate ∂xq respect
to time and calculate T (x, t). Applying dimensionless quantities, the heat pulse
boundary condition at the front side reads as

q(x = 0, t) = q0(t) =
{ (

1− cos
(

2π · t
τ∆

))
if 0 < t ≤ τ∆,

0 if t > τ∆,

and for the rear side q(x = 1, t) = qL(t) = 0 holds together with the dimensionless
initial condition T (x, t = 0) = 0.

4. Solution method

According to the front side boundary condition it is reasonable to split the so-
lution into two sections in time. The first one goes from 0 to τ∆ and the second
interval starts at τ∆ and reaches up to an arbitrary time instant t. The basic math-
ematical principles and procedures can be found in [58, 59, 60]. The sample length
L is intentionally left unchanged in the following as it highlights the integration
limits in non-dimensionless formalism. In case of dimensionless quantities L can be
simply considered as L = 1, since 0 ≤ x ≤ 1.

4.1. Section I. (0 < t < τ∆). Due to the time dependent boundary condition, let
us split the solution of q(x, t) as

q(x, t) = w(x, t) + v(x, t), (9)
where w(x, t) is used to separate the time dependence of the boundary condition
from the part v(x, t). It is arbitrary to choose the form of w(x, t), for the sake of
simplicity it is satisfactory to assume its form to be linear, i.e.

w(x, t) := q0(t) + x

L

(
qL(t)− q0(t)

)
=
(
1− x

L

)
q0(t), (10)

as the rear side is adiabatic. For further calculations let us simplify and shorten
our notation of partial derivatives: ∂t = �̇ and ∂x = �′. Substituting (9) into (8),
it yields

τq(ẅ + v̈) + ẇ + v̇ = w′′ + v′′ + κ2(ẇ′′ + v̇′′). (11)
Therefore v(x, t) has constant boundary condition in time but an inhomogeneous
term appears since ẇ =

(
1− x

L

)
q̇0(t), ẅ =

(
1− x

L

)
q̈0(t) holds and w′′ = 0. At this

point one obtains an inhomogeneous equation for v(x, t),
τq v̈ + v̇ = v′′ + κ2v̇′′ − f(x, t), (12)
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where f(x, t) = ẇ+ τqẅ. The splitting (9) preserves the initial conditions: v(x, t =
0) = 0 and v̇(x, t = 0) = 0. Regarding the boundary conditions, v(x = 0, t) = 0,
v(x = L, t) = 0 holds. The inhomogeneous term f(x, t) can be determined from
q0(t) as

ẇ = 2π
τ∆

(
1− x

L

)
sin(2π t

τ∆
), (13)

ẅ = 4π2

τ2
∆

(
1− x

L

)
cos(2π t

τ∆
). (14)

Let us suppose now that the variables can be separated and

v(x, t) = ϕ(t)X(x) (15)

exists and dissociate the partial differential equation (12) into two ordinary dif-
ferential equations (ODEs). As equation (12) is inhomogeneous one should also
assume that the eigenfunctions X(x) of the homogeneous case (f(x, t) = 0) solves
the inhomogeneous equation, too. This system of eigenfunctions is used to expli-
cate f(x, t) in the function space spanned by the solutions X(x). Thus, one has to
calculate the homogeneous part of v(x, t) that is done as follows. The separation
of variables, eq. (15), leads to the equation for homogeneous part

τqϕ̈+ ϕ̇

ϕ+ κ2ϕ̇
= X ′′(x)

X(x) = −β, β ∈ R+, (16)

hence the eigenfunctions are determined by the equation

X ′′ + βX = 0, X(x = 0) = 0, X(x = L) = 0. (17)

The general solution reads as

X(x) = A cos(
√
βx) +B sin(

√
βx), (18)

where the constants A and B are determined according to the boundary conditions
for v(x, t). The condition X(x = 0) = 0 implies that A = 0 and X(x = L)
determines the eigenvalues. As B 6= 0, otherwise it would lead to a trivial solution,
sin(
√
βx) = 0 holds, hence

βn =
(nπ
L

)2
, (19)

where 0 < n ∈ N. In summary,

Xn(x) = sin
(nπ
L
x
)

(20)

is an eigenfunction of the operator d2

dx2 with positive eigenvalues βn. The constant
B will be combined with the emerging solution of the time evolution part ϕ(t).
Using eq. (20) one obtains

v(x, t) =
∞∑
n=1

ϕn(t) sin
(nπ
L
x
)
, (21)

that is, the inhomogeneous term f(x, t) has to be accounted now,

−f(x, t) = τq v̈ + v̇ − v′′ − κ2v̇′′ = (22)

=
∞∑
n=1

[
τqϕ̈n + ϕ̇n +

(nπ
L

)2
ϕn + κ2(nπ

L

)2
ϕ̇n
]

sin
(nπ
L
x
)
. (23)
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It can be solved for every n if the function f(x, t) is decomposed according to the
eigenfunctions, it yields an ODE for ϕn. The Fourier series of f(x, t) is given as

f(x, t) =
∞∑
n=1

fn(t) sin
(nπ
L
x
)
, (24)

where

fn(t) = 2
L

[2π
τ∆

sin
(
2π t

τ∆

)
+ τq

4π2

τ2
∆

cos
(
2π t

τ∆

)] L∫
0

(
1− x

L

)
sin
(nπ
L
x
)
dx. (25)

Calculating the integral on the right hand side yields

fn(t) =
[2π
τ∆

sin
(
2π t

τ∆

)
+ τq

4π2

τ2
∆

cos
(
2π t

τ∆

)] 2
nπ

= f(t) 2
nπ

, (26)

f(x, t) =
∞∑
n=1

f(t) 2
nπ

sin
(nπ
L
x
)
. (27)

Now the resulted ODE can be solved for ϕn(t) with initial conditions ϕn(0) = 0
and ϕ̇n(0) = 0:

τqϕ̈n +
(
1 + κ2(nπ

L

)2)
ϕ̇n +

(nπ
L

)2
ϕn = −f(t) 2

nπ
. (28)

Its solution is calculated using Wolfram Mathematica, it reads as

ϕn(t) = 1
2
√
a2 − 4b

(
a2g2 + (b− g2)2

)e− 1
2 (a+

√
a2−4b)t ·

(
a2c
(
−1 + e

√
a2−4bt

)
g−

−
(√

a2 − 4bd
(

1 + e
√
a2−4bt

)
+ 2c

(
−1 + e

√
a2−4bt

)
g
) (
b− g2)+

+a
(√

a2 − 4bcg +
√
a2 − 4bce

√
a2−4btg + d

(
b+ g2)− de√a2−4bt (b+ g2))+

+2
√
a2 − 4be

1
2 (a+

√
a2−4b)t((bd− g(ac+ dg)) cos(gt) + (bc+ g(ad− cg)) sin(gt))

)
, (29)

where the constants a, b, c, d, g are given as

a = 1
τq

(
1 + κ2(nπ

L

)2)
, b = 1

τq

(nπ
L

)2
,

c = − 4
nτ∆τq

, d = − 8π
nτ2

∆
, g = 2π

τ∆
. (30)

Now v(x, t) is obtained together with the solution of first section qI(x, t) = w(x, t)+
v(x, t).
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4.2. Section II. (τ∆ < t). For section II, the initial condition is determined based
on the functions qI(x, t = τ∆) and q̇I(x, t = τ∆). Here we seek for the solution
of eq. (8) with time independent boundary conditions. These are prescribed as
adiabatic condition on both sides. However, the initial conditions are more difficult
to consider. Let us introduce t̃ as t̃ = t − τ∆ to ease the calculations. The initial
conditions are

qII(x, t̃ = 0) = qI(x, t = τ∆), q̇II(x, t̃ = 0) = q̇I(x, t = τ∆). (31)

Moreover, the inhomogeneous term f(x, t) is vanished for that section due to con-
stant boundary conditions. Let us separate the variables again and assume that

qII(x, t̃) = γ(t̃)X(x), (32)

where the eigenfunctions X(x) and eigenvalues βn are already calculated in the
previous section. In order to determine γ(t̃) an ODE has to be solved,

τqγ̈n + (1 + βnκ
2)γ̇n + βnγn = 0 (33)

with initial conditions γn(0) = ϕn(τ∆) and γ̇n(0) = ϕ̇n(τ∆). Its general solution is

γn(t̃) = C1ne
r1n t̃ + C2ne

r2n t̃, (34)

where the characteristic exponents are

r1,2 = 1
2τq
(
− 1− βnκ2 ±

√
(1 + βnκ2)2 − 4τqβn

)
. (35)

Taking into account the initial conditions for the constants C1n and C2n, leads to

C1n + C2n = ϕn(t = τ∆),
C1nr1n + C2nr2n = ϕ̇n(t = τ∆). (36)

It is solved again using Wolfram Mathematica where the R =
√
a2 − 4b notation is

applied.
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C1n = − 1
r1 − r2

− 1
4
(
a2g2 + (b− g2)2

)
R
e−

1
2 (a+R)τ∆(−a−R)·

·
(
a2c
(
−1 + eRτ∆

)
g + 2e 1

2 (a+R)τ∆(bd− g(ac+ dg))R−
(
b− g2) (2c (−1 + eRτ∆

)
g+

+ +d
(
1 + eRτ∆

)
R
)

+ a
(
d
(
b+ g2)− deRτ∆ (b+ g2)+ cgR+ ceRτ∆gR

))
−

− 1
2
(
a2g2 + (b− g2)2

)
R
e−

1
2 (a+R)τ∆

(
a2ceRτ∆gR+ 2e 1

2 (a+R)τ∆g(bc+ g(ad− cg))R+

+ e
1
2 (a+R)τ∆(bd− g(ac+ dg))R(a+R)−

(
b− g2) (2ceRτ∆gR+ deRτ∆R2)+

+a
(
−deRτ∆

(
b+ g2)R+ ceRτ∆gR2))+ 1

2
(
a2g2 + (b− g2)2

)
R
e−

1
2 (a+R)τ∆ ·

·
(
a2c
(
−1 + eRτ∆

)
g + 2e 1

2 (a+R)τ∆(bd− g(ac+ dg))R−
(
b− g2) (2c (−1 + eRτ∆

)
g+

+ d
(
1 + eRτ∆

)
R
)

+ a
(
d
(
b+ g2)− deRτ∆ (b+ g2)+ cgR+ ceRτ∆gR

))
r2
)
,

C2n = 1
2
(
a2g2 + (b− g2)2

)
R
e−

1
2 (a+R)τ∆

(
a2c
(
−1 + eRτ∆

)
g + 2e 1

2 (a+R)τ∆ ·

· (bd− g(ac+ dg))R−
(
b− g2) (2c (−1 + eRτ∆

)
g + d

(
1 + eRτ∆

)
R
)

+ a
(
d
(
b+ g2)−

−deRτ∆
(
b+ g2)+ cgR+ ceRτ∆gR

))
+ 1
r1 − r2

− 1
4
(
a2g2 + (b− g2)2

)
R
·

· e− 1
2 (a+R)τ∆(−a−R)

(
a2c
(
−1 + eRτ∆

)
g + 2e 1

2 (a+R)τ∆(bd− g(ac+ dg))R−

−
(
b− g2) (2c (−1 + eRτ∆

)
g + d

(
1 + eRτ∆

)
R
)

+ a
(
d
(
b+ g2)− deRτ∆ (b+ g2)+ cgR+

+ceRτ∆gR
))
− 1

2
(
a2g2 + (b− g2)2

)
R
e−

1
2 (a+R)τ∆

(
a2ceRτ∆gR+

+ 2e 1
2 (a+R)τ∆g(bc+ g(ad− cg))R+ e

1
2 (a+R)τ∆(bd− g(ac+ dg))R(a+R)−

−
(
b− g2) (2ceRτ∆gR+ deRτ∆R2)+ a

(
−deRτ∆

(
b+ g2)R+ ceRτ∆gR2))+

+ 1
2
(
a2g2 + (b− g2)2

)
R
e−

1
2 (a+R)τ∆

(
a2c
(
−1 + eRτ∆

)
g+

+ 2e 1
2 (a+R)τ∆(bd− g(ac+ dg))R−

(
b− g2) (2c (−1 + eRτ∆

)
g+

+d
(
1 + eRτ∆

)
R
)

+ a
(
d
(
b+ g2)− deRτ∆ (b+ g2)+ cgR+ ceRτ∆gR

))
r2
)
. (37)

5. Temperature distribution

So far we have seen the solution for the field of heat flux q. It uniquely determines
the temperature field by using the balance equation of internal energy, eq. (6).
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Again, one has to perform the calculations for both sections.

τ∆Ṫ + q′ = 0,⇒ Ṫ = − 1
τ∆
q′ = − 1

τ∆

∞∑
n=1

Γn(t)nπ
L

cos
(nπ
L
x
)
, (38)

T = − 1
τ∆

t∫
0

∞∑
n=1

Γn(α)nπ
L

cos
(nπ
L
x
)
dα, (39)

where Γn(t) could be ϕn or γn depending on which section is considered. The
initial condition for temperature in section I is TI(x, t = 0) = 0, for section II is
TII(x, t̃ = 0) = TI(x, t = τ∆). For section I it reads as

TI(x, t) = − 1
τ∆

t∫
0

(w′(α) + v′(α))dα =

= − 1
τ∆

t∫
0

(
− 1
L
q0(α) +

∞∑
n=1

ϕn(α)nπ
L

cos
(nπ
L
x
))

dα, (40)

t∫
0

w′(α)dα = 1
L

(
− t+ tp sin(2πt/tp)

2π
)
, (41)

t∫
0

∞∑
n=1

ϕn(α)dα =
∞∑
n=1

Φn(t) = 1
g
(
a2g2 + (b− g2)2

)
(a−R)R(a+R)

·

·
(
(bc+ g(ad− cg))(a−R)R(a+R) + g(a+R)

(
a2cg − ad

(
b+ g2)+

+ acgR−
(
b− g2) (2cg + dR)

)
− g(a−R)

(
a2cg −

(
b− g2) (2cg − dR)−

− a
(
d
(
b+ g2)+ cgR

))
− e− 1

2 (a+R)t (eRtg(a+R)·
· (a2cg − ad(b+ g2) + acgR− (b− g2)(2cg + dR))−
− g(a−R)

(
a2cg −

(
b− g2) (2cg − dR)− a

(
d
(
b+ g2)+ cgR

))
+

+e 1
2 (a+R)t(a−R)R(a+R)((bc+ g(ad− cg)) sin(gt) + (−bd+ g(ac+ dg)) sin(gt))

))
,

(42)

It follows from ϕn(t = 0) = 0 that
∞∑
n=1

Φn(t = 0) = 0 (43)

is true at time instant t = 0. The initial condition for section I is automatically
fulfilled. In case of section II the temperature distribution has to be fitted for
TI(x, t = τ∆), i.e.

TII = − 1
τ∆

t̃∫
0

∞∑
n=1

γn(α)nπ
L

cos
(nπ
L
x
)
dα, (44)
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t̃∫
0

∞∑
n=1

γn(α)dα =
∞∑
n=1

C1n

r1n

(
er1n t̃ − 1

)
=
∞∑
n=1

Ωn(t̃). (45)

For Ωn(t̃ = 0) = 0 holds thus one has to exploit the integration constant and de-
termine its value to fulfill the initial condition. Let us consider now the integration
constant Kn which is calculated as follows:

TII(x, t̃ = 0) = TI(x, t = τ∆) = − 1
τ∆

(
−τ∆
L

+
∞∑
n=1

Φn(t = τ∆)nπ
L

cos(nπ
L
x)
)

=

= − 1
τ∆

( ∞∑
n=1

Ωn(t̃ = 0)nπ
L

cos(nπ
L
x)
)

+
∞∑
n=1

Kn
nπ

L
cos(nπ

L
x) + 1

L
, (46)

that is, Kn = Φn(t = τ∆).
Since the rear side temperature history has importance during the evaluation

of heat pulse experiments, let us check its convergence considering more and more
terms in the sum (see Fig. 2). In this case the solution of Fourier equation is
presented (τq = κ2, τ∆ = 0.04) and N = 1, 3, 10, 40 terms are considered. It is
visible that the initial region is considerably sensitive but the difference disappears
after a certain time and the first term alone seems to be enough.

Figure 2. The convergence of rear side temperature history con-
sidering more and more terms.

6. Validation of solution

The presented analytic solution is compared to the available numerical code [3] as
a validation (see Figs. 3, 4 and 5). Naturally, the analytic solution runs much faster
especially in the over-damped region (κ2 > τq) without resulting in any unphysical
temperature history. The over-damped solutions have greater importance as all the
measurements confirm such behavior [1, 2]. The comparison is performed in three
different cases:
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Figure 3. The rear side temperature history considering τq =
κ2 = 0.02, using 40 terms.

Figure 4. The rear side temperature history considering τq =
0.02, κ2 = 0, using 200 terms.

(1) Fourier’s solution: τq = κ2 = 0.02 (Fig. 3),
(2) MCV’s solution: τq = 0.02, κ2 = 0 (Fig. 4),
(3) Over-damped solution: τq = 0.02, κ2 = 0.2 (Fig. 5).

The dimensionless pulse length is τ∆ = 0.04 in every case.



12 R. KOVÁCS123

Figure 5. The rear side temperature history considering τq =
0.02, κ2 = 0.2, using 10 terms.

7. Conclusions

The analytic solution for Guyer-Krumhansl equation is presented considering
finite heat pulse length on the front side and adiabatic condition on the rear side.
It should be emphasized that finite spatial region is also considered which makes
the results more applicable for practical cases. The solution is obtained in the form
of an infinite sum. It converges quickly to the exact solution in case of a smooth
temperature history. In case of MCV equation, 200 terms are sufficient to model
the sharp wavefront.

It is easier to define boundary conditions for the field of heat flux and calculate
the temperature field as a consequence. Applying the same idea for numerical
codes leads to the shifted field concept described in [3] and tested in several cases
[1, 2, 25, 34, 61]. The analytical solution is validated by an explicit numerical
method for every possible domain could appear in GK equation. Then the obtained
analytical solution could be of a good use to investigate the entropy production
paradox discussed by Barletta and Zanchini [62] in connection with the Taitel’s
paradox [63].

It was highlighted by Zhukovsky [52] that GK equation could violate the max-
imum principle under over-damped (or over-diffusive) conditions. Here, in the
presented solutions the negative temperature domain does not exist even for the
over-damped region.

Now, one has to move on the more difficult case containing cooling boundary
condition to widen possibilities.
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