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A simple method of constructing binary black hole initial data
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By applying a parabolic-hyperbolic formulation of the constraints and superposing Kerr-Schild black holes,

a simple method is introduced to initialize time evolution of binary systems. As the input parameters are

essentially the same as those used in the post-Newtonian (PN) setup the proposed method interrelates various

physical expressions applied in PN and in fully relativistic formulations. The global ADM charges are also

determined by the input parameters, and no use of boundary conditions in the strong field regime is made.

Introduction.—Inspiral and merger of binary black
holes is of distinguished importance for the emerging
field of gravitational wave astronomy. The involved non-
linearities necessitate the use of accurate numerical ap-
proaches in determining the emitted waveforms. Preci-
sion of these simulations, along with their initializations,
is of critical importance in enhancing the detection of
gravitational wave signals and in deciphering physical
properties of their sources.

Initialization is done by solving the Hamiltonian and
momentum constraints for a Riemannian metric hij and
a symmetric tensor field Kij both defined on a three-
dimensional manifold Σ. In the vacuum case these con-
straints read as (see, e.g. [5])

(3)

R+
(
Kj

j

)2 −KijK
ij = 0 (1)

DjK
j
i −DiK

j
j = 0 , (2)

where
(3)

R and Di denote the scalar curvature and the
covariant derivative operator associated with hij , respec-
tively.

A standard approach of solving the constraints is the
conformal method. It is based on pioneering inventions
made by Lichnerowicz and York [12, 22]. By replacing
the physical metric hij and the trace free part of Kij with

the conformally rescaled fields ϕ4 h̃ij and ϕ−2 K̃ij , where

h̃ij and K̃ij are some auxiliary metric and trace free ten-
sor fields, respectively, they could recast the Hamiltonian
and momentum constraints as a semilinear elliptic sys-
tem for the conformal factor ϕ and for a vector potential
contributing to the longitudinal part of K̃ij [2, 5, 22].

Our primary aim is to introduce a new method to
initializing binary black hole systems by combining ad-
vantages of the parabolic-hyperbolic formulation of the
constraint equations [17], and that of superposed Kerr-
Schild black holes [18]. A number of desirable features
come with this proposal. For instance, as we do not ap-
ply conformal rescalings our variables retain the phys-
ically distinguished nature of hij and Kij . The use of
superposed Kerr-Schild metric requires input parameters
such as the rest masses, the sizes and orientations of the
displacements, velocities and spins of the involved black

holes. As these are essentially the parameters used also
in PN description of binaries interesting interrelations of
PN and fully relativistic setups are provided by the new
proposal. In particular, physically relevant expressions
of PN may be used to control the orbital properties of
the investigated binaries. Remarkably, each of the global
ADM charges can also be given in terms of the input pa-
rameters [19]. Therefore, it is possible to fix the ADM
mass, centre of mass, linear and angular momenta of the
binary system in advance of solving the constraints.

As expected quasi-local quantities, such as quasi-local
masses and spins, or even more complex quantities such
as the binding energy can only be determined after the
constraints are solved. Specifically, in determining the
binding energy the tidal deformations of the black holes
and the ADM energy have to be known. Notable, be-
sides fixing the ADM energy by the input parameters,
our new proposal also avoids the use of preconceptions
on tidal deformations, which are inevitably involved in
other constructions using excision [2, 3, 14, 16, 20]. As
recently exactly these assumptions were identified as po-
tential sources of junk radiation [7], it is more than desir-
able that in our proposal data for the constrained vari-
ables has to be fixed only on a topological two-sphere lo-
cated in the asymptotic region. Their values in the strong
field regime—the physically adequate form and measure
of tidal deformations depend on them—are then yielded
by integrating the evolutionary form of the constraints.

Notable, the use of the superposed Kerr-Schild metric
in our construction is much more intrinsic than in other
currently applied methods [3, 14–16]. While in our pro-
posal the auxiliary metric (14) is used to fix all the freely
specifiable variables, in [3, 14–16] even the Kerr-Schild
contributions to the conformally rescaled metric and to
the mean curvature had to be suppressed in the asymp-
totic region in order to guarantee physically desirable fall
off behavior for the initial data yielded [15].

The parabolic-hyperbolic system.—For simplicity, as-
sume that Σ is smoothly foliated by a one-parameter
family Sρ of two-surfaces that are the ρ = const level sur-
faces of some smooth function ρ : Σ → R, i.e. Σ ≈ R×S .

Choose ρi to be a vector field on Σ such that ρi∂iρ = 1.
This vector field decomposes as ρi = N̂ n̂i + N̂ i , where
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n̂i = N̂∂iρ is the unit normal to the level surfaces Sρ,

N̂ i = γ̂i
j ρ

j and γ̂i
j = δij − n̂in̂j . The metric hij

and the symmetric tensor field Kij can then be given as
hij = γ̂ij+ n̂in̂j and Kij = κ n̂in̂j+[n̂i kj + n̂j ki]+Kij ,
with γ̂ij = γ̂e

iγ̂
f
jhef , κ = n̂kn̂l Kkl, ki = γ̂k

i n̂
l Kkl and

Kij = γ̂k
iγ̂

l
j Kkl. In recasting (1) and (2) the trace

K
l
l = γ̂kl

Kkl and trace free part
◦

Kij = Kij − 1
2 γ̂ij K

l
l

of Kij will also be applied.

In terms of the variables N̂ , N̂ i, γ̂ij ;κ,ki, K
l
l and

◦

Kij

the parabolic-hyperbolic form of the Hamiltonian and
momentum constraints can be given for N̂ ,ki and K

l
l

as [17]

⋆
K [ (∂ρN̂)− N̂ l(D̂lN̂) ] = N̂2(D̂lD̂lN̂) +A N̂ + B N̂3 , (3)

Ln̂ki − 1
2 D̂i(K

l
l)− D̂iκ+ D̂l

◦

Kli + N̂
⋆
K ki + [κ− 1

2 (K
l
l) ] ˙̂ni − ˙̂nl

◦

Kli = 0 (4)

Ln̂(K
l
l)− D̂l

kl − N̂
⋆
K [κ− 1

2 (K
l
l) ] + N̂

◦

Kkl

⋆
Kkl + 2 ˙̂nl

kl = 0 , (5)

where D̂i denotes the covariant derivative operator as-
sociated with γ̂ij , ˙̂nk = n̂lDln̂k = −D̂k(ln N̂), A =

(∂ρ
⋆
K) − N̂ l(D̂l

⋆
K) + 1

2 [
⋆
K

2
+

⋆
Kkl

⋆
Kkl ], B = − 1

2

[
R̂ +

2κ (Kl
l)+

1
2 (K

l
l)
2−2kl

kl−
◦

Kkl

◦

K
kl
]
,

⋆
Kij =

1
2Lργ̂ij −

D̂(iN̂j) and

⋆
K = 1

2 γ̂
ij

Lργ̂ij − D̂jN̂
j . (6)

As no restriction applies to N̂ i, γ̂ij ,κ and
◦

Kij they are
freely specifiable throughout Σ. It was also shown in [17]
that (3) is uniformly parabolic in those subregions of Σ

where
⋆
K is either positive or negative. Note also that

⋆
K depends exclusively on the freely specifiable fields γ̂ij
and N̂ i [17].

It was also shown in [17] that if suitable initial values
for the constrained fields are given, on some level surface
S0 in Σ, then, in the domain of dependence of S0, unique
solution exists to the evolutionary system (3)–(5) such
that the fields hij and Kij that can be reconstructed
there, from the free data and constrained variables do
satisfy (1) and (2).

Kerr black holes in Kerr-Schild form.—A Lorentzian
metric gαβ is of Kerr-Schild type if it is of the form

gαβ = ηαβ + 2Hℓαℓβ , (7)

or equivalently, in inertial coordinates (t, xi) adapted to
the background Minkowski metric ηαβ , it can be given as

gαβ dx
αdxβ = (−1 + 2Hℓ0

2) dt2 + 4Hℓ0ℓi dtdx
i

+ (δij + 2Hℓiℓj) dx
idxj , (8)

where H , apart from singularities, is a smooth function
on R

4 and ℓα is null with respect to both gαβ and ηαβ .
In particular, for ℓα = gαβℓβ = ηαβℓβ the relations
gαβℓαℓβ = ηαβℓαℓβ = −(ℓ0)

2 + ℓiℓi = 0 and ℓβ∂β ℓ
α = 0

hold.

The Kerr black hole [9] is of Kerr-Schild form with

H =
r3M

r4 + a2z2
and ℓα =

(
1,

r x+ a y

r2 + a2
,
r y − a x

r2 + a2
,
z

r

)
,

(9)

where the Boyer-Lindquist radial coordinate r is related
to the spatial part of the inertial coordinates xi = (x, y, z)
as

r4 − (x2 + y2 + z2 − a2) r2 − a2 z2 = 0 . (10)

The ADM mass, centre of mass, linear and angular mo-
menta of asymptotically flat solutions can be determined
by applying the asymptotic expansions. In particular,
for the Kerr-Schild black hole, given by (9) and (10), the
ADM mass is M , the centre of mass is represented by
the origin of the background Euclidean space, the lin-
ear momentum vanishes (either of the latter two proper-
ties means that the black hole is in rest with respect to
the background reference frame), while the ADM angular

momentum is ~J = aM~ez, where the unit vector ~ez points
to the positive z direction.

Generic Kerr-Schild black holes.—The most important
advances in using Kerr-Schild metrics come with their
form-invariance under Lorentz transformations. Accord-
ingly, if a Lorentz transformation x′α = Λα

β x
β is per-

formed the metric retains its distinguished form g′αβ =
ηαβ+2H ′ℓ′αℓ

′

β, where H ′ = H ′(x′α) and ℓ′β = ℓ′β(x
′ε) are

given as

H ′ = H
(
[Λα

β]
−1x′β

)
, ℓ′β = Λα

β ℓα
(
[Λε

ϕ]
−1x′ϕ

)
.
(11)

Since boosts and rotations are special Lorentz trans-
formations it is straightforward to construct moving and
rotating black holes with preferably oriented speed and
spin by performing suitable sequence of boosts and rota-
tions starting with a Kerr black hole.

As a simple example consider a Kerr black hole that is
in rest with respect to some reference system x′α. Then,
H(xα) and ℓα(x

ε), relevant for a black hole that is dis-
placed by distance d in the positive y direction and mov-
ing with velocity 0 < v < 1 in the positive x direction
of a reference system xα, are obtained by substituting
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x′ = γ x− γv t, y′ = y − d and z′ = z into

H =
r′3M

r′4 + a2z′2
and (12)

ℓβ = (γ ℓ′0 − γv ℓ′1, γ ℓ
′

1 − γv ℓ′0, ℓ
′

2, ℓ
′

3) , (13)

where γ = 1/
√
1− v2, while ℓ′β and r′ are determined by

the primed variant of (9) and (10), respectively.
Asymptotic expansions, in accordance with the trans-

formations preformed, verify that for the considered dis-
placed, boosted and spinning black holes the ADM mass,
centre of mass, linear and angular momenta can be given
as γ M , ~d, γM ~v and γM{~d × ~v + a~ez}, respectively,

where ~d = d~ey, ~v = v ~ex, and the unit vectors ~ex and
~ey are aligned to the positive x and y directions, respec-
tively.

Superposed Kerr-Schild black holes.—The metric of
binaries, composed by two moving and spinning black
holes, will be approximated by

gαβ = ηαβ + 2H [1]ℓα
[1]ℓβ

[1] + 2H [2]ℓα
[2]ℓβ

[2] , (14)

where H [n] and ℓα
[n] correspond to the Kerr-Schild data

for individual black holes.

If (14) solved Einstein’s equations then the inertial
three-metric

hij = δij + 2H [1]ℓi
[1]ℓj

[1] + 2H [2]ℓi
[2]ℓj

[2] , (15)

and the extrinsic curvature Kij that could be deduced
from (14) would satisfy the constraint equations on t =
const hypersurfaces and, in turn, the corresponding fields
N̂ , N̂ i, γ̂ij ,κ,K

l
l,ki and

◦

Kij would also satisfy (3)–(5).

Although the auxiliary metric (14) does not solve Ein-
stein’s equations it is known to be a good approximation
close to the individual black holes [18]. Direct calculation
also verifies that in the asymptotic region the Einstein
tensor falls off as O(|~x|−4), where |~x| =

√
x2 + y2 + z2.

Whence, it is more than tempting to choose, on t = const
hypersurfaces, the freely specifiable fields N̂ i, γ̂ij ,κ and
◦

Kij as if (14) solved the Einstein equations. Recall that
equations (3)–(5) require initialization of the constrained

fields N̂ , ki and K
l
l on one of the level surfaces, say on

S0, which is also done by applying (14). As seen below,
these choices will be approved by significant paybacks.

So far the free data has been chosen by using the aux-
iliary metric (14). Note, however, that as the metric (14)

does not solve Einstein’s equations, the true solutions N̂ ,
ki and K

l
l to the evolutionary system (3)–(5) will always

differ, in the interior of the domain of dependence of S0,
from those fields that could be deduced from (14).

The boundary-initial value problem.—Hitherto the
level surfaces Sρ have tacitly been assumed to be com-
pact without boundary. However, in most of the numeri-
cal approaches the initial data surface Σ is chosen to be a

sufficiently large but bounded subset of R3. In adopting
such a scheme here the product structure Σ ≈ R × S

will be guaranteed by applying leaves Sρ that are diffeo-
morphic to a closed disk in R

2.
Here we choose Σ to be the cube (see Fig. 1) centered

at the origin in R
3 with edges 2A, which, for sufficiently

large value of A contains the binary system with a rea-
sonable size of margin. The price for doing this is that
the parabolic-hyperbolic system (3)–(5) has to be solved
as an initial-boundary value problem. It is important
that if (3) is uniformly parabolic well-posedness of such
a problem is guaranteed (see, e.g. [10]), though, a suit-
able splitting of the boundary of Σ into disjoint subsets
on which the initial and boundary values can be specified,
respectively, has also to be find.
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FIG. 1. (color online). The initial data surface Σ is chosen to be
the cube centered at the origin in R

3 with edges 2A. It will be
argued below that initial data can be specified on the horizontal
squares, with z = ±A, bounding the cube from above and below,
whereas boundary values can be given on the complementary part
of the boundary comprised by four vertical squares.

Before splitting the boundary of Σ, consisting of six
squares, into suitable parts where initial and boundary
values are to be specified recall that (3) is uniformly

parabolic only in those subsets of Σ, where
⋆
K is strictly

negative or positive. Indeed, it is the sign of
⋆
K that de-

cides whether the system (3)–(5) evolves in the positive
or negative ρ-direction. It propagates aligned the vector
filed ρi for positive

⋆
K, while anti-aligned for negative

⋆
K.

Restrict now considerations to a binary with speeds,
displacements and spins aligned parallel to the x, y and
z-axis, respectively (as indicated on Fig. 1). Apply then a
foliation of Σ by z = const level surfaces, and determine
the function

⋆
K using (14). Direct calculation verifies then

that
⋆
K can be given as the product of a strictly negative

function and the z-coordinate. (Note that all the point-
like or ring-like singularities are now confined to the z = 0
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plane.) This means that
⋆
K is positive everywhere below

the z = 0 plane while it is negative above that plane.
This behavior may also be verified by plotting

⋆
K = const

level surfaces as it is done for a specific choice of physical
parameters on Fig. S.1 of the Supplemented Material [23].

Then, for a binary black hole system arranged as in-
dicated on Fig. 1, the evolutionary equations (3)–(5) are
well-posed on the disjoint domains, Σ+ and Σ−, above
and below the z = 0 plane. In particular, they may be
solved by propagating initial values specified on the hor-
izontal z = ±A squares, along the z-streamlines, mean-
while the z = const ‘time’ level surfaces approach the
orbital plane from above and below. The boundary val-
ues are to be given on the four vertical sides of the cube
(see Fig. 1). As the fields N̂ , ki and K

l
l are developed

on Σ+ and Σ− separately the existence of sufficiently
smooth unique solutions on the union of the closures of
Σ+ and Σ−, respectively, is of fundamental importance.

Notably, there is a significant simplification offered by
the specific choice we made for restricted class of binary
black hole systems, and also by fixing the freely specifi-
able part of data using (14). Indeed, it is straightforward
to check that for the considered class of binary black
hole configurations, the auxiliary metric (14) possesses a
z → −z reflection symmetry. This, in particular, along
with a suitably iterative argument based on results cov-
ered by [1, 13, 21], can be used to verify both the ex-
istence and uniqueness of “global” solutions on Σ+ and
Σ−, and also (apart from singularities) their sufficiently
smooth matching at the z = 0 plane. [For more details
see the Supplemental Material [23].]

Conclusions.—By applying the parabolic-hyperbolic
formulation of constraints and superposed Kerr-Schild
black holes a radically new method to construct binary
black hole initial data was introduced. The main advan-
tages of the proposed new method come with its simplic-
ity, with the intimate interrelation of the applied input
parameters—the rest masses, velocities, spins and dis-
placements of the individual black holes—and those used
in the PN formalism. The latter, along with some PN re-
lations, could be used to fix orbital properties of binaries.
In addition,—as shown in [19] (see also the Supplemen-
tary Material [23])—all of the global ADM charges can
be given by linear combination of those for individual
black holes, thereby they are also determined the input
parameters. It is also remarkable that instead of involv-
ing any sort of preconception on tidal deformations the
new proposal determines the adequate contributions.

A major motivation for this paper is to encourage nu-
merical implementations which will be important in ex-
tending the merits of the proposed analytic setup. Nu-
merical simulations will be needed to determine quasilo-
cal quantities or the binding energy, as well as, to explore
the functional dependence of these quantities on the in-
put parameters.

Notably, the superposed Kerr-Schild metric (14) has
no gravitational wave content. Accordingly, the radia-
tive degrees of freedom are turned on only via the four
constrained variables, N̂ ,ki and K

l
l. This should yield

a minimizing of the spurious radiation content, though
careful numerical investigations of time evolutions will
be needed to see if a desired suppressing of junk radia-
tion will indeed occur.

Note, finally, that for definiteness we treated here only
the case of binary black holes. Nevertheless, our pro-
posal immediately applies to multiple systems whenever
the initial speeds are parallel to the x− y-plane and the
spins are orthogonal to that plane. As there are no re-
strictions, besides some obvious ones, on the input pa-
rameters this set hosts a great number of multiple black
hole configurations of immediate physical interest.
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fer, Bob Wald and Jeff Winicour for helpful comments.
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