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Gábor Somlai
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Abstract

We prove the every spectral set in Zp2qr tiles, where p, q and r are primes. Combining
this with a recent result of Malikiosis we obtain that Fuglede’s conjecture holds for Zp2qr .

1 Introduction

A Lebesgue measurable set Ω ⊂ Rn is called a tile if there is set T in Rn, called the tiling
complement of Ω such that almost every element of Rn can uniquely written as ω + t, where
ω ∈ Ω and t ∈ T . We say that Ω is spectral if L2(Ω) admits an orthogonal basis consisting
of exponential functions of the form {ei(λx) | λ ∈ Λ, x ∈ Ω}, where Λ ⊂ Rn. In this case Λ is
called a spectrum for Ω.

Fuglede conjectured [3] that a bounded domain S ⊂ Rd tiles the d-dimensional Euclidean
space if and only if the set of L2(S) functions admits an orthogonal basis of exponential
functions. The conjecture might have been motivated by Fuglede’s result [3] that it is true
when the tiling complement or the spectrum is a lattice in Rn. The conjecture was disproved in
[12]. Tao considered a discrete version of the original conjecture and constructed spectral sets
in Z11

2 and Z5
3, which are not tiles. The latter example was lifted to R5 to refute the spectral-

tile direction of Fuglede’s conjecture. Matolcsi [6] proved that the spectral-tile direction of
the conjecture fails in R4. Kolountzakis and Matolcsi [4, 8] and Farkas, Matolcsi and Móra
[2] provided counterexamples in R3 for both directions of the conjecture.

It is important to note that every (finite) tile of the integers is periodic. Moreover, the
tile-spectral direction of the conjecture is true for R if and only it holds for Z, which is further
equivalent for the conjecture to hold for every finite cyclic group. If the spectral-tile direction
of Fuglede’s conjecture holds for R, then it holds for Z, which again implies that it holds
for every (finite) cyclic group. On the other hand, the converse of this statements is not
necessarily true.

The investigation of Fuglede’s conjecture for finite cyclic groups started with a result of
Kolountzakis and Malikiosis [10] by proving that the conjecture holds for Zpnq, where pn is an
arbitrary power of the prime p and q is a prime. As a strengthening it was proved in [7] that
Fuglede’s conjecture holds for Zpnq2 , where p and q are prime. A recent result of Malikiosis
shows that a for cyclic group of order pmqn, Fuglede’s conjecture holds if minm,n ≤ 6 or
pmin{m,n}−2 < qmax{m,n}. Another important result was proved by Shi [11] who showed that
Fuglede’s conjecture is true for Zk if k is the product of 3 (distinct) primes.
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The Coven-Meyerowitz conjecture states that if n is square-free, then every tile of Zn is
complete set of residues (mod k), where k is a divisor of n. This was originally settled by
Laba and Meyerowitz on Tao’s blog and a self-contained proof of this fact was provided by
Shi [11].

Coven and Meyerowitz [1] proved that a subset A of Zn tiles if two properties called (T1)
and (T2), defined in the next section, are satisfied. The converse also holds if n has at most
two different prime divisors or if n = pnq1 . . . qk with p, q1, . . . , qk are different primes [9].
Furthermore for every n ∈ N the tiles of Zn satisfy (T1).

The main result of the paper is the following.

Theorem 1.1. Every spectral set in Zpqrs is a tile.

Combining this theorem with the result of Malikiosis mentioned above we obtain that
Fuglede’s conjecture holds for Zpqrs.

2 Fuglede’s conjecture for cyclic groups

Fuglede’s conjecture is still open in the 1 and 2 dimensions. We will focus on the one di-
mensional case which is heavily connected to the discrete version of the conjecture for cyclic
groups.

Let S be a subset of Zn. We say that S is a tile if and only if there is a T ⊂ Zn such that
S+T = Zn and |S||T | = n. We say that S is spectral if and only if the vector space of complex
functions on S is spanned by pairwise orthogonal functions, which are the restrictions of some
irreducible representations of Zn. The irreducible representations of Zn are of the following
form:

χk(x) = e
2πik

n
x,

so these are parametrized by the elements of Zn. It is easy to verify that χk and χl are
orthogonal if and only if χk−l is orthogonal to the trivial representation, which can also be
written as ∑

s∈S

χk−l(s) = 0.

One can assign a polynomial mS to S by
∑

s∈S xs, which is called the mask polynomial of
S. It is easy to see that

∑
s∈S χk(s) = 0 if and only if ξk is a root of mS , where ξk is a

primitive k’th root of unity. This can also be said as Φk | mS , where Φk is the k’th cyclotomic
polynomial. Note that mask polynomials can also be defined for any element of the group
ring Z[Zn].

Now using the character table of Zn we have that (S,Λ) is a spectral pair if and only if the
submatrix of the character table whose rows are indexed by the elements of Λ and columns
with those of S is a complex Hadamard matrix. In fact, the adjoint of a complex Hadamard
matrix is also a complex Hadamard matrix so if (S,Λ) is a spectral pair, then (Λ, S) is a
spectral pair too.

Now we introduce the properties that are needed to formulate the Coven-Meyerowitz
conjecture for any natural number. Let HS be the set of prime powers pk dividing N such
that Φpk(x) | S(x).

(T1) mS(1) =
∏

d∈HS
Φd(1),

2



(T2) for pairwise relatively prime elements qi of HS, we have Φ∏
qi | mS(x).

We remind that if (T1) and (T2) hold for some S ⊂ Zn, then S is a tile and if S is a tile,
then (T1) holds, see [1]. Further we mention that  Laba [5] proved that a set having (T1) and
(T2) properties also is a spectral set.

3 Preliminary lemmas

For the sake of simplicity let n = p2qr. First, we collect the results obtained in [7] that
apply in our case. Note that in our case (n = p2qr) for every proper subgroup or quotient
group of Zn we have that spectral sets coincide with tiles. The results of Section 4 in [7] were
summarised in a statement called Reduction 1 but it is important to note that n has more
than 2 different prime divisors so we only have the following.

Proposition 3.1. Let us assume that (S,Λ) is a spectral pair for an abelian group whose
subgroups and factor groups satisfies the spectral-tile direction of Fuglede’s conjecture. Then
we may assume 0 ∈ S, 0 ∈ Λ. Further S is a tile if one of the following holds.

(a) S or Λ does not generate Zn,

(b) S can be written as the union of Zu-cosets, where u is a prime dividing n.

Lemma 3.2. Let 0 ∈ T ⊂ ZN a generating set and assume x and y are different prime
divisor of N . Then there are elements t1 6= t2 of T such that x ∤ t1− t2 and y ∤ t1− t2 for any
pair of prime divisors of N .

Proof. T is not contained in any proper coset of ZN so it contains an element t1 not divisible
by x and t2 not divisible by y. If y ∤ t1, then t1 − 0 ∈ (T − T ) is not divisible by either x or
y, when we are done so we may assume y | t1. Similar argument shows that we may assume
x | t2. Then x ∤ t1 − t2 and y ∤ t1 − t2, as required. �

Another important tool is the following lemma. This is the same as Proposition 3.4 in [7]
formulated in a different language. Let m be a square-free integer, where m is the product of
d primes. Then Zm

⊕d
i=1 Zpi a direct sum of d cyclic groups of different prime order so the

elements of Zm are encoded by d-tuples. This allows us to introduce Hamming distance on
Zm. Further we say that P is a cuboid in Zm if it can be written as

∏
Hi, where Hi ⊂ Zpi

with |Hi| = 2.

Proposition 3.3. Let w be an element of the group ring Z[Zm] with nonnegative coefficients,
where m =

∏d
i=1 pi, a product of d different primes. Assume Φm | mw. Let P be a d-

dimensional cuboid and p a vertex of P . Then

∑

c∈P

(−1)dH (p,c)w(c) = 0. (1)

We will refer to the previous proposition or more precisely to equation (1) as the d-
dimensional cube-rule. Note that this lemma is a corollary of Corollary 3.4 in [7], that is
formulated below.

Lemma 3.4. Let w be an element of the group ring Z[Zm] with nonnegative coefficients.
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• Then w can be written as the weighted sum of Zpi-cosets with rational coefficients.

• If m = pq, where p and q are primes, then w can be written as the Zp-cosets and Zq-
cosets with nonnegative coefficients. Moreover, if the coefficients of w are integers, then
it is a sum of Zp-cosets and Zq-cosets with nonnegative integer coefficients.

It is also important to know what happens if ω is a multiset on Zm, with Φm | mω, where
m is not square free, which is also described in [7]. Let m′ be the square free radical of m.
Then ω is the weighted sum of Zpi-cosets with rational coefficients again, implying that the
cube-rule holds for the restriction of ω to each Zm′-coset.

Lemma 3.5. Let T ⊂ Zpqr. Assume Φpqr | mT and T ∩ ((t + Zq) ∪ (t + Zr)) = {t} for all
t ∈ T . Then T is a union of Zp-cosets.

Note that the statement holds verbatim for any permutation of the primes p, q, r.

Proof. Assume Φpqr | mT , then T satisfies the 3 dimensional cube-rule. Suppose t ∈ T . By
our assumption T ∩ (t + Zq) = {t} and T ∩ (t + Zr) = {t}.

By the way of contradiction, assume T is not a union of Zp-cosets so there is t ∈ T with
tp ∈ (t + Zp) \ T . Then for every cuboid containing t and tp as its vertices, the neighbours
(consider the cube as the natural graph on 8 vertices) of t are not in T . Now using the
cube-rule we obtain that the vertex of the cuboid, which is of Hamming distance 3 from t is
contained in T . Thus for every x ∈ Zpqr with p | x − tp and dH(x, t) = 3 we have x ∈ T .
Then there are elements of T whose difference is divisible by pr if q > 2 and the same holds
with pq if r > 2. This contradicts the assumption that T ∩ ((x + Zq) ∪ (x + Zr)) = {x}. �

Now we prove a Lemma that will be used in the proof of our main result. Since Zn is
a cyclic group, for every m | n there is a unique subgroup of Zn of order m. Thus if f is a
function on Zn, then there is a well defined way to define its projection to Z n

m
by summing

the values of f on each Zm-coset. This can also be applied to sets by identifying them with
their characteristic function.

Lemma 3.6. Let T ⊂ ZN , where N is a positive integer and let m and r are divisors of N
with (m, r) = 1. Assume further that for every d | m we have φd | mT or φdr | mT . Let Tm

denote the projection (points counted with multiplicity) of T to Zm. Then Tm = cZm + rD,
where c ≥ 0 an integer and D is a multiset on Zm.

Proof. Since (d, r) = 1 we obtain Φdr(x) = Φd(xr). This equation can be written as
Φdr(x) = Φd(x)r in the polynomial ring Zr[x]. Now Φdr(x) | mT (x) implies Φd(x) | mT (x) in
Zr[x]. These cyclotomic polynomials are pairwise relatively primes Zr[x] as well so we obtain∏

d|m Φd | mT in Zr[x]. This implies that mT ≡ 0 (mod xm − 1) in Zr[x]. Now let Tm the
multiset obtained from T by the natural projection to Zm and let c = minx∈Zm

t(x). Then
the claim follows from mT ≡ 0 (mod xm − 1) in Zr[x]. �

4 Proof of the main result

Let (S,Λ) be a spectral pair. We will distinguish certain different cases by the cardinality of
S, which equals to those of Λ. For a subset A ⊆ Zn we write k || |A| if gcd(|A|, n) = k.

Before we start proving our main result we introduce a notation. For every k | n there
is a unique subgroup of order k of Zn, which we may also denote by Zk. For a subset A of
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Zn one can define a function from the cosets of Zk to N. The image a coset is the number of
elements of A contained in the coset. This function can also be considered as a multiset i.e.
elements of Z[Zk] with nonnegative coefficients, and it will be denoted by Ak. Sometimes we
say that Ak is the natural projection of A to Zk.

4.1 |S| has 3 prime divisors

In this case we assume that |S| is divisible by three of the primes p, q, r counted with multi-
plicity. Thus the cases handled here are p2q || |S|, p2r || |S| and pqr || |S|.

Assume p2q || |S|. Project S to Zp2q. If two elements of S project to the same element of
Zp2q, then we have a pair of elements of s1, s2 ∈ S with p2q || s1− s2. Note that this is always
the case when |S| > p2q. Thus we have Φr | mΛ, which implies r | |Λ| = |S|, a contradiction.
Thus |S| = p2q and S is a complete set of residues (mod p2q) so is a tile.

The same argument works if p2r || |S|.
Let us assume now that pqr || |S|. If a Zp2-coset contains at least p+1 elements of S, then

S contains a pair of elements contained in the same Zp-coset and a pair of elements contained
in the same Zp2-coset but in different Zp-cosets. These imply Φp | mΛ and Φp2 | mΛ so
p2 | |Λ| = |S|, a contradiction.

It remains to investigate the case when each Zp2-coset contains exactly p elements of S,
which gives |S| = pqr. Moreover by excluding ΦpΦp2 | mΛ we obtain that the intersection of
S with each Zp2-coset is either a Zp-coset or it is a complete coset representative of Zp-cosets.
In both of these cases S is a tile.

Note that similar argument will also be used later in this paper if |S| > p2 min{q, r} or
|S| > pqr.

4.2 |S| has two prime divisors

Now we handle the cases when p2 || |S|, pq || |S|, pr || |S| and qr || |S|.
Case 1. We first handle the case p2 || |S|.

Assume first that Φn | mS . Then we may apply the cube-rule on every Zpqr-coset. By Lemma
3.5 we obtain that S is the union of Zp-cosets, which case is handled in Proposition 3.1 (b).
Thus we may assume Φn ∤ mS.

If every Zqr-coset contains exactly one element of S, then S is a tile. Thus we may assume
there are s1 6= s2 ∈ S with p2 | s1 − s2. If p2q || s1 − s2 or p2r || s1 − s2, then r | |S| or q | |S|,
respectively. Both of these cases contradict p2 || |S|. Thus we have p2 || s1 − s2 so Φqr | mΛ.

It follows from Φqr | mΛ that Λqr is the weighted sum of Zq-cosets and Zr-cosets with
nonnegative weights by Lemma 3.4. Both type of cosets appear since otherwise we would
have q | |S| or r | |S|, a contradiction.

Let Γ be a graph whose vertices are the elements of Λ and two vertices are adjacent if and
only if their difference is not divisible by either q or r. If Γ is connected, then since Φn ∤ mS

we have Λ is contained in a Zpqr-coset, which is excluded by Proposition 3.1.
Without loss of generality we may assume r > q so r ≥ 3. Then there are λ, λ′ ∈ Λ with

q | λ − λ′ but r ∤ λ− λ′ and there is λ′′ ∈ Λ, whose q and r coordinates differ from those of
λ and λ′. By this we mean q ∤ λ− λ′′, q ∤ λ′ − λ′′, r ∤ λ− λ′′ and r ∤ λ′ − λ′′. Since Φn ∤ mS

we have p | λ− λ′′ and p | λ′ − λ′′ so we have pq | λ− λ′ and r ∤ λ− λ′. Thus we either have
Φr | mS , which is excluded since r ∤ |S|, or we have Φpr | mS .
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Assume Γ is disconnected. Let Λ̃qr denote the underlying set of the multiset Λqr. We
have that Λqr is the sum of Zq and Zr-cosets and we have seen that both types appear. Thus
Λ̃qr is the union of a Zq-coset Q and a Zr-coset R, otherwise Γ is connected. In this case, Γ
has a large connected component consisting of those elements of Λ which do not project to
the intersection of Q and R denoted by x ∈ Zqr. The p-coordinate if these points is the same.

Note that the number of elements of Λ projecting to x is less than |Λ|
2 .

We claim that Φn ∤ mΛ. By the way of contradiction let us assume Φn | mΛ. Using the
same argument when we excluded Φn | mS we have that Λ is the union of Zp-cosets. But then
(Λ, S) is a spectral pair and by Proposition 3.1 we have that Λ is a tile whence |Λ| = p2 = |S|.
Theorem B1 in [1] shows that (T1) holds for Λ. Thus it follows that ΦpΦp2 | mΛ. Since

ΦpΦp2 = 1 +x+ . . .+ xp
2−1 and |Λ| = p2 we have Λ is a complete set of coset representatives

of Zqr in Zn. This contradicts the fact that all but the elements of Λ projecting to x ∈ Zqr

give the same remainder (mod p).
We have that there is µ in Λ projecting to x ∈ Zqr with p ∤ µ − λ and p ∤ µ − λ′′, where

λ projects to R \ {x} and λ′ to Q \ {x}, otherwise Λ is contained in a Zpqr-coset. Thus we
obtain Φp2q | mS and Φp2r | mS since Φn ∤ mS.

Now we exclude the case p = 2. If p = 2, then by r > q we have r ≥ 5. Thus the
description of Λ̂qr shows that there are at least 4 elements of Λ projecting to R in the same
connected component of Γ. The difference of any two of these is divisible by p so there is a
pair whose difference is divisible by p2 as well. Since their projection to Zqr lie in R we obtain
φr | mS, a contradiction.

We claim that p > r. Otherwise there are more than p elements of Λ, projecting to
mutually different points of R \ {x}. Their difference is divisible by p since they are in the
same connected component of Γ but then there would be a pair whose difference is divisible
by p2 as well, implying Φr | mS and r | |S|, a contradiction. Similar argument shows that we
may assume p > q or p = 2 and q = 3, which we have already excluded.

A simple calculation shows that the number of elements m of Λ projecting to x exceeds
p. This follows from p2 ≤ kq + lr and m = k + l since p > q, r, where k and l are defined by
Λqr = kQ + lR. Thus there are elements λ3, λ4, λ5 of Λ with qr || λ3 − λ4 and pqr || λ3 − λ5

thus implying ΦpΦp2 | mS .
We remind that φpr | mS . The fact that ΦpΦp2 | mS implies that every Zqr-coset contains

the same amount of elements of S. Denote this number by a. If a = 1, then S is a tile so we
assume a ≥ 2. If a = q, then |S| = p2q which case has been handled before. If a > q, then
|S| > p2q and by a simple pigeonhole argument (the same argument is used in subsection )
we obtain r | |S|.

Now project S to Zp2r. Sp2r is a set, otherwise q | |S|. Then each Zr-coset in Zp2r contains
2 ≤ a < q elements of Sp2r. By Lemma 3.2 we have Φp2r | mS or Φn = Φp2qr | mS , but the
last one is excluded. Using Φp2r | mS we have that the intersection of Sp2r with each Zpr-coset
is the union of Zp-cosets or Zr-cosets. Since a < q < r it is the union of Zp-cosets only.

Then we build up a graph Γ′ whose vertices are the elements of Λ and two vertices are
adjacent if and only if their difference is not divisible by either p or r. It follows from the
previous observations using p ≥ 3 that Γ′ is connected. Since Φn ∤ mΛ we have that the q

coordinates of these elements of Λ is the same so Λ is contained in a proper coset of Zn. Thus
by Proposition 3.1 we have that S is a tile.

Case 2. Assume pq || |S|. We may exclude the case, when S is complete set of residues
(mod pq), which is the same as S contains exactly one element from each Zpr-coset, since S
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is a tile in this case. Then there are elements of S projecting to the same element of Zpq. We
either have Φpr | mΛ or Φp | mΛ or Φr | mΛ. The latter case is impossible since r ∤ |S|.

Now we project S to Zp2q. The projection Sp2q is a set, otherwise we have Φr | mΛ and
thus r | |S|, a contradiction. If there is a Zp2-coset of Zp2q containing more than p elements
of Sp2q, then there are two of them, whose difference is not divisible by p, implying Φp2 | mΛ

or Φp2r | mΛ. If every Zp2-coset of Zp2q contains exactly p elements of Sp2q and for each
Zp2-coset all of these elements are contained in the same Zp-coset, then we have that S is a
tile. Thus we may assume Φp2 | mΛ or Φp2r | mΛ.

Applying Lemma 3.6 using the conditions that Φp | mΛ or Φpr | mΛ, and Φp2 | mΛ or
Φp2r | mΛ we obtain that the projection of Λ to Zp2 is of the following form:

Λp2 = cZp2 + rD, (2)

where c is a nonnegative integer and D is a multiset on Zp2 . If c = 0, then r | |Λ| and if
D = 0, then p2 | |Λ|. Both cases contradict our assumption that pq || |S| = |Λ|. Thus there
are at least r+1 elements of Λ projecting to the same element of Zp2 so we obtain Φq | mS. If
q < r, then there are two of them, whose difference is divisible by q as well, implying Φr | mS ,
a contradiction. Thus we may assume q > r.

Assume Φp2r | mΛ. Then Λp2r is a multiset, which is the sum of Zp-cosets and Zr-cosets
by Lemma 3.4. Since c > 0 and D 6= 0 in equation (2), there is a Zpr-coset of Zp2r, whose
intersection with the multiset Λp2r is the sum of k Zp-cosets and l Zr-cosets with k + l ≥ 2.

Now we argue that Λp2r contains a Zr-coset. Assume this is not the case, thus we can
write Λp2r as the sum of Zp-cosets. Then the number of elements of Λp2r contained in each
Zpq-coset is divisible by p. If Φp | mΛ, then these numbers are the same so we would have
p2 | |Λ|, a contradiction. If Φpr | mΛ, then Λpr is the sum of Zp and Zr-cosets. If Λpr contains
a Zr-coset, then Λp2r-contains a Zpr-coset since it is the sum of Zp-cosets so Λp2r contains
a Zr-coset as required. If Λpr is the sum of Zp-cosets only, then we again have p2 | |Λ|, a
contradiction.

Since c > 0 in equation (2) and since we have a Zp2r-coset containing a Zr-coset, which is
also contained in Λp2r, we have two elements λ1, λ2 ∈ Λp2r with pr || λ1 − λ2. It is not hard
to see from the description of Λ in this case that for every d | p2r we have λ, λ′ ∈ Λp2r with
d || λ−λ′. Then we have ΦpΦrΦprΦp2Φp2r | mS in Zq[x] so by projecting S to Zp2r we obtain
a multiset of the form c′Zp2r + qD′ (c′,D′ ≥ 0). If c′ = 0, then S is spectral set, which is the
union of Zq-cosets, hence a tile. If c′ > 0, then D′ = 0 since a Zq-coset cannot contain more
than q points of Λ. Then p2r | |S|, a contradiction.

Thus we may assume Φp2r ∤ mΛ so we have Φp2 | mΛ. Then since p2 ∤ |S| we must have
Φp ∤ mΛ so we have Φpr | mΛ. We remind that we have already seen that Φq | mS so S

is equidistributed on the Zp2r-cosets. Now we apply this to obtain information about the
structure of S.

We investigate the intersection of S with each Zp2r-cosets. Assume s1, s2 ∈ S are contained
in a Zp2r-coset but are not contained in a Zpr-coset. If their difference is not divisible by r,
then we would have Φp2r | mΛ, which we have excluded above. Similarly, if s3 6= s4 ∈ S are
contained in a Zpr-coset, then they need to have different r-coordinates, otherwise we would
have Φp | mΛ. Their difference is not divisible by p2 since we would have Φr | mΛ, which is
impossible since r ∤ |Λ| = |S|. Each Zp2r-coset contains the same amount of elements of S by
Φq | mS , which is then at least p. The previous argument shows that each Zp2r-coset contains
exactly p elements of S and either they lie in different Zpr-cosets or they are all contained in

7



one Zpr-coset with p2 not dividing their differences. If for each Zp2r-coset only one of the two
types appears, then S is a tile.

Now we argue that Φp2q | mS or Φn | mS. By Proposition 3.1 we may assume 0 ∈ Λ and
that Λ is not contained in a proper subgroup of Zp2qr. Then our claim follows from Lemma
3.2.

Since r ∤ |S| = |Λ| we have Sp2q is a set. Assume Φp2q | mS. Then Sp2q is the union of Zp

and Zq-cosets. Since there is at least one Zp2r-coset such that each of its Zpr-cosets contains
one or three elements of S we have that Sp2q is the union of Zq-cosets all contained in different
Zpq-cosets. This contradicts the existence of Zp2r-cosets of Zn, which contains a Zpr-coset
containing exactly p elements of S (any pair of these elements have different r-coordinate).

Assume now that Φn | mS . It is clear from our previous discussion that there are x, y

with p | x − y and q ∤ x − y such that Zpr + x and Zpr + y contains 1 and p elements of
S, respectively. We remind that if it contains p, then in that Zpr-coset, the difference of the
elements of S lying in this Zpr-coset is not divisible by either p2 or with r. Then one can
build up a 3-dimensional cube in Zpqr, which contains exactly one element of S or exactly
two elements of S of Hamming distance 2, which contradicts the fact that S satisfies the
3-dimensional cube-rule in each Zpqr-cosets.

A similar argument works if pr || |S| since the role of q and r is symmetric.
Case 3. Let us assume that qr || |S|.

Then either S is a complete set of residues (mod qr), whence S is a tile or there are two
different elements of S, whose difference is divisible by qr. This would imply Φp | mΛ or
Φp2 | mΛ. In both of these cases we have p | |Λ| = |S|, a contradiction.

4.3 |S| has at most one prime divisors among p, q, r

Let us assume 1 || |S| or p || |S| or q || |S| or r || |S|.
If Φn | mS, then the intersection of S with each Zpqr-coset satisfies the 3-dimensional cube-

rule. Then by Lemma 3.5, we cannot have 1 || |S| and if |S| = p or |S| = q or |S| = r, then S

is a Zp-cosets, Zq-cosets or Zr-cosets, respectively. These cases are excluded by Proposition
3.1.

A similar argument works for Λ. If Φn | mΛ, then Λ is the union of Zp-coset or Zq-cosets
or Zr-cosets. Then since (Λ, S) is also a spectral pair we have by Proposition 3.1 that Λ is a
tile. Then |Λ| = |S| | n so we have that |S| = |Λ| = p or |S| = |Λ| = q or |S| = |Λ| = r. The
fact that Λ is ZΛ-coset implies that Φ|Λ| | mS . Then it is easy to see that (T1) and (T2) are
satisfied for S so it is a tile.

Thus we may assume Φn ∤ mS and Φn ∤ mΛ. By Lemma 3.2 we have Φp2qΦp2r | mS.
Without loss of generality we may assume r ∤ |S| since the role of q and r are symmetric.

Then Sp2q is a set so it is the disjoint union of Zp-cosets and Zq-cosets. By Proposition 3.1
we have that 〈S〉 = Zn so 〈Sp2q〉 = Zp2q. It follows using 0 ∈ Sp2q that that at least two
Zpq-cosets of Zp2q contain elements of Sp2q. Note that the same argument works for Λp2q as
well. We remind that Sp2q is the union of Zp-cosets and Zq-cosets.

Assume there is a Zpq-cosets in Zp2q, whose intersection with Sp2q contains a Zq-coset and
another Zpq-coset containing a Zp-coset also contained in Sp2q. Then for every d | p2q there
are sd,1, sd,2 ∈ S such that d || πp2q(sd,1) − πp2q(sd,2), where πp2q is the natural projection of
Zn to Zp2q. Hence Φd | mΛ or Φdr | mΛ for every d | p2q. Thus by Lemma 3.6 we have that
Λ = cZp2q + rD. If c > 0, then |S| ≥ p2q. In this case S is a tile or r | |S| by the argument
used in Case 1. If c = 0, then we obtain r | |S|, a contradiction.
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Assume now that the intersection of Sp2q with each Zpq-coset is the union of (possible 0)
Zq-cosets and this intersection is nonempty for at least two cosets of Zpq. Then it follows
from Φn ∤ mΛ that if x, y ∈ S, whose natural projections to Zp2q are not contained in a proper
coset of Zpq, then their difference divisible by r. If q > 2, then it follows from 〈Sp2q〉 = Zp2q

that the difference of any two elements of S is divisible by r so it is contained in a proper
coset of Zn. Proposition 3.1 gives that S is a tile in this case.

If q = 2 but there are more than two Zpq-cosets containing elements of Sp2q, then we build
up a graph Γ having vertex set S and two vertices are adjacent if and only if their difference
is not divisible by either p or q. Again, the difference of two adjacent vertices is divisible by
r. It is not hard to verify that Γ is connected and then S is contained in a Zp2q-coset of Zn

so it is a tile.
If there is a Zpq-coset in Zp2q, whose intersection with Sp2q contains at least two Zq-cosets

and another one which contains at least one Zq-coset, then again we have that for every
1 6= d | p2q there are elements s1, s2 of Sp2q such that d || s1− s2, which case has already been
handled above.

The |S| = 4 case follows from a theorem of Kolountzakis and Matolcsi [4], which says that
spectral sets of cardinality at most 5 in finite abelian groups are tiles.

Thus it remains that Sp2q is the union of Zp-cosets only. We also have that these Zp-cosets
are not contained in a Zpq-coset or a Zp2-coset of Zp2q. For every s ∈ Sp2q the unique element
of S projecting to s and it is denoted by s̄. Assume that for every x ∈ Sp2q there is y ∈ Sp2q

such that p ∤ x − y and q ∤ x − y. Then for every x′ ∈ x + Zp ⊂ S, we have p ∤ x′ − y and
q ∤ x′ − y. Since Φn ∤ mΛ we have that r | x̄ − ȳ and x̄′ − ȳ so r | x̄ − x̄′. The same holds
for every element of x + Zp so {x + u : u ∈ Zp} is a Zp-coset. Therefore S is the union of
Zp-cosets, which is handled by Proposition 3.1.

If there is a x ∈ Sp2q such that p | x − y or q | x − y for every y ∈ Sp2q, then Sp2q is
contained in (x+Zpq)∪(x+Zp2). Since Sp2q is not contained in any of this two sets appearing
in the union we again have that for every d | p2q there are x, y ∈ Sp2q with d || x− y, which
case has already been settled.
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