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MAXIMAL INDEPENDENT SETS, VARIANTS OF CHAIN/ANTICHAIN

PRINCIPLE AND COFINAL SUBSETS WITHOUT AC

AMITAYU BANERJEE

Abstract. In set theory without the Axiom of Choice (AC), we observe new relations of the
following statements with weak choice principles.

• Plf,c (Every locally finite connected graph has a maximal independent set).
• Plc,c (Every locally countable connected graph has a maximal independent set).

• CAC
ℵα
1

(If in a partially ordered set all antichains are finite and all chains have size ℵα,
then the set has size ℵα) if ℵα is regular.

• CWF (Every partially ordered set has a cofinal well-founded subset).
• If G = (VG, EG) is a connected locally finite chordal graph, then there is an ordering <

of VG such that {w < v : {w, v} ∈ EG} is a clique for each v ∈ VG.

1. introduction

As usual, ZF denotes the Zermelo-Fraenkel set theory without the Axiom of Choice (AC), and
ZFA is ZF with the axiom of extensionality weakened to allow the existence of atoms. In this
note, we observe new relations of some combinatorial statements with weak choice principles.

1.1. Maximal independent sets. Friedman [[Fri11], Theorem 6.3.2, Theorem 2.4] proved
that AC is equivalent to the statement ‘Every graph has a maximal independent set’ (abbreviated
here as P) in ZF. Spanring [Spa14] gave a different argument to prove the result. Consider the
following weaker formulations of P .

• Fix n ∈ ω\{0, 1}. We denote by PKn
, the class of those graphs whose only components

are Kn (complete graph on n vertices). We denote by Pn the statement ‘Every graph
from the class PKn

has a maximal independent set’.
• We denote by Plf,c the statement ‘Every locally finite connected graph has a maximal
independent set’.
• We denote by Plc,c the statement ‘Every locally countable connected graph has a maximal
independent set’.

In this note, we observe the following.

(1) ACn (Every family of n element sets has a choice function) is equivalent to Pn for every
n ∈ ω\{0, 1} in ZF (c.f. [§3, Observation 3.1]).

(2) ACωfin (Every denumerable family of non-empty finite sets has a choice function) is

equivalent to Plf,c in ZF (c.f. [§3, Observation 3.2]).
(3) UT (ℵ0,ℵ0,ℵ0) (The union of any countable family of countable sets is countable) implies

Plc,c, and Plc,c implies ACℵ0

ℵ0
(Every denumerable family of denumerable sets has a choice

function) in ZF (c.f. [§3, Observation 3.3]).

1.2. A variant of Chain/Antichain principle. A famous application of the infinite Ramsey’s
theorem is the Chain/Antichain principle (abbreviated here as “CAC”), which states that ‘Any
infinite partially ordered set contains either an infinite chain or an infinite antichain’. Tachtsis
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[Tac16] investigated the possible placement of CAC in the hierarchy of weak choice principles.
Komjáth–Totik [KT06] proved the following generalized versions of CAC, applying Zorn’s lemma.

• If in a partially ordered set all antichains are finite and all chains are countable, then
the set is countable (c.f. [[KT06], Chapter 11, Problem 8]).
• If in a partially ordered set all chains are finite and all antichains are countable, then
the set is countable (c.f. [[KT06], Chapter 11, Problem 7]).

For each regular ℵα, we denote by CACℵα

1 the statement ‘if in a partially ordered set all an-
tichains are finite and all chains have size ℵα, then the set has size ℵα’ and we denote by CACℵα

the statement ‘if in a partially ordered set all chains are finite and all antichains have size ℵα,
then the set has size ℵα’. In [BG20], we observed that for any regular ℵα and any 2 ≤ n < ω,
CACℵα does not imply AC−

n (Every infinite family of n-element sets has a partial choice func-
tion) in ZFA. In [BG20], we also observed that CACℵα does not imply ‘there are no amorphous
sets’ in ZFA. In this note, we observe the following.

(1) For any regular ℵα, and any 2 ≤ n < ω, CACℵα

1 does not imply AC−
n in ZFA (c.f.

[§4, Theorem 4.3]). In particular, for any regular ℵα, CAC
ℵα

1 holds in the model
constructed in the proof of [[HT20], Theorem 8].

(2) For any regular ℵα, CAC
ℵα

1 does not imply ‘there are no amorphous sets’ in ZFA (c.f.

[§4, Theorem 4.4]). In particular, for any regular ℵα, CAC
ℵα

1 holds in the basic
Fraenkel model.

(3) CACℵ0

1 implies PACℵ1

fin in ZF if we denote by PACℵ1

fin the statement ‘Every infinite ℵ1-
sized family A of non-empty finite sets has a ℵ1-sized subfamily B with a choice function’
(c.f. [§4, Theorem 4.6]).

(4) DC (Dependent choice) does not imply CACℵ0

1 in ZFA (c.f. [§4, Theorem 4.7]).

1.3. Cofinal well-founded subsets and improving the choice strength of a result.
Tachtsis [[Tac18], Theorem 10(ii)] proved that CWF (Every partially ordered set has a cofinal
well-founded subset) holds in the basic Fraenkel model. In [[THS16], Theorem 3.26], Tachtsis,
Howard, and Saveliev proved that CS (Every partially ordered set without a maximal element
has two disjoint cofinal subsets) holds in the basic Fraenkel model. Halbeisen–Tachtsis [[HT20],
Theorem 10(ii)] proved that LOC−

2 (Every infinite linearly orderable family of 2-element sets
has a partial choice function) does not imply LOKW−

4 (Every infinite linearly orderable family
A of 4-element sets has a partial Kinna–Wegner selection function) in ZFA. We construct a
model of ZFA and observe the following.

(1) (LOC−
2 + CS + CWF) does not imply LOC−

n in ZFA if n ∈ ω such that n = 3 or n > 4
(c.f. [§5, Theorem 5.2]).

(2) (LOC−
2 + CS + CWF) does not imply CACℵ0

1 in ZFA (c.f. [§5, Corollary 5.3]).

Fix n ∈ ω\{0, 1}, and k ∈ ω\{0, 1, 2}. The authors of [CHHKR08] proved that ACn holds in
N ∗

2 (k) (generalised version of Howard’s model N ∗
2 (3) from [HR98]) if k has no divisors less than

or equal to n (c.f. [[CHHKR08], Theorem 4.8]). We observe that it is possible to improve the
choice strength of the result if k is a prime applying the methods of [HT13]. In particular, we
observe the following.

(1) Fix any prime p ∈ ω\{0, 1, 2}, and any n ∈ ω\{0, 1}. If p is not a divisor of n, then ACn
holds in N ∗

2 (p). Moreover, CWF holds in N ∗
2 (p) (c.f. [§5, Theorem 5.4]).

We also remark that CWF holds in the Second Fraenkel’s model (labeled as ModelN2 in [HR98]),
and N22(p) (the model from [[HT13], §4.4]) for any prime p ∈ ω\{0, 1, 2} (c.f. [§5, Remark
5.5, Remark 5.6]).

1.4. Locally finite connected chordal graphs. Fulkerson–Gross [FG65] proved that a finite
graph G = (VG, EG) is chordal if and only if there is an ordering < of VG such that {w < v :
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{w, v} ∈ EG} is a clique for each v ∈ VG (c.f. [[Kom15], Lemma 1]). We apply the result to
observe the following.

(1) ACωfin implies the statement ‘If G = (VG, EG) is a connected locally finite chordal graph,

then there is an ordering < of VG such that {w < v : {w, v} ∈ EG} is a clique for each
v ∈ VG’ in ZF (c.f. [§3, Observation 3.5]).

We also list some other graph-theoretical statements restricted to locally finite connected graphs,
which follows from ACωfin in ZF (c.f. [§3, Remark 3.6]).

2. Notations, definitions, and known results

Definition 2.1. (Graph-theoretical definitions, and notations). A graph G = (VG, EG)
is locally finite if every vertex of G has finite degree. We say that a graph is locally countable if
every vertex has denumerable set of neighbours. Given a non-negative integer n, a path of length
n in the graph G = (VG, EG) is a one-to-one finite sequence {xi}0≤i≤n of vertices such that for
each i < n, {xi, xi+1} ∈ EG; such a path joins x0 to xn. The graph G is connected if any two
vertices are joined by a path of finite length. An independent set is a set of vertices in a graph,
no two of which are connected by an edge. A set WG ⊆ VG is called a maximal independent set
in G = (VG, EG) if and only if it is independent and there is no independent set W ′

G such that
WG ⊆ W ′

G (c.f.[Spa14]). A clique is a set of vertices in a graph, such that any two of them are
joined by an edge. We denote by Kn, the complete graph on n vertices.

Definition 2.2. (Chain, antichain, cofinal well-founded subsets). Let P be a set. A
binary relation ≤ on P is called a partial order on P if ≤ is reflexive, antisymmetric, and
transitive. The ordered pair (P,≤) is called a partially ordered set or poset. A subset D ⊆ P
is called a chain if (D,≤↾ D) is linearly ordered. A subset A ⊆ P is called an antichain if no
two elements of A are comparable under ≤. A subset C ⊆ P is called cofinal in P if for every
x ∈ P there is an element c ∈ C such that x ≤ c. An element p ∈ P is minimal if for all q ∈ P ,
(q ≤ p) implies (q = p). A subset W ⊆ P is well-founded if every non-empty subset V of W has
a ≤-minimal element.

Definition 2.3. (Amorphous sets). An innite set X is called amorphous if X cannot be
written as a disjoint union of two innite subsets.

Definition 2.4. (A list of forms).

(1) The Axiom of Choice, AC (Form 1 in [HR98]): Every family of nonempty sets has
a choice function.

(2) ACωfin(Form 10 in [HR98]): Every denumerable family of non-empty finite sets has a
choice function. We recall two equivalent formulations of ACωfin.

• UT (ℵ0, f in,ℵ0) (Form 10 A in [HR98]): The union of denumerably many pairwise
disjoint finite sets is denumerable.
• PACωfin(Form 10 E in [HR98]): Every denumerable family of finite sets has an
infinite subfamily with a choice function.

(3) ACℵ0

ℵ0
(Form 32 A in [HR98]): Every denumerable set of denumerable sets has a choice

function. We recall the following equivalent formulation of ACℵ0

ℵ0
.

• PACℵ0

ℵ0
(Form 32 B in [HR98]): Every denumerable set of denumerable sets has

an infinite subset with a choice function.
(4) AC2 (Form 88 in [HR98]): Every family of pairs has a choice function.
(5) ACn for each n ∈ ω, n ≥ 2 (Form 61 in [HR98]): Every family of n element sets

has a choice function. We denote by AC−
n the statement ‘Every infinite family of n-

element sets has a partial choice function’ (Form 342(n) in [HR98], denoted by C−
n in

Definition 1 (2) of [HT20]).
(6) LOC−

n for each n ∈ ω, n ≥ 2 (see [HT20]): Every infinite linearly orderable family
of n-element sets has a partial choice function. We denote by LOKW−

n the statement
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‘Every infinite linearly orderable family A of n-element sets has a partial Kinna–Wegner
selection function’ (c.f. Definition 1 (2) of [HT20]).

(7) The Van Douwens Choice Principle, vDCP (see [HT13]): Every family X =
{(Xi,≤i) : i ∈ I} of linearly ordered sets isomorphic with (Z,≤) (≤ is the usual ordering
on Z) has a choice function.

(8) The Axiom of Multiple Choice, MC (Form 67 in [HR98]): Every family A of
non-empty sets has a multiple choice function, i.e., there is a function f with domain A
such that for every A ∈ A, f(A) is a non-empty finite subset of A.

(9) MC(n) where n ≥ 2 is an integer (see [HT13]): For every family {Xi : i ∈ I} of
non-empty sets, there is a function F with domain I such that for all i ∈ I, we have
that F (i) is a finite subset of Xi and gcd(n, |F (i)|) = 1.

(10) LW (Form 90 in [HR98]): Every linearly-ordered set can be well-ordered.
(11) ACWO (Form 40 in [HR98]): Every well-ordered set of non-empty sets has a choice

function.
(12) DCκ for an innite well-ordered cardinal κ (Form 87(κ) in [HR98]): Let κ be

an innite well-ordered cardinal (i.e., κ is an aleph). Let S be a non-empty set and let
R be a binary relation such that for every α < κ and every α-sequence s = (sǫ)ǫ<α of
elements of S there exists y ∈ S such that sRy. Then there is a function f : κ → S
such that for every α < κ, (f ↾ α)Rf(α). We note that DCℵ0

is a reformulation of DC
(the principle of Dependent Choices (Form 43 in [HR98])). We denote by DC<λ the
assertion (∀η < λ)DCη .

(13) UT(WO, WO, WO) (Form 231 in [HR98]): The union of a well-ordered collection
of well-orderable sets is well-orderable.

(14) (∀α)UT (ℵα,ℵα,ℵα) (Form 23 in [HR98]): For every ordinal α, if A and every member
of A has cardinality ℵα, then | ∪ A| = ℵα.

(15) ℵ1 is regular (Form 34 in [HR98]).
(16) Dilworths decomposition theorem for infinite posets of finite width, DT (c.f.[Tac19]):

If P is an arbitrary poset, and k is a natural number such that P has no antichains of size
k+1 while at least one k-element subset of P is an antichain, then P can be partitioned
into k chains.

(17) The Chain/Antichain Principle, CAC (Form 217 in [HR98]): Every infinite poset
has an infinite chain or an infinite antichain.

(18) There are no amorphous sets (Form 64 in [HR98]).
(19) CS (see [THS16]): Every poset without a maximal element has two disjoint cofinal

subsets.
(20) CWF (see [Tac18]): Every poset has a cofinal well-founded subset.
(21) A weaker form of  Loś’s lemma, LT (Form 253 in [HR98]): If A = 〈A,RA〉 is

a non-trivial relational L-structure over some language L, and U be an ultrafilter on a
non-empty set I, then the ultrapower AI/U and A are elementarily equivalent.

2.1. Group-theoretical facts. A group G acts on a set X if for each g ∈ G there is a mapping
x→ gx of X into itself, such that 1x = x for every x ∈ X and h(gx) = (hg)x for every g, h ∈ G.
Alternatively, actions of a group G on a set X are the same as group homomorphisms from G
to Sym(X). Suppose that a group G acts on a set X . Let OrbG(x) = {gx : g ∈ G} be the orbit
of x ∈ X under the action of G, and StabG(x) = {g ∈ G : gx = x} be the stabilizer of x under
the action of G. The Orbit-Stabilizer theorem states that the size of the orbit is the index of the
stabilizer, that is |OrbG(x)| = [G : StabG(x)]. We also recall that different orbits of the action are
disjoint and form a partition of X i.e., X =

⋃

{OrbG(x) : x ∈ X}. An alternating group is the
group of even permutations of a finite set. Let {Gi : i ∈ I} be an indexed collection of groups. De-

fine
∏weak
i∈I Gi =

{

f : I →
⋃

i∈I Gi
∣

∣ (∀i ∈ I)f(i) ∈ Gi, f(i) = 1Gi
except finitely many i

}

. The

weak direct product of the groups {Gi : i ∈ I} is the set
∏weak
i∈I Gi with the operation of compo-

nent wise multiplicative defined for all f, g ∈
∏weak
i∈I Gi by (fg)(i) = f(i)g(i) for all i ∈ I.
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2.2. Fraenkel–Mostowski permutation models. We start with a ground modelM of ZFA+
AC where A is a set of atoms. Each permutation of A extends uniquely to a permutation of M
by ǫ-induction. A permutation model N of ZFA is determined by a group G of permutations
of A and a normal filter F of subgroups of G. Let G be a group of permutations of A and F
be a normal filter of subgroups of G. For x ∈ M , we denote the symmetric group with respect
to G by symG(x) = {g ∈ G | g(x) = x}. We say x is F-symmetric if symG(x) ∈ F and x
is hereditarily F-symmetric if x is F -symmetric and each element of transitive closure of x is
symmetric. We define the permutation model N with respect to G and F , to be the class of
all hereditarily F -symmetric sets and recall that N is a model of ZFA (c.f. [[Jec73], Theorem
4.1]). If I ⊆ P(A) is a normal ideal, then the filter base {fixGE : E ∈ I} generates a normal
filter over G, where fixGE denotes the subgroup {φ ∈ G : ∀y ∈ E(φ(y) = y)} of G. Let I be a
normal ideal generating a normal filter FI over G. Let N be the permutation model determined
by M,G, and FI . We say E ∈ I supports a set σ ∈ N if fixGE ⊆ symG(σ).

Lemma 2.5. The following hold.

(1) In every Fraenkel–Mostowski permutation model, CS implies vDCP (c.f. [[THS16], The-
orem 3.15(3)]).

(2) In ZFA, CWF implies LW (c.f. [[Tac18], Lemma 5]).

Lemma 2.6. (c.f. [[HT13], Lemma 4.3]). Assume P is a set of prime numbers, M is
a Fraenkel-Mostowski permutation model determined by the set A of atoms, the group G of
permutations of A, and the filter F of subgroups of G. Assume further that

(1) G is Abelian.
(2) For every x ∈M, OrbG(x) is finite.
(3) There is a group G0 ∈ F such that for all φ ∈ G0, if p is a prime divisor of the order of

φ then p ∈ P .

Then for every set Z ∈M of non-empty sets there is a function f with domain Z such that for
all y ∈ Z, ∅ 6⊆ f(y) ⊆ y and every prime divisor of |f(y)| is in P .

2.3. Loeb’s theorem. A topological space (X, τ) is called compact if for every U ⊆ τ such that
⋃

U = X there is a finite subset V ⊆ U such that
⋃

V = X .

Lemma 2.7. (c.f. [[Loeb65], Theorem 1]). Let {Xi}i∈I be a family of compact spaces which
is indexed by a set I on which there is a well-ordering ≤. If I is an infinite set and there is a
choice function F on the collection {C : C is closed, C 6= ∅, C ⊂ Xi for some i ∈ I}, then the
product space

∏

i∈I Xi is compact in the product topology.

2.4. A theorem of Fulkerson and Gross. Fulkerson–Gross [FG65] proved the following
lemma.

Lemma 2.8. (c.f. [[Kom15], Lemma 1], [FG65]). A finite graph (V,X) is chordal if and only
if there is an ordering < of V such that {w < v : {w, v} ∈ X} is a clique for each v ∈ V .

3. Graph theoretical observations

3.1. Maximal independent set.

Observation 3.1. (ZF) For every n ∈ ω\{0, 1}, Pn is equivalent to ACn.

Proof. (⇐) Fix n ∈ ω\{0, 1}, and let us assume ACn. Let G = (VG, EG) be a graph from the
class PKn

(c.f. §1.1, for definition of PKn
). Let {Gi}i∈I = {(VGi

, EGi
)}i∈I be the components

of G. By ACn select gi ∈ VGi
for each i ∈ I. We can see that J = {gi : i ∈ I} is a maximal

independent set of G. For any gi, gj ∈ J such that gi 6= gj , we have {gi, gj} 6∈ EG. Consequently,
J is an independent set. For the sake of contradiction, suppose J is not a maximal independent
set. Then there is an independent set L which must contain two vertices x and y from VGi

for
some i ∈ I. Since {x, y} ∈ EG, we obtain a contradiction.
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(⇒) Fix n ∈ ω\{0, 1}, and let us assume Pn. Consider a system of n-element sets A = {Ai}i∈I .
We construct a graph G = (VG, EG).

Constructing G: Let VG consists of all the pairs (Y, y) such that Y ∈ A and y ∈ Y , and the
edge set is defined as follows {(Y1, y1), (Y2, y2)} ∈ EG if and only if Y1 = Y2 and y1 6= y2.

Clearly, the components of G are Kn. By Pn, G has a maximal independent set M . Since M is
an independent set, for each Y ∈ A there is at most one y ∈ Y such that (Y, y) ∈ M . Since M
is a maximal independent set, there is at least one y ∈ Y such that (Y, y) ∈ M . Consequently,
M determines a choice function for A. �

Observation 3.2. (ZF) ACωfin is equivalent to Plf,c.

Proof. (⇒) We assume ACωfin. Let G = (VG, EG) be some non-empty locally finite, connected

graph. Consider some r ∈ VG. Let V0 = {r}. For each integer n ≥ 1, define Vn = {v ∈
VG : dG(r, v) = n} where ‘dG(r, v) = n’ means there are n edges in the shortest path joining
r and v. Each Vn is finite by locally finiteness of G, and VG =

⋃

n∈ω Vn by connectedness of
G. By UT (ℵ0, f in,ℵ0) (which is equivalent to ACωfin(c.f. Definition 2.4)), VG is countable.
Consequently, VG is well-ordered. We prove that every graph based on a well-ordered set of
vertices has a maximal independent set in ZF. Let G = (VG, EG) be a graph on a well-ordered
set of vertices VG = {vα : α < λ}. Thus we can use transfinite recursion, without using any form
of choice, to construct a maximal independent set. Let M0 = ∅. Clearly, M0 is an independent
set. For any ordinal α, if Mα is a maximal independent set, then we are done. Otherwise,
there is some v ∈ VG\Mα, where Mα ∪ {v} is an independent set of vertices. In that case, let
Mα+1 = Mα ∪ {v}. For limit ordinals α, we use Mα =

⋃

i∈αMi. Clearly, M =
⋃

i∈λMi is a
maximal independent set.

(⇐) We assume Plf,c. Since ACωfin is equivalent to its partial version PACωfin (c.f. Definition

2.4 or [HR98]), it suffices to show PACωfin. Let A = {An : n ∈ ω} be a denumerable set of
non-empty finite sets. Without loss of generality, we assume that A is disjoint. Consider a
denumerable sequence T = {tn : n ∈ ω} disjoint from A. We construct a graph G = (VG, EG).

• • • ...

A1

•
t1

• • • ...

A2

•
t2

...

...

Figure 1. The graph G.

Constructing G: Let VG = (
⋃

n∈ω An) ∪ T . For each n ∈ ω, let {tn, tn+1} ∈ EG and {tn, x} ∈
EG for every element x ∈ An. Also for each n ∈ ω, and any two x, y ∈ An such that x 6= y, let
{x, y} ∈ EG (see Figure 1).

Clearly, the graph G is connected and locally finite. By assumption, G has a maximal indepen-
dent set of vertices, sayM . Since M is maximal, M has to be infinite. Moreover, for each i ∈ ω,
either ti ∈ M or some v ∈ Ai is in M . Since M is an independent set, for each i ∈ ω there is
at most one v ∈ Ai such that v ∈ M . Define M ′ = {v ∈ M : v ∈ Ai for some i ∈ ω}. If M ′ is
infinite, then M ′ determines a partial choice function for A.

Case (1). Suppose M\M ′ is finite. Then M ′ is infinite.

Case (2). Suppose M\M ′ is infinite. Since {tn, tn+1} ∈ EG for any n ∈ ω, if tn ∈M\M ′, then
tn+1 ∈M ′. Consequently, M ′ must be infinite as well. �
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Observation 3.3. (ZF) UT (ℵ0,ℵ0,ℵ0) implies Plc,c, and Plc,c implies ACℵ0

ℵ0
.

Proof. In order to prove the first implication, let G = (VG, EG) be some non-empty locally
countable connected graph. Consider some r ∈ VG. Let V0 = {r}. For each integer n ≥ 1,
define Vn = {v ∈ VG : dG(r, v) = n}. Since G is locally countable, each Vn is countable by
UT (ℵ0,ℵ0,ℵ0). Also VG =

⋃

n∈ω Vn since G is connected. By UT (ℵ0,ℵ0,ℵ0), VG is countable.
Rest follows from the fact that every graph based on a well-ordered set of vertices has a maximal
independent set in ZF (c.f. the proof of Observation 3.2). The second assertion follows from

the arguments of Observation 3.2, since ACℵ0

ℵ0
is equivalent to PACℵ0

ℵ0
in ZF (c.f. Definition

2.4 or [HR98]). �

Remark 3.4. Fix n ∈ ω\{0, 1}. We denote by Cn the cycle graph with n-vertices. We denote by
PCn

, the class of those graphs whose only components are Cn. We denote by P ′
n the statement

‘Every graph from the class PCn
, has a maximal independent set’. We remark that ACPn

implies
P ′
n in ZF where Pn is the Perrin number of n. Let G = (VG, EG) be a graph from the class

PCn
. Let {Gi}i∈I = {(VGi

, EGi
)}i∈I be the components of PCn

. Let Mi be the collection of
different maximal independent sets of Gi for each i ∈ I. Since the number of different maximal
independent sets in each component is Pn

1, by ACPn
we can choose a mi ∈ Mi for each i ∈ I.

Clearly,
⋃

i∈I mi is a maximal independent set of G.

3.2. Locally finite connected graphs.

Observation 3.5. (ZF)ACωfin implies the statement ‘If (V,X) is a connected locally finite

chordal graph, then there is an ordering < of V such that {w < v : {w, v} ∈ X} is a clique for
each v ∈ V ’.

Proof. We note that by arguments in the proof of Observation 3.2, it is enough to see that
the statement ‘If (V,X) is a chordal graph based on a well orderable set of vertices, then there is
an ordering < of V such that {w < v : {w, v} ∈ X} is a clique for each v ∈ V ’ is provable in ZF.
By Lemma 2.8, each finite subgraph (W,X |W ) has an ordering such that {w < v : {w, v} ∈
X ↾W} is a clique for every v ∈W . We can encode every total ordering of a set W by a choice
of one of <,=, > for each pair (x, y) ∈W ×W . Endow {<,=, >} with the discrete topology and
T = {<,=, >}V×V with the product topology. Since V is well-ordered, V ×V is well-ordered in
ZF. Consequently, {<,=, >} × {V × V } is well-ordered in ZF. By Lemma 2.7, T is compact.
We use the compactness of T to prove the existence of the desired ordering. �

Remark 3.6. We list some other graph-theoretical statements from different papers, restricted
to locally finite connected graphs, which are related to ACωfin.

(1) Komjáth–Galvin [KG91] proved that any graph based on a well-ordered set of vertices
has a chromatic number and an irreducible good coloring in ZF. Consequently, the
statements ‘any locally finite connected graph has a chromatic number’ and ‘any locally
finite connected graph has an irreducible good coloring’ are provable under ACωfin in ZF.

(2) Hajnal [[Haj85], Theorem 2] proved that if the chromatic number of a graph G1 is
finite (say k < ω), and the chromatic number of another graph G2 is infinite, then the
chromatic number of G1 × G2 is k. In [BG20] we observed that if G1 is based on a
well-ordered set of vertices, then the following statement holds in ZF.

‘χ(EG1
) = k < ω and χ(EG2

) ≥ ω implies χ(EG1×G2
) = k.’

Consequently, under ACωfin the above statement holds in ZF if G1 is a locally finite
connected graph.

(3) Delhommé and Morillon [DM06] proved that ACωfin is equivalent to the statement ‘Every
locally finite connected graph has a spanning tree’ in ZF.

1We use the fact that the number of different maximal independent sets in an n-vertex cycle graph is the n-th
Perrin number for 1 < n < ω.
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4. A variant of CAC

Tachtsis communicated to us the following lemma.

Lemma 4.1. The following holds.

(1) UT (ℵ0,ℵ0,ℵ0) implies the statement ‘If (P,≤) is a poset such that P is well-ordered, and
if all antichains in P are finite and all chains in P are countable, then P is countable’.

(2) ℵ1 is regular implies the statement ‘If (P,≤) is a poset such that P is well-ordered, and
if all antichains in P are finite and all chains in P are countable, then P is countable’.

Proof. We prove (1). Let (P,≤) be a poset such that P is well-ordered, all antichains in P
are finite, and all chains are countable. Fix a well-ordering � of P . By way of contradiction,
assume that P is uncountable. We construct an infinite antichain to obtain a contradiction.
Since P is well-ordered by �, we may construct (via transfinite induction) a maximal ≤-chain,
V0 say, without invoking any form of choice. Since V0 is countable, it follows that P − V0
is uncountable and every element of P − V0 is incomparable to some element of V0. Thus
P −V0 =

⋃

{Wp : p ∈ V0}, where Wp is the set of all elements of P −V0 which are incomparable
to p. Since P − V0 is uncountable and V0 is countable, it follows by UT (ℵ0,ℵ0,ℵ0) that Wp

is uncountable for some p in V0. Let p0 be the least (with respect to �) such element of V0.
Now, construct a maximal ≤-chain in (the uncountable set) Wp0 , V1 say, and let (similarly to
the above argument) p1 be the least (with respect to �) element of V1 such that the set Wp1

of all elements of Wp0 which are incomparable to p1 is uncountable. Continuing in this fashion
by induction (and noting that the process cannot stop at a finite stage), we obtain a countably
infinite antichain {pn : n ∈ ω}, contradicting the assumption that all antichains are finite.
Therefore, P is countable.

Similarly, we can prove (2). �

Modifying Lemma 4.1, we may observe that UT (ℵα,ℵα,ℵα) implies the statement ‘If (P,≤)
is a poset such that P is well-ordered, and if all antichains in P are finite and all chains in P
have size ℵα, then P has size ℵα’ for any regular ℵα in ZF.

Corollary 4.2. The statement ‘If (P,≤) is a poset such that P is well-ordered, and if all
antichains in P are finite and all chains in P are countable, then P is countable’ holds in any
Fraenkel-Mostowski model.

Proof. Follows from the fact that the statement ℵ1 is a regular cardinal holds in every Fraenkel-
Mostowski model (c.f. [[HKRST01], Corollary 1]). �

Theorem 4.3. (ZFA) For any regular ℵα, and n ∈ ω\{0, 1}, CAC
ℵα

1 does not imply AC−
n .

Proof. Halbeisen–Tachtsis [[HT20], Theorem 8] constructed a permutation model (we donote
by N 1

HT (n)) where for arbitrary n ≥ 2, AC−
n fails but CAC holds. We fix an arbitrary integer

n ≥ 2 and recall the model constructed in the proof of [[HT20], Theorem 8] as follows.

Defining the ground model M : We start with a ground model M of ZFA+AC where A is
a countably infinite set of atoms written as a disjoint union

⋃

{Ai : i ∈ ω} where for each i ∈ ω,
Ai = {ai1 , ai2 , ...ain}.

Defining the group G and the filter F of subgroups of G:

• Defining G: G is defined in [HT20] in a way so that if η ∈ G, then η only moves
finitely many atoms and for all i ∈ ω, η(Ai) = Ak for some k ∈ ω. We recall the details
from [HT20] as follows. For all i ∈ ω, let τi be the n-cycle ai1 7→ ai2 7→ ...ain 7→ ai1 .
For every permutation ψ of ω, which moves only finitely many natural numbers, let φψ
be the permutation of A defined by φψ(aij ) = aψ(i)j for all i ∈ ω and j = 1, 2, ..., n. Let
η ∈ G if and only if η = ρφψ where ψ is a permutation of ω which moves only finitely
many natural numbers and ρ is a permutation of A for which there is a finite F ⊆ ω
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such that for every k ∈ F , ρ ↾ Ak = τ jk for some j < n, and ρ fixes Am pointwise for
every m ∈ ω\F .

• Defining F : Let F be the filter of subgroups of G generated by {fixG(E) : E ∈ [A]<ω}.

Defining the permutation model: Consider the FM-modelN 1
HT (n) determined byM , G and

F .

Following point 1 in the proof of [[HT20], Theorem 8], both A and A = {Ai}i∈ω are amor-
phous in N 1

HT (n) and no infinite subfamily B of A has a Kinna–Wegner selection function.

Consequently, AC−
n fails. We follow the steps below to prove that for any regular ℵα, CAC

ℵα

1

holds in N 1
HT (n).

(1) Let (P,≤) be a poset in N 1
HT (n) such that all antichains in P are finite and all chains

in P have size ℵα. Let E ∈ [A]<ω be a support of (P,≤). We can write P as a disjoint
union of xG(E)-orbits, i.e., P =

⋃

{OrbE(p) : p ∈ P}, where OrbE(p) = {φ(p) : φ ∈
xG(E)} for all p ∈ P . The family {OrbE(p) : p ∈ P} is well-orderable in N 1

HT (n) since
xG(E) ⊆ SymG(OrbE(p)) for all p ∈ P .

(2) Since if η ∈ G, then η only moves finitely many atoms, OrbE(p) is an antichain in
P for each p ∈ P . Otherwise there is a p ∈ P , such that OrbE(p) is not an antichain in
(P,≤). Thus, for some φ, ψ ∈ fixG(E), φ(p) and ψ(p) are comparable. Without loss of
generality we may assume φ(p) < ψ(p). Since if η ∈ G, then η only moves finitely
many atoms, there exists some k < ω such that φk = 1A. Let π = ψ−1φ. Consequently,
π(p) < p and πk = 1A for some k ∈ ω. Thus, p = πk(p) < πk−1(p) < ... < π(p) < p. By
transitivity of <, p < p, which is a contradiction.

(3) Since OrbE(p) is an antichain, it is finite. Consequently, OrbE(p) is well-orderable.
Since UT (WO,WO,WO) holds in N 1

HT (n), P is well-orderable by (1) and (2). Also we
note that UT (WO,WO,WO) implies UT(ℵα,ℵα,ℵα) in any FM-model (c.f. page 176
of [HR98]). So, we are done by Lemma 4.1 and the point noted in the paragraph after
Lemma 4.1.

�

Theorem 4.4. (ZFA) For any regular ℵα, CAC
ℵα

1 does not imply ‘There are no amorphous
sets’.

Proof. We consider the basic Fraenkel model (labeled as Model N1 in [HR98]) where ‘there are
no amorphous sets’ is false, and UT (WO,WO,WO) holds (c.f. [HR98]). Let (P,≤) be a poset
in N1, and E be a nite support of (P,≤). By the arguments of the proof of Theorem 4.3,
O = {OrbE(p) : p ∈ P} is a well-ordered partition of P . Now for each p ∈ P , OrbE(p) is
an antichain (c.f. the proof of [[Jec73], Lemma 9.3]). Thus, by methods from the proof of

Theorem 4.3, CACℵα

1 holds in N1. �

Remark 4.5. Since UT (WO,WO,WO) holds in N 1
HT (n) and N1, AC

ω
fin holds in N 1

HT (n) and

N1. Consequently, by Observation 3.2, Plf,c holds in N
1
HT (n) and N1.

Theorem 4.6. (ZF) CACℵ0

1 implies PACℵ1

fin.

Proof. Let A = {An : n ∈ ℵ1} be a family of non-empty nite sets. Without loss of generality,
we assume that A is disjoint. Dene a binary relation ≤ on A =

⋃

A as follows: for all a, b ∈ A,
let a ≤ b if and only if a = b or a ∈ An and b ∈ Am and n < m. Clearly, ≤ is a partial order
on A. Also, A is uncountable. The only antichains of (A,≤) are the nite sets An where n ∈ ℵ1.
By CACℵ0

1 , A has an uncountable chain, say C. Let M = {m ∈ ℵ1 : C ∩ Am 6= ∅}. Since C is
a chain and A is the family of all antichains of (A,≤), we have M = {m ∈ ℵ1 : |C ∩ Am| = 1}.
Clearly, f = {(m, cm) : m ∈ M}, where for m ∈ M , cm is the unique element of C ∩ Am, is
a choice function of the uncountable subset B = {Am : m ∈ M} of A. Thus B is a ℵ1-sized
subfamily of A with a choice function. �

Theorem 4.7. (ZFA) DC does not imply CACℵ0

1 .
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Proof. We recall Jech’s model (labeled as N2(ℵα) in [HR98]).

• Defining the ground model M . We start with a ground modelM of ZFA+AC with
an ℵα-sized set A of atoms which is a disjoint union of ℵα pairs, so that A =

⋃

{Aγ :
γ < ℵα}, Aγ = {aγ , bγ}.

• Defining the group G of permutations and the filter F of subgroups of G.
– Defining G. Let G be the group of all permutations of A which fix Aγ for all
γ < ℵα.

– Defining F . Let F be the normal filter on G which is generated by {fixG(E) : E ⊂
A, |E| < ℵα}.

• Defining the permutation model. Consider the permutation model N2(ℵα) deter-
mined by M , G and F .

Jech proved that DC<ℵα
is true in N2(ℵα). Let us consider the model N2(ℵ1). Clearly, DC<ℵ1

is true in N2(ℵ1). By Theorem 4.6, it is enough to show that PACℵ1

fin fails in the model.

We prove that the family A = {Aγ : γ < ℵ1} of finite sets has no subfamily B of cardinality
ℵ1, such that B has a choice function. For the sake of contradiction, let B be a subfamily of
cardinality ℵ1 of A with a choice function f ∈ N2(ℵ1) and support E ∈ [A]<ℵ1 . Since E is
countable, there is a γ < ℵ1 such that Aγ ∈ B and Aγ ∩ E = ∅. Without loss of generality, let
f(Aγ) = aγ . Consider the permutation π which is the identity on Aη, for all η ∈ ℵ1\{γ}, and
let (π ↾ Aγ)(aγ) = bγ 6= aγ . Then π fixes E pointwise, hence π(f) = f . So, f(Aγ) = bγ which
contradicts the fact that f is a function. �

5. Cofinal well-founded subsets in ZFA

We modify the arguments from [[THS16],Theorem 3.26] and [[Tac18], Theorem 10(ii)] to
observe the following.

Lemma 5.1. Let A be a set of atoms. Let G be the group of permutations of A such that either
each η ∈ G moves only finitely many atoms or there is a n ∈ ω\{0, 1}, such that for all η ∈ G,
ηn = 1A. Let F be the normal filter of subgroups of G generated by {fixG(E) : E ∈ [A]<ω}.
Then in the Fraenkel-Mostowski model N determined by A, G, and F , CS and CWF hold.
Consequently, vDCP and LW hold.

Proof. We follow the steps below.

(1) Let (P,≤) be a poset in N and E ∈ [A]<ω be a support of (P,≤). We can write P as a
disjoint union of xG(E)-orbits, i.e., P =

⋃

{OrbE(p) : p ∈ P}, where OrbE(p) = {φ(p) :
φ ∈ xG(E)} for all p ∈ P . The family {OrbE(p) : p ∈ P} is well-orderable in N since
xG(E) ⊆ SymG(OrbE(p)) for all p ∈ P .

(2) We prove that OrbE(p) is an antichain in P for each p ∈ P . Otherwise there is a p ∈ P ,
such that OrbE(p) is not an antichain in (P,≤). Thus, for some φ, ψ ∈ fixG(E), φ(p)
and ψ(p) are comparable. Without loss of generality we may assume φ(p) < ψ(p). Let
π = ψ−1φ. Consequently, π(p) < p.

Case 1: Suppose there is a n ∈ ω\{0, 1}, such that for every η ∈ G, ηn = 1A. So
πn = 1A. Thus, p = πn(p) < πn−1(p) < ... < π(p) < p. By transitivity of <, p < p,
which is a contradiction.

Case 2: Suppose each η ∈ G, moves only finitely many atoms. Then for some k < ω,
πk = 1. Rest follows from the arguments in Case 1.

(3) We can follow [[THS16], Theorem 3.26] to see that CS holds in N .
(4) Although in every Fraenkel-Mostowski model, CS implies vDCP in ZFA (c.f. Lemma

2.5), we can recall the arguments from the 1st-paragraph of [[THS16], Page175] to give
a direct proof of vDCP in N .

(5) We can follow [[Tac18], Theorem 10 (ii)] to see that CWF holds in N . By Lemma
2.5, LW holds in N .
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�

5.1. A model of ZFA. Herrlich, Howard, and Tachtsis [[HHT12], Theorem 11, Case 1, Case
2] constructed two different classes of permutation models. Halbeisen–Tachtsis [[HT20], Theo-
rem 10(ii)] proved that LOC−

2 does not imply LOKW−
4 in ZFA. For the sake of convenience,

we denote by N 2
HT , the permutation model of [[HT20], Theorem 10(ii)]. The model N 2

HT is
very similar to the model from [[HHT12],Theorem 11, Case 2] except the fact that in N 2

HT

each permutation φ in the group G of permutations of the sets of atoms, can move only finitely
many atoms. Fix a natural number n such that n = 3 or n > 4. We construct a model Mn of
ZFA similar to the model constructed in [[HHT12],Theorem 11, Case 1], where each permuta-
tion φ in the group G of permutations of the sets of atoms, can move only finitely many atoms.
Consequently, by Lemma 5.1, CS, vDCP, CWF, and LW hold inMn. In particular we prove
that (LOC−

2 + CS + CWF) does not imply LOC−
n in ZFA if n ∈ ω such that n = 3 or n > 4.

Theorem 5.2. Let n be a natural number such that n = 3 or n > 4. Then there is a modelMn

of ZFA where the following hold.

(1) If X ∈ {LOC−
2 , CS, vDCP,CWF,LW}, then X holds.

(2) LOC−
n fails.

(3) If X ∈ {Pn, DT, LT }, then X fails.

Proof. Fix a natural number n such that n = 3 or n > 4.

Defining the ground model M : Let κ be any infinite well-ordered cardinal number. We start
with a ground model M of ZFA + AC where A is a κ-sized set of atoms written as a disjoint
union

⋃

{Aα : α < κ}, where Aα = {aα,1, aα,2, ..., aα,n} such that |Aα| = n for all α < κ.

Defining the group G and the filter F of subgroups of G:

• Defining G: Let G be the weak direct product of Gα’s where Gα is the alternating group
on Aα for each α < κ. Hence, a permutation η of A is an element of G if and only if for
every α < κ, η ↾ Aα ∈ Gα, and η ↾ Aα = 1Aα

for all but nitely many ordinals α < κ.
Consequently, every element η ∈ G moves only nitely many atoms.

• Defining F : Let F be the normal filter of subgroups of G generated by {fixG(E) : E ∈
[A]<ω}.

Defining the permutation model: Consider the permutation modelMn determined by M ,
G and F .

(1). If X ∈ {LOC−
2 , CS, vDCP,CWF,LW}, then X holds in Mn: Since every permutation

φ ∈ G moves only finitely many atoms, CS, vDCP, CWF, and LW holds in Mn by Lemma
5.1. Applying the group-theoretic facts from [[HHT12], Theorem 11, Case 1] and following
the arguments of the proof of [[HT20], Theorem 10(ii)] we may observe that LOC−

2 holds in
Mn.

(2). LOC−
n fails in Mn: We prove that in Mn, the well-ordered family A = {Aα : α < κ}

of n element sets does not have a partial choice function. For the sake of contradiction, let B
be an innite subfamily of A with a choice function f ∈ Mn and support E ∈ [A]<ω. Since E
is finite, there is an i < κ such that Ai ∈ B and Ai ∩ E = ∅. Without loss of generality, let
f(Ai) = ai1 . Consider the permutation π which is the identity on Aj , for all j ∈ κ− i, and let
(π ↾ Ai)(ai1 ) = ai2 6= ai1 . Then π fixes E pointwise, hence π(f) = f . So, f(Ai) = ai2 which
contradicts the fact that f is a function. Thus LOC−

n fails inMn.

(3). If X ∈ {Pn, DT, LT}, then X fails in Mn: Since ACn fails in the model from the ar-

guments of the previous paragraph, Pn fails in the model by Observation 3.1. Since in Mn,
the linearly-ordered family A = {Aα : α < κ} of n element sets does not have a choice function,
DT fails in Mn by [[Tac19], Theorem 3.1(ii)]. Since in every Fraenkel–Mostowski model of
ZFA, LT implies ACWO (c.f.[[Tac19a], Theorem 4.6(i)]), LT fails inMn since the well-ordered
family A = {Aα : α < κ} does not have a choice function. �
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Corollary 5.3. (ZFA) (LOC−
2 + CS + CWF) does not imply CACℵ0

1 .

Proof. Consider the permutation modelMn constructed in Theorem 5.2 by letting the infinite
well-ordered cardinal number κ to be ℵ1. Rest follows from Theorem 4.6 and the arguments
of Theorem 5.2(2). �

Following the arguments in the proof of Theorem 5.2(3), we can also observe that DT and LT
fails in the model from [[HT20], Theorem 10(ii)].

5.2. The model N ∗
2 (p). We improve the choice strength of the result of [[CHHKR08], Theorem

4.8] if k is a prime, applying the methods of [HT13].

Theorem 5.4. Fix a prime p ∈ ω\{0, 1, 2}. Then in N ∗
2 (p), the following hold.

(1) CWF holds.
(2) MC(q) holds for all prime q 6= p.
(3) If p is not a divisor of n, then ACn and Pn hold.

Proof. (1). CWF holds: We note that N ∗
2 (p) was constructed via a group G such that G was

abelian and for all φ ∈ G, φp = 1A (c.f. [[CHHKR08], Theorem 4.8]). Also the normal filter
F of subgroups of G was generated by {fixG(E) : E ∈ [A]<ω}. Thus, CWF holds in N ∗

2 (p) by
Lemma 5.1.

(2). MC(q) holds for all prime q 6= p: We prove that in N ∗
2 (p), MC(q) holds for all prime

q 6= p. To see this we observe that N ∗
2 (p) satisfies the hypotheses of Lemma 2.6 with P = {p}.

• First, we note that G is Abelian (c.f. [[CHHKR08], Theorem 4.8]).
• We follow the arguments from the proof of [[HT13], Theorem 4.6] to see that for

all t ∈ N ∗
2 (p), OrbG(t) is finite. Fix a t ∈ N ∗

2 (p). By the Orbit-Stabilizer theorem,
|OrbG(t)| = [G/StabG(t)], where StabG(t) is the stabilizer subgroup of G with respect to
t, i.e., StabG(t) = {g ∈ G : g(t) = t}. Let Et = ∪li=0Ai be a support of t. Clearly, if
φ, ψ ∈ G which agree on Et, then φStabG(t) = ψStabG(t). By the definition of G, for all
φ ∈ G, φp = 1A. So [G/StabG(t)] ≤ pl+1. Thus OrbG(t) is finite.

• Since G is such that for all φ ∈ G, φp = 1A (c.f. [[CHHKR08], Theorem 4.8]), we can
see that part (3) of Lemma 2.6 is also satisfied. Fix ψ ∈ G. Let p1 be a prime divisor
of the order of ψ (i.e., p). Clearly, p1 = p ∈ P .

By Lemma 2.6, for every family {Xi : i ∈ I} of non-empty sets in N ∗
2 (p), there is a function

F with domain I such that for all i ∈ I, we have that F (i) ⊆ Xi and for all i ∈ I, every prime
divisor of |F (i)| is in P . Thus for every prime q 6= p, MC(q) is true.

(3). If p is not a divisor of n, then ACn and Pn hold: If p is not a divisor of n, then ACn
holds, by the arguments in the proof of [[HT13], Theorem 4.7(2)]. Consequently, if p is not a
divisor of n, then Pn holds by Observation 3.1. �

Remark 5.5. We observe that CWF holds in the Second Fraenkel’s model (labeled as Model
N2 in [HR98]). Moreover, if X ∈ {Plf,c,P2}, then X fails in N2.

• We note that N2 was constructed via a group G such that for all φ ∈ G, φ2 = 1A. By
Lemma 5.1, CWF holds in N2.

• Since AC2 fails in N2 (c.f. [HR98]), P2 fails in N2 by Observation 3.1.
• Since ACωfin fails in N2 (c.f. [HR98]), Plf,c fails in N2 by Observation 3.2.

Remark 5.6. Fix a prime p1 ∈ ω. Howard–Tachtsis [[HT13], Theorem 4.7] proved that
MC(q) holds in N22(p1) (c.f. the model from [[HT13], §4.4]) for every prime q 6= p1. Fix a
prime p ∈ ω\{0, 1, 2}.

• We note that N22(p) was constructed via a group G such that for all φ ∈ G, φp = 1A.
Consequently, by Lemma 5.1, CWF holds in N22(p).
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• In N22(p), ACn is true for all n ∈ ω\{0, 1} such that p is not a divisor of n (c.f. [[HT13],
Theorem 4.7(2)]). Consequently, by Observation 3.1, Pn holds in N22(p) if p is not
a divisor of n.

• Since ACωfin fails in N22(p) (c.f. the proof of [[HT13], Theorem 4.7(3)]), Plf,c fails in
N22(p) by Observation 3.2.

6. Summary

6.1. Synopsis of theorems, observations, and remarks.

• (ZF) (∀n ∈ ω\{0, 1})ACn ↔ Pn (c.f. [§3, Observation 3.1]).

• (ZF) UT (ℵ0,ℵ0,ℵ0) → Plc,c → ACℵ0

ℵ0
→ ACωfin ←→ Plf,c (c.f. [§3, Observation 3.2,

Observation 3.3]).
• (ZF) ACωfin implies the statement ‘If G = (VG, EG) is a connected locally finite chordal

graph, then there is an ordering < of VG such that {w < v : {w, v} ∈ EG} is a clique for
each v ∈ VG’ (c.f. [§3, Observation 3.5]).

• (ZFA) For every n ∈ ω\{0, 1}, for any regular ℵα, CAC
ℵα

1 6→ AC−
n (c.f. [§4, Theorem

4.3]).

• (ZFA) For any regular ℵα, CAC
ℵα

1 6→ ‘There are no amorphous sets’ (c.f. [§4, Theorem
4.4]).
• In N 1

HT (n) and N1, Plf,c holds (c.f. [§4, Remark 4.5]).

• (ZF) CACℵ0

1 → PACℵ1

fin (c.f. [§4, Theorem 4.6]).

• (ZFA) DC 6→ CACℵ0

1 (c.f. [§4, Theorem 4.7]).
• (ZFA) Let n ∈ ω such that n = 3 or n > 4. Then (LOC−

2 + CS + CWF) 6→ X , if
X ∈ {LOC−

n , DT, LT } (c.f. [§5, Theorem 5.2]).

• (ZFA) (LOC−
2 + CS + CWF) 6→ CACℵ0

1 (c.f. [§5, Corollary 5.3]).
• For any prime p ∈ ω\{0, 1, 2}, CWF holds in N ∗

2 (p), N2, and, N22(p).
• For any prime p ∈ ω\{0, 1, 2}, if p is not a divisor of n, then ACn and Pn hold in N ∗

2 (p).
(c.f. [§5, Theorem 5.4]).
• If X ∈ {Plf,c,P2}, then X fails in N2 (c.f. [§5, Remark 5.5]).
• For any prime p ∈ ω\{0, 1, 2}, Pn holds in N22(p) if p is not a divisor of n, and Plf,c
fails in N22(p) (c.f. [§5, Remark 5.6]).

6.2. Table of statements and models. The following table depicts the truth/falsity of state-
ments that we studied in different permutation models. The bold-letter entries ‘T (True) and
‘F’ (False) denote the new results in this note. The normal-letter F and T denote the known
results.

Table of statements depicting their truth/falsity in certain models

Models CACℵα

1 CWF Plf,c Pn
N ∗

2 (p) (p > 2)
(Theorem 5.4)

T F if p = 3 T if p 6 |n

N2

(Remark 5.5)
T F F if n = 2

N22(p) (p ∈ ω\{0, 1, 2})
(Remark 5.6)

T F T if p 6 |n

Mn (n = 3/n > 4)
(Theorem 5.2)

T F

N 1
HT (n) (n ≥ 2)

(Theorem 4.3)
T T T F

N1

(Theorem 4.4)
T T T F if n = 2
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In [BG20], we observed that CWF holds in N 1
HT (n). In N 1

HT (n), ACn fails. Consequently, Pn
fails in the model by Observation 3.1. Since ACωfin fails in N ∗

2 (3) (see [HR98]), Plf,c fails in

N ∗
2 (3) by Observation 3.3. In N1, AC2 fails (c.f. [HR98]). So P2 fails in N1.
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[KG91] P. Komjáth and F. Galvin, Graph colorings and the axiom of choice. Period. Math. Hungar. 22 (1991),

pp. 71-75, https://doi.org/10.1007/BF02309111.
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