MAXIMAL INDEPENDENT SETS, VARIANTS OF CHAIN/ANTICHAIN PRINCIPLE AND COFINAL SUBSETS WITHOUT AC

AMITAYU BANERJEE

Abstract

In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. - $\mathcal{P}_{l f, c}$ (Every locally finite connected graph has a maximal independent set). - $\mathcal{P}_{l c, c}$ (Every locally countable connected graph has a maximal independent set). - $C A C_{1}^{\aleph_{\alpha}}$ (If in a partially ordered set all antichains are finite and all chains have size \aleph_{α}, then the set has size \aleph_{α}) if \aleph_{α} is regular. - CWF (Every partially ordered set has a cofinal well-founded subset). - If $G=\left(V_{G}, E_{G}\right)$ is a connected locally finite chordal graph, then there is an ordering $<$ of V_{G} such that $\left\{w<v:\{w, v\} \in E_{G}\right\}$ is a clique for each $v \in V_{G}$.

1. INTRODUCTION

As usual, ZF denotes the Zermelo-Fraenkel set theory without the Axiom of Choice (AC), and ZFA is ZF with the axiom of extensionality weakened to allow the existence of atoms. In this note, we observe new relations of some combinatorial statements with weak choice principles.
1.1. Maximal independent sets. Friedman [[Fri11], Theorem 6.3.2, Theorem 2.4] proved that $A C$ is equivalent to the statement 'Every graph has a maximal independent set' (abbreviated here as \mathcal{P}) in ZF. Spanring Spa14 gave a different argument to prove the result. Consider the following weaker formulations of \mathcal{P}.

- Fix $n \in \omega \backslash\{0,1\}$. We denote by $P_{K_{n}}$, the class of those graphs whose only components are K_{n} (complete graph on n vertices). We denote by \mathcal{P}_{n} the statement 'Every graph from the class $P_{K_{n}}$ has a maximal independent set'.
- We denote by $\mathcal{P}_{l f, c}$ the statement 'Every locally finite connected graph has a maximal independent set'.
- We denote by $\mathcal{P}_{l c, c}$ the statement 'Every locally countable connected graph has a maximal independent set'.

In this note, we observe the following.
(1) $A C_{n}$ (Every family of n element sets has a choice function) is equivalent to \mathcal{P}_{n} for every $n \in \omega \backslash\{0,1\}$ in ZF (c.f. [$\S 3$, Observation 3.1]).
(2) $A C_{\text {fin }}^{\omega}$ (Every denumerable family of non-empty finite sets has a choice function) is equivalent to $\mathcal{P}_{l f, c}$ in ZF (c.f. [$\S \mathbf{3}$, Observation 3.2]).
(3) $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right)$ (The union of any countable family of countable sets is countable) implies $\mathcal{P}_{l c, c}$, and $\mathcal{P}_{l c, c}$ implies $A C_{\aleph_{0}}^{\aleph_{0}}$ (Every denumerable family of denumerable sets has a choice function) in ZF (c.f. [§3, Observation 3.3]).
1.2. A variant of Chain/Antichain principle. A famous application of the infinite Ramsey's theorem is the Chain/Antichain principle (abbreviated here as "CAC"), which states that 'Any infinite partially ordered set contains either an infinite chain or an infinite antichain'. Tachtsis

[^0]Tac16] investigated the possible placement of CAC in the hierarchy of weak choice principles. Komjáth-Totik KT06 proved the following generalized versions of CAC, applying Zorn's lemma.

- If in a partially ordered set all antichains are finite and all chains are countable, then the set is countable (c.f. [[KT06], Chapter 11, Problem 8]).
- If in a partially ordered set all chains are finite and all antichains are countable, then the set is countable (c.f. [[KT06], Chapter 11, Problem 7]).

For each regular \aleph_{α}, we denote by $C A C_{1}^{\aleph_{\alpha}}$ the statement 'if in a partially ordered set all antichains are finite and all chains have size \aleph_{α}, then the set has size \aleph_{α} ' and we denote by $C A C^{\aleph_{\alpha}}$ the statement 'if in a partially ordered set all chains are finite and all antichains have size \aleph_{α}, then the set has size \aleph_{α} '. In BG20, we observed that for any regular \aleph_{α} and any $2 \leq n<\omega$, $C A C^{\aleph_{\alpha}}$ does not imply $A C_{n}^{-}$(Every infinite family of n-element sets has a partial choice function) in ZFA. In BG20], we also observed that $C A C^{\aleph_{\alpha}}$ does not imply 'there are no amorphous sets' in ZFA. In this note, we observe the following.
(1) For any regular \aleph_{α}, and any $2 \leq n<\omega, C A C_{1}^{\aleph_{\alpha}}$ does not imply $A C_{n}^{-}$in ZFA (c.f. [§4, Theorem 4.3]). In particular, for any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}}$ holds in the model constructed in the proof of [[HT20], Theorem 8].
(2) For any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}}$ does not imply 'there are no amorphous sets' in ZFA (c.f. [§4, Theorem 4.4]). In particular, for any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}}$ holds in the basic Fraenkel model.
(3) $C A C_{1}^{\aleph_{0}}$ implies $P A C_{f i n}^{\aleph_{1}}$ in ZF if we denote by $P A C_{f \text { in }}^{\aleph_{1}}$ the statement 'Every infinite \aleph_{1} sized family \mathcal{A} of non-empty finite sets has a \aleph_{1}-sized subfamily \mathcal{B} with a choice function, (c.f. [§4, Theorem 4.6]).
(4) DC (Dependent choice) does not imply $C A C_{1}^{\aleph_{0}}$ in ZFA (c.f. [§4, Theorem 4.7]).
1.3. Cofinal well-founded subsets and improving the choice strength of a result. Tachtsis [Tac18, Theorem 10(ii)] proved that CWF (Every partially ordered set has a cofinal well-founded subset) holds in the basic Fraenkel model. In [[THS16], Theorem 3.26], Tachtsis, Howard, and Saveliev proved that CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets) holds in the basic Fraenkel model. Halbeisen-Tachtsis [HT20], Theorem 10(ii)] proved that LOC_{2}^{-}(Every infinite linearly orderable family of 2-element sets has a partial choice function) does not imply LOK_{4}^{-}(Every infinite linearly orderable family \mathcal{A} of 4 -element sets has a partial Kinna-Wegner selection function) in ZFA. We construct a model of ZFA and observe the following.
(1) $\left(\mathrm{LOC}_{2}^{-}+\mathrm{CS}+\mathrm{CWF}\right)$ does not imply LOC_{n}^{-}in ZFA if $n \in \omega$ such that $n=3$ or $n>4$ (c.f. [§5, Theorem 5.2]).
(2) $\left(\mathrm{LOC}_{2}^{-}+\mathrm{CS}+\mathrm{CWF}\right)$ does not imply $C A C_{1}^{\aleph_{0}}$ in ZFA (c.f. [§5, Corollary 5.3]).

Fix $n \in \omega \backslash\{0,1\}$, and $k \in \omega \backslash\{0,1,2\}$. The authors of CHHKR08 proved that $A C_{n}$ holds in $\mathcal{N}_{2}^{*}(k)$ (generalised version of Howard's model $\mathcal{N}_{2}^{*}(3)$ from HR98) if k has no divisors less than or equal to n (c.f. [[CHHKR08, Theorem 4.8]). We observe that it is possible to improve the choice strength of the result if k is a prime applying the methods of HT13. In particular, we observe the following.
(1) Fix any prime $p \in \omega \backslash\{0,1,2\}$, and any $n \in \omega \backslash\{0,1\}$. If p is not a divisor of n, then $A C_{n}$ holds in $\mathcal{N}_{2}^{*}(p)$. Moreover, CWF holds in $\mathcal{N}_{2}^{*}(p)$ (c.f. [$\S \mathbf{5}$, Theorem 5.4]).

We also remark that CWF holds in the Second Fraenkel's model (labeled as Model \mathcal{N}_{2} in HR98), and $\mathcal{N}_{22}(p)$ (the model from [[HT13], §4.4]) for any prime $p \in \omega \backslash\{0,1,2\}$ (c.f. [§5, Remark 5.5, Remark 5.6]).
1.4. Locally finite connected chordal graphs. Fulkerson-Gross FG65 proved that a finite graph $G=\left(V_{G}, E_{G}\right)$ is chordal if and only if there is an ordering $<$ of V_{G} such that $\{w<v$:
$\left.\{w, v\} \in E_{G}\right\}$ is a clique for each $v \in V_{G}$ (c.f. [Kom15], Lemma 1]). We apply the result to observe the following.
(1) $A C_{\text {fin }}^{\omega}$ implies the statement 'If $G=\left(V_{G}, E_{G}\right)$ is a connected locally finite chordal graph, then there is an ordering $<$ of V_{G} such that $\left\{w<v:\{w, v\} \in E_{G}\right\}$ is a clique for each $v \in V_{G}$ ' in ZF (c.f. [§3, Observation 3.5]).

We also list some other graph-theoretical statements restricted to locally finite connected graphs, which follows from $A C_{f i n}^{\omega}$ in ZF (c.f. [§3, Remark 3.6]).

2. Notations, DEfinitions, and known Results

Definition 2.1. (Graph-theoretical definitions, and notations). A graph $G=\left(V_{G}, E_{G}\right)$ is locally finite if every vertex of G has finite degree. We say that a graph is locally countable if every vertex has denumerable set of neighbours. Given a non-negative integer n, a path of length n in the graph $G=\left(V_{G}, E_{G}\right)$ is a one-to-one finite sequence $\left\{x_{i}\right\}_{0 \leq i \leq n}$ of vertices such that for each $i<n,\left\{x_{i}, x_{i+1}\right\} \in E_{G}$; such a path joins x_{0} to x_{n}. The graph G is connected if any two vertices are joined by a path of finite length. An independent set is a set of vertices in a graph, no two of which are connected by an edge. A set $W_{G} \subseteq V_{G}$ is called a maximal independent set in $G=\left(V_{G}, E_{G}\right)$ if and only if it is independent and there is no independent set W_{G}^{\prime} such that $W_{G} \subseteq W_{G}^{\prime}$ (c.f. Spa14). A clique is a set of vertices in a graph, such that any two of them are joined by an edge. We denote by K_{n}, the complete graph on n vertices.

Definition 2.2. (Chain, antichain, cofinal well-founded subsets). Let P be a set. A binary relation \leq on P is called a partial order on P if \leq is reflexive, antisymmetric, and transitive. The ordered pair (P, \leq) is called a partially ordered set or poset. A subset $D \subseteq P$ is called a chain if $(D, \leq \upharpoonright D)$ is linearly ordered. A subset $A \subseteq P$ is called an antichain if no two elements of A are comparable under \leq. A subset $C \subseteq P$ is called cofinal in P if for every $x \in P$ there is an element $c \in C$ such that $x \leq c$. An element $p \in P$ is minimal if for all $q \in P$, $(q \leq p)$ implies $(q=p)$. A subset $W \subseteq P$ is well-founded if every non-empty subset V of W has $\mathrm{a} \leq$-minimal element.

Definition 2.3. (Amorphous sets). An innite set X is called amorphous if X cannot be written as a disjoint union of two innite subsets.

Definition 2.4. (A list of forms).

(1) The Axiom of Choice, AC (Form 1 in HR98): Every family of nonempty sets has a choice function.
(2) $A C_{\text {fin }}^{\omega}($ Form 10 in HR98): Every denumerable family of non-empty finite sets has a choice function. We recall two equivalent formulations of $A C_{f i n}^{\omega}$.

- $U T\left(\aleph_{0}\right.$, fin,$\left.\aleph_{0}\right)$ (Form $10 \mathbf{A}$ in HR98) : The union of denumerably many pairwise disjoint finite sets is denumerable.
- $P A C_{\text {fin }}^{\omega}$ (Form $10 \mathbf{E}$ in HR98): Every denumerable family of finite sets has an infinite subfamily with a choice function.
(3) $A C_{\aleph_{0}}^{\aleph_{0}}$ (Form 32 A in HR98]): Every denumerable set of denumerable sets has a choice function. We recall the following equivalent formulation of $A C_{\aleph_{0}}^{\aleph_{0}}$.
- $P A C_{\aleph_{0}}^{\aleph_{0}}$ (Form 32 B in HR98): Every denumerable set of denumerable sets has an infinite subset with a choice function.
(4) $A C_{2}$ (Form 88 in [HR98]): Every family of pairs has a choice function.
(5) $A C_{n}$ for each $n \in \omega, n \geq 2$ (Form 61 in HR98): Every family of n element sets has a choice function. We denote by $A C_{n}^{-}$the statement 'Every infinite family of n element sets has a partial choice function' (Form 342(n) in HR98, denoted by C_{n}^{-}in Definition 1 (2) of [HT20).
(6) $L O C_{n}^{-}$for each $n \in \omega, n \geq 2$ (see HT20): Every infinite linearly orderable family of n-element sets has a partial choice function. We denote by $L O K W_{n}^{-}$the statement
'Every infinite linearly orderable family \mathcal{A} of n-element sets has a partial Kinna-Wegner selection function' (c.f. Definition 1 (2) of HT20).
(7) The Van Douwens Choice Principle, vDCP (see HT13): Every family $X=$ $\left\{\left(X_{i}, \leq_{i}\right): i \in I\right\}$ of linearly ordered sets isomorphic with (\mathbb{Z}, \leq) (\leq is the usual ordering on $\mathbb{Z})$ has a choice function.
(8) The Axiom of Multiple Choice, MC (Form 67 in HR98): Every family \mathcal{A} of non-empty sets has a multiple choice function, i.e., there is a function f with domain \mathcal{A} such that for every $A \in \mathcal{A}, f(A)$ is a non-empty finite subset of A.
(9) MC(n) where $n \geq 2$ is an integer (see HT13): For every family $\left\{X_{i}: i \in I\right\}$ of non-empty sets, there is a function F with domain I such that for all $i \in I$, we have that $F(i)$ is a finite subset of X_{i} and $\operatorname{gcd}(n,|F(i)|)=1$.
(10) LW (Form 90 in HR98): Every linearly-ordered set can be well-ordered.
(11) $A C^{W O}$ (Form 40 in HR98): Every well-ordered set of non-empty sets has a choice function.
(12) $D C_{\kappa}$ for an innite well-ordered cardinal κ (Form 87(κ) in HR98): Let κ be an innite well-ordered cardinal (i.e., κ is an aleph). Let S be a non-empty set and let R be a binary relation such that for every $\alpha<\kappa$ and every α-sequence $s=\left(s_{\epsilon}\right)_{\epsilon<\alpha}$ of elements of S there exists $y \in S$ such that $s R y$. Then there is a function $f: \kappa \rightarrow S$ such that for every $\alpha<\kappa,(f \upharpoonright \alpha) R f(\alpha)$. We note that $D C_{\aleph_{0}}$ is a reformulation of DC (the principle of Dependent Choices (Form 43 in HR98)). We denote by $D C_{<\lambda}$ the assertion $(\forall \eta<\lambda) D C_{\eta}$.
(13) UT(WO, WO, WO) (Form 231 in HR98): The union of a well-ordered collection of well-orderable sets is well-orderable.
(14) $(\forall \alpha) U T\left(\aleph_{\alpha}, \aleph_{\alpha}, \aleph_{\alpha}\right)$ (Form 23 in HR98): For every ordinal α, if A and every member of A has cardinality \aleph_{α}, then $|\cup A|=\aleph_{\alpha}$.
(15) \aleph_{1} is regular (Form 34 in HR98).
(16) Dilworths decomposition theorem for infinite posets of finite width, DT (c.f. Tac19]): If \mathbb{P} is an arbitrary poset, and k is a natural number such that \mathbb{P} has no antichains of size $k+1$ while at least one k-element subset of \mathbb{P} is an antichain, then \mathbb{P} can be partitioned into k chains.
(17) The Chain/Antichain Principle, CAC (Form 217 in HR98): Every infinite poset has an infinite chain or an infinite antichain.
(18) There are no amorphous sets (Form 64 in HR98]).
(19) CS (see THS16): Every poset without a maximal element has two disjoint cofinal subsets.
(20) CWF (see Tac18): Every poset has a cofinal well-founded subset.
(21) A weaker form of Loś's lemma, LT (Form 253 in HR98): If $\mathcal{A}=\left\langle A, \mathcal{R}^{\mathcal{A}}\right\rangle$ is a non-trivial relational \mathcal{L}-structure over some language \mathcal{L}, and \mathcal{U} be an ultrafilter on a non-empty set I, then the ultrapower $\mathcal{A}^{I} / \mathcal{U}$ and \mathcal{A} are elementarily equivalent.
2.1. Group-theoretical facts. A group \mathcal{G} acts on a set X if for each $g \in \mathcal{G}$ there is a mapping $x \rightarrow g x$ of X into itself, such that $1 x=x$ for every $x \in X$ and $h(g x)=(h g) x$ for every $g, h \in \mathcal{G}$. Alternatively, actions of a group \mathcal{G} on a set X are the same as group homomorphisms from \mathcal{G} to $\operatorname{Sym}(X)$. Suppose that a group \mathcal{G} acts on a set X. Let $\operatorname{Or}_{\mathcal{G}}(x)=\{g x: g \in \mathcal{G}\}$ be the orbit of $x \in X$ under the action of \mathcal{G}, and $\operatorname{Stab}_{\mathcal{G}}(x)=\{g \in \mathcal{G}: g x=x\}$ be the stabilizer of x under the action of \mathcal{G}. The Orbit-Stabilizer theorem states that the size of the orbit is the index of the stabilizer, that is $\left|O r b_{\mathcal{G}}(x)\right|=\left[\mathcal{G}: S t a b_{\mathcal{G}}(x)\right]$. We also recall that different orbits of the action are disjoint and form a partition of X i.e., $X=\bigcup\left\{\operatorname{Orb}_{\mathcal{G}}(x): x \in X\right\}$. An alternating group is the group of even permutations of a finite set. Let $\left\{G_{i}: i \in I\right\}$ be an indexed collection of groups. Define $\prod_{i \in I}^{w e a k} G_{i}=\left\{f: I \rightarrow \bigcup_{i \in I} G_{i} \mid(\forall i \in I) f(i) \in G_{i}, f(i)=1_{G_{i}}\right.$ except finitely many $\left.i\right\}$. The weak direct product of the groups $\left\{G_{i}: i \in I\right\}$ is the set $\prod_{i \in I}^{w e a k} G_{i}$ with the operation of component wise multiplicative defined for all $f, g \in \prod_{i \in I}^{w e a k} G_{i}$ by $(f g)(i)=f(i) g(i)$ for all $i \in I$.
2.2. Fraenkel-Mostowski permutation models. We start with a ground model M of $Z F A+$ $A C$ where A is a set of atoms. Each permutation of A extends uniquely to a permutation of M by ϵ-induction. A permutation model \mathcal{N} of ZFA is determined by a group \mathcal{G} of permutations of A and a normal filter \mathcal{F} of subgroups of \mathcal{G}. Let \mathcal{G} be a group of permutations of A and \mathcal{F} be a normal filter of subgroups of \mathcal{G}. For $x \in M$, we denote the symmetric group with respect to \mathcal{G} by $\operatorname{sym}_{\mathcal{G}}(x)=\{g \in \mathcal{G} \mid g(x)=x\}$. We say x is \mathcal{F}-symmetric if $\operatorname{sym}_{\mathcal{G}}(x) \in \mathcal{F}$ and x is hereditarily \mathcal{F}-symmetric if x is \mathcal{F}-symmetric and each element of transitive closure of x is symmetric. We define the permutation model \mathcal{N} with respect to \mathcal{G} and \mathcal{F}, to be the class of all hereditarily \mathcal{F}-symmetric sets and recall that \mathcal{N} is a model of $Z F A$ (c.f. [JJec73], Theorem 4.1]). If $\mathcal{I} \subseteq \mathcal{P}(A)$ is a normal ideal, then the filter base $\left\{\operatorname{fix}_{\mathcal{G}} E: E \in \mathcal{I}\right\}$ generates a normal filter over \mathcal{G}, where fix $\mathcal{G}_{\mathcal{G}} E$ denotes the subgroup $\{\phi \in \mathcal{G}: \forall y \in E(\phi(y)=y)\}$ of \mathcal{G}. Let \mathcal{I} be a normal ideal generating a normal filter $\mathcal{F}_{\mathcal{I}}$ over \mathcal{G}. Let \mathcal{N} be the permutation model determined by M, \mathcal{G}, and $\mathcal{F}_{\mathcal{I}}$. We say $E \in \mathcal{I}$ supports a set $\sigma \in \mathcal{N}$ if $\operatorname{fix}_{\mathcal{G}} E \subseteq \operatorname{sym}_{\mathcal{G}}(\sigma)$.

Lemma 2.5. The following hold.
(1) In every Fraenkel-Mostowski permutation model, CS implies vDCP (c.f. [THS16], Theorem 3.15(3)]).
(2) In ZFA, CWF implies LW (c.f. [Tac18], Lemma 5]).

Lemma 2.6. (c.f. [HT13], Lemma 4.3]). Assume P is a set of prime numbers, \mathcal{M} is a Fraenkel-Mostowski permutation model determined by the set A of atoms, the group \mathcal{G} of permutations of A, and the filter \mathcal{F} of subgroups of \mathcal{G}. Assume further that
(1) \mathcal{G} is Abelian.
(2) For every $x \in \mathcal{M}, \operatorname{Orb}_{\mathcal{G}}(x)$ is finite.
(3) There is a group $\mathcal{G}_{0} \in \mathcal{F}$ such that for all $\phi \in \mathcal{G}_{0}$, if p is a prime divisor of the order of ϕ then $p \in P$.

Then for every set $Z \in \mathcal{M}$ of non-empty sets there is a function f with domain Z such that for all $y \in Z, \emptyset \nsubseteq f(y) \subseteq y$ and every prime divisor of $|f(y)|$ is in P.
2.3. Loeb's theorem. A topological space (X, τ) is called compact if for every $U \subseteq \tau$ such that $\bigcup U=X$ there is a finite subset $V \subseteq U$ such that $\bigcup V=X$.
Lemma 2.7. (c.f. Loeb65, Theorem 1]). Let $\left\{X_{i}\right\}_{i \in I}$ be a family of compact spaces which is indexed by a set I on which there is a well-ordering \leq. If I is an infinite set and there is a choice function F on the collection $\left\{C: C\right.$ is closed, $C \neq \emptyset, C \subset X_{i}$ for some $\left.i \in I\right\}$, then the product space $\prod_{i \in I} X_{i}$ is compact in the product topology.
2.4. A theorem of Fulkerson and Gross. Fulkerson-Gross FG65 proved the following lemma.

Lemma 2.8. (c.f. Kom15, Lemma 1], FG65). A finite graph (V, X) is chordal if and only if there is an ordering $<$ of V such that $\{w<v:\{w, v\} \in X\}$ is a clique for each $v \in V$.

3. Graph theoretical observations

3.1. Maximal independent set.

Observation 3.1. (ZF) For every $n \in \omega \backslash\{0,1\}, \mathcal{P}_{n}$ is equivalent to $A C_{n}$.
Proof. (\Leftarrow) Fix $n \in \omega \backslash\{0,1\}$, and let us assume $A C_{n}$. Let $G=\left(V_{G}, E_{G}\right)$ be a graph from the class $P_{K_{n}}$ (c.f. $\S \mathbf{1 . 1}$, for definition of $\left.P_{K_{n}}\right)$. Let $\left\{G_{i}\right\}_{i \in I}=\left\{\left(V_{G_{i}}, E_{G_{i}}\right)\right\}_{i \in I}$ be the components of G. By $A C_{n}$ select $g_{i} \in V_{G_{i}}$ for each $i \in I$. We can see that $J=\left\{g_{i}: i \in I\right\}$ is a maximal independent set of G. For any $g_{i}, g_{j} \in J$ such that $g_{i} \neq g_{j}$, we have $\left\{g_{i}, g_{j}\right\} \notin E_{G}$. Consequently, J is an independent set. For the sake of contradiction, suppose J is not a maximal independent set. Then there is an independent set L which must contain two vertices x and y from $V_{G_{i}}$ for some $i \in I$. Since $\{x, y\} \in E_{G}$, we obtain a contradiction.
(\Rightarrow) Fix $n \in \omega \backslash\{0,1\}$, and let us assume \mathcal{P}_{n}. Consider a system of n-element sets $\mathcal{A}=\left\{A_{i}\right\}_{i \in I}$. We construct a graph $G=\left(V_{G}, E_{G}\right)$.

Constructing G : Let V_{G} consists of all the pairs (Y, y) such that $Y \in \mathcal{A}$ and $y \in Y$, and the edge set is defined as follows $\left\{\left(Y_{1}, y_{1}\right),\left(Y_{2}, y_{2}\right)\right\} \in E_{G}$ if and only if $Y_{1}=Y_{2}$ and $y_{1} \neq y_{2}$.
Clearly, the components of G are K_{n}. By \mathcal{P}_{n}, G has a maximal independent set M. Since M is an independent set, for each $Y \in \mathcal{A}$ there is at most one $y \in Y$ such that $(Y, y) \in M$. Since M is a maximal independent set, there is at least one $y \in Y \operatorname{such}$ that $(Y, y) \in M$. Consequently, M determines a choice function for \mathcal{A}.

Observation 3.2. (ZF) $A C_{\text {fin }}^{\omega}$ is equivalent to $\mathcal{P}_{l f, c}$.
Proof. (\Rightarrow) We assume $A C_{f i n}^{\omega}$. Let $G=\left(V_{G}, E_{G}\right)$ be some non-empty locally finite, connected graph. Consider some $r \in V_{G}$. Let $V_{0}=\{r\}$. For each integer $n \geq 1$, define $V_{n}=\{v \in$ $\left.V_{G}: d_{G}(r, v)=n\right\}$ where ' $d_{G}(r, v)=n$ ' means there are n edges in the shortest path joining r and v. Each V_{n} is finite by locally finiteness of G, and $V_{G}=\bigcup_{n \in \omega} V_{n}$ by connectedness of G. By $U T\left(\aleph_{0}, f i n, \aleph_{0}\right)$ (which is equivalent to $A C_{f i n}^{\omega}\left(\right.$ c.f. Definition 2.4)), V_{G} is countable. Consequently, V_{G} is well-ordered. We prove that every graph based on a well-ordered set of vertices has a maximal independent set in ZF. Let $G=\left(V_{G}, E_{G}\right)$ be a graph on a well-ordered set of vertices $V_{G}=\left\{v_{\alpha}: \alpha<\lambda\right\}$. Thus we can use transfinite recursion, without using any form of choice, to construct a maximal independent set. Let $M_{0}=\emptyset$. Clearly, M_{0} is an independent set. For any ordinal α, if M_{α} is a maximal independent set, then we are done. Otherwise, there is some $v \in V_{G} \backslash M_{\alpha}$, where $M_{\alpha} \cup\{v\}$ is an independent set of vertices. In that case, let $M_{\alpha+1}=M_{\alpha} \cup\{v\}$. For limit ordinals α, we use $M_{\alpha}=\bigcup_{i \in \alpha} M_{i}$. Clearly, $M=\bigcup_{i \in \lambda} M_{i}$ is a maximal independent set.
(\Leftarrow) We assume $\mathcal{P}_{l f, c}$. Since $A C_{f i n}^{\omega}$ is equivalent to its partial version $P A C_{f i n}^{\omega}$ (c.f. Definition 2.4 or HR98), it suffices to show $P A C_{f i n}^{\omega}$. Let $\mathcal{A}=\left\{A_{n}: n \in \omega\right\}$ be a denumerable set of non-empty finite sets. Without loss of generality, we assume that \mathcal{A} is disjoint. Consider a denumerable sequence $T=\left\{t_{n}: n \in \omega\right\}$ disjoint from \mathcal{A}. We construct a graph $G=\left(V_{G}, E_{G}\right)$.

Figure 1. The graph G.

Constructing G : Let $V_{G}=\left(\bigcup_{n \in \omega} A_{n}\right) \cup T$. For each $n \in \omega$, let $\left\{t_{n}, t_{n+1}\right\} \in E_{G}$ and $\left\{t_{n}, x\right\} \in$ $\overline{E_{G}}$ for every element $x \in A_{n}$. Also for each $n \in \omega$, and any two $x, y \in A_{n}$ such that $x \neq y$, let $\{x, y\} \in E_{G}$ (see Figure 1).
Clearly, the graph G is connected and locally finite. By assumption, G has a maximal independent set of vertices, say M. Since M is maximal, M has to be infinite. Moreover, for each $i \in \omega$, either $t_{i} \in M$ or some $v \in A_{i}$ is in M. Since M is an independent set, for each $i \in \omega$ there is at most one $v \in A_{i}$ such that $v \in M$. Define $M^{\prime}=\left\{v \in M: v \in A_{i}\right.$ for some $\left.i \in \omega\right\}$. If M^{\prime} is infinite, then M^{\prime} determines a partial choice function for \mathcal{A}.
Case (1). Suppose $M \backslash M^{\prime}$ is finite. Then M^{\prime} is infinite.
Case (2). Suppose $M \backslash M^{\prime}$ is infinite. Since $\left\{t_{n}, t_{n+1}\right\} \in E_{G}$ for any $n \in \omega$, if $t_{n} \in M \backslash M^{\prime}$, then $t_{n+1} \in M^{\prime}$. Consequently, M^{\prime} must be infinite as well.

Observation 3.3. (ZF) $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right)$ implies $\mathcal{P}_{l c, c}$, and $\mathcal{P}_{l c, c}$ implies $A C_{\aleph_{0}}^{\aleph_{0}}$.
Proof. In order to prove the first implication, let $G=\left(V_{G}, E_{G}\right)$ be some non-empty locally countable connected graph. Consider some $r \in V_{G}$. Let $V_{0}=\{r\}$. For each integer $n \geq 1$, define $V_{n}=\left\{v \in V_{G}: d_{G}(r, v)=n\right\}$. Since G is locally countable, each V_{n} is countable by $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right)$. Also $V_{G}=\bigcup_{n \in \omega} V_{n}$ since G is connected. By $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right)$, V_{G} is countable. Rest follows from the fact that every graph based on a well-ordered set of vertices has a maximal independent set in ZF (c.f. the proof of Observation 3.2). The second assertion follows from the arguments of Observation 3.2, since $A C_{\aleph_{0}}^{\aleph_{0}}$ is equivalent to $P A C_{\aleph_{0}}^{\aleph_{0}}$ in ZF (c.f. Definition 2.4 or HR98).

Remark 3.4. Fix $n \in \omega \backslash\{0,1\}$. We denote by C_{n} the cycle graph with n-vertices. We denote by $P_{C_{n}}$, the class of those graphs whose only components are C_{n}. We denote by \mathcal{P}_{n}^{\prime} the statement 'Every graph from the class $P_{C_{n}}$, has a maximal independent set'. We remark that $A C_{P_{n}}$ implies \mathcal{P}_{n}^{\prime} in ZF where P_{n} is the Perrin number of n. Let $G=\left(V_{G}, E_{G}\right)$ be a graph from the class $P_{C_{n}}$. Let $\left\{G_{i}\right\}_{i \in I}=\left\{\left(V_{G_{i}}, E_{G_{i}}\right)\right\}_{i \in I}$ be the components of $P_{C_{n}}$. Let M_{i} be the collection of different maximal independent sets of G_{i} for each $i \in I$. Since the number of different maximal independent sets in each component is $P_{n} \rrbracket$, by $A C_{P_{n}}$ we can choose a $m_{i} \in M_{i}$ for each $i \in I$. Clearly, $\bigcup_{i \in I} m_{i}$ is a maximal independent set of G.

3.2. Locally finite connected graphs.

Observation 3.5. (ZF) $A C_{\text {fin }}^{\omega}$ implies the statement 'If (V, X) is a connected locally finite chordal graph, then there is an ordering $<$ of V such that $\{w<v:\{w, v\} \in X\}$ is a clique for each $v \in V^{\prime}$.

Proof. We note that by arguments in the proof of Observation 3.2, it is enough to see that the statement ' $I f(V, X)$ is a chordal graph based on a well orderable set of vertices, then there is an ordering $<$ of V such that $\{w<v:\{w, v\} \in X\}$ is a clique for each $v \in V$ ' is provable in ZF. By Lemma 2.8, each finite subgraph $(W, X \mid W)$ has an ordering such that $\{w<v:\{w, v\} \in$ $X \upharpoonright W\}$ is a clique for every $v \in W$. We can encode every total ordering of a set W by a choice of one of $<,=,>$ for each pair $(x, y) \in W \times W$. Endow $\{<,=,>\}$ with the discrete topology and $T=\{<,=,>\}^{V \times V}$ with the product topology. Since V is well-ordered, $V \times V$ is well-ordered in ZF. Consequently, $\{<,=,>\} \times\{V \times V\}$ is well-ordered in ZF. By Lemma 2.7, T is compact. We use the compactness of T to prove the existence of the desired ordering.

Remark 3.6. We list some other graph-theoretical statements from different papers, restricted to locally finite connected graphs, which are related to $A C_{\text {fin }}^{\omega}$.
(1) Komjáth-Galvin KG91 proved that any graph based on a well-ordered set of vertices has a chromatic number and an irreducible good coloring in ZF. Consequently, the statements 'any locally finite connected graph has a chromatic number' and 'any locally finite connected graph has an irreducible good coloring' are provable under $A C_{\text {fin }}^{\omega}$ in ZF.
(2) Hajnal [Haj85], Theorem 2] proved that if the chromatic number of a graph G_{1} is finite (say $k<\omega$), and the chromatic number of another graph G_{2} is infinite, then the chromatic number of $G_{1} \times G_{2}$ is k. In BG20 we observed that if G_{1} is based on a well-ordered set of vertices, then the following statement holds in ZF.

$$
' \chi\left(E_{G_{1}}\right)=k<\omega \text { and } \chi\left(E_{G_{2}}\right) \geq \omega \text { implies } \chi\left(E_{G_{1} \times G_{2}}\right)=k .
$$

Consequently, under $A C_{\text {fin }}^{\omega}$ the above statement holds in ZF if G_{1} is a locally finite connected graph.
(3) Delhommé and Morillon DM06 proved that $A C_{\text {fin }}^{\omega}$ is equivalent to the statement 'Every locally finite connected graph has a spanning tree'in ZF.

[^1]
4. A variant of CAC

Tachtsis communicated to us the following lemma.
Lemma 4.1. The following holds.
(1) $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right)$ implies the statement 'If (P, \leq) is a poset such that P is well-ordered, and if all antichains in P are finite and all chains in P are countable, then P is countable'.
(2) \aleph_{1} is regular implies the statement ' $I f(P, \leq)$ is a poset such that P is well-ordered, and if all antichains in P are finite and all chains in P are countable, then P is countable'.

Proof. We prove (1). Let (P, \leq) be a poset such that P is well-ordered, all antichains in P are finite, and all chains are countable. Fix a well-ordering \preceq of P. By way of contradiction, assume that P is uncountable. We construct an infinite antichain to obtain a contradiction. Since P is well-ordered by \preceq, we may construct (via transfinite induction) a maximal \leq-chain, V_{0} say, without invoking any form of choice. Since V_{0} is countable, it follows that $P-V_{0}$ is uncountable and every element of $P-V_{0}$ is incomparable to some element of V_{0}. Thus $P-V_{0}=\bigcup\left\{W_{p}: p \in V_{0}\right\}$, where W_{p} is the set of all elements of $P-V_{0}$ which are incomparable to p. Since $P-V_{0}$ is uncountable and V_{0} is countable, it follows by $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right)$ that W_{p} is uncountable for some p in V_{0}. Let p_{0} be the least (with respect to \preceq) such element of V_{0}. Now, construct a maximal \leq-chain in (the uncountable set) $W_{p_{0}}, V_{1}$ say, and let (similarly to the above argument) p_{1} be the least (with respect to \preceq) element of V_{1} such that the set $W_{p_{1}}$ of all elements of $W_{p_{0}}$ which are incomparable to p_{1} is uncountable. Continuing in this fashion by induction (and noting that the process cannot stop at a finite stage), we obtain a countably infinite antichain $\left\{p_{n}: n \in \omega\right\}$, contradicting the assumption that all antichains are finite. Therefore, P is countable.
Similarly, we can prove (2).
Modifying Lemma 4.1, we may observe that $U T\left(\aleph_{\alpha}, \aleph_{\alpha}, \aleph_{\alpha}\right)$ implies the statement 'If (P, \leq) is a poset such that P is well-ordered, and if all antichains in P are finite and all chains in P have size \aleph_{α}, then P has size \aleph_{α} ' for any regular \aleph_{α} in ZF.
Corollary 4.2. The statement 'If (P, \leq) is a poset such that P is well-ordered, and if all antichains in P are finite and all chains in P are countable, then P is countable' holds in any Fraenkel-Mostowski model.

Proof. Follows from the fact that the statement \aleph_{1} is a regular cardinal holds in every FraenkelMostowski model (c.f. [[HKRST01], Corollary 1]).
Theorem 4.3. (ZFA) For any regular \aleph_{α}, and $n \in \omega \backslash\{0,1\}, C A C_{1}^{\aleph_{\alpha}}$ does not imply $A C_{n}^{-}$.
Proof. Halbeisen-Tachtsis [[HT20], Theorem 8] constructed a permutation model (we donote by $\mathcal{N}_{H T}^{1}(n)$) where for arbitrary $n \geq 2, A C_{n}^{-}$fails but CAC holds. We fix an arbitrary integer $n \geq 2$ and recall the model constructed in the proof of [[HT20], Theorem 8] as follows.
Defining the ground model M : We start with a ground model M of $Z F A+A C$ where A is a countably infinite set of atoms written as a disjoint union $\bigcup\left\{A_{i}: i \in \omega\right\}$ where for each $i \in \omega$, $A_{i}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{n}}\right\}$.

$\underline{\text { Defining the group } \mathcal{G} \text { and the filter } \mathcal{F} \text { of subgroups of } \mathcal{G} \text { : }}$

- Defining $\mathcal{G}: \mathcal{G}$ is defined in HT20 in a way so that if $\eta \in \mathcal{G}$, then η only moves
 from HT20] as follows. For all $i \in \omega$, let τ_{i} be the n-cycle $a_{i_{1}} \mapsto a_{i_{2}} \mapsto \ldots a_{i_{n}} \mapsto a_{i_{1}}$. For every permutation ψ of ω, which moves only finitely many natural numbers, let ϕ_{ψ} be the permutation of A defined by $\phi_{\psi}\left(a_{i_{j}}\right)=a_{\psi(i)_{j}}$ for all $i \in \omega$ and $j=1,2, \ldots, n$. Let $\eta \in \mathcal{G}$ if and only if $\eta=\rho \phi_{\psi}$ where ψ is a permutation of ω which moves only finitely many natural numbers and ρ is a permutation of A for which there is a finite $F \subseteq \omega$
such that for every $k \in F, \rho \upharpoonright A_{k}=\tau_{k}^{j}$ for some $j<n$, and ρ fixes A_{m} pointwise for every $m \in \omega \backslash F$.
- Defining \mathcal{F} : Let \mathcal{F} be the filter of subgroups of \mathcal{G} generated by $\left\{\operatorname{fix}_{\mathcal{G}}(E): E \in[A]^{<\omega}\right\}$.

Defining the permutation model: Consider the FM-model $\mathcal{N}_{H T}^{1}(n)$ determined by M, \mathcal{G} and \bar{F}.

Following point 1 in the proof of [[HT20], Theorem 8], both A and $\mathcal{A}=\left\{A_{i}\right\}_{i \in \omega}$ are amorphous in $\mathcal{N}_{H T}^{1}(n)$ and no infinite subfamily \mathcal{B} of \mathcal{A} has a Kinna-Wegner selection function. Consequently, $A C_{n}^{-}$fails. We follow the steps below to prove that for any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}}$ holds in $\mathcal{N}_{H T}^{1}(n)$.
(1) Let (P, \leq) be a poset in $\mathcal{N}_{H T}^{1}(n)$ such that all antichains in P are finite and all chains in P have size \aleph_{α}. Let $E \in[A]^{<\omega}$ be a support of (P, \leq). We can write P as a disjoint union of $\mathrm{x}_{\mathcal{G}}(E)$-orbits, i.e., $P=\bigcup\left\{\operatorname{Orb}_{E}(p): p \in P\right\}$, where $\operatorname{Orb}_{E}(p)=\{\phi(p): \phi \in$ $\left.\mathrm{x}_{\mathcal{G}}(E)\right\}$ for all $p \in P$. The family $\left\{\operatorname{Orb}_{E}(p): p \in P\right\}$ is well-orderable in $\mathcal{N}_{H T}^{1}(n)$ since $\mathrm{x}_{\mathcal{G}}(E) \subseteq \operatorname{Sym}_{\mathcal{G}}\left(\operatorname{Orb}_{E}(p)\right)$ for all $p \in P$.
(2) Since if $\eta \in \mathcal{G}$, then η only moves finitely many atoms, $\operatorname{Orb}_{E}(p)$ is an antichain in P for each $p \in P$. Otherwise there is a $p \in P$, such that $\operatorname{Orb}_{E}(p)$ is not an antichain in (P, \leq). Thus, for some $\phi, \psi \in \operatorname{fix}_{\mathcal{G}}(E), \phi(p)$ and $\psi(p)$ are comparable. Without loss of generality we may assume $\phi(p)<\psi(p)$. Since if $\eta \in \mathcal{G}$, then η only moves finitely many atoms, there exists some $k<\omega$ such that $\phi^{k}=1_{A}$. Let $\pi=\psi^{-1} \phi$. Consequently, $\pi(p)<p$ and $\pi^{k}=1_{A}$ for some $k \in \omega$. Thus, $p=\pi^{k}(p)<\pi^{k-1}(p)<\ldots<\pi(p)<p$. By transitivity of $<, p<p$, which is a contradiction.
(3) Since $\operatorname{Orb}_{E}(p)$ is an antichain, it is finite. Consequently, $\operatorname{Orb}_{E}(p)$ is well-orderable. Since $U T(W O, W O, W O)$ holds in $\mathcal{N}_{H T}^{1}(n), P$ is well-orderable by (1) and (2). Also we note that $U T(W O, W O, W O)$ implies $\mathrm{UT}\left(\aleph_{\alpha}, \aleph_{\alpha}, \aleph_{\alpha}\right)$ in any FM-model (c.f. page 176 of HR98). So, we are done by Lemma 4.1 and the point noted in the paragraph after Lemma 4.1.

Theorem 4.4. (ZFA) For any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}}$ does not imply 'There are no amorphous sets'.

Proof. We consider the basic Fraenkel model (labeled as Model \mathcal{N}_{1} in HR98) where 'there are no amorphous sets' is false, and $U T(W O, W O, W O)$ holds (c.f. HR98]). Let (P, \leq) be a poset in \mathcal{N}_{1}, and E be a nite support of (P, \leq). By the arguments of the proof of Theorem 4.3, $\mathcal{O}=\left\{\operatorname{Orb}_{E}(p): p \in P\right\}$ is a well-ordered partition of P. Now for each $p \in P, \operatorname{Orb}_{E}(p)$ is an antichain (c.f. the proof of [[Jec73], Lemma 9.3]). Thus, by methods from the proof of Theorem 4.3, $C A C_{1}^{\aleph_{\alpha}}$ holds in \mathcal{N}_{1}.

Remark 4.5. Since $U T(W O, W O, W O)$ holds in $\mathcal{N}_{H T}^{1}(n)$ and $\mathcal{N}_{1}, A C_{f i n}^{\omega}$ holds in $\mathcal{N}_{H T}^{1}(n)$ and \mathcal{N}_{1}. Consequently, by Observation 3.2, $\mathcal{P}_{l f, c}$ holds in $\mathcal{N}_{H T}^{1}(n)$ and \mathcal{N}_{1}.
Theorem 4.6. (ZF) $C A C_{1}^{\aleph_{0}}$ implies $P A C_{f i n}^{\aleph_{1}}$.
Proof. Let $\mathcal{A}=\left\{A_{n}: n \in \aleph_{1}\right\}$ be a family of non-empty nite sets. Without loss of generality, we assume that \mathcal{A} is disjoint. Dene a binary relation \leq on $A=\bigcup \mathcal{A}$ as follows: for all $a, b \in A$, let $a \leq b$ if and only if $a=b$ or $a \in A_{n}$ and $b \in A_{m}$ and $n<m$. Clearly, \leq is a partial order on A. Also, A is uncountable. The only antichains of (A, \leq) are the nite sets A_{n} where $n \in \aleph_{1}$. By $C A C_{1}^{\aleph_{0}}, A$ has an uncountable chain, say C. Let $M=\left\{m \in \aleph_{1}: C \cap A_{m} \neq \emptyset\right\}$. Since C is a chain and \mathcal{A} is the family of all antichains of (A, \leq), we have $M=\left\{m \in \aleph_{1}:\left|C \cap A_{m}\right|=1\right\}$. Clearly, $f=\left\{\left(m, c_{m}\right): m \in M\right\}$, where for $m \in M, c_{m}$ is the unique element of $C \cap A_{m}$, is a choice function of the uncountable subset $\mathcal{B}=\left\{A_{m}: m \in M\right\}$ of \mathcal{A}. Thus \mathcal{B} is a \aleph_{1}-sized subfamily of \mathcal{A} with a choice function.
Theorem 4.7. (ZFA) DC does not imply $C A C_{1}^{\aleph_{0}}$.

Proof. We recall Jech's model (labeled as $\mathcal{N}_{2}\left(\aleph_{\alpha}\right)$ in HR98).

- Defining the ground model M. We start with a ground model M of $Z F A+A C$ with an \aleph_{α}-sized set A of atoms which is a disjoint union of \aleph_{α} pairs, so that $A=\bigcup\left\{A_{\gamma}\right.$: $\left.\gamma<\aleph_{\alpha}\right\}, A_{\gamma}=\left\{a_{\gamma}, b_{\gamma}\right\}$.
- Defining the group \mathcal{G} of permutations and the filter \mathcal{F} of subgroups of \mathcal{G}.
- Defining \mathcal{G}. Let \mathcal{G} be the group of all permutations of A which fix A_{γ} for all $\gamma<\aleph_{\alpha}$.
- Defining \mathcal{F}. Let \mathcal{F} be the normal filter on \mathcal{G} which is generated by $\left\{\operatorname{fix}_{\mathcal{G}}(E): E \subset\right.$ $\left.A,|E|<\aleph_{\alpha}\right\}$.
- Defining the permutation model. Consider the permutation model $\mathcal{N}_{2}\left(\aleph_{\alpha}\right)$ determined by M, \mathcal{G} and \mathcal{F}.

Jech proved that $D C_{<\aleph_{\alpha}}$ is true in $\mathcal{N}_{2}\left(\aleph_{\alpha}\right)$. Let us consider the model $\mathcal{N}_{2}\left(\aleph_{1}\right)$. Clearly, $D C_{<\aleph_{1}}$ is true in $\mathcal{N}_{2}\left(\aleph_{1}\right)$. By Theorem 4.6, it is enough to show that $P A C_{f i n}^{\aleph_{1}}$ fails in the model. We prove that the family $\mathcal{A}=\left\{A_{\gamma}: \gamma<\aleph_{1}\right\}$ of finite sets has no subfamily \mathcal{B} of cardinality \aleph_{1}, such that \mathcal{B} has a choice function. For the sake of contradiction, let \mathcal{B} be a subfamily of cardinality \aleph_{1} of \mathcal{A} with a choice function $f \in \mathcal{N}_{2}\left(\aleph_{1}\right)$ and support $E \in[A]^{<\aleph_{1}}$. Since E is countable, there is a $\gamma<\aleph_{1}$ such that $A_{\gamma} \in \mathcal{B}$ and $A_{\gamma} \cap E=\emptyset$. Without loss of generality, let $f\left(A_{\gamma}\right)=a_{\gamma}$. Consider the permutation π which is the identity on A_{η}, for all $\eta \in \aleph_{1} \backslash\{\gamma\}$, and let $\left(\pi \upharpoonright A_{\gamma}\right)\left(a_{\gamma}\right)=b_{\gamma} \neq a_{\gamma}$. Then π fixes E pointwise, hence $\pi(f)=f$. So, $f\left(A_{\gamma}\right)=b_{\gamma}$ which contradicts the fact that f is a function.

5. Cofinal well-founded subsets in ZFA

We modify the arguments from [[THS16], Theorem 3.26] and [[Tac18], Theorem 10(ii)] to observe the following.

Lemma 5.1. Let A be a set of atoms. Let \mathcal{G} be the group of permutations of A such that either each $\eta \in \mathcal{G}$ moves only finitely many atoms or there is a $n \in \omega \backslash\{0,1\}$, such that for all $\eta \in \mathcal{G}$, $\eta^{n}=1_{A}$. Let \mathcal{F} be the normal filter of subgroups of \mathcal{G} generated by $\left\{f x_{\mathcal{G}}(E): E \in[A]^{<\omega}\right\}$. Then in the Fraenkel-Mostowski model \mathcal{N} determined by A, \mathcal{G}, and $\mathcal{F}, C S$ and $C W F$ hold. Consequently, vDCP and LW hold.

Proof. We follow the steps below.
(1) Let (P, \leq) be a poset in \mathcal{N} and $E \in[A]^{<\omega}$ be a support of (P, \leq). We can write P as a disjoint union of $\mathrm{x}_{\mathcal{G}}(E)$-orbits, i.e., $P=\bigcup\left\{\operatorname{Orb}_{E}(p): p \in P\right\}$, where $\operatorname{Orb}_{E}(p)=\{\phi(p)$: $\left.\phi \in \mathrm{x}_{\mathcal{G}}(E)\right\}$ for all $p \in P$. The family $\left\{\operatorname{Orb}_{E}(p): p \in P\right\}$ is well-orderable in \mathcal{N} since $\mathrm{x}_{\mathcal{G}}(E) \subseteq \operatorname{Sym}_{\mathcal{G}}\left(\operatorname{Orb}_{E}(p)\right)$ for all $p \in P$.
(2) We prove that $\operatorname{Or} b_{E}(p)$ is an antichain in P for each $p \in P$. Otherwise there is a $p \in P$, such that $\operatorname{Orb}_{E}(p)$ is not an antichain in (P, \leq). Thus, for some $\phi, \psi \in \operatorname{fix}_{\mathcal{G}}(E), \phi(p)$ and $\psi(p)$ are comparable. Without loss of generality we may assume $\phi(p)<\psi(p)$. Let $\pi=\psi^{-1} \phi$. Consequently, $\pi(p)<p$.

Case 1: Suppose there is a $n \in \omega \backslash\{0,1\}$, such that for every $\eta \in \mathcal{G}, \eta^{n}=1_{A}$. So $\pi^{n}=1_{A}$. Thus, $p=\pi^{n}(p)<\pi^{n-1}(p)<\ldots<\pi(p)<p$. By transitivity of $<, p<p$, which is a contradiction.

Case 2: Suppose each $\eta \in \mathcal{G}$, moves only finitely many atoms. Then for some $k<\omega$, $\pi^{k}=1$. Rest follows from the arguments in Case 1.
(3) We can follow [THS16], Theorem 3.26] to see that CS holds in \mathcal{N}.
(4) Although in every Fraenkel-Mostowski model, CS implies vDCP in ZFA (c.f. Lemma 2.5), we can recall the arguments from the $1^{\text {st }}$-paragraph of [[THS16], Page175] to give a direct proof of vDCP in \mathcal{N}.
(5) We can follow [[Tac18], Theorem 10 (ii)] to see that CWF holds in \mathcal{N}. By Lemma $\mathbf{2 . 5}$, LW holds in \mathcal{N}.
5.1. A model of ZFA. Herrlich, Howard, and Tachtsis [HHT12], Theorem 11, Case 1, Case 2] constructed two different classes of permutation models. Halbeisen-Tachtsis [[HT20], Theorem $10(\mathrm{ii})]$ proved that LOC_{2}^{-}does not imply $L O K W_{4}^{-}$in ZFA. For the sake of convenience, we denote by $\mathcal{N}_{H T}^{2}$, the permutation model of [[HT20, Theorem $\left.\mathbf{1 0}(\mathrm{ii})\right]$. The model $\mathcal{N}_{H T}^{2}$ is very similar to the model from [[HHT12], Theorem 11, Case 2] except the fact that in $\mathcal{N}_{H T}^{2}$ each permutation ϕ in the group \mathcal{G} of permutations of the sets of atoms, can move only finitely many atoms. Fix a natural number n such that $n=3$ or $n>4$. We construct a model \mathcal{M}_{n} of ZFA similar to the model constructed in [[HHT12], Theorem 11, Case 1], where each permutation ϕ in the group \mathcal{G} of permutations of the sets of atoms, can move only finitely many atoms. Consequently, by Lemma 5.1, CS, vDCP, CWF, and LW hold in \mathcal{M}_{n}. In particular we prove that $\left(\mathrm{LOC}_{2}^{-}+\mathrm{CS}+\mathrm{CWF}\right)$ does not imply $L O C_{n}^{-}$in ZFA if $n \in \omega$ such that $n=3$ or $n>4$.

Theorem 5.2. Let n be a natural number such that $n=3$ or $n>4$. Then there is a model \mathcal{M}_{n} of ZFA where the following hold.
(1) If $X \in\left\{L O C_{2}^{-}, C S, v D C P, C W F, L W\right\}$, then X holds.
(2) $L O C_{n}^{-}$fails.
(3) If $X \in\left\{\mathcal{P}_{n}, D T, L T\right\}$, then X fails.

Proof. Fix a natural number n such that $n=3$ or $n>4$.
Defining the ground model M : Let κ be any infinite well-ordered cardinal number. We start with a ground model M of $Z F A+A C$ where A is a κ-sized set of atoms written as a disjoint union $\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$, where $A_{\alpha}=\left\{a_{\alpha, 1}, a_{\alpha, 2}, \ldots, a_{\alpha, n}\right\}$ such that $\left|A_{\alpha}\right|=n$ for all $\alpha<\kappa$.

$\underline{\text { Defining the group } \mathcal{G} \text { and the filter } \mathcal{F} \text { of subgroups of } \mathcal{G} \text { : }}$

- Defining \mathcal{G} : Let \mathcal{G} be the weak direct product of \mathcal{G}_{α} 's where \mathcal{G}_{α} is the alternating group on \mathcal{A}_{α} for each $\alpha<\kappa$. Hence, a permutation η of A is an element of \mathcal{G} if and only if for every $\alpha<\kappa, \eta \upharpoonright A_{\alpha} \in \mathcal{G}_{\alpha}$, and $\eta \upharpoonright A_{\alpha}=1_{A_{\alpha}}$ for all but nitely many ordinals $\alpha<\kappa$. Consequently, every element $\eta \in \mathcal{G}$ moves only nitely many atoms.
- Defining \mathcal{F} : Let \mathcal{F} be the normal filter of subgroups of \mathcal{G} generated by $\left\{\right.$ fix $_{\mathcal{G}}(E): E \in$ $\overline{\left.[A]^{<\omega}\right\}}$.
 $\overline{\mathcal{G}}$ and \mathcal{F}.
(1). If $X \in\left\{L O C_{2}^{-}, C S, v D C P, C W F, L W\right\}$, then X holds in \mathcal{M}_{n} : Since every permutation $\phi \in \mathcal{G}$ moves only finitely many atoms, CS, vDCP, CWF, and LW holds in \mathcal{M}_{n} by Lemma 5.1. Applying the group-theoretic facts from [HHT12], Theorem 11, Case 1] and following the arguments of the proof of [HT 20 , Theorem $\mathbf{1 0}(\mathrm{ii})]$ we may observe that LOC_{2}^{-}holds in \mathcal{M}_{n}.
(2). $L O C_{n}^{-}$fails in \mathcal{M}_{n} : We prove that in \mathcal{M}_{n}, the well-ordered family $\mathcal{A}=\left\{A_{\alpha}: \alpha<\kappa\right\}$ of n element sets does not have a partial choice function. For the sake of contradiction, let \mathcal{B} be an innite subfamily of \mathcal{A} with a choice function $f \in \mathcal{M}_{n}$ and support $E \in[A]^{<\omega}$. Since E is finite, there is an $i<\kappa$ such that $A_{i} \in \mathcal{B}$ and $A_{i} \cap E=\emptyset$. Without loss of generality, let $f\left(A_{i}\right)=a_{i_{1}}$. Consider the permutation π which is the identity on A_{j}, for all $j \in \kappa-i$, and let $\left(\pi \upharpoonright A_{i}\right)\left(a_{i_{1}}\right)=a_{i_{2}} \neq a_{i_{1}}$. Then π fixes E pointwise, hence $\pi(f)=f$. So, $f\left(A_{i}\right)=a_{i_{2}}$ which contradicts the fact that f is a function. Thus $L O C_{n}^{-}$fails in \mathcal{M}_{n}.
(3). If $X \in\left\{\mathcal{P}_{n}, \mathbf{D T}, \mathbf{L T}\right\}$, then X fails in \mathcal{M}_{n} : Since $A C_{n}$ fails in the model from the arguments of the previous paragraph, \mathcal{P}_{n} fails in the model by Observation 3.1. Since in \mathcal{M}_{n}, the linearly-ordered family $\mathcal{A}=\left\{A_{\alpha}: \alpha<\kappa\right\}$ of n element sets does not have a choice function, DT fails in \mathcal{M}_{n} by [Tac19], Theorem 3.1(ii)]. Since in every Fraenkel-Mostowski model of ZFA, LT implies $A C^{W O}$ (c.f.[Tac19a, Theorem 4.6(i)]), LT fails in \mathcal{M}_{n} since the well-ordered family $\mathcal{A}=\left\{A_{\alpha}: \alpha<\kappa\right\}$ does not have a choice function.

Corollary 5.3. (ZFA) $\left(L O C_{2}^{-}+C S+C W F\right)$ does not imply $C A C_{1}^{\aleph_{0}}$.
Proof. Consider the permutation model \mathcal{M}_{n} constructed in Theorem 5.2 by letting the infinite well-ordered cardinal number κ to be \aleph_{1}. Rest follows from Theorem 4.6 and the arguments of Theorem 5.2(2).

Following the arguments in the proof of Theorem 5.2(3), we can also observe that DT and LT fails in the model from [[HT20], Theorem 10(ii)].
5.2. The model $\mathcal{N}_{2}^{*}(p)$. We improve the choice strength of the result of [CHHKR08], Theorem 4.8] if k is a prime, applying the methods of HT13.

Theorem 5.4. Fix a prime $p \in \omega \backslash\{0,1,2\}$. Then in $\mathcal{N}_{2}^{*}(p)$, the following hold.
(1) CWF holds.
(2) $M C(q)$ holds for all prime $q \neq p$.
(3) If p is not a divisor of n, then $A C_{n}$ and \mathcal{P}_{n} hold.

Proof. (1). CWF holds: We note that $\mathcal{N}_{2}^{*}(p)$ was constructed via a group \mathcal{G} such that \mathcal{G} was abelian and for all $\phi \in \mathcal{G}, \phi^{p}=1_{A}$ (c.f. [[CHHKR08], Theorem 4.8]). Also the normal filter \mathcal{F} of subgroups of \mathcal{G} was generated by $\left\{\operatorname{fix}_{\mathcal{G}}(E): E \in[A]^{<\omega}\right\}$. Thus, CWF holds in $\mathcal{N}_{2}^{*}(p)$ by Lemma 5.1.
(2). $M C(q)$ holds for all prime $q \neq p$: We prove that in $\mathcal{N}_{2}^{*}(p), M C(q)$ holds for all prime $q \neq p$. To see this we observe that $\mathcal{N}_{2}^{*}(p)$ satisfies the hypotheses of Lemma 2.6 with $P=\{p\}$.

- First, we note that \mathcal{G} is Abelian (c.f. [[CHHKR08, Theorem 4.8]).
- We follow the arguments from the proof of [[HT13], Theorem 4.6] to see that for all $t \in \mathcal{N}_{2}^{*}(p), \operatorname{Or}_{\mathcal{G}}(t)$ is finite. Fix a $t \in \mathcal{N}_{2}^{*}(p)$. By the Orbit-Stabilizer theorem, $\left|O r b_{\mathcal{G}}(t)\right|=\left[\mathcal{G} / \operatorname{Sta} b_{\mathcal{G}}(t)\right]$, where $\operatorname{Sta}_{\mathcal{G}}(t)$ is the stabilizer subgroup of \mathcal{G} with respect to t, i.e., $\operatorname{Stab}_{\mathcal{G}}(t)=\{g \in \mathcal{G}: g(t)=t\}$. Let $E_{t}=\cup_{i=0}^{l} A_{i}$ be a support of t. Clearly, if $\phi, \psi \in \mathcal{G}$ which agree on E_{t}, then $\phi \operatorname{Stab}_{\mathcal{G}}(t)=\psi \operatorname{Stab}_{\mathcal{G}}(t)$. By the definition of \mathcal{G}, for all $\phi \in \mathcal{G}, \phi^{p}=1_{A}$. So $\left[\mathcal{G} / \operatorname{Sta}_{\mathcal{G}}(t)\right] \leq p^{l+1}$. Thus $\operatorname{Orb}_{\mathcal{G}}(t)$ is finite.
- Since \mathcal{G} is such that for all $\phi \in \mathcal{G}, \phi^{p}=1_{A}$ (c.f. [CHHKR08, Theorem 4.8]), we can see that part (3) of Lemma 2.6 is also satisfied. Fix $\psi \in \mathcal{G}$. Let p_{1} be a prime divisor of the order of ψ (i.e., p). Clearly, $p_{1}=p \in P$.

By Lemma 2.6, for every family $\left\{X_{i}: i \in I\right\}$ of non-empty sets in $\mathcal{N}_{2}^{*}(p)$, there is a function F with domain I such that for all $i \in I$, we have that $F(i) \subseteq X_{i}$ and for all $i \in I$, every prime divisor of $|F(i)|$ is in P. Thus for every prime $q \neq p, M C(q)$ is true.
(3). If p is not a divisor of n, then $A C_{n}$ and \mathcal{P}_{n} hold: If p is not a divisor of n, then $A C_{n}$ holds, by the arguments in the proof of [[HT13], Theorem $4.7(2)]$. Consequently, if p is not a divisor of n, then \mathcal{P}_{n} holds by Observation 3.1.

Remark 5.5. We observe that CWF holds in the Second Fraenkel's model (labeled as Model \mathcal{N}_{2} in HR98]. Moreover, if $X \in\left\{\mathcal{P}_{l f, c}, \mathcal{P}_{2}\right\}$, then X fails in \mathcal{N}_{2}.

- We note that \mathcal{N}_{2} was constructed via a group \mathcal{G} such that for all $\phi \in \mathcal{G}, \phi^{2}=1_{A}$. By Lemma 5.1, CWF holds in \mathcal{N}_{2}.
- Since $A C_{2}$ fails in \mathcal{N}_{2} (c.f. HR98), \mathcal{P}_{2} fails in \mathcal{N}_{2} by Observation 3.1.
- Since $A C_{f i n}^{\omega}$ fails in \mathcal{N}_{2} (c.f. HR98), $\mathcal{P}_{l f, c}$ fails in \mathcal{N}_{2} by Observation 3.2.

Remark 5.6. Fix a prime $p_{1} \in \omega$. Howard-Tachtsis [[HT13], Theorem 4.7] proved that $M C(q)$ holds in $\mathcal{N}_{22}\left(p_{1}\right)$ (c.f. the model from [[HT13], §4.4]) for every prime $q \neq p_{1}$. Fix a prime $p \in \omega \backslash\{0,1,2\}$.

- We note that $\mathcal{N}_{22}(p)$ was constructed via a group \mathcal{G} such that for all $\phi \in \mathcal{G}, \phi^{p}=1_{A}$. Consequently, by Lemma 5.1, CWF holds in $\mathcal{N}_{22}(p)$.
- In $\mathcal{N}_{22}(p), A C_{n}$ is true for all $n \in \omega \backslash\{0,1\}$ such that p is not a divisor of n (c.f. [[HT13], Theorem 4.7(2)]). Consequently, by Observation 3.1, \mathcal{P}_{n} holds in $\mathcal{N}_{22}(p)$ if p is not a divisor of n.
- Since $A C_{f i n}^{\omega}$ fails in $\mathcal{N}_{22}(p)$ (c.f. the proof of [HT13], Theorem 4.7(3)]), $\mathcal{P}_{l f, c}$ fails in $\mathcal{N}_{22}(p)$ by Observation 3.2.

6. Summary

6.1. Synopsis of theorems, observations, and remarks.

- (ZF) $(\forall n \in \omega \backslash\{0,1\}) A C_{n} \leftrightarrow \mathcal{P}_{n}$ (c.f. [§3, Observation 3.1]).
- (ZF) $U T\left(\aleph_{0}, \aleph_{0}, \aleph_{0}\right) \rightarrow \mathcal{P}_{l c, c} \rightarrow A C_{\aleph_{0}}^{\aleph_{0}} \rightarrow A C_{f i n}^{\omega} \longleftrightarrow \mathcal{P}_{l f, c}$ (c.f. [§3, Observation 3.2, Observation 3.3]).
- (ZF) $A C_{f i n}^{\omega}$ implies the statement 'If $G=\left(V_{G}, E_{G}\right)$ is a connected locally finite chordal graph, then there is an ordering $<$ of V_{G} such that $\left\{w<v:\{w, v\} \in E_{G}\right\}$ is a clique for each $v \in V_{G}$ ' (c.f. [§3, Observation 3.5]).
- (ZFA) For every $n \in \omega \backslash\{0,1\}$, for any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}} \nrightarrow A C_{n}^{-}$(c.f. [$\S 4$, Theorem 4.3]).
- (ZFA) For any regular $\aleph_{\alpha}, C A C_{1}^{\aleph_{\alpha}} \nrightarrow$ 'There are no amorphous sets' (c.f. [$\S 4$, Theorem 4.4]).
- In $\mathcal{N}_{H T}^{1}(n)$ and $\mathcal{N}_{1}, \mathcal{P}_{l f, c}$ holds (c.f. [§4, Remark 4.5]).
- (ZF) $C A C_{1}^{\aleph_{0}} \rightarrow P A C_{\text {fin }}^{\aleph_{1}}$ (c.f. [§4, Theorem 4.6]).
- (ZFA) DC $\nrightarrow C A C_{1}^{\aleph_{0}}$ (c.f. [§4, Theorem 4.7]).
- (ZFA) Let $n \in \omega$ such that $n=3$ or $n>4$. Then $\left(\mathrm{LOC}_{2}^{-}+\mathrm{CS}+\mathrm{CWF}\right) \nrightarrow X$, if $X \in\left\{L O C_{n}^{-}, D T, L T\right\}$ (c.f. [§5, Theorem 5.2]).
- (ZFA) $\left(\mathrm{LOC}_{2}^{-}+\mathrm{CS}+\mathrm{CWF}\right) \nrightarrow C A C_{1}^{\aleph_{0}}$ (c.f. [§5, Corollary 5.3]).
- For any prime $p \in \omega \backslash\{0,1,2\}$, CWF holds in $\mathcal{N}_{2}^{*}(p), \mathcal{N}_{2}$, and, $\mathcal{N}_{22}(p)$.
- For any prime $p \in \omega \backslash\{0,1,2\}$, if p is not a divisor of n, then $A C_{n}$ and \mathcal{P}_{n} hold in $\mathcal{N}_{2}^{*}(p)$. (c.f. [§5, Theorem 5.4]).
- If $X \in\left\{\mathcal{P}_{l f, c}, \mathcal{P}_{2}\right\}$, then X fails in \mathcal{N}_{2} (c.f. [$\S 5$, Remark 5.5]).
- For any prime $p \in \omega \backslash\{0,1,2\}, \mathcal{P}_{n}$ holds in $\mathcal{N}_{22}(p)$ if p is not a divisor of n, and $\mathcal{P}_{l f, c}$ fails in $\mathcal{N}_{22}(p)$ (c.f. [$\S 5$, Remark 5.6]).
6.2. Table of statements and models. The following table depicts the truth/falsity of statements that we studied in different permutation models. The bold-letter entries ' \mathbf{T} (True) and 'F' (False) denote the new results in this note. The normal-letter F and T denote the known results.

Table of statements depicting their truth/falsity in certain models				
Models	CAC			
$\mathcal{N}_{2}^{*}(p)(p>2)$ $($ Theorem 5.4)	CWF	$\mathcal{P}_{l f, c}$	\mathcal{P}_{n}	
\mathcal{N}_{2} $($ Remark 5.5$)$		\mathbf{T}	\mathbf{F} if $p=3$	\mathbf{T} if p Xn
$\mathcal{N}_{22}(p)(p \in \omega \backslash\{0,1,2\})$ $($ Remark 5.6$)$		\mathbf{T}	\mathbf{F}	\mathbf{F} if $n=2$
$\mathcal{M}_{n}(n=3 / n>4)$ $($ Theorem 5.2$)$		\mathbf{T}	\mathbf{F}	\mathbf{T} if $p \nmid n$
$\mathcal{N}_{H T}^{1}(n)(n \geq 2)$ $($ Theorem 4.3)	\mathbf{T}	T	\mathbf{T}	\mathbf{F}
\mathcal{N}_{1} $($ Theorem 4.4)	\mathbf{T}	T	\mathbf{T}	\mathbf{F}

In BG20], we observed that CWF holds in $\mathcal{N}_{H T}^{1}(n)$. In $\mathcal{N}_{H T}^{1}(n), A C_{n}$ fails. Consequently, \mathcal{P}_{n} fails in the model by Observation 3.1. Since $A C_{\text {fin }}^{\omega}$ fails in $\mathcal{N}_{2}^{*}(3)$ (see HR98), $\mathcal{P}_{l f, c}$ fails in $\mathcal{N}_{2}^{*}(3)$ by Observation 3.3. In $\mathcal{N}_{1}, A C_{2}$ fails (c.f. HR98). So \mathcal{P}_{2} fails in \mathcal{N}_{1}.

7. Acknowledgements

The author would like to thank Eleftherios Tachtsis for communicating Lemma 4.1 to us in a private conversation.

References

[BG20] A. Banerjee and Z. Gyenis, Chromatic number of the product of graphs, graph homomorphisms, Antichains and cofinal subsets of posets without $A C$, Comment. Math. Univ. Carolin. To appear. arXiv preprint: 1911.00434 v 3 [math.LO].
[CHHKR08] Omar De la Cruz, E. J. Hall, P. Howard, K. Keremedis, and J. E. Rubin, Unions and the axiom of choice, MLQ Math. Log. Q. 54 (2008), no. 6, pp. 652-665, DOI 10.1002/malq. 200710073.
[DM06] C. Delhommé and M. Morillon, Spanning Graphs and the Axiom of Choice, Rep. Math. Logic 40 (2006), pp. 165-180.
[FG65] D. R. Fulkerson, O. F. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965), pp. 835855, DOI 10.2140/pjm.1965.15.835. MR0186421
[Fri11] H. M. Friedman, Invariant maximal cliques and incompleteness, Downloadable Manuscripts.
[Haj85] A. Hajnal, The chromatic number of the product of two \aleph_{1}-chromatic graphs can be countable, Combinatorica 5 (1985), pp. 137139.
[HHT12] H. Herrlich, P. Howard, and E. Tachtsis, On Special Partitions of Dedekind- and Russell-Sets, Comment. Math. Univ. Carolin. 53 (2012), no. 1, pp. 105-122. MR 2880914
[HKRST01] P. Howard, K. Keremedis, J. E. Rubin, A. Stanley, and E. Tachtsis, Non-constructive Properties of the Real Numbers, MLQ Math. Log. Q. 47 (2001), no. 3. pp. 423-431, DOI: 10.1002/1521-3870(200108)47:3;423::AID-MALQ423¿3.0.CO;2-0.
[How84] P. Howard, Binary consistent choice on pairs and a generalization of Konig's infinity lemma, Fund. Math. 121 (1984), pp. 17-23, DOI:10.4064/fm-121-1-17-23.
[HR98] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Mathematical Surveys and Monographs 59 (1998), DOI: http://dx.doi.org/10.1090/surv/059 MR 1637107
[HT13] P. Howard and E. Tachtsis, On vector spaces over specific fields without choice, MLQ Math. Log. Q. 59 (2013), no. 3, pp. 128-146, DOI: 10.1002/malq. 201200049.
[HT20] L. Halbeisen and E. Tachtsis, On Ramsey Choice and Partial Choice for infinite families of n-element sets, Arch. Math. Logic 59 (2020), pp. 583606. DOI: https://doi.org/10.1007/s00153-019-00705-7.
[Jec73] T. Jech, The axiom of choice. North-Holland Publishing Co., Amsterdam, 1973, Studies in Logic and the Foundations of Mathematics, Vol. 75. MR 0396271
[KG91] P. Komjáth and F. Galvin, Graph colorings and the axiom of choice. Period. Math. Hungar. 22 (1991), pp. 71-75, https://doi.org/10.1007/BF02309111.
[Kom15] P. Komjáth, A note on uncountable chordal graphs. Discrete Math. 338 (2015), pp. 15651566, DOI: 10.1016/j.disc.2015.03.022.
[KT06] P. Komjáth and V. Totik, Problems in Classical Set Theory, Springer (2006).
[Leau71] H. Läuchli, Coloring infinite graphs and the Boolean prime ideal theorem. Israel J. Math. 9 (1971), no. 4, pp. 422429, https://doi.org/10.1007/BF02771458.
[Loeb65] P. Loeb, A New Proof of the Tychonoff Theorem, Amer. Math. Monthly 72 (1965), no. 7, pp. 711-717, DOI: 10.2307/2314411.
[Spa14] C. Spanring, Axiom of Choice, Maximal Independent Sets, Argumentation and Dialogue Games. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 43 (2014), pp. 91-98. DOI: 10.4230/OASIcs.ICCSW.2014.91.
[Tac19] E. Tachtsis, Dilworth's decomposition theorem for posets in ZF, Acta Math. Hungar. 159 (2019), pp. 603-617, DOI: 10.1007/s10474-019-00967-w.
[Tac19a] , Eos's theorem and the axiom of choice, MLQ Math. Log. Q. 65 (2019), no. 3, pp. 280-292, DOI: $10.1002 /$ malq. 201700074.
[Tac18] _, On the Minimal Cover Property and Certain Notions of Finite, Arch. Math. Logic 57 (2018), no. 5-6, pp. 665-686, DOI: 10.1007/s00153-017-0595-y.
[Tac16] _, On Ramsey's Theorem and the existence of Infinite Chains or Infinite Anti-Chains in Infinite Posets, J. Symbolic Logic 81 (2016), no. 1, pp. 384-394, DOI: 10.1017/jsl.2015.47.
[THS16] E. Tachtsis, P. Howard, and D.I. Saveliev, On the set-theoretic strength of the existence of disjoint cofinal sets in posets without maximal elements, MLQ Math. Log. Q. 62 (2016), no. 3, pp. 155-176, DOI: 10.1002/malq. 201400089 .

Department of Logic, Institute of Philosophy, Eötvös Loránd University, Múzeum krt. 4/i Budapest, H-1088 Hungary
E-mail address: banerjee.amitayu@gmail.com

[^0]: Key words and phrases. Maximal Independent sets, Variants of chain/antichain principle, Cofinal well-founded subsets of partially ordered sets, Fraenkel-Mostowski (FM) permutation models of ZFA $+\neg A C$.

[^1]: ${ }^{1}$ We use the fact that the number of different maximal independent sets in an n-vertex cycle graph is the n-th Perrin number for $1<n<\omega$.

