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Abstract. This review aims to summarize the possibility of using mussels (Mytilus spp.) as 

bioindicators to assess aquatic pollution in the Black Sea in Bulgaria. In addition, the main 

responsive biomarkers that could be applied to study the negative effects of different toxicants 

on these species in terms of using the Marine Strategy Framework Directive and implementation 

of environmental quality standards (EQS) in marine biota are also discussed. A specific reference 

is made to plastic pollution, transplant mussel caging, and mussel watch programs - their 

application, challenges, and future perspectives in Bulgaria. 
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Introduction 
Human activities produce various 

persistent organic and inorganic pollutants, 
such as polyromantic hydrocarbons (PAHs), 
polychlorinated bypehnils (PCBs), polybro-
minated diphenyl ethers (PBDEs), short-
chain chlorinated paraffins (SCCPs), dioxins 
and trace metals, as well as plastic litter, 
which eventually end up in the marine 
environments and ocean (Guendouzi et al., 
2020; Kouali et al., 2022). Hence, the marine 
environments, which are subjected to such 
diverse and toxic pollutants, are threatened – 
the integrity of habitats and their associated 
biota, from coastal to pelagic environments, 

and from benthonic to surface ecosystems 
(Anbuselvan et al., 2018; Bonanno & 
Orlando-Bonaca, 2018; Bonsignore et al., 
2018; Urban-Malinga et al., 2018).  

 

Environmental problems in Black Sea 
The Black Sea is the world’s largest land-

locked inland sea between southeastern 
Europe and western Asia, and is surrounded 
by six countries - Romania, Bulgaria, 
Ukraine, Russia, Georgia, and Turkey (Fig. 
1). It is 1210 km long from east to west and 
up to 560 km wide, has a maximum depth of 
2212 m and a volume of 534000 km3, and 
covers an area of 432000 km2 (Özsoy & 
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Ünlüata, 1997; Sari et al., 2018). The Black Sea 
communicates with the Mediterranean Sea to 
the south and the Azov Sea to the north 
(Topping & Mee, 1998; Boran & Altınok, 
2010).  

However, the Black Sea suffers from 
serious and much challenging environ-
mental problems. The sea’s shallow, mixed 
surface waters receive river discharges, 
heavily loaded with nitrogen and phos-
phorus nutrients, and polluted with 
industrial and mining wastes. In addition, 
coastal industries appear to discharge wastes 
directly into the sea with little or no 
treatment. Thus, the life-supporting surface 
layer's water quality has seriously 
deteriorated (Fabry et al., 1993). Moreover, 
The Black Sea coastal zone is densely 
populated. The total population in the 
catchment area of the Black Sea is about 160 
million, almost half of which is from non-
coastal countries in the catchment area of the 
Danube (Sari et al., 2018). It has a permanent 
population of about 6 million, with another 4 
million tourists during summer. Another 
important pollutant source is the 
Mediterranean inflow that transports 
municipal and industrial pollutants from the 
mega metropolitan Istanbul city with a 
population of 16 million (Sari et al., 2018).  

 

 
 

Fig. 1. Map of the Black Sea in Europe. 
 
The Black Sea’s primary pollution 

sources are the rivers flowing into it. The 
major rivers flowing into the Black Sea and 
their discharges are the Danube (203 km3 

yr−1), Dnieper (Dnepr) (54 km3 yr−1), Dniester 
(Dnestr) (9.3 km3 yr−1), Don (28 km3 yr−1), and 
Kuban (13 km3 yr−1) (Bakan & Özkoç, 2007). 
Furthermore, many smaller rivers along the 
Turkish and Bulgarian coasts contribute 
another 28 km3 yr−1 to the water budget of the 
sea (Bakan & Özkoç, 2007). Moreover, the 
Danube is the major river delivering 58% of 
the total freshwater and sediment inputs to 
the Black Sea (Mee, 1992; Müftüoğlu, 2013). It 
is 2850 km long, with a drainage area of 
817000 km2 (Sari et al., 2018). The Danube 
and the other major rivers flow through the 
central and eastern European industrial 
towns and agricultural areas, and transport 
significant pollutants and natural inputs 
from mineralized and high-background 
rock-bearing areas. It drains into the Black 
Sea, passing through the lands of Germany, 
Austria, Slovakia, Hungary, Croatia, Serbia, 
Romania, Bulgaria, and Ukraine. 81 million 
people living in the drainage area influence 
its hydrological system (Sommerwerk et al., 
2010). Hence, the Black Sea’s sediments and 
water have been adversely affected by the 
transport of riverine anthropogenic 
pollutants over the last few centuries (Guieu 
et al., 1998; Secrieru & Secrieru, 2002; 
Yigiterhan & Murray, 2008; Mülayim & 
Balkıs, 2015) and sadly, this problem persists. 

Plastic pollution is an environmental 
issue in many seas worldwide (Lebreton et 
al., 2017; Ryberg et al., 2019). The Black Sea is 
no exception, and it suffers from land-based 
pollution, including cities and sewage 
systems (Lechner et al., 2014; Berov & Klayn, 
2020; D’Hont et al., 2021; González- 
Fernández et al., 2021; Pojar et al., 2021). Тhе 
environmental problems are getting worse 
because the sea is semi-enclosed; thus, 
plastics tend to accumulate over time; the 
drainage area of the sea is approximately 2.5 
million km2 and is divided into 107 sub-
basins, which drain through more than 20 
countries located in the European and Asian 
continents; the sea also receives plastics from 
the three large transboundary rivers: 
Danube, Don, and Dnieper (Strokal et al., 
2022). 

There are already several surveys of 
marine litter on beaches, floating litter in the 
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waters, and plastic pollution of the sediments 
that have been carried out in Turkey and 
Romania (Topçu et al., 2013; Suaria et al., 
2015; Aytan et al., 2016; Kilinc, 2017; Oztekin 
& Bat, 2017; Săvucă et al., 2017; Terzi & 
Seyhan, 2017; Pojar & Stock, 2019; Aytan et 
al., 2020; Terzi et al., 2020), including a survey 
on the Western and Eastern Black Sea waters 
along the coasts of Ukraine, Russia, and 
Georgia (Slobodnik et al., 2018).  

There are also some studies from 
Bulgaria (Moncheva et al., 2016; Simeonova 
et al., 2017; Simeonova & Chuturkova, 2019; 
Stanev & Ricker, 2019; Berov & Klayn, 2020; 
Miladinova et al., 2020); however, there is 
insufficient data on the negative effects of 
marine litter in the Bulgarian Black Sea, and 
how (micro)plastics could affect different 
biological indices in the aquatic organisms. 
The microplastic pollution in the Black Sea in 
Bulgaria as an environmental problem and 
its potential toxic threats for aquatic animals 
in Bulgaria has been recently reviewed by 
Todorova et al. (2023). 

 
Marine Strategy Framework Directive 
Within the Marine Strategy Framework 

Directive scope, the Member States of one 
marine region and neighboring countries, 
which share the same marine waters, must 
cooperate to protect the marine environment 
more effectively (Coatu et al., 2016). The 
Marine Strategy Framework Directive 
(MSFD, 2008/56/EC) requires all the EU 
Member States to achieve Good 
Environmental Status (GES) of the marine 
environment by 2020, considering 11 key 
descriptors of environmental status 
(Orlando-Bonaca et al., 2022). The presence of 
hazardous substances in biota represents 
relevant criteria and indicators for assessing 
the status of the Black Sea environment 
under Descriptor 8 (“Concentrations of 
contaminants are at levels not giving rise to 
pollution effects”) and 9 (“Contaminants in 
fish and other seafood for human 
consumption do not exceed levels 
established by Community legislation or 
other relevant standards”) (Coatu et al., 
2016). Descriptor 10 (Properties and 
quantities of marine litter do not cause harm 

to the coastal and marine environment) 
focuses on the emerging problem of marine 
litter and its effects on the marine 
environment and biota. Specifically, the 
secondary criterion D10C3 defines that “The 
amount of litter and micro-litter ingested by 
marine animals is at a level that does not 
adversely affect the health of the species 
concerned,” “Litter and micro-litter classified 
in the categories ‘artificial polymer materials’ 
and ‘other,’ assessed in any species from the 
following groups: birds, mammals, reptiles, 
fish and invertebrates,” and that “Member 
States shall establish that list of species to be 
assessed through regional or subregional 
cooperation.” Indicators for this criterion 
should be developed to assess the GES in the 
current implementation cycle of MSFD. At 
the moment, this criterion has not been fully 
evaluated, as the threshold values for levels 
that may have lethal or sublethal effects on 
marine organisms have not yet been 
identified, while they should still be defined 
through regional or subregional cooperation. 
In addition, the secondary criterion D10C4 
outlines “The number of individuals of each 
species, which are adversely affected due to 
litter, such as by entanglement, other types of 
injury or mortality, or health effects.” 
Although this criterion appears ready to be 
used, monitoring campaigns for the census of 
marine organisms affected by litter are 
relatively occasional. A magnitude ranking 
of injuries due to litter (and explicitly plastic) 
ingestion has still to be developed. 
Eventually, the Commission Decision 
2010/477/EU identified the indicator 
“Trends in amount and composition of litter 
ingested by marine animals (e.g., stomach 
analysis)” (10.2.1) (Galgani et al., 2013; 
Orlando-Bonaca et al., 2022). 

According to the Barcelona Convention 
(2016), “Marine pollution knows no border, 
pollution in one country affects all other 21 
countries.” The awareness of the need for a 
regional approach has resulted in many 
formal and informal initiatives at global and 
regional levels (e.g., UNEP Regional Seas 
Program, 1974; OSPAR, 2009). Moreover, the 
“Common Indicator 18” of the Barcelona 
Convention proposed loggerheads as 



Are Mytilus species suitable bioindicators for assessing aquatic pollution along the Black Sea Coast? 
A review 

52 
 

indicators of marine debris levels ashore or at 
sea for monitoring, achieving, or maintaining 
the GES, as defined by D10 of the MSFD 
(Barcelona Convention, 2016). In addition, 
the Integrated Monitoring and Assessment 
Program (IMAP) adopted in 2016 includes 
Ecological Objective 10 on Marine Litter 
(IMAP, 2016). Within this framework, the 
proposal for marine litter monitoring also 
includes Candidate Indicator 24: “Trends in 
the amount of litter ingested by or entangling 
marine organisms focusing on selected 
mammals, marine birds, and marine turtles 
(EO10)”. So far, the most suitable species for 
this indicator have not been identified yet 
(Orlando-Bonaca et al., 2022). 

 
Mussels as an important food source in 

aquaculture 
Mytilus species (Fig. 2) are common in 

temperate seas all around the globe. They are 
widely used both as seafood, not just as 
sentinel organisms in monitoring 
anthropogenic pollution trends in marine 
waters (Goldberg, 1975, 1980; Farrington et 
al., 2016). Blue mussels have been an 
important food for humans for thousands of 
years, and mussel farming dates back to the 
Ancient Romans (Beyer et al., 2017). Mussels 
are economically important food species, 
accounting for more than a third (roughly 470 
thousand tons) of production by weight of 
the aquaculture industry in the European 
Union (Eurostat, 2016). Therefore, ingestion 
of mussel seafood contaminated with various 
pollutants is a key source of potential health 
risks, such as neurotoxic, carcinogenic, and 
cardiovascular diseases for a man (Ersoy & 
Çelik, 2009). This is of primary concern in the 
case of top marine predators, as some metals 
and persistent organic pollutants 
(dichlorodiphenyltrichloroethane, DDT) 
accumulation tends to magnify along the 
food web, resulting in a higher potential risk 
to human health when high trophic level 
predators are consumed (Barone et al., 2018).  

In recent years marine aquaculture 
along the Bulgarian Black Sea coast has been 
mainly related to the construction of mussel 
farms, which number has exceeded 30 
installations. The mussels from the family 

Mytilidae, are important and prospective 
species traditionally consumed in Bulgaria 
and Europe (Cammilleri et al., 2020).  

Mediterranean (black) mussels (M. 
galloprovincialis) are a valuable protein 
source, and the favorable conditions of the 
Black Sea (temperature, salinity, and food 
availability) stimulated mussel farming in 
this region. In recent years, the growing 
market interest in this species is based on the 
proven high nutritional quality and M. 
galloprovincialis have a future as a promising 
source of high-quality protein, polyunsa-
turated fatty acids, and essential macro and 
microelements (Peycheva et al., 2021a). 
Mussels are actually the only bivalves 
cultured on the Bulgarian coast of the Black 
Sea (Ministry of Agriculture and Food, 2016). 
They are mainly cultured on ropes 
suspended in the water column and attached 
to rafts. The aquacultured mussels are 
usually suspended 3-4 m above the sea 
bottom (Executive agency for fish and 
aquacultures - IARA, 2017). A few studies 
characterized this species as a beneficial food 
that could provide a well-balanced chemical 
composition and, through their 
consumption, could prevent various 
nonchronic diseases (Özden et al., 2010; 
Petrova-Pavlova et al., 2014; Merdzhanova et 
al., 2019; Peycheva et al., 2021b).  

Blue mussels (M. edulis) are bivalve 
mollusks widely consumed as seafood, with 
a high content of proteins, omega-3 fatty 
acids, and vitamins (Akre et al., 2019; Gomez-
Delgado et al., 2023). Moreover, Black Sea 
mussels are one of the most perspective novel 
food sources with a protein content equal to 
cattle meat. The mussels are also important 
natural biofilters – at 17°C temperature of the 
water, one mussel can filter almost 3 liters of 
seawater per hour. In recent years in 
Bulgaria, an increasing interest in this animal 
as profitable breeding culture has been 
increasing. However, today due to the 
industrial pollution of the Black Sea, there are 
serious obstacles in mussel farms (Ganchev 
et al., 2012). In this regard, the spatial extent 
of mussel beds in the Black Sea and Sea of 
Marmara was reported to have been 
declining drastically over the past years 
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(Zaitsev & Mamaev, 1997). The total biomass 
of mussels in the Black Sea was estimated at 
25×106 tons in the 1960s, dropping to 7×106 
tons in the 1980s, with juvenile specimens 
predominating (Zaitsev, 1992). Mass 
mortalities of M. galloprovincialis were 
observed in the region due to siltation and 
hypoxia (Gomoiu, 1992; Ozturk & Ozturk, 
1996). Moreover, eutrophication, coastal 
constructions, sea dumping, and ship 
accidents (such as Rabunion-18, sinking with 
20000 live sheep in the Bosphorus) were 
reported to be the leading cause of hypoxia in 
the region (Yurdun et al., 1995; Topçu et al., 
2019). 

 
Mussels as important sentinel 

organisms in aquatic toxicology 
Using bioindicators as sentinels of the 

environment's health is a well-established 
biotechnology that provides qualitative and 
quantitative information on the impact of 
numerous pollutants and stressors (Siddig et 
al., 2016). The selection of appropriate 
bioindicator species follows general criteria 
that can also be applied to marine plastic 
pollution and should allow different marine 
habitats to be monitored. Given the 
ubiquitous nature of plastics in the oceans, 
cosmopolitan marine species should be 
considered the primary sentinels of 
environmental impacts. Larger ecological 
niches allow organisms to detect the same 
disturbances or stressors in different habitats 
(Bartell, 2006; Urban et al., 2012). 

Any good bioindicator, in particular, 
should have some basic characteristics, 
including natural occurrence, abundance, 
ease of identification and sampling, 
moderate tolerance to disturbances and 
stresses, and broad geographic distribution 
corresponding to a range of exposures to a 
certain pollutant or stressor (Carignan & 
Villard, 2002; Caro, 2010).  

The high number of taxa impacted by 
different marine plastics underscores the 
magnitude of this threat to biodiversity. 
Some key taxa, such as sea turtles and marine 
mammals, and various pelagic fish species 
were particularly affected. Furthermore, to 
date, numerous species of different taxo-

nomic groups have been used as bioindi-
cators of various marine pollutants, such as 
mollusks (Naimo, 1995; Guerlet et al., 2007; 
Dirrigl et al., 2018; Yancheva et al., 2018; 
Yancheva et al., 2022), among them - mussels, 
in particular, the blue mussel (Mytilus edulis 
Linnaeus, 1758) and the Mediterranean 
mussel (Mytilus galloprovincialis Lamarck, 
1819) (Cappello et al., 2013; Beyer et al., 2017), 
as well as various fish species (Yancheva et 
al., 2015). 

 
Mytilus spp. as bioindicators for 

aquatic pollution 
The genus Mytilus includes several 

closely related (congeneric) species (or 
subspecies) that can interbreed with each 
other and make fertile hybrids. It is often 
called the Mytilus edulis complex. Although 
the exact taxonomy within the Mytilus genus 
is not yet fully clarified, recent research 
indicates there are five species occurring in 
the Northern Hemisphere (M. edulis, M. 
galloprovincialis, M. trossulus, M. californianus, 
and M. coruscus) and two in the Southern 
Hemisphere (M. galloprovincialis and M. 
platensis). In contrast, the former M. chilensis, 
is currently considered a variant of M. 
platensis (Gaitan-Espitia et al., 2016). About 
3.5 million years ago, M. trossulus and M. 
edulis diverged genetically, then around 2.5 
million years ago, M. edulis and M. 
galloprovincialis diverged too (Fraïsse et al., 
2014). 

The blue mussel (M. edulis) and the 
Mediterranean mussel (M. galloprovincialis) 
are two well-known “early warning” 
bioindicators of marine pollution that are 
increasingly used to monitor the presence of 
microplastics (Avio et al., 2017; Phuong et al., 
2017). Mussels are sessile suspension feeders 
that ingest microplastics to 500-fold higher 
concentrations (Van Cauwenberghe & 
Janssen, 2014; Van Cauwenberghe et al., 
2015). Although short-term exposure to 
microplastics may not have significant 
biological effects (Browne et al., 2008), 
ingestion of microplastics by mussels has 
been shown to result in disruptive effects, 
such as a reduction in filtering activity 
(Wegner et al., 2012), tissue-dependent 



Are Mytilus species suitable bioindicators for assessing aquatic pollution along the Black Sea Coast? 
A review 

54 
 

changes at the transcriptome level (Détrée & 
Gallardo-Escárate, 2017), histological chan-
ges, and severe inflammatory responses (von 
Moos et al., 2012). 

M. edulis is boreo-temperate in its 
distribution on both coasts of the Atlantic 
Ocean. It is found in abundance, intertidally 
and subtidally, in both sheltered and exposed 
sites, attached to hard substrates or forming 
biogenic reefs. As summarized by Lynch et 
al. (2014), in the western Atlantic, M. edulis is 
historically found from the Arctic Sea, 
Canada (Dall, 1889) to North Carolina, 
United States (Stimpson, 1860; McDougall, 
1943) and in the eastern Atlantic occurs from 
Norway (Christiansen, 1965) to the border of 
France and Spain (Sanjuan et al., 1994). In 
favorable conditions, M. edulis can grow to a 
shell length of more than 10 cm and have a 
lifespan of more than 20 years (Powell & 
Cummins, 1985; Sukhotin et al., 2007), 
although specimens larger than 8 cm and 
older than 10 years are uncommon.  

M. edulis is a keystone coastal species with 
essential roles in ecosystem functioning, 
including habitat formation for diverse benthic 

communities (Joint Nature Conservation 
Committee, 2008) and nutrient recycling. They 
play an important role in benthic-pelagic 
coupling by removing large quantities of 
suspended organic matter from the water by 
filter-feeding, and through the production of 
faces and pseudofaces (Ward & Shumway, 
2004) and process large volumes of water; for 
example, under optimal algal conditions, a 21.5 
mm sized mussel will filter an average of 15 mL 
min−1 (Riisgård et al., 2014). Coupled with their 
wide geographical range and low metabolic 
transformation rates, these traits make blue 
mussels useful in monitoring programs for 
many potential and dissolved chemical 
pollutants (Scott et al., 2019). 

M. galloprovincialis is endemic to the 
Mediterranean, Black, and Adriatic Seas and 
has expanded its range to the British Isles 
(Gosling, 1992). As explained by Livingstone 
(1992) and Uluturhan et al. (2019), the sessile 
nature of Mediterranean mussels renders them 
ideal candidates for molecular to physiological 
and ecological studies, and biomonitoring 
purposes of the water column. 

 
 
Fig. 2. Mytilus edulis - general anatomy and morphology of as presented by Eggermont et al. 

(2020). 
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Biomarkers in Mytilus species 
The concept of biomarkers was set for the 

first time in 1987 by the US National Research 
Council (NRC) and defined as “xenobiotically-
induced variations in cellular or biochemical 
components or processes, structures or 
functions that are measurable in a biological 
system or sample”. In addition, due to their 
quick response to stress and potentially high 
toxicological relevance, biomarkers are often 
considered early warning indicators in 
detecting molecular, biochemical, or ecological 
effects (Dellali et al., 2021). 

To assess the impact of ingested debris on 
marine organisms, Fossi et al. (2020) proposed 
a threefold monitoring approach that can 
combine an accurate measurement of debris 
and microplastic levels in animals, the 
assessment of plastic additives and persistent 
organic pollutants levels in tissues, and 
associated toxicological effects. According to 
Fossi et al. (2018a) and Fossi et al. (2018b), such 

a monitoring approach should be based on 
three types of collected data, and the three 
evaluations can be applied independently or 
simultaneously for different kinds of 
bioindicators (e.g., commercial species, 
protected species, stranded and/or 
hospitalized organisms, etc.): 1) the analysis of 
gastrointestinal contents to assess the debris 
(especially plastics) ingested by the animals, 
focusing on the occurrence (%), abundance 
(number), weight (g), color, size, and polymer 
topologies of the ingested macrodebris and 
microplastics; 2) the qualitative -quantitative 
analysis of plastic additives (various phthalates 
and polybrominated diphenyl ethers) and 
persistent, bioaccumulating, and toxic 
substances used as “potential” plastic tracers in 
the bioindicators tissues; 3) the analysis of the 
effects of debris ingestion through biomarker 
responses at different levels of biological 
organization (from variations in gene/protein 
expression to histological changes). 

 

 

 
Fig. 3. Biomarkers in Mytilus species for assessing the effects of water pollution. 
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Here we present some of the most common 
and reliable biomarkers, which can be applied in 
Mytilus species when assessing aquatic pollution 
(Figure 3): 

 
Neutral red retention time in lysosomes 
Unlike fish, mussels do not have the same 

ability to metabolize organic compounds, but 
detoxification processes exist through other 
complex mechanisms that occur partly in the 
lysosomal compartment. Hence, the lysosomes 
play an important role as a natural immuno-
logical defense system in invertebrates (Lowe & 
Pipe, 1994; Lowe et al., 1995; Moore & Willows, 
1998; Akcha et al., 2004; Mamaca et al., 2005). At 
the subcellular level, the lysosomal system has 
been identified as a particular target for the toxic 
effects of contaminants, and pathological 
alterations in lysosomes have been especially 
useful in the identification of adverse 
environmental impacts on marine organisms 
(Moore et al., 1996; Giamberini & Pihan, 1997; 
Moore et al., 2009).  

When marine mollusks, such as mussels, are 
exposed to xenobiotics, one of the characteristic 
pathological alterations is decreased integrity of 
the lysosomal membrane (Moore, 1988). 
Lysosomal membrane integrity has also been 
reduced with increasing nonspecific stress (i.e., 
biotic and abiotic) (Moore, 1985). The mechanisms 
causing this alteration in membrane stability 
needs to be better understood. Still, it may involve 
the direct effects of chemicals on the membrane or 
the increased frequency of secondary lysosomes in 
toxicant-stressed cells (Mayer et al., 1992).  

Lysosomes are important subcellular 
organelles that contain many hydrolytic 
enzymes, perform protein degradation and 
detoxify some foreign compounds. At the 
cellular level, lysosomal digestion pathways 
include phago-cytosis, endocytosis, and 
autophagy. The lysosomal membrane protects 
the cytosol and the rest of the cell from leakage of 
degradative enzymes. However, malfunctioning 
of lysosomes and their accumulation of toxic 
pollutants have been linked to lysosomal storage 
diseases and result in lysosomal injury and 
oxidative damage, in some cases leading to cell 
death (Moore et al., 2007). In this regard, the 
neutral red retention time (NRRT) assay takes 
advantage of this phenomenon by measuring the 

decreased retention time of neutral red dye 
within phagocytic haemocytes of a range of 
aquatic organisms, including mussels (Regoli, 
1992; Tedesco et al., 2008). In the popular sentinel 
species, M. edulis, the haemocytes (from the 
adductor muscles or digestive gland) are 
essential immune system components (Hu et al., 
2015). Therefore, NRTT has been reported as a 
useful indicator of the organism's overall health 
status because animals exposed to pollutants 
often have compromised lysosomal stability 
(Borenfreund & Puerner, 1985; Moore et al., 2009) 
and the loss of red dye in the cytosol (reduction 
of NRRT) indicates destabilization of the 
lysosomal membrane. 

 
Oxidative stress 
Biomarker responses in bivalves include the 

induction of antioxidant enzymes. They have 
been widely used to assess organic xenobiotics’ 
impact in marine environments (Doyotte et al., 
1997; Lau & Wong, 2003). During detoxification, 
enzymes, such as carboxylesterases (CEs), 
convert toxic compounds into more hydrophilic 
and reactive molecules to facilitate their 
elimination. In the second step, glutathione 
transferases (GSTs) conjugate xenobiotics 
metabolites with glutathione to convert them into 
more hydrophilic and less reactive molecules 
(Falfushynska et al., 2019). Accompanying the 
detoxifying process, reactive oxygen species 
(ROS) can be produced.  

In front of this, organisms have developed a 
complex antioxidant system to avoid oxidative 
stress damage (Livingstone, 2001; Rios-Fuster et 
al., 2022). The antioxidant system, which is 
composed of enzymes, such as catalase (CAT), 
superoxide dismutase (SOD), glutathione 
peroxidase (GPx), glutathione reductase (GRd), 
and glutathione-S-transferase (GST) (Capó et al., 
2015; Capó et al., 2021) serves as a shield, which 
crucial role is to protect the cells against the ROS 
harmful effects and to reduce the possible 
damage due to their high reactivity (Vidal-Liñán 
et al., 2010; Kourdali et al., 2022).  

However, if the ROS production is beyond 
the organisms’ elimination capabilities, ROS can 
lead to the production of several biomolecules, 
such as malondialdehyde (MDA), which are 
lipids generating oxidative products and thus, 
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can be used as biomarkers of oxidative damage 
(lipid peroxidation) (Bartoskova et al., 2013).  

 
DNA damage 
Many harmful substances sporadically 

present in the water can bioaccumulate in living 
organisms, induce DNA and/or cell damage, 
and even enter the trophic chain and affect 
distant ecosystems if some components of such 
chains are migratory. Increasing attention is 
being paid to using micronuclei (MN) as an 
index of cytogenetic damage in aquatic 
organisms.  

Mussels are potentially suitable biological 
indicators of genotoxic pollution (Venier & 
Canova, 1996; Dixon et al., 2002). The induction 
of MN in different mussel species exposed to 
genotoxic compounds has been reported in 
several studies (Parolini et al., 2010; Dallas et 
al., 2013; Liu et al., 2014). Therefore, Mytilus 
spp. can be considered suitable for routine in 
situ surveys of genotoxic pollutants employing 
the micronucleus test as a biomarker, 
supporting Viarengo & Canesi (1991).  

According to Bolognesi & Hayash (2011), 
the MN assay validation process in the genus 
Mytilus started more than 20 years ago (i.e., 
Heddle et al., 1983; Wrisberg & van der Gaag, 
1992). Dose-related induction of MN by 
different pollutants or polluted water 
containing various mixtures of contaminants 
have been reported in gill cells and haemocytes 
- mitomycin C (Majone et al., 1987, 1990), ethyl 
methanesulfonate (EMS) (Wrisberg et al., 1992; 
Jha et al., 2005), dimethylbenz[a]anthracene 
(Bolognesi et al., 1996), benzo[a]pyrene (Venier 
et al., 1997), bisphenol A (Barsiene et al., 2006), 
phenanthrene (Koukouzika & Dimitriadis, 
2008), and heavy metals (Bolognesi et al., 1999; 
Duroudier et al., 2021).  
 

Histopathological and histochemical 
analyses 

Histopathology is a sensitive tool for 
diagnosing direct and indirect toxic effects that 
affect the tissues (Kent et al., 2013); therefore, it 
is considered an excellent method for assessing 
environmental quality (Bignell et al., 2011). In 
addition, according to Hinton & Lauren (1990), 
histopathology is often the easiest method of 
assessing both short and long-term toxic effects 

for field assessments. On the other hand, Wester 
& Canton (1991) state that the histopathological 
methods are relatively labor-intensive and 
require good experience, but after all, they have 
the considerable advantage that pathological 
alterations in different tissues (e.g., gills, liver) 
can be observed individually, creating a direct 
link with physiological functions, such as 
growth, reproduction, respiration, and 
nutrition.  

The histochemical techniques help to 
analyze the localization of lipids and glycogen 
at the cellular level. Furthermore, 
histochemistry's main advantage lies in 
analyzing biological phenomena in “particular 
cells”. In this regard, the intensity of staining can 
be used for comparing the lipid and glycogen 
contents present in the (gills) cells of normal 
mussels compared to treated ones with different 
toxic compounds (Pathan et al., 2009).  

Based on the studied literature on 
histochemical changes triggered by various 
toxicants, we can state that the histochemical 
methods, such as PAS (glycogen) and Sudan III 
(lipids) reactions mainly concern vertebrates, 
such as fish (and the liver), and to some smaller 
extent - invertebrates, such as mussels (and the 
gills and digestive gland) (Drastichová et al., 
2005; Wolf & Wolfe, 2005, Figueiredo-Fernandes 
et al., 2006; El-Serafy, 2009; Singh, 2014).  

Furthermore, glycogen synthesis and 
degradation mechanisms are studied primarily 
in mammal tissues, such as the liver (Smythe & 
Cohen, 1991; Bollen et al., 1998). These 
mechanisms seem similar in the gills, which are 
energy-consuming organs. Moreover, the 
mussel gills are attractive models for 
ecotoxicological studies because the gills are the 
first uptake site for many toxicants present in 
the aquatic environment and are often affected 
by exposure to pollutants (Gómez-Mendikute et 
al., 2005). In addition, the histochemical 
methods are relatively inexpensive compared to 
biochemical analyses; therefore, we encourage 
applying these tissue methods in monitoring 
programs and multi-biomarker approaches. 

 
Biometric measurements 
Biometric measurements are the easiest 

among all biomarkers to study. There are 
different approaches; some use wet weight, and 
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some use dry weight; however, all are 
associated with the length and weight of treated 
and controlled mussels. Here we present the 
formulas of some of the most common 
condition indexes, which can provide 
information about impacted physiological 
processes: 
CI total – (soft tissue weight/total weight) x 100;  
CI 2 - soft tissue weight/shell weight;  
CI 3 (state index) - soft tissue weight/shell 
length;  
CI 4 (shell component index) - shell 
weight/shell weight + soft tissue weight;  
CI 5 (condition factor) - soft tissue weight/shell 
lenght3  
(Lucas & Beninger, 1985; Rios-Fuster et al., 
2022).  

In addition, reproduction can be inhibited 
by sublethal environmental stress because 
animals reallocate energy away from gamete 
production and toward defense, and repair 
mechanisms (Michalek-Wagner & Willis, 2001).  

The gonadosomatic index (GSI) is 
calculated according to the formula (Roff, 1992): 
GSI = gonadal tissue weight / (gonadal + 
somatic tissue weight). 

 
Stress-on-stress 
According to Viarengo et al. (1995), 

contaminant exposure can decrease mussel 
tolerance to anoxia. The stress-on-stress (SOS) 
response represents the survival of mussels in 
the air (time to kill 50% of sample: LT50; Thomas 
et al., 1999; Hellou & Law, 2003). It appeared as 
a sensitive and straightforward indicator of 
mussels’ health, and therefore has been since 
applied in monitoring programs and laboratory 
studies with mussels. Holwerda et al. (1985) 
reviewed the general survival of invertebrates 
in air and listed blue mussels as surviving more 
than 30 days, the second highest of 22 species 
tested (Hammen, 1976). SOS response can also 
significantly reveal mussel exposure to a 
mixture of pollutants at very low 
concentrations, resembling field conditions. 
Moreover, the methodology utilized to evaluate 
the stress on stress response is simple, rapid, 
and low in cost and does not require 
sophisticated equipment. The SOS response 
was therefore proposed as an index of general 
stress at the organismal level, and has been since 

applied as a monitoring tool for assessing 
polluted aquatic ecosystems (Hellou & Law, 
2003). 

 
Scope for growth 
Recent advances in environmental 

toxicology involving the close coupling of the 
sensitive stress response (scope for growth - 
SFG) and pollutant levels in the tissues of 
mussels have provided a powerful and cost-
effective method of assessing environmental 
pollution (Widdows & Donkin, 1992; Widdows, 
1998; Widdows et al., 2002). SFG itself results 
from various vital functions (filtration, 
ingestion, absorption, and respiration), a 
technique involving calculating the energy 
available for growth (Albentosa et al., 2012). 
This approach complements the established 
chemical monitoring programs by assessing 
whether the recorded contaminant levels are 
causing deleterious effects and whether all 
relevant toxicants are being measured 
(Widdows et al., 2002). In addition, SFG is a 
biomarker at the individual/whole organism 
level of biological complexity with high 
ecological relevance. This is very applicable to 
biomonitoring programs.  

Hence, the SFG concept and method are 
sensitive indicators of environmental pollution 
in European waters (Widdows et al., 2002; 
Halldórsson et al., 2005). Аs explained by 
Albentosa et al. (2012), in 2007, the Spanish 
Marine Pollution monitoring program (SMP) 
conducted by the Spanish Institute of 
Oceanography added SFG as an environmental 
assessment technique to be integrated with the 
chemical parameters. Determining growth in 
organisms is one of the most sensitive methods 
available for detecting, quantifying, and 
identifying changes over time and space to the 
water quality of marine ecosystems since 
growth results from a combination of different 
physiological processes involved in energy 
acquisition and consumption. In short, it 
consists of evaluating the energy acquired by an 
organism after absorbing the food it has 
ingested. The difference in the organism’s 
energy available for production (growth and 
reproduction) is lost in the respiratory and 
excretory processes.  
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The calculations of SFG are based upon 
the following equation:  

SFG=(I−F)−R=(I x AE)−R, 
where I is the consumption of the energy 
available in the diet, F is the energy lost in the 
feces, AE is the absorption efficiency, and R is 
the energy consumed by respiration (Bayne & 
Newell, 1983).  

The clearance rate (CR, expressed in L 
ind−1 h−1) is calculated from the difference 
between inlet and outlet concentrations for the 
experimental system according to the equation 
(Riisgård, 2001): 

CR=f x (Ci−Co)/Ci 
where f is the flow of water expressed in L/h, 
Ci is the inlet concentration, and Co is the 
outlet concentration, both expressed in 
particulate volume units, mm3/L.  

The organic ingestion rate (OIR, mg POM 
h−1) was obtained by multiplying the clearance 
rate by the diet concentration (expressed in mg 
POM l−1).  

The absorption efficiency (AE) is 
calculated from the percentage of organic 
matter in the food and the feces according to 
Conover's ratio (1966); 

AE=[(F-E)/((1-E) x F)] x 100, 
where F is the percentage of organic matter 
(ash-free dry weight) in the food and E is the 
percentage of organic matter in the feces.  

The absorption rate (AR, mg POM h−1) was 
obtained by multiplying the ingestion rate by 
the absorption efficiency (AR=OIR x AE). 
 

Respiration intensity rate 
The rate of respiration reflects the metabolic 

activities of animals and the responses due to 
changes in the surrounding environment are a 
good indicator of the adjustment capacity of the 
organism (Kumar et al., 2012). Bivalve mollusks 
reflect immediate responses to toxic substances 
present in the surrounding water through 
changes in their physiological responses (Basha 
et al., 1988) and histological arrangement 
(Kumar et al., 2012). It is known that without 
time for acclimation, mussels typically reduce 
their clearance rate (volume of water passing 
through gills per unit time), thus potentially 
lowering their intake of oxygen (Aldridge et al., 
1987). However, most bivalve mollusks reflect 
immediate responses to toxic substances 

present in the surrounding water by changes in 
physiological responses (Basha et al., 1988). In 
most cases, the respiration rate increases with 
the increase of the pollutant concentration and 
level of toxicity (Kumar et al., 2012). This is 
because the organism tries to deliver more 
oxygen to all tissues and organs triggered by the 
stress caused by toxic exposure.  

Respiration intensity is calculated following 
Tsekov (1989); 

I = Q2/G, 
where I – respiration rate index; G – weight of 
the mussels, in grams, Q2 – oxygen consumed by 
the mussels between the two measurements (the 
difference between the oxygen levels before and 
after 1 h, Q2 = Q-Q1 hour).  

Q is calculated following the formula:  
Q = V x q, 

where: Q – total oxygen level; V – water volume, 
in liters; q –dissolved oxygen levels in 1 liter of 
water (mg L–1). 

 
Mussel caging and mussel watch 

programs 
Environmental monitoring with mussels is 

often termed as Mussel Watch Program. Data 
from such monitoring is available from more 
than 50 nations, sometimes with data going back 
to the 1960s (Goldberg, 1986; Cantillo, 1998; 
Beliaeff et al., 1998). The relationship between 
the level of waterborne pollutants and bivalve 
tissue concentrations is well established within 
the Mussel Watch Program, which monitors 
over 150 organic and inorganic pollutants, 
including polycyclic aromatic hydrocarbons 
(PAHs), polychlorinated biphenyls (PCBs), the 
pesticide dichlorodiphenyltrichloroethane (DDT), 
etc. (National Oceanic and Atmospheric Admi-
nistration, 2018). Since 1983, the Ontario 
Ministry of Environment (MOE) has used caged 
mussels (Elliptio complanata Lightfoot, 1786) to 
monitor contaminants in the Niagara River 
(Richman et al., 2011). Several studies have 
suggested that transplanted mussels can also be 
useful biomonitoring tools for evaluating 
environmental microplastic pollution (Brate et 
al., 2018). Mussel caging, transplants, and 
similar mussel watch programs have yet to be 
applied in Bulgaria. Gecheva et al. (2020) and 
Georgieva et al. (2022) are the first to report 
results from such field experiments in Bulgaria. 
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The current situation in Bulgaria – 
challenges and future perspectives 

Data on mussels and their various 
biological disturbances due to pollution in the 
Black Sea in Bulgaria is extremely scarce. There 
is some research on the levels of heavy metals 
and various organic pollutants in the sea and 
mussels (Stoichev et al., 2007; Rizov & 
Georgieva, 2010; Georgieva et al., 2016a,b; 
Peteva et al., 2018a,b; Zhelyazkov et al., 2018; 
Manev et al., 2020; Bachvarova et al., 2022). At 
present, there are no studies regarding the 
spread and bioaccumulation of microplastics or 
their effects on the marine biota of the Bulgarian 
part of the Black Sea. Still, Alexandrova et al. 
(2022) recently provided the first preliminary 
data on the distribution and accumulation of 
microplastics in wedge clams (Donax trunculus 
Linnaeus, 1758) from selected localities along 
the Bulgarian Black Sea coast. 

In sum, most of the results concern the 
qualities of mussels as a source of protein and 
therefore, the risk to humans (Peteva et al., 2020; 
Peycheva et al., 2022) or practices for growing 
and catching them or their importance for 
aquaculture (Petrova & Stoykov, 2009; 
Klisarova et al., 2020). Aquaculture is one of the 
pillars of the European Union's blue economy 
strategy. It is the subject of increasing interest on 
the Bulgarian Black Sea coast, but so far, mainly 
in establishing farms to cultivate M. 
galloprovincialis (Zahariev, 2021). Furthermore, 
during the last years, there has been an 
increased interest in cultivating Mediterranean 
mussels in Bulgaria, and several farms have 
been created in Sozopol, Kavarna, and Balchik 
(Nikolov et al., 2010). As mussels are considered 
a healthy food because of their high nutritional 
value, including high levels of polyunsaturated 
fatty acids, especially omega-3 fatty acids, 
recent research on the nutritional characteristics 
of shellfish from the Bulgarian coast showed 
high values of unsaturated fatty acids, high 
protein, and high fat-soluble vitamin content 
and how shellfish may provide health benefits 
for local populations (Merdzhanova et al., 2017; 
Stancheva et al., 2017; Merdzhanova et al., 2021; 
Panayotova et al., 2021). 

Data on changes in different biological tools 
due to aquatic pollution is limited. Gorinstein et 
al. (2003) studied antioxidants in M. 

galloprovincialis as an indicator of Black Sea 
coastal pollution. Ganchev et al. (2012) tested in 
laboratory conditions how some spirohydan-
toins and their derivatives affected the mortality 
rate of M. galloprovincialis. Yakimov et al. (2018) 
estimated the pro/antioxidant status of M. 
galloprovincialis from different Bulgarian Black 
Sea coastal area sites and studied the oxidative 
stress levels to indicate stressful environmental 
conditions. In their recent study, Yakimov et al. 
(2020) further investigated the oxidative stress 
in different Bulgarian Black Sea bivalves - 
Chamelea gallina, D. trunculus, M. galloprovin-
cialis, and their bioindicator potential. So did 
Nikolova et al. (2018) and Tsvetanova et al. 
(2022), but they investigated oxidative stress 
regarding seasonal changes. Nechev et al. (2006) 
and Nechev et al. (2007) followed the lipid and 
sterol changes due to the effect of cobalt ions on 
M. galloprovincialis. Peteva et al. (2018b) 
analyzed the marine toxin levels along the Black 
Sea food chain (phytoplankton and mussels). 
They discussed the metabolic changes they 
could undergo as they moved to higher trophic 
levels and assessed the potential human risk. In 
2017 Vasileva et al. applied the Comet assay as a 
sensitive tool for genotoxicity assessment of 
environmental stress in M. galloprovincialis from 
the Bulgarian Black Sea coast.  

 
Other species as potential bioindicators 

for aquatic pollution in the Black Sea in 
Bulgaria 

Even though most of the results suggest 
that Mytilus spp. are probably the most suitable 
mollusk bioindicators, including for the 
assessment of microplastic pollution, not only in 
Bulgaria, but worldwide (Jamil et al., 1999; 
Beyer et al., 2017; Li et al., 2018, 2019; Monteiro 
et al., 2019; Gunaalan et al., 2020; Li et al., 2021; 
Abelouah et al., 2023; Xu et al., 2023) there are 
other species, which might need to be studied too.  

Petrova-Pavlova (2014) describes that the 
sand mussel (Mya arenaria Linnaeus, 1758) is 
invasive species for Black Sea, which originates 
from the northern part of the Atlantic Ocean. In 
the Black Sea it was transported, probably in 
larval stage in 1960s. Along the Bulgarian Black 
Sea coast this species is distributed everywhere, 
but the largest aggregations are observed in the 
south coastal area in front of estuaries and bay 
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aquatories. Anadaraina equivalvis (Bruguiere, 
1789) is an invasive bivalve of Indo-Pacific 
fauna, which was first found in the Black Sea in 
1968 and it has spread into the whole basin. The 
habitat of this clam is sandy-muddy bottoms 
between 3 to 15 m depth. Chamelea gallina 
(Linnaeus, 1758) is widely distributed in the 
Black Sea up to 25 meters, forming aggregations 
in the sublittoral zone of sandy ground. This 
species live buried in the sandy sediment at a 
depth of 15–20 cm and its life cycle is three years 
(Petrova-Pavlova, 2014). 

The veined rapa whelk (Rapana venosa 
Valenciennes, 1846) is a predatory invasive 
species from Asia. It was first detected in the 
Black Sea in 1947 and fed mainly on mussels (M. 
galloprovincialis). The veined rapa whelks are 
suitable for human consumption and are 
gathered by divers. Data suggests this species 
could also be used for environmental pollution 
biomonitoring (Bat et al., 2000; Bat & Öztekin, 
2015; Mülayim & Balkıs, 2015; Zhelyazkov et al., 
2018).  

The wedge clam (D. trunculus) inhabits fine 
sandy habitats of the upper littoral subzone and 
feeds by filtration on phytoplankton and 
suspended particulate matter. In the Bulgarian 
Black Sea coastal zone, D. trunculus usually 
dominates between 1.0 and 6.5 m depth, and is 
exposed to intense wave action and fluctuations 
of abiotic environmental factors (Gumus et al., 
2020). Although local people do not 
traditionally consume wedge clams, D. 
trunculus are increasingly being collected with 
dredges for export due to their high price at 
foreign markets (Gumus et al., 2020). In this 
regard, Georgieva et al. (2021) presented results 
on PAH accumulation in D. trunculus from the 
Bulgarian Black Sea Coast. Georgieva et al. 
(2021) assessed the state of the marine 
environment along the Bulgarian Black Sea 
Coast by analyzing the acetylcholinesterase 
activity in wedge clam too. Olivieri et al. (2022) 
reported the first results on the uptake of 
microplastics in wedge clams from the 
Mediterranean Sea.  

 
Conclusions 
More scientists, among them, biologists and 

chemists from Bulgaria, are starting to study the 
negative consequences of Black Sea pollution on 

various marine species - not only mollusks, but 
also different economically important fish 
species. Therefore, we strongly recommend the 
implementation of a multi-biomarker approach 
that combines successfully most of the indicated 
in this review biomarkers for better results, the 
application of mussel caging, as well as an 
exchange of collective experience. 
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