
ar
X

iv
:2

20
1.

03
07

8v
1 

 [
m

at
h.

O
C

] 
 9

 J
an

 2
02

2

Inverse optimization problems with multiple weight functions
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Abstract

We introduce a new class of inverse optimization problems in which an input solution is
given together with k linear weight functions, and the goal is to modify the weights by the
same deviation vector p so that the input solution becomes optimal with respect to each of
them, while minimizing ‖p‖1. In particular, we concentrate on three problems with multiple
weight functions: the inverse shortest s-t path, the inverse bipartite perfect matching, and
the inverse arborescence problems. Using LP duality, we give min-max characterizations
for the ℓ1-norm of an optimal deviation vector. Furthermore, we show that the optimal p
is not necessarily integral even when the weight functions are so, therefore computing an
optimal solution is significantly more difficult than for the single-weighted case. We also
give a necessary and sufficient condition for the existence of an optimal deviation vector
that changes the values only on the elements of the input solution, thus giving a unified
understanding of previous results on arborescences and matchings.

Keywords: inverse optimization, shortest path, bipartite matching, arborescence, min-max
theorem

1 Introduction

In classical inverse optimization problems, we are given a feasible solution to an underlying
optimization problem together with a linear weight function, and the goal is to modify the
weights as little as possible so that the input solution becomes optimal. Formally, let S be a
finite ground set, F ⊆ 2S be a collection of feasible solutions, F ∈ F be an input solution, and
w ∈ R

S be a weight function. We seek a ‘small’ vector p ∈ R
S, called deviation vector, such

that F is a minimum weight member of F with respect to w − p. There may be various ways
to measure the deviation of the new objective from the original one, the probably most natural
ones being the ℓ1-, ℓ2-, and ℓ∞-norms, or the weighted variants of those.

The problem admits numerous generalizations. In partial inverse optimization problems,
instead of fixing an input solution, two subsets of the ground set are given that represent
elements that required to be contained in and avoided by an optimal solution, respectively.
It is worth mentioning that adding such constraints often results in computationally difficult
problems [20, 28], but identifying the borderline between tractable and intractable cases is a
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challenging question. Another natural extension is to impose lower and upper bounds for the
coordinates of the desired deviation vector p [5, 11,22,29,31,33,37,39,40].

We propose yet another generalization that considers multiple underlying optimization prob-
lems at the same time. Instead of a single weight function, we are given k weight functions
w1, . . . , wk together with an input solution F , and our goal is to find a single vector p such that
F has minimum weight with respect to wi − p for all i ∈ [k]. Throughout the paper, we use
the ℓ1-norm to measure the optimality of p. In order to avoid confusion, we refer to solutions
of the inverse optimization problem as feasible deviation vectors, and simply as solutions to the
combinatorial structures that are solutions to the underlying optimization problem.

Previous work. Inverse optimization problems received substantial attention due to their
theoretical and practical value. They appear naturally in diverse applications, such as system
identification in seismic and medical tomography [6, 7, 34–36], parameter selection to force a
desired response in traffic modeling and network tolling [12, 13], and portfolio selection and
robust optimization [2, 21, 27, 38]. Burton and Toint [6, 7] were the first to discuss inverse
problems from an optimization point of view, concentrating on the inverse shortest path problem
with ℓ2-norm objective. Their initial work was followed by an extensive list of algorithms and
complexity results for other combinatorial structures, including but not limited to spanning
trees [22, 39, 40, 43], matchings [29, 30, 41, 42], arborescences [17, 25, 33], matroid intersection
[31,32], and polyhedral optimization [26]. For an early survey, see e.g. [24], while [10] discusses
recent developments.

A great majority of papers on inverse optimization focus on developing fast combinatorial
algorithms, but they do not provide a min-max characterization for the optimum value. Frank
and Hajdu [17] gave a min-max formula for the minimum modification of the weight function in
the inverse arborescence problem, as well as a conceptually simpler algorithm than previous ones.
Their approach is based on a min-max result and a two-phase greedy algorithm of Frank [16] on
kernel systems of directed graphs. In a recent work, Frank and Murota [18] developed a general
min-max formula for the minimum of an integer-valued separable discrete convex function, where
the minimum is taken over the set of integral elements of a box total dual integral polyhedron.
Their framework covers and even extends a wide class of inverse combinatorial optimization
problems. For example, the inverse arborescence problem with a single weight function fits in
their framework, though the proofs in [18] are not algorithmic.

It is worth mentioning that in the inverse arborescence problem, when the weight function w
takes integer values, the optimal p can be chosen to be integral. Despite the extensive literature
on inverse optimization, only few results are known when the desired deviation vector p is
required to be integral [1, 2, 4, 17]. It is not difficult to come up with an example showing that
the fractional and the integral optimal deviation vectors might be different. Even more, the
two problems are rather different in nature: while finding a strongly polynomial time algorithm
for the fractional inverse maximum weight perfect matching is a major open problem in inverse
optimization [30], the integral version was shown to be difficult, see [10].

We focus on three types of combinatorial structures. The first one is the inverse shortest s-t
path problem. In the single-weighted setting, the input consists of a directed graph D = (V,A),
two vertices s, t ∈ V , an s-t path P , a conservative weight function w : A → R, and the goal is
to find a p : A → R such that P becomes a minimum weight s-t path with respect to w − p,
and ‖p‖1 =

∑
a∈A |p(a)| is as small as possible. The problem and its variants were previously

studied e.g. in [1, 5, 9, 11,39,42].
The second problem is the inverse bipartite perfect matching problem. The input of this

problem is an undirected bipartite graph G = (S, T ;E), a perfect matchingM , a weight function
w : E → R, and the task is to find a p : E → R such that M becomes a minimum weight perfect
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matching with respect to the revised weight function w − p, and ‖p‖1 is as small as possible.
The problem was considered before in [1, 9, 11, 26, 42]. The generalization of the problem to
non-bipartite graphs is also of interest, see [29,30,37,41].

Finally, in the inverse arborescence problem, we are given a directed graph D = (V,A), a
spanning arborescence F ⊆ A with root r ∈ V , a weight function w : A → R, and the goal is to
find a p : A → R such that F becomes a minimum weight r-arborescence with respect to the
revised weight function w− p, and ‖p‖1 is as small as possible. This problem was also analyzed
before [9, 17,33].

Our results. We introduce the notion of inverse optimization problems with multiple weight
functions. Such a problem is characterized by a five-tuple (S,F , F, {wi}

k
i=1, ‖ · ‖1), where S is a

finite ground set, F ⊆ 2S is a collection of feasible solutions (not necessarily given explicitly),
F ∈ F is an input solution, w1, . . . , wk ∈ R

S are weight functions. A vector p ∈ R
S is called a

feasible deviation vector if F is a minimum weight member of F with respect to wi − p for all
i ∈ [k]. The goal is to find a feasible deviation p ∈ R

S minimizing ‖p‖1.
The problem is motivated by a question on dynamic pricing schemes in combinatorial mar-

kets, introduced by Cohen-Addad et al. in [8]. A central open question is whether optimal
social welfare is achievable through a dynamic pricing scheme when each valuation function is a
weighted matroid rank function [3]. In such a case, the pricing problem reduces to a matroidal
inverse optimization problem with multiple weight functions. The present paper focuses on
problems that are closely related to the matroidal setting.

Our main contributions are min-max characterizations for the ℓ1-norm of an optimal de-
viation vector in the inverse shortest s-t path, bipartite perfect matchings, and arborescences
problems with multiple weight functions. For s-t paths and bipartite perfect matchings, we
show that the problems can be solved using a linear programming based approach. For arbores-
cences, we show how to determine the optimum value of ‖p‖1 through LP duality. However, in
this case, finding an optimal deviation vector p remains an intriguing open problem. Further-
more, we show that the optimal p is not necessarily integral even when the weight functions
are so. Due to this fact, obtaining purely combinatorial algorithms for determining an optimal
deviation vector seems to be unlikely.

The paper is organized as follows. After describing the preliminaries in Section 2, we analyze
the characteristics of optimal deviation vectors in Section 3. We apply these results to the case
of shortest s-t paths, bipartite perfect matchings and arborescences in Sections 4, 5 and 6,
respectively.

2 Preliminaries

Basic notation. We denote the sets of real, nonnegative real, integer, and nonnegative integer
numbers by R, R+, Z, and Z+, respectively. For a positive integer k, we use [k] := {1, . . . , k}.
Given a ground set S and subsets X,Y ⊆ S, the difference of X and Y is denoted by X − Y .
If Y consists of a single element y, then X − {y} is abbreviated by X − y.

Let D = (V,A) be a directed graph with vertex set V and arc set A. We denote the numbers
of vertices and edges by n := |V | and m := |A|. For an arc a = uv, u and v are called the
tail and the head of a, respectively. An arc uv enters a subset Z of vertices if v ∈ Z, u /∈ Z.
For a subset F ⊆ A of arcs, the set of arcs in F entering Z is denoted by δ−F (Z), while the
in-degree of Z in F is d−F (Z) = |δ−F (Z)|. Similarly, uv leaves Z if v /∈ Z, u ∈ Z. The set of arcs
in F leaving Z is denoted by δ+F (Z), while the out-degree of Z in F is d+F (Z) = |δ+F (Z)|. In all
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cases, the subscript F is dismissed when F consists of the whole arc set. For a family F ⊆ 2V ,
a subset L of arcs covers F if d−L (Z) ≥ 1 for each Z ∈ F .

Let G = (V,E) be an undirected graph with vertex set V and edge set E. Given a set Z ⊆ V ,
the set of edges going between Z and V −Z is denoted by δ(Z). The degree |δ(Z)| of Z is then
denoted by d(Z). In particular, for a vertex v ∈ V , δ(v) is the set of edges incident on v.

Shortest paths. Let D = (V,A) be a digraph, s, t ∈ V be two vertices, and w : A → R be a
weight function. By a shortest s-t path we mean a directed path starting at s, ending at t, and
having minimum w-weight. The weight function w is called conservative if there is no directed
cycle of negative total weight. Duffin [14] gave a min-max characterization for the length of a
shortest s-t path when the weight function is conservative.

Theorem 1 (Duffin). Let D = (V,A) be a digraph, s, t ∈ V be two vertices, and w : A → R be
a conservative weight function. Then

min
{
w(P )

∣∣ P ⊆ A is an s-t path
}

= max
{
y(t)− y(s)

∣∣ y : V → R such that y(v)− y(u) ≤ w(uv) for all uv ∈ A
}
.

When w is integer-valued, then the optimal y can be chosen to be integer-valued.

Based on complementary slackness, one can read out the conditions for a path being optimal.
Namely, an s-t path P is shortest if and only if there exists a function y : V → R such that

(OPTP )
y(v)− y(u) = w(uv) for every uv ∈ P,

y(v)− y(u) ≤ w(uv) for every uv ∈ A− P.

Bipartite perfect matchings. Let G = (S, T ;E) be a bipartite graph and w : E → R be a
weight function. A matching is a set of edges such that no two edges share a common endpoint,
while a matching is perfect if it covers all the vertices of the graph. The minimum weight of a
perfect matching was characterized by Egerváry [15].

Theorem 2 (Egerváry). Let G = (S, T ;E) be a bipartite graph and w : E → R a weight
function. Then

min
{
w(M)

∣∣M ⊆ E is a perfect matching
}

= max
{∑

i∈S∪T y(i)
∣∣ y : S ∪ T → R such that y(u) + y(v) ≤ w(uv) for all uv ∈ E

}
.

When w is integer-valued, then the optimal y can also be chosen to be integer-valued.

Based on complementary slackness, one can read out the conditions for a perfect matching
being optimal. Namely, a perfect matching M has minimum weight if and only if there exists
a function y : S ∪ T → R such that

(OPTM )
y(v) − y(u) = w(uv) for every uv ∈ M,

y(v) − y(u) ≤ w(uv) for every uv ∈ E −M.

Arborescences. Let D = (V,A) be a directed graph. An arborescence is a directed tree in
which all but one vertex have in-degree 1, while the remaining vertex, called the root of the
arborescence, has in-degree 0. For a vertex r ∈ V , an r-arborescence is an arborescence rooted
at r. Assume now that w : A → R is a weight function defined on the arcs. The minimum
weight of an r-arborescence was characterized by Fulkerson [19].1

1Fulkerson’s theorem is usually stated for non-negative weight functions. However, as each r-arborescence has
the same size (i.e. the number of vertices minus one), the theorem for general weights follows by shifting the
weights on each arc by the same value.
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Theorem 3 (Fulkerson). Let D = (V,A) be digraph, r ∈ V be a vertex, and w : A → R be a
weight function. Then

min
{
w(F )

∣∣ F ⊆ A is an r-arborescence
}

= max





∑

∅6=Z⊆V−r

y(Z)

∣∣∣∣∣∣∣
y : 2V−r → R such that

∑

Z⊆V−r:
a∈δ−(Z)

y(Z) ≤ w(a) for all a ∈ A,

y(Z) ≥ 0 for all Z ⊆ V with |Z| > 1





.

When w is integer-valued, then the optimal y can be chosen to be integer-valued.

Based on complementary slackness, one can read out the conditions for an r-arborescence
being optimal. Namely, an r-arborescence F has minimum weight if and only if there is a
function y : 2V−r → R such that

(OPTA)

∑

Z⊆V−r:
a∈δ−(Z)

y(Z) = w(a) for every a ∈ F ,

∑

Z⊆V−r:
a∈δ−(Z)

y(Z) ≤ w(a) for every a ∈ A− F ,

y(Z) ≥ 0 for every Z ⊆ V − r with |Z| > 1 and d−F (Z) = 1,

y(Z) = 0 for every Z ⊆ V − r with |Z| > 1 and d−F (Z) > 1.

3 Mildly adequate deviation vectors

Consider a general inverse optimization problem (S,F , F, {wi}
k
i=1, ‖ · ‖1). A feasible deviation

vector p is called adequate if p(s) ≥ 0 for all s ∈ F and p(s) ≤ 0 for all s ∈ S − F . If, in
addition, wi ≥ 0 and wi − p ≥ 0 hold for all i ∈ [k] and p(s) = 0 holds for all s ∈ S − F , then p
is called strongly adequate. It is not difficult to see that an optimal deviation vector is always
adequate. The following technical lemma provides an easy lower bound for the ℓ1-norm of any
feasible deviation vector.

Lemma 4. Given an inverse optimization problem (S,F , F, {wi}
k
i=1, ‖ · ‖1), let p be an opti-

mal deviation vector. Furthermore, let F ′
i be an optimal solution to the underlying wi-weight

optimization problem for i ∈ [k]. Then

‖p‖1 ≥ max
i∈[k]

{
wi(F )−wi(F

′
i )
}
.

Proof. By the above, we may assume that p is adequate. Since p is feasible,

(wi − p)(F ) ≤ (wi − p)(F ′
i )

holds for each i ∈ [k]. Thus, by the adequateness of p, we get

wi(F )− wi(F
′
i ) ≤ p(F )− p(F ′

i ) ≤ p(F )− p(S − F ) = ‖p‖1,

and the lemma follows.
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The existence of strongly adequate optimal deviations was settled in various settings when a
single weight function is given, see [17] for an example. However, with multiple weight functions,
ensuring the non-negativity after the modification is more difficult. Intuitively, if wi(s) is small
and wj(s) is large for some s ∈ F , then it might happen that the weight of s has to be decreased
significantly in every optimal deviation vector, resulting in wi(s)− p(s) being negative.

To overcome this, we introduce a notion that lies between adequateness and strongly ad-
equateness in strength. We call a feasible deviation vector p mildly adequate if it is adequate
and p(s) = 0 holds for all s ∈ S − F . That is, a mildly adequate feasible deviation vector is
non-negative and changes the weights only on the elements of the input solution. Our first result
is a structural characterization of the existence of mildly adequate optimal deviation vectors.

Theorem 5. An inverse optimization problem (S,F , F, {wi}
k
i=1, ‖·‖1) admits a mildly adequate

optimal deviation vector p for every choice of the weight functions w1, . . . , wk if and only if for
any e ∈ S − F , there exists f ∈ F such that |F ′ ∩ {e, f}| ≤ 1 for every F ′ ∈ F .

Proof. To see the ‘if’ direction, take an adequate optimal deviation vector p′ for which the
number of elements e ∈ S − F with p′(e) < 0 is minimal. If there exists no such element at all,
then p′ is mildly adequate and we are done. Hence assume that p′(e) < 0 for some e ∈ S − F .
Let f ∈ F be an element such that |F ′ ∩ {e, f}| ≤ 1 for every F ′ ∈ F . Define

p(s) =





0 if s = e,

p′(f)− p′(e) if s = f ,

p′(s) otherwise.

We claim that F is a minimum weight member of F with respect to wi − p for each i ∈ [k].
Indeed, for any F ′ ∈ F we have

wi(F )− p(F ) = wi(F )−
(
p′(F )− p′(e)

)

≤ wi(F
′)− p′(F ′) + p′(e)

≤ wi(F
′)− p(F ′),

where the last inequality holds by |F ′ ∩ {e, f}| ≤ 1. Observe that ‖p‖1 = ‖p′‖1, but
∣∣{s ∈

S − F : p(s) < 0}
∣∣ <

∣∣{s ∈ S − F : p′(s) < 0}
∣∣, contradicting the choice of p′.

We prove the ‘only if’ direction by constructing a special weight function. Assume that the
condition fails, that is, there is an e ∈ S − F such that for any f ∈ F there exists Ff ∈ F with
e, f ∈ Ff . Consider the weight function w that assigns 0 to all elements of S − e and assigns
−1 to e. It is not difficult to see that

w(F ′) =

{
−1 if e ∈ F ′,

0 if e /∈ F ′

holds for any F ′ ∈ F . In particular, w(F ) = 0, therefore ‖p‖1 ≥ 1 holds for any feasible
deviation vector p by Lemma 4. Clearly,

p∗(s) =

{
−1 if s = e,

0 otherwise

is a feasible deviation vector, which, in addition, is optimal as ‖p∗‖1 = 1. Let p be a mildly
adequate feasible deviation vector and let f ∈ F be an element so that p(f) > 0 – note that such
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an element must exist by ‖p‖1 ≥ 1. Suppose to the contrary that p is optimal, i.e., ‖p‖1 = 1.
Then (w − p)(F ) = −1, but

(w − p)(Ff ) = w(Ff )− p(Ff ) = −1− p(Ff ) ≤ −1− p(f) < −1,

a contradiction.

Remark 6. Though the condition of Theorem 5 might seem to be rather artificial, it is satisfied
in fundamental inverse optimization problems. When F consists of all r-arborescences of a
directed graph D = (V,A) where the in-degree of r is 0, then for an arc e ∈ A−F the arc f ∈ F
sharing the same head vertex is a proper choice. When F consists of all perfect matchings of a
(not necessarily bipartite) graph G = (V,E), then for an edge e ∈ E − F any of the two edges
in F incident to the end-vertices of e is a proper choice. If the members of F are the bases of
a partition matroid2 M , then for an element e ∈ S − F the element f ∈ F being in the same
partition class as e is a proper choice. On the other hand, it is not difficult to see that the
theorem cannot be applied for the inverse shortest s-t path problem in general. Interestingly,
however, if we restrict ourselves to a single conservative weight function, then one can still find
a mildly adequate deviation vector, see Theorem 7.

Note that neither Lemma 4 nor Theorem 5 hold for arbitrary norms. To see this, let
S = {s1, s2, s3}, F =

{
{s1}, {s2, s3}

}
, F = {s1}, w(s1) = 1, w(s2) = w(s3) = 0, and consider

the ℓ∞-norm. It is not difficult to see that F ∗ := {s2, s3} is a minimum w-weight solution with
w(F ∗) = 0 and p∗ = (0,−1/2,−1/2) is an optimal deviation vector. Clearly, ‖p∗‖∞ = 1/2,
while w(F ) − w(F ∗) = 1. Moreover, even though for any e ∈ S − F there exists f ∈ F such
that |F ′∩{e, f}| ≤ 1 for every F ′ ∈ F , there exists no mildly adequate optimal deviation vector
since the ℓ∞-norm of any such vector is at least 1.

4 Inverse shortest path problem

In this section, we consider the inverse shortest s-t path problem. As a warm-up, we explain
how to solve the problem for one conservative weight function. Then we give a min-max char-
acterization for the case of multiple conservative weight functions. In the case of multiple
conservative weight functions, we show that there does not necessarily exist a mildly adequate
optimal deviation vector, contrary to the case when only a single weight function is given.

4.1 Inverse shortest path problem with one weight function

The inverse shortest s-t path problem with a single conservative weight function and ℓ1-norm
was solved in [23]. Nevertheless, in order to make the paper self-contained, we repeat the
corresponding min-max theorem together with its algorithmic proof.

Theorem 7 (Hajdu). Let D = (V,A) be a digraph, s, t ∈ V be two vertices, P ⊆ A be an s-t
path, and w : A → R be a conservative weight function. Then

min
{
‖p‖1

∣∣ P is a shortest s-t path with respect to w − p
}

= max
{
w(P ) −w(P ′)

∣∣ P ′ ⊆ A is an s-t path}.

Moreover, there always exists a mildly adequate optimal deviation vector p, which, in addition,
can be chosen to be integer-valued when w is integer-valued.

2A partition matroid is a matroid M = (S,B) with family of bases B =
{

X ⊆ S : |X ∩ Si| = 1 for all i ∈ [q]
}

for some partition S = S1 ∪ · · · ∪ Sq .
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Figure 1: An example showing that a mildly adequate optimal deviation vector does not necessarily exist when w

is not conservative. Thick edges denote the input path P , while the numbers denote the weights of the arcs. For
any mildly adequate feasible deviation vector p, p(sc) ≥ 1 and p(ct) ≥ 1 must hold, implying ‖p‖1 ≥ 2. However,
setting p∗(ab) := −1 and p∗(e) := 0 for all e ∈ A− ab results in a feasible deviation vector with ‖p∗‖1 = 1.

Proof. Let P ′ ⊆ A be a shortest s-t path with respect to w. By Lemma 4, ‖p‖1 ≥ w(P )−w(P ′)
holds for any feasible deviation vector p, showing min ≥ max.

To see the reverse inequality, recall that the shortest s-t path problem can be formulated as

min
∑

uv∈A

w(uv)x(uv)

s. t.
∑

uv∈δ−(v)

x(uv)−
∑

vu∈δ+(v)

x(vu) =





−1 if v = s,
1 if v = t,
0 otherwise,

x(uv) ≥ 0 ∀uv ∈ A.

The dual program is
min y(t)− y(s)

s. t. y(v)− y(u) ≤ w(uv) ∀uv ∈ A.
(1)

Let P ′ ⊆ A be a shortest path with respect to w, and y be an optimal solution to the dual
problem (1). Define

p(uv) =

{
w(uv) −

(
y(v)− y(u)

)
if uv ∈ P ,

0 otherwise.

By (OPTP ), P is a shortest s-t path with respect to w− p, i.e., p is a feasible deviation vector.
By the constraints of the dual program (1), p is mildly adequate. Hence

‖p‖1 =
∑

uv∈A

∣∣p(uv)
∣∣

=
∑

uv∈P

w(uv) −
(
y(v)− y(u)

)

= w(P )−
(
y(t)− y(s)

)

= w(P )− w(P ′),

where the last equality follows by strong duality. Therefore min = max holds. When w is
integer-valued, then the optimal dual solution y can also be chosen to be integer-valued by
Theorem 1, proving the second half of the theorem.

Remark 8. When w is not conservative, there does not necessarily exist a mildly adequate
optimal deviation vector; for an example, see Figure 1.
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s t

a b

c

(0,0)

(0,1)

(1,1)

(0,1) (1,0)(1,0)

(1,1)

Figure 2: An example showing that a mildly adequate optimal deviation vector does not necessarily exist for
more than one conservative weight functions. Thick edges denote the input path P , while the numbers denote
the weights w1 and w2 of the arcs. For any mildly adequate feasible deviation vector p, p(sc) ≥ 1 and p(ct) ≥ 1
must hold, implying ‖p‖1 ≥ 2. However, setting p∗(ab) := −1 and p∗(e) := 0 for all e ∈ A − ab results in a
feasible deviation vector with ‖p∗‖1 = 1.

4.2 Inverse shortest path problem with multiple weight functions

Our goal is to give a min-max formula for the inverse shortest s-t path problem with multiple
conservative weight functions. Recall that, in such a problem, conservative weight functions
w1, . . . , wk : A → R are given, and the goal is to find a deviation vector p : A → R such that
the given s-t path P becomes a shortest s-t path with respect to the revised weight functions
w1 − p, . . . , wk − p, while ‖p‖1 is minimized.

Unlike in the single-weighted setting, the multiple-weighted variant does not always admit
a mildly adequate optimal solution; for an example, see Figure 2. However, when the input
s-t path P is Hamiltonian, Theorem 5 applies. Indeed, an optimal deviation vector does not
change the values on arcs whose head vertex is s, while for an arc e ∈ A− P with head vertex
different from s the arc f ∈ P sharing the same head vertex is a proper choice, implying the
existence of a mildly adequate optimal deviation vector.

The following theorem provides a min-max characterization of the optimum value.

Theorem 9. Let D = (V,A) be a directed graph, s, t ∈ V be two vertices, w1, . . . , wk : A → R

be conservative weight functions, and P ⊆ A be an s-t path. Then

min
{
‖p‖1

∣∣ P is a shortest s-t path with respect to w1 − p, . . . , wk − p
}

= max




∑

i∈[k]

wi(P )−
∑

i∈[k]

∑

a∈A

wi(a)xi(a)

∣∣∣∣∣∣

x = (x1, . . . , xk) is a multi-commodity s-t
flow with total flow value at most 1 on each
a ∈ A−P and at least k− 1 on each a ∈ P



 .

Moreover, both an optimal deviation vector p and multi-commodity flow x can be determined in
polynomial time.

Proof. By Theorem 1 and by (OPTP ), the inverse shortest s-t path problem with one weight
function w can be formulated as

min
∑

uv∈A

∣∣p(uv)
∣∣

s. t. y(v)− y(u) = w(uv)− p(uv) ∀uv ∈ P,

y(v)− y(u) ≤ w(uv)− p(uv) ∀uv ∈ A− P.

Since the objective is to minimize the ℓ1-norm of p and any optimal deviation vector is adequate,

9



this can be reformulated as

min
∑

uv∈P

p(uv)−
∑

uv∈A−P

p(uv)

s. t. y(v)− y(u) + p(uv)≥ w(uv) ∀uv ∈ P,

y(v)− y(u) + p(uv)≤ w(uv) ∀uv ∈ A− P,

p(uv)≥ 0 ∀uv ∈ P,

p(uv)≤ 0 ∀uv ∈ A− P.

Thus the inverse shortest s-t path problem with multiple weight functions can be formulated as

(2)

min
∑

uv∈P

p(uv)−
∑

uv∈A−P

p(uv)

s. t. yi(v)− yi(u) + p(uv)≥ wi(uv) ∀uv ∈ P, ∀i ∈ [k],

yi(v)− yi(u) + p(uv)≤ wi(uv) ∀uv ∈ A− P, ∀i ∈ [k],

p(uv)≥ 0 ∀uv ∈ P,

p(uv)≤ 0 ∀uv ∈ A− P.

The dual of this problem is

max
∑

i∈[k]

∑

a∈P

wi(a) x̂i(a)−
∑

i∈[k]

∑

a∈A−P

wi(a) x̂i(a)

s. t.
∑

a∈δ−
P
(v)

x̂i(a)−
∑

a∈δ+
P
(v)

x̂i(a)−
∑

a∈δ−
A−P

(v)

x̂i(a) +
∑

a∈δ+
A−P

(v)

x̂i(a)= 0 ∀v ∈ V, ∀i ∈ [k],

∑

i∈[k]

x̂i(a) + z(a)= 1 ∀a ∈ P,

−
∑

i∈[k]

x̂i(a)− z(a)=−1 ∀a ∈ A−P,

x̂i(a)≥ 0 ∀a ∈ A, ∀i ∈ [k],

z(a)≥ 0 ∀a ∈ A.

Let us define xi(a) := 1−x̂i(a) for all a ∈ P , and xi(a) := x̂i(a) otherwise for all i ∈ [k]. Observe
that we can drop the variables z(a) and write inequalities in the last two equations instead.
Furthermore, whenever a ∈ P , the inequality x̂i(a) ≥ 0 transforms into xi(a) ≤ 1, while the
equation

∑
i∈[k] x̂i(a) + z(a) = 1 becomes

∑
i∈[k] xi(a) ≥ k − 1; these together imply xi(a) ≥ 0.

On the other hand, once xi(a) ≥ 0 is assumed for each a ∈ P , the inequality xi(a) ≤ 1 becomes
redundant. Indeed, xi is an s-t flow of value 1, hence it can be decomposed into path-flows
of total value 1 and cycles. If xi(a) > 1 for some a ∈ P , then a is necessarily contained in
one of the cycles. As w is conservative, the flow values can be decreased on the cycle without

10
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Figure 3: An example showing that an integer-valued optimal deviation vector does not necessarily exist for more
than one conservative weight functions. Thick edges denote the input path P , while the numbers denote the
weights w1 and w2 of the arcs. One can check that ‖p‖1 ≥ 2 for any integer feasible deviation vector p. However,
setting p∗(sa) := −0.5, p∗(ab) := −0.5, p∗(ct) := 0.5 and p∗(e) := 0 for all other arcs e results in a feasible
deviation vector with ‖p∗‖1 = 1.5.

decreasing the objective value. Therefore the above system is equivalent to

(3)

max
∑

i∈[k]

wi(P )−
∑

i∈[k]

∑

a∈A

wi(a)xi(a)

s. t.
∑

a∈δ−(v)

xi(a)−
∑

a∈δ+(v)

xi(a)= 0 ∀v ∈ V − {s, t}, ∀i ∈ [k],

∑

a∈δ−(s)

xi(a)−
∑

a∈δ+(s)

xi(a)= −1 ∀i ∈ [k],

∑

a∈δ−(t)

xi(a)−
∑

a∈δ+(t)

xi(a)= 1 ∀i ∈ [k],

∑

i∈[k]

xi(a)≥ k − 1 ∀a ∈ P,

∑

i∈[k]

xi(a)≤ 1 ∀a ∈ A− P,

xi(a)≥ 0 ∀a ∈ A, ∀i ∈ [k].

That is, (x1, . . . , xk) is a multi-commodity s-t flow with total flow value at most 1 on each
a ∈ A−P and at least k− 1 on each a ∈ P , and min = max follows by strong duality. As both
the primal problem (2) and its dual (3) have small sizes, one can find an optimal p and x in
polynomial time through linear programming.

Remark 10. Problems (2) and (3) do not necessarily have integer optimal solutions, not even
if the weight functions w1, . . . , wk are integer-valued; for an example, see Figure 3.

5 Inverse bipartite perfect matching problem

In this section, we consider the inverse bipartite perfect matching problem. Similarly to shortest
paths, first we study the case of one weight function, then we present a min-max theorem for
the case of multiple weight functions.

11



5.1 Inverse bipartite perfect matching problem with one weight function

The inverse bipartite perfect matching problem with a single weight function and ℓ1-norm was
solved in [23]. Again, we repeat the corresponding min-max theorem with its algorithmic proof.

Theorem 11 (Hajdu). Let G = (S, T ;E) be a bipartite graph, M ⊆ E be a perfect matching,
and w : E → R be a weight function. Then

min
{
‖p‖1

∣∣M is a minimum weight perfect matching with respect to w − p
}

= max
{
w(M)− w(M ′)

∣∣M ′ ⊆ E is a perfect matching}.

Moreover, there always exists a mildly adequate optimal deviation vector p, which, in addition,
can be chosen to be integer-valued when w is integer-valued.

Proof. Let M ′ ⊆ E be a minimum weight perfect matching with respect to w. By Lemma 4,
‖p‖1 ≥ w(M) − w(M ′) holds for any feasible deviation vector p, showing min ≥ max.

To see the reverse inequality, recall that the minimum weight bipartite perfect matching
problem can be formulated as

min
∑

e∈E

w(e)x(e)

s. t.
∑

e∈δ(v)

x(e) = 1 ∀v ∈ S ∪ T,

x(e) ≥ 0 ∀e ∈ E.

The dual program is

(4)
max

∑

v∈S∪T

y(v)

s. t. y(u) + y(v) ≤ w(uv) ∀uv ∈ E.

Let M ′ ⊆ E be a minimum weight perfect matching with respect to w, and y be an optimal
solution to the dual problem (4). Define

p(uv) =

{
w(uv)−

(
y(u) + y(v)

)
if uv ∈ M ,

0 otherwise.

By (OPTM ), M is a minimum weight perfect matching with respect to w−p, i.e., p is a feasible
deviation vector. By the constraints of the dual program (4), p is mildly adequate. Hence

‖p‖1 =
∑

uv∈E

∣∣p(uv)
∣∣

=
∑

uv∈M

w(uv) −
(
y(u) + y(v)

)

= w(M)−
∑

v∈S∪T

y(v)

= w(M)− w(M ′),

where the last equality follows by strong duality. Therefore min = max holds. When w is
integer-valued, then the optimal dual solution y can also be chosen to be integer-valued by
Theorem 2, proving the second half of the theorem.
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5.2 Inverse bipartite perfect matching problem with multiple weight func-

tions

Our goal is to give a min-max formula for the inverse bipartite perfect matching problem
with multiple weight functions. Recall that, in such a problem, weight functions w1, . . . , wk :
E → R are given, and the goal is to find a deviation vector p : E → R such that the given
perfect matching becomes a minimum weight perfect matching with respect to the revised weight
functions w1 − p, . . . , wk − p, while ‖p‖1 is minimized.

The following theorem provides a min-max characterization of the optimum value.

Theorem 12. Let G = (S, T ;E) be a bipartite graph, w1, . . . , wk : E → R be weight functions,
and M ⊆ E be a perfect matching. Then

min
{
‖p‖1

∣∣M is a minimum weight perfect matching with respect to wi − p for i ∈ [k]
}

= max




∑

i∈[k]

(
wi(M)−

∑

e∈E

wi(e)xi(e)

)∣∣∣∣∣∣
x1, . . . , xk are fractional perfect matchings cov-
ering each e ∈ M at least k − 1 times in total



.

Moreover, both an optimal deviation vector p and set of fractional perfect matchings x1, . . . , xk
can be determined in polynomial time.

Proof. As explained in Remark 6, there always exists a mildly adequate optimal deviation
vector. Based on this observation, Egerváry’s theorem (Theorem 2) and (OPTM ), the inverse
bipartite perfect matching problem with multiple weight functions can be formulated as

(5)

min
∑

uv∈M

p(uv)

s. t. yi(u) + yi(v) + p(uv)≥ wi(uv) ∀uv ∈ M, ∀i ∈ [k],

yi(u) + yi(v)≤ wi(uv) ∀uv ∈ E −M, ∀i ∈ [k],

p(uv)≥ 0 ∀uv ∈ M.

After applying a variable transformation similar to the case of the s-t path problem (i.e. writing
up the dual problem with variables x̂i(e) for i ∈ [k] and e ∈ E, and then setting xi(e) := 1−x̂i(e)
for e ∈ M and xi(e) := x̂i(e) otherwise), the dual program is equivalent to

(6)

max
∑

i∈[k]

wi(M)−
∑

i∈[k]

∑

e∈E

wi(e)xi(e)

s. t.
∑

e∈δ(v)

xi(e)= 1 ∀v ∈ S ∪ T, ∀i ∈ [k],

∑

i∈[k]

xi(e)≥ k − 1 ∀e ∈ M,

xi(e)≥ 0 ∀e ∈ E, ∀i ∈ [k].

That is, x1, . . . , xk correspond to fractional matchings that cover every e ∈ M at least k − 1
times in total, and min = max follows by strong duality. As both the primal problem (5) and
its dual (6) have small sizes, one can find an optimal p and x in polynomial time through linear
programming.

Remark 13. Problems (5) and (6) do not necessarily have integer optimal solutions, not even
if the weight functions w1, . . . , wk are integer-valued; for an example, see Figure 4.
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Figure 4: An example showing that an integer-valued optimal deviation vector does not necessarily exist for more
than one weight functions. Thick edges denote the input perfect matching M , while the numbers denote the
weights w1 and w2 of the edges. One can check that ‖p‖1 ≥ 2 holds for any feasible integer deviation vector p.
However, setting p∗(a1b1) := 0.5, p∗(a2b2) := 0.5, p∗(a3b3) := 0.5 and p∗(e) := 0 for all other edges e results in a
feasible deviation vector with ‖p∗‖1 = 1.5.

6 Inverse arborescence problem

In this section, we consider the inverse arborescence problem. Again, first we study the case
of one weight function, then we present a min-max theorem for the case of multiple weight
functions.

6.1 Inverse arborescence problem with one weight function

The inverse arborescence problem with one nonnegative weight function and ℓ1-norm was re-
cently solved by Frank and Hajdu [17]. They gave a min-max result and a two-phase greedy
algorithm for determining an optimal deviation vector which is, in addition, strongly adequate.

Theorem 14 (Frank and Hajdu). Let D = (V,A) be a digraph, r ∈ V be a vertex with in-degree
0, F ⊆ A be an r-arborescence, and w : A → R+ be a weight function. Then

min
{
‖p‖1

∣∣ F is a minimum (w − p)-weight r-arborescence
}

= max
{
w(F ) − w(L)

∣∣ L ⊆ A, L is a cover of F
}
,

where F :=
{
Z ⊆ V − r

∣∣ d−F (Z) = 1
}
. Moreover, there always exists a strongly adequate

optimal deviation vector p, which, in addition, can be chosen to be integer-valued when w is
integer-valued.

Assuming the weight function to be nonnegative is not restrictive as the weights can be
shifted by the same value resulting in an equivalent problem, hence the algorithm of [17] can
be applied for arbitrary weight functions. Nevertheless, the min-max relation does not hold
anymore as every edge of negative weight is worth adding to L. One can observe that, in
Theorem 14, L can be chosen to be an inclusionwise minimal cover of F due to the nonnegativity
of w. With this extra constraint, the min-max result extends to the arbitrary weights setting.
In what follows, we give a new, LP based proof of a weakening of Theorem 14 where fractional
minimal covers are considered instead of integer ones. In this sense, a fractional cover of F is
minimal if its total value is |V | − 1.
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Theorem 15 (Frank and Hajdu). Let D = (V,A) be a digraph, r ∈ V a vertex with in-degree
0, F ⊆ A an r-arborescence, and w : A → R a weight function. Then

min
{
‖p‖1

∣∣ F is a minimum weight r-arborescence with respect to w − p
}

= max
{
w(F ) −

∑
a∈A w(a)x(a)

∣∣ x is a minimal fractional cover of F
}
,

where F :=
{
Z ⊆ V − r

∣∣ d−F (Z) = 1
}
. Moreover, there always exists a mildly adequate optimal

deviation vector p.

Proof. As mentioned in Remark 6, there always exists a mildly adequate deviation vector for the
inverse arborescence problem. Using this, Theorem 3, and (OPTA), the inverse arborescence
problem with one weight function can be formulated as

min
∑

a∈F

p(a)

s. t.
∑

Z∈F :
a∈δ−(Z)

y(Z) + p(a) = w(a) ∀a ∈ F,

∑

Z∈F :
a∈δ−(Z)

y(Z) ≤ w(a) ∀a ∈ A− F,

y(Z) ≥ 0 ∀Z ∈ F ′

p(a) ≥ 0 ∀a ∈ F,

where F :=
{
Z ⊆ V − r

∣∣ d−F (Z) = 1
}
and F ′ :=

{
Z ⊆ V − r

∣∣ |Z| > 1, d−F (Z) = 1
}
. After

applying a variable transformation similar to the case of the s-t path problem (i.e. writing up
the dual problem with variables x̂(a) for a ∈ A, and then setting x(a) := 1 − x̂(a) for a ∈ F
and x(a) := x̂(a) otherwise), the dual program is equivalent to

(7)

max w(F )−
∑

a∈A

w(a)x(a)

s. t.
∑

a∈δ−(Z)

x(a) ≥ 1 ∀Z ∈ F ′,

∑

a∈δ−(v)

x(a) = 1 ∀v ∈ V − r,

x(a) ≥ 0 ∀a ∈ A.

Therefore, by strong duality, it suffices to show that an optimal solution x of (7) corresponds
to a minimal fractional cover of F . This follows from the fact that

∑
a∈δ−(v) x(a) = 1 for all

v ∈ V − r implies x(A) = |V | − 1 as the in-degree of r is 0 by assumption.

6.2 Inverse arborescence problem with multiple weight functions

Our goal is to give a min-max formula for the inverse arborescence problem with multiple weight
functions. Recall that, in such a problem, weight functions w1, . . . , wk : A → R are given, and
the goal is to find a deviation vector p : A → R such that the given arborescence becomes a
minimum weight r-arborescence with respect to the revised weight functions w1−p, . . . , wk−p,
while ‖p‖1 is minimized. Similarly to the previous section, we denote by F :=

{
Z ⊆ V − r

∣∣
d−F (Z) = 1

}
and F ′ :=

{
Z ⊆ V − r

∣∣ |Z| > 1, d−F (Z) = 1
}
.

The following theorem provides a min-max characterization of the optimum value.
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Theorem 16. Let D = (V,A) be a digraph, r ∈ V be a vertex with in-degree 0, w1, . . . , wk :
A ⊆ R be weight functions, and F ⊆ A be an r-arborescence. Then

min
{
‖p‖1

∣∣ F is a minimum weight r-arborescence with respect to wi − p for i ∈ [k]
}

= max




∑

i∈[k]

(
wi(F )−

∑

a∈A

wi(a)xi(a)

) ∣∣∣∣∣∣

x1, . . . , xk ⊆ A are minimal fractional
covers of F covering each a ∈ F at
least k − 1 times in total



 .

Moreover, an optimal set of fractional covers x1, . . . , xk can be determined in polynomial time.

Proof. The LP formulation of the inverse arborescence problem with multiple weight functions
can be obtained analogously to the case of a single weight function.

(8)

min
∑

a∈A

p(a)

s. t.
∑

Z∈F :
a∈δ−(Z)

yi(Z) + p(a) ≥ wi(a) ∀a ∈ F, ∀i ∈ [k],

∑

Z∈F :
a∈δ−(Z)

yi(Z) ≤ wi(a) ∀a ∈ A− F, ∀i ∈ [k],

yi(Z) ≥ 0 ∀Z ∈ F ′, ∀i ∈ [k],

p(a) ≥ 0 ∀a ∈ F.

The dual program is equivalent to

(9)

max
∑

i∈[k]

wi(F )−
∑

i∈[k]

∑

a∈A

wi(a)xi(a)

s. t.
∑

a∈δ−(Z)

xi(a) ≥ 1 ∀Z ∈ F ′, ∀i ∈ [k],

∑

a∈δ−(v)

xi(a) = 1 ∀v ∈ V − r, ∀i ∈ [k],

∑

i∈[k]

xi(a) ≥ k − 1 ∀a ∈ F,

xi(a) ≥ 0 ∀a ∈ A, ∀i ∈ [k].

That is, x1, . . . , xk correspond to minimal fractional covers of F covering each a ∈ F at least
k− 1 times in total, where the minimality follows from the equality constraints on the vertices.
Therefore min = max follows by strong duality.

Unfortunately, Problems (8) and (9) have exponential numbers of variables and constraints,
respectively. However, the dual program can be solved in polynomial time as the separation
problem is solvable. Indeed, given x1, . . . , xk, the dual constraints are obvious to check, except
for ∑

a∈δ−(Z)

xi(a) ≥ 1 ∀Z ∈ F ′, ∀i ∈ [k].

The next claim helps us to verify such constraints.
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Claim 17. A vector x ∈ R
A
+ is a feasible solution of

∑

a∈δ−(Z)

x(a) ≥ 1 ∀Z ∈ F ′,(10)

∑

a∈δ−(v)

x(a) = 1 ∀v ∈ V − r,(11)

if and only if

∑

a∈δ−(Z)

x̃(a) ≥ 2 ∀Z ⊆ V − r, |Z| > 1,(12)

∑

a∈δ−(v)

x̃(a) = 2 ∀v ∈ V − r(13)

hold for x̃ := x+ χF , where χF is the characteristic vector of the input r-arborescence F .

Proof. First, assume that x ∈ R
A
+ satisfies (10) and (11). Take an arbitrary set Z ⊆ V − r with

|Z| > 1. If Z ∈ F ′, then by the definition of F ′,

∑

a∈A:
a∈δ−(Z)

x̃i(a) =
∑

a∈A:
a∈δ−(Z)

xi(a) + 1 ≥ 1 + 1 = 2.

If Z /∈ F ′, then d−F (Z) ≥ 2 since F is an r-arborescence, thus (12) clearly holds. Finally, if
Z = {v} for some v ∈ V − r, then (13) holds by (11) and d−F (v) = 1.

To see the reverse implication, assume that (12) and (13) hold for x̃. By definition, d−F (Z) = 1
for any Z ∈ F ′ and d−F (v) = 1 for any v ∈ V − r, implying both (10) and (11).

By Claim 17, checking the remaining constraints for xi is equivalent to deciding whether
there exists an r-v flow of value 2 in D with capacity function xi+χF for each v ∈ V − r, which
can be checked in polynomial time. This finishes the proof of the theorem.

It remains an interesting open problem whether an optimal deviation vector p can be deter-
mined efficiently in the arborescence case.

Remark 18. Problems (8) and (9) do not necessarily have integer optimal solutions, not even
if the weight functions w1, . . . , wk are integer-valued; for an example, see Figure 5.
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