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Abstract Let F be a family of graphs. A graph is called F -free if it does not contain

any member of F as a subgraph. The Turán number of F is the maximum number of edges

in an n-vertex F -free graph and is denoted by ex
(
n,F

)
. The same maximum under the

additional condition that the graphs are connected is exconn
(
n,F

)
. Let Pk be the path on k

vertices, Km be the clique on m vertices. We determine ex(n, {Pk, Km}) if k > 2m− 1 and

exconn(n, {Pk, Km}) if k > m for sufficiently large n.

1 Introduction

In the present paper, all graphs considered are undirected, finite and contain neither

loops nor multiple edges. Let G be such a graph, the vertex and edge sets of G are denoted

by V (G) and E(G), the numbers of vertices and edges in G by v(G) and e(G), respectively.

We denote the degree of a vertex v in G by dG(v), the neighborhood of the vertex set V in G

by NG(V ). Let U1, U2 be vertex sets, denote by eG(U1, U2) the number of edges between U1

and U2 in G. We write d(v) instead of dG(v), N(V ) instead of NG(V ) and e(U1, U2) instead

of eG(U1, U2) if the underlying graph G is unambiguous. Denote by In the independent set

on n vertices, by G[B] the subgraph of G induced by the vertex set B and by G the edge

complement of the graph G. A component of an undirected graph is an induced subgraph

in which any two vertices are connected to each other by paths, and which is connected to

no additional vertices in the rest of the graph. A vertex v in a graph G is called a cut vertex
†email:katona.gyula.oh@renyi.hu
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if deleting v from G increases the number of components of G.

Let F be a family of graphs. A graph is called F -free if it does not contain any member

of F as a subgraph. The Turán number of F is the maximum number of edges in an n-vertex

F -free graph and is denoted by ex
(
n,F

)
. Denote by EX(n,F) the set of F -free graphs on

n vertices with ex(n,F) edges and call a graph in EX(n,F) an extremal graph for F . Let

Pk be the path on k vertices, Km be the clique on m vertices.

Vertices u and v are connected if there exists a path from u to v. Two disjoint vertex

sets U and W are completely joined in G if uw ∈ E(G) for all u ∈ U and w ∈ W . Denote by

G1
⊗
G2 the graph obtained from G1 ∪ G2, the vertex disjoint union of graphs G1 and G2,

and completely join V (G1) and V (G2). The Turán graph T (n, p) is a complete multipartite

graph formed by partitioning a set of n vertices into p subsets, with sizes as equal as possible,

and connecting two vertices by an edge if and only if they belong to different subsets. Denote

its size by t(n, p).

In 1941, Turán [5] determined the Turán number for p-clique.

Theorem 1 (Turán [5]). The number of edges in an n-vertex Kp-free (p ≥ 3) graph is at

most t(n, p− 1). Furthermore, T (n, p− 1) is the unique extremal graph.

In 1959, Erdős and Gallai [2] determined the Turán number for Pk.

Theorem 2 (Erdős and Gallai [2]). Let G be an n-vertex graph with more than (k−2)n
2

edges, k ≥ 2. Then G contains a copy of Pk.

Faudree and Schelp [3] and independently Kopylov [4] improved this result determining

ex(n, Pk) for every n > k > 0 as well as the corresponding extremal graphs.

Theorem 3 (Faudree and Schelp [3] and independently Kopylov [4]). Let n ≡ r

(mod k − 1), 0 ≤ r ≤ k − 1, k ≥ 2. Then

ex(n, Pk) = 1
2(k − 2)n− 1

2r(k − 1− r).

Faudree and Schelp also described the extremal graphs which are either

(a) vertex disjoint union of m (n = m(k − 1) + r) complete graphs Kk−1 and a Kr or

2



(b) k is even and r = k
2 or k

2 −1 then another extremal graph can be obtained by taking

a vertex disjoint union if t copies of Kk−1 (0 ≤ t ≤ m) and a copy of K k
2−1

⊗
Kn−(t+ 1

2 )(k−1)+ 1
2
.

Kopylov [4] considered the extremal problem for Pk taken over all connected graphs. He

determined the extremal values, 30 years later Balister, Győri, Lehel and Schelp found all

the extremal graphs, too.

Theorem 4 (Balister, Győri, Lehel and Schelp [1]). Let G be a connected graph on n

vertices containing no path on k vertices, n > k ≥ 4. Then e(G) is bounded above by the

maximum of
(

k−2
2

)
+ (n − k + 2) and

(d k
2e
2

)
+
⌊

k−2
2

⌋
(n −

⌈
k
2

⌉
). If equality occurs then G is

either
(
Kk−3 ∪Kn−k+2

)⊗
K1 or

(
Kk−2b k

2c+1 ∪Kn−d k
2e

)⊗
Kb k

2c−1.

Now let us turn to the problem of the present paper: try to determine ex(n, {Pk, Km}).

If k ≤ m then this is simply ex(n, Pk), therefore we can suppose k > m for the rest of the

paper.

Construction 1: Suppose
⌊

k
2

⌋
− 1 ≤ n. G1 = T (

⌊
k
2

⌋
− 1,m− 2)⊗Kn−b k

2c+1.

The number of the edges in this graph is

fn(m, k) =
(⌊

k

2

⌋
− 1

)(
n−

⌊
k

2

⌋
+ 1

)
+ t

(⌊
k

2

⌋
− 1,m− 2

)
.

Construction 2: Suppose k − 1|n, let G2 = n
k−1T (k − 1,m− 1) denote the graph obtained

by taking n
k−1 vertex-disjoint copies of T (k − 1,m− 1).

Clearly, the graphs T (
⌊

k
2

⌋
−1,m−2)⊗Kn−b k

2c+1 and n
k−1T (k−1,m−1) are {Km, Pk}-free.

We believe that for large n (number of vertices) one of these constructions maximize

the number of edges under the assumption that the graph contains neither a Km nor a Pk.

More precisely we guess that either Construction 1 gives the largest number of edges or the

maximum is between n
k−1t(k− 1,m− 1)− c(k,m) and n

k−1t(k− 1,m− 1) where c(k,m) does

not depend on n.

But we are able to prove only the following two theorems.

Theorem 5. Let G be a connected n-vertex {Km, Pk}-free graph m < k. For sufficiently

large n (> N(k)),
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exconn(n, {Km, Pk}) =
(⌊

k

2

⌋
− 1

)
n+ t

(⌊
k

2

⌋
− 1,m− 2

)
−
(⌊

k

2

⌋
− 1

)2

,

that is, Construction 1 is an extremal graph.

Theorem 6. Let G be an n-vertex {Km, Pk}-free graph, 2m− 1 < k. For sufficiently large

n (> N ′(k)),

ex(n, {Km, Pk}) =
(⌊

k

2

⌋
− 1

)
n+ t

(⌊
k

2

⌋
− 1,m− 2

)
−
(⌊

k

2

⌋
− 1

)2

,

that is, Construction 1 is an extremal graph.

In Section 5 we will pose our conjecture for the remaining cases.

2 Lemmas for Theorem 5

Lemma 7. Let G be an n-vertex graph with vertex partition V (G) = X ∪Y , where |X| ≥ 1.

Suppose that for each vertex v ∈ X, there is no path in G starting from v on j + 1 (j ≥ 2)

vertices and each vertex u ∈ Y is connected by a path to at least one vertex in X. Then

j = 2 implies e(G) ≤ n+|Y |−|N(Y )|
2 and j ≥ 3 implies e(G) ≤ n(j − 3

2).

Proof of Lemma 7. When j = 2, all paths starting from v ∈ X contain at most 2 vertices.

Therefore each vertex u ∈ Y is adjacent to at least one vertex in X.

(a) G[Y ] is empty. Otherwise, we find a path starting from v ∈ X contain at least 3

vertices. Hence, each vertex in Y is adjacent to at least one vertex in X and N(Y ) ⊂ X.

We have the following easy steps.

(b) For each u ∈ N(Y ), e(u,X − u) = 0. Suppose the contrary, there exists an edge

uv ∈ E(G), where v ∈ X − u. Then we immediately find a path vuw, where w ∈ Y and

uw ∈ E(G), which contradicts the fact that there is no path in G starting from v ∈ X on 3

vertices.

(c) e(G[X − N(Y )]) ≤ n−|Y |−|N(Y )|
2 . Clearly, |X − N(Y )| = n − |Y | − |N(Y )|, and for

each vertex v ∈ X − N(Y ), N(v) ∈ X − N(Y ). Since there is no path in G starting from

4



v ∈ X on 3 vertices, we have e(G[X −N(Y )]) ≤ n−|Y |−|N(Y )|
2 .

Therefore, when j = 2 we have e(G) ≤ |Y |+ n−|Y |−|N(Y )|
2 = n+|Y |−|N(Y )|

2 .

When j ≥ 3, we apply induction on |Y | and separate the proof into two subcases. The

base case is |Y | = 0. Clearly, in this case the theorem of Erdős and Gallai can be applied

for X: e(G) ≤ |X| (j−1)
2 ≤ |X|(j − 3

2), which holds when j ≥ 2.

Case 1. There exists a vertex y ∈ Y which is not a cut vertex, such that d(y) ≤ j − 2.

By the inductional hypothesis we know that e(G \ y) ≤ (n − 1)(j − 3
2). Thus, e(G) ≤

(n− 1)(j − 3
2) + j − 2 ≤ n(j − 3

2).

Case 2. d(y) ≥ j − 1 for each vertex y ∈ Y which is not a cut vertex.

First, we show the following claim.

Claim 1. P2j−2 * G[Y ].

Proof of Claim 1. Suppose otherwise, let P = (v1, v2, . . . , v2j−2), vi ∈ Y (1 ≤ i ≤ 2j−2) be a

path on 2j−2 vertices in G[Y ]. Since each vertex in Y is connected by a path to at least one

vertex in X, there exists a u ∈ X, such that a path leads from u to P . We obtain the shortest

path in this way when u is adjacent to vj−1 or vj. In both cases, we find a path starting

from u on j + 1 vertices: either (u, vj−1, vj, vj+1, . . . , v2j−2) or (u, vj, vj−1, vj−2, . . . , v1), a

contradiction.

It is also easy to check the following claim.

Claim 2. If there exists a path P2j−1 in G, then X contains the middle vertex of this path

only.

Now we will finish the proof distinguishing two cases.

If G contains no P2j−1, by Theorem 2, we can conclude e(G) ≤ 2j−3
2 n = n(j − 3

2).

Otherwise, let P = (v1, v2, . . . , v2j−1) ⊆ G. By Claim 2, we know that vi ∈ Y (1 ≤ i ≤ 2j −

1, i 6= j) and vj ∈ X. Clearly, N(v1) ⊆ {v2, v3, . . . , vj} and N(v2j−1) ⊆ {vj, vj+1, . . . , v2j−2},

otherwise, we find a copy of Pj+1 starting from vj, a contradiction. It is easy to see that v1

and v2j−1 are not cut vertices, therefore, dv1 ≥ j−1 and d(v2j−1) ≥ j−1. If N(v1) contains a
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vertex not in {v2, v3, . . . , vj} then there is a path of length j+1 starting at vj ∈ X and this is a

contradiction. Hence, we have N(v1) = {v2, v3, . . . , vj} and N(v2j−1) = {vj, vj+1, . . . , v2j−2}.

Now, we will show that
j−1⋃
i=1

N(vi) = {v1, v2, . . . , vj} holds. If not, then there exits vi (2 ≤ i ≤

j−1), such that viu ∈ E(G) and u /∈ {v1, v2, . . . , vj}. In this case, we can easily find the path

(vj, vj−1, . . . , vi+1, v1, v2, . . . , vi, u) on j + 1 vertices which is starting at vj, a contradiction.

Hence,
j−1⋃
i=1

N(vi) = {v1, v2, . . . , vj} and the number of edges which are incident to the vertex

set {v1, v2, . . . , vj−1} is at most
(

j
2

)
. After deleting the vertex set {v1, v2, . . . , vj−1} from G

and apply the induction hypothesis, we get e(G) ≤ (n− j+ 1)(j− 3
2) +

(
j
2

)
≤ n(j− 3

2) when

j ≥ 3. The proof is completed.

Lemma 8. Let G be a connected graph on n vertices with a path P on k− 1 vertices but no

path on k vertices. Let u ∈ V (G \P ) be a vertex adjacent to s ≥ 1 vertices of P and assume

a longest path Q in G \ P starting at u has j (j ≥ 0) vertices. Then, s+ j ≤
⌊

k
2

⌋
.

Proof of Lemma 8. Let P = (v1, v2, . . . , vk−1) and vi1 , vi2 , . . . , vis (1 < i1 < i2 < · · · < is <

k− 1) be the vertices in P adjacent to u. Since Pk * G, the paths (vk−1, vk−2, . . . , vi1 , u)∪Q

and (v1, v2, . . . , vis , u) ∪Q contain at most k − 1 vertices. Hence, k − 1− i1 + 1 + j ≤ k − 1

and is + j ≤ k−1, that is i1 ≥ j+1 and is ≤ k−1− j. These imply is− i1 ≤ k−2j−2. It is

easy to check that u cannot be joined to two consecutive vertices in P , that is ij+1 6= ij + 1

(1 ≤ j ≤ s−1). Otherwise, G contains a path on k vertices: (v1, v2, . . . , vij
, u, vij+1 , . . . , vk−1).

Therefore, ij+1 ≥ ij + 2, and hence 2s− 2 ≤ is− i1. We obtain 2s− 2 ≤ is− i1 ≤ k− 2j− 2.

Therefore, s+ j ≤
⌊

k
2

⌋
.

vij

vir
Pk :

u

vij+1vir+1 ∈ E(G)

v1

vir

u

v1vir+1 ∈ E(G)

Figure 1: Cases for which G contains a Pk+1.
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Lemma 9. Let G be a connected graph on k vertices with no Hamiltonian path, but with a

path P = (v1, v2, . . . , vk−1) on k − 1 vertices. Suppose the vertex u ∈ V (G \ P ) has degree s,

that is NP (u) = {vi1 , vi2 , . . . , vis}, i1 < i2 < · · · < is. Then

(i) s ≤
⌊

k
2

⌋
− 1;

(ii) there are no edges of the form vij+1vir+1, vij−1vir−1, v1vir+1 or vir−1vk−1, (1 ≤ j < r ≤ s).

Proof of Lemma 9. (i) is obtained from Lemma 8, since j = 1 in this case.

Now we shall show that (ii) : vij+1vir+1, vij−1vir−1, v1vir+1, vir−1vk−1 /∈ E(G), 1 ≤

j < r ≤ s. Without loss of generality, suppose otherwise there exists an edge of the form

vij+1vir+1 (1 ≤ j < r ≤ s) or v1vir+1 then G would have a path on k vertices (see Figure 1),

contradicting the assumption that G contains no Hamiltonian path.

Lemma 10. Let G be a graph on `+ 2 vertices and V (G) = M ∪ v1 ∪ v2, |M | = `, such that

there is no Is in G[M ] and no Is+1 in G. Then e(G) ≥
(

`
2

)
− t(`, s− 1) + 1.

Proof of Lemma 10. By Turán’s theorem, the maximum number of edges in an `-vertex Ks-

free graph is t(`, s−1). Since there is no Is = Ks in G[M ] and v(G[M ]) = `, e(G[M ]) ≥
(

`
2

)
−

t(`, s−1). Therefore, if e(G) ≤
(

`
2

)
−t(`, s−1), then either (i) e(G[M ]) ≤

(
`
2

)
−t(`, s−1)−1 or

(ii) e(G[M ]) =
(

`
2

)
− t(`, s−1), v1v2 /∈ E(G) and no edges exist betweenM and {v1, v2}. For

the case (i), clearly there exists an Is in G[M ], so this is impossible. By Turán’s theorem, we

know that T (`, s− 1) is the unique extremal graph for Ks. Therefore, for the case (ii), when

G[M ] is Is-free and e(G[M ]) =
(

`
2

)
− t(`, s− 1), we get that G[M ] is T (`, s− 1). Choosing

one vertex from each class of T (`, s− 1), v1 and v2 form an Is+1 in G. This contradiction

shows e(G) ≥
(

`
2

)
− t(`, s− 1) + 1.

Definition 1. Let Tr(n, `) = In−r
⊗
T (r, ` − 1) and let tr(n, `) denote the size of the graph

Tr(n, `).

Observe that fn(m, k) = tb k
2c−1(n,m− 1).

Lemma 11. Let G be an n-vertex {Km, Pk}-free connected graph containing a Pk−1. Suppose

there exists a vertex u ∈ V (G \Pk−1), such that u is adjacent to
⌊

k
2

⌋
− 1 vertices in V (Pk−1).
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Then, e(G[V (Pk−1)]) ≤ tb k
2c−1(k − 1,m− 1) = fk−1(m, k).

Proof of Lemma 11. Let Pk−1 := (v1, v2, . . . , vk−1), we separate the proof into two subcases.

Case 1. k is even.

Clearly u cannot be adjacent to v1, vk−1 or consecutive vertices in Pk−1. Hence, when

|V (Pk−1)∩N(u)| = k
2 − 1, the only possibility is V (Pk−1)∩N(u) = {v2, v4, . . . , vk−2}. Since

G is Km-free, the graph induced by V (Pk−1)∩N(u), G[V (Pk−1)∩N(u)] is a Km−1-free graph

on k
2 − 1 vertices. By Lemma 9, G[v1, v3, v5, . . . , vk−1] forms an empty graph on k

2 vertices.

Therefore, the number of edges of G[V (Pk−1)] is bounded by:

e
(
G[V (Pk−1)]

)
≤
(
k − 1

2

)
−
(⌊

k
2

⌋
2

)
−
{(⌊

k
2

⌋
− 1

2

)
− t

(⌊
k

2

⌋
− 1,m− 2

)}

= (k − 1)(k − 2)
2 −

k
2

k−2
2

2 −
k−2

2
k−4

2
2 + t

(⌊
k

2

⌋
− 1,m− 2

)

= k

2
k − 2

2 + t

(⌊
k

2

⌋
− 1,m− 2

)
= tb k

2c−1(k − 1,m− 1).

Case 2. k is odd.

Since e
(
u, V (Pk−1)

)
=
⌊

k
2

⌋
− 1 and u cannot be adjacent to v1, vk−1 or consecutive

vertices in Pk−1, then either

(i) V (Pk−1) ∩N(u) = {v2, v4, . . . , vk−3} (or its symmetric version), or

(ii) V (Pk−1) ∩N(u) = {v2, . . . , v2f , v2f+3, v2f+5, . . . , vk−2}, (1 ≤ f ≤ k−5
2 ) holds.

Suppose first (i): V (Pk−1)∩N(u) = {v2, v4, . . . , vk−3}. Since G is Km-free, G[V (Pk−1)∩

N(u)] is a (
⌊

k
2

⌋
−1)-vertex Km−1-free graph while G

[
{v2, v4, . . . , vk−3}∪{vk−2, vk−1}

]
forms a

Km-free graph. By Lemma 10, at least
(b k

2c−1
2

)
−t(

⌊
k
2

⌋
−1,m−2)+1 more edges are missing

in G[V (Pk−1)]. Also, by Lemma 9, we see that {v1, v3, . . . , vk−2} forms an independent set on⌊
k
2

⌋
vertices and edge set {v1vk−1, v3vk−1, . . . , vk−4vk−1} * E(G). Hence,

(b k
2c
2

)
+
( ⌊

k
2

⌋
− 1

)
more edges are missing.
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Case (ii) is very similar. G[V (Pk−1)∩N(u)] is a
(⌊

k
2

⌋
− 1

)
-vertex Km−1-free graph and

G
[
{v2, . . . , v2f , v2f+3, v2f+5, . . . , vk−2} ∪ {v2f+1, v2f+2}

]
forms a Km-free graph. By Lemma

10, at least
(b k

2c−1
2

)
− t

(⌊
k
2

⌋
− 1,m− 2

)
+ 1 edges are missing. Also, by Lemma 9, we

see that {v1, v3, . . . , v2f+1, v2f+4, v2f+6, . . . , vk−1} forms an independent set on
⌊

k
2

⌋
vertices,

edges {v1v2f+1, v3v2f+1, . . . , v2f−1v2f+1} /∈ E(G) and edges {v2f+2v2f+4, v2f+2v2f+6, . . . ,

v2f+2vk−1} /∈ E(G). Hence,
(b k

2c
2

)
+
( ⌊

k
2

⌋
− 1

)
more edges are missing, again.

Therefore, we get the following upper bound on e(G[V (Pk−1)]) in both cases (i) and

(ii),

e
(
G[V (Pk−1)]

)
≤
(
k − 1

2

)
−
(⌊

k
2

⌋
2

)
−
( ⌊k

2

⌋
− 1

)
−
{(⌊

k
2

⌋
− 1

2

)
− t

(⌊
k

2

⌋
− 1,m− 2

)
+ 1

}

= (k − 1)(k − 2)
2 −

k−1
2

k−3
2

2 − k − 3
2 −

k−3
2

k−5
2

2 + t

(⌊
k

2

⌋
− 1,m− 2

)
− 1

=
(k − 1

2

)2

+ t

(⌊
k

2

⌋
− 1,m− 2

)
− 1

= tb k
2c−1(k − 1,m− 1).

Recall that when G is an n-vertex {Km, Pk}-free graph and containing a path on k − 1

vertices, then e
(
u, V (Pk−1)

)
≤
⌊

k
2

⌋
− 1 holds for each u ∈ V (G \ Pk−1) (Lemma 9 (i)).

Partition the vertices in G \ Pk−1 into mutually disjoint sets in two different ways.

(i) Let u ∈ Ai, if e
(
u, V (Pk−1)

)
= i, 0 ≤ i ≤

⌊
k
2

⌋
− 1. Hence,

b k
2c−1⋃
i=0

Ai = V (G \ Pk−1)

and Ai ∩Aj = ∅ (i 6= j). Clearly, Ab k
2c−1 is an independent set, otherwise, we find a copy of

Pk in G.

(ii) Re-arrange the vertices in G \ Pk−1 progressively: when u ∈ Ai1 and u is also

connected by a path to vertices belonging to Ai2 , Ai3 , . . . , and Air , then we put u into set

Bmax{i1,i2,...,ir}. Clearly, Bi and Bj (i 6= j) are disjoint and mutually independent. Since G is

connected, we get B0 = ∅. Observe that Ai ∩Bj = ∅ if i > j.

Lemma 12. Let G be an n-vertex {Km, Pk}-free connected graph with a path on k − 1
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vertices. Let Ai and Bi are the sets of vertices defined above. Then,

e(G)− e (G[V (Pk−1)]) ≤


(
⌊

k
2

⌋
− 1)(n− k + 1), Ab k

2c−1 6= ∅,
(
⌊

k
2

⌋
− 3

2)(n− k + 1), Ab k
2c−1 = ∅.

Proof of Lemma 12. Since Bi and Bj (1 ≤ i 6= j ≤
⌊

k
2

⌋
− 1) are mutually independent,

obviously,

e(G)− e (G[V (Pk−1)]) =
b k

2c−1∑
i=0

e(G[Bi]) +
b k

2c−1∑
i=0

e(Bi, V (Pk−1)). (1)

Let Xi = Ai ∩ Bi and Yi = Bi − Xi. By the definitions of Ai and Bi, each vertex in

Yi is connected (by a path) to at least one vertex in Xi and if Xi = ∅ then Yi = ∅. By

Lemma 8 we know that the number of vertices of the longest path in G[Bi] starting at a

vertex v ∈ Bi ∩ Ai is at most
⌊

k
2

⌋
− i.

Hence if i =
⌊

k
2

⌋
− 1 then there is no edge in G \ Pk−1 starting from the vertices of

Ab k
2c−i, therefore Bb k

2c−1 = Ab k
2c−1 and it contains no edge.

In the case of Bb k
2c−2 the maximum length of a path starting from Xb k

2c−2 = Ab k
2c−2 ∩

Bb k
2c−2 is 2. Applying Lemma 7 for Xb k

2 c−2 and Yb k
2 c−2 we obtain

e(G[Bb k
2c−2]) ≤

1
2 |Xb k

2 c−2|+ |Yb k
2 c−2| =

1
2 |Ab k

2c−2 ∩Bb k
2c−2|+ |Bb k

2c−2 − Ab k
2c−2|

and

e(G[Bb k
2c−2]) ≤

1
2 |Ab k

2c−2|+ |Bb k
2c−2 − Ab k

2c−2|. (2)

Similarly, again by Lemma 7, we have

e(G[Bb k
2c−i]) ≤ |Bb k

2c−i|
(
i− 3

2

)
(i ≥ 3). (3)

Adding up the inequalities (2) and (3) for i = 2, 3, . . . we obtain an upper bound on the

first term of the right hand side of (1).

b k
2c−1∑
j=0

e(G[Bj]) =
b k

2c−2∑
j=1

e(G[Bj]) ≤
1
2 |Ab k

2c−2|+
b k

2c−3∑
`=0
|Bb k

2c−2∩A`|+
b k

2c−3∑
j=1
|Bj|

(⌊
k

2

⌋
− j − 3

2

)

10



≤ 1
2 |Ab k

2c−2|+
b k

2c−3∑
`=0
|Bb k

2c−2 ∩ A`|+
b k

2c−3∑
j=1

j∑
`=0
|Bj ∩ A`|

(⌊
k

2

⌋
− j − 3

2

)
.

Here j can be replaced in the last factor by `. The coefficient 1 in the middle term can also

be replaced by
(⌊

k
2

⌋
− `− 3

2

)
if ` ≤

⌊
k
2

⌋
− 3. This leads to the following upper bound:

b k
2c−1∑
j=0

e(G[Bj]) ≤
b k

2c−2∑
`=0
|A`|

(⌊
k

2

⌋
− `− 3

2

)
. (4)

It is easy to determine the last term in (1).

b k
2c−1∑
i=0

e(Bi, V (Pk−1)) =
b k

2c−1∑
`=0

e(A`, V (Pk−1)) =
b k

2c−1∑
`=0

`|A`|. (5)

Take the sum of (4) and (5).

e(G)− e (G[Pk−1]) ≤
(⌊

k

2

⌋
− 1

)
|Ab k

2c−1|+
b k

2c−2∑
`=0
|A`|

(⌊
k

2

⌋
− 3

2

)
. (6)

In the case when Ab k
2c−1 6= ∅ holds the following simpler upper bound will be sufficient:

b k
2c−1∑
`=0
|A`|

(⌊
k

2

⌋
− 1

)
.

Here
b k

2c−1∑
`=0
|A`| = n− k + 1 therefore

e(G)− e (G[Pk−1]) ≤ (n− k + 1)
(⌊

k

2

⌋
− 1

)

holds, proving the first row of our statement. However if Ab k
2c−1 = ∅ then the stronger upper

estimate

(n− k + 1)
(⌊

k

2

⌋
− 3

2

)
is obtained from (6).

11



3 Proof of Theorem 5

Proof of Theorem 5. Several cases will be distinguished.

Case 1. G contains no path of length k − 1: Pk−1 * G.

Case 1.1. k is even.

By Theorem 2, we can see that e(G) ≤ (k−3)n
2 . Clearly, there exists an integer n1, such

that n ≥ n1, (k−3)n
2 ≤ (k−2)n

2 − (
⌊

k
2

⌋
− 1)2 + t(

⌊
k
2

⌋
− 1,m− 2) = fn(m, k) holds for n > n1.

Case 1.2 k is odd.

Case 1.2.1. G contains no path of length k − 2: Pk−2 * G.

By Theorem 2, we can see that e(G) ≤ (k−4)n
2 . Similarly, there exists an integer n2, such

that n ≥ n2, (k−4)n
2 ≤ (k−3)n

2 −
(⌊

k
2

⌋
− 1

)2
+ t

(⌊
k
2

⌋
− 1,m− 2

)
= fn(m, k) holds for n > n2.

Case 1.2.2 G contains a path of length k − 2: Pk−2 = (v1, v2, . . . , vk−2).

Case 1.2.2.1 There exists a vertex u ∈ V (G \ Pk−2) having bk−1
2 c − 1 neighbors in Pk−2.

By Lemma 11 we have e
(
G[V (Pk−2)]

)
≤ tb k−1

2 c−1(k − 2,m− 1).

By Lemma 12 we see that e

(
G[V (G \ Pk−2)]

)
+ e

(
V (Pk−2), V (G \ Pk−2)

)
≤( ⌊

k−1
2

⌋
− 1

)
(n− k + 2).

Therefore, we get

e(G) = e

(
G[V (Pk−2)]

)
+ e

(
G[V (G \ Pk−2)]

)
+ e

(
V (Pk−2), V (G \ Pk−2)

)

≤ k − 1
2

k − 3
2 + t

(⌊
k

2

⌋
− 1,m− 2

)
+ k − 3

2 (n− k + 2)

=
(⌊

k

2

⌋
− 1

)
n+ t

(⌊
k

2

⌋
− 1,m− 2

)
−
(⌊

k

2

⌋
− 1

)2

= fn(m, k).

In this subcase, we are done.

Case 1.2.2.2 For each vertex u ∈ V (G \ Pk−2), e
(
u, V (Pk−2)

)
≤
⌊

k
2

⌋
− 2 holds.

By Turán’s theorem, we have e
(
G[V (Pk−2)]

)
≤ t(k − 2,m− 1).

12



By Lemma 12 we get

e

(
G[V (G \ Pk−2)]

)
+ e

(
V (Pk−2), V (G \ Pk−2)

)
≤
(⌊

k − 1
2

⌋
− 3

2

)
(n− k + 2).

Therefore, there exists an integer n3, such that when n ≥ n3, the following result holds:

e(G) = e

(
G[V (Pk−2)]

)
+ e

(
G[V (G \ Pk−2)]

)
+ e

(
V (Pk−2), V (G \ Pk−2)

)

≤ t(k − 2,m− 1) + k − 4
2 (n− k + 2)

≤
(
k − 3

2

)
n−

(
k − 3

2

)2

+ t

(
k − 3

2 ,m− 2
)

= fn(m, k).

Now we turn to the next case.

Case 2. G is connected and Pk−1 ⊆ G.

Case 2.1. There exists a vertex u ∈ G \ Pk−1 such that u is adjacent to
⌊

k
2

⌋
− 1 vertices of

Pk−1.

By Lemma 11 we have e
(
G[V (Pk−1)]

)
≤ tb k

2c−1(k − 1,m− 1).

By Lemma 12 we can see that

e

(
G[V (G \ Pk−1)]

)
+ e

(
V (Pk−1), V (G \ Pk−1)

)
≤
(⌊

k

2

⌋
− 1

)
(n− k + 1).

Therefore,

e(G) = e

(
G[V (Pk−1)]

)
+ e

(
G[V (G \ Pk−1)]

)
+ e

(
V (Pk−1), V (G \ Pk−1)

)

≤ tb k
2c−1(k − 1,m− 1) +

(⌊
k

2

⌋
− 1

)
(n− k + 1)

= fn(m, k).

Case 2.2. Each vertex u ∈ G \ Pk−1 is adjacent to at most
⌊

k
2

⌋
− 2 vertices of Pk−1.

By Turán’s theorem, we see e
(
G[V (Pk−1)]

)
≤ t(k − 1,m− 1).

13



By Lemma 12 we get

e

(
G[V (G \ Pk−1)]

)
+ e

(
V (Pk−1), V (G \ Pk−1)

)
≤
(⌊

k

2

⌋
− 3

2

)
(n− k + 1).

Therefore, there exists an integer n4, such that when n ≥ n4, we get,

e(G) = e

(
G[V (Pk−1)]

)
+ e

(
G[V (G \ Pk−1)]

)
+ e

(
V (Pk−1), V (G \ Pk−1)

)

≤ t(k − 1,m− 1) +
(⌊

k

2

⌋
− 3

2

)
(n− k + 1)

≤ tb k
2c−1(k − 1,m− 1) +

(⌊
k

2

⌋
− 1

)
(n− k + 1)

= fn(m, k).

Let N(k) ≥ n1, n2, n3, n4. If G is connected and n ≥ N(k) then e(G) ≤ fn(m, k) holds

4 Proof of Theorem 6

First, we prove some lemmas.

Lemma 13. If n < k and 2m− 1 < k, then t(n,m− 1) < (
⌊

k
2

⌋
− 1)n .

Proof of Lemma 13. Since t(n,m − 1) ≤ ( n
m−1)2

(
m−1

2

)
= n2(m−2)

2(m−1) it is sufficient to prove
n2(m−2)
2(m−1) < k−3

2 n. Divide this inequality by n and prove the so obtained inequality for the

largest possible value of n, namely k − 1. But (k−1)(m−2)
(m−1) < k − 3 is equivalent to our

assumption 2m− 1 < k.

It is also easy to check the following claim.

Lemma 14. If k ≤ n and 2m− 1 < k, then

t(k − 2,m− 1) +
(⌊

k − 1
2

⌋
− 3

2

)
(n− k + 2)

≤ t(k − 1,m− 1) +
(⌊

k

2

⌋
− 3

2

)
(n− k + 1) <

(⌊
k

2

⌋
− 1

)
n.
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Proof of Lemma 14. In order to prove the first inequality observe that T (k − 2,m − 1) is

obtained from T (k − 1,m− 1) by deleting a vertex in a class of size d k−1
m−1e. In other words,

k− 1−d k−1
m−1e edges are deleted: t(k− 1,m− 1)− t(k− 2,m− 1) = k− 1−d k−1

m−1e. We only

need to see that this is at least dk−1
2 e −

3
2 that trivially holds for m ≥ 3.

Start the proof of the second statement with the inequality t(k−1,m−1) ≤ ( k−1
m−1)2

(
m−1

2

)
=

(k−1)2(m−2)
2(m−1) . Then the original inequality reduces to (k−1)2(m−2)

2(m−1) < n
2 + (k− 1)

(
bk

2c −
3
2

)
. De-

crease the right hand side with the substitutions k− 1 < n and k−1
2 ≤ b

k
2c. The so obtained

inequality (k−1)2(m−2)
2(m−1) < k−1

2 + (k − 1)k−4
2 is equivalent to 2m− 1 < k, again.

Lemma 15. There is an ε = ε(k) > 0 such that the upper estimate (
⌊

k
2

⌋
− 1)n in both

Lemmas 13 and 14 can be replaced by
(⌊

k
2

⌋
− 1− ε

)
n if n is restricted to n ≤ N(k).

Proof of Lemma 15. By Lemmas 13 and 14 we know that⌊
k

2

⌋
− 1− t(n,m− 1)

n
> 0

and ⌊
k

2

⌋
− 1−

t(k − 1,m− 1) +
(⌊

k
2

⌋
− 3

2

)
(n− k + 1)

n
> 0

hold for every n. Of course the left hand sides can be arbitrarily small, but they have a

positive minimum if n ≤ N(k) is supposed. Half of this minimum can be chosen as ε(k).

Proof of Theorem 6. Let Gi (1 ≤ i ≤ t) be the connected components of our graph G

possessing the properties given in Theorem 6. `i denotes the number of vertices of Gi. We

will give now different upper estimates on the number e(Gi) of edges of the component Gi

depending on its properties.

1. `i > N(k). Then Theorem 5 implies e(Gi) ≤ f`i
(m, k).

2. k ≤ `i ≤ N(k).

2.1. Gi contains a path Pk−1 of length k − 1.

2.1.1. There is a vertex u ∈ Gi − Pk−1 which is adjacent to Pk−1 with bk
2c − 1 edges.

Then one can repeat the reasoning of Case 2.1 of the proof of Theorem 5 to obtain e(Gi) ≤
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f`i
(m, k).

2.1.2. There is no such vertex. Then Lemma 12 shows that the number of edges not in

the path is at most
(
bk

2c −
3
2

)
(`i − k + 1). The graph induced by Pk−1 can contain at most

t(k − 1,m− 1) edges. Altogether e(Gi) ≤ t(k − 1,m− 1) +
(
bk

2c −
3
2

)
(`i − k + 1) which is

at most
(
bk

2c − 1− ε
)
`i by Lemma 15 (improvement of Lemma 14).

2.2. Gi contains no path of length k − 1.

2.2.1. k is even. Then Theorem 2 gives e(Gi) ≤ `i
k−3

2 < `i

(
bk

2c − 1− ε
)
.

2.2.2. k is odd.

2.2.2.1. Gi contains no path of length k − 2. Then Theorem 2 gives e(Gi) ≤ `i
k−4

2 <

`i

(
bk

2c − 1− ε
)
.

2.2.2.2. It contains a Pk−2.

2.2.2.2.1. There is a vertex u ∈ Gi − Pk−2 which is adjacent to Pk−2 with bk−1
2 c − 1

edges. Then one can repeat the reasoning of Case 1.2.2.1 of the proof of Theorem 5 to obtain

e(Gi) ≤ f`i
(m, k).

2.2.2.2.2. There is no such vertex. Then Lemma 12 shows that the number of edges not

in the path is at most
(
bk−1

2 c −
3
2

)
(`i − k + 2). The graph induced by Pk−2 can contain at

most t(k − 2,m − 1) edges. Altogether e(Gi) ≤ t(k − 2,m − 1) +
(
bk−1

2 c −
3
2

)
(`i − k + 2)

which is at most
(
bk

2c − 1− ε
)
`i by Lemma 15 (improvement of Lemma 14).

3. `i < k. Then the trivial estimate t(`i,m − 1) and Lemma 13 results in e(Gi) ≤(
bk

2c − 1− ε
)
`i by Lemma 15 (improvement of Lemma 13).

In each case we have the upper bound either

e(Gi) ≤ f`i
(m, k) =

(⌊
k

2

⌋
− 1

)
`i −

(⌊
k

2

⌋
− 1

)2

+ t

(⌊
k

2

⌋
− 1,m− 2

)
, (7)

where the last two terms form an additive constant independent of `i, or

e(Gi) ≤
(⌊

k

2

⌋
− 1− ε

)
`i. (8)
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Suppose first that there is at least one i satisfying (7). Then (7) and (8) lead to

e(G) =
∑

i

e(Gi) ≤
∑

i

`i

(⌊
k

2

⌋
− 1

)
−
(⌊

k

2

⌋
− 1

)2

+ t

(⌊
k

2

⌋
− 1,m− 2

)

=
∑

i

e(Gi) ≤ n

(⌊
k

2

⌋
− 1

)
−
(⌊

k

2

⌋
− 1

)2

+ t

(⌊
k

2

⌋
− 1,m− 2

)
= fn(m, k) (9).

Otherwise (8) can be used for every i:

e(G) =
∑

i

e(Gi) ≤
∑

i

`i

(⌊
k

2

⌋
− 1− ε

)
= n

(⌊
k

2

⌋
− 1− ε

)
.

This is smaller than fn(m, k) if(⌊
k

2

⌋
− 1

)2

− t
(⌊

k

2

⌋
− 1,m− 2

)
< εn

and the statement of the theorem holds with

N ′(k) = 1
ε

(⌊k
2

⌋
− 1

)2

− t
(⌊

k

2

⌋
− 1,m− 2

) .

5 Remarks

We have only a conjecture for the case when G is not necessarily connected and m+1 ≤

k ≤ 2m− 1.

Conjecture 1. If m+ 1 ≤ k ≤ 2m− 1 and k is odd and k − 1|n then Construction 2 gives

the maximum while Construction 1 is the best for even k for large n.

Let us consider now the more general case when H is a small given graph and try to

determine ex(n, {H,Pk}). Of course this question makes sense only when k is larger than

the longest path in H.

Conjecture 2. Suppose that the chromatic number of H is more than 2. Then

ex(n, {H,Pk}) = nmax
{⌊

k

2

⌋
− 1, ex(k − 1, H)

k − 1

}
+Ok(1).

The best constructions are 1. the generalization of our Construction 1 with m = χ(H) and

2. the vertex disjoint copies of EX(k − 1, H).
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