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Abstract

In this paper we continue our studies of Turán and Ramsey numbers
in linear triple systems, defined as 3-uniform hypergraphs in which any
two triples intersect in at most one vertex. In [7] the two main problems
left open were the Turán number of the wicket and the Ramsey property
of the sail. In this paper we present some progress towards both of these
problems.

1 Introduction

1.1 The wicket and the sail

In this paper we continue our studies of linear triple systems, defined as 3-
uniform hypergraphs in which any two triples intersect in at most one vertex.
The (k, `)-family is the family of all linear triple systems with ` triples on at
most k vertices. For linear triple systems H,F we say that H is F -free if H does
not contain any subsystem isomorphic to F . We consider F fixed and call it a
configuration. The (linear) Turán number exL(n, F ) (or simply just ex(n, F ))
of a configuration F is the maximum number of edges in F -free linear triple
systems with n vertices.

A Steiner triple system of order n, STS(n), is a linear triple system on n
vertices, such that each pair of vertices appear in exactly one triple (sometimes
the vertices are called points and the triples blocks). It is well-known that
STS(n) exists if and only if n ≡ 1 or n ≡ 3 (mod 6), such values of n are
called admissible. A configuration is called t-Ramsey (introduced in [6]) if for
all large enough admissible n (n ≥ n0(C, t)), in every t-coloring of the blocks of
any STS(n) there is a monochromatic copy of C.
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Here we continue our studies from [7] of Turán and Ramsey numbers in linear
triple systems. While the paper is self-contained, familiarity with the concepts
introduced in [7] would help the reader.

A famous conjecture of Brown, Erdős and T. Sós [2] (BES-conjecture) claims
the following Turán-type property. (It is well-known that here we can restrict
our attention to linear triple systems.)

Conjecture 1.1 ([2]). If a linear triple system on n vertices does not contain
any member of the (k + 3, k)-family then it has o(n2) triples.

For k = 3 there is only one member in the (6, 3)-family, the triangle, three
pairwise intersecting triples without a common vertex. Conjecture 1.1 in this
case was famously proved by Ruzsa and Szemerédi [10], in addition with the
surprising lower bound: there are triangle-free linear triple systems with n2−o(1)

triples. This became known as the (6,3)-theorem. The (6,3)-theorem had a huge
influence. For example the celebrated Triangle Removal Lemma (see [4] for a
survey) was devised in order to find another proof for the (6,3)-theorem. For
some developments on the BES-conjecture see e.g. [3], [9], [11], [12], [13] or [14].
For additional background see [7].

Related to the BES-conjecture, in [7] we studied the Turán and Ramsey
properties of certain specific configurations. It turned out that among small
configurations (at most five edges) the most interesting were the wicket W
(formed by three rows and two columns of a 3 × 3 point matrix, see Figure 2)
and the sail S (see Figure 3).

Indeed, the two main problems left open in [7] (see also [8]) for small config-
urations were the Turán number of the wicket and the Ramsey property of the
sail.

Problem 1.2 ([7]). Is it true that ex(n,W ) = o(n2)?

In [7] we were able to prove only a weaker, Ramsey-type result, namely that
W is t-Ramsey (see Theorem 1.5 below).

Problem 1.3 ([6],[7]). Is the sail t-Ramsey?

Note that the sail cannot be forced by density: for n ≡ 0 (mod 3) there are

sail-free linear triple systems with n2

9 blocks. This is best possible as proved in
[5].

In this paper we will present some progress towards both of these problems
(see Theorem 1.4 and Corollary 1.7 below). First we introduce asymmetric Ram-
sey numbers. Given configurations C1, C2, . . . , Ct, we say that (C1, C2, . . . , Ct)
is t-Ramsey if for all large enough admissible n (n ≥ n0(C1, . . . , Ct)), in every
t-coloring of the blocks of any STS(n) there is a color i, 1 ≤ i ≤ t such that
color i contains a copy of Ci.

Our first result is the following.

Theorem 1.4. Let t be an arbitrary positive integer. Then (S,W, . . . ,W ) is
t-Ramsey.
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In other words, at least one of the t configurations can be replaced with the
sail; a first step in the direction of Problem 1.3. However, Problem 1.3 remains
open. We note that Theorem 1.4 is proved (see Theorem 1.8 below) in a more
general form, where the wicket is replaced by any extended s-configuration (see
the definition in the next subsection).

1.2 s-patterns, s-configurations and projections

In order to state our other results we need some concepts introduced in [7]. Con-
sider those properly edge-colored forests (acyclic graphs) that can be obtained as
the union of s monochromatic matchings M1, . . . ,Ms with the following prop-
erty: for any 1 ≤ i ≤ s every edge in Mi has a vertex that is not covered by
any edge of any Mj , i < j ≤ s. We call a forest obtained this way an s-pattern.
For example, the path aba is a 2-pattern but the path abab is not. Next we go
one step further: we call a properly edge-colored forest an extended s-pattern
if it is obtained from a disconnected s-pattern by joining two of its connected
components with a single edge matching M∗ of a new color. Note that an ex-
tended s-pattern may or may not be a (s+ 1)-pattern. (The (s+ 1)-pattern is
preferable because it leads to stronger results.) For example, the path abcab is
an extended 2-pattern but not a 3-pattern (see Figure 1).

a b c a b

1

Figure 1: The abcab extended 2-pattern

A linear triple system H is called an s-configuration (or an extended s-
configuration) if it comes from an s-pattern (extended s-pattern) by augmenting
all edges e ∈M i with a new augmenting point vi to a triple e∪ vi in such a way
that the vi’s are all distinct and disjoint from the vertices of the s-pattern as
well (for extended s-patterns M∗ is also augmented with a point that is distinct
from all other augmenting points). For example Figure 2 shows how the wicket
can be obtained by augmenting the extended 2-pattern abcab. (Augmenting
points are shown on the figures by capitalizing the letters of the corresponding
patterns.)

In the other direction we call it a projection. It is worth mentioning that
different projection patterns may correspond to the same configuration.

In [7] we proved the following.

Theorem 1.5 ([7]). Any extended s-configuration C is t-Ramsey for all s, t ≥ 1.

Since the wicket W is an extended 2-configuration (see Figure 2), it is t-
Ramsey. Our first result is a generalization of this result. But first we need the
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Figure 2: Augmenting the abcab extended 2-pattern to a wicket
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Figure 3: The sail S together with its projection

following concept: a linear triple system H is (η, c)-dense (respectively (η, c)-
sparse) with respect to disjoint vertex subsets U1 and U2 (shortly we say in
(U1, U2)), if for all subsets U ′ ⊆ U1, U ′′ ⊆ U2, |U ′| ≥ η|U1|, |U ′′| ≥ η|U2| at
least (respectively less than) c-fraction of the pairs (u, v), u ∈ U ′, v ∈ U ′′ are
covered by a block of H. In other words H is c-dense in all large bipartite
subgraphs of (U1, U2). Equivalently, we can say that the bipartite shadow of H
is (η, c)-dense (respectively sparse) in (U1, U2) ((x, y), x ∈ U1, y ∈ U2 is in the
shadow of H if it is covered by a block of H.)

Our next result claims that Theorem 1.5 remains true if we t-color the blocks
of an (η, c)-dense linear triple system instead of a complete STS(n).

Theorem 1.6. For every c1, c2 > 0, integers s, t ≥ 1 and extended s-configuration
C, there are positive constants η, n0 with the following properties. Let H be a
linear triple system on n ≥ n0 vertices that is (η, c1)-dense in (U1, U2) for some
disjoint vertex subsets |U1| = |U2| ≥ c2n. Then for any t-coloring of the blocks
of H, there is a monochromatic copy of C.

Applying this with t = 1 and C = W , we get the following corollary.

Corollary 1.7. For every c1, c2 > 0, there are positive constants η, n0 with the
following properties. Let H be a linear triple system on n ≥ n0 vertices that
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is (η, c1)-dense in (U1, U2) for some disjoint vertex subsets |U1| = |U2| ≥ c2n.
Then H contains a copy of W .

In other words, if H has a positive density not just overall but in all large
bipartite subgraphs in (U1, U2) then it contains a wicket. This is further evidence
in the direction of Problem 1.2. However, Problem 1.2 remains open.

Returning to Ramsey properties of small configurations, we will use Theorem
1.6 to prove the following more general theorem instead of Theorem 1.4.

Theorem 1.8. Let t, s be arbitrary positive integers and let C be an extended
s-configuration. Then (S,C, . . . , C) is t-Ramsey.

In the special case when C = W , we get indeed Theorem 1.4.
In the next section we provide the tools. Then in Section 3 we prove Theorem

1.6 and in Section 4 Theorem 1.8.

2 Tools

For basic graph concepts see the monograph of Bollobás [1].
V (G) and E(G) denote the vertex-set and the edge-set of the graph G. For a
graph G and a subset U of its vertices, G|U is the restriction of G to U .

If H is an s-pattern, then it is a bipartite graph (since it is acyclic), so
we may assume that it has a bipartition V (H) = V1 ∪ V2 with all edges going
between V1 and V2. We will need the following lemma from [7] on the existence
of s-patterns in dense bipartite graphs.

Lemma 2.1 (Lemma 3.1 in [7]). For every δ, κ > 0, integer s ≥ 1 and s-pattern
H with bipartition V (H) = V1 ∪ V2, there are positive constants γ, n0 with the
following property. Let G be a bipartite graph on n ≥ n0 vertices with bipartition
V (G) = U1 ∪U2 and with at least δn2 edges between U1 and U2 that is properly
colored by at most κn colors. Then G contains at least γn vertex disjoint copies
of H, where in the different copies of H the same matching always gets the same
color in G and Vi is always embedded into Ui, i = 1, 2.

This lemma in turn used the Regularity Lemma of Szemerédi [15].

3 Proof of Theorem 1.6

We proceed similarly to the proof of Theorem 1.5 in [7] but we replace complete
bipartite graphs with dense bipartite graphs at the appropriate places. For the
sake of completeness we present the details.

Assume that C is an extended s-configuration defined by the extended s-
patternH. Let the bipartition ofH be V (H) = V1∪V2 and denote the matchings
in the definition of the extended s-pattern H by M1, . . . ,Ms,M∗. Let (u, v) be
the single edge M∗ with u ∈ V1 and v ∈ V2 and let H ′ be the disconnected s-
pattern resulting from H after removing (u, v). In H ′ we have two disconnected
subgraphs H ′1 and H ′2 such that u ∈ V (H ′1) and v ∈ V (H ′2).
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Assume that n is a sufficiently large. Let H be a linear triple system on n
vertices that is (η, c1)-dense in (U1, U2) for some disjoint vertex subsets |U1| =
|U2| ≥ c2n, where η is sufficiently small. Consider an arbitrary t-coloring of the
blocks of H. We must show that there is a monochromatic copy of C.

Consider the bipartite graph G between U1 and U2 that is the shadow of H,
i.e. we have the edge (x, y), x ∈ U1, y ∈ U2 if and only if (x, y) is covered by a
block of H. The edges of G can be naturally colored with t colors by assigning to
(x, y) ∈ E(G) the color of the unique block (x, y, z). We refer to this coloring as
the primary coloring. On the other hand, there is also a natural proper coloring
of the edges of G with at most n colors by assigning to (x, y) ∈ E(G) the vertex
z = f(x, y) of the unique block (x, y, z). This coloring is called the M -coloring.

Let Gi denote the subgraph of G defined by the primary color i, where wlog
assume that G1 is the most frequent primary color, say red. Then, since H is
(η, c1)-dense in (U1, U2), we have

|E(G1)| ≥ c1|U1||U2|
t

.

Applying Lemma 2.1 for H ′ and G1 with

δ1 =
c1
4t

and κ1 =
1

2c2
,

we find at least
γ1|V (G1)| ≥ 2γ1c2n (1)

vertex disjoint red copies of H ′ in G1, where in the different copies of H ′ the
same matching always gets the same M -color in G1 and Vi is always embedded
into Ui, i = 1, 2. Let A1 ⊂ U1 denote the set of embedded images of u in these
copies of H ′, similarly let B1 ⊂ U2 denote the set of embedded images of v in
these copies of H ′. Let L1, . . . , Lm denote the copies of H ′1 and ui, 1 ≤ i ≤ m
the image of u in these copies. Similarly, R1, . . . , Rm denote the copies of H ′2
and vi, 1 ≤ i ≤ m the image of v in these copies. So A1 = {u1, ..., um} and
B1 = {v1, ..., vm}, and the i-th copy of H ′ consists of Li and Ri.

A copy of H ′, Li∪Ri, is called bad if for some edge (x, y) in any of the copies
Lj ∪ Rj of H ′, f(x, y) is a vertex in Li ∪ Ri, otherwise Li ∪ Ri is good. Note
that there are at most s bad copies since there are at most s M -colors on the
edges of H ′. Let us remove the bad copies and denote by A′1 and B′1 the set of
remaining vertices in A1 and B1. Then using (1)

|A′1| = |B′1| ≥ |A1| − s ≥ γ1|V (G1)| − s ≥ γ1
2
|V (G1)| ≥ γ1c2n. (2)

Assume that Li, Rj are good copies, (ui, vj) is an edge in G and its primary
color is red (i.e. it is an edge in G1). In this case we try to extend the s-pattern
with the edge (ui, vj) and find a red copy of C. We have to avoid the following
two exceptional situations for success.

• f(ui, vj) = f(a, b) for some edge (a, b) in Li or in Rj . In this case we
cannot extend the s-pattern with the edge (ui, vj) because its M -color is
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not a new M -color. There are at most s|A′1| possibilities for this situation.
Indeed, the number of M -colors in H ′ is s and in each of these M -colors
there can be at most |A′1| edges between A′1 and B′1.

• f(ui, vj) is covered by V (Li) ∪ V (Rj). In this case we can extend the s-
pattern with the edge (ui, vj) to the required extended s-pattern but the
point f(ui, vj) of the red block (ui, vj , f(ui, vj)) may not be well placed,
namely, it will not be a new vertex. However, each fixed M -color can
appear at most once (since the copies Li, Rj are disjoint), thus at most n
pairs (ui, vj) can be in this situation. Indeed, for each z in Li, the pair
(z, ui) is only in one block, hence there can be at most one j such that
z = f(ui, vj), and similarly for z in Rj . So each of the at most n vertices
in L1, ..., Lm, R1, ..., Rm “ruins” at most one pair (ui, vj).

Then if we have a non-exceptional red (ui, vj), this will be the image of (u, v).
To get a red copy of H in G1, we take Li, the copy of H ′1 containing ui and
Rj , the copy of H ′2 containing vj . Finally, adding back the corresponding 3rd
vertices of the blocks (which are disjoint from this red copy ofH by construction)
we get a red copy of C.

Thus we may assume that there is no such non-exceptional red (ui, vj).
Then in G|A′1×B′1 apart from at most s|A′1| + n exceptional edges, all edges
are colored (in the primary coloring) with the remaining (t − 1) colors (other
than red). Assume wlog that G2 is the most frequent color out of these (t− 1)
colors among the non-exceptional edges in G|A′1×B′1 . Then using the definition
of (η, c1)-dense and the fact that η is sufficiently small (compared to γ1c2, see
(2)) we get

|E(G|A′1×B′1)| ≥ c1|A′1||B′1|,

and thus

|E(G2|A′1×B′1)| ≥ c1|A′1||B′1| − s|A′1| − n
t− 1

≥ c1
2(t− 1)

|A′1||B′1|. (3)

Indeed, this follows from

s|A′1|+ n ≤ c1|A′1||B′1|
2

,

which in turn follows from

2s

c1
+

2

γ1c1c2
≤ |B′1|

(using (2) and the fact that n is sufficiently large).
We will apply Lemma 2.1 for H ′ and G2|A′1×B′1 with

δ2 =
c1

8(t− 1)
and κ2 =

κ1
γ1
.
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Then indeed, from (3)

|E(G2|A′1×B′1)| ≥ c1
2(t− 1)

|A′1||B′1| =
c1

8(t− 1)
(2|A′1|)(2|B′1|)

= δ2|V (G2|A′1×B′1)|2,

and from (2)

κ1|V (G1)| = κ1
γ1

2γ1|V (G1)|
2

≤ κ1
γ1

2|A′1| = κ2|V (G2|A′1×B′1)|.

Applying Lemma 2.1 we find at least γ2|V (G2|A′1×B′1)| vertex disjoint copies of
H ′ in G2|A′1×B′1 , where in the different copies of H ′ the same matching always
gets the same M -color in G2|A′1×B′1 and Vi is always embedded into Ui, i = 1, 2.

We continue in this fashion. We will apply Lemma 2.1 for Gi|A′i−1×B′i−1
and

H ′ with
δi =

c1
8(t− (i− 1))

and κi =
κi−1
γi−1

.

Then indeed,
|E(Gi|A′i−1×B′i−1

)| ≥ δi|V (Gi|A′i−1×B′i−1
)|2,

and

κi−1|V (Gi−1|A′i−2×B′i−2
)| = κi−1

γi−1

2γi−1|V (Gi−1|A′i−2×B′i−2
)|

2

≤ κi−1
γi−1

2|A′i−1| = κi|V (Gi|A′i−1×B′i−1
)|.

Applying Lemma 2.1 we find at least γi|V (Gi|A′i−1×B′i−1
)| vertex disjoint copies

of H ′ in Gi|A′i−1×B′i−1
, where in the different copies of H ′ the same matching

always gets the same M -color in Gi|A′i−1×B′i−1
and Vi is always embedded into

Ui, i = 1, 2. Note that all edges of Gi have the same primary color, so these
copies of H ′ we find are monochromatic in this color. Let Ai ⊂ A′i−1 denote
the set of embedded images of u in these copies of H ′, similarly let Bi ⊂ B′i−1
denote the set of embedded images of v in these copies of H ′. We remove the
bad copies of H ′ and denote by A′i and B′i the set of remaining vertices in Ai

and Bi.
Again if there is a non-exceptional edge in Gi between A′i and B′i, then we

are done. Otherwise in G|A′i×B′i apart from at most is|Ai| + in exceptional
edges, all edges are colored (in the primary coloring) with the remaining (t− i)
colors. Assume wlog that Gi+1 is the most frequent color out of these (t − i)
colors among the non-exceptional edges in G|A′i×B′i . Then using the definition
of (η, c1)-dense and the fact that η is sufficiently small, we get

|E(G|A′i×B′i)| ≥ c1|A
′
i||B′i|,

and thus

|E(Gi+1|A′i×B′i)| ≥
c1|A′i||B′i| − is|A′i| − in

t− i
≥ c1

2(t− i)
|A′i||B′i|,
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(assuming that n is sufficiently large).
Finally we arrive at Gt between A′t−1 and B′t−1, where all but O(n) edges

are of the last primary color, and in particular the density of Gt|A′t−1×B′t−1
is

at least c1/2 (using again the definition of (η, c1)-dense and the fact that η is
sufficiently small). Applying Lemma 2.1 for H ′ and Gt|A′t−1×B′t−1

with

δt =
c1
8

and κt =
κt−1
γt−1

,

we find at least γt|V (Gt|A′t−1×B′t−1
)| vertex disjoint copies of H ′ in Gt|A′t−1×B′t−1

,

where in the different copies of H ′ the same matching always gets the same M -
color inGt|A′t−1×B′t−1

and Vi is always embedded into Ui, i = 1, 2. Let At ⊂ A′t−1
denote the set of embedded images of u in these copies of H ′, similarly let
Bt ⊂ B′t−1 denote the set of embedded images of v in these copies of H ′. We
remove the bad copies of H ′ and denote by A′t and B′t the set of remaining
vertices in At and Bt. Now there must be a non-exceptional edge in Gt between
A′t and B′t because this is the last color available. Indeed, other than at most
ts|A′t|+ tn exceptional edges, all edges must have this color. Then we are done
similarly as before. �

4 Proof of Theorem 1.8

We will use similar ideas as in the proof of Theorem 1.6, but we will also use
Theorem 1.6 explicitly.

Assume that C is an extended s-configuration defined by the extended s-
patternH. Let the bipartition ofH be V (H) = V1∪V2 and denote the matchings
in the definition of the extended s-pattern H by M1, . . . ,Ms,M∗. Let (u, v) be
the single edge M∗ with u ∈ V1 and v ∈ V2 and let H ′ be the disconnected s-
pattern resulting from H after removing (u, v). In H ′ we have two disconnected
subgraphs H ′1 and H ′2 such that u ∈ V (H ′1) and v ∈ V (H ′2).

Assume that n is a sufficiently large admissible integer and we have a t-
coloring of the blocks of an STS(n) = (V,B). Partition V into two almost equal
parts U1 and U2. Consider the complete bipartite graph G between U1 and U2

(or equivalently the shadow graph of B between U1 and U2). We consider again
the primary coloring and the M -coloring f(x, y) of the edges of G as in the
proof of Theorem 1.6. Denote the subgraph of G induced by the i-th primary
color by Gi. Assume wlog that the first primary color is red. Thus we either
have to find a red sail in B or a monochromatic C in a non-red color.

Let A′0 = U1, B′0 = U2 and γ′0 = 1/2 (to initialize the iteration described
below). Let c > 0 be sufficiently small compared to 1/t and let η1 be sufficiently
small, so that we could apply Theorem 1.6 with c1 = 1/3, c2 = (γ′0)2/4 = 1/16
and η = 4η1/γ

′
0 (note that if Theorem 1.6 is true for a particular η, then it is

also true for any smaller η). Assume first that there is a non-red primary color,
wlog G2, that is not (η1, c)-sparse in (U1, U2), i.e. there are subsets U ′1 ⊆ U1,
U ′2 ⊆ U2, |U ′1| ≥ η1|U1|, |U ′2| ≥ η1|U2| and

E(G2|U ′1×U ′2) ≥ c|U ′1||U ′2|.
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Applying Lemma 2.1 for H ′ and G2|U ′1×U ′2 with

δ =
c

4
and κ1 =

1

2η1
,

we find at least
γ1|V (G2|U ′1×U ′2)| ≥ γ1η1n (4)

vertex disjoint red copies of H ′ in G2|U ′1×U ′2 , where in the different copies of
H ′ the same matching always gets the same M -color in G2 and Vi is always
embedded into Ui, i = 1, 2. Let A1 ⊂ U ′1 denote the set of embedded images of u
in these copies of H ′, similarly let B1 ⊂ U ′2 denote the set of embedded images of
v in these copies of H ′. Let L1, . . . , Lm denote the copies of H ′1 and ui, 1 ≤ i ≤ m
the image of u in these copies. Similarly, R1, . . . , Rm denote the copies of H ′2
and vi, 1 ≤ i ≤ m the image of v in these copies. So A1 = {u1, ..., um} and
B1 = {v1, ..., vm}, and the i-th copy of H ′ consists of Li and Ri.

As above in the proof of Theorem 1.6 we remove the at most s bad copies
and denote by A′1 and B′1 the set of remaining vertices in A1 and B1. Then
using (4)

|A′1| = |B′1| ≥ |A1| − s ≥ γ1η1n− s ≥
γ1η1

2
n = γ′1n.

As above, we may assume that in G|A′1×B′1 apart from at most s|A′1|+n excep-
tional edges, all edges are colored (in the primary coloring) with the remaining
(t− 1) colors (non-G2). We continue the process in (A′1, B

′
1).

We continue in this fashion as in the proof of Theorem 1.6. Suppose the
process stops after i steps for some 0 ≤ i ≤ t−1. This includes the two extreme
cases: i = 0, when the process immediately stops in (A′0, B

′
0) and i = t − 1,

when the process goes through for all non-red colors. This is the main difference
compared to the proof of Theorem 1.6, here the process might stop earlier if
most of the edges are red in G|A′i×B′i . Thus if we stop after i steps for some
0 ≤ i ≤ t− 1, we have sets A′i and B′i with

|A′i| = |B′i| ≥ γ′in, (5)

and in G|A′i×B′i apart from at most O(n) exceptional edges, all edges are colored
(in the primary coloring) with the remaining (t−i) colors. Let ηi+1 be sufficiently
small, so that we could apply Theorem 1.6 with c1 = 1/3, c2 = (γ′i)

2/4 and
η = 4ηi+1/γ

′
i. Since the process stopped, all the remaining (t − i − 1) non-red

primary colors Gi are (ηi+1, c)-sparse in (A′i, B
′
i), i.e. for all subsets U ′1 ⊆ A′i,

U ′2 ⊆ B′i, |U ′1| ≥ ηi+1|A′i|, |U ′2| ≥ ηi+1|B′i| we have

E(Gi|U ′1×U ′2) < c|U ′1||U ′2|.

Note that this is also true for the other i non-red primary colors as well, since
we can only have linearly many edges in these colors. Thus we have

E(G1|U ′1×U ′2) > (1− (t− 1)c)|U ′1||U ′2|. (6)
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Since c is small compared to 1/t, (6) clearly implies that G1 is (ηi+1, 1/2)-dense
in (A′i, B

′
i).

Now it is time to look for a red sail. Recall that the projection of the sail
is an abc triangle with an a edge hanging off from the vertex incident to b and
c (see Figure 3), i.e. this is the pattern we have to look for in the red shadow
graph of B.

Consider the largest matching of the same M -color, denoted by M ′, we can
find in G1|A′i×B′i . Using (5), the fact that G1 is (ηi+1, 1/2)-dense in (A′i, B

′
i) and

that the number of M -colors is at most n, we have

|M ′| ≥ |A
′
i||B′i|
2n

≥ γ′i
2
|A′i|.

Let us divide M ′ into two equal halves (assume for simplicity that |M ′| is even):
we have the matching M ′1 between sets A′ ⊆ A′i and B′ ⊆ B′i and we have the
matching M ′2 between sets A′′ ⊆ A′i and B′′ ⊆ B′i. Using (5) again we have

|M ′1| = |M ′2| ≥
γ′i
4
|A′i| ≥

(γ′1)2

4
n. (7)

Consider the subgraph G1|A′′×B′ . We claim that G1 is (4ηi+1/γ
′
i, 1/2)-dense

in (A′′, B′). Indeed, let us take U ′1 ⊆ A′′, U ′2 ⊆ B′ such that

|U ′1|, |U ′2| ≥
4ηi+1

γ′i
|A′′| ≥ ηi+1|A′i|

(using (7)). But then by the fact that G1 is (ηi+1, 1/2)-dense in (A′i, B
′
i) we get

that indeed

|E(G1|U ′1×U ′2)| ≥ |U
′
1||U ′2|
2

.

Consider an edge e in G1|A′′×B′ . Say e goes between edges (x, x′) ∈M ′1 and
(y, y′) ∈ M ′2, so e = (y, x′). Similarly as in the proof Theorem 1.6, we say that
e is exceptional if f(y, x′) or f(x, y) is in {x, x′, y, y′} (this cannot give a valid
sail). Note that f(x, x′) = f(y, y′) cannot appear in {x, x′, y, y′}. Clearly again
we can only have at most O(n) exceptional edges.

Let us keep only the non-exceptional edges in G1, denote this by G′1, then
clearly G′1 is (4ηi+1/γ

′
i, 1/3)-dense in (A′′, B′). Consider a non-exceptional G′1

edge e between edges (x, x′) ∈ M ′1 and (y, y′) ∈ M ′2, so e = (y, x′). If (x, y) is
also an edge in G1, then we have the desired red pattern (where (x, x′), (y, y′)
are the a edges and (x, y), (x′, y) are the b and c edges), we can augment this
to a red sail by adding the third vertices of the blocks. Thus we may assume
that (x, y) is non-red; i.e. for all non-exceptional red edge (y, x′) between A′′

and B′ we get a non-red edge (x, y) between A′ and A′′. This implies that the
non-red edges in the shadow graph of B are (4ηi+1/γ

′
i, 1/3)-dense in (A′, A′′).

Applying Theorem 1.6 with t − 1 (i.e. the non-red colors), U1 = A′, U2 = A′′,
c1 = 1/3, c2 = (γ′i)

2/4 and η = 4ηi+1/γ
′
i (the conditions of the theorem are

satisfied by the previous remark, (7) and our choice of ηi+1) for these non-red
edges in (A′, A′′), we get a monochromatic non-red copy of C, as desired. �
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5 Conclusion

We have shown that if a linear triple system H is (η, c1)-dense in (U1, U2) for
some |U1|, |U2| ≥ c2n, then it contains a wicket W . This is much better than
the ex(n,W ) ≤ (1 − c)n2 we have shown in [8] in terms of the density (any
c1 > 0 density is enough), but we need the strong structural condition of being
(η, c1)-dense. It is not clear how to find such (U1, U2) in general. This condition
is somewhat similar to η-regularity. Unfortunately, η has to be sufficiently small
compared to c2, and thus the Regularity Lemma is not strong enough to find
such (U1, U2).

In our other result we have shown that the mixed (S,W, . . . ,W ) is t-Ramsey.
The obvious next step would be to increase the number of sails until we have
all sails as in Problem 1.3.

Acknowledgements. Thanks to András Gyárfás for helpful discussions and
comments.
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