
Applied Intelligence (2018) 48:4355–4370
https://doi.org/10.1007/s10489-018-1208-0

A novel alignment algorithm for effective web data extraction
from singleton-item pages

Oviliani Yenty Yuliana1 · Chia-Hui Chang1

Published online: 15 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Automatic data extraction from template pages is an essential task for data integration and data analysis. Most researches
focus on data extraction from list pages. The problem of data alignment for singleton item pages (singleton pages for short),
which contain detail information of a single item is less addressed and is more challenging because the number of data
attributes to be aligned is much larger than list pages. In this paper, we propose a novel alignment algorithm working on leaf
nodes from the DOM trees of input pages for singleton pages data extraction. The idea is to detect mandatory templates via
the longest increasing sequence from the landmark equivalence class leaf nodes and recursively apply the same procedure
to each segment divided by mandatory templates. By this divide-and-conquer approach, we are able to efficiently conduct
local alignment for each segment, while effectively handle multi-order attribute-value pairs with a two-pass procedure. The
results show that the proposed approach (called Divide-and-Conquer Alignment, DCA) outperforms TEX (Sleiman and
Corchuelo 2013) and WEIR (Bronzi et al. VLDB 6(10):805–816 2013) 2% and 12% on selected items of TEX and WEIR
dataset respectively. The improvement is more obvious in terms of full schema evaluation, with 0.95 (DCA) versus 0.63
(TEX) F-measure, on 26 websites from TEX and EXALG (Arasu and Molina 2003).

Keywords Web data extraction · Template pages · Singleton pages · Full-schema · Divide-conquer alignment · Multiple
string alignment

1 Introduction

The World Wide Web, along with static web pages, contains
a tremendous number of dynamic web pages which are
generated through web query interfaces upon users’ requests.
These online databases (structured data) make up the deep
web and generate search result pages (semi-structured data)
by embedding data into their predefined templates. Deep
web contains valuable data and resources for knowledge
harvesting and decision making. Therefore, automatic data
extraction from the deepweb has been an important technique
for information integration and data analysis in various appli-
cations from commercial to social web application [13].

Extended paper of TAAI 2016 [28]

� Chia-Hui Chang
chia@csie.ncu.edu.tw

Oviliani Yenty Yuliana
oviliani@gmail.com

1 CSIE, National Central University, Taoyuan 32001, Taiwan

As reported in [16], Internet-accessible databases contain
up to 500 times more data than the static Web and roughly
70% of websites are backed by relational databases. A
recent study in [18] indicates that there exist more than
450 billion deep web pages. If the data hidden in deep
Web can be effectively and efficiently reverse engineered
to the original database, we can apply direct mapping to
translate the relational database to an RDF graph with OWL
vocabulary as suggested in [22]. Compared with literatures
that extract information from static pages for populating
cross-domain knowledge bases [2] or harvest structured
facts to automatically add novel statements to DBpedia
[14] deep web data extraction can speed up the extraction
procedure for data instances of the same relational schema
(even though we need to construct one wrapper for each
website).

In this paper, we study the problem of web data extraction
from dynamic web pages which are generated through web
query interfaces upon users’ requests. We focus on singleton
pages, which contain details of a single item in a page as
opposed to list pages, which contain a list of items in a
web page. For example, a page containing search result of a

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1208-0&domain=pdf
mailto: chia@csie.ncu.edu.tw
mailto: oviliani@gmail.com

4356 O. Y. Yuliana, C.-H. Chang

query is a list page, while a page containing the description
of an item (like job vacancy) is a singleton page (see Fig. 1).
For the past decade, most researches tried to solve record
extraction from list pages, e.g. CTVS [24] and Lu et al.
[20]. Very few researches focus on full schema induction
for singleton pages according to the surveys in [5, 13]. In
other words, the performance evaluation usually focused on
selected data items of list pages, the performance on full
schema and item details still has a room for improvement.

The difficulties of aligning singleton pages come from
several aspects. First, the number of data attributes needs to
be aligned is much larger than that of data records in list

Fig. 1 Examples of list pages and singleton pages

pages. For example, there are more rich data types and more
optional data to be processed in singleton pages as shown in

Fig. 2 1 .
Second, it is more likely to have multiple order attri-

bute-value pairs which lead to unordered data rendering.
For example, “Job Function” and “Entry Level” attributes
come either before or after “Location(s)” and are rendered

on either left or right side in Fig. 2 2 . For such cases, even
visual position or layout feature extraction (as proposed by
Hao et al. [15]) cannot solve multi-order attribute-value pair
problem completely.

Third, the data-rich section for singleton pages is hard
to define and can span to the whole page. Therefore, we
aim to induce the full schema for the whole page. Because
of this, there are more situations we need to consider. For
example, while the same text contents usually play the same
role in a page, some of them might have different functions
in the different position of the page when considering the
whole page. On the other hand, while the same text contents
usually have the same path, some of them might have
different paths because of decorative tags. Last but not least,
list data (if any) inside the singleton pages usually occupies
a small area and has less evidence for discovery as in list
pages.

In this paper, we propose a novel algorithm for
unsupervised web data extraction from singleton pages.
The proposed technique operates on leaf nodes of input
DOM trees. We adopt a Divide-and-Conquer approach to
recursively detect landmarks (called mandatory templates)
via longest increasing sequence (LIS) for template mining.
By focusing on leaf nodes with the same text content
(which are defined as landmark equivalence class (LECs))
and selecting LECs with consistent ordering in all pages as
landmarks, we are able to rearrange leaf nodes to achieve a
better alignment for data extraction.

We conduct experiments using real-world web pages
from the following three papers: WEIR [4], TEX [23],
and EXALG [1]. In terms of selected data items with
golden answer (5% of data columns) on WEIR dataset,
our approach (F = 0.96) outperforms the state-of-the-
art approaches like RoadRunner [9] (F = 0.66), WEIR
(F = 0.88) and TEX (F = 0.5). For full schema evaluation
with our manually annotated golden answers on TEX and
EXALG dataset, the proposed approach (F = 0.95) shows
even larger gap with TEX (F = 0.63) and RoadRunner
(F = 0.29).

The main contributions in this paper are (i) we propose
a novel data alignment technique for singleton pages, (ii)
we apply LIS to deal with inconsistent landmarks, i.e.
multi-order templates, and (iii) we extract full schema
from singleton pages and compare the effectiveness and

A novel alignment algorithm for effective web data extraction from singleton-item pages 4357

Fig. 2 An example of multi-order attribute-value pair in singleton pages and the aligned result

efficiency of the divide-and-conquer alignment (DCA) with
state-of-the-art techniques on three bench datasets from
several domains in real-world websites.

The rest of paper is organized as follows. In the next
section, we compare the proposed problem with relatedWeb
data extraction techniques. A formal problem statement
and the motivation behind the algorithm is introduced in
Section 3. We describe our proposed method in Section 4
followed by alignment phase in Section 5. The performance
evaluations are presented and analyzed in Section 6. Finally,
we conclude our paper and propose our future work in
Section 7.

2 Related work

The research of Web information extraction can be traced
back to the early stage of Web development in 1996.
Many information extractions (IE) approaches have been
proposed with diverse degree of automation (i.e. supervised
[10], semi-supervised [3, 12], and unsupervised [11, 19]).
Supervised IE approaches, which are originally designed
for input pages from different websites (i.e. with various
structure), require annotated training web-pages to build a
model. Unsupervised IE approaches, which are designed
for input pages generated from the same website (i.e.
with the same template), accept annotation-free deep web-
pages as training set and discover data-rich section for data
extraction.

The possibility of unsupervised web data extraction
relies on the regularity of semi-structured web pages or
template pages. From early approaches like EXALG [1],
RoadRunner [9], RBM-TD [25], FiVaTech [19], ONDUX
[7], and JUDIE [8], the challenging task continues to attract
increasing attention from recent work like CTVS [24],
DE-SSE [30], TEX [23], WEIR [4], and CLG [27], etc.

While all these researches claim to be unsupervised, they
target on different extraction tasks specified by input and
output. For example, an extraction target may be the search
result records from list pages (e.g. DEPTA [29]) or attribute-
value pairs from singleton pages (e.g. DE-SSE). As another
example, CETR focuses on the extraction of main (news)
content from article web pages [26], while CLG deals
with non-article (template) pages. In addition, ONDUX and
JUDIE aim to extract continuous text containing implicit
semi-structured records.

In this paper, we are particularly interested in algorithms
that are designed for full page web data extraction rather
than record or major content extraction. Some of the major
work include RoadRunner, EXALG, FivaTech, and TEX.
According to the web page generation model defined in
EXALG, a web page is generated by encoding an instance x

of its data schema S into a predefined template T (S), where
the template for a schema T (S) is defined as a function
that maps each type constructor of S into an ordered set of
strings.

RoadRunner learned a union-free regular expression by
generating a base template from the first web page then it
compared literately with another web page using a string
alignment algorithm. Meanwhile, RoadRunner applied a
backtracking algorithm for detecting optional and repetitive
patterns.

EXALG operates on strings of word and HTML tag
tokens. The idea is to detect templates from large and
frequent equivalence classes (LFEQs) that have the same
occurrence vectors across the input pages. By iteratively
removing some of the invalid LFEQs that violate the ordered
and nesting properties, the algorithm then uses the ordered
set of nested LFEQs for template construction. The major
problem with EXALG is the limitation to deal with an
inconsistent data sequence and choose the right equivalence
classes resulted from optional templates.

4358 O. Y. Yuliana, C.-H. Chang

FiVaTech induced the template and schema for a set of
given pages from a common DOM tree structure generated
from input. It applied a tree edit distance to measure the
similarity between two sibling nodes at the same level of
alignment. FiVaTech also employed a mining technique to
mine the repetitive patterns and several heuristics to detect
optional information.

TEX found and discarded the shared longest sequence
tokens amongst web documents until finding the relevant
information that should be extracted from them. In other
words, TEX extracted various information from web
documents and removed information that belongs to the
template.

3 Problem definition

In this paper, we formulate the problem of Web data
extraction as aligning leaf nodes from the DOM trees of
m input pages (each DOM tree becomes a row of input
TableL) into a table (TableA) of m rows and l columns
such that leaf nodes with the same role are aligned in
the same column. Intuitively, template columns usually
have same text contents while data columns often contain
various contents. In addition, columns could be mandatory
or optional if there are missing elements in pages. Note
that the problem definition ignores list data and treats each
record independently as multiple columns. In other words,
we define the output of the problem to be the aligned matrix
such that either template columns or data columns could be
mapped directly with some schema for data extraction.

Compared to the problem definition of EXALG or TEX,
which aligns HTML tags and word tokens, leaf nodes
are more complete as a processing unit, whereas tags
and word tokens are usually part of a larger information
unit. Operating directly on them usually results in more
noise and complexity. The challenge here is that (i) leaf
nodes of the same template may have different path
because of decorative tag or CSS, (ii) leaf nodes with the
same text content or path in input pages may play the
different role, (iii) aligning leaf nodes of the same role may
rely on various similarity measures, and (iv) multi-order
attribute-values pairs need to be re-ordered for a consistent
alignment.

4 The proposedmethod

In this paper, we propose a divide-and-conquer alignment
(DCA) algorithm that processes all input sequences at the
same time (like EXALG and TEX), rather than iteratively

merging two input web pages as RoadRunner does. We
define leaf nodes with the same text content and similar
paths as landmark equivalence class (LEC) and select
landmarks with the same occurrences across all pages for
possible templates. We then examine the first occurrence
positions of these candidate templates in each page for
order-consistency checking. The insight here is that we
enforce the order constraint on landmark selection via
the longest increasing sequence (LIS) algorithm and break
down the problem into several sub-problems. Therefore,
the proposed DCA algorithm only needs to focus on one
equivalence class that involve all landmarks with the same
occurrence count across all pages, instead of dealing with
many LFEQs and checking for their validities (ordered and
nested) with respect to other LFEQs like EXALG.

The proposed algorithm first performs data preprocessing
and then divide-and-conquer alignment as shown in Fig. 3.
In data pre-processing, we parse all the given web pages
into DOM trees, collect features for each leaf node from
DOM trees, and arrange all leaf nodes into a table called
TableL as an input for next step. The divide-and-conquer
algorithm can be further divided into template mining phase
and alignment phase. The template mining phase discovers
LECs from TableL and divides the table into segments by
detecting Mandatory Template (MT) from LECs with the
same occurrence count across all input pages. To avoid
incorrect segmentation, the template mining phase further
detects Optional Templates (OT) and merges them across
segments to remove false positive mandatory templates.
Finally, in the alignment phase, we align leaf nodes that are
not templates to generate a consistent output for multi-order
attribute-value pairs and merge similar/disjunctive columns
to generate the output matrix TableA.

4.1 Data preprocessing

As mentioned above, we use leaf nodes of DOM trees as
our basic processing unit. The reason is that the number
of leaf nodes is much smaller than the number of tag and
word tokens. As an illustration, the average number of leaf
nodes for TEX dataset (with an average size of 77KB from
26 websites) is 798, while the average number of tag and
word tokens is 4,548. Beside, leaf nodes carry information
that can be used to differentiate the roles of each leaf node.
The features that we collect for each leaf node include
LeafIndex, Path, IDSeq, ClassSeq, Content, and TypeSet as
shown below.

– LeafIndex is the index of the leaf node l in a page.
– Path is the sequence of tags from the root to the leaf

node l.

A novel alignment algorithm for effective web data extraction from singleton-item pages 4359

Fig. 3 System architecture

– IDSeq is the sequence of id attributes from all tags in
the Path.

– ClassSeq is the sequence of class attributes from all tags
in the Path.

– Content is the text content of a leaf node.
– TypeSet is the union of token types for all tokens in

Content as defined in (1), where |l.Content | is the
number of tokens in the text content.

TypeSet (l) =
|l.Content |⋃

c=1

type(l.Content[c]) (1)

Note that type() function is implemented based on
regular expression and returns one of the 12 token types for
input as defined in Fig. 4.

In summary, givenm input pages with the same template,
we parse each input page pj , 1≤ j ≤ m usingCyberNeko,1

into a DOM Tree and collect all leaf nodes d[j][1],
d[j][2], . . . , d[j][nj] of this page into d[j] in one row in
TableL as shown in Fig. 5. Note that if the last tag of a given
Path is a decorative tag2 or 〈br/〉, we remove such tags from
Path to Content.

1http://nekohtml.sourceforge.net CyberNeko HTML Parser, accessed
10 January 2017
2DecorativeT ag ≡ {a, b, big, cite, df n, f ont, em, i, mark, small,

span, sub, sup, strike, u, strong}

4.2 DCA algorithm overview and definitions

Divide-and-conquer alignment (DCA) is the core of our
work in this paper. In the template mining phase, we
regard leaf nodes with the same content and similar path
as landmarks and prioritize landmarks into Mandatory
Template (MT), Optional Template (OT), and data nodes
types. The divide-and-conquer alignment is done by a
recursive call to the MT alignment (Section 4.3) followed
by OT alignment (Section 4.4) for each segment. The
procedure stops when no MT is detected in a segment.
While the heuristic definition ofMT, i.e. landmarks with the
same occurrence count in each page, and OT, i.e. landmarks
with the same occurrence count or missing in a page,
may include false positive templates, the utilization of LIS

Fig. 4 Token types

http://nekohtml.sourceforge.net

4360 O. Y. Yuliana, C.-H. Chang

Fig. 5 Data preprocessing framework

and merging reoccurring OT (Section 4.5) can detect such
mistakes by maintaining a consistent order of templates.

In the alignment phase, the proposed algorithm handle
multi-order attribute-value pairs via a two-pass procedure
during data nodes clustering (5.1), where leaf nodes with
different contents are clustered into groups based on node
similarities. Finally, disjunctive columns or low-density and
similar columns are merged to reduce the number of output
columns (see Section 5.2). The complete algorithm is shown
in Algorithm 1.

Algorithm 1 DCA

1: procedure DCA()

2: LECGENERATION

3:

MTDETECTION

4:

OTDETECTION

5: REMOVEFPMTb

6: MO AV SETc

7: MERGECOLd

8: return

9: end procedure

a denotes
bRemoveFPMT denotes Removing False Positive s
cMO AV Set denotes Multi-order A-V sets
dMergeCol denotes Merging Columns

We start with leaf node encoding for LEC generation.

Definition 1 (Equivalent nodes) Two leaf nodes u and
v are considered as equivalence leaf nodes if they have
the same Content and the similar Path, i.e. Sim(u.Path,
v.Path) in (2) is greater than or equal to a given Path

threshold (θPath).

We define sim(u, v) of two strings s1 and s2 as:

Sim(u, v) = LCS(u, v)

max(|u|, |v|) (2)

where LCS is the longest common subsequence, |s1| and |s2|
are the length of two strings s1 and s2. Note that if a Content
contains decorative tags, we consider ∼= and
<i>∼= during similarity calculation. This is because
people could use either tags to emphasize their idea. For
encoding purpose, we consider them to be the same in order
to highlight the pattern.

With the definition of equivalent nodes, we can generate
LECs from TableL and compute their occurrence vector
and first position vector as follows.

Definition 2 (Landmark Equivalence Class) All equiva-
lent leaf nodes of the same class form anLEC with a unique
LECId.

Definition 3 (Occurrence Vector and First Position)
The Occurrence Vector (OV) of a landmark equivalence
class LECe is a vector of occurrence count oj of LECe

leaf nodes in each d[j], i.e. OVe = [o1, o2, · · · , om].
The First Position (FP) of an LECe is a vector FPe =
[p1, p2, · · · , pm], where pj is the first occurrence position
of LECe in d[j] or -1 if missing in d[j]. That is, pj is the
smallest i for all d[j][i] with LECId = e.

To generate LEC table (LECTable), the system applies a
single-pass clustering to all leaf nodes in TableL column-
wise (as shown by the vertical blue arrows in Fig. 5). The
detail of LEC generation process is shown in Algorithm 2.
After reordering, each LEC has an index in the LECTable
in addition to LECId. In the following, we use LEC[i] and
LECe to refer the i-th LEC in the LECTable and an LEC
with LECId = e, respectively.

A novel alignment algorithm for effective web data extraction from singleton-item pages 4361

Algorithm 2 generation

1: procedure LECGENERATION()

2: Initialize with leaf node

, and

1]

3: for 1 do // the largest leaf index

4: for 1 do // the # of input documents

5: if is equivalent to some then

6: and

assign with if 1
7: else

8: Initialize a new with index

and leaf node

1, and 1,

9: end if

10: end for

11: end for

12:

Reorder by and if

the for two s is the same.

13: return

14: end procedure

Example 1 An illustration of generating LECTable from
TableL is shown in Fig. 6, where the top table shows
the leaf nodes from 5 input pages and the bottom table
shows the constructed LECTable. The leaf nodes in the
first column of TableL (with Content = “Career Center”)
and the second column (with Content = “Job ID:<
/b>”) form two equivalence classes LECId = 1 and 2
respectively, while the leaf nodes in the third column, with

different text content, form five LECs. LEC14 (see A),
with missing Content=“ Location(s): ” in d[3],
has occurrence vector OV14 = [1,1,0,1,1] and FP14 =

[6,12,-1,6,12]. LEC32 (see B) with two occurrences of
Content=“
” in d[3], d[4], d[5] has OV32 vector=
[1,1,2,2,2] and FP32=[14,14,12, 14,14].

4.3 Mandatory template (MT) detection

Given the LECTable, the next step is to identify mandatory
templates for web page segmentation and divide-and-conquer.
We first consider LECs with the same occurrence count
in each document as a candidate landmark for mandatory
template detection.

Definition 4 (Candidate Mandatory Template) An LECs
with the same occurrence count k (k: a positive integer) in
each d[j], i.e. OV = k is called an candidate Mandatory
Template (MT). (k denotes a vector.)

However, not all such LECs could be used because
of inconsistent order in documents. As shown in Fig. 7,
two candidate MT LEC15 and LEC21 (both with OV = 1)
have FP15 = [10, 6, 6, 10, 6] and FP21 = [8, 8, 8, 8, 8],
which means LEC15 may either appear earlier or later than
LEC21.

To maintain a consistent order of these MTs, we apply
LIS, which can be implemented by finding the longest
common sequence between the input sequence and the
sorted input sequence, to keep an increasing FP order for all
selected MTs in each page. In other words, LIS will select
MT s with consistent FP to ensure MTTable[k].FP[j] <

MTTable[k′].FP[j] for every index k < k′ in all j (where
MTTable is the candidate MT selected from LECTable).
The complete algorithm for mandatory template detection and
divide-and-conquer procedures are shown in Algorithm 3.

Algorithm 3 detection

1: procedure MTDETECTION()

2: select candidate s from

, i.e. with k

3: final apply LIS on the s of s

from for each (where 1)

to remove inconsistent s

4: if final Ø then

5: return

6: end if

7: Use the s in final for segmenting

into s

8: for each do

9:

LECGENERATION

10: MTDETECTION

11: end for

12: return final

13: end procedure

Example 2 As shown in Fig. 7, the system selects candidate
MTs with OV = k into MTTable. Next, the system applies
LIS on FPs in each document. Since FP of these MTs
(LECId = 1, 2, 8, 15, 21, 26, 33) are unordered in d[1], i.e.
{1, 2, 4, 10, 8, 12, 15}, LEC15 is removed as shown at the
final MTTable in Fig. 7. These selected MT are then used
for segmenting TableL into 5 segments.

For each segment, we need to assemble new LECTable
and re-evaluate the FP and OV for each LEC in each
segment. This is because an LEC may appear in more
than one segment. For example, LEC14 with Content =
“Location(s):” appears in both segment s[2] and
s[4] because of different orders in documents, whereas
LEC32 with Content =“
” appears in segment s[4]

4362 O. Y. Yuliana, C.-H. Chang

Fig. 6 Example of generating LECTable

and s[5] due to multiple occurrences. Therefore, the FPs
and OVs have to be evaluated for each segment. Once new
LECTables are prepared, MT detection is then called for
each segment recursively. For example, LEC32 in Seg[4]
becomes aMT.

4.4 Optional template (OT) detection

Next, we define optional template and conduct optional
template detection for each segment in a way similar to MT
detection but dealing with LECs with OV[j] = k or 0. For

Fig. 7 Example of detecting and selecting MTs

A novel alignment algorithm for effective web data extraction from singleton-item pages 4363

these possible optional templates, we also apply LIS to filter
inconsitent OTs.

Definition 5 (Candidate Optional Template) A candidate
Optional Template (OT) is an LECwith the same occurrence
count k (a positive integer) or null (0) in each d[j], and
the support of the LEC (i.e. ratio of non-null documents) is
greater than or equal to a given threshold (θOT).

Supp(LECe) =
∑|D|

j=1 I (OVe[j])
|D| ,

I (x) =
{
1 , x > 0
0 , otherwise

(3)

The biggest difference between OT detection and MT
detection is that the candidate OTs not selected by LIS will
be added back to the OTTable. For each candidate OTr

that is not selected by LIS, we will find an index p to
insert the removed OTr such that OTr .FP[j] lies between
OTTable[p].FP[j] and OTTable[p + 1].FP[j] for each d[j]
where OTr occurs (i.e. OTr .FP[j] �= −1).

After mandatory template and optional template detec-
tion, then we combine all the detected MTs and OTs
into TemplateLEC table based on the segment sequence as
shown in Fig. 8a and examine the validity of these templates
again as described next. To save space, we use TLEC[t] as a
short hand for TemplateLEC[t] in the following.

4.5 Removing false positive MTs

While recursive detecting MT can effectively recover
templates that are filtered by LIS, not all detected MT
are true templates. In addition, because of multi-ordering
attribute-value pairs, some LECs could be separated in
several segments resulting inconsistent order of LECs. For
example in Fig. 8a, LEC21 with Content =“ Posted:
” is incorrectly recognized as a MT, which further
separates LEC14 and LEC15 into different segments. Thus,
the system tries to remove false positive MTs by detecting
recurring OTs across segments to keep a consistent order.
Formally, we define recurring OT as follows.

Definition 6 (Recurring OT) A recurring OT is an LEC
which occurs in more than one segment and has complement
occurrence vector, i.e. two LECs in the TemplateLEC table
such that TLEC[i] and TLEC[i′] (i < i′) has the same
LECId and the summation of the occurrence vector is
less than 1, i.e. TLEC[i].LECId = TLEC[i′].LECId and
TLEC[i].OV + TLEC[i′].OV ≤ 1.

If a recurring OT is detected, the system will merge
TLEC[i] and TLEC[i′] and replace the MTs between them
by changing the type into OT as follows.

1. Change the mandatory template TLEC[c].Type to OT,
i < c < i′.

2. Mark TLEC[i].Type as MP.
3. Update the first position of TLEC[i] by

max(TLEC[i].FP, TLEC[i′].FP) and the occurrence
vector of TLEC[i] by TLEC[i].OV+TLEC[i′].OV.

4. Remove TLEC[i′].

Example 3 Consider TLEC[5] and TLEC[8], both has

LECId = 15 (Content =“Job Function:”, see 1

in Fig. 8), since TLEC[5].OV + TLEC[8].OV = 1, LEC15

is a recurring OT. Thus, the system merges TLEC[5] with
TLEC[8] and changes the type of the TLEC[6] from MT to
OT. The first positions and occurrence counts of TLEC[5]
are updated to [10,6,6,10,6] and [1,1,1,1,1], respectively as
shown in Fig. 8b. Similarly, LEC14 is also a recurring OT.
The system will merge TLEC[4] and TLEC[12] accordingly.

In the above example, LEC15 (the pruned MT in the
LIS procedure for MT detection) and LEC14 (an OT in two
separate segments with two MTs in-between) present two
recurring OTs which could not be aligned well. This is a
scenario caused by multi-order attribute-value pairs, which
will be addressed by a two pass alignment procedure as
described below.

5 Alignment phase

After detecting template LECs, the next step is to align
LECs that are not in the TemplateLEC table. We show
how to align the corresponding leaf nodes from TableL into
an aligned table called TableA. There are three kinds of
templates including MT, OT, or MP in TemplateLEC table.
For each segment between two adjacentMTs: TLEC[b] and
TLEC[b′] (where b < b′), in the TLEC table, if there is
no TLEC[t] (b < t < b′) of type MP in-between, e.g.
TLEC[2] and TLEC[3] in Fig. 8b, the leaf nodes with the
index between TLEC[b].FP[j] and TLEC[b′].FP[j] for all
d[j] are aligned into TableA as follows.

– Phase 1 (Aligning leaf nodes belonging to Templa-
teLEC): For each template TLEC[t] (b ≤ t ≤ b′),
we align the corresponding leaf nodes TLEC[t].FP[j]-th
leaf node in each d[j] to the same column, and label it
as an attribute column in TableA and assign type to be
MT if the occurrence vector is 1 or OT otherwise.

– Phase 2 (Aligining leaf nodes not belonging to
TemplateLEC): For the remaining leaf nodes with
index between TLEC[t].FP[j] and TLEC[t+1].FP[j] for
all d[j], they are considered as value nodes and will be
clustered respectively based on their similarity defined

4364 O. Y. Yuliana, C.-H. Chang

Fig. 8 Example of removing false positive MTs and merging recurring OTs to obtain template LECs [28]

by a weighted average of Path, IDSeq, ClassSeq, and
TypeSet with weight 0.3, 0.2, 0.2, and 0.3, respectively.

NodeSim(f 1, f 2) = Sim(f 1.Path, f 2.Path) × ωP +
Sim(f 1.IDSeq, f 2.IDSeq) × ωI +

Sim(f 1.ClassSeq, f 2.ClassSeq) × ωC +
Sim(f 1.TypeSet, f 2.TypeSet) × ωT (4)

Two leaf nodes f 1 and f 2 are considered in the same group
if NodeSim(f1, f2) is greater than or equal to θNsim = 0.5.

5.1 Multi-order AV-pair alignment

The challenging task here is how to align data nodes
and deal with multi-order attribute-value pairs. While most
templates and data are arranged in a consistent order across
all pages, attribute-value pairs (AV-pair) can sometimes
break the rule and render arbitrarily in different pages. For
example, we can see that all leaf nodes of TLEC[t] (3 < t <

11) are unordered in all documents except for d[3] as shown

in the first positions of these TLEC[t] in Fig. 8b. Therefore,
the procedure in phase 2 could not work properly.

Since each document has its own ordering of attribute-
value pairs, we need to record such ordering for each
document to align non-template leaf nodes. Assuming each
TLEC[t] represents some attribute and the following leaf
nodes before the next template LEC will be the value of this
attribute, we define the end position EP for each TLEC[t] in
d[j] as follows:

TLEC[t].EP[j] = mini{T LEC[i].FP [j] | b < i < b′,
TLEC[i].FP[j] > TLEC[t].FP[j]}

(5)

Formally, when there exists TLEC[t] of type MP between
twoMTs, e.g. LEC14 and LEC15 between twoMTs TLEC[3]
and TLEC[11] in Fig. 8b, we record the minimum FP that
is larger than TLEC[t].FP[j] (b ≤ t ≤ b′) in each document
d[j]. During Phase 2, we collect leaf nodes with index

A novel alignment algorithm for effective web data extraction from singleton-item pages 4365

between TLEC[t].FP[j] and TLEC[t].EP[j] in each d[j] and
cluster them based on their similarity. We then insert each
cluster to a data column between two template column
TLEC[t] and TLEC[t + 1]. Similarly, the leaf nodes with
index between TLEC[b] and the first template TLEC[b + 1]
will be clustered respectively and inserted to a data column
before all template/attribute columns. Finally, we label data
columns to be mandatory data (MD) if the support is 1 or
optional data (OD) otherwise.

Example 4 For the segment between two adjacent MTs
TLEC[3] and TLEC[11], there exist two MPs, i.e. LEC14

and LEC15, and several OTs. In Phase 1, leaf nodes
corresponding to the same template LEC are aligned in
the same column. For instance, the leaf nodes specified by
TLEC[4]. FP = [6, 12,−1, 6, 12], i.e. d[1][6], d[2][12],
d[4][6], and d[5][12] of TableL in Fig. 6, are aligned in
column 6 of TableA in Fig. 8. Since TLEC[5], TLEC[6]
and TLEC[8] all have occurrence vector 1, their type are
changed to MT. As for TLEC[4], which is of MP type with
occurrence vector unequal to 1, we change its type to OT.

In Phase 2, we first compute the end position for each
TLEC[t] (b ≤ t ≤ b′) in each document d[j]. For example,
the first position for TLEC[4] is [6,12,-1,6,12], thus the end
position for TLEC[4] is [8,14,-1,8,14]. We consider the leaf
nodes d[1][7], d[2][13], d[4][7], and d[5] [13] as value
nodes and cluster them into column 7 of TableA. As another
example, the first position of TLEC[6] is [8,8,8,8,8] and the
end position for TLEC[6] is [9,9,10, 10,10]. Since there are
no leaf nodes between the first position and end position
in d[1] and d[2], we could only cluster leaf nodes d[3][9],
d[4][9], and d[5][9]. In other words, it is possible that no
leaf nodes between two template LECs. The process repeats
for each TLEC[t] for t < 11.

5.2 Merging disjunctive/similar columns

In reality, the systemmaymisalign data columns as template
during OT detection (called false positive OT, e.g. column
12, 14, and 15 of TableA in Fig. 8c). On the contrary, there
are also false negative OT because of different occurrence
count in documents or small support. These will result in
incorrect alignment of leaf nodes and generate a sparse
matrix with a large number of columns. To handle this
problem, we rearrange leaf nodes between two adjacent
MTs in TableA[b] and TableA[b′], by merging disjunctive
columns, similar columns, and low density columns as
follows.

– Merge disjunctive columns: for two adjacent columns
t and t + 1, if their occurrence vectors are disjunctive,
i.e. TableA[t].OV+TableA[t + 1].OV ≤ 1, merge
TableA[t + 1] into TableA[t] and remove TableA[t + 1].

For example, column 11 and 12 are disjunctive
columns.

– Merge similar columns: for two adjacent columns t

and t + 1, if both columns have colDensity smaller
than the given θDen, and the column similarity between
TableA[t] and TableA[t + 1] is lower than the given
θCsim, we merge TableA[t] with TableA[t+1] and delete
TableA[t + 1].

– Merge low density columns: for contiguous optional
columns TableA[t] ∼ TableA[t ′] (where t < t ′)
with colDensity and secDensity less than the given
threshold θDen, we replace TableA[t] by

⋃
t≤i≤t ′

TableA[i] and delete TableA[i] for t < i ≤ t ′.

Here, the column density colDensity(t), the column
similarity between two columns colSim(t1, t2), and the
secDensity for a section of contiguous columns are defined
in (7), (6) and (8), respectively.

colDensity[t] = # leaf nodes in column t

|D| (6)

ColSim(t1, t2)= (Sim(t1.Path, t2.Path)

+Sim(t1.IDSeq, t2.IDSeq)

+Sim(t1.ClassSeq, t2.ClassSeq))/3 (7)

secDensity[t1, t2] = # leaf nodes in column (t1 ∼ t2)

(t2 − t1 + 1) × |D|
(8)

6 Experiments

As mentioned in the introduction, we focus on attribute-
value pairs data extraction from singleton pages. Since
many algorithms have been proposed for data record
extraction in list pages [20, 24] and tables [6, 17, 21],
so we do not take data set containing tables into account.
We use three datasets: WEIR,3 TEX,4 and EXALG5 for
the following experiments. We exclude website containing
tables and select only 22 from 41 websites (660 webpages)
in TEX and 4 from 9 websites (152 singleton webpages)
in EXALG. For WEIR, we use all 40 websites (24,038
webpages). Table 1 shows the averages number of web
pages, leaf nodes for each website as well as the number of
templates and data columns, and golden answer of selected
data items per website. We manually label an average of 208
templates and 52 data columns based on the output of DCA
for full schema evaluation.

3http://www.dia.uniroma3.it/db/weir
4http://www.tdg-seville.info/Hassan/TEX
5http://infolab.stanford.edu/arvind/extract/

http://www.dia.uniroma3.it/db/weir
http://www.tdg-seville.info/Hassan/TEX
http://infolab.stanford.edu/arvind/extract/

4366 O. Y. Yuliana, C.-H. Chang

Table 1 Data description

Dataset #Pages #Leaf #Template #Data #Golden Data

per Site Nodes Columns Columns Answer Density

EXALG-4 38 213 140 41 5 0.910

TEX-22 30 292 215 48 5 0.885

WEIR-40 601 439 267 66 6 0.915

Average 223 315 208 52 6 0.903

We follow TEX [23] and define precision (Pc) and recall
(Rc) for each data column c and average the precision and
recall for the selected data columns (C) for evaluation of
selected data items.

Pc = #correct aligned leaf nodes in the extracted column

#leaf nodes in the extracted column

(9)

Rc = #correct leaf nodes in the extracted column

#leaf nodes in the golden answer column
(10)

P̄ =
∑|C|

c=1 Pc

|C| , R̄ =
∑|C|

c=1 Rc

|C| (11)

Fc = 2 × Pc × Rc

Pc + Rc

, F̄ =
∑|C|

c=1 Fc

|C| (12)

For full schema evaluation, we count the number of
correctly extracted columns (cc), where a column is
considered correctly extracted if Rc ≥ 0.85. By dividing ec

by the number of data columns in TableA or the number of
golden data columns gc, we obtain full schema precision
(PF) and full schema recall (RF), respectively.

PF = cc

ec
, RF = cc

gc
, FF = 2PF RF

PF + RF

(13)

For the following experiments, we set default threshold
of path similarity θPath to 0.8, OT θOT to 0.3, leaf node
similarity θNsim to 0.7, and section density θDen to 0.7.

6.1 Performance comparison

First, we compare DCA with RoadRunner, WEIR, and TEX
on the selected data columns of WEIR dataset. We run TEX
application on WEIR dataset, however, TEX can deal with
only 28 websites of WEIR dataset (a total 40 websites).
The statistics for RoadRunner and WEIR are obtained from
[4]. As shown in Fig. 9, DCA presents the best average
performance (P = 0.99, R = 0.93, F = 0.96) for four
categories in books, stock quotes, video games, and soccer
players, followed byWEIR with average performance (P =
0.92, R = 0.85, F = 0.88).

Fig. 9 Performance comparison of four methods on selected data columns of WEIR dataset [4]

A novel alignment algorithm for effective web data extraction from singleton-item pages 4367

Fig. 10 Performance
comparison of four methods on
selected items of TEX-22
dataset [23]

Next, we evaluate DCA on the selected data columns of
TEX-22 dataset with RoadRunner, FivaTech and TEX using
the statistics from [23]. As shown in Fig. 10. DCA presents
the best performance (P = 0.99, R = 0.99, F = 0.99)
followed by TEX performance (P = 0.96, R = 0.98,
F = 0.97). Note that FiVaTech deals with only 22 websites
and RoadRunner can process only 11 web sites as reported
in [23].

Finally, we consider all data columns of TEX-22 and
EXALG-4 datasets and show the number of data columns
generated and processing time per website as shown in
Table 2. The performances on all data columns is degraded
(P = 0.60, R = 0.69, F = 0.63). The average number
of data columns for the golden answer is 47 columns per
website and DCA generates the closest column number
(46). RoadRunner merged more columns and produced the
smallest number of data columns. On the contrary, TEX
suffered from false positive data attributes and produced the
highest number of data columns, resulting in low precision.

In terms of efficiency, the processing time of DCA
(12 seconds) is the fastest compared with RoadRunner
(97 seconds) and TEX (16 seconds) as shown in Fig. 11.
We attribute this advantage to DCA’s divide-and-conquer
mechanism and the use of leaf nodes as processing units
(thus reducing the number of units processed).

6.2 Sensitivity analysis

There are four major parameters in the proposed DCA
algorithm including path similarity of two leaf nodes
θPath (for LEC generation), occurrence vector support θOT

(for OT detection), node similarity θNsim (for data node
clustering), and column/section density θDen To see how
these parameters affect the performance and determine
the thresholds, we conduct sensitivity analysis based on
EXALG-4 and TEX-22 datasets.

Figure 12 shows the distribution of path similarity and
the performance with the varying (from 0.1 to 0.9) path
similarity threshold, θPath. As we can see, most (83.6%)
leaf nodes with the same content have path similarity higher
than 0.9, however, there are still leaf nodes with very
different paths, which we consider as incorrect landmark.
Second, the F1 performance ranges vary between 0.94
and 0.95, showing that using leaf nodes with the same
text content is a good choice for LEC even without path
similarity. However, increasing θPath will exclude false
positive MTs, thus reducing the number of divide-and-
conquer (DC) iterations (from 56 to 48). Therefore, we
define θPath = 0.8 for two leaf nodes with the same text
content to be considered the same LECs, i.e (2) ≥ 0.8.

Figure 12 shows the distribution of LEC support and
the performance w.r.t varyingθOT threshold. Here, most
(93.9%) LECs have support less than 0.1 since most data
leaf nodes form an LEC with 1 occurrence. Increasing θOT

will reduce the number of optional templates OTs. DCA
achieves the best performance when θOT = 0.3 and remains
good (F1 > 0.92) from 0.1 to 0.6. When the θOT threshold
is set too larger, we lose true positive OTs. Therefore we
define θOT = 0.3 for an LEC to be considered an optional
template, i.e (3) ≥ 0.3.

Figure 12 shows the distribution of leaf node similarity for
data node clustering during the alignment phase.Aswe can see,
most (85.4%) leaf node pairs have a similarity higher than
or equal to 0.7. Second, for different similarity thresholds,
the performance of the proposed DCA has little change
(between 0.94 and 0.95 in F1), showing the robustness of
the proposed algorithm. The best performance is achieved
when θNsim = 0.7 in our experiment. Therefore, we set (4)
≥ 0.7 for two leaf nodes to be clustered in the same column.

Finally, Fig. 12 shows the distribution of section density
for contiguous columns between two MT s. The distribution
is quite average between 0 and 1. Section density plays

4368 O. Y. Yuliana, C.-H. Chang

Ta
bl
e
2

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

fu
ll
sc
he
m
a
on

T
E
X
-2
2
an
d
E
X
A
L
G
-4

da
ta
se
ts

ID
W
eb
pa
ge

G
A

D
C
A

T
E
X

R
R

#E
C

P
F

R
F

F
F

#E
C

P
F

R
F

F
F

#E
C

P
F

R
F

F
F

T
01

w
w
w
.a
be
bo
ok
s.
co
m

44
43

0.
97

0.
98

0.
97

52
0.
63

0.
59

0.
61

–
–

–
–

T
02

w
w
w
.a
w
es
om

eb
oo
ks
.c
om

21
21

1.
00

1.
00

1.
00

37
0.
64

0.
76

0.
70

20
1.
00

0.
95

0.
98

T
03

w
w
w
.m

an
yb
oo
ks
.n
et

39
37

0.
97

0.
93

0.
95

44
0.
34

0.
33

0.
34

–
–

–
–

T
04

w
w
w
.a
ut
ot
ra
de
r.c
om

11
7

11
3

0.
98

0.
96

0.
97

15
6

0.
55

0.
54

0.
54

–
–

–
–

T
05

w
w
w
.c
ar
m
ax
.c
om

10
1

10
0

0.
93

0.
87

0.
90

11
9

0.
35

0.
36

0.
35

8
0.
50

0.
04

0.
07

T
06

w
w
w
.c
la
ss
ic
ca
rs
fo
rs
al
e.
co
.u
k

51
43

0.
98

0.
84

0.
90

93
0.
52

0.
84

0.
65

–
–

–
–

T
07

w
w
w
.in

te
rn
et
au
to
gu
id
e.
co
m

92
90

0.
96

0.
93

0.
94

10
1

0.
67

0.
65

0.
66

–
–

–
–

T
08

w
w
w
.m

be
nd
i.c
om

13
13

1.
00

1.
00

1.
00

13
0.
61

0.
85

0.
71

13
1.
00

1.
00

1.
00

T
09

w
w
w
.r
dl
ea
rn
in
g.
or
g.
uk

15
16

0.
86

0.
91

0.
88

11
0.
77

0.
87

0.
81

1
1.
00

0.
07

0.
13

T
10

ex
ta
pp
s.
am

a-
as
sn
.o
rg

21
19

0.
83

0.
75

0.
79

24
0.
70

0.
67

0.
68

6
0.
67

0.
19

0.
30

T
11

w
w
w
.d
rs
co
re
.c
om

31
30

0.
97

0.
96

0.
96

64
0.
49

0.
58

0.
53

–
–

–
–

T
12

w
w
w
.s
te
ad
yh
ea
lth

.c
om

10
6

10
6

0.
95

0.
93

0.
94

54
0.
65

0.
52

0.
58

3
1.
00

0.
03

0.
05

T
13

ca
re
er
s.
in
si
gh
tin

to
di
ve
rs
ity
.c
om

14
14

1.
00

1.
00

1.
00

52
0.
12

0.
43

0.
19

4
1.
00

0.
07

0.
13

T
14

w
w
w
.6
fi
gu
re
jo
bs
.c
om

48
48

0.
97

0.
97

0.
97

55
0.
70

0.
83

0.
76

–
–

–
–

T
15

w
w
w
.c
ar
ee
rb
ui
ld
er
.c
om

38
37

0.
97

0.
93

0.
95

35
0.
78

0.
74

0.
76

–
–

–
–

T
16

w
w
w
.jo

bo
fm

in
e.
co
m

13
13

1.
00

1.
00

1.
00

22
0.
60

0.
92

0.
73

12
1.
00

0.
92

0.
96

T
17

w
w
w
.a
lb
an
ia
m
.c
om

17
17

1.
00

1.
00

1.
00

17
1.
00

0.
94

0.
97

17
1.
00

1.
00

1.
00

T
18

w
w
w
.a
llm

ov
ie
.c
om

70
67

0.
96

0.
91

0.
94

66
0.
70

0.
73

0.
71

–
–

–
–

T
19

w
w
w
.c
itw

f.
co
m

36
35

0.
99

0.
96

0.
97

21
0.
89

0.
92

0.
90

35
1.
00

0.
97

0.
99

T
20

w
w
w
.d
is
ne
ym

ov
ie
sl
is
t.c
om

30
30

0.
97

0.
95

0.
96

53
0.
44

0.
71

0.
54

–
–

–
–

T
21

w
w
w
.e
m
ax
.c
om

60
60

0.
98

0.
98

0.
98

83
0.
54

0.
70

0.
61

–
–

–
–

T
22

w
w
w
.a
tp
w
or
ld
to
ur
.c
om

78
78

0.
96

0.
96

0.
96

10
4

0.
50

0.
64

0.
56

–
–

–
–

E
01

te
am

s.
ue
fa
.c
om

14
14

1.
00

1.
00

1.
00

18
1.
00

1.
00

1.
00

14
1.
00

1.
00

1.
00

E
02

w
w
w
.a
us
op
en
.c
om

35
35

0.
97

1.
00

0.
98

54
0.
55

0.
63

0.
59

35
1.
00

1.
00

1.
00

E
03

w
w
w
.e
ba
y.
co
m

46
47

0.
86

0.
76

0.
81

81
0.
38

0.
54

0.
45

–
–

–
–

E
04

w
w
w
.n
et
fl
ix
.c
om

70
70

0.
97

0.
81

0.
88

95
0.
42

0.
60

0.
49

–
–

–
–

A
vg
.

47
46

0.
96

0.
93

0.
95

59
0.
60

0.
69

0.
63

8
0.
43

0.
28

0.
29

*
T
he

ex
ec
ut
ab
le
pr
og
ra
m
,d

at
as
et
s,
an
d
go
ld
en
-a
ns
w
er

ca
n
be

do
w
nl
oa
de
d
fr
om

ht
tp
s:
//s
ite
s.
go
og
le
.c
om

/s
ite
/n
cu
la
b/
pr
oj
ec
t/W

D
E
M
S/
dc
a

www.abebooks.com
www.awesomebooks.com
www.manybooks.net
www.autotrader.com
www.carmax.com
www.classiccarsforsale.co.uk
www.internetautoguide.com
www.mbendi.com
www.rdlearning.org.uk
extapps.ama-assn.org
www.drscore.com
www.steadyhealth.com
careers.insightintodiversity.com
www.6figurejobs.com
www.careerbuilder.com
www.jobofmine.com
www.albaniam.com
www.allmovie.com
www.citwf.com
www.disneymovieslist.com
www.emax.com
www.atpworldtour.com
teams.uefa.com
www.ausopen.com
www.ebay.com
www.netflix.com
https://sites.google.com/site/nculab/project/WDEMS/dca

A novel alignment algorithm for effective web data extraction from singleton-item pages 4369

Fig. 11 Performance
comparison of full schema on
TEX-22 and EXALG-4 datasets

an important role in the DCA performances. The best
performance (P = 0.96, R = 0.93, F = 0.95) is achieved
when θDen = 0.7 as shown in Fig. 12. Without this merging
mechanism, the F1 performance could only be 0.75.

In summary, support threshold θOT and section den-
sity threshold θDen are the two major parameters that
could affect the performances of DCA. From the above
experiments, DCA obtains good performance (F1 measure
between 0.92 to 0.95) for 0.1 ≤ θOT ≤ 0.6 and 0.6 ≤
θDen ≤ 0.8. Furthermore, only path threshold θPath has an
impact on the number of divide-and-conquer iterations.

7 Conclusions and future work

In this paper, we present an unsupervised approach for web
data extraction on singleton pages. We define landmark
equivalence class (LEC) as leaf nodes with the same text
content and similar paths and use them for template mining.
(In comparison, WEIR requires leaf nodes to have the
same path and sets 40% support for optional templates.)
We then prioritize the discovery of templates in order of
mandatory and optional via occurrence vectors and ensure
the consistency of such templates through LIS (longest

Fig. 12 Sensitivity analysis for parameter tuning

4370 O. Y. Yuliana, C.-H. Chang

increasing sequence) algorithm. Then, the discovered MTs
divide the input table into segments for recursive processing.

Since there might be false positive templates during the
template mining phase, we design the merging of recurring
OTs to remove such MTs and mark them for multi-order
AV-pair alignment via end position to locate the value leaf
nodes for each template attribute. Finally, DCA adopts a
similarity measure for data node clustering based on Path,
IDSeq, ClassSeq, and TypeSet. Therefore, the system can
decide how to merge leaf nodes to get the final result.

We conducted experiments on real-world datasets from
WEIR, TEX-22 and EXALG-4. Overall, DCA outperforms
RoadRunner, TEX, and WEIR not only on the selected
data items but also on complete data columns (with 0.95
F-measure) in terms of full schema evaluation (compared
with 0.63 F-measure for TEX and 0.29 F-measure for
RoadRunner). In addition, we conduct sensitivity analysis
to show the robustness of the DCA algorithm with various
parameter thresholds for path similarity, OT support, leaf
node similarity, and section density.

For future work, we will design dynamic encoding for
leaf node abstraction to enhance the alignment performance
on data columns. Furthermore, we will extend the proposed
approach to handle list and table extraction inside singleton
pages. Finally, we will implement a wrapper generation
module for efficient extraction on testing pages.

Acknowledgements This research is supported byMinistry of Science
andTechnologyTaiwan, under grantMOST 105-2628-E-008-004-MY2.

References

1. Arasu A, Molina HG (2003) Extracting structured data from Web
pages. In: SIGMOD, pp 337–348

2. Augenstein I, Maynard D, Ciravegna F (2016) Distantly super-
vised web relation extraction for knowledge base population.
Semantic Web 7(4):335–349

3. Bing L, LamW, Wong TL (2013) Wikipedia entity expansion and
attribute extraction from the web using semi-supervised learning.
In: Web search and data mining, pp 567–576

4. Bronzi M, Crescenzi V, Merialdo P, Papotti P (2013) Extraction
and integration of partially overlapping web sources. VLDB
6(10):805-816

5. Chang CH, Kayed M, Girgis MR, Shaalan KF (2010) A survey of
web information extraction systems. IEEE Trans Knowl Data Eng
18(10):1411–1428

6. Chu X, He Y, Chakrabarti K, Ganjam K (2015) Tegra: table
extraction by global record alignment. In: SIGMOD, pp 1713–
1728

7. Cortez E, da Silva AS, Gonçalves MA, de Moura ES (2010)
Ondux: on-demand unsupervised learning for information extrac-
tion. In: SIGMOD, pp 807–818

8. Cortez E, Oliveira D, da Silva AS et al (2011) Joint unsupervised
structure discovery and information extraction. In: SIGMOD, pp
541–552

9. Crescenzi V, Mecca G (2004) Automatic information extraction
from large websites. J ACM 51(5):731–779

10. Crescenzi V, Merialdo P, Qiu D (2013) Alfred: crowd assisted
data extraction. In: WWW, pp 297–300

11. Dalvi BB, Cohen WW, Callan J (2012) Websets: extracting sets of
entities from the web using unsupervised information extraction.
In: Web search and data mining, pp 243–252

12. Dhillon PS, Sellamanickam S, Selvaraj SK (2011) Semi-
supervised multi-task learning of structured prediction models
for web information extraction. In: Information and knowledge
management, pp 957–966

13. Ferrara E, De Meo P, Fiumara G, Baumgartner R (2014) Web data
extraction, applications and techniques: a survey. Knowl-Based
Syst 70:301–323

14. Fossati M, Dorigatti E, Giuliano C (2017) N-ary relation
extraction for simultaneous T-box and A-box knowledge base
augmentation. Semantic Web, 1–27

15. Hao Q, Cai R, Pang Y, Zhang L (2011) From one tree to a forest: a
unified solution for structured web data extraction. In: SIGIR, pp
775–784

16. He B, Patel M, Zhang Z, Chang KCC (2007) Accessing the deep
web. Commun ACM 50(5):94–101

17. Ibrahim Y, Riedewald M, Weikum G (2016) Making sense of
entities and quantities in web tables. In: CIKM, pp 1703–1712

18. Jou C (2015) Semantics-assisted deep web query interface
classification. In: Computer science & software engineering, pp
70–78

19. Kayed M, Chang CH (2010) FiVaTech: page-level web data
extraction from template pages. IEEE Trans Knowl Data Eng
22(2):249–263

20. Lu Y, He H, Zhao H et al (2013) Annotating search results from
web databases. IEEE Trans Knowl Data Eng 25(3):514–527

21. Sarawagi S, Chakrabarti S (2014) Open-domain quantity queries
on web tables: annotation, response, and consensus models. In:
SIGKDD, pp 711–720

22. Sequeda JF, Arenas M, Miranker DP (2012) On directly mapping
relational databases to RDF and OWL. In: WWW, pp 649–658

23. Sleiman HA, Corchuelo R (2013) TEX: an efficient and effective
unsupervised web information extractor. Knowl-Based Syst
39:109–123

24. Su W, Wang J, Lochovsky FH, Liu Y (2012) Combining tag and
jouvalue similarity for data extraction and alignment. IEEE Trans
Knowl Data Eng 24(7):1186–1200

25. Vieira K, da Costa Carvalho AL, Berlt K et al (2009) On finding
templates on web collections. WWW J 12(2):171–211

26. Weninger T, Hsu WH, Han J (2010) CETR: content extraction via
tag ratios. In: WWW, pp 971–980

27. Wu S, Liu J, Fan J (2015) Automatic web content extraction
by combination of learning and grouping. In: WWW. ACM, pp
1264–1274

28. Yuliana OY, Chang CH (2016) AFIS: aligning detail-pages for full
schema induction. In: TAAI, pp 220–227

29. Zhai Y, Liu B (2006) Structured data extraction from the web
based on partial tree alignment. IEEE Trans Knowl Data Eng
18(12):1614–1628

30. Zheng X, Gu Y, Li Y (2012) Data extraction from web pages
based on structural-semantic entropy. In: WWW, pp 93–102

	A novel alignment algorithm for effective web data extraction from singleton-item pages
	Abstract
	Abstract
	Introduction
	Related work
	Problem definition
	The proposed method
	Data preprocessing
	DCA algorithm overview and definitions
	Mandatory template (MT) detection
	Optional template (OT) detection
	Removing false positive MTs

	Alignment phase
	Multi-order AV-pair alignment
	Merging disjunctive/similar columns

	Experiments
	Performance comparison
	Sensitivity analysis

	Conclusions and future work
	Acknowledgements
	References

