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Preface 
 

This book is an extending part of my doctoral dessertation providing 

a research in constructing intelligent information system dealing with 

rough sets, fuzzy sets and granular computing. Uncertainty was involved 

and connected to every aspect of human life. The most fundamental 

aspect of this connection is obviously shown in human communication. 

Naturally, human communication is built on perception based infor-

mation. Perceptions are intrinsic aspect in uncertainty based information. 

In this case, information may be incomplete, imprecise, fragmentary, not 

fully reliable, vague, contradictory, or deficient in some other way. 

Generally, these various information deficiencies may express different 

types of uncertainty. Many theories were proposed to express and process 

the types of uncertainty such as probability, possibility, fuzzy sets, rough 

sets, chaos theory and so on.  

It is necessary to construct a computer-based information system 

called intelligent information system that can process uncertainty-based 

information. In the future, computers are expected to be able to make 

communication with human in the level of perception. This book extends 

and generalizes existing theory of rough set, fuzzy sets and granular 

computing for the purpose of constructing the intelligent information 

system. 

I realized what written in this book only shared a small part of 

research topics in rough sets, fuzzy sets and granular computing in the 

relation to construct perception based information. However, I hope that 

this book will be a valuable reference especially for undergraduate as well 
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as graduate students who are interested to study and do a research in the 

topics.  

Finally, I would like to express my gratitude to my doctoral advisor, 

Prof. Dr. Masao Mukaidono, for his support and guidance throughout the 

research during my doctoral study at Meiji University, Tokyo, Japan from 

2000 to 2003. I would also like to extend my gratitude to my family. 

Without their encouragement and sacrifice, I would not complete my 

doctoral study on time successfully. 

 

Surabaya, October 2015 

Rolly INTAN 
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Chapter 1 
 

Introduction 
 

Since human being is not an omniscient and omnipotent being, we 

are actually living in an uncertain world. Uncertainty was involved and 

connected to every aspect of human life as a quotation from Albert 

Einstein said: 

“As far as the laws of mathematics refer to reality, they are not 

certain. And as far as they are certain, they do not refer to reality.”
1
 

 

The most fundamental aspect of this connection is obviously shown 

in human communication. Naturally, human communication is built on 

the perception
1
-based information instead of measurement-based infor-

mation in which perceptions play a central role in human cognition 

[Zadeh, 2000]. For example, it is naturally said in our communication 

that “My house is far from here.” rather than let say “My house is 12,355 

m from here”. Perception-based information is a generalization of 

measurement-based information, where perception-based information 

such as “John is excellent.” is hard to represent by measurement-based 

version. Perceptions express human subjective view. Consequently, they 

tend to lead up to misunderstanding. Measurements then are needed such 

as defining units of length, time, etc., to provide objectivity as a means to 

overcome misunderstanding. Many measurers were invented along with 

                                                           
1
 In psychology, perception is understood as a process of translating sensory stimulation into an 

organized experience. 
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their methods and theories of measurement. Hence, human cannot 

communicate with measurers including computer as a product of 

measurement era unless he uses measurement-based information. 

Perceptions are intrinsic aspect in uncertainty-based information. In 

this case, information may be incomplete, imprecise, fragmentary, not 

fully reliable, vague, contradictory, or deficient in some other way. 

Generally, these various information deficiencies may express diffe-

rent types of uncertainty. It is necessary to construct a computer-based 

information system called intelligent information system that can process 

uncertainty-based information. In the future, computers are expected to 

be able to make communication with human in the level of perception. 

Many theories were proposed to express and process the types of 

uncertainty such as probability, possibility, fuzzy sets, rough sets, chaos 

theory and so on. This book extends and generalizes existing theory of 

rough set, fuzzy sets and granular computing for the purpose of construc-

ting intelligent information system. The structure of this book is the 

following: In Chapter 2, types of uncertainty in the relation to fuzziness, 

probability and evidence theory (belief and plausibility measures) are 

briefly discussed. Rough set regarded as another generalization of crisp 

set is considered to represent rough event in the connection to the 

probability theory. Special attention will be given to formulation of fuzzy 

conditional probability relation generated by property of conditional 

probability of fuzzy event. Fuzzy conditional probability relation then is 

used to represent similarity degree of two fuzzy labels. 

Generalization of rough set induced by fuzzy conditional probability 

relation in terms of covering of the universe is given in Chapter 3. In the 

relation to fuzzy conditional probability relation, it is necessary to 

consider an interesting mathematical relation called weak fuzzy similarity 

relation as a generalization of fuzzy similarity relation proposed by Zadeh 

[1995]. Fuzzy rough set and generalized fuzzy rough set are proposed 

along with the generalization of rough membership function. Their 

properties are examined. Some applications of these methods in 
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information system such as α-redundancy of object and dependency of 

domain attributes are discussed. 

In addition, multi rough sets based on multi-context of attributes in 

the presence of multi-contexts information system is defined and 

proposed in Chapter 4. In the real application, depending on the context, a 

given object may have different values of attributes. In other words, set of 

attributes might be represented based on different context, where they 

may provide different values for a given object. Context can be viewed as 

background or situation in which somehow it is necessary to group some 

attributes as a subset of attributes and consider the subset as a context.  

Finally, Chapter 5 summarizes all discussed in this book and puts 

forward some future topics of research. 
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Chapter 2 
 

Probability, Fuzziness, Rough and 

Evidence Theory 
 

2.1 Introduction  

 

Since the appearance of the first article on fuzzy sets proposed by 

Zadeh in 1965, the relationship between probability and fuzziness in 

representing uncertainty has been an object of debate among many 

people. The main problem is whether or not probability theory by itself is 

sufficient for dealing with uncertainty. This question has been discussed 

at length in many papers such as written by Nguyen [Nguyen, 1977], 

Kosko [Kosko, 1990], Zadeh [Zadeh, 1968, 1995] and so on. 

In this chapter, again the process of perception performed by human 

being is used to simply understand the relationship between probability 

and fuzziness. In the process of perception, subject (human, computer, 

robot, etc.) tries to recognize and describe a given object (anything such 

as human, plant, animal, event, condition, etc.). To perform perception 

successfully, subject needs adequate knowledge. On the other hand, 

object needs a clear definition. However, human (as subject) does not 

know what happen in the future and also has limited knowledge. In other 

words, human is not omniscient being. In this case, subject is in a non-

deterministic situation in performing a perception. On the other hand, 

mostly objects (shape, feel, mentality, etc.) cannot usually be defined 

clearly. Therefore, the process of perception turns into uncertainty. 
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To summarize the relation between subject and object in the process 

of perception, there are four possible situations as follows. 

(a) If subject has sufficient knowledge and object has clear definition, it 

comes to be a certainty.  

(b) If subject has sufficient knowledge and object has unclear definition, 

it comes to be fuzziness. In general, fuzziness, called deterministic 

uncertainty, may happen in the situation when one is subjectively 

able to determine or describe a given object, although somehow the 

object does not have a certain or clear definition. For example, a 

man describes a woman as a pretty woman. Obviously definition of 

a pretty woman is unclear, uncertain and subjective. The man 

however is convinced of what he describes as a pretty woman.  

(c) If subject does not have sufficient knowledge and object has clear 

definition, it comes to be randomness. Randomness is usually called 

non-deterministic uncertainty because subject cannot determine or 

describe a given object even though the object has clear definition. 

Here, probability exists for measuring a random experiment. For 

example, in throwing a dice, even though there are six definable and 

certain possibilities of outcome, one however cannot assure the 

outcome of dice. Still another example, because of his limited know-

ledge, for instance, one cannot assure to choose a certain answer in a 

multiple choice problem in which there are 4 possible answers, but 

only one answer is correct.  

(d) If subject does not have sufficient knowledge and object has unclear 

definition, it comes to be a probability of fuzzy event [Zadeh, 1968]. 

In this situation, both probability and fuzziness are combined. For 

example, how to predict the ill-defined event: “Tomorrow will be a 

warm day”. Talking about tomorrow means talking about the future 

in which subject cannot determine what happen in the future. The 

situation should be dealt by probability. However, warm is an ill-

defined event (called fuzzy event). Therefore, it comes to be a 

probability of fuzzy event.  
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From these four situations, it is obviously seen that probability and 

fuzziness work in different areas of uncertainty and that probability 

theory by itself is not sufficient for especially dealing with ill-defined 

event. Instead, probability and fuzziness must be regarded as a 

complementary tool. 

In probability, set theory is used to provide a language for modeling 

and describing random experiments. In (classical) set theory, subsets of 

the sample space of an experiment are referred to as crisp events. Fuzzy 

set theory, proposed by Zadeh in 1965, is considered as a generalization 

of (classical) set theory in which fuzzy set is to represent deterministic 

uncertainty by a class or classes which do not possess sharply defined 

boundaries [Zadeh, 1990] 

By fuzzy set, an ill-defined event, called fuzzy event, can be 

described in the presence of probability theory providing probability of 

fuzzy event [Zadeh, 1968] in which fuzzy event might be regarded as a 

generalization of crisp event. Conditional probability as an important 

property in probability theory for inference rule can be extended to 

conditional probability of fuzzy event. In the situation of uniform proba-

bility distribution, conditional probability of fuzzy event can be simplified 

to be what we call fuzzy conditional probability relation as proposed in 

[Intan, Mukaidono, 2000a, 2000c] for dealing with similarity of two 

fuzzy labels (sets). 

Similarly, rough set theory generalizes classical set theory by 

studying sets with imprecise boundaries. A rough set [Pawlak, 1982], 

characterized by a pair of lower and upper approximations, may be 

viewed as an approximate representation of a given crisp set in terms of 

two subsets derived from a partition on the universe [Klir, Yuan, 1995], 

[Komorowski, Pawlak, Polkowski, Skowron, 1999], [Pawlak 1982], 

[Yao, 1996]. By rough set theory, a rough event is proposed to represent 

two approximate events, namely lower and upper approximate events, in 

the presence of probability theory providing probability of rough event. 

Therefore, rough event might be considered as approximation of a given 
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crisp event. Moreover, probability of rough event gives semantic 

formulation of interval probability. Formulation of interval probability is 

useful in order to represent the worst and the best cases in decision 

making process. In this chapter, special attention will be given to 

conditional probability of rough event providing several combinations of 

formulation and properties. 

In addition, a generalized fuzzy rough set as proposed in [Intan, 

Mukaidono, 2002f], [Intan, Mukaidono, 2002k] (see Chapter 3) is an 

approximation of a given fuzzy set on a given fuzzy covering. Since 

fuzzy set generalizes crisp set and fuzzy covering generalizes crisp 

partition, the generalized fuzzy rough set is considered as the most 

generalization of fuzzy set and rough set as well as rough fuzzy set and 

fuzzy rough set as proposed in [Dubois, Prade, 1990]. Thus, by the 

generalized fuzzy rough set, a generalized fuzzy-rough event is proposed 

providing probability of the generalized fuzzy-rough event. The 

generalized fuzzy-rough event is represented in four approximate fuzzy 

events, namely lower minimum, lower maximum, upper minimum and 

upper maximum fuzzy events. 

Finally, this chapter shows and discusses relation among belief-

plausibility measures (evidence theory), lower-upper approximate 

probability (probability of rough events), classical probability measures, 

probability of fuzzy events and probability of generalized fuzzy-rough 

events. 

 

2.2 Probability of Fuzzy Event  

 

Probability theory is based on the paradigm of a random experiment; 

that is, an experiment whose outcome cannot be predicted with certainty, 

before the experiment is run. In other words, as discussed in the previous 

section, probability is based on that a subject has no sufficient knowledge 

in certainly predicting (determining) outcome of an experiment. In proba-

bility, set theory is used to provide a language for modeling and des-

cribing random experiments. The sample space of a random experiment 
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corresponds to universal set. In (classical) set theory, subsets of the 

sample space of an experiment are referred to be crisp events. 

In order to represent an ill-defined event, crisp event must be 

generalized to fuzzy event in which fuzzy set is used to represent fuzzy 

event. Formally, probability of fuzzy event is defined as the following 

[Zadeh, 1968]: 

Definition 2.2.1 Let (U,F,P) be a probability space in which U is the 

sample space, F is sigma algebra of events and P is a probability measure 

over U. Then, a fuzzy event A ∈ F is a fuzzy set A on U whose member-

ship function, µA: U → [0, 1]. The probability of fuzzy event A is defined 

by: 

-  continuous sample space: 

 
U

A
U

A duupudPuAP )()()()(                          (2.1) 

-  discrete sample space: 

 
U A upuAP )()()(    (2.2) 

where p(u) is probability distribution function of element u ∈ U. 

 

For example, it is given a sentence “John ate a few eggs for break-

fast”, and we do not know exactly how many eggs John ate for breakfast. 

In this case, arbitrarily given probability distribution function of “John ate 

u ∈ U egg(s) for breakfast” is shown in Table 2.1.  

 

Table 2.1. Probability Distribution of u 

u 1 2 3 4 5 6 • • • 

p(u) 0.33 0.27 0.2 0.13 0.07 0 • • • 

 

“a few” is a fuzzy label that also means a fuzzy event as arbitrarily given 

by the following fuzzy set: µafew = {1/1, 0.6/2, 0.2/3}, where µafew (2) = 

0.6. By Definition 2.2.1, probability of “John ate a few eggs for 

breakfast”, denoted by P (a few), is calculated as: 

P (a few) = 1 × 0.33 + 0.6 × 0.27 + 0.2 × 0.2 = 0.532. 



   

 Page | 9 

There are several basic concepts relating to fuzzy sets. For A and B 

are two fuzzy sets on U [Zadeh, 1990], 

Equality: A = B ⇔ µA(u) = µB (u), ∀u, 

Containment:  A ⊂ B ⇔ µA(u) ≤ µB (u), ∀u, 

Complement: B = ¬A ⇔ µB (u) = 1 − µA(u), ∀u, 

Union:  µA∪B (u) = max[µA(u), µB (u)], 

Intersection:  µA∩B (u) = min[µA(u), µB (u)], 

Product:  µAB (u) = µA(u)·µB (u), 

Sum:  µA⊕B (u) = µA(u) + µB (u) − µA(u) ·µB (u). 

 

Obviously, it can be proved that probability of fuzzy event satisfies 

some properties: for A and B are two fuzzy sets on U, 

(1) A ⊂ B ⇒ P(A) ≤ P(B), 

(2) P(A ∪ B) = P(A) + P(B) − P(A ∩ B), 

(3) P(A ⊕ B) = P(A) + P(B) − P(A·B), 

(4) P(A ∪ ¬A) ≤ 1, 

(5) P(A ∩ ¬A) ≥ 0. 

(1), (2) and (3) show that probability of fuzzy event satisfies monotonicity 

and additivity axioms of union as well as sum operation, respectively. 

However, it does not satisfy law of excluded middle and law of non-

contradiction as shown in (4) and (5). 

We turn next to notion of conditional probability of fuzzy events. 

Conditional Probability of an event is probability of the event occurring 

given that another event has already occurred. The relationship between 

conditional and unconditional probability satisfies the following equation: 

P (A|B) = P (A ∩ B)/P (B), 
 

where suppose B is an event such that P (B) ≠ 0. 

In discrete sample space, conditional probability of fuzzy event 

might be defined as follow: for A and B are two fuzzy sets on U, 

,,
)()(

)()](),(min[
)|( Uu

upu

upuu
BAP

U B

U AA













 (2.3) 
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where 0)()( U B upu . Some properties are satisfied in conditional 

probability of fuzzy event: for A and B are two fuzzy sets on U, 

(1) Normalization: P (A|B) + P (¬A|B) ≥ 1,  

(2) Total Probability; If {Bk |k ∈ Nn} are crisp, pairwise disjoint and 

exhaustive events,  

i.e., P (Bi ∩ Bj) = 0 for i ≠ j and   ∪Bk = U, then: 

  
k kk BAPBPAP ),|()()(  

(3) Bayes Theorem:   

 .
)(

)()|(
)|(

BP

APABP
BAP


  

Also, the relationship between A and B in conditional probability of 

fuzzy event can be represented into three conditions: 

(a) positive correlation:  

P (A|B) > P (A) ⇔ P (B|A) > P (B) ⇔ P (A ∩ B) > P (A) × P (B),  

(b) negative correlation:  

P (A|B) < P (A) ⇔ P (B|A) < P (B) ⇔ P (A ∩ B) < P (A) × P (B),  

(c) independent correlation:  

P (A|B) = P (A) ⇔ P (B|A) = P (B) ⇔ P (A ∩ B) = P (A) × P (B).  

 

In uniform distribution, probability distribution function, p(u) = 

1/|U|, is regarded as a constant variable. Therefore, conditional 

probability of fuzzy event A given B is defined more simply without p(u) 

by: 

,,
)(

)](),(min[
)|( Uu

u

uu
BAP

U B

U AA








  (2.4) 

In [Intan, Mukaidono, 2000a], [Intan, Mukaidono, 2000c], we used 

the formula to calculate degree of similarity relationship between two 

fuzzy labels (sets) and called it, fuzzy conditional probability relation. 
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2.3 Probability of Rough Event  

 

Rough set is another generalization of crisp set by studying sets with 

imprecise boundary. A rough set, characterized by a pair of lower and 

upper approximations, may be viewed as an approximate representation 

of a given crisp set in terms of two subsets derived from a partition on the 

universe [Klir, Yuan, 1995], [Komorowski, Pawlak, Polkowski, 

Skowron, 1999], [Pawlak 1982], [Yao, 1996]. The concept of rough sets 

can be defined precisely as follows. Let U denotes a finite and non-empty 

universe, and let R be an equivalence relation on U. The equivalence 

relation R induces a partition of the universe. The partition is also referred 

to as the quotient set and is denoted by U/R. Suppose [u]R is the 

equivalence class in U/R that contains u∈U. A rough set approximation 

of a subset A⊆U is a pair of lower and upper approximations. The lower 

approximation, 

 },][|/]{[}][|{)( AuRUuAuUuALo RRR   

is union of all equivalence classes in U/R that are contained in A. The 

upper approximation, 

 },][|/]{[}][|{)(  AuRUuAuUuAUp RRR  

is union of all equivalence classes in U/R that overlap with A. Similarly, 

by rough set, a rough event can be described into two approximate 

events, namely lower and upper approximate events. Rough event might 

be considered as an approximation and generalization of a given crisp 

event. Probability of rough event is then defined as follows. 

 

Definition 2.3.1 Let (U,F,P) be a probability space in which U is the 

sample space, F is sigma algebra of events and P is a probability measure 

over U. Then, a rough event of A = [Lo(A), Up(A)] ∈ F
2
 is a pair of lower 

and upper approximation of A ⊆ U. The probability of rough event A is 

defined by an interval probability [P(Lo(A)), P(Up(A))], where P(Lo(A)) 

and P(Up(A)) are lower and upper probabilities, respectively. 
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-  lower probability: 

  
 


}][|{ }][|/]{[

),]([)())((
AuUu AuRUu

R

R RR

uPupALoP


  (2.5) 

-  upper probability: 

 
 


}][|{ }][|/]{[

),]([)())((
AuUu AuRUu

R

R RR

uPupALoP


  (2.6) 

 

where p(u) is probability distribution function of element u ∈ U . 

 

The definition shows that probability of rough event gives semantic 

formulation of interval probability. By combining with other set-theoretic 

operators such as ¬, ∪ and ∩, we have the following results: 

(P1)  P(Lo(A)) ≤ P(A) ≤ P(Up(A)), 

(P2)  A ⊆ B ⇔ [P(Lo(A)) ≤ P(Lo(B)), P(Up(A) ≤P(Up(B))], 

(P3)  P(Lo(¬A)) = 1 − P (Lo(A)), P (Up(¬A)) = 1 − P (Up(A)), 

(P4)  P (¬Lo(A)) = P (Up(¬A)), P (¬Up(A)) = P (Lo(¬A)), 

(P5)  P (Lo(U) ) =  P (U ) =  P (Up(U) ) = 1,  P (Lo(∅)) =  P (∅) = 

P (Up(∅)) = 0, 

(P6)  P (Lo(A ∩ B)) = P (Lo(A) ∩ Lo(B)), P (Up(A ∩ B)) ≤ P (Up(A) ∩ 

Up(B)), 

(P7)  P(Lo(A ∪ B)) ≥ P(Lo(A)) + P(Lo(B)) − P(Lo(A ∩ B)), 

(P8)  P(Up(A ∪ B)) ≤ P(Up(A)) + P(Up(B)) − P(Up(A ∩ B)), 

(P9)  P(A) ≤ P(Lo(Up(A))), P(A) ≥ P(Up(Lo(A))), 

(P10)  P(Lo(A)) = P(Lo(Lo(A))), P(Up(A)) = P(Up(Up(A))), 

(P11)  P(Lo(A) ∪ Lo(¬A)) ≤ 1, P(Up(A) ∪Up(¬A)) ≥ 1, 

(P12)  P(Lo(A) ∩ Lo(¬A)) = 0, P(Up(A) ∩ Up(¬A)) ≥ 0. 

 

Conditional probability of rough event might be considered in the 

following four combinations of formulation: For A, B ⊆ U, conditional 

probability of A given B is defined by 

,
))((

))()((
))(|)((     )1(

BLoP

BLoALoP
BLoALoP
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,
))((

))()((
))(|)((     )2(

BUpP

BUpALoP
BUpALoP


  

,
))((

))()((
))(|)((     )3(

BLoP

BLoAUpP
BLoAUpP


  

,
))((

))()((
))(|)((     )4(

BUpP

BUpAUpP
BUpAUpP


  

Some relations are given by: 

))(|)(())(|)(())()(())()(( BLoAUpPBLoALoPBLoAUpPBLoALoP 
 

))(|)(())(|)(())()(())()(( BUpAUpPBUpALoPBUpAUpPBUpALoP 

 

Similarly, they also satisfy some properties: 

(i) Normalization: 

a. P (Lo(A)|Lo(B)) + P (Lo(¬A)|Lo(B)) ≤ 1, 

b. P (Lo(A)|Up(B)) + P (Lo(¬A)|Up(B)) ≤ 1, 

c. P (Up(A)|Lo(B)) + P (Up(¬A)|Lo(B)) ≥ 1, 

d. P (Up(A)|Up(B)) + P (Up(¬A)|Up(B)) ≥ 1. 

(ii) Total Probability If {Bk |k ∈ Nn} are crisp, pairwise disjoint and 

exhaustive events, i.e., P (Bi ∩ Bj) = 0 for i ≠ j and ∪Bk = U, then: 

a.  
k kk BLoALoPBLoPALoP )),(|)(())(())((  

b.  
k kk BUpALoPBUpPALoP )),(|)(())(())((  

c.  
k kk BLoAUpPBLoPAUpP )),(|)(())(())((  

d.  
k kk BUpAUpPBUpPAUpP )),(|)(())(())((  

(iii) Bayes Theorem: 

a. .
))((

))(())(|)((
))(|)((

BLoP

ALoPALoBLoP
BLoALoP


  

b. .
))((

))(())(|)((
))(|)((

BUpP

ALoPALoBUpP
BUpALoP


  

c. .
))((

))(())(|)((
))(|)((

BLoP

AUpPAUpBLoP
BLoAUpP
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d. .
))((

))(())(|)((
))(|)((

BUpP

AUpPAUpBUpP
BUpAUpP


  

 

Other considerable formulations of conditional probability of rough 

event are the following: For A, B ⊆ U, conditional probability of A given 

B can also be defined by, 

,
))((

))((
)|)(     )1( 1

BLoP

BALoP
BAP


  

,
))((

))((
)|(     )2( 2

BUpP

BALoP
BAP


  

,
))((

))((
)|(     )3( 3

BLoP

BAUpP
BAP


  

,
))((

))((
)|(     )4( 4

BUpP

BAUpP
BAP


  

 

Also some relations concerning the above formulations are given by: 

- P2(A|B) ≤ P1(A|B) ≤ P3(A|B),  

- P4(A|B) ≤ P3(A|B),  

- P2(A|B) ≤ P4(A|B),  

- P (Lo(A ∩ B)) = P (Lo(A) ∩ Lo(B)) ⇒ P1(A|B) = P (Lo(A)|Lo(B)).  

 

They satisfy some properties of conditional probability: 

(i) Normalization: 

a. P1(A| B) + P1(¬A| B) ≤ 1, 

b. P2(A| B) + P2(¬A| B) ≤ 1, 

c. P3(A| B) + P3(¬A| B) ≥ 1, 

d. P4(A| B) + P4(¬A| B) ≥ 1. 

(ii) Total Probability If {Bk |k ∈ Nn} are crisp, pairwise disjoint and 

exhaustive events, i.e., P (Bi ∩ Bj) = 0 for i ≠ j and   ∪Bk = U, then: 

a.  
k kk BAPBLoPALoP ),|())(())(( 1  

b.  
k kk BAPBUpPALoP ),|())(())(( 2  
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c.  
k kk BAPBLoPAUpP ),|())(())(( 3  

d.  
k kk BAPBUpPAUpP ).|())(())(( 4  

(iii) Bayes Theorem: 

a. ,
))((

))(()|(
)|(

BLoP

ALoPABP
BAP


 1

1  

b. ,
))((

))(()|(
)|(

BUpP

ALoPABP
BAP


 2

2  

c. ,
))((

))(()|(
)|(

BLoP

AUpPABP
BAP


 3

3  

d. .
))((

))(()|(
)|(

BUpP

AUpPABP
BAP


 4

4  

 

2.4 Probability of Generalized Fuzzy-Rough Event  

 

A generalized fuzzy rough set is an approximation of a given fuzzy 

set on a given fuzzy covering. Since fuzzy set generalizes crisp set and 

covering generalizes partition, fuzzy covering is regarded as the most 

generalized approximation space. Fuzzy covering might be considered as 

a case of fuzzy granularity in which similarity classes as a basis of 

constructing the covering are regarded as fuzzy sets. Alternatively, a 

fuzzy covering might be constructed and defined as follows [Intan, 

Mukaidono, 2002a]. 

 

Definition 2.4.1 Let U = {u1, ..., un} be an universe. A fuzzy covering of 

U is a family of fuzzy subsets or fuzzy classes of C, denoted by C = {C1, 

C2, ..., Cm}, which satisfies 

nk

m

i C ku
i

N     ,1)(
1

 
  (2.7) 

mk

n

ik C inu
i

N     ,)(0  
  (2.8) 

where m is a positive integer and µCi (uk) ∈ [0, 1]. 
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Given a fuzzy set A on fuzzy covering as defined in Definition 2.4.1, 

a generalized fuzzy rough set A is defined in the following definition. 

 

Definition 2.4.2  Let U be a non-empty universe, C = {C1, C2, ..., Cm} be 

a fuzzy covering and A be a given fuzzy set on U. Lo(A)m, Lo(A)M , 

Up(A)m and Up(A)M are defined as minimum lower, maximum lower, 

minimum upper and maximum upper approximate fuzzy set of A, 

respectively, as follows. 

)},,({infinf)(
}0)(|{}0)(|{

)( ziy
zUzyi

ALo
iCiC

m


 
   (2.9) 

)},,({infsup)(
}0)(|{}0)(|{

)( ziy
zUzyi

ALo
iC

iC

M


 

   (2.10) 

)},,({supinf)(
}0)(|{

)( ziy
Uzyi

AUp
iC

m


 
   (2.11) 

)},,({supsup)(
}0)(|{

)( ziy
Uzyi

AUp

iC

M


 

   (2.12) 

where ))(),(min(),( zzzi ACi
  , for short. 

Therefore, a given fuzzy set A is approximated into four 

approximate fuzzy sets derived from a fuzzy covering defined on the 

universal set involved. Relationship among these approximations can be 

represented by a partial order as follows. 

.)(,)()()(,)()()( AALoAUpAUpALoAUpALoALo MMmmMMm         

 

Iterative is applied for almost all approximate fuzzy sets except for 

Lo(A)M  as follows. 

a.  ,)())(()( * mmmm ALoALoLoALo   

b.  ,)())(()( *mmmm AUpAUpUpAUp    

c.  ,)())(()( *MMMM AUpAUpUpAUp    
 

where Lo(A)m∗, Up(A)m∗ and Up(A)M∗ are the lowest approximation of 

Lo(A)m, the uppermost approximation of Up(A)m and the uppermost 

approximation of Up(A)M , respectively. 
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By the generalized fuzzy rough set, a given fuzzy event can be 

approximated into four fuzzy events called generalized fuzzy-rough 

event. Probability of generalized fuzzy-rough event is then defined as 

follows. 

 

Definition 2.4.3 Let (U, F, P) be a probability space in which U is the 

sample space, F is sigma algebra of events and P is a probability measure 

over U. Then, a generalized fuzzy-rough event of A = [Lo(A)m, Lo(A)M, 

Up(A)m, Up(A)M] ∈ F
4
 are fuzzy approximate events of A, where A is a 

given fuzzy event on U. The probability of generalized fuzzy-rough event 

A is defined by a quadruplet [P(Lo(A)m), P(Lo(A)M), P(Up(A)m), 

P(Up(A)M)] as follows. 

 ,)()())(( )( 
U ALom upuALoP

m
   (2.13) 

 ,)()())(( )( 
U ALoM upuALoP

M
   (2.14) 

 ,)()())(( )( 
U AUpm upuAUpP

m
   (2.15) 

 ,)()())(( )( 
U AUpM upuAUpP

M
   (2.16) 

where p(u) is probability distribution function of element u ∈ U. 

By combining with other set-theoretic operators such as ¬, ∪ and ∩, 

we have the following properties: 

a. P(Lo(A)m) ≤ P(Lo(A)M) ≤ P(Up(A)M),   

b. P(Lo(A)M) ≤ P(A), 

c. P(Lo(A)m) ≤ P(Up(A)m) ≤ P(Up(A)M), 

d. ),)(( ))((),)(( ))(([ MMmm BLoPALoPBLoPALoPBA   

)],)(( ))((),)(( ))(( MMmm BUpPAUpPBUpPAUpP   

e. P(Lo(U)λ) ≤ 1, P(Up(U)λ) ≤ 1,  

f. P(Lo(∅)λ) = P(Up(∅)λ)= 0, 

g. P(Lo(A∩B)λ) ≤ P(Lo(A)λ ∩ Lo(B)λ), 

h. P(Up(A∩B)λ) ≤ P(Up(A)λ ∩ Up(B)λ), 

i. P(Lo(A∪B)λ) ≥ P(Lo(A)λ)+P(Lo(B)λ))- P(Lo(A∩B)λ), 

j. P(Up(A∪B)λ) ≤  P(Up(A)λ)+P(Up(B)λ))- P(Up(A∩B)λ), 
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k.  ),)(()))((())(( * mmmm ALoPALoLoPALoP   

l. ),))((())(( MMM ALoLoPALoP   

m.  ),)(()))((())(( *mmmm AUpPAUpUpPAUpP    

n.  ),)(()))((())(( *MMMM AUpPAUpUpPAUpP    

o.  ,1)))()((   ALoALoP  

p.  ,0)))()((   ALoALoP  

q.  ,0)))()((   AUpAUpP  

where λ ∈ {m, M }, for short. 

 

2.5 Belief and Plausibility Measures  

 

Belief and plausibility measures are mutually dual functions in 

evidence theory originally introduced by Glenn Shafer in 1976 [Shafer, 

1976]. This work was motivated and related to lower and upper 

probability by Dempster in 1967 [Dempster, 1967] in which these all 

types of measures are subsumed into the concept of fuzzy measure 

proposed by Sugeno in 1977 [Sugeno, 1977]. Belief-plausibility 

measures can be represented by a single function, called basic probability 

assignment, which provides degrees of evidence to certain specific 

subsets of the universal set. In the special case when subsets of the 

universal set are disjoint and every subset represent elementary set of 

indiscernible space, we may consider belief measures and plausibility 

measures as lower approximate probability and upper approximate 

probability in terms of probability of rough events as proposed in [Intan, 

Mukaidono, 2002e], [Intan, Mukaidono, 2002g]. Here, lower and upper 

approximate probabilities are regarded as special case of belief and 

plausibility measures, respectively, as probability of elementary set is a 

special case of basic probability assignment. In other words, belief and 

plausibility measures are based on crisp-granularity in terms of a 

covering. However, lower and upper approximate probabilities are 

defined on crisp-granularity in terms of disjoint partition. Moreover, 
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when every elementary set has only one element of set, every probability 

of elementary set will be equal to probability of an element called 

probability distribution function as usually used in representing 

probability measures. Obviously, lower and upper approximate proba-

bility of a given rough event will be reduced into a single value of 

probability. Belief and plausibility measures as well as lower and upper 

approximate probability are considered as generalization of probability 

measures in the presence of crisp granularity of sample space. Still there 

is another generalization in the case that membership degree of every 

element of sample space in representing an event might be regarded from 

0 to 1. It provides probability measures of fuzzy events as proposed by 

Zadeh in 1968 [Zadeh, 1968]. It may then provide a more generalized 

probability measures in the presence of fuzzy-granularity of sample space 

and by given a fuzzy event called probability measures of generalized 

fuzzy-rough events as proposed in previous section [Intan, Mukaidono, 

2002f], [Intan, Mukaidono, 2002k]. Belief and plausibility measures can 

be represented by a single function called basic probability assignment as 

defined by the following [Inuiguchi, Tanino, 2001]: 

 

Definition 2.5.1 For U be a given universal sample space and P(U) be 

power set of U, 

m : P(U ) → [0, 1]  (2.17) 

such that m(∅) = 0 and  


)(
1)(

UE
Em

P
, where m(E) expresses the 

degree of evidence supporting the claim that a specific element of U 

belongs to the set E but not to any special subset of E. 
 

There are three properties considering the definition of basic 

probability assignment. 

1. It is not required that m(U ) = 1.  

2. It is not required that E1 ⊂ E2 ⇒ m(E1) ≤ m(E2).  

3. There is no relationship between m(E) and m(¬E).  
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Every E ∈ P(U) is called a focal element iff m(E) > 0. Focal 

elements may take overlap one to each other. Belief and Plausibility 

measures are then defined by the following equations. For A ∈ P(U ), 

 


AE
EmABel ),()(   (2.18) 

.)()(  


AE
EmAPl   (2.19) 

It can be proved that for all A ∈ (P )(U ), Bel(A) ≤ P l(A). Also, it can 

be verified that belief and plausibility measures are mutually dual 

functions, where  

Pl(A) = 1 −Bel(¬A). 

Similarly,  

Bel(A) = 1 − Pl(¬A). 

Since belief and plausibility measures are defined on a covering, 

some properties of lower and upper approximate probability are not 

satisfied such as for instance iterative properties of lower and upper 

approximate probabilities in (P9) and (P10). Let consider, 




 
AEUE

EAPl
),(

1 )(
P

   and     
AEUE

EABel


 
),(

1 )(
P

 

where Pl(A) and Pl
−1

(A) correspond to P (Up(A)) and Up(A), respec-

tively. Similarly, Bel(A) and Bel
−1

(A) correspond to P(Lo(A)) and Lo(A), 

respectively. Hence, property of P(Up(A)) = P(Up(Up(A))) in (P10) can 

be represented as Pl(A) = Pl(Pl
−1

(A)) by using expression of plausibility 

measures. It can be easily proved that the property is not satisfied instead 

Pl(A) ≤ Pl(Pl
−1

(A)). Also, P(A) ≥ Pl(Bel
−1

(A)) in the relation to P(A) ≥ 

P(Up(Lo(A))), in property (P9) cannot be verified. 

When every elementary set has only one element, the probability of 

elementary set is equal to probability of the element represented by a 

function called probability distribution function, p : U → [0,1], which is 

defined on set U as usually used in probability measures. Here, lower and 

upper approximate probabilities fuse into a single value of probability in 

which probability satisfies additivity axiom as an intersection area 

between supperadditive property (P7) of lower approximate probability 

and subadditive property (P8) of upper approximate probability. 
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2.6 Conclusion  
 

The relationship between probability and fuzziness was simply 

discussed based on the process of perception. Probability and fuzziness 

work in different areas of uncertainty; hence probability theory by itself is 

not sufficient for dealing with uncertainty in the real-world application. 

Instead, probability and fuzziness must be regarded as a complementary 

tool providing probability of fuzzy event in which fuzzy event was 

represented by fuzzy set. Fuzzy event was considered as a generalization 

of crisp event as well as fuzzy set generalizes crisp set. Similarly, rough 

set, as another generalization of crisp set, was used to represent rough 

event. Probability of rough event was proposed. Conditional probability 

of fuzzy event as well as rough event and their some properties were 

examined. A more generalized fuzzy rough set is proposed as an approxi-

mation of a given fuzzy set on a given fuzzy covering. Therefore, by 

using the generalized fuzzy rough set, a generalized fuzzy-rough event 

was considered as the most generalization of fuzzy and rough event in 

terms of their definition by using probability distribution function (p(u)). 

Probability of the generalized fuzzy-rough event was proposed along 

with its properties. 
 

We may then summarize their relation by the following figure. 
 

 

Figure 2.1 Generalization based on Crisp-Granularity and Membership 

Function 

 

 

Belief and Plausibility Measures 
 

 

Probability of Rough Events 
 
Probability 
Measures  

 

Probability of Fuzzy Events 
 
Probability of Generalized 
Fuzzy-Rough Events 

 

Figure 2.1: Generalization based on Crisp-Granularity and Membership Function 
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Chapter 3 
 

Generalization of Rough Sets and 

its Applications in Information 

System 
 

3.1 Introduction  
 

Rough set theory, proposed by Pawlak in 1982, plays essential roles 

in many applications of Data Mining and Knowledge Discovery. The 

theory offers mathematical tools to discover hidden patterns in data, 

recognize partial or total dependencies in data bases, remove redundant 

data, and others [Komorowski, Pawlak, Polkowski, Skowron, 1999]. 

Rough set theory generalizes classical set theory by allowing an alter-

native to formulate sets with imprecise boundaries. A rough set is 

basically an approximate representation of a given crisp set in terms of 

two subsets derived from a crisp partition defined on the universal set 

involved [Klir, Yuan 1995]. The two subsets are called a lower approxi-

mation and an upper approximation. In a partition, an element belongs to 

the only one equivalence class and two distinct equivalence classes are 

disjoint. Formally, the concept of rough sets may be defined precisely, let 

U denotes a non-empty universal set, and let R be an equivalence relation 

on U. The partition of the universe is referred to as the quotient set and is 

denoted by U/R, where [x]R denotes the equivalence class in U/R that 

contains x ∈ U. A rough set of subset A ⊆ U may be represented by a pair 

of lower and upper approximation. The lower approximation, 
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Lo(A) = {x ∈ U |[x]R ⊆ A}, 

 = {[x]R ∈ U/R|[x]R ⊆ A},  (3.1) 

is the union of all equivalence classes in U/R that are contained in A. The 

upper approximation, 

Up(A) = {x ∈ U |[x]R ∩ A = ∅}, 

 = {[x]R ∈ U/R|[x]R ∩ A = ∅},  (3.2) 
 

is the union of all equivalence classes in U/R that overlap with A. 

Moreover, rough membership functions of an element in the presence of 

a subset A ⊆ U is defined as the following [Pawlak, Skowron, 1994]: 

,
|][|

|][|
)(

R

R
A

x

Ax
x


   (3.3) 

where |.| denotes the cardinality of a set. 

However, as pointed out in [Slowinski, Vanderpooten, 2000], even it 

is easy to analyze, the rough set theory built on a partition induced by 

equivalence relations may not provide a realistic and applicable model as 

equivalence relation, because of their properties of symmetry and 

transitivity, may not provide a realistic view of relationships between 

elements in real-world application. Here, covering of the universe as an 

alternative to provide a more realistic model of rough sets was 

introduced. A covering of the universe [Yao, Zhang, 2000], C = {C1, ..., 

Cn}, is a family of subset of non-empty universe U such that U = {Ci | i = 

1, ..., n}. Two distinct sets in C may have a non-empty overlap. An 

arbitrarily element x ∈ U may belong to more than one set in C. The 

family C(x) = {Ci ∈ C|x ∈ Ci} consists of sets in C containing x. The sets 

in C(x) may describe different types or various degrees of similarity 

between elements of U. In this case, relationship between elements in the 

set C(x) is still unclear. 

In [Intan, Mukaidono, Yao, 2001a], a notion of a weak fuzzy 

similarity relation, a generalization of fuzzy similarity relation (fuzzy 
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equivalence relation), was introduced in order to provide a more realistic 

relation in representing relationships between two elements in which the 

properties of symmetry and transitivity are no longer hold. It can be 

proved that the relationships between elements in the real-world 

application are neither necessarily symmetric nor transitive [Intan, 

Mukaidono, 2000d], [Slowinski, Vanderpooten, 2000], [Tversky, 

1977]. (Fuzzy) conditional probability relation was then introduced as a 

special type (concrete example) of weak fuzzy similarity relation. 

The objectives of this chapter are to extend and generalize the 

classical concept of rough set by coverings of the universe induced by 

(fuzzy) conditional probability relations. Considering the rough sets 

approximation, lower and upper approximations are introduced in the 

presence of α-covering of the universe. In this case, α determines degree 

of similarity relationships between elements in covering. The generalized 

concept of rough approximations is introduced and defined based on α-

coverings of the universe into two interpretations, element-oriented 

generalization and similarity-class-oriented generalization. The generali-

zed concept of rough approximations is regarded as a kind of fuzzy rough 

sets
1
 approximation. A more generalized fuzzy rough set approximation 

of a given fuzzy set is proposed and discussed as an alternative to provide 

interval-valued fuzzy sets from information system. Also, a generalized 

concept of rough membership function is defined into three values: 

minimum, maximum and average. Their properties are examined. 

Finally, by extending the concept of α-coverings of the universe, 

some applications related to knowledge discovery and data mining, were 

proposed and discussed with the purpose of determining redundant 

objects and recognizing partial and total dependency of domain attributes. 

The concept of redundant object is very important in order to reduce the 

number of decision rules in terms of decision table. The concept of 

dependency of domain attributes can be extended to define fuzzy 

functional dependency (FFD) as proposed in [Intan, Mukaidono 2000a], 

[Intan, Mukaidono, 2000c] in terms of fuzzy relational database. 
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Inference rules that are similar to Armstrong‟s Axioms for the FFD are 

both sound and complete. 

 

3.2 Conditional Probability Relations  

 

As proposed in [Intan, Mukaidono 2000a], [Intan, Mukaidono, 

2000d], our concept of conditional probability relations starts from 

definition of an interesting mathematical relation, weak fuzzy similarity 

relation as defined in the following definition. 

 

Definition 3.2.1 A fuzzy similarity relation is a mapping, s: U × U → 

[0,1], such that for x, y, z ∈ U, 

(a) Reflexivity : s(x, x) = 1,  

(b) Symmetry : s(x, y) = s(y, x),  

(c) Max−min transitivity : )]].,(),,([min[max),( zysyxszxs
Uy

   

 

Definition 3.2.2 A weak fuzzy similarity relation is a mapping, s: U × U 

→ [0, 1], such that for x, y, z ∈ U, 

(a) Reflexivity : s(x, x) = 1,  

(b) Conditional symmetry: if s(x, y) > 0 then s(y, x) > 0,  

(c) Conditional transitivity: if s(x, y) ≥ s(y, x) > 0 and s(y, z) ≥ s(z, y) > 0 

then s(x, z) ≥ s(z, x).  

 

Definition 3.2.3 A conditional probability relation is a mapping, R : U × 

U →[0,1], such that for x, y ∈ U, 

R(x, y) = P(x | y) = P(y → x),  (3.4) 

where R(x, y) means the degree y supports x or the degree y is similar to x. 
 

It should be mentioned that symmetry and even max-min transitivity 

as required in fuzzy similarity relation [Zadeh, 1970] are too strong 

properties to represent relationships between elements in real-world 

application. Although, it is true to say that if “x is similar to y” then “y is 
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similar to x”, but these two statements might have different degree of 

similarity. In this case, degree of similarity strongly depends on which 

one is more general. For example, in the following two statements: “Pony 

is similar to horse” and “Horse is similar to pony”, first statement sounds 

good, but the second makes much less sense. Some arguments have been 

proposed in [Intan, Mukaidono, 2000d], [Slowinski, Vanderpooten, 

2000], [Tversky, 1977]. Hence, weak fuzzy similarity relation with its 

conditional symmetry and conditional transitivity properties is considered 

as a more realistic relation in representing relationships between 

elements. By definitions, fuzzy similarity relation is regarded as a special 

case (or type) of weak fuzzy similarity relation, and a conditional 

probability relation is a concrete example of weak fuzzy similarity 

relations. In practical application, conditional probability relations may be 

used as a basis of representing degree of similarity relationships between 

elements in the universe U. In the definition of conditional probability 

relations, the probability values may be estimated based on the semantic 

relationships between elements by using the epistemological or subjective 

view of probability theory. Relationship between x and y in conditional 

probability relations can be illustrated by using binary information table, 

where x and y are simply assumed as objects and each object is a subset 

of features as shown in the following table. When objects in U are 

represented by sets of features or attributes as in the case of binary 

information tables, we have a simple procedure for estimating the 

conditional probability relation. More specifically, we have: 

,
||

||
)|(),(

y

yx
yxPyxR


   (3.5) 

where | · | denotes the cardinality of a set. 
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Table 3.1 Binary Information Table 

Obj. 
a
1 

a
2 

a
3 

a
4 

a
5 

a
6 

a
7 

a
8 

O1 0 0 1 0 1 0 0 0 

O2 1 1 0 1 0 0 1 0 

O3 0 0 1 1 0 0 1 1 

O4 0 1 0 1 0 1 0 1 

O5 1 0 1 1 0 0 1 0 

O6 0 0 1 0 1 0 1 0 

O7 0 1 1 0 0 0 1 0 

O8 1 1 0 0 0 0 1 1 

O9 0 1 0 1 1 0 1 0 

O10 0 1 0 0 0 1 1 0 

O11 0 0 0 1 1 0 1 1 

O12 1 0 0 0 1 0 0 0 

O13 1 0 1 0 1 0 1 0 

O14 1 0 0 0 0 1 1 0 

O15 0 0 1 0 1 0 1 1 

O16 0 0 0 1 0 0 1 1 

O17 0 1 0 1 1 0 0 1 

O18 1 0 0 1 0 0 1 0 

O19 0 0 1 0 1 1 0 1 

O20 1 0 0 1 0 1 0 0 

 

Consider the binary information table given by Table 3.1, where the 

set of objects, U = {O1, O2, ..., O20}, is described by a set of eight 

attribute, A = {a1, a2, . . . , a8}. As shown in Table 3.1, O1 = {a3, a5}, O2 = 

{a1, a2, a4, a7}, and O3 = {a3, a4, a7, a8}. Therefore, we have: 

R(O1, O2) = 0, R(O1, O3) = 1/4, R(O2, O3) = 2/4, 

R(O2, O1) = 0, R(O3, O1) = 1/2, R(O3, O2) = 2/4. 

The degree of similarity two objects can be calculated by a 

conditional probability relation on fuzzy sets [Intan, Mukaidono, 2000a], 

[Intan, Mukaidono, 2000d]. In this case, )(|| ax
Ata x 

  , where µx is 
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membership function of x over a set of attribute At, and intersection is 

defined by minimum in order to obtain property of reflexivity, even there 

are some operations of t-norm that might be used. 

 

Definition 3.2.4 Let µx and µy be two fuzzy sets over a set of attribute At 

for two elements x and y of a universe of objects U. A fuzzy conditional 

probability relation is defined by: 








Ata y

Ata yx

a

aa
yxR
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  (3.6) 

 

For example, two fuzzy sets, Warm(W) and Rather-Hot(RH), are 

considered as two elements or objects over {24, 26, ..., 36} in degrees 

Celsius as shown in Table 3.2.  

 

Table 3.2 Fuzzy Information Table of Temperature 

Object 24 26 28 30 32 34 36 

W 0.2 0.5 1 1 0.5 0.2 0 

RH 0 0 0 0.5 1 1 0.5 

 

Degree of similarity relationship between W and RH is calculated by: 

 

It can be easily verified that (fuzzy) conditional probability relation R 

satisfies properties of a weak fuzzy similarity relation. Additional 

properties can be found in [Intan, Mukaidono, 2000d], [Intan, 

Mukaidono, 2002h], [Intan, Mukaidono, 2000k]:  

For x, y, z ∈ U, 

(r0) R(x, y) = R(y, x) = 1 ⇔ x = y, 

(r1) [R(y, x) = 1, R(x, y) < 1] ⇔ x ⊂ y, 

(r2) R(x, y) = R(y, x) > 0 ⇒ |x| = |y|, 

 
3

2.1

5.0115.0

)1,2.0min()1,5.0min()5.0,1min(
),( 




RHWR

 
4.3

2.1

2.05.0115.02.0

)1,2.0min()1,5.0min()5.0,1min(
),( 




WRHR
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(r3) R(x, y) < R(y, x) ⇒ |x| < |y|, 

(r4) R(x, y) > 0 ⇔ R(y, x) > 0, 

(r5) [R(x, y) ≥ R(y, x) > 0, R(y, z) ≥ R(z, y) > 0] ⇒ R(x, z) ≥ R(z, x). 

 

3.3 Generalized Rough Sets Approximation  

 

In this section, we generalize the classical concept of rough sets and 

concretize the concept of coverings induced by conditional probability 

relations. We introduce upper and lower approximations in the presence 

of α-coverings of the universe. First, based on conditional probability 

relations, we define two kinds of similarity classes of a particular element 

x as a basis of constructing a covering, as follows. 

 

Definition 3.3.1 Let U be a non-empty universe, and R be a conditional 

probability relation on U. For any element x ∈ U, )(xRs


 and )(xRp


 are 

defined as the set that supports x and the set supported by x, respectively 

by as follows: 

},),(|{)(   yxRUyxRs   (3.7) 

},),(|{)(   xyRUyxRp   (3.8) 

where α ∈ [0,1]. 

)(xRs


 can also be interpreted as the set that is similar to x. On the other 

hand, )(xRp


 can be considered as the set to which x is similar. By the 

reflexivity, it follows that we can construct two covering of the 

universe, { )(xRs


| x ∈ U} and { )(xRp


 | x ∈ U}. 

Formally, based on the similarity class of x in Definition 3.3.1, the 

lower and upper approximation operators can be defined into two 

interpretations of formulation as follows. 

 

Definition 3.3.2 For a subset A ⊆ U, we define two pairs of generalized 

rough set approximations: 



  

Page | 30 

(i) element-oriented generalization: 

 },)(|{)( AxRUxALo se  
  (3.9) 

 },)(|{)(  AxRUxAUp se


  (3.10) 

(ii) similarity-class-oriented generalization: 

  },,)(|)({)( UxAxRxRALo ssc  
  (3.11) 

 },,)(|)({)( UxAxRxRAUp ssc  
 (3.12) 

 

In Definition 3.3.2 (i), the lower approximation consists of those 

elements in U whose similarity classes are contained in A. The upper 

approximation consists of those elements whose similarity classes 

overlap with A. In Definition 3.3.2 (ii), the lower approximation is the 

union of all similarity classes that are contained in A. The upper 

approximation is the union of all similarity classes that overlap with A. 

Relationships among these approximations can be represented by: 


cece AUpAUpAALoALo )()()()(  . 

The difference between lower and upper approximations is the 

boundary region with respect to A: 

,)()()( 
eee ALoAUpABnd    (3.13) 

,)()()( 
ccc ALoAUpABnd    (3.14) 

 

Similarly, one can define rough set approximations based on the 

covering { )(xRp


 | x ∈ U}. The pair (


eALo )( ,


eAUp )( ) may be 

interpreted as a pair of set-theoretic operators on subset of the universe. It 

is referred to as rough set approximation operators [Yao, Zhang, 2000]. 

By combining with other set-theoretic operators such as ¬, ∪, and ∩, we 

have the following results: 

(re1) ,)()( 
ee AUpALo   
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(re2) ,)()( 
ee ALoAUp   

(re3) ,)()( 
ee AUpAALo   

(re4) ,)()(  
ee UpLo  

(re5) ,)()( UUUpULo ee  
 

(re6) ,)()()( 
eee BLoALoBALo   

(re7) ,)()()( 
eee BUpAUpBAUp   

(re8) ,)()()( 
eee BLoALoBALo   

(re9) ,)()()( 
eee BUpAUpBAUp   

(re10) ,)( 0 UAUpA e   

(re11) ,)( 0  eALoUA  

(re12) ],)()(,)()([  eeee ALoALoAUpAUp   

(re13) ].)()(,)()([ 
eeee BLoALoBUpAUpBA   

 

Property (re1) and (re2) shows that lower and upper approximations 

are dual operators with respect to set complement ¬. Property (re3) 

shows that the two operators provide a range in which lies the given set. 

Properties (re4) and (re5) provide two boundary conditions, the minimum 

element ∅, the maximum element U; where the two operators meet at the 

two extreme points of 2
U
. Properties (re6) and (re7) may be considered as 

weak distributive and distributive of the lower approximation and the 

upper approximation operators over set intersection and union, 

respectively. As shown in property (re10), if α = 0 then all elements in U 

belong to one similarity class which is equal to U. Therefore, upper 

approximation of a non-empty set A is equal to U. On the other hand, 

property (re11) shows that lower approximation of A is equal to ∅ for A 

⊂ U. Property (re12) shows relationships between α and the two 

approximation operators. Here, whenever α is getting larger, the upper 

approximation is getting smaller. On the other hand, whenever α is 

getting larger, the lower approximation is also bigger. In the other word, 
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as α is getting larger, the process of approximation is more precise and 

nearer to the original set. Property (re13) indicates the consistency of 

inclusive sets; where if A ⊆ B, then both of their two approximation 

operators show the same characteristics.  

Similarly, lower and upper approximations in Definition 3.3.2 (ii) 

satisfy some properties such as: 

(rc1) ,)()( 
ee AUpALo  ,)()( 

cc AUpAALo   

(rc2) ,)()( 
ee ALoAUp  ,)()(  

cc UpLo  

(rc3) ,)()( UUUpULo cc  
 

(rc4) ,)()()( 
ccc BLoALoBALo   

(rc5) ,)()()( 
ccc BUpAUpBAUp   

(rc6) ,)()()( 
ccc BLoALoBALo   

(rc7) ,)()()( 
ccc BUpAUpBAUp   

(rc8) ,))(()( 
ccc ALoLoALo   

(rc9) ,))(()( 
ccc AUpUpAUp   

(rc10) ,)( 0 UAUpA c   

(rc11) ,)( 0  cALoUA  

(rc12) ,)()(  cc AUpAUp   

(rc13) ].)()(,)()([ 
cccc BLoALoBUpAUpBA   

 

Property of dual operators is no longer satisfied in Definition 3.3.2 

(ii). On the other hand, property (rc8) indicates that iterative operation is 

not applied in the lower approximation operator. The above properties 

show almost the same properties which are also satisfied in classical 

concept of rough sets, except that they have additional parameter α and its 

relation to both of operators, the lower approximation and the upper 

approximation, as shown in properties (re10,rc10), (re11,rc11), and (re12, 

rc12). In fact, a covering is a generalization of a partition, so that there are 

some properties which are no longer satisfied. 
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Also one may define other interpretation of pair approximation 

operators based on intersection of the complements of elements as well as 

the complements of similarity classes [Inuiguchi, Tanino, 2001] as shown 

in the following equations. 

(i) element-oriented generalization: 

 ,})()(|}{{)( 1   AUxRxUALo se


  (3.15) 

 ,})(|}{{)( 1   AxRxUAUp se


  (3.16) 

(ii) similarity-class-oriented generalization: 

 ,})()(|)({)( 1   AUxRxRUALo ssc


  (3.17) 

 ,})(|)({)( 1   AxRxRUAUp ssc


  (3.18) 

 

Related to the approximation operators as defined in Definition 3.3.2 

(based on union of both elements and similarity classes), we can prove 

,)()(        ,)()( 11 AALoALoAALoALo ccee  
 

.)()(        ,)()( 11


ccee AUpAUpAAUpAUpA   

 

In element-oriented generalization, lower and upper approximation 

operators based on both union and intersection are exactly the same.  

However, in similarity class-oriented generalization, 

cALo )(  is a better 

lower approximation than

1)( cALo , but 


1)( cAUp is a better upper 

approximation than 

cAUp )( . Here, we cannot verify relation between 


1)( eALo  and 


1)( cALo as well as 


1)( eAUp  and 


1)( cAUp . Similarly, one 

may use )(xRp


 to define approximation operators as given in (3.15)-

(3.18), and verify their properties.  

 

3.4 Generalized Fuzzy Rough Sets  

 

We may consider the rough set approximation in the previous 

definition as a kind of fuzzy rough set which was introduced first time in 

[Dubois, Prade 1990]. 
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Covering of the universe in Definition 3.3.1 as a generalization of 

disjoint partition is considered as a crisp covering. Both crisp covering 

and disjoint partition are regarded as crisp granularity. Here, crisp 

covering can be generalized to fuzzy covering. In this case, crisp covering 

can be constructed by applying α-level set of fuzzy covering. Fuzzy 

covering might be considered as a case of fuzzy granularity in which 

similarity classes as basis of constructing the covering are regarded as 

fuzzy sets and defined as follows. 

 

Definition 3.4.1 Let U be a non-empty universe, and R be a (fuzzy) 

conditional probability relation on U. For any element x ∈ U, Rs(x) and 

Rp(x) are regarded as fuzzy sets and defined as the set that supports x and 

the set supported by x, respectively by: 

,   ),,()()( UyyxRyxRs
   (3.19) 

,   ),,()()( UyxyRyxRp
   (3.20) 

where )()( yxRs
  and )()( yxRp

  are grades of membership of y in Rs(x) 

and Rp(x), respectively. 

Now, when we consider a given set A be a fuzzy set on U instead of 

a crisp set and covering of the universe be a fuzzy covering (Definition 

3.4.1) instead of a crisp covering (Definition 3.3.1), we need to define a 

more generalized fuzzy rough set approximation of a given fuzzy set as 

shown in the following definition. 

 

Definition 3.4.2 Let U be a non-empty universe, and A be a given fuzzy 

set on U, 

(i) element-oriented generalization: 

 )]},(),({min[inf)( )(
}0)(|{

)(
)(

2
yyx AxR

yUy
ALo s

xsR
e


 

   (3.21) 

 )]}.(),({min[sup)( )(
}0)(|{

)(

)(

2
yyx AxR

yUy
AUp s

xsR

e


 

   (3.22) 
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(ii) similarity-class-oriented generalization, for y ∈U: 

 )]}},(),({min[inf{inf)( )(
}0)(|{}0)(|{)(

)()(
2

zzy AxR
zUzyUxALo s

xsRxsR

m
c


 

  (3.23) 

 )]}},(),({min[inf{sup)( )(
}0)(|{}0)(|{

)(
)(

)(
2

zzy AxR
zUzyUx

ALo s
xsR

xsR

M
c


 

  (3.24) 

 )]}},(),({min[sup{inf)( )(
}0)(|{)(

)(
2

zzy AxR
UzyUxAUp s

xsR

m
c


 

   (3.25) 

 )]}}.(),({min[sup{sup)( )(
}0)(|{

)(
)(

2

zzy AxR
UzyUx

AUp s

xsR

M
c


 

   (3.26) 

where )(
2)( x

eALo  and )(
2)( x

eAUp  are grades of membership of x in 

2)( eALo  and 2)( eAUp , respectively. Similarly, )(*
2)(

y
cALo

  and 

)(*
2)(

y
cAUp

  are grades of membership of y in
*

2)( cALo  and 
*

2)( cAUp , 

respectively (Note: ∗ ∈ {m, M }). 

Since µRs(x)(y) = µRp(y)(x) as shown in Definition 3.4.1, we may 

represent Definition 3.4.2 by using Rp as follows: 

(i) element-oriented generalization: 

 )]},(),({min[inf)( )(
}0)(|{

)(
)(

2
yxx AyR

xUy
ALo p

ypR
e


 

   (3.27) 

 )]}.(),({min[sup)( )(
}0)(|{

)(

)(

2
yxx AyR

xUy
AUp p

ypR

e


 

   (3.28) 

(ii) similarity-class-oriented generalization, for y ∈U: 

 )]}},(),({min[inf{inf)( )(
}0)(|{}0)(|{)(

)()(
2

zxy AzR
xUzxUxALo p

zpRypR

m
c


 

   (3.29) 

 )]}},(),({min[inf{sup)( )(
}0)(|{}0)(|{

)(
)(

)(
2

zxy AzR
xUzxUx

ALo p
zpR

ypR

M
c


 

 (3.30) 

 )]}},(),({min[sup{inf)( )(
}0)(|{)(

)(
2

zxy AzR
UzxUxAUp p

ypR

m
c


 

   (3.31) 

 )]}}.(),({min[sup{sup)( )(
}0)(|{

)(
)(

2

zxy AzR
UzxUx

AUp p

ypR

M
c


 

   (3.32) 

Obviously, 2)( eALo  and 2)( eAUp  as well as 
*

2)( cALo  and 

*

2)( cAUp  are considered as fuzzy sets, where we have, ∀y ∈ U, 

),()()(
22 )()( yyy

ee AUpAALo    

),()()()()(
2222 )()()()(

yyyyy M
c

m
c

M
c

m
c AUpAUpAALoALo
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Moreover, relation between element-oriented generalization and 

similarity-class-oriented generalization is represented by, 

)()(
22 )()( yy M

ce ALoALo    and )()(
22 )()( yy M

ce AUpAUp   , 

where relation between )(
2)( y

eALo and )(
2)(

ym
cALo

  as well as relation 

between )(
2)( y

eAUp  and )(
2)(

ym
cAUp

  cannot be inquired. 

Also, we consider the pairs of  )(),(
22 )()( yy

ee AUpALo   and 

 )(),( *
2

*
2 )()(

yy
cc AUpALo

  as lower and upper membership function of y 

in A. Lower and upper membership functions are the bounds of an 

interval value characterized by interval valued type-2 fuzziness [Turksen, 

2001]. In this case, Definition 3.4.2 shows an alternative to obtain 

interval-valued fuzzy set from information system via generalized fuzzy 

rough sets approximation of fuzzy set. Let A be defined as an interval-

valued fuzzy set given an ordinary fuzzy set A. For y ∈ U, 

 )(),()(
22 )()(Α yyy

ee AUpALo  or 

 )(),()( *
2

*
2 )()(Α yyy

cc AUpALo
 , 

where the pair of  )(),( *
2

*
2 )()(

yy
cc AUpALo

 can be represented by either 

the pair of  )(),(
22 )()(

yy m
c

m
c AUpALo

  as well as  )(),(
22 )()(

yy M
c

M
c AUpALo

 . 

 

3.5 Generalized Rough Membership Functions  

 

As pointed out in [Yao, 1996], there are at least two views which can 

be used to interpret the rough set theory, operator-oriented view and set-

oriented view. In this chapter, the operator-oriented view has been 

proposed in the previous section providing the lower approximation and 

the upper approximation operators in the presence of α-coverings. In this 

section, we provide the set-oriented view based on the notion of rough 

membership functions. In this case, rough membership functions of an 

element will be expressed into three values: minimum, maximum and 

average depending on similarity classes that cover the element as shown 

in the following definition. 
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Definition 3.5.1 Let A ⊆ U be a crisp set, where U is a non-empty 

universe, and let R be a conditional probability relation on U. 

},),(|{)(   yxRUyxRs  denotes similarity class of x with α-cut, 

where α ∈ [0,1]. 
 )(ym

A , 
 )(yM

A  and 
 )(* yA  are defined as 

minimum, maximum and average rough membership functions of y with 

α-cut in the presence of set A, respectively as follows: 

,)(,|
|)(|

|)(|
min)(












 xRyUx
xR

AxR
y s

s

sm

A






   (3.33) 

,)(,|
|)(|

|)(|
max)(












 xRyUx
xR

AxR
y s

s

sM

A






   (3.34) 

.)(,|
|)(|

|)(|
avg)(*












 xRyUx
xR

AxR
y s

s

s
A






   (3.35) 

 

The above definition generalizes the concept of rough membership 

functions [Pawlak, Skowron, 1994] and concretizes definition of 

generalized rough membership functions based on a covering of the 

universe [Yao, Zhang, 2000]. In this case, the minimum, the maximum 

and the average equations may be assumed as the most pessimistic, the 

most optimistic and the balanced view in defining rough membership 

functions. The minimum rough membership function of y is determined 

by a set, )(xRs


 to which y belongs, which has the smallest overlap with 

A compared to the cardinality of the set relatively. On the other hand, the 

maximum rough membership function is determined by a set, )(xRs


 to 

which y belongs which has the largest overlap with A compared to the 

cardinality of the set relatively. The average rough membership function 

depends on the average of every set, )(xRs


 to which y belongs. The 

relationships of the three rough membership functions can be expressed 

by: 
  )()()( * yyy M

AA

m

A  . 
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Moreover, the three rough membership functions may take varied 

values in calculation depending on the value of α. The minimum, 

maximum and average rough membership functions satisfy some 

properties as follows: for A, B ⊆ U are crisp sets, where U is a non-empty 

universe, 

(gr1) ,1)()()( *    xxx M

UU

m

U  

(gr2) ,0)()()( *  

  xxx Mm
 

(gr3) ,)()(,)()([)]()(),([ **   zyzyxRzxRyxR AA

m

A

m

Asss 

],)()(   zy M

A

M

A   

(gr4) ],1)(1)(,0)(0)([)(,    zyzyxRzy m

A

m

A

m

A

m

As

,0)(   yAy m

A  

(gr5) ,1)( AyyM

A   

(gr6) ],)()(,)()(,)()([ **   yyyyyyBA M

B

Mm

ABA

m

B

m

A   

(gr7) ).()()()(
||

||* APxxxA
U

AM
AA

m
A  000   

Properties (gr1) and (gr2) show the boundaries condition of set, U 

and ∅, where minimum, maximum and average membership functions 

have the same values for all elements, 1 and 0, respectively. Properties 

(gr3) and (gr4) indicate that two similar elements in coverings should 

have similar rough membership functions. Property (gr5) and (gr6) can 

be used to prove the real member of a given crisp set. Property (gr7) 

shows that the consistency of inclusive sets should have the same 

characteristics in comparison between their rough membership functions. 

All coverings of the universe will be equal to the universe if α is equal to 

0. In this case, all rough membership functions of all elements are equal 

to the probability of a given non-empty crisp set in the universe as shown 

in property (gr8). 

Related to set-theoretic operators, ¬, ∩, and ∪, the rough member-

ship functions satisfy some properties such as: 
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(g1) ,)(1)(   xx M

A

m

A   

(g2) ,)(1)(   xx m

A

M

A   

(g3) ,)(1)( **   xx AA   

(g4) ),)(,)(min()())()()(,0max(   xxxxxx m

B

m

A

m

BA

M

BA

m

B

m

A  
 

(g5) ),)()()(,1min()())(,)(max(   xxxxxx m

BA

M

B

M

A

M

BA

M

B

M

A    

(g6) .)()()()(
****   xxxx BAAABA    

 

By definition, generalized rough membership function provides four 

regions of A ⊆ U as defined as follows: 

1. Very positive region of A: vpos(A) = {x ∈ U |
 )(xm

A = 1},  

2. Positive region of A: pos(A) = {x ∈ U |
 )(xm

A > 0},  

3. Ambiguous region (boundary) of A: bnd(A) = {x ∈ U |
 )(xm

A  = 0, 

 )(xM

A  > 0},  

4. Negative region of A: neg(A) = {x ∈ U |
 )(xM

A  = 0}.  

 

It is necessary to denote some properties such that  

 vpos(A) ⊆ pos(A),  

 x ∈ A ⇒ x ∈ pos(A),  

 x ∈ bnd(A) ⇒ x ∈ A,  

 pos(A) ∩ bnd(A) ∩ neg(A) = ∅  

 pos(A) ∪ bnd(A) ∪ neg(A) = U .  

 

Also, one can defines pos(A) − vpos(A) as a boundary of positive 

region or gives a special attention to the region in which 
 )(xM

A  = 1 as a 

part of positive region. 

Covering of the universe in Definition 3.3.1 as a generalization of 

disjoint partition proposed in classical rough set is considered as a crisp 

covering. Both crisp covering and disjoint partition are regarded as crisp 
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granularity. However, when we consider a given set A be a fuzzy set on 

U instead of a crisp set and covering of the universe be a fuzzy covering 

instead of a crisp covering, we need to define a more generalized rough 

membership function of Definition 3.5.1. Here, fuzzy covering 

generalizes crisp covering. In this case, crisp covering can be constructed 

by applying α-level set of fuzzy covering. Fuzzy covering might be 

considered as a case of fuzzy granularity in which similarity classes as a 

basis of constructing the covering are regarded as fuzzy sets as defined in 

Definition 3.4.1. 

Similarly, a more generalized rough membership function is also 

defined into three values: minimum, maximum and average. 

 

Definition 3.5.2 Let A be a fuzzy set on U, where U is a non-empty 

universe, and let R be a (fuzzy) conditional probability relation on U.

)(ym

A , )(yM

A  and )(* yA  are defined as minimum, maximum and 

average rough membership functions of y in the presence of fuzzy set A, 

respectively as follows: 

,)(,|
|)(|

|)(|
min)(












 xRyUx
xR

AxR
y s

s

sm

A   (3.36) 

,)(,|
|)(|

|)(|
max)(












 xRyUx
xR

AxR
y s

s

sM

A   (3.37) 

,)(,|
|)(|

|)(|
)(

*












 xRyUx
xR

AxR
y s

s

s
A avg   (3.38) 

where 

])(),(min[|)(| )( 


Uz AxRs zzAxR
S

  and  


Uz xRs zxR
S

)(|)(| )(

. 

Again, intersection is defined by minimum function in order to 

obtain property of reflexivity, although there are some operations of t-

norm that might be used. 

 



   

 Page | 41 

3.6 Illustrative Example  

 

Let us illustrate the above concepts by using binary information table 

as shown in Table 3.1. Given X ⊂ U be a crisp set of object, where: 

X = {O2, O4, O7, O8, O13, O16, O17}. 

Given an arbitrary α-cut is equal to 0.75. Thus, we just consider to 

similarity classes of covering in which minimum degree of similarity 

concerning relationships between elements is equal to 0.75. By Definition 

3.2.3, 3.2.4 and 3.3.1, we construct similarity classes of all elements in U 

which also represent covering of the universe by: 

},{)(
.

11
750 OORs   },,,,,{)(

.
1513119311

750 OOOOOORs   

},,,,,{)(
.

1898522
750 OOOOOORs   },{)(

.
1212

750 OORs   

},,,,,{)(
.

161511533
750 OOOOOORs   },,,,,,{)(

.
15131265113

750 OOOOOOORs   

},,{)(
.

1744
750 OOORs   },{)(

.
1414

750 OORs   

},,,,{)(
.

135325
750 OOOOORs   },,,,,,,{)(

.
1915131163115

750 OOOOOOOORs   

},,,,{)(
.

1513616
750 OOOOORs   },,,{)(

.
1611316

750 OOOORs   

},{)(
.

77
750 OORs   },,,,{)(

.
17119417

750 OOOOORs   

},,{)(
.

828
750 OOORs   },,,{)(

.
185218

750 OOOORs   

},,,,{)(
.

1711929
750 OOOOORs   },,,{)(

.
1915119

750 OOOORs   

},{)(
.

1010
750 OORs   }.{)(

.
2020

750 OORs   

 

Now, we calculate all approximation operators representing appro-

ximation space based on Definition 3.3.2 and (3.9)-(3.12) as the following: 

},,,{)(
.

874
750 OOOXLo e   

},,,,,,,,,,,,,{)( ,
.

18171615131198765432
750 OOOOOOOOOOOOOOXUp e   

},,,,,{)(
.

178742
750 OOOOOXLo c   

},,,,,,,,,,,,,,,,,{)(
.

1918171615131211987654321
750 OOOOOOOOOOOOOOOOOXUp c   

},,,{)(
.

874
750

1 OOOXLo e   
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},,,,,,,,,,,,,{)( ,
.

18171615131198765432
750

1 OOOOOOOOOOOOOOXUp e   

},,,{)(
.

874
750

1 OOOXLo c   

}.,,,,,,,,,,,{)( ,
.

181716131198765432
750

1 OOOOOOOOOOOOOXUp c   

Rough boundaries of X are the following: 

},,,,,,,,,,,{)(
.

18171615131196532
750 OOOOOOOOOOOXBnd e   

},,,,,,,,,,,,{)(
.

1918171615131196531
750 OOOOOOOOOOOOXBnd c   

},,,,,,,,,,,{)(
.

18171615131196532
750

1 OOOOOOOOOOOXBnd e   

}.,,,,,,,,,{)(
.

181716131196532
750

1 OOOOOOOOOOXBnd c   

 

Next, by Definition 3.5.1, we examine and calculate minimum, 

maximum, and average rough membership functions of element or object 

O17, for instance. In this case, there are three similarity classes or coverings 

to which O17 belongs. They are )(
.

4
750 ORs , )(

.
9

750 ORs  and )(
.

17
750 ORs , 

where: 

,
|)(|

|)(|
.

.

1
4

750

4
750




OR

XOR

s

s   ,
|)(|

|)(|
.

.

4

2

9
750

9
750




OR

XOR

s

s     .
|)(|

|)(|
.

.

4

2

17
750

17
750




OR

XOR

s

s  

Finally, by the above results, we calculate minimum, maximum and 

average rough membership function of O17 as follows: 

,/}/  ,/  ,min{)( . 4242421O 750

17

m

A   

,}/  ,/  ,max{)( . 142421O 750

17

M

A   

./}/  ,/  ,{)( .* 3242421avgO 750

17A   

 

By rough membership function of all objects, four regions of X are 

given as:  

vpos(X) = {O7}, 

pos(X)   = {O2, O3, O4, O5, O6, O7, O8, O9, O11, O13, O16, O17, O18}, 

bnd(X)  = {O1, O15, O19}, 

neg(X)   = {O10, O12, O14, O20}. 
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Fuzzy information table can be used to generalize binary information 

table of Table 3.1. Here, fuzzy conditional probability relation as defined in 

Definition 3.2.4 is used to construct α-covering of the universe. 

 

3.7 α-Redundancy of Objects  

 

A data table, called information system, contains data about objects of 

interest characterized by some domain attributes. Possibly, several objects 

have nearly the same characteristics in a given information system. Hence, 

some of them may be considered as redundant objects to the others. When 

information systems are applied to decision systems, an object u is a non-

redundant object if there is no proper u’ that covers u concerning their 

characteristics by domain attributes. If such a u’ exists, u is redundant. 

Simply, an example given in Table 3.3 shows a data table of Reproduction 

of Animals which is obviously proved that object u1 is a redundant object, 

for it is covered by u2 in which horse belongs to group of mammals. 

 

Table 3.3 Reproduction of Animals 

U Description Reproduction 

u1 Horse Bear 

u2 Mammals Bear 

u3 Bird Egg 

 

In this section, we propose a concept of determining α-redundant 

objects based on the concept of α-coverings of the universe. In previous 

section, we proposed the concept of α-coverings of the universe 

generalizing classical rough sets. Principally, every class in a covering 

corresponds to similarity class of an element or object in the universe 

constructed by degree of similarity, α. A redundant object is considered as 

object whose class is subset of class of another object in the universe. 

Formally, an information system is defined as a pair I = (U, A), where U is 

a non-empty finite set of objects called the universe and A is a non-empty 

finite set of domain attributes such that a : U → Va for every a ∈ A. The set 
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Va is called the value set of a, where Va may consist of precise as well as 

imprecise data. First, we define similarity class of object extending 

definition of similarity class as defined in Definition 3.3.1. 

 

Definition 3.7.1 Let I = (U, A) be an information system, and R be a 

(fuzzy) conditional probability relation. For any object ui ∈ U , )( iA uS
 is 

defined as the set that is similar to ui by employing A to degrees of at least α 

in which α = (α1, ..., αn) corresponds to A = (a1, ..., an) such that: 

},,,1,))(),((|{)( nkauauaRUuuS kkikiA 

 
 (3.39) 

where αk ∈ [0, 1]. ak (ui), ak (u) ∈ Vak denote the restriction of the domain 

attribute ak to the objects ui and u, respectively. By Definition 3.7.1, a 

redundant object is determined as the following: 

 

Definition 3.7.2 An object ui ∈ U is a α-redundant object in an information 

system I = (U, A) if there is an object uj ∈ U whenever: 

),()( jAiA uSuS  
 

 (3.40) 

where )( iA uS
 and )( jA uS

 are similarity classes of ui and uj, respectively 

by employing A to degrees of at least α as defined in Definition 3.7.1. 

In case of crisp data are applied in classical rough sets, their degree of 

similarity is either 0 or 1 (0 if they are different, otherwise 1 if they are 

exactly the same). In other words, each data is similar only unto itself. 

Obviously the identity relation [Intan, Mukaidono, 2000d], [Shenoi, 

Melton, 1989] is used to represent relationships between data. Conse-

quently, two objects are considered as redundant objects if they exactly 

have the same data for all domain attributes. However, when we consider 

providing a more realistic view in representing data, we have to realize that 

data are often imprecise. Two distinct data in a given domain attribute 

might have degree of similarity between 0 and 1. An object is considered 

as an α-redundant object if there is another object to which the object is 
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similar characterized by some domain attributes at least with the degree of 

α as shown in Definition 3.7.2. Moreover, we think of α as a set of the 

degree from 0 to 1 which corresponds to the set of domain attributes. This 

gives flexibility in determining the degree of α depending on type of data in 

domain attributes. 

 

Example 3.7.1 Simply, Reproduction of Animals in Table 3.3 is recalled 

with corresponding to information system I(U, A), where 

U = {u1, u2, u3}, 

A = {Description(D), Reproduction(R)}. 

 

Let us suppose for simplifying the problem degree of α = {1, 1}, 

where αD = 1 and αR = 1. First, we determine similarity of data, for instance 

relationship between Horse and Mammals is discussed as follows.  

R(D(u1), D(u2)) = R(Horse, Mammals) = P(Mammals → Horse) << 1 

or by conditional propositions p [Klir, Yuan, 1995], the relation is 

expressed by 

p :  If Mammals (is true) then Horse (is true). 
 

It is not exactly true, because Mammals is not a part of Horse.  On the 

other hand, R(D(u2), D(u1)) = R(Mammals, Horse) = P(Horse → 

Mammals) = 1 or by conditional propositions p, the relation is expressed by 

p :  If Horse (is true) then Mammals (is true). 
 

It is exactly true, because Horse is a part of Mammals. Next similarity 

classes of all objects are constructed by (3.39) after determined similarity of 

data for value of all domain attributes corresponding to the objects. 

},{)( 11 uuSA 
 

},,{)( 212 uuuSA 
 

}.{)( 33 uuSA 
 

It is obviously seen that )()( 21 uSuS AA

  . By (3.40), we conclude 

that u1 is a redundant object because it is covered by u2. 
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3.8 Dependency of Domain attributes  

 

Dependency of domain attributes is one of the important issues in the 

application of KDD and design of database such as recognizing partial and 

total dependencies as well as functional dependencies in relational 

database, determining redundant domain attributes in decision table, and 

others. Intuitively, a set of domain attributes D depends totally on C if all 

value of domain attributes from D are uniquely determined by values of 

domain attributes from C [Komorowski, Pawlak, Polkowski, Skowron, 

1999]. In this section, we propose a concept for determining dependency of 

domain attributes based on α-coverings of the universe constructed by 

similarity classes as defined in Definition 3.7.1. Formally, the concept of 

dependency domain attributes can be defined in the following definition. 

 

Definition 3.8.1 Let I = (U, A) be an information system, where U = {u1, 

..., un}. For C, D ⊆ A; )( 1uSC


 and )( 1uSD


 are defined as the sets that are 

similar to ui by employing C to degrees of at least β and by employing D to 

degrees of at least γ, respectively in which β corresponds to C and γ 

corresponds to D. ),(, DCi

  is defined as degrees of dependency C 

determines D, in object ui by: 

.
|)(|

|)()(|
),(,

iC

iDiC
i

uS

uSuS
DC









 

 (3.41) 

 

From  the  universal set of objects U, we have a family of values 

{ ),(, DCi

 |∀i ∈ Nn}. In general, by using this family of values, degree 

of dependency, C determines D, may be defined into three definitions as 

the following: 

 (minimum)    ),,(min),( ,

N

,

min DCDC i
i n

 


  (3.42) 

 (maximum)    ),,(max),( ,

N

,

max DCDC i
i n

 


  (3.43) 

 (average)       ),,(),( ,

N

, DCavgDC i
i

avg

n

 


  (3.44) 
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By definition we can obtain some properties such as:  if D depends 

totally on C then )( iC uR ⊆ )( iD uR  for all i or all objects in U.  It also 

means that the similarity classes generated by C are finer than the similarity 

classes generated by D. Also there are some properties such as: 

 ,1),(1),( ,,

min  DCDC avg

  and similarly 

.1),(1),( ,,

min  DCDC avg

   

 If ,1),(1),( ,,

min  DCDC avg

  then we say that D depends 

totally on C.  

 Otherwise, if 1),(, DCavg

 , we say that D depends partially (in a 

degree ),(, DCavg

 ) on C. 

 Likewise, if 1),(, DCi

  we say that D depends totally on C in 

object ui.  

 Otherwise if 1),(, DCi

 , we say that D depends partially (in a 

degree ),(, DCi

 ) on C in object ui.  

Moreover, the concept of dependency discussed above corresponds to 

the concept of fuzzy functional dependency in the presence of fuzzy 

relational database [Intan, Mukaidono, 2000a], [Intan, Mukaidono, 2000d], 

[Intan, Mukaidono, 2004]. We may say that fuzzy functional dependency 

(FFD) C determines D, denoted by C → D, holds in a relation r (or in the 

information system I) iff: 

.N allfor    ),,(),( ,,

nii iCDDC     (3.45) 

It can be proved that the FFD satisfies Armstrong‟s Axioms 

[Armstrong, 1974], such that for B, C, D ∈ A, where A: set of domain 

attributes, 

1. Reflexivity: D ⊆ C ⇒ C → D,  

2. Augmentation: (C → D, B ⊆ A) ⇒ CB → D,  

3. Transitivity: (C → D and D → B) ⇒ C → B.  
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There are redundant domain attributes in decision table if there is a set 

of C’ ⊂ C such that: 

,N allfor    ),,(),( ,,

nii iDCDC   
 

 (3.46) 

where set of C – C’ is considered as set of redundant domain attributes. 

Example 3.8.1 Simply, we give an example of crisp data by 

considering an information system I(U, A) as shown in Table 3.4, where U 

= {u1, ..., u8} is a set of objects and A = {c1, c2, c3, d1} is a set of domain 

attributes. 

 

Table 3.4  I(U, A = {c1, c2, c3, d1}) 

U c1 c2 c3 d1 

u1 w1 x1 y1 z1 

u2 w1 x2 y3 z1 

u3 w2 x2 y3 z2 

u4 w1 x1 y1 z2 

u5 w2 x2 y1 z2 

u6 w1 x1 y1 z1 

u7 w2 x2 y3 z1 

u8 w1 x2 y3 z1 

 

Let us suppose that we would like to know the degree of dependency: 

C determines D, where C = {c1, c2, c3} and D = {d1} such that C, D ⊂ A. 

First, we calculate ),(,

1 DC  which means degree of dependency, C 

determines D in object u1, where let us suppose (in crisp data) β = {1, 1, 1} 

and γ = {1} as follows. 

,
3

2

|}u,u,{u|

|}u,{u|
D)(C,δ

}u,u,u,u,{u)(uS

}u,u,{u)(uS

641

61βγ

1

87621i

γ

D

641i

β

C











 

By using the same way, we calculate the degree of dependency that 

C determines D, for other objects: 1),(2 DC , 2/1),(3 DC , 
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3/1),(4 DC , 1),(5 DC , 3/2),(6 DC , 2/1),(7 DC  

and .1),(8 DC  Finally by (3.42), (3.43) and (3.44), we calculate 

minimum, maximum and average degree of dependency as given by:  

,2/1),(min DC     ,1),(max DC      .24/17),( DCavg

  

Conversely, we calculate degree of dependency, D determines C, for 

all objects as follows: 5/2),(1 CD , 5/2),(2 CD ,  3/1),(3 CD

, 3/1),(4 CD , 3/1),(5 CD , 5/2),(6 CD , 5/1),(7 CD  

and .5/2),(8 CD  If we compare degree of dependency, C 

determines D, with degree of dependency, D determines C, it will be 

clearly seen that ),(),( CDDC ii

    for all i or all objects, where it 

satisfies (3.45). Finally, we conclude that C → D holds in Table 3.4. 

Again, let us suppose C’ = {c1, c3} in which C‟ ⊂ C. By (3.41), we 

calculate the degree of dependency, C determines D, for all objects: 

3/2),'(1 DC , 1),'(2 DC , 2/1),'(3 DC , 3/1),'(4 DC

, 1),'(5 DC , 3/2),'(6 DC , 2/1),'(7 DC  and 1),'(8 DC . 

These give exactly the same results as degree of dependency C 

determines D. By (3.46), C – C’ = {c2} is a redundant domain attribute. 

 

3.9 Conclusion  

 

Weak fuzzy similarity relation was proposed as a generalization of 

fuzzy similarity relation [Zadeh, 1970]. Conditional probability relation 

was regarded as a concrete example of the weak fuzzy similarity relation. 

A generalization of classical rough set was proposed based on covering 

of the universe induced by conditional probability relation. Considering 

the rough sets approximation, two interpretations of lower and upper 

approximation operators are introduced in the presence of α-coverings, 

where α indicates the degree of similarity relationships between elements 

or objects in order to construct the covering. Some properties related to 
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the lower and upper approximation operators are also examined. Rough 

membership functions are re-defined into three values: minimum, 

maximum and average. Four regions of a given set were provided and 

defined. Some properties were proposed related to set-theoretic operators. 

Also, two important applications were discussed in the relation to 

information system. A concept of determining α-redundant objects was 

introduced based on the concept of α-coverings of the universe. The 

concept of determining α-redundant objects is very important in order to 

reduce the number of decision rules in decision table. Finally, a concept 

of dependency of domain attributes was also proposed. Dependency of 

domain attributes is one of the important issues in the application of KDD 

and design of database such as recognizing partial and total 

dependencies, determining redundant domain attributes in the 

information system, and others. In addition, fuzzy functional dependency 

(FFD) as an important method in analyzing fuzzy relational database was 

defined based on dependency of domain attributes. 
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Chapter 4 
 

Multi Rough Sets based on Multi-

Context of Attributes 
 

4.1 Introduction  

 

In the real application, depending on the context, a given object may 

have different values of attributes. In other words, we may represent set 

of attributes based on different context, where they may provide different 

values for a given object. Context can be viewed as background or 

situation in which somehow we need to group some attributes as a subset 

of attributes and consider the subset as a context. For example, let us 

consider humans as a universal set of objects. Every person (object) 

might be characterized by some sets of attributes corresponding to some 

contexts such as his or her status as student, employeee, family member, 

club member, etc. In the context of student, his or her set of attributes 

might be {ID-Number, Name, Address, Supervisor, Major, etc.}. We 

may consider different sets of attributes in the relation to the contexts of 

both employee and family member. Still using example of humans as 

objects, especially for fuzzy data or perception-based data, set of 

attributes such as height, weight and age, might have different values for 

a given object depending on viewpoints (contexts) of American, Japanese 

and so on. For instance, Japanese may consider height of 175 cm as 

{high}, but American may consider it as {medium}. Therefore, it is 

necessary to consider multi-contexts information system as an extension 
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of information system (see Section 4.2). Related to the rough set, every 

context as a set of attributes provides a partition of objects. Consequently, 

since n contexts (n subsets of attributes) provide n partitions, a given set 

of object, X, may then be represented into n pairs of lower and upper 

approximations defined as multi-rough sets of X. Related to the multi-

rough sets, some properties and operations are proposed and examined. 

Primary concern is given to the generalization of contexts in the presence 

of multi-contexts information system. Three kinds of general contexts, 

namely AND-general context, OR-general context and OR
+
 general 

context, are proposed. We show that AND-general context and OR
+
-

general context provide (disjoint) partitions but OR
+
-general context 

provides covering of the universe. Then, a summarized rough set of a 

given crisp set of objects is able to be derived from partitions as well as 

covering of the general contexts. Finally, relations among three general 

contexts are examined and summarized.  

 

4.2 Multi-Contexts Information System  

 

A Multi Rough Sets is proposed based on multi-contexts of 

attributes, where every context is considered as a set of attributes. 

Partitions of multi-contexts are generated from a multi-contexts 

information system. Formally, the multi-contexts information system is 

defined by a pair I = (U, A), where U is a universal set of objects and A is 

a non-empty set of contexts such as A = {A1, ..., An}. Ai ∈ A is a set of 

attributes and denoted as a context. Every attribute, a ∈ Ai, is associated 

with a set of Va as its values called domain of a. It is NOT necessary for i 

≠ j ⇒ Ai ∩ Aj = ∅. Attributes such as height and weight might belong to 

different contexts (i.e. American and Japanese) in which they may 

provide different values of certain attribute concerning a given object. 

Therefore, for x ∈ U, a(x)
i
 ∈ Va is denoted as the value of attribute a for 

objects x in the context a ∈ Ai. An indiscernibility relation (equivalence 

relation) is then defined in terms of context Ai such as for x, y ∈ U: 
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,   ,)(,)(      ,)()(),( ia

iiii

A AaVyaxayaxayxR
i

   (4.1) 

Equivalence class of x ∈ U in the context Ai is given by 

)},(|{][ yxRUyx
ii AA  .  (4.2) 

It should be verified that for i ≠ j, ∃x ∈ U, [x]Ai  ≠ [x]Aj , otherwise Ai 

and Aj  are redundant in term of providing similar partitions. By 

eliminating all redundant contexts, the number of contexts in the relation 

to the number of objects are satisfied the following equation. 







1

0

1     For 
m

i

iBimCmBmBmU ),(),()(),(|A|,||   (4.3) 

where B(0) = 1 and C(n, k) is combination of size k from n elements 

given by: 

)!(!

!
),(

knk

n
knC


 . 

|U| and |A| are cardinalities of U and A representing the number of 

objects and the number of contexts, respectively. From set of contexts A, 

set of partitions of universal objects are derived and given by {U/A1, ..., 

U/An}, where U/Ai as a partition of the universe based on context Ai 

contains all equivalence classes of [x]Ai , x ∈ U. 

 

4.3 Multi-Rough Sets  

 

A multi-rough sets is defined as an approximate representation of a 

given crisp set of objects in the presence of a set of partitions derived 

from multi-context information systems providing set of rough sets 

corresponding to the set of partitions. Here, the multi-rough sets may be 

provided regardless of redundant contexts in multi-contexts information 

system. Clearly, every element of the multi-rough sets is a pair of lower 

and upper approximation corresponding to a given context. Formally, 

definition of multi-rough sets is defined as follows. 
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Definition 4.3.1 Let U be a non-empty universal set of objects. 
iAR  and 

U/
iAR  are equivalence relation and partition with respect to set of 

attributes in the context of Ai. For X⊆U, corresponding to a set of 

contexts, A={A1, A2, …, An}, X is defined as multi-rough sets of X as 

given as follows. 

))}.(),((,)),(),(()),(),({(X nn XUpXLoXUpXLoXUpXLo 2211  (4.4) 

 

Thus, an element ))(),(( ii XUpXLo  of multi-rough sets is a pair of 

sets, lower and upper approximations in terms of context Ai. Similar to 

the definition of rough set, )( iXLo  and )( iXUp  are defined by   

},][|/]{[}][|{)( XuAUuXuUuXLo
iii AiAAi    (4.5) 

},][|/]{[}][|{)(  XuAUuXuUuXUp
iii AiAAi   (4.6) 

respectively. Similar to bags (multi-set) as proposed in [Yager, 1990], a 

multi-rough sets, X, is characterized by a counting function ΣX such that: 

N,2  )(
X

UP   (4.7) 

where N is a set of non-negative integers and P(U) is power set of U. 

Basically, for any pair of lower and upper approximations (M,N) ∈ P(U)
2
, 

ΣX ((M,N)) counts number of occurrences the pair (M,N) in the multi-

rough sets X, where it should be clarified that 

 
X

)),((X),( 0NMNM . 

Also, a support set of X denoted by X* is defined by satisfying the 

following equation: 

 
X

,)),((*X),( 0NMNM   (4.8) 

where  
X*

.)),((*,X),( 1NMNM  It can be proved that if X=X* 

then set of contexts A is free from redundancy, not vice versa. Some 

basic relations and operations are defined concerning sets of pair lower 

and upper approximations as elements of multi-rough sets. For X and Y 

are two multi-rough sets on U drawn from multi-contexts information 

system A, where |A|=n: 
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i. Containment

;)),()(),()((YX niiii iYUpXUpYLoXLo N  

ii. Equality: ;)),()(),()((YX niiii iYUpXUpYLoXLo N  

iii. Complement: 

;)),()(),()((XY niiii iXLoUYUpXUpUYLo N  

iv. Union: };|))()(),()({(YX niiii iYUpXUpYLoXLo N  

v. Intersection: 

};|))()(),()({(YX niiii iYUpXUpYLoXLo N  

where Nn is a set of non-negative integers less or equal to n. Obviously, 

the operations given in (i)-(v) are strongly related to the order of elements 

corresponding to set of contexts. Related to the occurrence of elements 

and despite the order of elements in multi-rough sets, we may consider 

the following basic operations. 

a) Containment: );,(,)),(()),((YX
YX

NMNMNM    

b) Equality: );,(,)),(()),((YX
YX

NMNMNM    

c) Union:   );,(,)),(()),,((max)),(( YXYX
NMNMNMNM  

 

d) Intersection: 

  );,(,)),(()),,((min)),(( YXYX
NMNMNMNM  

 

e) Insertion: 

Y;X),()),,(()),(()),(( YXYX
 

NMNMNMNM  

f) Minus: 

  X;),(,)),,(()),((max)),(( YXYX
 

NMNMNMNM 0  

The above basic operations satisfy some properties as the following: 

1. Idempotent laws: 

 X;XXX,XXX,XXX,XX                  

2. Commutative laws: 

 X,YYXY,XYXX,YYX             

 Y;XYXX,YYX        

3. Associative laws: 

       Y,X)(WY)(XWX,Y)(WY)(XW   
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 X,Y)(WY)(XWX,Y)(WY)(XW         

 X;Y)(WY)(XW   

4. Absorption laws: 

 X,Y)(XXX,Y)(XX        

 X,Y)(XXX,Y)(XX        

Y;XY)(XXX,Y)(XX        

5. Distributive laws: 

  Y),(WX)(WY)(XW   

  Y),(WX)(WY)(XW   

  Y),(WX)(WY)(XW   

  Y),(WX)(WY)(XW   

  Y),(WX)(WY)(XW   

 ;Y)(WX)(WY)(XW   

6. Additive laws: 

 Y);(XYXYX   

7. Double negation law: 

 X;X   

8. De Morgan laws: 

 Y;XY)(XY,XY)(X           

9. Maximum multi-rough sets (U={(U,U),…}, |U|=|X|); 

 U;UXX,UX        

10. Minimum multi-rough sets (E={(∅,∅),…}, |E|=|X|); 

 X;EXE,EX        

11. Kleene‟s laws: 

 Y);(YY)(YX)(XX),(XY)(YX)(X          

  

Since basic operations defined in (iii)-(v) do not satisfy 

complementary laws (  EX)X  and  UX)X  ), they do not 

satisfy Boolean algebra but just Kleene algebra instead. When union and 

intersection are applied for all pair elements of multi-rough sets X, we 

have: 
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i

iXUpX ),()(    (4.9) 

,)()( 
i

iXUpX    (4.10) 


i

iXLoX ),()(    (4.11) 

,)()( 
i

iXLoX   (4.12) 

where ))}(),({((X) XXUp   and ))}(),({((X) XXLo   are 

defined as summary multi-rough sets in which they have only one pair 

element. Their relationship can be easily verified by: 

),()()()( XXXXX   

where we may consider pair of ))(),(( XX    as a finer approximation 

and pair of ))(),(( XX     as a worse approximation of UX  . From 

the definition of summary multi-rough sets, it satisfies some properties 

such as: 

(1) X ⊆ Y ⇔ [Ψ(X) ⊆ Ψ(Y ), Φ(X) ⊆ Φ(Y ), Θ(X) ⊆ Θ (Y ), Γ(X) ⊆ Γ(Y )],  

(2) Ψ(X) = ¬Γ(¬X), Φ(X) = ¬ Θ (¬X), Θ (X) = ¬Φ(¬X), Γ(X) = ¬Ψ(¬X),  

(3) Ψ(U ) = Φ(U ) = Θ (U ) = Γ(U ) = U, Ψ(∅) = Φ(∅) = Θ (∅) = Γ(∅) = ∅,  

(4) Ψ(X ∩ Y ) = Ψ(X) ∩ Ψ(Y ), Φ(X ∩ Y ) = Φ(X) ∩ Φ(Y ), Θ (X ∩ Y ) ≤ Θ (X) 

∩ Θ (Y ), Γ(X ∩ Y ) ≤ Γ(X) ≤ Γ(Y ),  

(5) Ψ(X ∪ Y ) ≥ Ψ(X) + Ψ(Y ) − Ψ(X ∩ Y ), Φ(X ∪ Y ) ≥ Φ(X) + Φ(Y ) − Φ(X ∩ 

Y ), Φ(X ∪ Y ) ≤ Φ(X) + Φ(Y ) − Φ(X ∩ Y ), Γ(X ∪ Y ) ≤ Γ(X) + Γ(Y ) − Γ(X 

∩ Y ),  

 

Special consideration is given to the following two characteristics of 

context. 

1. Ai  is called total ignorance (τ ) if x ∈ U, [x]τ  = U.  

 Therefore ∀X ⊆ U, X ≠ ∅ ⇒ Lo(Xτ ) = ∅, Up(Xτ ) = U.  

2. Ai is called identity (ι) if ∀x ∈ U, [x]ι = {x}.  

Therefore, ∀X ⊆ U ⇒ Lo(Xι) = Up(Xι) = X. 
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Obviously, related to union and intersection operations, we have the 

following properties: 

∀Ai ∈ A, X ⊆ U, 

- Union: X ≠ ∅ ⇒ Up(Xi) ∪ Up(Xτ) = U,  Lo(Xi) ∪ Lo(Xτ) = Lo(Xi), 

 Up(Xi) ∪ Up(Xi) = Up(Xi),   Lo(Xi) ∪ Lo(Xi) = X. 

- Intersection: Up(Xi) ∩ Up(Xτ) = Up(Xi),  Lo(Xi) ∩ Lo(Xτ) = ∅, 

 Up(Xi) ∩ Up(Xi) = Xi,   Lo(Xi) ∩ Lo(Xi) = Lo(Xi). 

 

From the relation with union and intersection operations, τ is the 

identity context for union operation of lower approximation as well as for 

intersection operation of upper approximation. On the other hand, ι is the 

identity context for union operation of upper approximation as well as for 

intersection operation of lower approximation. 

Furthermore, in order to characterize multi-rough sets based on the 

number of objects (elements of U), two count functions are defined as 

follows:  

 

Definition 4.3.2 ηX : U → Nn and σX : U → Nn are defined as two 

functions to characterize multi-rough set by counting total number of 

copies of a given element of U in upper and lower sides of multi rough 

set X, respectively, as given by: 


n

i

XUp xx
i

),()( )(X    (4.13) 


n

i

XLo xx
i

),()( )(X    (4.14) 

where |A|=n and MxxM 1)( , otherwise 0)(xM . 

 

These count functions are similar to one proposed in [Yager, 1990] 

talking about bags (multi-set). Similar results will be found by firstly 

taking insertion operation to all lower side yielding a multi-set of lower 

side as well as all upper side yielding a multi-set of upper side. Then, the 

counting function is used to calculate number of copies of each element 
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in both multi-sets. Related to summary rough sets, these two count 

functions, η and σ, provide some properties such as for X, Y ∈ U, |A| = n: 

1. ηX(y) ≥ σX(y), ∀y ∈ U,  

2. σX(y) > 0 ⇒ y ∈ X,  

3. y ∈ X ⇒ ηX(y) = n,  

4. y ∈ Θ(X) ⇔ ηX(y) = n,  

5. y ∈ Ψ(X) ⇔ σX(y) = n,  

6. ηX(y) > 0 ⇔ Γ(X),  

7. σX(y) > 0 ⇔ Φ(X),  

8. X ⊆ Y ⇒ ηX(y) ≤ ηY(y), σX(y) ≤ σY(y), ∀y ∈ U,  

9. X = Y ⇒ ηX(y) = ηY(y), σX(y) = σY(y), ∀y ∈ U,  

10. ηX∪Y(y) = ηX(y) + ηX(y) − ηX∩Y(y),  

11. σX∪Y(y) = σX(y) + σX(y) − σX∩Y(y),  

12. ηX⊕Y(y) = ηX(y) + ηX(y) − ηX⊗Y(y),  

13. σX⊕Y(y) = σX(y) + σX(y) − σX⊗Y(y),  

 

Simply, by dividing the count functions with total number of 

contexts (|A| = n), we define two membership functions, µX(y) : U → 

[0,1] and νX(y) : U → [0,1] by 

,
)(

)( X
X

n

y
y


   (4.15) 

,
)(

)( X
X

n

y
y


   (4.16) 

where )(X y  and )(X y  represent membership value of y in upper and 

lower multi-set X, respectively. Actually, μ and ν are nothing but another 

representation of the count functions. However, we may consider pair of (

)(X y , )(X y ) as an interval membership function of y ∈ U in the 

presence of multi-contexts of attributes. Similarly, by changing n to 1 in 

Property number 3-5, μ and ν have exactly the same properties as given 

by η and σ, respectively. 
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4.4 Generalization of Contexts  

 

Generalization of contexts means that all contexts of attributes are 

combined for the purpose of providing one general context. Here, we 

propose three kinds of general context, namely AND-general context, 

OR-general context and OR
+
-general context. 

First, general context provided by AND logic operator to all 

attributes of all contexts, called AND-general context, is simply 

constructed by collecting all elements of attributes of all contexts to the 

general context as defined by the following definition. 

 

Definition 4.4.1 Let A = {A1, A2, . . . , An} be set of contexts. A is 

defined as AND-general context by nAAAA  21 , where A  

is a result of summation of all conditions as given by all attributes of Ai, 

ni N  or simply,  

nAAAA  21           (4.17) 

 

In Definition 4.4.1, nevertheless, it was defined before in Section 4.2 

that it is not necessary . ji AAji  Here, every attribute is 

regarded uniquely and independently in providing value of the attribute 

corresponding to a given object in terms of a certain context. It can be 

proved that A  satisfies   
n

i iAA
1

|||| . Also, 
iAnA uiu ][,,][ 


N

such that .][][
iAA uu 


 For a given X ⊆ U, )( XLo  and )( XUp  are 

defined as lower and upper approximation of X provided by set of 

attributes, A . Approximation space performed by AND-general context 

is regarded as the finest disjoined partition by combining all partition of 

contexts and considering every possible area of intersection among 

aquivalence classes as a equivalence class of AND-general context (see 

Figure 4.1.c). Therefore, it provides the finest approximation of rough set. 

Second, if the relationships among contexts are operated by OR 

logic operator, the independency of every context persists in the process 
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of generalization. Clearly, it provides a covering instead of a disjoint 

partition of the universal objects. Since, the general context providing 

covering [Intan, Mukaidono, Yao, 2001], [Yao, Zhang, 2000], it may also 

be called Cover-general context (C-general context, for short) and 

defined as follows. 

 

Definition 4.4.2 Let A = {A1, A2, ..., An} be set of contexts. A is defined 

as C-general context by: nAAAA  21 , such that 


n

i

iAUAU
1

  //    (4.18)        

where AU /  is a covering of the universe as union of all equivalence 

classes in ni iAU N,/  . 

Consequently,   
n

i iAUAU
1

|/||/|  and 
iAn uiAUC ][,,/   N

such that 
iAuC ][ , where C is a similarity class in covering and 

iAu][ is 

an equivalence class in the partition of U/Ai. We call C as a similarity 

class as a means to distinguish between equivalence class provided by 

equivalence relation as usually used in partition and one used in covering. 

Every similarity class might take overlap one to each other. A given 

object u ∈ U possibly belongs to more than one similarity classes. It can 

be verified that for UX  , )( XLo  and )( XUp , as a pair of lower and 

upper approximations of X in terms of A , can be defined by,  


n

i

iALoXLo
1

  ),()(        (4.19) 


n

i

iAUpXUp
1

  ),()(          (4.20) 

where )( iXLo  and )( iXUp  are lower and upper approximation of X 

based on the context Ai. It can be proved that iterative operation is applied 

in the upper approximation operator as given by ))(()(   XUpUpXUp . 

We may then consider ))(( XUpM  as a maximum upper approximation 
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given by ))(())(()(   XUpMXUpUpXUp  , where the iterative 

operation is no longer applied in the maximum upper approximation or 

))(()))(((   XUpMXUpMUp . Related to the covering of the univeral 

objects, some properties are given in [Intan, Yao, Mukaidono 2003a]. 

Moreover, related to the summary of multi-rough sets as defined in the 

previous section, we found that )()( XXUp   and )()( XXLo  .  

The third general context is called OR
+
-general context in which 

transitive closure operation is applied to the covering as result of OR-

general context or C-general context. In other words, equivalence classes 

of OR
+
-general context are provided by union of all equivalence classes 

of all partitions (of all contexts) that overlap one to each other. Similarity 

classes of OR
+
-general context is defined as the following definition. 

 

Definition 4.4.3 Let A = {A1, A2, ..., An} be set of contexts. 


A  is defined 

as OR
+
-general context by: nAAAA  21

 , such that 



A

xy ][  iff 

.,,,,,

,/,,,),,/(

))( imkiiki

imiiii

CymkCCCx

AUCCCCyxAUC









11

(    OR       

11

21




    (4.21) 

where m ≤ n and 
A

x][  is an equivalence class containing x in terms of 



A . For AU / be a set of equivalence classes provided by all contexts, 

equivalence classes generated by 


A  are able to be constructed by the 

following algorithm: 

:N,/  

 iAUSi  Equivalence classes of OR
+
-general context.  

p = 0; SC = AU / U/A∨;  

while SC = ∅ do { 

p = p + 1; Sp = ∅; 

SC = SC − {M }; M is an element (similarity class)  of SC. 

Sp = M ; 

SS = SC; 

while SS ≠ ∅ do { 
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SS = SS − {M }; M is an element 

(similarity class) of SS.  

if   Sp ∩ M ≠ ∅ then { 

SP = SP ∪ M ; 

SC = SC − {M }; 

} 

} 

} 

 

Finally, by algorithm in Definition 4.4.3, there will be p equivalence 

classes. Possibly, p might be equal to 1 in case all elements in AU /  tran-

sitively join each other. It can be proved that all equivalence classes in 
AU /  

are disjoint. Also, 
 AUS /  such that .,/, SMAUMi in  N  For 

a given X ⊆ U, )(

ALo  and )(


AUp  are defined as lower and upper 

approximation of X provided by set of attributes, 
A . Approximation 

space performed by OR
+
-general context is regarded as the worst 

disjoined partition. Therefore, it provides the worst approximation of 

rough set. Related to the maximum upper approximation based on C-

general context, it can be verified that apr ))(()( 

  AUpMAUp . 

Compare to the summary of multi-rough sets and approximation based 

on AND-general context, we have 

)()()()()()()()(




  AUpXXAUpXALoXXALo  

How generalization of contexts applied in the approximation of X 

might be illustrated by the following figure. It is given two different 

contexts, A1 and A2 and their approximation of X as shown in Figure 4.1 

(a) and (b). Approximations of X based on AND, OR and OR
+
-general 

context are given in Figure 4.1 (c), (d) and (e), respectively. 
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Figure 4.1 Generalization Contexts 

 

4.5 Conclusion  

 

This chapter proposed multi rough sets based on multi-context of 

attributes. Basic operations and some properties were examined. Two 

count functions as well as their properties ware defined and examined to 

characterize multi rough sets. Finally, we proposed three types of general 

contexts, namely AND-general context, C-general context and OR
+
-

general context. This chapter also discussed briefly relation among 

approximations provided by the general contexts. In the future work, we 

need to apply and implement the concept of multi rough sets in the real 

world application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: 
Generalization Contexts 
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Chapter 5 
 

Summary 
 

In this book, we originally proposed and discussed some concepts 

related to rough sets, fuzzy sets and granular computing for the purpose 

of constructing intelligent information system as the following: 

Chapter 2 discussed relationship between fuzziness and probability. 

We showed that fuzziness and probability played different roles in 

uncertainty. Therefore, they can be combined each other in order to 

represent probability of ill-defined event (called fuzzy event) in which the 

event can be represented by fuzzy set. Similar to fuzzy set, rough set 

regarded as another generalization of crisp set can be used to represent 

rough event in the relation to probability. We then examined their 

properties in the relation to belief and plausibility measures. 

Chapter 3 gave a major contribution in generalization of rough sets 

induced by fuzzy conditional probability relation. Two applications, α-

redundancy objects and dependency of domain attributes, were discussed 

in the presence of information system. 

Still related to rough sets, Chapter 4 proposed a new concept of 

multi rough sets based on multi-contexts of attributes. Here, we need to 

find a real-world application to which the multi rough sets can be applied. 

It should be mentioned that mostly the results of my research as 

discussed in this book is still in theory in which it is necessary to apply 

and implement them into the real-world applications. Also, in the future 

we need to consider the following topics of research in the relation to 

rough set. 
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- Completing generalization of rough sets induced by conditional 

probability relation.  

- Rough Reasoning.  

- Type-2 Rough Sets. Level k Rough Sets.  

- Rough Measure.  

- Rough Graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 Page | 67 

 

 

 

 

Bibliography 
 
[1] Armstrong, W.W., „Dependency Structures of Database Relation-

ship‟, Information Processing, (1974), pp. 580-583.   

[2] Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Appli-

cations, (Academic Press, New York, 1980).  

[3] Dubois, D., Prade, H., ‟Rough Fuzzy Sets and Fuzzy Rough Set‟, 

International Journal of General Systems, Vol. 17, (1990), pp. 191-

209. 

[4] Dubois, D., Prade, H., „Fuzzy Sets and Probability: Misunder-

standings, Bridges and Gaps‟, Proc. Second IEEE Intern. Conf. on 

Fuzzy Systems, San Francisco, (1993), pp. 1059-1068.  

[5] Dempster, A.P., ‟Upper and Lower Probability Induced by Multi-

valued Mappings‟,  

[6] Annals of Mathematical Statistics, 38, (1967), pp. 325-339.  

[7] Intan, R., Mukaidono, M., „Application of Conditional Probability 

in Constructing Fuzzy Functional Dependency (FFD)‟, 

Proceedings of AFSS’00, (2000a), pp. 271-276.  

[8] Intan, R., Mukaidono, M., „A proposal of Fuzzy Functional Depen-

dency based on Conditional Probability‟, Proceeding of FSS’00 

(Fuzzy Systems Symposium), (2000b), pp. 199-202.  

[9] Intan, R., Mukaidono, M., „Fuzzy Functional Dependency and Its 

Application to Approximate Querying‟, Proceedings of IDEAS’00, 

(2000c), pp. 47-54.  

[10] Intan, R., Mukaidono, M., „Conditional Probability Relations in 

Fuzzy Relational Database‟, Proceedings of RSCTC’00, LNAI 

2005, Springer & Verlag, (2000d), pp. 251-260.  



  

Page | 68 

[11] Intan, R., Mukaidono, M, Yao, Y.Y., „Generalization of Rough Sets 

with coverings of the Universe Induced by Conditional Probability 

Relations‟, Proceedings of Inter-national Workshop on Rough Sets 

and Granular Computing, LNAI 2253, Springer & Verlag, (2001a), 

pp. 311-315.  

[12] Intan, R., Mukaidono, M, „Dependency of Domain Attributes based 

on Fuzzy Conditional Probability Relations‟, Proceeding of FSS’01 

(Fuzzy Systems Symposium), (2001b), pp. 563-566.  

[13] Intan, R., Mukaidono, M, „Generalized Rough Membership 

Function with α-Coverings of the Universe induced by Conditional 

Probability Relation‟, Proceeding of FAN’01, (2001c), pp. 557 560.  

[14] Intan, R., Mukaidono, M., „Redundant Object and Dependency of 

Domain Attributes in α-Coverings of the Universe‟, Proceedings of 

FUZZ-IEEE, (2001d), pp. 1444-1447. 

[15] Intan, R., Mukaidono, M., „Approximate Data Querying induced by 

Fuzzy Conditional Probability Relation‟, Proceeding of Vietnam-

Japan bilateral Symposium on Fuzzy Systems, (2001e), pp. 140-

147.  

[16] Intan, R., Mukaidono, M., ‟Degree of Similarity in Fuzzy Partition‟, 

Proceedings of AFSS’02, LNAI 2275, Springer & Verlag, (2002a), 

pp. 20-26.  

[17] Intan, R., Mukaidono, M., „Generalization of Rough Membership 

Function based on α-Coverings of the Universe‟, Proceedings of 

AFSS’02, LNAI 2275, Springer & Verlag, (2002b), pp.129-135.  

[18] Intan, R., Mukaidono, M., Emoto, M., „Knowledge Based Repre-

sentation of Fuzzy Sets‟, Proceeding of The 11th IEEE 

International Conference on Fuzzy Systems, (2002c), pp. 590-595.  

[19] Intan, R., Mukaidono, M., „Approximate Reasoning in Knowledge-

based Fuzzy Sets‟, Proceeding of NAFIPS-FLINT 2002, (2002d), 

IEEE Publisher, pp. 439-444.  

[20] Intan, R., Mukaidono, M., ‟A Proposal of Probability of Rough 

Event based on Probability of Fuzzy Event‟, Proceedings of 

RSCTC’02, LNAI 2475, Springer & Verlag, (2002e), pp. 357-364.  



   

 Page | 69 

[21] Intan, R., Mukaidono, M., „Generalization of Fuzzy Rough Sets by 

Fuzzy Covering Based On Weak Fuzzy Similarity Relation‟, 

Proceeding of FSKD 2002, (2002f), pp. 344-348.  

[22] Intan, R., Mukaidono, M., ‟Probability of Fuzzy Event to 

Probability of Rough Event‟, Proceedings of FSKD 2002, (2002g), 

pp. 549-553.  

[23] Intan, R., Mukaidono, M., „Generalization of Rough Sets and its 

Applications in Information System‟, International Journal of 

Intelligent Data Analysis Vol. 6(4), IOS Press, (2002h), pp. 323-

339.  

[24] Intan, R., Mukaidono, M., „On Knowledge-based Fuzzy Sets‟, 

International Journal of Fuzzy Systems, Vol. 4(2), CFSAT, (2002i), 

pp. 655-664.  

[25] Intan, R., Mukaidono, M., „Approximate Data Querying in Fuzzy 

Relational Database‟, Journal of Advanced Computational Intelli-

gent Vol. 6(1), (2002j), pp. 33-40.  

[26] Intan, R., Mukaidono, M., „Generalized Fuzzy Rough Sets By 

Conditional Probability Relations‟, International Journal of Pattern 

Recognition and Artificial Intelligence Vol. 16(7), World Scientific, 

(2002k), pp. 865-881.  

[27] Intan, R., Yao, Y.Y., Mukaidono, M., ‟Generalization of Rough 

Sets Using Weak Fuzzy Similarity Relations‟, Rough Set Theory 

and Granular Computing, Advances in Soft Computing, Physica-

Verlag, (2003a), pp. 37-46.  

[28] Intan, R., Mukaidono, M., „Hybrid Probabilistic Models of Fuzzy 

and Rough Events‟, Journal of Advanced Computational Intelligent 

Vol. 7(3), (2003b), pp. 323-329. 

[29] Intan, R., Mukaidono, M., „From Evidence Theory to Probability of 

Generalized Fuzzy-Rough Events‟, Proceedings of Fuzzy Infor-

mation Processing, (2003c), pp. 883-888. 

[30] Intan, R., Mukaidono, M., „Multi-Rough Sets Based on Multi-con-

texts of Attributes‟,  Proceedings of the 9
th
 International Conference 

on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing 

(RSFDGrC), LNAI 2639, Springer-Verlag, (2003d), pp. 279-282. 



  

Page | 70 

[31] Intan, R., Mukaidono, M., „Multi-Rough Sets and Generalizations 

of Contexts in Multi-Contexts Information System‟, Proceedings of 

the 14
th
 International Symposium on Methodologies for Intelligent 

Systems (ISMIS), LNAI 2871, Springer-Verlag, (2003e), pp. 174-

178. 

[32] Intan, R., Mukaidono, M., „Fuzzy Conditional Probability Relations 

and its Applications in Fuzzy Information System‟, Knowledge and 

Information systems, an International Journal, Springer-Verlag, 

(2004), pp. 345-365.  

[33] Intan, R., Mukaidono, M., „On the Generalization of Fuzzy Rough 

Approximations Based on Asymmetric Relation‟, Computational 

Intelligence for Modelling and Prediction, Netherland Springer-

Verlag, (2005), pp. 73-88. 

[34] Inuiguchi, M., Tanino, T., „On Rough Sets under Generalized Equi-

valence Relations‟, Proceedings of International Workshop on 

Rough Sets and Granular Computing, (2001), pp. 167-171.  

[35] Klir, G.J., Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and 

Applications, (Prentice Hall, New Jersey, 1995).  

[36] Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A., „Rough 

Sets: A Tutorial‟, Rough Fuzzy Hybridization, (S.K. Pal, A. 

Skowron, Eds.) (Springer, 1999), pp. 3-98.  

[37] Kosko, B., „Fuzziness VS. Probability‟, International Journal of 

General Systems, Vol. 17, (1990), pp. 211-240.  

[38] Mukaidono, M., „Several Extensions of Truth Values in Fuzzy 

Logic‟, Proceedings ISMIS’99, (June 1999), pp. 282-291.  

[39] Nguyen, H. T., „On Fuzziness and Linguistic Probabilities‟, Journal 

of Mathematical Analysis and Applications, 61, (1977), pp. 658-

671.  

[40] Pawlak, Z. ‟Rough sets‟, International Journal Computation and 

Information Science, 11, (1982), pp. 341-356.  

[41] Pawlak, Z., ROUGH SETS Theoretical Aspects of Reasoning about 

Data, (Kluwer Academic Publishers, 1991).  



   

 Page | 71 

[42] Pawlak, Z., Skowron, A., „Rough Membership Functions‟, Fuzzy 

Logic for the Management of Uncertainty (L.A. Zadeh and J. 

Kacprzyk, Eds.), (Wiley, New York, 1994), pp. 251-271.  

[43] Polkowski, L. and Skowron, A. (Eds.), Rough Sets in Knowledge 

Discovery, I, II, Physica-Verlag, Heidelberg, (1998).  

[44] Richard Jeffrey, „Probabilistic Thinking‟, Princeton University 

(1995).  

[45] Shafer, G., A Mathematical Theory of Evidence, Princeton Univer-

sity Press, Princeton, (1976).  

[46] Shenoi, S., Melton, A., „Proximity Relations in the Fuzzy Relational 

Database Model‟, Fuzzy Sets and Systems 31, (1989), pp. 285-296.  

[47] Slowinski, R., Vanderpooten, D., „A Generalized Definition of 

Rough Approximations Based on Similarity‟, IEEE Transactions 

on Knowledge and Data Engineering, (2000), Vol. 12, No.2, pp. 

331-336.  

[48] Sugeno, M., ‟Fuzzy Measures and Fuzzy Integrals-a survey‟, In: 

Gupta, Saridis and Gaines, (1977), pp. 89-102.  

[49] Turksen, I.B., „Upper and Lower Memberships in CWW‟, Procee-

dings of FUZZ-IEEE, (2001), pp. 778-780.  

[50] Tversky, A., „Features of Similarity‟, Psychological Rev. 84(4), 

(1977), pp. 327-353. 

[51] Yager, R.R., „Ordinal Measures of Specificity‟, Int. J. General Sys-

tems, Vol.17, (1990), pp. 57-72.  

[52] Yao, Y.Y., „Two views of the theory of rough sets in finite uni-

verse‟, International Journal of Approximate Reasoning 15, (1996), 

pp. 291-317.  

[53] Yao, Y.Y., „Combination of rough and fuzzy sets based on α-level 

sets‟, in: Rough Sets and Data Mining: Analysis for Imprecise Data, 

(Lin, T.Y. and Cercone, N., Eds.), (Kluwer Academic Publishers, 

Boston, 1997), pp. 301-321.  

[54] Yao, Y.Y., „A comparative study of fuzzy sets and rough sets‟, 

International Journal of Information Science 109, (1998), pp. 227-

242.  



  

Page | 72 

[55] Yao, Y.Y., Zhang, J.P., „Interpreting Fuzzy Membership Functions 

in the Theory of Rough Sets‟, Proceedings of RSCTC’00, (2000), 

pp. 50-57.  

[56] Zadeh, L.A., „Fuzzy Sets and Systems‟, International Journal of 

General Systems, Vol. 17, (1990), pp. 129-138.  

[57] Zadeh, L.A., ‟Probability Measures of Fuzzy Events‟, Journal of 

Mathematical Analysis and Applications, Vol. 23, (1968), pp. 421-

427.  

[58] Zadeh, L.A., „Similarity Relations and Fuzzy Orderings‟, Inform. 

Sci. 3(2), (1970), pp. 177-200.  

[59] Zadeh, L.A., „Discussion: Probability Theory and Fuzzy Logic Are 

Complementary Rather Than Competitive‟, Technometrics, Vol. 37, 

No.3, (1995), pp. 271-276.  

[60] Zadeh, L.A., „Toward a Logic of Perceptions Based on Fuzzy 

Logic‟, Discovering the World with Fuzzy Logic, (V. Novak, I. 

Perfilieva, Eds.), Physica-Verlag, (2000), pp. 4-28. 

 


