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The optimization of truss structures is a complex computing problem with many local minima, while
metaheuristics are naturally suited to deal with multimodal problems without the need of gradient infor-
mation. The Coyote Optimization Algorithm (COA) is a population-based nature-inspired metaheuristic of
the swarm intelligence field for global optimization that considers the social relations of the coyote pro-
posed to single-objective optimization. Unlike most widespread algorithms, its population is subdivided
in packs and the internal social influences are designed. The COA requires a few control hyperparameters
including the number of packs, the population size, and the number maximum of generations. In this
paper, a modified COA (MCOA) approach based on chaotic sequences generated by Tinkerbell map to
scatter and association probabilities tuning and an adaptive procedure of updating parameters related
to social condition is proposed. It is then validated by four benchmark problems of structures optimiza-
tion including planar 52-bar truss, spatial 72-bar truss, 120-bar dome truss and planar 200 bar-truss with
discrete design variables and focus in minimization of the structure weight under the required con-
straints. Simulation results collected in the mentioned problems demonstrate that the proposed MCOA
presented competitive solutions when compared with other state-of-the-art metaheuristic algorithms
in terms of results quality.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Structural optimization is a subject that has gained the atten-
tion of researchers because of its direct and large applicability to
the design of structures. Besides, the truss design is the most clas-
sical benchmark in structural optimization [1–21]. Discrete opti-
mization of truss structures is a hard computing problem with
many local minima. Metaheuristic algorithms are naturally suited
for discrete optimization problems as they do not require gradient
information. Truss optimization may subject to static and dynamic
constraints. Static constraints include structural kinematic stabil-
ity, maximum allowable stress in truss members, maximum allow-
able deflection in the truss nodes and critical buckling load.
However, dynamic constraints impose limits on the natural fre-
quency of the desired truss to avoid the destructive resonance phe-
nomenon. Taking both static and dynamic constraints into account
the search space becomes non-convex and may subterfuge the sol-
ver to trap in a local optimum.

Implementation is more challenging in the case of discrete opti-
mization problems such as several truss designs that usually entail
a complex design space with multiple local optima. Also, several
types of research have verified that the classical optimization
methods based on gradient information involving the calculation
of first and/or second derivatives are not efficient enough or always
efficient in dealing with many larger-scale real-world multimodal,
non-continuous, and non-differentiable problems [9]. To increase
the efficiency and accuracy of the optimization methods and to
overcome the computational shortcomings of conventional opti-
mization methods linked to structural design, researchers have
encouraged to rely on metaheuristic optimization algorithms.
The term metaheuristic describes higher-level heuristics that are
proposed for the solution to a wide range of optimization
problems.

Shih and Lee [10] applied the modified double-cuts approach
for large-scale fuzzy optimization in 25-bar and 72-bar truss
design problems. The proposed approach was better than the
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single-cut approach and easy programming. Several truss struc-
tures with discrete variables were solved by a hybrid particle
swarm optimizer (PSO) with harmony search (HS) scheme, called
(HPSO) by Li et al. [11]. The HPSO approach was validated and
compared with the PSO and the PSO with the passive congregation
being able to accelerate the convergence rate effectively. Degerte-
kin and Hayalioglu [12] applied a teaching–learning-based opti-
mization (TLBO) for optimization of truss structures. It obtained
results as good as or better than the other metaheuristic algo-
rithms in terms of both the optimum solutions and the conver-
gence capability in most cases. A different approach named Ray
optimization was applied to minimize the size, shape and weight
of truss structures [13]. An adaptive dimensional search (ADS)
was proposed for discrete truss sizing optimization problems
[14]. The robustness of the ADS was investigated and verified using
two benchmark examples as well as three real-world problems.
When ADS was compared with other metaheuristic techniques
indicates that it is capable of locating improved solutions using
much lesser computational effort.

The mine blast algorithm (MBA), improved MBA (IMBA), and
the water cycle algorithm (WCA) were applied for weight mini-
mization of truss structures including discrete sizing variables,
offering a good degree of competitiveness with other state-of-
the-art metaheuristics [15]. A novel adaptive hybrid evolutionary
firefly algorithm (AHEFA) was applied for shape and size optimiza-
tion of truss structures under multiple frequency constraints.
Accordingly, the convergence rate is significantly improved with
high solution accuracy [16]. The authors Assimi and Jamali [17]
utilized the hybrid genetic programming algorithm for optimum
connectivity table among the truss nodes, and optimal cross-
sectional areas subject to design constraints were considered both
types of continuous and discrete design variables.

Degertekin and his collaborators [18] modified the Jaya Algo-
rithm (JA) improving convergence speed and reducing the number
of structural analyses required in the optimization process. Six
classical weight minimization problems of truss structures includ-
ing sizing, layout and large-scale optimization problems with up to
204 design variables were solved. Discrete sizing/layout variables
and simplified topology optimization were considered. A novel
Jaya Algorithm (JA) was proposed by Degertekin et al. [19] for dis-
crete optimization, denoted as discrete advanced JA (DAJA), and
applied for truss structures under stress and displacement con-
straints. Results collected in seven benchmark problems demon-
strated the superiority of DAJA over other state-of-the-art
metaheuristic algorithms. The multi-objective colliding bodies
optimization (MOCBO) algorithm was proposed by Kaveh and
Mahdavi [20] and used to solve two truss structural bi-objective
functions. The accuracy and efficiency of the optimization algo-
rithm were compared with literature with promising performance.

An extension of the basic truss layout optimization using various
materials was considered in [21]. A novel improved version of the
particle swarm optimization algorithm (GEMPSO) was developed
for solving six benchmark problems and three truss structures with
two multi-material layouts, showing that the appropriate use of
expensive stronger materials can reduce the overall cost of struc-
tures. The Electromagnetism-like Firefly Algorithm (EFA) was
developed by Le et al. [1] and applied for discrete structural opti-
mization. The improved performance of the EFA in comparisonwith
other optimizers was demonstrated by six optimization problems
related to truss structures. An adaptive elitist differential evolution
(aeDE) was used by Ho-Huu et al. [2] for the optimization of truss
structures with discrete design variables. That technique helps pre-
serve the balance between global and local searching abilities in the
differential evolution (DE). Numerical results reveal that aeDE was
more efficient than the DE and other methods in terms of the qual-
ity of solution and convergence rate.
Metaheuristics such as evolutionary algorithms and swarm
intelligence paradigms have been designed for tackling many
problems in various fields as competitive alternative solvers
because they do not require gradient information, easy imple-
mentation process, and bypass the local optima problem [22–
28]. Swarm-based algorithms try to mimic the social behavior
of nature creatures who swarm, herds, schools or flocks for forag-
ing, migration and enemy skipping. The swarm-based algorithms
comprised of environment and agents. These agents interact with
each other in the environment and converge to a common solu-
tion for a problem using an environmental mechanism, interac-
tion mechanism, and activities of agents. In terms of recently
proposed swarm intelligence paradigms, the Coyote Optimization
Algorithm (COA) [29] is a promising and competitive stochastic
population-based approach for global optimization tasks. It con-
siders the principles of coyote social relations. The Cultural Coy-
ote Optimization Algorithm (CCOA) was proposed and validated
by Pierezan et al. [30] under a set of benchmark functions from
the Institute of Electrical and Electronics Engineers (IEEE) Con-
gress on Evolutionary Computation (CEC) 2017 and gas turbine
problem. The results showed that the CCOA outperforms state-
of-the-art metaheuristics.

Maintaining a good balance between the convergence and the
diversity is particularly crucial for the performance of a meta-
heuristic algorithm. In this context, the key capabilities of meta-
heuristic algorithms such as COA to be able to find reasonable
solutions are exploration and exploitation.

Exploration and exploitation are fundamental concepts of any
search algorithm. The exploration may be described as the ability
of the algorithm to investigate the different promising regions in
a given search space whereas exploitation ensures the searching
of optimal solutions around the promising regions, a kind of local
search. It is important for a metaheuristic algorithm maintaining
an appropriate balance between the exploration and exploitation
behaviors to be competitive in terms of robustness and perfor-
mance. However, it is difficult to balance between these phases
due to its stochastic nature. A latent viewpoint interprets explo-
ration and exploitation as a global search and local search, respec-
tively. Pure exploration degrades the precision of the search
process but increases its capacity to find new potential solutions.
On the other hand, pure exploitation allows refining existent solu-
tions but adversely driving the process to locally optimal solutions.

On the other hand, in recent years, growing interests in chaos
theory and its features have stimulated the studies of chaos
applied in optimization algorithms design. Chaos is a kind of a fea-
ture of a nonlinear dynamic system which exhibits bounded unsta-
ble dynamic behavior, ergodic, non-period behavior depended on
initial condition and control parameters. Due to the benefit of a
few properties as stochasticity and ergodicity of chaos, the idea
of using chaotic sequences instead of random sequences has been
noticed in several fields, one of these fields is the optimization the-
ory [31–40]. In this paper, a modified COA (MCOA) approach based
on chaotic sequences generated by Tinkerbell map [41–43] is pro-
posed to improve the exploration behavior. Additionally, an adap-
tive procedure of updating parameters related to social condition is
adopted to update the exploitation behavior based on the historical
record of success in the search. The proposed MCOA is validated by
truss optimization problems with discrete design variables and
focus in minimization of the structure weight under the required
constraints.

The rest of this paper is organized as follows. Section 2 presents
a description of the classical COA and the proposed COA variant
using Tinkerbell chaotic map. After, details of the truss optimiza-
tion problems are shown in Section 3. Finishing, the numerical
results and conclusive remarks are given in Sections 4 and 5,
respectively.
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2. Description of the optimization methods

In this section, the fundamentals of the COA are presented.
After, the proposed modified COA using Tinkerbell chaotic map is
detailed.

2.1. Coyote optimization algorithm (COA)

Unlike most widespread algorithms, the population in the COA
is subdivided in packs and the internal social influences are
designed [29]. The COA requires only a few control hyperparame-
ters including the number of packs, the population size, and the
number maximum of generations (the stopping criterion). The
source code of the COA for single-objective optimization in
MATLAB�, R and Python are given in https://github.com/jkpir/
COA.

Step 1: Coyotes population initialization. The population (X) is
composed of Np packs with Nc coyotes each and the initialization
(iteration t ¼ 0) inside the search space defined by the interval

lb;ub½ �Doccurs as follows:

socp;tc;j ¼ lbj þ rj � ubj � lbj
� �

; ð1Þ

where c ¼ 1;2; � � � ;Nc½ �, p ¼ 1;2; � � � ;Np
� �

, j ¼ 1;2; � � � ;D½ �, D is the
dimension of the optimization problem and rj is a random number
inside 0;1½ � generated by a uniform probability distribution. The
packs are randomly grouped by the same distribution and the initial
coyotes ages (agep;0c ) are all equal to 0.

Step 2: Coyote’s adaptation. The coyote adaptation is evaluated
due to the objective function. It is a consequence of its social con-
dition, which means:

fitp;tc ¼ f socp;tc

� �
: ð2Þ

While the stopping criterion is not reached, repeat Steps 3 to
10.

For each pth pack, repeat Steps 3 to 8.
Step 3: Alpha coyote definition. In nature, the alpha coyote is

the one that presents the best social condition. In the COA, it means
the best (i.e. the smallest or the highest) objective function cost, or:

alphap;t ¼ socp;tc jargc¼f1;2;���;Ncgminf socp;tcð Þ
n o

: ð3Þ

Step 4: The social tendency. The social behavior of coyotes is
naturally influenced by the alpha and the other coyotes of the pack.
In COA, this phenomenon is represented by the cultural tendency
of the pack (ctp;t), which is the median of the coyote’s social
conditions:

ctp;tj ¼ median socp;tc;j

� �
8c 2 f1;2; � � � ;Ncg ð4Þ

for j ¼ 1;2; � � � ;D½ �.
For each cth coyote of the pth pack, repeat Steps 5 to 7.
Step 5: Social condition update. The social condition is

updated according to the influence of the alpha coyote (da) and
the social tendency (dt), generated from two random coyotes of
the pack (cr1 and cr2), which means:

new socp;tc ¼ socp;tc þ r1 � dt þ r2 � da ð5Þ
where

dt ¼ ctp;t � socp;tcr1
ð6Þ

da ¼ alphap;t � socp;tcr2
ð7Þ

and r1 and r2 are, respectively, the weights of the pack and the
alpha influence, both random numbers inside the range [0,1] gen-
erated with uniform distribution of probability.
Step 6: New social condition evaluation. The objective func-
tion cost is calculated considering the new social condition.

new fitp;tc ¼ f new socp;tc

� �
; ð8Þ

Step 7: Adaptation. The coyotes choose the social condition
that best fits the environment to keep it to the next iteration,
which means the best (i.e. the smallest or the highest) objective
function cost, such that:

socp;tþ1
c ¼ new socp;tc ; if new fit < fitp;tc

socp;tc ; otherwise

(
ð9Þ

Step 8: Birth and death. First, a pup is generated with age
equals to 0 and considering the scatter probability (Ps) and the
association probability (Pa), such that:

pupp;t
j ¼

socp;tk1 ;j
; if rndj < Pa or j ¼ j1

socp;tk2 ;j
; if rndj � Ps þ Pa or j ¼ j2

Rj; otherwise

8>><
>>: ð10Þ

where these probabilities are calculated as follows:

Ps ¼ 1
D
; ð11Þ

Pa ¼ ð1� PsÞ
2

; ð12Þ

k1 and k2 are the two selected coyotes from the pth pack, j1 and j2 are
two random dimensions of the problem, Rj is a random number

inside the decision variable bound of the jth dimension and rndj is
a random number inside [0,1] generated with uniform probability
distribution. After that, the pup social condition is evaluated and
the death rule is applied, according to the following algorithm:
Step
 Description
1
 Compute the group of worst adapted coyotes than the
pup (x)
2
 Compute the number of coyotes inside x (u)

If u ¼ 1
3
 The pup survives and the only coyote in x dies

Else if u > 1
4
 The pup survives and the oldest coyote in x dies

Else
5
 The pup dies.
Step 9: Transition between packs. Along with the coyote’s life, it
can evict from a pack and go to another one. In COA, two random
coyotes from different packs change their positions with probability
Pe, such that:

Pe ¼ 0:005 � N2
c ð13Þ

Step 10: Ages update. The coyotes age is updated every itera-
tion, which means:

agep;tþ1
c ¼ agep;tc þ 1 ð14Þ
Step 11: Solution selection. The best-adapted coyote among all

packs is selected as the solution of the optimization problem.

2.2. Modified coyote optimization algorithm (MCOA)

An important issue that needs to be addressed is the value of
control parameters of COA (see details in [29,30,44]). The control
parameters manage the balance between exploitation (using the
existing material in the population to best effect) and exploration

https://github.com/jkpir/COA
https://github.com/jkpir/COA
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(searching for better coyotes). The control parameters related to
the scatter and association probabilities are key factors affecting
the COA’s convergence.

Choosing suitable control parameter values in COA as in
another evolutionary and swarm-based approaches is frequently
a problem-dependent task. Suitable control parameters are differ-
ent for different function problems including structural optimiza-
tion (see examples in [1–21,45]). The difficulty in the use of COA
arises in that the choice of these is mainly based on empirical evi-
dence and practical experience.

As mentioned in the Introduction section, the design of opti-
mization techniques using chaotic sequences [31–40] has received
a great deal of attention in the literature. Optimization approaches
using chaotic sequences are generally based on ergodicity, stochas-
tic properties and irregularity of chaotic signals. The use of chaotic
Fig. 2. Steps of

Fig. 1. Phase plots of Tinkerbell map using 3000 iterations.
sequences in COA can be helpful to escape more easily from local
minima than can be done through the traditional COA.

In the MCOA, Tinkerbell chaotic map-generating values are
adopted. The Tinkerbell map [41–43] is an example of a strange
attractor, where the two-dimensional quadratic map of its map is
given by

xtþ1 ¼ x2t � y2t þ a � xt þ b � yt ð15Þ

ytþ1 ¼ 2xtyt þ c � xt þ d � yt ð16Þ
where a, b, c, d are non-zero parameters and t is the iteration. For
parameter values (adopted to the COA design with different initial
conditions) a = 0.9, b = �0.6013, c = 2.0, and d = 0.5, we get the chao-
tic attractor of this map as shown in Fig. 1. For generating the Fig. 1,
the initial conditions are x0 = 0.1 and y0 = 0.1.

Considering a population with Np packs with Nc coyotes each, a
summary of the MCOA steps is shown in Fig. 2. In step 11, it is
adopted a normalized Tinkerbell chaotic map-generating values
in the range [0, 1] to scatter and association probabilities tuning.

In this case, in a preprocessing phase of Tinkerbell map data to
utilization in MCOA, T values are generated using the equations
(15) and (16). After the values of xtþ1 (equation (17)) are normal-
ized using a linear scaling function to scatter and association prob-
abilities tuning. The linear scaling function makes use of the
maximum and minimum values of xtþ1. The linear scaling function
in the range [0.025, 0.075] transforms a variable xtþ1 into x�tþ1 in the
following way:

x�tþ1 ¼ xtþ1 �minðxÞ
maxðxÞ �minðxÞ ð17Þ

where x = (x1, . . ., xT), T is number of iterations, min(x) and max(x)
are the minimum and maximum values of xtþ1, respectively.

In the original COA, r1 and r2 are random numbers inside the
range [0,1] generated with uniform distribution of probability. In
terms of exploitation behavior, an adaptive procedure of updating
parameters r1 and r2 in equation (5) related to social condition is
employed in the MCOA based on adaptive differential evolution
called JADE. Details about the JADE can be found in [46].
the MCOA.



Fig. 3. A 52-bar space truss structure. Source: [15].
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The adopted procedure in MCOA uses optional external archive
and an adaptive parameter method. The external archive not only
can provide the progress direction but also can improve the diver-
sity of the swarm. The adaptive parameter method lets the r1 and
r2 be generated following Gaussian distributions truncated to [0,1].
Their expected mean values are adaptively updated using the suc-
cessful values of r1 and r2. In general terms, the parameters r1 and
r2 for each coyote are updated based on their historical record of
success.

At each iteration, a r1 and r2 are generated for each coyote
according to Gaussian distributions with location parameter lr1

and lr2 with a standard deviation of 0.1. The parameters lr1 and
lr2 are initialized to 0.5 and then updated at the end of each gen-
eration according to the following equations:

lr1 ¼ 1� crð Þ�lr1 þ cr �meanA Sr1ð Þ ð18Þ

lr2 ¼ 1� crð Þ�lr2 þ cr �meanA Sr2ð Þ ð19Þ
where cr is a constant 2 0;1½ �. Sr1 and Sr2 are the set of all successful
r1 and r2 in the current iteration, and meanA :ð Þ is the arithmetic
mean. In this paper, the adopted cr equals to 0.05.

3. Benchmarks of truss optimization

In this section, four benchmarks of truss optimization problems
including planar 52-bar truss, 72-bar space truss structure, 120-bar
dome truss, and planar 200-bar truss structure are described. All
adopted benchmarks are constrained optimization problems.

When the problems contain constraints, the feasible region is
reduced, leading to many difficulties in solving them. As a rule,
in constraint handling methods based on penalty functions
[47,48], a penalty term is added to the objective function penaliz-
ing the function values outside the feasible region.

In this paper, the constraint-handling strategy utilized by COA
and MCOA approaches relies on a simple transformation of the
original cost function of the optimization problem. Transforming
constrained optimization problem into an unconstrained problem
is the core idea of the penalty function whose formula is given by:

u Xð Þ ¼ f Xð Þ þ p Xð Þ ð20Þ

p Xð Þ ¼ c � nvc
Xm
i¼1

max 0; gi Xð Þð Þ2 ð21Þ

where max is the maximum value, i = 1,. . .,m inequality constraints,
f(X) is the objective function (minimization of the structure weight),
u Xð Þ is the extended objective function, p(X) is the penalty value
defined by the inequality constraints gi (X), nvc is the number of vio-
lated constraints, and c is a positive constant called penalty factor.
The penalty value is added to the fitness function because low val-
ues are preferred as expected in a minimization problem. In this
paper, c equals to 1020 was adopted.

3.1. A planar 52-bar truss structure

This section carries out the optimization problem for a 52-bar
planar truss structure shown in Fig. 3. The mass density E and
the modulus of elasticity q of the constitutive material are respec-
tively 207 GPa and 7860 kg/m3. The tension and compression
stress are subjected not to higher than a magnitude of 180 MPa.
In this problem, the horizontal and vertical loads that are applied
to the nodes from 17 to 20 are set to Px = 100 kN and Py = 200
kN, correspondingly. All bars of this planar 52-bar truss are
gathered into 12 groups: (1) A1–A4, (2) A5–A10, (3) A11–A13, (4)
A14–A17, (5) A18–A23, (6) A24–A26, (7) A27–A30, (8) A31–A36, (9)
A37–A39, (10) A40–A43, (11) A44–A49, and (12) A50–A52; wherein,
each group contains the bars having a same value of the cross-
sectional area. Therefore, there are 12 design variables in this opti-
mal design problem. Discrete values of cross-sectional areas can be
selected from Table 1.

This problem has been investigated using several optimization
algorithms such as genetic algorithm (GA) and modified GA by
Wu and Chow [45], HS by Lee et al. [49], heuristic particle swarm
optimization (HPSO) by Li et al. [11], MBA, WCA and IMBA by
Sadollah et al. [15,50], colliding bodies optimization (CBO) by
Kaveh and Mahdavi [51], TLBO by Dede [52], hybrid harmony
search algorithm (HHS) by Cheng et al. [53], DE and aeDE by Ho-
Huu et al. [2].

3.2. A spatial 72-bar space truss structure

The second example executes the optimization problem for a
72-bar space truss structure as shown in Fig. 4. The material den-
sity is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. The stress
limitations of the members are ±25,000 psi. All nodal displace-
ments must be smaller than ±0.25 in. There are 72 truss elements



Fig. 5. A 120-bar dome structure. Source: [50].

Table 1
List of the cross-sectional areas from the AISC (American Institute of Steel
Construction) design code.

Number in2 mm2 Number in2 mm2

1 0.111 71.613 33 3.840 2477.414
2 0.141 90.968 34 3.870 2496.769
3 0.196 126.451 35 3.880 2503.221
4 0.250 161.290 36 4.180 2696.769
5 0.307 198.064 37 4.220 2722.575
6 0.391 252.258 38 4.490 2896.768
7 0.442 285.161 39 4.590 2961.284
8 0.563 363.225 40 4.800 3096.768
9 0.602 388.386 41 4.970 3206.445
10 0.766 494.193 42 5.120 3303.219
11 0.785 506.451 43 5.740 3703.218
12 0.994 641.289 44 7.220 4658.055
13 1.000 645.160 45 7.970 5141.925
14 1.228 792.256 46 8.530 5503.215
15 1.266 816.773 47 9.300 5999.988
16 1.457 939.998 48 10.850 6999.986
17 1.563 1008.385 49 11.500 7419.340
18 1.620 1045.159 50 13.500 8709.660
19 1.800 1161.288 51 13.900 8967.724
20 1.990 1283.868 52 14.200 9161.272
21 2.130 1374.191 53 15.500 9999.980
22 2.380 1535.481 54 16.000 10,322.560
23 2.620 1690.319 55 16.900 10,903.204
24 2.630 1696.771 56 18.800 12,129.008
25 2.880 1858.061 57 19.900 12,823.684
26 2.930 1890.319 58 22.000 14,193.520
27 3.090 1993.544 59 22.900 14,774.164
28 3.130 2019.351 60 24.500 15,806.420
29 3.380 2180.641 61 26.500 17,096.740
30 3.470 2238.705 62 28.000 18,064.480
31 3.550 2290.318 63 30.000 19,354.800
32 3.630 2341.931 64 33.500 21,612.860

Fig. 4. A 72-bar space truss structure. Source: [56].
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which are divided into 16 groups: (1) A1–A4, (2) A5–A12, (3)
A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8)
A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54,
(13) A55–A58, (14) A59–A66, (15) A67–A70, and (16) A71–A72. This
problem was previously examined by Li et al. [11], Sadollah et al.
[15,50], Wu and Chow [45], Lee et al. [49], Kaveh and Mahdavi
[51], Kaveh and Talatahari [54], and Kaveh and Ghazaan [55].
3.3. A 120-bar dome structure

A 120-bar dome truss, shown in Fig. 5, is considered the third
case study. The problem has been studied as a benchmark opti-
mization problem with static constraints. The symmetry of the
structure about the X-axis and Y-axis is considered to group the
120 members into seven independent size variables. A constant
lumped mass is attached as 3000 kg (6613,868 lb) at node 1,
500 kg (1102.31 lb) at nodes 2 to 13, and 100 kg (220.462 lb) at
the rest of the free nodes. The elements are clustered into 7 groups
by considering symmetry about the Z-axis.

This problem was previously solved by Kaveh and Mahdavi [51]
using CBO, Kaveh and Zolghadr [58] using democratic particle
swarm optimization (DPSO), Kaveh and Zolghadr [59] based on
hybridization of the Charged System Search and the Big Bang-Big
Crunch algorithms (CSS-BBBC), and Tejani et al. [60] using adaptive
symbiotic organisms search (SOS), among others.
3.4. A planar 200-bar truss structure

The fourth case study considered for size optimization is the
200-bar plane truss structure. A constant lumped mass of 100 kg
is attached at each of the upper nodes (nodes 1–5), whereas all ele-
ments are grouped into 29 groups corresponding to 29 design vari-
ables by considering geometrical symmetry, as shown in Fig. 6 and
Table 2. All member are made of steel: the material density and
modulus of elasticity are 0.283 lb/in3 (7933.410 kg/m3) and
30,000 ksi (206,000 MPa), respectively. This truss is subjected to



Fig. 6. A 120-bar dome structure. Source: [61].
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constraints only on stress limitations of ± 10 ksi. There are three
loading conditions: (i) 1.0 kip acting in the positive X-direction at
nodes 1, 6, 15, 20, 29, 43, 48, 57, 62, and 71; (ii) 10 kips acting in
the negative Y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15,
16, 17, 18, 19, 20, 22, 24,. . ., 71, 72, 73, 74, and 75; and (iii) condi-
tions (i) and (ii) acting together. the minimum cross-sectional area
of all is 0.1 in2 (0.6452 cm2) and the maximum cross-sectional area
is 20 in2 (129.03 cm2).

This problem was previously solved by Kaveh and Talatahari
[61] using a hybrid scheme based on particle swarm optimization,
ant colony and harmony search (HPSACO), Lamberti [62] using a
simulated annealing approach (SA), Degertekin et al. [63] using a
Table 2
Design variables for the planar 200-bar truss structure.

Element number
(design variable)

Member in the group

1 1, 2, 3, 4

2 5, 8, 11, 14, 17
3 19, 20, 21, 22, 23, 24
4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177
5 26, 29, 32, 35, 38
6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31,

33, 34, 36, 37
7 39, 40, 41, 42
8 43, 46, 49, 52, 55
9 57, 58, 59, 60, 61, 62
10 64, 67, 70, 73, 76
11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68,

69, 71, 72, 74, 75
12 77, 78, 79, 80
13 81, 84, 87, 90, 93
14 95, 96, 97, 98, 99, 100
15 102, 105, 108, 111, 114
harmony search approach (SAHS) and Degertekin and Hayalioglu
[12] proposed a TLBO method. Furthermore, recently Kim and
Byun [64] presented a diversity-enhanced cyclic neighborhood
network topology particle swarm optimizer (CNNT-PSO).
4. Numerical results

In this section, four benchmarks of structure optimization prob-
lems with discrete design variables are solved by the COA and
MCOA which were described in Section 2. The MCOA was imple-
mented in MATLAB�, adopting the parameters: number of inde-
pendent runs is 50 times to provide statistically meaningful
results, Np equal to 10 packs, Nc set to 5 coyotes, and stopping cri-
terion of 8000 objective function evaluations, except to the planar
200-bar truss structure with 30,000 objective function evaluations.
It is important to mention that the candidate solutions are rounded
for the nearest integer (discrete variables) to objective function
evaluation.

In this paper, the structural optimization problem minimizes
the truss weight by finding the optimal nodal positions and opti-
mal elemental cross-sectional areas such that it satisfies multiple
natural frequency constraints. Therefore, the objective function is
formulated for the structural weight by neglecting the weight of
lumped masses, where nodal coordinates and the element cross-
sectional areas are the design variables.

Simulation results in Tables 3–6 show that the MCOA obtained
competitive results to planar 52-bar truss (D = 12), spatial 72-bar
truss (D = 16), 120-bar dome truss (D = 7) and planar 200 bar-
truss (D = 29) optimization problems, respectively. The best results
in Tables 3–6 are in bold.

In terms of the MCOA for the planar 52-truss case study
reported in Table 3, MCOA found an optimum weight of
1902.605 lb after 5392 structural analyses. It suitably agrees
with the results obtained by other researches. It outperforms
the best result presented in [11] in terms of the best (minimum)
of the weights. Furthermore, MCOA presents the same best
results than the results mentioned in [1,2,50], but it presents
superior results in terms of the mean and worst weight than
the results in [1,2,11,50]. However, the IMBA [15] presented
superior results considering the mean weight when compared
with MCOA.

For the spatial 72-truss case study, the best results in Table 4 for
the weights of MCOA outperform the best results presented in
[1,2,50,51,54] in terms of the mean of the weights. MCOA achieved
Element number
(design variable)

Member in the group

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107,
109, 110, 112, 113

17 115, 116, 117, 118
18 119, 122, 125, 128, 131
19 133, 134, 135, 136, 137, 138
20 140, 143, 146, 149, 152
21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142,

144, 145, 147, 148, 150, 151
22 153, 154, 155, 156
23 157, 160, 163, 166, 169
24 171, 172, 173, 174, 175, 176
25 178, 181, 184, 187, 190
26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180,

182, 183, 185, 186, 188, 189
27 191, 192, 193, 194
28 195, 197, 198, 200
29 196, 199



Table 3
Optimization results for the planar 52-bar dome structure case study.

Design variable Le et al. [1]
EFA

Ho-Huu et al. [2]
aeDE

Li et al. [11]
PSO

Sadollah et al. [50]
Mine

Sadollah et al. [15]
WCA

Sadollah et al. [15]
IMBA

COA MCOA

A1–A4 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055
A5–A10 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288
A11–A13 494.193 494.193 363.225 494.193 494.193 494.193 494.193 494.193
A14–A17 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219
A18–A23 939.998 939.998 940.000 939.998 940.000 940.000 939.998 939.998
A24–A26 494.193 494.193 494.193 494.193 494.193 494.193 494.193 494.193
A27–A30 2238.705 2238.705 2238.705 2238.705 2283.705 2283.705 2238.705 2238.705
A31–A36 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385
A37–A39 494.193 494.193 388.386 494.193 494.193 494.193 494.193 494.193
A40–A43 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868
A44–A49 1161.288 1161.288 1161.228 1161.288 1161.288 1161.288 1161.288 1161.288
A50–A52 494.193 494.193 792.256 494.193 494.193 494.193 494.193 494.193
Best weight (lb) 1902.605 1902.605 1905.490 1902.605 1902.605 1902.605 1902.605 1902.605
Worst weight (lb) 1910.942 1925.714 – 1912.646 1912.646 1904.830 1931.551 1908.923
Mean weight (lb) 1904.775 1906.735 – 1906.076 1909.856 1903.076 1909.172 1903.928
Standard deviation (lb) 3.045 6.679 – 4.090 7.090 1.130 8.129 2.913
Number of structural

analysis
2894 3402 – 5450 7100 4750 7050 5390

Table 4
Optimization results for the spatial 72-bar truss case study.

Design variable Le et al.
[1] EFA

Ho-Huu et al.
[2] aeDE

Kaveh and Talatahari
[54]DHPSACO

Sadollah et al.
[50] Mine

Sadollah et al.
[15] WCA

Sadollah et al.
[15] IMBA

Kaveh and
Mahdavi [51]
CBO

COA MCOA

A1–A4 1.990 1.990 1.800 0.196 1.990 1.990 1.620 1.990 1.990
A5–A12 0.563 0.563 0.442 0.563 0.442 0.442 0.563 0.563 0.563
A13–A16 0.111 0.111 0.141 0.442 0.111 0.111 0.111 0.111 0.111
A17–A18 0.111 0.111 0.111 0.602 0.111 0.111 0.111 0.111 0.111
A19–A22 1.228 1.228 1.228 0.442 1.266 1.266 1.457 1.228 1.228
A23–A30 0.442 0.442 0.563 0.442 0.563 0.563 0.442 0.442 0.442
A31–A34 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
A35–A36 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
A37–A40 0.563 0.563 0.563 1.266 0.422 0.422 0.602 0.563 0.563
A41–A48 0.563 0.563 0.563 0.563 0.422 0.422 0.563 0.563 0.563
A49–A52 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
A53–A54 0.111 0.111 0.250 0.111 0.111 0.111 0.111 0.111 0.111
A55–A58 0.196 0.196 0.196 1.800 0.196 0.196 0.196 0.196 0.196
A59–A66 0.563 0.563 0.563 0.602 0.563 0.563 0.602 0.563 0.563
A67–A70 0.391 0.391 0.442 0.111 0.442 0.442 0.391 0.391 0.391
A71–A72 0.563 0.563 0.563 0.111 0.602 0.602 0.563 0.563 0.563
Best weight (lb) 389.334 389.334 390.380 390.730 389.334 389.334 391.070 389.334 389.334
Worst weight (lb) 393.325 393.826 – 399.490 393.778 389.457 495.970 393.965 392.158
Mean weight (lb) 390.913 391.376 – 395.432 389.941 389.823 403.710 393.618 390.162
Standard

deviation (lb)
1.161 1.376 – 3.040 1.430 0.840 24.800 1.561 1.018

Number of
structural
analysis

3123 4101 – 11,600 4600 6250 6000 6800 5750

Table 5
Optimization results for the spatial 120-bar dome case study.

Design variable Kaveh and Mahdavi [51]
CBO

Kaveh and Zolghadr [58]
DPSO

Kaveh and Zolghadr [59] CSS-
BBBC

Tejani et al. [60]
SOS

COA MCOA

1 19.6917 19.607 17.448 19.5715 19.4994 19.4994
2 41.1421 4.1290 49.076 39.8327 40.3890 40.3890
3 11.1550 11.136 12.365 10.5879 10.6073 10.6073
4 21.3207 21.025 21.979 21.2194 21,1126 21,1126
5 9.8330 10.060 11.190 10.0571 9.8420 9.8420
6 12.8520 12.758 12.590 11.8322 11.7715 11.7715
7 15.1602 15.414 13.585 14.7503 14.8384 14.8384
Best weight (kg) 8889.1303 8890.48 9046.34 8710.33 8707.2432 8707.2432
Worst weight (kg) – – – 8737.1328 8734.4957
Mean weight (kg) 8891.2540 8895.99 – 8720.5461 8713.4877
Standard deviation (kg) 1.7926 89.38 – 6.9123 9.1185
Number of structural

analysis
6000 6000 4000 4000 5600 5250
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Table 6
Optimization results for the planar 200-bar truss structure.

Design variable Kaveh and Talatahari [54]
HPSACO

Lamberti
[62] SA

Degertekin [63]
SAHS

Degertekin and Hayalioglu
[12] TLBO

Kim and Byun [64]
CNNT-PSO

COA MCOA

1 0.1033 0.1468 0.154 0.146 0.1482 0.1441 0.1390
2 0.9184 0.9400 0.941 0.941 0.9405 0.9395 0.9355
3 0.1202 0.1000 0.100 0.100 0.1000 0.1000 0.1000
4 0.1009 0.1000 0.100 0.101 0.1000 0.1000 0.1000
5 1.8664 1.9400 1.942 1.941 1.9408 1.9395 1.9355
6 0.2826 0.2962 0.301 0.296 0.2975 0.2947 0.2909
7 0.1000 0.1000 0.100 0.100 0.1000 0.1000 0.1000
8 2.9683 3.1042 3.108 3.121 3.1067 3.1027 3.0816
9 0.1000 0.1000 0.100 0.100 0.1000 0.1000 0.1000
10 3.9456 4.1042 4.106 4.173 4.1067 4.1027 4.0816
11 0.3742 0.4034 0.409 0.401 0.4057 0.3987 0.3967
12 0.4501 0.1912 0.191 0.181 0.1897 0.1831 0.2959
13 4.96029 5.4284 5.428 5.423 5.4343 5.3821 5.3854
14 1.0738 0.1000 0.100 0.100 0.1000 0.1000 0.1000
15 5.9785 6.4284 6.427 6.422 6.4340 6.3821 6.3853
16 0.78629 0.5734 0.581 0.571 0.5745 0.5720 0.6332
17 0.73743 0.1327 0.151 0.156 0.1366 0.3389 0.1842
18 7.3809 7.9717 7.973 7.958 7.9803 7.9871 8.0396
19 0.66740 0.1000 0.100 0.100 0.1000 0.1000 0.1000
20 8.3000 8.9717 8.974 8.958 8.9802 8.9871 9.0395
21 1.19672 0.7049 0.719 0.720 0.71089 0.8188 0.7460
22 1.0000 0.4196 0.422 0.478 0.4659 0.1435 0.1306
23 10.8262 10.8636 10.892 10.897 10.9110 10.9723 10.9114
24 0.1000 0.1000 0.100 0.100 0.1000 0.1000 0.1000
25 11.6976 11.8606 11.887 11.897 11.9112 11.9722 11.9114
26 1.3880 1.0339 1.040 1.080 1.0712 0.8947 0.8627
27 4.9523 6.6818 6.646 6.462 6.5030 6.7474 6.9169
28 8.8000 10.8113 10.804 10.799 10.7210 10.8536 10.9674
29 14.6645 13.8404 13.870 13.922 13.9310 13.7759 13.6742
Best weight (lb) 25,156.5 25,445.63 25,491.9 25,488.15 25,453.0957 25,453.11 25,450.18
Worst weight (lb) – – 25,799.3 25,563.05 25,466.0958 25,666.43 25,557.53
Mean weight (lb) – – 25,610.2 25,533.14 25,459.1089 25,545.51 25,522.07
Standard deviation

(lb)
– – 141.85 27.44 3.1544 52.74 47.62

Number of structural
analysis

19,670 28,059 1,500,000 29,750 27,720
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the best weight as 389.334 lb after a minimum of 5750 structural
analyses. In this case, the IMBA [15] found the best results in terms
of the mean weight of all tested optimizers.

Table 5 provides the design variables and compares the
results obtained by using the COA and MCOA and those of
the other researches for the spatial 120-bar dome case study.
It can be observed that the MCOA was the most efficient opti-
mizer in terms of optimized weight and robustness when com-
pared with the proposed approaches in [51,58–60] in terms of
mean and best objective function values. All optimization runs
of COA and MCOA were successful and converged to a feasible
design.

According to Table 6, the result obtained by the MCOA is
meaningfully lighter than those of the SAHS [63] and TLBO
[12] approaches. It can be observed that MCOA is competitive
with the other optimizers such as [12,62,63] in finding opti-
mum designs considered in this study. Furthermore, the mean
weight is close to the best weight and a small standard devia-
tion on optimized weight is observed. The results of the COA
and MCOA satisfied all design constraints with feasible solu-
tions. The COA and MCOA obtained results without violation
of the constraints. Kim and Byun [64] commented on the feasi-
bility of the solutions presented in the literature for the planar
200-bar truss structure.
5. Concluding remarks and direction of future research

In this paper, a modified version of the Coyote Optimization
Algorithm (COA) denoted MCOA was proposed to solve four
structures optimization problems. This version uses the Tinkerbell
chaotic map-generating to define the scatter and association prob-
abilities and an adaptive procedure of updating parameters related
to social condition.

The results showed that the MCOA is competitive with recent
results from literature in terms of the best and mean (objective
function values to 50 runs) measures as presented in Tables 3–6.
Comparing the MCOA with the original COA, the worst measures
were smaller in both cases, which means that the robustness of
the algorithm was improved.

In future works, further improvements on the MCOA using
ensemble strategies will be a pursuit to other optimization classes
and multiobjective approaches in structural optimization.
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