
Expert Systems With Applications 125 (2019) 425–441 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Structural optimization using multi-objective modified adaptive 

symbiotic organisms search 

Ghanshyam G. Tejani a , ∗, Nantiwat Pholdee 

b , Sujin Bureerat b , Doddy Prayogo 

c , 
Amir H. Gandomi d 

a Department of Mechanical Engineering, School of Technology, GSFC University, Vadodara, Gujarat, India 
b Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Thailand 
c Department of Civil Engineering, Petra Christian University, Jalan Siwalankerto 121-131, Surabaya 60236, Indonesia 
d School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA 

a r t i c l e i n f o 

Article history: 

Received 10 August 2018 

Revised 17 January 2019 

Accepted 18 January 2019 

Available online 30 January 2019 

Keywords: 

Adaptive mechanism 

Structural optimization 

Meta-heuristics 

Discrete variables 

Constrained problems 

a b s t r a c t 

Multiple objective structural optimization is a challenging problem in which suitable optimization meth- 

ods are needed to find optimal solutions. Therefore, to answer such problems effectively , a multi-objective 

modified adaptive symbiotic organisms search (MOMASOS) with two modified phases is planned along 

with a normal line method as an archiving technique for designing of structures. The proposed algorithm 

consists of two separate improved phases including adaptive mutualism and modified parasitism phases. 

The probabilistic nature of mutualism phase of MOSOS lets design variables to have higher exploration 

and higher exploitation simultaneously. As search advances, a stability between the global search and a 

local search has a significant effect on the solutions. Therefore, an adaptive mutualism phase is added 

to the offer MOASOS. Also, the parasitism phase of MOSOS offers over exploration which is a major is- 

sue of this phase. The over exploration results in higher computational cost since the majority of the 

new solutions gets rejected due to inferior objective functional values. In consideration of this issue, the 

parasitism phase is upgraded to a modified parasitism phase to increase the possibility of getting im- 

proved solutions. In addition, the proposed changes are comparatively simple and do not need an extra 

parameter setting for MOSOS. 

For the truss problems, mass minimization and maximization of nodal deflection are considered as 

objective functions, elemental stresses are considered as behavior constraints and (discrete) elemental 

sections are considered as side constraints. Five truss optimization problems validate the applicability of 

the considered meta-heuristics to solve complex engineering. Also, four constrained benchmark engineer- 

ing design problems are solved to demonstrate the effectiveness of MOMASOS. The results confirmed that 

the proposed adaptive mutualism phase and modified parasitism phase with a normal line method as an 

archiving technique provide superior and competitive results than the former obtained results. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Optimal truss design is among the hottest research challenge

f structural engineering. Recently during each year, hundreds of

apers related to the topic were published. Truss structures can be

iewed as a set of 2-node links interconnected by spherical joints.

hey have been used in several engineering applications with the

dvantages in that they are simple to construct, low cost, easy to

esign and less difficult to construct in difficult-to-access regions
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 Pholdee & Bureerat, 2013b ). The applications include a bridge, a

ower, a transmission tower, and a billboard structure. In designing

 truss structure, engineering will define its topology, shape, and

lements’ sizes. Usually, a trial-and-error approach can be applied.

evertheless, for large trusses, such an approach is not efficient

nd effective. 

Therefore, the application of an optimization technique is a bet-

er choice. The tradition truss optimization is used to get the best

uitable topology, shape, and sizes to minimize weight or cost

ubject to structural safety constraints. Gradient-based optimizers

an be used in cases of continuous design variables ( Allwood &

hung, 1984; Fleury, 1980 ). However, over the last few decades,

he use of meta-heuristics (MHs) are the main focus due to

heir simplicity to use, code, and implement. Unlike its gradient
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counterpart, MHs can be applied to answer almost any type of de-

sign variables. The combination of several types of design variables

for one optimization run is possible. This aid makes MHs more

popular than gradient-based optimization methods for truss opti-

mization. Moreover, some MHs can explore a Pareto front, in cases

of multi-objective optimization (MO), within on simulation run. 

The use of MHs for single-objective optimization has been com-

monplace. Over the years, there have been numerous MHs newly

invented. Some of the popular techniques for truss design include a

genetic algorithm (GA) ( Lingyun, Mei, Guangming, & Guang, 2005;

Wei et al., 2011; Zuo, Xu, Zhang, & Xu, 2011 ), particle swarm op-

timization (PSO) ( Gomes, 2011 ), cuckoo search ( Gandomi, Talata-

hari, Yang, & Deb, 2012 ), krill herd algorithm ( Gandomi, Talata-

hari, Tadbiri, & Alavi, 2013 ), differential evolution (DE), teaching-

learning based optimization ( Camp & Farshchin, 2014; Degertekin

& Hayalioglu, 2013; Savsani, Tejani, & Patel, 2016; Tejani, Savsani,

& Patel, 2016b ), Ray optimization ( Kaveh & Khayatazad, 2013 ), col-

liding body algorithm ( Kaveh & Mahdavi, 2014 ), Parameter-less

population pyramid ( Gandomi & Goldman, 2018 ), and grey wolf

optimizer (GWO) ( Kaveh & Zakian, 2017; Panagant & Bureerat,

2018 ). Later, some of those baseline algorithms have been mod-

ified or improved leading to more advanced versions e.g. adap-

tive DE ( Bureerat & Pholdee, 2015 ), modified symbiotic organisms

search ( Kumar, Tejani, & Mirjalili, 2018; Tejani, Savsani, Patel, &

Mirjalili, 2017; 2018c ). The performance enhancement can also be

achieved by means of hybridization such as hybridized passing ve-

hicle search & simulated annealing ( Tejani, Savsani, Bureerat, Patel,

& Savsani, 2018b ), and hybrid GWO & self-adaptive DE ( Panagant

& Bureerat, 2018 ). Recently, the performance test of a number of

self-adaptive MHs on solving truss optimization has been investi-

gated. It is found that most of CEC (Congress on Evolutionary Com-

putation) competition winners are some of the top MHs for truss

optimization ( Pholdee & Bureerat, 2017 ). 

Once more than one design objectives are posed, the optimiza-

tion problem is called MO. It is furthermore called many-objective

optimization in cases of a problem having more than three objec-

tive functions in order to state its difficulty to explore the entire

Pareto front. The use of multi-objective meta-heuristics (MOMHs)

for truss optimization has been studied for a decade. It is well rec-

ognized that a designer always needs for optimizing many objec-

tive functions at the same time and those objectives will always be

conflicting with each other. The solutions for such a design prob-

lem are countless, and its solution set is termed a Pareto opti-

mal set (or a Pareto front) if viewed as per the objective func-

tion domain. The main reason for MOMHs popularity in MO is that

MOMHs is capable to get a Pareto front in a single run. The pio-

neering MOMHs were a multi-objective genetic algorithm (MOGA)

( Fonseca & Fleming, 1993 ), a SPEA2 ( Zitzler, Laumanns, & Thiele,

2001 ), and a NSGA-II ( Deb, Pratap, Agarwal, & Meyarivan, 2002 ).

Later there have been a great variety of improved versions of ex-

isting algorithms ( Bureerat & Srisomporn, 2010; Kaveh & Laknejadi,

2011; Pholdee & Bureerat, 2012, 2013a, 2013b; Zitzler, Laumanns,

& Thiele, 2002 ) and newly invented methods such as DE for MO

( Robi ̌c & Filipi ̌c, 2005 ). Some of them were upgraded for solv-

ing many-objective optimization such as a non-dominated sort-

ing genetic algorithm (NSGAIII) ( Deb & Jain, 2013; Jain & Deb,

2013 ), Two-arch ( Wang, Jiao, & Yao, 2015 ), and knee-point opti-

mizer ( Zhang, Tian, & Jin, 2015 ). 

The use of MOMHs for truss optimization will provide bene-

fit in that a designer can have many solutions for decision making

( Kaveh & Mahdavi, 2018; Noilublao & Bureerat, 2011, 2013; Pholdee

& Bureerat, 2012, 2013a, 2013b ). Moreover, they can be used for

reliability optimization of trusses ( Ho-Huu, Duong-Gia, Vo-Duy, Le-

Duc, & Nguyen-Thoi, 2018; Techasen et al., 2018 ). Several MOMHs

were used to tackle multi-objective truss design in Noilublao and

Bureerat (2011, 2013) . The use of the so-called approximate gradi-
nt as a local search to enhance the performance of MOEAs was

resented in Pholdee and Bureerat (2012, 2013a) . Other work with

O of trusses can be found in Angelo, Barbosa, and Bernardino

2012, 2015) , Greiner and Hajela (2012) , Hosseini, Hamidi, Mansuri,

nd Ghoddosian (2015) , Kaveh and Laknejadi (2013) , Kaveh and

ahdavi (2018) , Mousa, El-Shorbagy, and Abd-El-Wahed (2012) ,

ichardson et al. (2012) , Su, Wang, Gui, and Fan (2011) and

ejani, Bureerat, Pholdee, and Prayogo (2018c) . It has been shown

rom the literature that a study on using MOMHs for truss design

s much more advantageous. 

As a result, this paper deals with modification and improve-

ent of symbiotic organisms search for truss MO. Since it was

rst invented by Cheng and Prayogo (2014) , the optimizer has

een implemented on a number of applications while many mod-

fied versions have been additionally proposed ( Ayala, Klein, Mar-

ani, & Coelho, 2017; Çelik & Öztürk, 2017; Ezugwu & Adewumi,

017; Ezugwu, Adewumi, & Frîncu, 2017; Guha, Roy, & Banerjee,

017; Prayogo, Cheng, Wong, Tjandra, & Tran, 2018; Secui, 2016;

hang, Sun, Yuan, Lv, & Ma, 2016; Çelik & Durgut, 2018 ). SOS was

hen being upgraded for MO ( Tran, Cheng, & Prayogo, 2016; Duc-

oc, 2017 ) leading to multi-objective symbiotic organisms search

MOSOS). Investigation on improving the performance of MOSOS

or truss design is interesting since it is a new method that should

e tested with this popular research topic. In this work, the main

ontribution is an incorporation of the random migration based

earch along with adaptive benefit factors (BFs) into MOSOS. These

echniques are used to set better stability between exploration and

o improve exploitation during mutualism phase, and to improve

xploration during parasitism phase of MOSOS. A number of multi-

bjective truss design are used to validate the new algorithms

hile several state-of-the-art MOMHs are used to compare with

he new MOSOS. The results show that our proposed method is

owerful for truss optimization. 

Because the optimizer has just been proposed, there is room

or further development and investigation, as a consequence, this

tudy is proposed to enhance the effectiveness of the MOSOS by

ncorporating a modified parasitism system. MOASOS and MOMA-

OS are employed to answer multi-objective truss design problems

hile the objectives comprise truss mass minimization and nodal

eflection maximization. The solutions received from various opti-

izers are examined and presented. 

. The symbiotic organisms search (SOS) algorithm 

Cheng and Prayogo (2014) developed SOS to serve as a

ontinuous-based MH algorithm and a population-oriented search-

ng technique; the technique finds global optimum solutions by

etaining a set of possible ones called a population. SOS is fo-

used upon symbiosis, which is the process by which organisms

n an ecosystem possess biological interdependence with one an-

ther which allows them to grow and survive. Due to its excellent

erformance over the benchmark algorithms, SOS has been applied

o numerous research fields since its introduction ( Cheng, Prayogo,

 Tran, 2015 ; Tran et al., 2016 ; Abdullahi, Ngadi, & Abdulhamid,

016; Çelik & Öztürk, 2017; Guha et al., 2017; Panda & Pani, 2016;

rayogo & Susanto, 2018; Cheng et al., 2018; Prayogo et al., 2018;

ejani, Savsani, & Patel, 2016a, 2017, 2018a; Yu, Perwira Redi, Yang,

uskartina, & Santosa, 2017; Çelik & Durgut, 2018 ). 

The first step performed by the SOS algorithm is the initializa-

ion of the specific population in an ecosystem. Following this is a

rocess by which the algorithm evaluates organisms’ locations by

omputing the particular objectives’, such that the organisms with

he best solution is elected as ‘X best ’. This action takes place in it-

rations, finding the global best solution by updating to the most

ecently available solution until the solution is found. For this in-

tance, three fundamentals of symbiosis, mutualism, commensal-
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sm, and parasitism inspired the principle rules used by the algo-

ithm. These rules were used to update the positions of new organ-

sms. Once the algorithm reaches the maximum number of func-

ion evaluations, termination of the loops is implemented. Below is

n explanation of how mutualism, commensalism, and parasitism

ome into play in the MH. 

.1. Mutualism phase 

This phase involves an association by which both parties pos-

tively benefit. In the relationship between a flower and a polli-

ator, the pollinator benefits from the food it can take from the

ower, while the flower can turn into fruit from its contact with

he pollinator. Due to this twofold positive benefit, the relationship

an be deemed as a mutually beneficial symbiosis. 

For mutualism phase, organism ‘ i ’ is assigned as a solution ( X i )

o interact with the secondary solution chosen via randomized se-

ection ( X k ) (in this instance, k � = i). This symbiotic relationship

ositively impacts both solutions. The BFs and a mutual vector

MV) dictate new solutions. BF 1 and BF 2 are determined via ran-

omized selection between 1 or 2 (see Eqs. (4) and (5) ). Because of

his, either BF demonstrates an example of a solution experiencing

ositive benefits somewhat or entirely through symbiosis. The best

olution ( X best ) is an additional variable which solutions can be im-

acted by; it is selected through a random search from the Pareto

et of non-dominated sorting. Meanwhile, a greedy selection is uti-

ized in order to determine the fitter solutions. The following is the

athematical formulation behind the mutualism phase. 

 

′ 
i = X i + rand ( 0 , 1 ) ∗ ( X best − MV ∗ B F 1 ) (1) 

 

′ 
k = X k + rand ( 0 , 1 ) ∗ ( X best − MV ∗ B F 2 ) (2) 

V = 

X i + X k 

2 

(3) 

 F 1 = round [ rand ( 0 , 1 ) ] + 1 (4)

 F 2 = round [ rand ( 0 , 1 ) ] + 1 (5)

here, i , k ∈ (1, 2, …, n ); i � = k 

.2. Commensalism phase 

Commensalism involves a single organism receiving benefit

rom a symbiotic relationship while another is completely unaf-

ected positively or negatively. One example of this includes the

hark and remora fish, in which the fish suctions under the shark

nd gains access to the nutrients the shark does not eat. Mean-

hile, the shark is not impacted by the exchange in any way. Com-

ensalism is mimicked by the algorithm based on this fundamen-

al. 

For the commensalism phase, two solutions interact with one

nother ( X i and X k ) (in this instance, k � = i ). While solution ‘ i ’ is

ositively benefited from the other solution, solution ‘ k ’ experi-

nces no impact. The best solution ( X best ) is an additional variable

hich solutions can be impacted by; it is selected through a ran-

om search from the Pareto set of non-dominated sorting. Mean-

hile, the greedy selection is utilized in order to determine the

tter solutions. The following is the mathematical formulation be-

ind the commensalism phase. 

 

′ 
i = X i + rand ( −1 , 1 ) ∗ ( X best − X k ) (6) 

here, i , k ∈ (1, 2, …, n ); i � = k 
.3. Parasitism phase 

This parasitism phase requires one organism to be nega-

ively affected to the benefit of a second organism. Humans and

osquitoes demonstrate this symbiotic relationship, in which the

osquito’s bite releases a parasite into the human. Growing inside

he body, the parasite can cause harm or kill the host if the situa-

ion becomes severe enough. One can identify the parasitic nature

f this relationship in the fact that an organism is helped while the

econd is hurt. 

The solution ‘X i ’ takes queues from the Anopheles mosquito,

onstructing Parasite Vector (PV) which mimics the behaviors of

he parasite. The formation of PV requires regeneration of parts of

he solution ‘ i ’ which are chosen via partially randomized selection

sing specific boundaries ( LB and UB ) as shown in Eq. (7) . Mean-

hile, ‘X k ’ is derived from a solution chosen via randomized selec-

ion (note that k � = i ) and serves as the host of the parasite. Should

he fitness value of solution ‘ k ’ be surpassed by PV, the host will

ie, and the PV will take its place. 

 V = 

{
X 

j 
i 

i f rand ( 0 , 1 ) ≤rand ( 0 , 1 ) 

LB + rand ( 0 , 1 ) ∗ ( UB −LB ) Otherwise 
(7) 

here, j ∈ (1, 2, …, m ); k ∈ (1, 2, …, n ); j signifies design variables.

. Modifications in multi-objective symbiotic organisms search 

MOSOS) 

Performance of MHs largely depends on the stability in the

xploration & the exploitation. The exploration characterizes the

lobal search capacity of the MHs and decides the accuracy of ob-

ained solutions. The exploitation characterizes the local search ca-

acity of the MHs and plays a significant part in the rapid con-

ergence. As discussed earlier, the application of an adaptive con-

rolling mechanism on the various MHs set a stability between the

lobal search and a local search. Thus, adaptive BFs are proposed

n the mutualism phase of MOSOS. Also, the parasitism phase of

OSOS is upgraded leading to a modified parasitism phase to ad-

ress the issue regarding population diversity. The detailed discus-

ion of the proposed improvements on the MOSOS algorithm is

resented in the subsequent sections. 

.1. Multi-objective adaptive symbiotic organisms search (MOASOS) 

In the mutualism phase of MOSOS, the two organisms of dif-

erent species result from interactive learners into personal bene-

t of the symbiotic collaboration. Thus, the BFs (BF 1 and BF 2 ) are

ain components which defines the effect of MV. BFs are definite

y a heuristically, and their values are one or two. This step out-

omes in the state where populations/organisms ‘X i ’ and ‘X k ’ ben-

fit partly or completely from MV. Therefore, in the mutualism

hase the populations progress only with two possibilities. How-

ver, in the original mutualism, BF should not be at end positions

nly, but it can be in-between these limits also. Given this fact,

ejani et al. (2018c) upgraded this phase to adaptive mutualism

hase by incorporating adaptive benefit factors (ABF 1 and ABF 2 )

o advance search capacity of the MHs, defined by the following

quations: 

B F a = 

{
f a ( X i ) / f a ( X best ) , i f f a ( X best ) � = 0 

1 + round [ rand ( 0 , 1 ) ] , i f f a ( X best ) = 0 

(8) 

 F a = 

⎧ ⎨ 

⎩ 

1 , i f AB F a < 1 

2 , i f AB F a > 2 

AB F a , otherwise 

(9) 

here, a = 1 & 2. 
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Fig. 1. The parasitism vectors. 
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The design variables ( X i ) may get small and large displacement

from their positions as various factors govern it during mutualism

phase. These displacements of the design variables influence the

exploration and the exploration. Hence, smaller value of BF lets the

fine/local search in tiny moves but then results in faster conver-

gence and bigger value of BF lets global search but then results in

slower convergence. The ‘ABF 1 ’ and ‘ABF 2 ’ affects the exploration

capability of the optimizer when a solution (‘X i ’ or ‘X k ’ ) is away

from the best solution ( ‘X best ’) . The adaptive mutualism phase sets

good exploitation when a solution is the neighbor of the result-

ing solution. Multi-objective adaptive SOS (MOASOS) purposes to

efficiently incorporate the local and global search characteristic by

using an adaptive mutualism phase. 

3.2. Multi-objective modified adaptive symbiotic organisms search 

(MOMASOS) 

Furthermore, a parasitism phase is upgraded to a modified par-

asitism phase which leads MOASOS ( Tejani et al., 2018c ) to a new

algorithm called multi-objective modified adaptive symbiotic or-

ganisms search (MOMASOS). The parasitism phase of MOSOS per-

formances a significant role in upgrading the exploration ability

of MOSOS. However, it is also observed that over exploration re-

sults in higher computational cost as a majority of the new solu-

tions generated by the parasitism phase gets rejected due to in-

ferior objective functional values compared to previous one ( Do &

Lee, 2017 ). Therefore, parasitism phase is improved with a modi-

fied parasitism phase of MOSOS. 

In the original parasitism phase, a parasitism vector (PV), X ′ 
i 
,

is generated by mutating/altering values of few heuristically cho-

sen design variables of the population ‘X j ’ , the Anopheles mosquito.

Thus, the PV is a blend of ‘X i ’ and random values within its bounds.

The graphical representation of the parasitism phase is presented

in Fig. 1 . Let, ‘X i ’ is the current solution with two design variables

(x 1 , y 1 ) as shown in Fig. 1 (a). Therefore, the updated solution ( X ′ 
i 
)

or PV can either get a position within dotted lines (if single vari-

able changes) as shown in Fig. 1 (c and d) or it holds its position

(see Fig. 1 (b)) or it may move any random point within its bounds

(if both variables change) with an equal probability. Hence, the

original parasitism phase offers too explorative search which gen-

erates a large number of inferior solutions and consumes higher

unnecessary computational cost. 

In the modified parasitism phase, a modified parasitism vec-

tor (MPV), X ′ 
i 
, is generated by migrating values of few heuristically

chosen design variables of the population, ‘X j ’ , to the heuristically

selected solution ‘X k ’ (where k � = i ; selected randomly from non-

dominated archive), or the Anopheles mosquito, to the current so-

lution ‘X i ’ , a human host. Thus, MPV is a blend of design variables

‘X i ’ and randomly selected solution ‘X k ’. The graphical representa-

tion of the modified parasitism phase is presented in Fig. 2 . As dis-

cussed earlier randomly selected design variables of the solution

(X k ) migrates to a current solution (X i ). Let, ‘X i ’ is the current so-

lution and ‘X k ’ is randomly selected solution with two design vari-

ables (x 1 , y 1 ) and (x 2 , y 2 ). Thus, the updated solution ( X ′ 
i 
) or MPV

can acquire a corner position of a dotted rectangle as shown in

Fig. 2 (b–e) with equal probability. Thus, this modification advances

the exploration of search and also provides better the exploitation

which offers a large number of acceptable solutions, and it also

reduces computational cost. The following is the mathematical for-

mulation of MPV behind the parasitism phase. 

MP V, X 

′ 
i = 

{
X 

j 
i 

i f rand ( 0 , 1 ) ≤ rand ( 0 , 1 ) 

X 

j 

k 
otherwise 

(10)

where, i , k ∈ (1, 2, …, n ); j ∈ (1, 2, …, m ); i � = k 

Solutions are growing to a better form only if newer fitness is

better than the previous one. Thus, the current solutions ‘ X ’ and
i 
X j ’ are to be changed directly by the newer solutions ‘ X ′ 
i 
’ and ‘ X ′ 

j 
’ ,

espectively. Else, the ‘ X ′ 
i 
’ and ‘ X ′ 

j 
’ will be incorporated to the ad-

anced solution for choosing the next iteration ecosystem. Thus,

hese MHs are able to converge better by keeping good diversity

mong solutions. Since MHs may advance few significant data from

ominated solutions in future update. 

The original version of MOSOS exploited the elitism strategy

n combination with the crowd comparison for selection of the

ext generation population. This numerical strategy was success-

ully employed in NSGAII and some other MOEAs. The method

orks by using the dominance level of solutions being selected.

iven a set of design solutions, non-dominated solutions are those

ho have dominance level being 1. If the non-dominated solu-

ions are removed from the set, solutions having dominance level

s 2 will be non-dominated solutions and so on. The idea is to

hoose solutions with lowest dominance levels for the next gener-

tion population. In cases that the number of solutions with low-

st dominance levels exceeds the predefined population size, some

f the solutions with the highest dominance level in the set who

ave lower cuboids are removed from the set. In this version of

OMASOS, a similar strategy is used but the normal line tech-

ique ( Bureerat & Srisomporn, 2010 ) is used instead of the crowd

omparison when some solutions are to be removed. The normal

ine method was originally proposed as an archiving technique for

ultiobjective population-based incremental learning. The method

s illustrated in Fig. 3 where there are 5 solutions (circle markers)
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Fig. 2. The modified parasitism vectors. 

Fig. 3. Normal line method. 
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aving dominance level as 1, 4 solutions (diamond markers) hav-

ng dominance level as 2, and 10 solutions (square markers) hav-

ng dominance level as 3. If the predefined population size is 15,

t means the optimizer will keep all solutions with dominance lev-

ls 1 and 2; while, for the dominance level as 3, 4 solutions will

e deleted from the population. The normal line method works, in

ases of two objective functions, by identifying the anchor points

ho currently give the minimum values for f 1 and f 2 . Then, the

o-called Utopia line is drawn connecting the two anchors. The
ormal lines are those who are perpendicular to the Utopia line

nd equally placed along the line. The number of the normal lines

s equal to the number of solutions require from those with the

ominance level being 3, which for this example is 6 lines. The 6

elected solutions whose dominance level is 3 are those who are

he closet solutions to their corresponding lines. In Fig. 3 , the 6

elected solutions are inside the dashed circles. 

The proposed MHs simulates initialization, mutualism phase

or adaptive mutualism phase), commensalism phase, parasitism

hase (or modified parasitism phase), and stopping criteria. The

ombined flowchart of the proposed MHs is presented in Fig. 4 . 

. Problem definition 

A multi-objective truss design problem is defined to find dis-

rete elemental cross-sections (design variables) to minimize truss

ass and maximize deflection of nodes subject to elemental stress

onstraints. The truss optimum design problem is stated as: 

 ind, A = { A 1 , A 2 , . . . , A m 

} (11) 

o minimize mass and maximize nodal deflection of truss 

f 1 ( A ) = 

m ∑ 

i =1 

A i ρi L i and f 2 ( A ) = max 
(∣∣δ j 

∣∣)
Subject to : 

Behavior constraints: 

g(A ) : St ress const raint s, | σi | − σ max 
i 

≤ 0 

Side constraints: 

Discrete cross − sectional areas, A 

min 
i 

≤ A i ≤ A 

max 
i 

where , i = 1, 2, . . . , m ; j = 1, 2, . . . , n 

here, A i , ρ i , L i , E i , and σ i represent design variables (elements’

ross-sections), density, elemental length, young’s modules, and el-

mental stress of the ‘ i th ’ the element respectively. ‘ δj ’ is a deflec-

ion of the ‘j th’ node. The superscripts ‘max’ and ‘min’ stands for

pper and lower allowable bounds respectively. 

.1. Dynamic penalty function 

Considering both objective functions differently and it is to

inimize objectives subject to ‘p’ limitations, the dynamic penalty

unction is stated as: 

f ( X ) ∗ ( 1 + ε 1 ∗ C ) 
ε 2 , C = 

p ∑ 

i =1 

C i , C i = 

∣∣∣∣1 − q i 
q ∗

i 

∣∣∣∣ (12)

here, q i signifies constraint violation with respect to the limit ‘ q ∗
i 
’.

he parameter p signifies a count of live constraints. The variables

 ε 1 ’ and ‘ ε 2 ’ are can be assumed by considering the problem char-

cteristics. In this investigation, both ‘ ε1 ’ and ‘ ε2 ’ are assumed as 3,

s per investigation of their effect on exploitation and exploration

quilibrium ( Tejani et al., 2016a, 2017, 2018a, 2018b ). 

. Truss design problems and discussions 

Five truss problems from Angelo et al. (2012, 2015) and

ejani et al. (2018c) are considered to test the effectiveness of

he proposed MHs. For fair comparison, the similar parameters

 Angelo, Bernardino, & Barbosa, 2015; Tejani et al., 2018c ) are fol-

owed in this study. Thus, all the problems were performed with

he population (organism) size of 100 and 50,000 functional eval-

ations. The proposed MHs are tested for 100 discrete runs. The

ront-hypervolume (HV) & front spacing-to-extent (STE) tests are

onsidered for the assessment. The mean value of the HV of each

H is chosen to quantify the convergence rate of the MH and the

tandard deviation (STD) of HV is considered to quantify the search
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Fig. 4. Flowchart of the proposed algorithms. 
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Table 1 

Design considerations of the truss problems. 

The 10-bar truss The 25-bar truss The 60-bar truss The 72-bar truss The 942-bar truss 

Design variables A i , i = 1, 2, …, 10 A i , i = 1, 2, …, 8 A i , i = 1, 2, …, 25 A i , i = 1, 2, …, 16 A i , i = 1, 2, …, 59 

Constraints σ max = 25 ksi σ max = 40 ksi σ max = 40 ksi σ max = 25 ksi σ max = 25 ksi 

Density ρ = 0.1 lb/in 3 ρ = 0.1 lb/in 3 ρ = 0.1 lb/in 3 ρ = 0.1 lb/in 3 ρ = 0.1 lb/in 3 

Young modules E = 10 4 ksi E = 10 4 ksi E = 10 4 ksi E = 10 4 ksi E = 10 4 ksi 

Table 2 

The hypervolume values of results obtained for the 10-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 47,302.93 53,090.89 50,902.21 1294.12 100 5 

MOACS 52,662.60 54,395.00 53,639.77 307.79 200 4 

MOSOS 55,646.49 56,543.02 56,055.02 191.00 335 3 

MOASOS 55,528.07 56,642.93 56,220.00 195.67 404 2 

MOMASOS 55,890.60 56,873.05 56,389.83 166.10 461 1 

r  

s  

t  

c

S

w  

j

E

 

w  

T  

e  

t  

S

w  

f

 

p  

i  

f

5

 

u  

c  

o  

t  

a  

1  

3  

7  

3  

2

 

t  

t  

T  

S  

a  

M  

Fig. 5. The 10-bar truss. 
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eliability. Also, a front spacing (S) measure ( Schott, 1995 ) is con-

idered to test comparative distance between successive popula-

ions in the non-dominated set. The spacing of the front can be

alculated as: 

pacing = 

1 

| P | − 1 

| P | ∑ 

i =1 

(
d i − d̄ 

)2 
(13) 

here | P | is count of associates. d i is the Euclidian distance of ob-

ective ‘ i ’ to its adjacent solution. d̄ is the mean result of d i ’ 

The front extension is considered as: 

xtent = 

M ∑ 

i =1 

∣∣ f max 
i − f min 

i 

∣∣ (14) 

The smaller value of Spacing shows the superior Pareto front

hile, in contrast to the higher values of Extent is the superior.

he simultaneous consideration of spacing and extent excels a new

valuation metric which simultaneously exams spacing and extent

ogether, which is presented as the ratio of spacing to the extent,

T E = Spacing/Extent (15) 

here the smaller value of STE shows the superior non-dominated

ront. 

In addition, Friedman’s rank test, a statistical measure, is em-

loyed to rank the MHs based on the solutions found by the var-

ous optimizers. The five structural problems are addressed in the

ollowing units. 

.1. A 10-bar truss 

Fig. 5 presents the 10-bar truss which is a simplest and widely

sed truss problem compare to others. The truss properties and

onstraints are presented in Table 1 . Fig. 5 also presents the length

f each element, loading conditions, and support conditions of this

russ. The discrete design variables (i.e. elemental cross-sectional

reas) are assumed from forty-two discrete sections as 1.62, 1.8,

.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,

.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.8, 4.97, 5.12, 5.74, 7.22,

.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16, 16.9, 18.8, 19.9, 22, 22.9, 26.5,

0, and 33.5 in 

2 as per the previous studies ( Angelo et al., 2012,

015; Tejani et al., 2018c ). 

Table 2 presents the HV values for 100 optimization runs of

his truss. The best, mean, and STD values of HV are considered

o measure the effectiveness of the considered MHs statistically.

he best mean solutions obtained by MOAS, MOACS, MOSOS, MOA-

OS, and MOMASOS are 50,902.21, 53,639.77, 56,055.02, 56,220.00,

nd 56,389.83 respectively. Also, the STD obtained using MOAS,

OACS, MOSOS, MOASOS, and MOMASOS are 1294.12, 307.79,
91.00, 195.67, and 166.10 respectively. It is found from the re-

ults that MOMASOS performs the best followed by MOASOS and

OSOS as per the measure of search consistency. The Friedman’s

ank test is used to compare different MHs based on the ranks.

ccording to the Friedman’s rank test at 95% significant level, MO-

ASOS performs the best among the implemented MHs followed

y MOASOS and MOSOS. Also, the results show that both versions

f MOSOS are better than its basic version and previous studies.

he results from the Friedman’s rank test also indicates the signif-

cant difference among the considered MHs. 

The front STE metric is considered, and the solutions are shown

n Table 3 . According to the Friedman’s rank at 95% significant

evel, MOAS beats other MHs followed by MOMASOS and MOA-

OS, and similar results expressed as per mean of front STE. Also,

OMASOS and MOASOS perform superior than MOSOS. 

Fig. 6 illustrates the best Pareto fronts of the considered MHs.

t should be noted that best Pareto fronts obtained using MOAS

nd MOACS are discontinuous. On the contrary, Pareto fronts ob-

ained using the proposed MHs are continuous, smooth, and have

 wide range of diverse results, and the results are well distributed.

verall, these tests validate that MOMASOS is better performer fol-

owed by MOASOS and considered improvements upgrade the effi-

iency of MOSOS. 

.2. A 25-bar space truss 

The 25-bar truss is illustrated in Fig. 7 . The truss properties

nd constraints are presented in Table 1 . Loading is assumed

s P x 1 = 1 Klb , P y 1 = P z 1 = P y 2 = P z 2 = − 10 Klb , P x 3 = 0.5 Klb ,

P = 0.6 Klb . Twenty-five elements are clubbed into eight groups
x 6 
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Table 3 

The front Spacing-to-Extent values of results obtained for the 10-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 0.005387 0.024711 0.010590 0.003781 231 1 

MOACS 0.007219 0.029625 0.014219 0.004558 385 5 

MOSOS 0.007835 0.035081 0.011886 0.003791 318 4 

MOASOS 0.007705 0.021266 0.011380 0.002189 305 3 

MOMASOS 0.008818 0.018366 0.010721 0.001259 261 2 

Table 4 

The hypervolume values of results obtained for the 25-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 1848.04 1902.35 1878.74 9.77 123 5 

MOACS 1850.64 1918.92 1890.61 14.39 177 4 

MOSOS 1937.75 1940.43 1939.42 0.54 329 3 

MOASOS 1938.75 1940.75 1939.84 0.51 371 2 

MOMASOS 1944.13 1946.51 1945.61 0.45 500 1 

Fig. 6. Best Pareto fronts of the 10-bar truss. 

Fig. 7. The 25-bar space truss. 
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s per symmetry about x–z and y–z planes ( Angelo et al., 2012,

015; Tejani et al., 2018c ). The discrete design variables (i.e. ele-

ental cross-sections) are taken from thirty discrete sections as

.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,

.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3, 3.2, and 3.4 in 

2 . 

Table 4 compares the HV values for 100 independent optimiza-

ion runs found from this work. The best, mean, and STD values of

V are given and will be considered to measure the performance

f the considered MHs statistically. The best mean results reported

y MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are 1878.74,

890.61, 1939.42, 1939.84, and 1945.61 respectively. Also, the STD

btained using MOAS, MOACS, MOSOS, MOASOS, and MOMASOS

re 9.77, 14.39, 0.54, 0.51, and 0.45 respectively. It is found from

he results that MOMASOS gives the finest convergence and con-

istency followed by MOASOS. Based on the Friedman’s rank test

t 95% significant measure, MOMASOS & MOASOS are the best &

econd-best players. Here also results show that both the versions

f MOSOS are better than its basic version and previously used

lgorithms such as MOAS and MOACS; and MOMASOS variant is

etter than all the implemented MHs. The results from the Fried-

an’s rank test also indicates the significant difference among the

onsidered algorithms. 

The front STE is tested for the truss and the findings are pre-

ented in Table 5 . According to the Friedman’s rank at 95% signifi-

ant level, MOMASOS, MOSOS, and MOASOS rank first, second, and

hird respectively and mean of front STE values obtain similar re-

ults. Also, MOMASOS outperforms its basic version. 

Fig. 8 presents the best Pareto fronts of the considered MHs. It

hould be noted that best Pareto fronts obtained using MOAS and

OACS are slightly discontinuous. On the contrary, Pareto fronts

btained using the proposed MHs are continuous, smooth, and

ave a wide range of diverse results, and the results are well dis-

ributed. Overall, these tests validate that MOMASOS is a fairly su-

erior performer compare to others like the10-bar truss and these

mprovements elevate the efficacy of MOSOS. 

.3. A 60-bar ring truss 

The 60-bar ring truss is illustrated in Fig. 9 . The mechanical

roperties and limits are presented in Table 1 . Sixty elements are

rouped into twenty-five in view of symmetry similar to previous

tudies ( Angelo et al., 2012, 2015; Tejani et al., 2018c ). Multiple

oading is assumed as load case 1: P x 1 = − 10 Klb and P x 7 = 9 Klb ,

oad case 2: P x 15 = P x 18 = − 8 Klb and P y 15 = P y 18 = 3 Klb , and load

ase 3: P x 22 = − 20 Klb and P y 22 = 10 Klb . The discrete design vari-

bles (i.e. elemental cross-sections) are chosen from forty-five dis-

rete sections as [0.5, 0.6, 0.7, …,4.9] in 

2 . 
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Table 5 

The front Spacing-to-Extent values of results obtained for the 25-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 0.007937 0.058983 0.022595 0.008424 445 5 

MOACS 0.005254 0.044937 0.017026 0.008361 354 4 

MOSOS 0.011763 0.013790 0.013255 0.0 0 0364 294 2 

MOASOS 0.012350 0.014755 0.013326 0.0 0 0332 306 3 

MOMASOS 0.005622 0.006911 0.006569 0.0 0 0213 101 1 

Table 6 

The hypervolume values of results obtained for the 60-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 2465.08 3397.56 3179.88 166.65 173 4 

MOACS 2905.27 3276.04 3106.68 74.18 127 5 

MOSOS 4271.94 4304.66 4293.25 5.92 327 3 

MOASOS 4290.28 4302.54 4297.03 2.81 373 2 

MOMASOS 4303.67 4316.33 4311.69 2.30 500 1 

Fig. 8. Best Pareto fronts of the 25-bar truss. 
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Fig. 9. The 60-bar ring truss. 
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Table 6 presents the HV obtained for the truss. The best, mean,

nd STD values of HV are specified and will be considered to mea-

ure the performance of the considered MHs statistically. The best

ean results reported by MOAS, MOACS, MOSOS, MOASOS, and

OMASOS are 3179.88, 3106.68, 4293.25, 4297.03, and 4311.69 re-

pectively. Also, the STD obtained using MOAS, MOACS, MOSOS,

OASOS, and MOMASOS are 166.65, 74.18, 5.92, 2.81, and 2.30

espectively. This is observed from the assessment that the best

onvergence and search consistency are obtained for MOMASOS

hile the second-best is MOASOS. The Friedman’s rank test is used

o compare different algorithms based on the ranks. According to

he Friedman’s rank test at 95% significant level, MOMASOS per-

orms the best among the considered MHs followed by MOASOS

nd MOSOS. Moreover, the results show that both the versions of

OSOS are better than its basic version and previous studies such

s MOAS and MOACS. MOMASOS still obtains the maximum HV for

his truss. The results Friedman’s rank test also indicates the signif-

cant difference among the considered algorithms. The conclusion

ased on the Friedman’s rank test is that MOMASOS and MOASOS

re again the top two performers. 

The front STE is considered for the truss and the findings are

llustrated in Table 7 . According to the Friedman’s rank test at 95%

ignificant level, MOMASOS beats other MHs followed by MOSOS
nd MOASOS and similar outcomes are obtained as per mean of

ront STE. Also, MOMASOS performs the better compared to its ba-

ic version. 

Fig. 10 shows the best Pareto fronts for all the proposed MHs.

t is observed that the best Pareto fronts obtained using MOAS and

OACS are discontinuous and the results are distributed in a small

egion. On the contrary, Pareto fronts obtained using the proposed

Hs are continuous, stable, and have a wide range of diverse re-

ults, and the results are well distributed. Overall, it is determined

hat MOMASOS is slightly better performer compare to the other

Hs and considered improvements upsurges efficacy of MOSOS. 

.4. A 72-bar space truss 

The 72-bar truss is illustrated in Fig. 11 . The truss proper-

ies and constraints are presented in Table 1 . Multiple loading is

upposed as load case 1: F 1 x = F 1 y = 5 kips and F 1 z = − 5 kips and

oad case 2: F 1 z = F 2 z = F 3 z = F 4 z = −5 kips . Seventy-two elements

re grouped into sixteen in view of symmetry similar to previous
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Table 7 

The front Spacing-to-Extent values of results obtained for the 60-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 0.009977 0.133920 0.034915 0.019500 451 5 

MOACS 0.007890 0.074504 0.029912 0.013732 436 4 

MOSOS 0.010137 0.012876 0.012025 0.0 0 0522 248 2 

MOASOS 0.010783 0.012879 0.012147 0.0 0 0419 265 3 

MOMASOS 0.005460 0.007324 0.006247 0.0 0 040 0 100 1 

Fig. 10. Best Pareto fronts of the 60-bar truss. 
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Fig. 11. The 72-bar
tudies ( Angelo et al., 2012, 2015; Tejani et al., 2018c ). The discrete

esign variables (i.e. elemental cross-sectional areas) are assumed

rom twenty-five discrete sections as [0.1, 0.2, 0.3,…, 2.5] in 

2 . 

Table 8 shows the HV values obtained from this work. The best,

ean, and STD values of HV are specified and will be consid-

red to measure the effectiveness of the various MHs statistically.

he best mean results reported by MOAS, MOACS, MOSOS, MOA-

OS, and MOMASOS are 2094.40, 2097.08, 2223.81, 2227.73, and

233.05 respectively. Also, the STD obtained using MOAS, MOACS,

OSOS, MOASOS, and MOMASOS are 10.01, 18.78, 1.81, 1.38, and

.05 respectively. It is found from the results that MOMASOS per-

orms the best followed by MOASOS and MOSOS as per the mea-

ure of search consistency. The Friedman’s rank test is used to

ompare different MHs based on the ranks. According to the Fried-

an’s rank test at 95% significant level, MOMASOS performs the

est among the considered MHs followed by MOASOS and MOSOS.

lso, the results show that both the versions of MOSOS are better

han its basic version and the previously used MHs such as MOAS,

nd MOACS; and MOMASOS variant is better than all the consid-

red MHs. The results obtained from using the Friedman’s rank test

lso indicates the significant difference among the considered MHs.
 space truss. 
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Table 8 

The hypervolume values of results obtained for the 72-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 2066.98 2116.65 2094.40 10.01 142 5 

MOACS 2039.80 2129.58 2097.08 18.78 158 4 

MOSOS 2220.29 2227.53 2223.81 1.81 303 3 

MOASOS 2223.28 2231.00 2227.73 1.38 397 2 

MOMASOS 2229.91 2235.22 2233.05 1.05 500 1 

Table 9 

The front Spacing-to-Extent values of results obtained for the 72-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 0.010919 0.043568 0.022728 0.007183 422 4 

MOACS 0.007918 0.076088 0.026837 0.013808 429 5 

MOSOS 0.013350 0.015643 0.014393 0.0 0 0435 289 3 

MOASOS 0.013026 0.015822 0.014224 0.0 0 0481 260 2 

MOMASOS 0.006386 0.007519 0.006910 0.0 0 0202 100 1 

Table 10 

The hypervolume values of results obtained for the 942-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 44,994,042.34 56,957,732.05 51,655,929.40 3,380,287.34 150 4 

MOACS 49,107,320.86 54,406,191.49 52,288,426.39 939,066.55 150 4 

MOSOS 60,523,090.07 63,407,711.68 62,031,040.61 575,341.58 330 3 

MOASOS 60,620,317.17 63,708,998.98 62,540,452.51 655,217.19 370 2 

MOMASOS 64,805,943.66 112,438,733.19 80,006,236.39 7,903,607.97 500 1 

Table 11 

The front Spacing-to-Extent values of results obtained for the 942-bar truss. 

Algorithms Min Max Mean STD Friedman test Friedman rank 

MOAS 0.014273 0.120749 0.042659 0.020981 469 5 

MOACS 0.010403 0.079907 0.029013 0.014678 401 4 

MOSOS 0.012192 0.016924 0.014856 0.0 0 0761 257 2 

MOASOS 0.013294 0.016218 0.015050 0.0 0 0637 273 3 

MOMASOS 0.004880 0.008056 0.006423 0.0 0 0566 100 1 

Fig. 12. Best Pareto fronts of the 72-bar truss. 
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The front STE is considered for the truss and the findings are

hown in Table 9 . It is noticed as per the Friedman’s rank at

5% significant level, the MOMASOS, MOASOS, and MOSOS are top

hree performer in this order and mean values of front STE also

btain similar results. Also, the MOMASOS and MOASOS perform

uperior compare to MOSOS. 
Fig. 12 shows the best Pareto fronts obtained all MHs. It is

bserved that the best Pareto fronts obtained using MOAS and

OACS are discontinuous and the results are distributed in a small

egion. On the contrary, Pareto fronts obtained using the proposed

Hs are continuous, stable, and have a wide range of diverse re-

ults, and the results are well distributed. Overall, it is noticed that

OMASOS is slightly better performer compare to the other MHs

nd considered improvements upsurges efficacy of MOSOS. 

.5. A 942-bar tower truss 

The 942-bar truss is illustrated in Fig. 13 . The mechanical prop-

rties and limits are presented in Table 1 . Vertical loading along

-axis is –3, –6, and –9 kips at each node in the 1st, 2nd, and

rd sections, respectively; lateral loading along X-axis is 1.5 and

.0 kips at each node on the right and left sides of the tower

russ; and Lateral loading along Y-axis is 1 kips at each node, re-

pectively. The discrete design variables (i.e. cross-sections) are se-

ected from two-hundred discrete sections as [1, 2, 3,…, 200] in 

2 .

he bars are clustered into fifty-nine clusters to see structural sim-

larity ( Angelo et al., 2012, 2015; Tejani et al., 2018c ). 

Table 10 presents the HV values calculated for the truss. The

est, mean, and STD values of HV are shown and will be con-

idered to measure the effectiveness of the considered MHs. The

est mean results obtained by MOAS, MOACS, MOSOS, MOASOS,

nd MOMASOS are 51,655,929.40, 52,288,426.39, 62,031,040.61,

2,540,452.51, and 80,006,236.39 respectively. Also, STD obtained

sing MOAS, MOACS, MOSOS, MOASOS, and MOMASOS are

,380,287.34, 939,0 6 6.55, 575,341.58, 655,217.19, and 7,903,607.97
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Fig. 13. The 942-bar tower truss. 

Fig. 14. Best Pareto fronts of the 942-bar truss. 
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espectively. It is found from the results that MOMASOS performs

he best followed by MOASOS and MOSOS as per the measure of

earch consistency. In this large-scale problem case, it is shown

hat, with the use of the normal line method, MOMASOS is con-

iderably superior to those using the crowd comparison as with

SGAII. The Friedman’s rank test is used to compare different MHs

ased on the ranks. According to the Friedman’s rank test at 95%

ignificant level, MOMASOS performs the best among the con-

idered MHs followed by MOASOS and MOSOS. Here also results

emonstrate that both the versions of MOSOS are better than its

asic version and previous studies such as MOAS, and MOACS; and

OMASOS variant is better optimizer compare to other MHs. The

esults obtained from the Friedman’s rank test also indicates the

ignificant difference among the considered MHs. 

The front STE are tested for the truss and the findings are pre-

ented in Table 11 . According to the Friedman’s rank at 95% sig-

ificant level, MOMASOS, MOSOS, and MOASOS are top three per-

ormer in this order and mean values of front STE also obtain sim-

lar results. Also, MOMASOS performs better compared to its basic

ersion. 

Fig. 14 shows the best Pareto fronts found for considered MHs.

t is observed that the best Pareto fronts obtained using MOAS and

OACS are discontinuous and the results are distributed in a small

egion. On the contrary, Pareto fronts obtained using the proposed

OMASOS, MOASOS, and MOSOS are continuous, stable, and have

 wide range of diverse results, and the results are well distributed.

he Pareto fronts found using the proposed MHs are superior com-

are to MOAS and MOACS. Fig. 15 presents the convergence history

f the truss using MOSOS and MOMASOS. The higher hypervolume

alue the better the Pareto front. It has been found that MOMA-

OS has very good convergence rate compared to MOSOS and thus

wns better convergence characteristics for the truss problems. 

Overall, it can be observed that MOMASOS performs superior

han the other considered MHs and proposed improvements lead

o better efficacy of MOSOS. 

. Engineering benchmark problems 

In this section, four well-known engineering design optimiza-

ion problems ( Mirjalili, Jangir, & Saremi, 2017 ) are employed to

alidate the efficiency of MOMASOS. The first design problem is

peed reducer design to minimize weight and stress of the speed
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Table 12 

The results obtained for the speed reducer design optimization problem (the previous results are adopted from Mirjalili et al., 

2017 ). 

GD MS S IGD Hypervolume 

Algorithms Mean STD Mean STD Mean STD Mean STD Mean STD 

MOPSO 0.9883 0.1789 — — 16.6850 2.6960 — — — —

NSGA-II 9.8437 7.0810 — — 2.7654 3.5340 — — — —

MOALO 1.1767 0.2327 0.8390 0.1267 1.7706 2.7690 0.8672 0.1490 — —

MOSOS 1.6794 0.1358 0.4977 0.0082 39.3635 4.2992 0.0 0 05 3.63E-05 1,864,894 19,141 

MOMASOS 0.8501 0.1152 0.4953 0.0111 14.8755 1.9790 0.0 0 03 3.08E-05 1,893,295 18,865 

Table 13 

The results obtained for the disk brake design optimization problem (the previous results are adopted from 

Mirjalili et al., 2017 ). 

GD MS S IGD Hypervolume 

Algorithms Mean STD Mean STD Mean STD Mean STD Mean STD 

MOPSO 0.0244 0.1231 0.4604 0.1096 — — — — — —

NSGA-II 3.0771 0.1078 0.7972 0.0661 — — — — — —

MOALO 0.0011 0.0025 0.4496 0.0543 0.0421 0.0058 0.0194 0.0 0 08 — —

MOSOS 0.0055 0.0 0 05 0.5649 0.0066 0.1687 0.0121 0.0 0 06 0.0 0 01 5.75 0.04 

MOMASOS 0.0029 0.0 0 03 0.5121 0.0041 0.0403 0.0032 0.0 0 03 3.65E-05 5.94 0.05 

Table 14 

The results obtained for the welded beam design optimization problem (the previous results are adopted from 

Mirjalili et al., 2017 ). 

GD MS S IGD Hypervolume 

Algorithms Mean STD Mean STD Mean STD Mean STD Mean STD 

MOPSO 0.3741 0.0422 — — 2.5303 0.2270 — — — —

NSGA-II 0.3601 0.0470 — — 2.3635 0.2550 — — — —

MOALO 0.1264 0.0327 0.3700 0.0025 1.1805 0.1440 0.1062 0.0152 — —

MOALO 0.0240 0.0060 0.4694 0.0506 0.3469 0.0554 0.0012 0.0012 1.31 0.23 

MOMASOS 0.0123 0.0036 0.4474 0.0625 0.1424 0.0156 0.0010 0.0012 1.54 0.32 

Fig. 15. Convergence graphs of the 942-bar truss. 
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educer subject to eleven behavior constraints and seven side con-

traints. The second design problem is disk brake design to mini-

ize stopping time and mass of the brake subject to five behav-

or constraints and four side constraints. The third design problem

s welded beam design to minimize fabrication cost and deflec-

ion of the beam subject to four behavior constraints and four side

onstraints. And the last design problem is cantilever beam design

o minimize weight and end deflection of a cantilever beam sub-

ect to two behavior constraints and two side constraints. The de-

ails of the considered problems can be studies from Ray and Liew

2002) and Deb, Zhu, and Kulkarni (2015) . For fair comparison, the

imilar parameters ( Mirjalili et al., 2017 ) and constrained handling

echniques are followed in this study. Thus, all the problems were

erformed with the population size of 100, functional evaluations

ize of 10,0 0 0, and an archive size of 100. The proposed algorithms
re tested for 30 independent runs. The Generational Distance (GD)

 Veldhuizen & Lamont, 20 0 0 ), Maximum Spread (MS), and metric

f spacing (S) (shown in Eq. (13) ; Schott, 1995 ), Inverted Gener-

tional Distance (IGD) ( Sierra & Coello, 2005 ), and Hypervolume.

maller values of these measure show the superior Pareto front ex-

ept for hypervolume. 

D = 

√ ∑ | P | 
i =1 ( d i ) 

2 

| P | (16) 

here ‘| P |’ is count of obtained Pareto optimal solutions and d i is

he Euclidean distance between the i th Pareto optimal solution and

he adjacent neighbor true Pareto optimal solution. 

S = 

√ 

f ∑ 

i =1 

max ( d ( a i , b i ) ) (17) 

here f is count of objective functions, and d counts the Euclidean

istance, a i and b i are the highest and lowest values of i th objec-

ive function respectively. 

GD = 

√ ∑ | P ′ | 
i =1 

(
d ′ 

i 

)2 

| P | (18) 

here ‘| P ′ |’ is the true Pareto optimal solutions and d ′ 
i 

is the Eu-

lidean distance between the i-th true Pareto optimal obtained so-

ution and the adjacent neighbor true Pareto optimal solution. The

ngineering design problems (i.e. speed reducer design, disk brake

esign, welded beam design, and cantilever beam design) used in

his study are stated Ray & Liew, 2002 and Deb et al., 2015 . 

Tables 12–15 compare results obtained for the considered engi-

eering design problems using multiple objective particle swarm
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Table 15 

The results obtained for the cantilever beam design optimization problem (the previous results are adopted from Mirjalili et al., 

2017 ). 

GD MS S IGD Hypervolume 

Algorithms Mean STD Mean STD Mean STD Mean STD Mean STD 

MOPSO — — — — — — — — — —

NSGA-II — — — — — — — — — —

MOALO 0.0 0 02 1.62E-05 0.7673 0.1685 0.0083 0.0029 0.0 0 02 0.0 0 01 — —

MOSOS 0.0 0 03 1.71E-05 0.3755 0.0 0 09 0.0359 0.0036 4.80E-05 6.50E-06 0.5595 0.0 0 05 

MOMASOS 0.0 0 02 3.60E-06 0.3748 0.0 0 02 0.0170 0.0010 3.32E-05 2.82E-06 0.5597 0.0 0 01 

Fig. 16. Best Pareto optimal front obtained by the MOSOS and MOMASOS on the speed reduced design problem. 

Fig. 17. Best Pareto optimal front obtained by the MOSOS and MOMASOS on the disk brake design problem. 
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optimization (MOPSO) ( Coello Coello & Lechuga, 2002 ), NSGA-II

( Deb et al., 2002 ), Multi-Objective Ant Lion Optimizer (MOALO)

( Mirjalili et al., 2017 ), MOSOS, and MOMASOS with the various

measures such as GD, MS, S, IGD, and hypervolume obtained. As

per the results shown in result tables, it can be concluded that

MOMASOS gives the best results compare to the true Pareto front

and the minimum values of D, MS, S, and IGD. Also, the hypervol-

ume of MOMASOS seems better compare to MOSOS. 

The best Pareto optimal fronts obtained by MOSOS and MO-

MASOS for speed reducer design problem is shown in Fig. 16 . It
s noted that Pareto optimal front obtained using MOMASOS is

niformly distributed and near to true Pareto front compare to

OSOS. 

The best Pareto optimal fronts attained by MOSOS and MOMA-

OS for disk brake design problem is shown in Fig. 17 . It can be

bserved that Pareto optimal front obtained using MOMASOS is

idely spread compare to MOSOS and also have majority part on

he true Pareto front. 

The best Pareto optimal fronts obtained by MOSOS and MOMA-

OS for disk brake design problem is shown in Fig. 18 . It is noted
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Fig. 18. Best Pareto optimal front obtained by the MOSOS and MOMASOS on the welded beam design problem. 

Fig. 19. Best Pareto optimal front obtained by the MOSOS and MOMASOS on the cantilever beam design problem. 
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hat Pareto optimal front obtained using MOMASOS is broadly dis-

ributed compare to MOSOS and also have majority part on the

rue Pareto front. 

The best Pareto optimal fronts obtained by MOSOS and MOMA-

OS for cantilever beam design problem is shown in Fig. 19 . It is

oted that both Pareto optimal fronts are nearly identical and on

he true Pareto front. 

Overall, it can be observed that MOMASOS performs superior

han the methods that available in the previous literature. It can

e seen from the results that the proposed improvements lead to

etter efficacy of MOSOS. 

. Conclusions 

Due to the high performance and reasonable quality of obtained

esults in complex problems, nature-inspired meta-heuristics be-

ome an important field in expert and intelligent systems. Many

ecision-making problems in engineering are highly nonlinear

nd challenging to be solved using traditional methods. Truss

esign optimization problems constitute a large number of de-

ign variables and complex objective and constraints including
eight, displacements, stresses, and geometrical configurations. Al-

hough multiple improvements have been reported in past litera-

ure, the problems are becoming more complex and challenging to

e solved using the existing meta-heuristic algorithms. Thus, the

eta-heuristic algorithms need to be improved in terms of effi-

iency and fitting specific problems. 

A modified version of MOSOS is proposed in this paper. The

ew algorithm is modified in such a way to improve both the

xploration and exploitation of MOSOS in reproducing design so-

utions for multi-objective optimization. The comparative perfor-

ance studies, based on the hypervolume and spacing-to-extent

ndicators, reveal that the proposed MOMASOS outperforms its

riginal MOSOS and other multi-objective meta-heuristics imple-

ented in multi-objective truss optimization and engineering de-

ign optimization problems. The proposed adaptive mutualism and

odified parasitism phases significantly improve the performance

f MOSOS. 

The contribution of this paper is twofold. First, we proposed

wo new modifications along with a normal line method as

n archiving technique on an existing MOSOS to improve the

uality of obtained results for multi-objective optimization in
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complex truss structure and engineering design problems. Two

modifications are introduced including the addition of adaptive

parameters in mutualism and an improved parasitism phase in

order to significantly improve both the exploration and ex-

ploitation of MOSOS. Second, the successful improvement and

applications of meta-heuristic algorithms are in greater need in

the background of expert and intelligent systems and it provides

a potential alternative for solving more complex and challenging

problems that cannot be solved using the existing meta-heuristic

algorithms. 

Our future work is to extend the proposed MOMASOS for solv-

ing reliability optimization of trusses. Once uncertainties or ran-

dom variables are taken into consideration, the truss design prob-

lem is considered robust or reliability optimization which is more

complex than deterministic optimization. The powerful MOMASOS

should positively respond to these difficulties. 
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