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This paper presents a multiobjective adaptive symbiotic organisms search (MOASOS) and its two-archive 

technique for solving truss optimization problems. The SOS algorithm considers the symbiotic relation- 

ship among various species, such as mutualism, commensalism, and parasitism, to live in nature. The 

heuristic characteristics of the mutualism phase permits the search to jump into not visited sections 

(named an exploration) and allows a local search of visited sections (named an exploitation) of the search 

region. As search progresses, a good balance between an exploration and exploitation has a greater im- 

pact on the solutions. Thus, adaptive control is now incorporated to propose MOASOS. In addition, two- 

archive approach is applied in MOASOS to maintain population diversity which is a major issue in multi- 

objective meta-heuristics. 

For the design problems, minimization of the truss’ mass and maximization of nodal displacement 

are objectives whereas elemental stress and discrete cross-sectional areas are assumed to be behaviour 

and side constraints respectively. The usefulness of these methods to solve complex problems is validated 

by five truss problems (i.e. 10-bar truss, 25-bar truss, 60-bar truss, 72-bar truss, and 942-bar truss) with 

discrete design variables. The results of the proposed algorithms have demonstrated that adaptive control 

is able to provide a better and competitive solutions when compared against the previous studies. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Over the last few decades, investigation on truss design opti-

mization has been one of the main issues in structural design. A

truss is a special kind of engineering structure constructed by us-

ing a number of 2-node members interconnected with revolute

joints. This implies that the structural elements will ideally experi-

ence only tension or compression. There have been many research

aspects for truss optimization since it was first studied. Truss opti-

mization problems can be categorized as topology, shape, and siz-

ing optimization depending on the design variables assigned. Siz-

ing design variables are usually assigned to find optimal cross-

sectional areas of truss members whereas shape design variables

will alter the nodal positions from their original places. Topolog-

ical design variables, on the other hand, are set to find an initial

structural layout or configuration given that a designer may not

know it a-priory. The combination of two or even three types of
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esign variables for one optimization runs can be achieved. The

ombination of shape and sizing variables leads to a shape and

izing optimization problem which has been proven to give bet-

er design results than merely performing optimal truss sizing. The

imultaneous operation of topology, shape, and sizing design for

ne run, sometimes called automated design, is arguably the best

esign strategy. The design problems can also be labelled as small-

edium- and large-scale optimization problems depending on the

otal number of design variables being used. 

Based on the number of objective functions, truss design prob-

em can be single-objective or multiobjective optimization. A typi-

al truss design problem is posed to minimize its mass or weight

ubject to stress, displacement, and buckling constraints. Never-

heless, some recent work has been devoted to mass minimiza-

ion with natural frequency constraints. For multiobjective cases,

he first objective is usually structural cost or weight while other

bjectives may be used to measure structural performance. As al-

eady known that mass minimization subject to structural safety

onstraints always results in a design solution that is in the

oarder-line of safety and failure, it is therefore not practical with-

ut further modification. The use of factors of safety is one of the

ays to alleviate such a problem. On the other hand, designers
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Fig. 1. Flowchart of the MOSOS, MOASOS, and MOASOS2arc algorithms. 
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Fig. 2. Schematic diagram of proposed methodology. 

Fig. 3. 10-bar truss. 
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may add another objective function to a design problem where

such an objective function should be an indicator for structural re-

liability e.g. displacement minimization, compliance minimization,

natural frequency maximization, frequency response function min-

imization, etc. With two or more objectives, the design problems

become more difficult and has a set of countless optimal results. 

Another aspect of truss optimization is development of an op-

timizer or optimization method. Normally, there are two types

of optimisers used for truss optimization, gradient-based methods

and meta-heuristics (MHs). The former has been proven effective

but, with its complication, derivative dependence, and other limi-

tations, it is less popular. The latter is probably the most popularly

used algorithm for solving truss optimization. MHs are advanta-

geous in that they are simple to code, create, and understand. The

methods are more flexible, and designers can modify them or even

introduce a new algorithm or concept. Since they are derivative-

free, almost any kind of design problems can be solved by using
uch optimizers. Most of them are efficient for solving global opti-

ization. In cases of truss design, a feasible region may be highly

on-convex such as some cases of natural frequency constraints,

herefore, using MHs can be a better choice. Nevertheless, it is al-

ays recognized that the convergence rate of MHs is poor and one

un requires a huge number of function evaluations. Thus, improv-

ng the performance of MHs is always an issue. 

For single-objective MHs, some recently developed methods

re, for example, Vortex Search Algorithm [12] , Search Group Al-

orithm (Gonçalves, [13] ), and sine-cosine optimization [16] . Other

ypes of recent development for MHs are self-adaptive algorithms

uch as LSHADE [26] . For multiobjective optimization which is of-

en called multiobjective evolutionary algorithms (MOEAs), there

ave been numerous MH optimisers proposed in literature. Non-

ominated sorting genetic algorithm which now have had three

ersions is arguably the best-known algorithm [8,9,20] . The oth-

rs well known algorithms include multi-objective immune algo-

ithm [15] , Hybrid Multi-Objective Particle Swarm Optimization

14] , MOEA based on Decomposition [28] , Multi-Objective Parti-

le Swarm Optimization (Reyes-Sierra and Coello Coello, [6] ), and

PEA (Zitzler, [30] ). One of the recently proposed MOEAs is multi-

bjective symbiotic organisms search (MSOS) [5,18,24,25] , which is

ound to be an efficient optimizer. 

SOS has superior performance over a number of algorithms

vailable since it was first published and has been in solving many

ptimization problems [5] . The SOS algorithm has been examined

or constrained and unconstrained benchmark engineering prob-

ems and proved to be better performer with other MHs [4,5] .

heng et al. [5] proposed a discrete SOS algorithm to optimize

ultiple-resources levelling problems. Abdullahi et al. [1] used

 discrete SOS in efficient task scheduling in cloud computing.

ran et al. [24,25] used MOSOS to do optimization of time-cost-

abour utilization problems in construction projects. Panda and

ani [18] used an adaptive penalty function in MOSOS to handle
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Fig. 4. Best Pareto fronts of the 10-bar truss. 

Fig. 5. Median Pareto fronts of the 10-bar truss. 
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quality and inequality constrains. Do and Lee [11] used a modi-

ed SOS in pin-jointed structures with discrete design variables. Yu

t al. [27] used SOS for optimization the capacitated vehicle rout-

ng problem as a discrete optimization problem. 

Capability of SOS in the field of structural optimization is still

nder research; however, Tejani et al. [22,23] , Yu et al. [27] , and

heng and Prayogo [4] have investigated SOS for some structural

ptimization problems in single objective optimization. SOS works

n three phases viz. the mutualism phase, commensalism phase,

nd parasitism phase. In the basic SOS algorithm, the benefit fac-
or is decided through heuristic step and it can be either one or

wo, which means organism gets partially or fully benefits from

he interaction. However, in real practice organism may get ben-

fit in any proportion. Moreover, Tejani et al. [22] proposed an

daptive SOS algorithm with the use of adaptive control mecha-

ism (viz. adaptive benefit factor). Automatically driven teaching

actor has improved the performance of the SOS algorithm in or-

er to set a good balance between exploration and exploitation of

he search space and to enhance the diversity of the population.

daptive controlling is proposed in few studies of MOEAs: Zhu
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Fig. 6. The 25-bar truss. 
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et al. [29] presented an adaptive hybrid crossover operator for mul-

tiobjective evolutionary algorithm to enhance the search capability.

Daryani et al. [10] applied an adaptive group search optimization

multiobjective optimization problem to precise algorithms’ conver-

gence characteristic. This paper intends to investigate a good bal-

ance between exploration and exploitation of the search space.

Therefore, we proposed two new versions of the basic SOS algo-

rithm by considering adaptive benefit factor and two-archive tech-

nique in the basic SOS algorithm. It is also observed from the lit-

erature that MOSOS has not been investigated for structural op-

timization so far. Moreover, modification of MOSOS is still under

research. These motives encouraged us to propose three variants

of the SOS algorithm and to investigate its effect on structural op-

timization problems. 

The SOS algorithm has even shown unique characteristics in-

cluding: (1) no need for parameter adjustments since the algo-

rithm is completely parameter-free; (2) Excellent capabilities for

exploration with both mutualism and commensalism; (3) exploita-

tion capabilities gained by cloning and mutating within the para-

sitism phase; (4) inferior solutions can be eliminated completely

during the parasitism phase. With these four benefits, it is clear

to see how the SOS algorithm excels. Compared with other meta-

heuristic algorithms, there are very few that possess all four of the

properties above and this leads to more accurate results and reli-

able processes. 

Since the method has just been developed, there is room for

further development, therefore, in this work we propose to im-

prove the performance of the algorithm by integrating a self-

adaptive strategy and a two-archive technique. The new MOASOS

and MOASOS2arc algorithms are then used to solve a number of

multiobjective truss optimization test problems while the objective

functions include structural mass and maximum nodal displace-

ment. The results obtained from using several optimisers are com-

pared and discussed. 

2. The symbiotic organisms search (SOS) algorithm 

SOS was introduced by Cheng and Prayogo [4] as a continuous-

based meta-heuristic algorithm that utilizes a population-based

search strategy by maintaining a population of potential solutions

when finding global optimum solutions to a given problem. The

algorithm is motivated by the relationship among numerous or-

ganisms surviving together within an ecosystem. Generally, organ-
sms have biological interdependence with others to grow or sur-

ive together within natural ecosystem. This phenomenon is called

s ‘symbiosis’. 

In the beginning, the SOS algorithm starts with the initializa-

ion of the ecosystem population. After the initialization process,

hen the algorithm generates and evaluates each organism posi-

ions by calculating their respective objective function values, such

hat the organism with the best objective value is selected as X best .

he process is repeated iteratively by updating the current solution

ntil the global best solution is discovered. In this situation, the

OS algorithm applied the principle of three fundamental symbio-

is in living organisms; mutualism, commensalism, and parasitism;

o update the new organism’s position. The algorithm loop is ter-

inated when the maximum number of fitness evaluation is met.

he details of these natural symbiosis encoded in the SOS algo-

ithm based on the three fundamental relationships structures are

resented. 

.1. Mutualism phase 

In this phase, both organisms experience advantages from the

ymbiotic relationship. For example, mutualism is found in flower

nd pollinator. After collecting food from the flower, the pollina-

or helps the flowers to become fruit. In this way, this symbiotic

onnotation benefits both individuals from the exchange. There-

ore, this association is called a mutually advantageous symbiotic. 

In the mutualism phase, the design variables ( X i ) or solution

 i ’ sets relationship with a randomly selected design variables ( X k )

r solution ‘ k ’ ( k � = i ). The relationship between these populations

utcomes to individual benefits. New solutions are governed by a

utual Vector (MV) and Benefit Factors (BF 1 and BF 2 ). The MV im-

lies the mutual relationship between solutions ‘ i ’ and ‘ k ’ , shown

n Eq. (3 ). The benefit factors are governed by a random integer

umber with an equal chance as either 1 or 2, shown in Eqs. (4 )

nd ( 5 ). Therefore, the BF 1 and BF 2 indicate two situations where

olutions get an advantage partly or completely from the relation-

hip respectively. Populations are also affected by the best solution

 X best ). The best solution is randomly selected from the first non-

ominated sorting. The fitter solutions are selected as per greedy

election. The mathematical formulation of this phase is specified

s below: 

 

′ 
i = X i + rand ( 0 , 1 ) ∗ ( X best − MV ∗ B F 1 ) (1)

 

′ 
k = X k + rand ( 0 , 1 ) ∗ ( X best − MV ∗ B F 2 ) (2)

V = 

X i + X k 

2 

(3)

 F 1 = round [ rand ( 0 , 1 ) ] + 1 (4)

 F 2 = round [ rand ( 0 , 1 ) ] + 1 (5)

where , i, k ∈ ( 1 , 2 , . . . , n ) ; k � = i 

.2. Commensalism phase 

In this phase, only one organism experiences advantage while

he other does not gain or lose anything. The relationship between

hark and remora fish is a key example with remora fish attaching

hemselves behind the shark’s body. The fish manages to consume

eftover food while the shark does not gain or lose anything from

he behaviour. 
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Fig. 7. Best Pareto fronts of the 25-bar truss. 

Fig. 8. Median Pareto fronts of the 25-bar truss. 
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where, i, k ∈ ( 1 , 2 , . . . , n ) ; k � = i 
This phase simulates the commensalism between two living or-

anisms with one benefitting and the other seeing no change at

ll. The design variables ( X i ) sets relationship with another design

ariables ( X k ) where k � = i . The relationship between these so-

utions leads to the individual advantage of solution ‘ i ’ but does

ot affect solution ‘ k ’. Solutions are also affected by the best

olution ( X ), randomly selected for the current set of non-
best 
ominated solutions. The fitter solutions are selected as per greedy

election. The mathematical formulation of this phase is specified

s below: 

 

′ 
i = X i + rand ( −1 , 1 ) ∗ ( X best − X k ) (6) 
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Fig. 9. 60-bar truss. 
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2.3. Parasitism phase 

In this phase, one organism is eliminated from the ecosystem

completely while the other gain an advantage. The most common

example would be humans and mosquitos. After biting the human,

the mosquito creates a parasite within the body. As the germs re-

produce with bacteria, this leads to disease and even death when

untreated or if the immune system is not strong enough to elim-

inate the parasite. This phase simulates parasitism between two

living organisms is simulated with one benefitting and the other

being harmed. 

Like the anopheles mosquito, the design variable ( X i ) creates

an artificial parasite known as Parasite Vector (PV). PV is created

by regenerating some randomly selected elements of solution ‘ i ’

within their bounds, therefore, PV is a being a clone of the orig-

inal elements of solution ‘ i ’. A randomly selected solution X k for k

� = i is assumed to be a human. If PV has better functional value

compared to solution ‘ k ’, the parasite PV will kill and replace solu-

tion ‘ k ’. 

3. The multiobjective adaptive symbiotic organisms search 

(MOASOS) algorithm and a two-archive technique in MOASOS 

In the mutualism phase of SOS, the benefit factors are key con-

siderations to decide the influence of MV. Benefit factors are de-

cided as per random choice as 1 or 2 in the basic SOS. This practice

corresponds to the situation where populations get benefit par-

tially or fully from MV. Thus, during the course of optimization,

the organisms update only with these two possibilities. In the op-

timization algorithm, lower value of benefit factor allows the fine

search in small steps but causes slow convergence and larger value

of benefit factor speeds up the search. Moreover, in an actual mu-

tualism phenomenon, these benefit factors may not always at its

end state but varies in between also. By this motivation, the ben-

efit factors (BF 1 and BF 2 ) are changed to adaptive benefit factors

(ABF and ABF ) aiming for search performance enhancement, de-
1 2 
ned by the following equations: 

B F 1 = 

{
f 1 ( X i ) / f 1 ( X best ) i f f 1 ( X best ) � = 0 

1 + round [ rand ( 0 , 1 ) ] , i f f 1 ( X best ) � = 0 

(7)

B F 1 = 

{ 

1 , i f AB F 1 < 1 

2 , i f AB F 1 > 2 

AB F 1 , otherwise 
(8)

B F 2 = 

{
f 2 ( X i ) / f 2 ( X best ) i f f 2 ( X best ) � = 0 

1 + round [ rand ( 0 , 1 ) ] , i f f 2 ( X best ) � = 0 

(9)

B F 2 = 

{ 

1 , i f AB F 2 < 1 

2 , i f AB F 2 > 2 

AB F 2 , otherwise 
(10)

It should be noted that the ABF 1 and ABF 2 are used for min-

mization of objective functions. In this mutualism phase of SOS,

he design variables may have small and large move its locations

s it works on various factors. The small and large movements of

he design variables respectively impact the exploration and ex-

loration of a search space. The ABF 1 and ABF 2 let strong explo-

ation competence when a population (‘ i’ or ‘k’ ) is away from the

est population. The ABF 1 and ABF 2 set good exploitation when a

opulation is nearby the best population. Multiobjective adaptive

ymbiotic organisms search (MOASOS) aims to effectively add the

obust and global search features of the adaptive benefits factors. 

Populations are evolving to a fitter version only if their new

tness dominates their pre-interaction fitness. In this case, the

ld X i and X j will be replaced immediately by X ′ 
i 

( X i new) and

 

′ 
j 

( X j new ) , respectively. The X i and X j will be moved into ad-

anced population. Otherwise, the X ′ 
i 

and X ′ 
j 

will be added into ad-

anced population for selecting the next generation ecosystem. In

his way, the proposed algorithm can converge faster while main-

aining good diversity. Since algorithm may gain some important

nformation from dominated the solution in latter sorting. 

Furthermore, a two-archive technique is embedded to MOASOS

eading to a new algorithm termed MOASOS2arc. The main con-

ept of using the two-archive approach is that another type of ex-

ernal archive will be generated based on a sharing function. The

ew archive is proposed to handle population diversity which is

 common issue in multiobjective meta-heuristic. In the popula-

ion reproduction of MOASOS2arc, X best can be selected from both

rchives at random. To find the second archive, new objective func-

ions are calculated and non-dominated solutions according to the

ew objective functions are evaluated. For an individual, the first

ew objective function is the reciprocal of the sum of distances

etween it and other solutions in a population while the second

bjective is the weighted sum of the original objective functions.

or an individual X which having real objective function f = { f 1 , f 2 },

he new functions for the second archive denoted as, f n1 and f n2 ,

an be expressed as: 

f n 1 = 

1 ∑ n −1 
j=1 

∥∥X − X j 

∥∥ , X = X j (11)

nd 

f n 2 = w 1 f 1 + ( 1 − w 1 ) f 2 (12)

here n is a population size while w 1 is a uniform random number

n the range [0,1]. 

X best will be randomly selected from the second archive if a

andom number in [0,1] lower than a threshold values ( rand(0,1) <

rch2 p ) where the threshold values ( Arch2 p ) is iteratively adapted.

therwise, X best is randomly selected from the first non-dominated

rchive. The term of Arch2 p can be iteratively adaptive based on

he following function: 

rch 2 p ( t ) = R × e St (13)
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Fig. 10. Best Pareto fronts of the 60-bar truss. 

Fig. 11. Median Pareto fronts of the 60-bar truss. 
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ln 

(
Arch 2 p f 

)
− ln ( Arch 2 ps ) 

t max − 1 

(14) 

 = 

Arch 2 ps 

e S 
(15) 

Arch2 ps and Arch2 pf are the starting and ending values of Arch2 p 
hich set to be 0.1 and 0.5, respectively. The concept of using the

econd archive is to provide more diversity in the final stage of an
ptimisation run, however, based on Eq. (13) , the second archive

ill be less used in the early stage of the run. This idea was suc-

essfully used in [17] . 

MOSOS, MOASOS, and MOASOS2arch simulate three phases

uch as ‘mutualism phase’, ‘commensalism phase’, and ‘parasitism

hase’. It presents various steps of these algorithms like initial-

zation, mutualism phase, commensalism phase, parasitism phase,

nd termination criteria. Detailed steps of MOSOS, MOASOS, and

OASOS2arch are explained as below: 
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Fig. 12. the 72-bar truss. 

Fig. 13. Best Pareto fronts of the 72-bar truss. 
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Fig. 14. Median Pareto fronts of the 72-bar truss. 
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Initialize population size ( n ), Number of design variables ( m ), limits on design 

X i, j = L i, j + R i, j ∗( U i, j − L i, j ) , f or ∀ i ∈ [ 1 , n ] , f or ∀ j ∈ [ 1 , m ] / ∗ R ∈ [ 0 , 1 ] / ∗ / ∗

Evaluate the population and arrange the population in ascending order → F E =
Identify the best population of the ecosystem. 

while ( g < g max and F E < F E max ) do / ∗ Initialize optimization loop / ∗

for i = 1 to n do 

MV = 

X i + X k 
2 

/ ∗ ‘ k ’ is a randomly selected population, k � = i / ∗

%% if the MOSOS algorithm then 

BF 1 = 1 + round [rand(0,1)] / ∗ The mutualism phase / ∗

BF 2 = 1 + round [rand(0,1)] 

X 
′ 
i 

= X i + rand( 0 , 1 ) ∗( X best − MV ∗B F 1 ) / 
∗ X best is randomly selected from

X 
′ 
k 

= X k + rand( 0 , 1 ) ∗( X best − MV ∗B F 2 ) 

%% if the MOASOS algorithm then 

if f 1 ( X best ) � = 0 → ABF 1 = f 1 ( X i )/ f 1 ( X best ) 

if ABF 1 < 1 → ABF 1 = 1 

if ABF 1 > 2 → ABF 1 = 2 

X 
′ 
i 

= X i + rand( 0 , 1 ) ∗( X best − MV ∗AB F 1 ) / 
∗ X best is randomly selected fro

or second archives in cases of MOASOS2arc/ ∗

if f 2 ( X best ) � = 0 → ABF 2 = f 2 ( X i )/ f 2 ( X best ) 

if ABF 2 < 1 → ABF 2 = 1 

if ABF 2 > 2 → ABF 2 = 2 

X 
′ 
k 

= X k + rand( 0 , 1 ) ∗( X best − MV ∗AB F 2 ) %% 

Evaluate f 1 ( X 
′ 
i 
) ; f 2 ( X 

′ 
i 
) & f 1 ( X 

′ 
k 
) ; f 2 ( X 

′ 
k 
) → F E = F E + 2 

F ( X 
′ 
i 
) < F ( X i ) ↔ X i = X 

′ 
i 

/ ∗ Greedy selection/ ∗

F ( X 
′ 
k 
) < F ( X k ) ↔ X k = X 

′ 
k 

/ ∗ Greedy selection/ ∗

X 
′ 
i 

= X i + rand( −1 , 1 ) ∗( X best − X k ) / ∗ The commensalism phase /

Evaluate F ( X 
′ 
i 
) → F E = F E + 1 / ∗ ‘k’ is a randomly selected popu

( X 
′ 
i 
) < F ( X i ) ↔ X i = X 

′ 
i 

/ ∗ Greedy selection/ ∗

Parasite_Vector / ∗ Parasite vector is a fusion of design variables of the

The parasitism phase / ∗

( Parasite _ Vector ) < F ( X k ) ↔ X k = Parasite _ Vector / ∗ Greedy selectio

end for / ∗ Population loop ends / ∗

end while / ∗ Optimization loop ends / ∗

The flowchart of the MOSOS, MOASOS, and MOASOS2arc algo-

ithms is shown in Fig. 1 . 

. Problem definition 

A typical multiobjective truss optimization problem is mod-

led to find element sizes which minimize truss mass and maxi-

um nodal deflection subject to stress constraints. The optimiza-
les ( L, U ), stopping criteria (‘ FE max ’ or ‘ g max ’) / ∗ Initialization / ∗

lize population / ∗

first non-dominated rank / ∗

er the first 

, k � = i / ∗

ation ‘i’ and randomly generated design variables within its bound / ∗ / ∗

ion problem can be written as: 

 ind, A = { A 1 , A 2 , .., A m 

} (16) 

o minimize , mass of truss and maximum elemental deflection 

f 1 ( A ) = 

m ∑ 

i =1 

A i ρi L i and f 2 ( A ) = max 
(∣∣δ j 

∣∣)
Sub jected to : 
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Fig. 15. the 942-bar truss. 

5

 

v  

M  

p  
Behavior constraints: 

g ( A ) : Stress constraints, | σi | − σ max 
i ≤ 0 

Side constraints: 

ross − sectional area const raint s, A 

min 
i ≤ A i ≤ A 

max 
i 

where, i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n 

Where, A i , ρ i , L i , E i , and σ i stand for design variable, mass den-

sity, element length, Young modules, and element stress, on the

element ‘i’ respectively. δj is displacement node ‘j’ respectively.

The superscripts ‘max’ and ‘min’ denote maximum allowable limit,

minimum allowable limit respectively. 

4.1. Penalty function 

Assuming each objective function distinctly and its minimiza-

tion subject to q constraints, the penalty function of a given solu-

tion can be written as: 

f ( X ) ∗ ( 1 + ε 1 ∗ C ) 
ε 2 , C = 

∑ q 

i =1 
C i , C i = 

∣∣∣∣1 − p i 
p ∗

i 

∣∣∣∣ (17)

Where, p i is the level of constraint violation having the bound

as p ∗
i 
. The parameter q is a number of active constraints. The vari-

ables ɛ 1 and ɛ 2 are pre-determined by the user. In this study,

the values of both ɛ 1 and ɛ 2 are set as 3, which were obtained

from experimenting their effect on the balance of the exploitation-

exploration balance [21–23] . 

4.2. The proposed methodology 

The brief stepwise discussion of the proposed methodology is

as below: 

Step 1. Define the basic configuration of the truss structure. 

Step 2. Assign material properties, loadings, and boundary con-

ditions. 

Step 3. Go to the multiobjective optimization algorithm: de-

fine objective functions, population size, design variables,

bounds, and a termination criterion. 

Step 4. Initialize a randomly generated set of trusses (i.e., pop-

ulation) within its upper and lower bounds. 

Step 5. Go to truss configurations: generate trusses as per the

basic truss structure. 

Step 6. Perform finite element analysis using the matrix method

of structural analysis of a truss. 

Step 7. Compute the global stiffness matrix. 

Step 8. Compute a force vector, solve the boundary conditions,

and then solve for nodal displacement. 

Step 9. Compute element stresses. 

Step 10. Go to a penalty function and check for constraint viola-

tions. If there exist constraint violations, assign penalty val-

ues as per Eq. (17 ); otherwise, compute the total mass and

maximum nodal displacement of the truss. 

Step 11. Go to multiobjective optimization algorithm: assign

functional values. 

Step 12. Update a Pareto archive using a non-dominated sorting

algorithm. 

Step 13. Check the termination criterion. If it is not fulfilled,

generate new trusses (i.e., solutions) as per reproduction of

the employed algorithm. Go to step 5. If the criterion is met,

go to step 14. 

Step 14. Output: Pareto optimal truss structures with the total

mass and maximum nodal displacement. 

Graphical illustration of the proposed methodology is presented

in Fig. 2 . 
. Design problems, results, and discussions 

Five benchmark trusses from Angelo et al. [2,3] are used to in-

estigate the performance of the proposed algorithms. The MOSOS,

OASOS, and MOASOS2arc algorithms are performed for 100 inde-

endent runs. The front hypervolume and spacing-to-extent indi-
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Table 1 

The hypervolume values of results obtained for the 10-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 47302.93 53090.89 50902.21 1294.12 100 5 5 5 

MOACS 52662.60 54395.00 53639.77 307.79 200 4 4 4 

MOSOS 55466.26 56474.53 56092.89 212.59 352 3 2.48 3 

MOASOS 55850.54 56567.16 56236.08 156.33 397 2 2.03 2 

MOASOS2arc 55890.60 56873.05 56389.83 196.10 451 1 1.49 1 
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ators are used for performance investigation. The average value

f the hypervolume from 100 independent runs (Avg.) of each

ethod is used to measure the search convergence of the algo-

ithm while the standard deviation (SD) of hypervolume is used

o measure the search consistency. In addition, a front spacing (S)

atric [19] is used to measure relative distance between consecu-

ive solutions in the obtained non-dominated set. Given that a set

f non-dominated front P having M objective functions is obtained

rom a particular optimization method, the spacing of such a front

an be computed as: 

pacing = 

1 

| P | − 1 

| P | ∑ 

i =1 

(
d i − d̄ 

)2 
(18) 

here | P | is the number of members in the set P. d i is the Eu-

lidian distance of the vector of objective functions i to its nearest

eighbor. d̄ is the mean value of d i . 

The measure of front extension can be determined as: 

xtent = 

M ∑ 

i =1 

∣∣ f max 
i − f min 

i 

∣∣ (19) 

here f i 
min and f i 

max are the minimum and maximum values for

he i th objective function of all members in P . The lower Spacing

he better front while the higher Extent the better. The combina-

ion of both indicators leads to a new performance metric which

easures both front spacing and front extent, which is defined as

he ratio of spacing to extent, 

pacing − to − E xtent = Spacing/E xtent (20)

here the lower Spacing-to-Extent the better non-dominated front.

Also, the two-step statistical tests called Friedman test and Ne-

enyi test [7] are used to rank the algorithms based on the exper-

mental results. The five truss optimization problems can be de-

ailed in the subsequent sections. 

.1. A 10-bar truss 

The fist problem, the 10-bar truss is presented in Fig. 3 . The

aterial properties are as density is 0.1 lb/in 

3 and modulus of elas-

icity is 10 4 ksi. Elements 2 and 4 are subjected to vertical down-

oad forces as 100 kips. The tensile and compressive stresses are

imited to 25 ksi. The elemental cross-sections are selected from

2 discrete values as 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88,

.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22,

.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20,

5.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, and

3.50 in 

2 . 

This problem was run with population size of 50 and number

f generations 100 thus it consumes 150 0 0 FEs. After performing

00 optimisation runs for all optimisers, the hypervolume values

re presented in Table 1 . The best method based on the Avg. value

s MOASOS2arc while the second best is MOASOS. For the mea-

ure of search consistency, the best performer is MOASOS while

he second best is MOASOS2arc. The maximum and hypervolume

alues is obtained by MOASOS2arc. For the comparison based on

he Friedman test and Nemenyi test are at 95% significant level,
he MOASOS2arc and MOASOS algorithms are the best and second

est performer similar to the measurement based on Avg. of hy-

ervolume values. 

The front Spacing-to-Extent performance metrics are calculated

or this problem and the results are presented in Table 2 . As per

he Friedman test and Nemenyi test at 95% significant level, the

OASOS2arc outperforms other algorithms and similar results ex-

ressed as per Avg. and SD of front Spacing-to-Extent values. Also,

he MOASOS2arc and MOASOS algorithms performs better compare

o its basic version. Friedman test and Nemenyi test are shown

early similar results. 

Figs. 4 and 5 show the best obtained Pareto fronts of all the

roposed algorithms and the Pareto fronts at median run. It is ob-

erved that MOASOS2arc is slightly better than other algorithms.

t is also observed from the Pareto fronts of MOASOS and MOA-

OS2arc that a wide range of distinct solutions is obtained, and the

olutions are well distributed along the obtained non-dominated

ronts. Overall, these results demonstrate that MOASOS2arc is the

est performer and proposed modifications advance effectiveness

f the basic MOSOS algorithm. 

.2. A 25-bar truss 

The second problem, the 25-bar truss is presented in Fig. 6 .

he material properties are as density is 0.1 lb/in 

3 and modulus

f elasticity is 10 4 ksi. Loading is considered as P x 1 = 1 Klb, P y 1 =
 z1 = P y 2 = P z2 = − 10 Klb, P x 3 = 0 . 5 Klb, P x 6 = 0 . 6 Klb. The ten-

ile and compressive stresses are limited to 40 ksi. The elemental

ross-sections are selected from 42 discrete values as 0.1, 0.2, 0.3,

.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, and 3.4 in 

2 . 

For the 25-bar truss, the problem was run with the popula-

ion size of 100 and the number of generations 167, thus, it takes

0,0 0 0 FEs. After performing 100 optimisation runs for all opti-

isers, the hypervolume values are presented in Table 3 . The best

or convergence and consistency is MOASOS2arc while the sec-

nd best is MOASOS. The maximum hypervolume is obtained by

OASOS2arc. Based on the Friedman test and Nemenyi test, MOA-

OS2arc and MOASOS are still the best and second best performers.

The front Spacing-to-Extent performance metrics are examined

or this problem and the results are shown in Table 4 . As per the

riedman test and Nemenyi test at 95% significant level, the MOA-

OS2arc, MOASOS, and MOSOS rank first, second, and third respec-

ively and similar results are obtained by Avg. and SD of front

pacing-to-Extent values. In addition, the MOASOS2arc and MOA-

OS algorithms performs better compare to its basic version. Fried-

an test and Nemenyi test are shown nearly similar results. 

The Pareto fronts obtained from the best runs of all algorithms

nd at median position are shown in Figs. 7 and 8 . It is also no-

iced from the Pareto fronts of MOASOS and MOASOS2arc that a

ide range of distinct solutions is obtained, and the solutions are

ell distributed along the obtained non-dominated fronts. Over-

ll, these results reveal that MOASOS2arc is slightly better than

he other algorithms similarly to the case of the10-bar truss and

roposed modifications upgrade effectiveness of the basic MOSOS

lgorithm. 
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Table 2 

The front spacing-to-extent values of results obtained for the 10-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 0.005387 0.024711 0.010590 0.003781 292 2 2.92 2 

MOACS 0.007219 0.029625 0.014219 0.004558 415 5 4.15 5 

MOSOS 0.007441 0.022216 0.011524 0.002013 350 4 3.5 4 

MOASOS 0.007705 0.021266 0.011380 0.002189 340 3 3.4 3 

MOASOS2arc 0.004698 0.0 070 01 0.005661 0.0 0 0461 103 1 1.03 1 

Table 3 

The hypervolume values of results obtained for the 25-bar truss using MOAS, MOACS, MOSOS, and MOASOS. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 1848.04 1902.35 1878.74 9.77 123 5 4.77 5 

MOACS 1850.64 1918.92 1890.61 14.39 177 4 4.23 4 

MOSOS 1942.37 1944.76 1943.60 0.50 344 3 2.56 3 

MOASOS 1942.65 1944.98 1943.76 0.48 356 2 2.44 2 

MOASOS2arc 1944.13 1946.51 1945.61 0.45 500 1 1 1 

Table 4 

The front spacing-to-extent values of results obtained for the 25-bar truss using MOAS, MOACS, MOSOS, and MOASOS. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 0.007937 0.058983 0.022595 0.008424 465 5 4.65 5 

MOACS 0.005254 0.044937 0.017026 0.008361 430 4 4.3 4 

MOSOS 0.005219 0.007943 0.006651 0.0 0 0453 237 3 2.37 3 

MOASOS 0.005655 0.007759 0.006601 0.0 0 0440 214 2 2.14 2 

MOASOS2arc 0.005733 0.006779 0.006362 0.0 0 0208 154 1 1.54 1 

Table 5 

The hypervolume values of results obtained for the 60-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 2465.08 3397.56 3179.88 166.65 173 4 4.27 4 

MOACS 2905.27 3276.04 3106.68 74.18 127 5 4.73 5 

MOSOS 4297.11 4311.74 4304.74 3.06 344 3 2.56 3 

MOASOS 4298.92 4313.27 4307.08 3.42 399 2 2.01 2 

MOASOS2arc 4299.15 4316.84 4309.75 3.44 457 1 1.43 1 

Table 6 

The front spacing-to-extent values of results obtained for the 60-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 0.009977 0.133920 0.034915 0.019500 460 5 4.6 5 

MOACS 0.007890 0.074504 0.029912 0.013732 440 4 4.4 4 

MOSOS 0.005487 0.008685 0.006526 0.0 0 0587 247 3 2.47 3 

MOASOS 0.005589 0.007388 0.006346 0.0 0 0409 230 2 2.3 2 

MOASOS2arc 0.005371 0.006465 0.005849 0.0 0 0202 123 1 1.23 1 

Table 7 

The hypervolume values of results obtained for the 72-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 2070.95 2120.63 2098.37 10.02 142 5 4.58 5 

MOACS 2043.73 2133.54 2101.00 18.78 158 4 4.42 4 

MOSOS 2223.50 2236.83 2232.36 2.19 380 3 2.20 3 

MOASOS 2227.37 2237.36 2233.18 2.21 423 1 1.77 1 

MOASOS2arc 2225.95 2238.24 2232.63 2.40 397 2 2.03 2 

Table 8 

The front spacing-to-extent values of results obtained for the 72-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 0.010919 0.043568 0.022728 0.007183 434 4 4.34 4 

MOACS 0.007918 0.076088 0.026837 0.013808 442 5 4.42 5 

MOSOS 0.013350 0.015643 0.014393 0.0 0 0435 324 3 3.24 3 

MOASOS 0.004268 0.008528 0.005835 0.0 0 0774 108 1 1.08 1 

MOASOS2arc 0.006503 0.007543 0.007126 0.0 0 0229 192 2 1.92 2 
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Table 9 

The hypervolume values of results obtained for the 942-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 44268539.95 55932657.12 50768236.63 3289808.43 150 4 4.5 4 

MOACS 48328371.14 53517016.79 51442233.77 917155.44 150 4 4.5 4 

MOSOS 59247759.94 79812406.08 61635925.25 2844333.17 359 3 2.41 3 

MOASOS 60216408.45 64558874.01 61770355.74 617413.33 443 1 1.57 1 

MOASOS2arc 59720107.25 62630388.16 61452029.45 573717.84 398 2 2.02 2 

Table 10 

The front spacing-to-extent values of results obtained for the 942-bar truss using MOAS, MOACS, MOSOS, MOASOS, and MOASOS2arc. 

Algorithms Min Max Avg. SD Friedman test Friedman rank Nemenyi average rank Nemenyi rank 

MOAS 0.014273 0.120749 0.042659 0.020981 473 5 4.73 5 

MOACS 0.010403 0.079907 0.029013 0.014678 427 4 4.27 4 

MOSOS 0.003170 0.010096 0.004965 0.001050 245 3 2.45 3 

MOASOS 0.003285 0.007260 0.004315 0.0 0 0515 185 2 1.85 2 

MOASOS2arc 0.003226 0.006074 0.004202 0.0 0 0475 170 1 1.7 1 

Fig. 16. Best Pareto fronts of the 942-bar truss. 
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.3. A 60-bar truss 

The third problem, the 60-bar trussed ring is presented in

ig. 9 . The material properties are as density is 0.1 lb/in 

3 and mod-

lus of elasticity is 10 4 ksi. Loading is assumed as load case 1:

 x 1 = −10 Klb and P x 7 = 9 Klb, load case 2: P x 15 = P x 18 = −8 Klb,

nd P y 15 = P y 18 = 3 Klb, and load case 3: P x 22 = −20 Klb and P y 22 =
0 Klb. The tensile and compressive stresses are limited to 40 ksi.

he elemental cross-sections are selected from 45 discrete values

s [0.5,0.6,0.7,…,4.9] in 

2 . 

For the 60-bar truss, the problem was run with the popula-

ion size of 100 and the number of generations 167, thus, it takes

0,0 0 0 FEs. Having performed 100 optimisation runs for all opti-

isers, the hypervolume values are presented in Table 5 . The best

or convergence rate is MOASOS2arc while the second best is MOA-

OS similar to the cases of 10-bar truss and 25-bar truss. For the

easure of search consistency, the best performer is MOSOS while

he second best is MOASOS. The maximum hypervolume is still ob-

ained by MOASOS2arc for this case. The conclusion based on the
riedman test and Nemenyi test is that MOASOS2arc and MOASOS

re still the best and the second best performers. 

The front Spacing-to-Extent performance metrics are analysed

or this problem and the results are illustrated in Table 6 . It is ob-

erved as per the Friedman test and Nemenyi test at 95% signifi-

ant level that the MOASOS2arc, MOASOS, and MOSOS rank first,

econd, and third respectively and similar results are also obtained

y Avg. and SD of front Spacing-to-Extent values. In addition, the

OASOS2arc and MOASOS algorithms performs better compare to

ts basic version. Friedman test and Nemenyi test are shown nearly

imilar results. 

For this case, MOASOS2arc is said to be the overall best per-

ormer. Figs. 10 and 11 show the Pareto fronts obtained from the

est runs of all the algorithms and the Pareto fronts at median

uns. It is also observed from the Pareto fronts of MOASOS and

OASOS2arc that a wide range of distinct solutions is obtained,

nd the solutions are well distributed along the obtained non-

ominated fronts. The Pareto fronts obtained from MOASOS2arc,

OASOS, and MOSOS are stable compare to that obtained by using
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Fig. 17. Median Pareto fronts of the 942-bar truss. 
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MOAS and MOACS. It can be concluded that MOASOS2arc front is

slightly better than the other algorithms and proposed modifica-

tions advance effectiveness of the basic MOSOS algorithm. 

5.4. A 72-bar truss 

The fourth problem, the 72-bar truss is presented in Fig. 12 .

The material properties are as density is 0.1 lb/in 

3 and modu-

lus of elasticity is 10 4 ksi. Loading is assumed as load case 1:

F 1 x = F 1 y = 5 kips and F 1 z = −5 kips and load case 2: F 1 z = F 2 z =
F 3 z = F 4 z = −5 kips . The tensile and compressive stresses are lim-

ited to 25 ksi. The elemental cross-sections are selected from 25

discrete values as [0.1,0.2,0.3,…, 2.5] in 

2 . The bar elementals are

grouped into 16 groups to consider structural similarity as per pre-

vious studies. 

For the 72-bar truss, the problem was run with population

size of 100 and number of generations 167, therefore, it consumes

50,0 0 0 FEs. After performing 100 optimisation runs for all opti-

misers, the hypervolume values are presented in Table 7 . The best

algorithm based on the Avg. value is MOASOS while the second

best is MOASOS2arc. For the measure of search consistency, the

best performer is MOSOS while the second best is MOASOS sim-

ilar to the case of 60-bar truss. The maximum hypervolume is still

obtained by MOASOS2arc for this case. The conclusion based on

the Friedman test and Nemenyi test is similar to the measurement

based on Avg. of the hypervolume values i.e. MOASOS is the best

while MOASOS2arc is the second best. 

The front Spacing-to-Extent performance metrics are calculated

for this case and the results are illustrated in Table 8 . It is observed

as per the Friedman test and Nemenyi test at 95% significant level

that the MOASOS, MOASOS2arc, and MOSOS rank first, second, and

third respectively and similar results are also obtained by Avg. of

front Spacing-to-Extent values. In addition, the MOASOS2arc and

MOASOS algorithms performs better compare to its basic version.

Friedman test and Nemenyi test are shown nearly similar results. 

Figs. 13 and 14 shown the best Pareto fronts obtained from the

best runs and the median results of all algorithms. It is observed
hat MOASOS is slightly better than the other algorithms. It is also

bserved from the Pareto fronts of MOASOS and MOASOS2arc that

 wide range of distinct solutions is obtained, and the solutions

re well distributed along the obtained non-dominated fronts. The

areto fronts obtained from MOASOS2arc, MOASOS, and MOSOS

re stable compare to that obtained by using MOAS and MOACS.

or this case, the results reveal that MOASOS is the best algorithm

nd proposed modifications lead to greater effectiveness of the ba-

ic MOSOS algorithm. 

.5. A 942-bar truss 

The fifth problem, the 942-bar truss is presented in Fig. 15 . The

aterial properties are as density is 0.1 lb/in 

3 and modulus of elas-

icity is 10 4 ksi. Loading is assumed as the vertical loads along z

xis are – 3 kips, – 6 kips, and –9 kips at each of the nodes in

he first, second, and third sections, respectively; the lateral loads

long y axis are 1 kips at each node of the truss; and the lateral

oads along x axis are 1.5 kips and 1.0 kips at each node on the

eft and right sides of the truss, respectively. The tensile and com-

ressive stresses are limited to 25 ksi. The elemental cross-sections

re selected from 200 discrete values as [1,2,3,…, 200] in 

2 . The bar

lementals are grouped into 59 groups to consider structural simi-

arity as per previous studies [2,3] . 

For the 942-bar truss, the problem was run with the popu-

ation size of 100 and the number of generations 167. It conse-

uently uses 50,0 0 0 FEs. After performing 100 optimisation runs

or all optimisers, the hypervolume values are presented in Table 9 .

he best algorithm based on the Avg. value is MOASOS while the

econd best is MOSOS. For the measure of search consistency, the

est performer is MOASOS2arc while the second best is MOASOS.

he maximum hypervolume value is obtained from MOSOS for this

ase. The comparison based on the Friedman test and Nemenyi test

hows that the best performer is MOASOS while the second best is

OASOS2arc. For this case, the results demonstrate that MOASOS

s better optimiser compare to other algorithms. 
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The front Spacing-to-Extent performance metrics are examined

or this problem and the results are illustrated in Table 10 . It is

bserved as per the Friedman test and Nemenyi test at 95% signif-

cant level that the MOASOS2arc, MOASOS, and MOSOS rank first,

econd, and third respectively and similar results are also obtained

y Avg. and SD of front Spacing-to-Extent values. In addition, the

OASOS2arc and MOASOS algorithms performs better compare to

ts basic version. Friedman test and Nemenyi test are shown nearly

imilar results. 

Figs. 16 and 17 shown the Pareto fronts obtained from the best

nd median runs of all algorithms. It is observed that MOASOS2arc

nd MOASOS are better performer than the other algorithms. It

s also observed from the Pareto fronts of MOASOS and MOA-

OS2arc that a wide range of distinct solutions is obtained, and the

olutions are well distributed along the obtained non-dominated

ronts. The Pareto fronts obtained from using MOASOS2arc, MOA-

OS, and MOSOS are superior to that obtained by using MOAS

nd MOACS. For this case, the results reveal that MOASOS2arc and

OASOS are nearly similar and better compared to other algo-

ithms. It is also observed that the proposed modifications im-

roved effectiveness of the basic MOSOS algorithm. 

. Conclusions 

In this study, the MOSOS, MOASOS, and MOASOS2arc algo-

ithms are proposed to optimize five constrained benchmark truss

roblems. The basic MOSOS algorithm works on the symbiotic re-

ationship called as mutualism, commensalism, and parasitism. As

he main contribution, this work proposes an adaptive benefit fac-

or to handle trade-off between exploration and exploitation of

earch process during the mutualism phase of the basic MOSOS al-

orithm whereas two-archive approach is combined with MOASOS

o handle population diversity. 

The effectiveness of the proposed algorithms is investigated to

esign planar trusses (i.e. 10-bar truss and 60-bar truss) and space

russes (i.e. 25-bar truss, 60-bar truss, and 942-bar truss) subjected

o elemental stress and discrete cross-sectional areas as behaviour

nd side constraints respectively. Objective functions are mini-

ization of the truss’ mass and maximum of nodal displacement.

he MOSOS, MOASOS, and MOASOS2arc algorithms are firstly em-

loyed in multiple objective structural optimization problem s and

hus it simulates engineering applications. 

This study compared performance of the MOASOS and MOA-

OS2arc algorithms with the original MOSOS and other MHs such

s MOAS and MOACS. The front hypervolume and Spacing-to-

xtent matrices were employed to measure effectiveness of the al-

orithms. Also, the two-step statistical tests called Friedman test

nd Nemenyi test were used to rank the algorithms. It was ob-

erved that in all the problems, the MOASOS and MOASOS2arc al-

orithms has a better capability for obtaining results as compared

o the results of MOSOS, MOAS, and MOACS. MOASOS2arc per-

orms better compare to MOASOS to optimize small trusses such

s 10-bar truss, 25-bar truss, and 60-bar truss; whereas MOASOS

erforms better compare to MOASOS2arc to optimize large trusses

uch as 72-bar truss and 942-bar truss with discrete design vari-

bles. Overall, the presented improvements upsurge a good balance

etween exploitation and exploration, and able to maintain popu-

ation diversity in the original MOSOS algorithm. 
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