
ITMSOC Transactions on Information Technology Management 01 (2016) 19–25
http://www.itmsoc.org

Comparison between Shape-Based and Area-Based Features Extraction for
Java Character Recognition

Rudy Adipranata∗, Gregorius Satia Budhi, Liliana, Bondan Sebastian

Informatics Department, Petra Christian University Siwalankerto, Surabaya, Indonesia

Received 29 February 2016; Accepted 23 August 2016

Abstract

Java language is one of the local languages are widely used in Indonesia. Java language is widely used by resident of the island of Java. Java language
has special character called Java character. In this research we compare features extraction which will be used to perform the recognition of Java
character. The accuracy of recognition is greatly affected by accuracy of features extraction. Because if there are a lot of similar features between one
character with other characters, may cause the system to recognize as the same characters. In this research, we compare between shape-based features
and area-based features. Shape-based features consist of curves, lines, and loop composing a Java character. The number of curves, lines, and loop will
vary between characters with other characters. For area-based features extraction, each character divide into 9 × 9 equal regions. In each region, the
number of pixels will be calculated. From experimental results, area-based features extraction gives better result than shape-based features extraction.
This experiment is done by using probabilistic neural network (PNN) as a method of recognition. By using shape-based features extraction, the system
only has recognition accuracy below 20%, but using area-based features extraction, the recognition accuracy can achieve more than 60%.

© 2016 Published by ITMSOC Working Group.

Keywords: Shape-based Feature Extraction, Area-based Feature Extraction, Probabilistic Aeural Network.

1. Introduction

INDONESIA is a nation composed of many ethnic groups.
Each ethnic has its own culture. One ethnic is Javanese who

mostly lived on the island of Java. Javanese has a culture which
covers language, writing, dancing, food, etc. In writing, Javanese
has its own form of letters referred to the character of Java. Learn-
ing of Java characters has its own difficulty level, because Java
character consist of so many symbols, categorized as basis char-
acters, vowels, complementary, and so on. Because it is difficult
to learn, then lately not many people can do the writing or read-
ing of Java characters. In this research, we will try to preserve
the Javanese character by developing a system to recognize Java
character automatically.

∗Corresponding author.
Email address: rudya@petra.ac.id (Rudy Adipranata)

e-ISSN: 2539-5912© 2016 ITMSOC Working Group. All rights rerserved.

One of the most important parts of the Java character recogni-
tion is feature extraction. The accuracy of recognition is greatly
affected by accuracy of features extraction. Because if there are
a lot of similar features between one character with other charac-
ters, may cause the system to recognize as the same characters. In
this research, we compare between shape-based features and area-
based features. Shape-based features consist of curves, lines and
loop composing a Java character. The number of curves, lines,
and loop will vary between characters with other characters [1].
To detect shape-based features, flood fill algorithm, Hough trans-
form [2–4] will be used. For area based features extraction, each
character divide into nine equal regions. In each region, the num-
ber of pixels will be calculated [5].

Before doing features extraction, several image preprocessing
have been applied. The first one is skeletonization and followed
by image segmentation. Skeletonizing is one of image processing
that is used to reduce the pixels of an image while maintaining in-

http://www.itmsoc.org


20 R. Pruengkarn et al. / ITMSOC Transactions on Information Technology Management 01 (2016) 19–25

formation, characteristic, and important pixels of the object. The
purpose of skeletonizing is to make simpler image so that the im-
age can be analyzed further in terms of shape and suitability for
comparison with other images. This is implemented by changing
the initial image in binary into skeletal representation of the im-
age [2]. The next preprocessing is image segmentation. Image
segmentation is done to get a piece of each Java character.

Fig. 1. Basis Java character.

Fig. 2. Main Java characters.

Java character Description Sandhangan name
Vowel i Wulu

Vowel u Suku

Vowel é Taling

Vowel ê Pepet

Vowel o Taling tarung

Fig. 3. Sandhangan character for vowels.

2. Java Character

Java characters have 20 basis characters, 20 characters who
serve to close vowel (called pasangan), 8 main characters (called
murda) used to write the beginning of sentences and words that
show proper names, titles, cities, institutions, and other names,

Fig. 4. Pixel and its eight neighbors.

Fig. 5. a) xy area. b) Parameter space.

some complimentary (called sandhangan) as vowels, special char-
acters, punctuation, etc. Basis character can be seen in Fig. 1 [6].

Main characters that used to write the beginning of sentences
or names of person can be seen in Fig. Fig. 2 [7].

Some complementary especially for vowels can be seen in Fig.
3 [8].

3. Skeletonizing

Skeletonizing is one of image processing that is useful for re-
ducing pixel of an image (binary image), but may still retain the
information, and the characteristics of the object that is on the
image. There are several methods that can be used to implement
skeletonizing, one of which is a method proposed by Zang-Suen
[5]. The basic idea is to determine whether a pixel could be eroded
just by looking at the eight neighbors of the pixel. The eight
neighbors and the pixel can be seen in the Fig. 4.

To determine whether a pixel can be removed or not, there are
two requirements. The first requirement is as follows [1]:

• If pixel has more than one and less than 7 neighbors, then it
can be removed.

• If pixel has the only one connectivity, then it can be removed.



R. Pruengkarn et al. / ITMSOC Transactions on Information Technology Management 01 (2016) 19–25 21

Fig. 6. a) Representasi normal suatu garis. b) Parameter space (ρ, θ).

Fig. 7. Parabolic curve.

• If at least one of the neighbors who are in the direction of 1,
3, or 5 is a background pixel, the pixel can be removed.

• If one of the neighbors who are in the direction of 3, 5, or 7
is a background pixel, the pixel can be removed.

The second requirement differs from first requirement in the
last two steps:

• If at least one of the neighbors who are in the direction of 7,
1, or 3 is a background pixel, the pixel can be removed.

• If one of the neighbors who are in the direction of 1, 5, or 7
is a background pixel, the pixel can be removed.

The first step on the above steps can be written as a logical
expression in (1).

v(X) ∧
(
∼edge(X)∨

(
v(d3) ∧ v(d5) ∧

(
v(d1) ∨ v(d7)

)))
(1)

Fig. 8. System design.

Fig. 9. Example of shape-based feature extraction.



22 R. Pruengkarn et al. / ITMSOC Transactions on Information Technology Management 01 (2016) 19–25

Table 1. Recognition Result of PNN Using Shape-based Feature Extraction.
No. Image Number of

Java
Character

for
Training

Number of
Java

Character for
Classification

Accuracy
(%)

1 Image 1 60 136 15.44
2 Image 2 46 110 16.36
3 Image 3 57 79 20.25
4 Image 4 61 222 23.42
5 Image 5 51 126 22.22
6 Image 6 28 27 29.63
7 Image 7 59 153 15.69
8 Image 8 43 87 16.09
9 Image 9 56 142 14.79
10 Image 10 15 10 30.00

Average 18.77

Table 2. Recognition Result of PNN Using Area-Based Feature Extraction.
No. Image Number of

Java
Character

for
Training

Number of
Java

Character for
Classification

Accuracy
(%)

1 Image 1 60 136 63.24

2 Image 2 46 110 49.09

3 Image 3 57 79 54.43
4 Image 4 61 222 56.76
5 Image 5 51 126 64.29
6 Image 6 28 27 55.56
7 Image 7 59 153 66.01
8 Image 8 43 87 75.86
9 Image 9 56 142 62.68
10 Image 10 15 10 60.00

Average 61.08

While the second step on the above steps can be written as a logi-
cal expression in (2).

v(X) ∧
(
∼edge(X)∨

(
v(d7) ∧ v(d1) ∧

(
v(d5) ∨ v(d3)

)))
(2)

X indicates the pixel being examined. V function generates the
pixel value (1 = true for foreground pixels and 0 = false for pixel
background). Edge function is true if X at the end of the object
(referring to the number of neighbors of more than one and less
than seven and the number of connectivity = 1). d1, d3, d5, and d7
referring to the neighbors pixels in a certain direction to the pixel
X as seen in Fig. 4.

4. Feature Extraction

Feature extraction is the process of finding a mapping from
original features into new features that is expected to give better
result for class differences [9]. Feature extraction is an important

topic in the classification, because the good features will be able
to increase the rate of accuracy, while features that are not well
tended will decrease the rate of accuracy.

In this research we will use and compare shape-based and area-
based feature extraction. For shape-based, consist of curves, lines
and loops that composed one Java character. While for area-
based, image of Java character divided into small areas and the
number of pixel in each area will be calculated.

4.1. Flood Fill Algorithm
Flood fill algorithm is used to detect a loop or closed curve. It

has three main parameters, namely the start node, the target color
and color replacement. Flood fill algorithm searches all nodes in
the array which are connected to the start node through the path
of the target color and then replace it with a replacement color.
The following steps below are flood fill based algorithm by using
recursion [5]:

1) Return if the node has not the same color as a target
2) Set the nodes color into a replacement color.
3) Run flood fill one step from the node to the west.

Run flood fill one step from the node to the east.
Run flood fill one step from the node to the north.
Run flood fill one step from the node to the south.

4) Return.

4.2. Hough Transform
Hough Transform is used to detect shape in the image, e.g. line

or curve. Hough Transform was first proposed by P.V.C Hough
[3], and then Duda and Hart have implemented it to detect the
lines in the image [4].

Hough Transform maps the points in the image into the pa-
rameter space (Hough Transform space) based on a function that
defines the shape that wants to be detected. Then the algorithm
takes a vote on an array element called the accumulator array. The
straight lines that will be detected by Hough Transform should
satisfy (3) and (4).

y = a · x + b, (3)
b = −x1 · a + y1. (4)

By changing (3) and (4), each edge point (x, y) on an image will
result in single line equation parameters (a, b). The points on the
same line will have the value of the parameter that cross at a point
(a, b) in the parameter space as shown in Fig. 5.

First, the value of the accumulator is initialized to 0. The edge
of the object in the image, for each point (x, y), the value of b is
calculated according to Eq. (4). The result is to be rounded to the
nearest acceptable value in accumulator. Accumulator value will
increase for each appropriate value a and value b according to (5).

A(a, b) = A(a, b) + 1, (5)
ρ = x cos θ + y sin θ, (6)

A(ρ, θ) = A(ρ, θ) + 1. (7)



R. Pruengkarn et al. / ITMSOC Transactions on Information Technology Management 01 (2016) 19–25 23

Each edge point has appropriate line parameter mapped in the
accumulator. The higher the value in the accumulator, the greater
the likelihood of a line is detected in the image. A polar equation
for a line with a parameter ρ and orientation θ has been proposed
by Duda and Hart [4] as seen in (6).

Each point in the image is mapped into the accumulator for
each value ρ and θ which satisfy (7).

The illustration of this mapping can be seen in Fig. 6.
The range of values for the angle θ is ±90 as measured by the

x-axis. While the range of values of ρ is ±
√

2D, where D is the
distance between the vertex on the image [2].

Hough Transform can be used also to detect a parabolic curve.
This was proposed by M.Z. Mat Jafri and F. Deravi [10]. There
are four parameters involved, namely the point (x0, y0), orienta-
tion (θ), and the coefficient which contains information about the
parabolic curvature in standard parabolic curve detection. But this
algorithm can detect parabolic curve in any orientation using only
three parameters [10]. The parameters are the point (x0, y0) and
orientation θ. In this algorithm, by using 3D accumulator, all
parabolic curves in various positions can be detected. The ap-
proach uses a point on the curve as a parameter which also shows
the position of maximum curvature of the parabolic curve. For
the gradient approach, Sobel operator is used. A coordinate trans-
formation matrix is used to derive a new parabolic equations in-
volving parabolic curve orientation to detect the parabolic curve
in any orientation. Fig. 7 shows the graphic of parabolic curve
with a specific orientation angle.

(x′, y′) coordinates is the (x, y) coordinates rotation by θ degrees
with the center coordinate system as the axis of rotation. The
vertex of parabola is (x′0, y

′
0) at the (x′, y′) coordinates or (x0, y0)

in the (x, y) coordinates. Equation (8) is equation of the parabola
in the (x′, y′) coordinates [10].

(y′ − y′0) = p · (x′ − x′0)2. (8)

Equation (9) is standard two dimensional geometry matrix for
counter-clockwise rotation with θ angle transformation.[

x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

]
·

[
x
y

]
(9)

By substituting the value of x, y, x0 and y0 in (9) to (8), the
parabolic (8) can be written as (10).

The value of differentiation of this equation is given in (11).
By substituting (11) into (10), a new relation to the parabola

vertex and the orientation (x0, y0, θ) is shown in (12) [6].
Using the above relationship, parabola detection in various ori-

entations can be done using only three dimensional accumulator
arrays.

5. System Design

The system design is done by using a flowchart, which can be
seen in Fig. 8.

Before doing feature extraction, image segmentation first per-
formed to obtain an image of each Java character. Then, after the
obtained images that contain only one Java character, skeletoniz-
ing is done in order to get the Java character with a thickness of
one pixel. From the results of skeletonizing, then feature extrac-
tion will be done either based on shape-based or area-based.

For shape-based feature extraction, the process will detect loop,
lines, and curves that form Java character. For each of Java char-
acter, is divided into two segment, upper segment and lower seg-
ment. For each segment, the number of detected loop, line, and
curve is calculated. Those numbers are features that will be used
as input to the Java character recognition. For each of Java char-
acter, there will be seven features from shape-based feature ex-
traction: number of total loop, number of loop in upper segment,
number of loop in lower segment, number of line in upper seg-
ment, number of line in lower segment, number of curve in upper
segment, and number of curve in lower segment.

In the area-based feature extraction, the first step is to resize
the image of each Java character to become 81 × 81 pixels. Then
the image that has been resized, divided into 9 × 9 regions. So in
total there are 81 regions with the size of each area is 81 pixels.
The number of black pixels in each area is calculated, and the
results of these calculations are features that will be used later
in the process of Java character recognition. There are total 81
features from area-based feature extraction.

For recognition process, probabilistic neural network (PNN) al-
gorithm is used. This method is used because PNN has a high
accuracy in the classification of data, also has high speed when
performing the process [11].

6. Experimental Results

Ten images of Java character are used in experiment. In each
images, all Java characters divided into two, for training and for
classification. All of them are processed with shape-based fea-
ture extraction and area-based feature extraction. The results of
recognition rate are compared between them.

Example of shape-based feature extraction result can be seen in
Fig. 9.

Experiment result of shape-based feature extraction for Java
character recognition using PNN method can be seen in Table 1.

From experimental result in Table 1, it can be seen that accu-
racy rate is only 18.77, below 20%. For experiment using area-
based feature extraction, can achieve accuracy rate 61.08%. The
result can be seen in Table 2.

From the results of this experiment, although it can be con-
cluded that the area-based feature extraction is better, but the re-
sults of the recognition is still not satisfactory, because it only
reached slightly above 60%. Further research can be done using
another recognition method to obtain better recognition results.



24 R. Pruengkarn et al. / ITMSOC Transactions on Information Technology Management 01 (2016) 19–25

(−x sin θ + y cos θ) − (−x0 sin θ + y0 cos θ) = p
[
(x cos θ + y sin θ) − (x0 cos θ + y0 sin θ)

]2 . (10)

− sin θ +
dy
dx

cos θ = 2p
[
(x cos θ + y sin θ) − (x0 cos θ + y0 sin θ)

]
·

[
cos θ +

dy
dx

sin θ
]
. (11)

y0 =

[
k1(x cos θ + y sin θ) + (x sin θ − y cos θ)

k1(sin θ − cos θ)

]
− x0

[
k1 cos θ + sin θ
k1 sin θ − cos θ

]
, (12)

where, k1 = x0
− sin θ +

dy
dx cos θ

2(cos θ +
dy
dx sin θ)

. (13)

7. Conclusions

From the experimental results, it can be concluded that the use
of area-based feature extraction give better results than the use of
shape-based feature extraction. By using PNN as a Java character
recognition method, the use of area-based feature extraction can
result in accuracy rate of over 60%, while the use of shape-based
feature extraction can only result accuracy rate less than 20% ac-
curacy rate. This is because many of Java characters that have
number of shape features that are similar to each other.

Acknowledgment

We thank to PT Coordination of PrivateHigher Education Re-
gion VII, East Java, Indonesia for funding this research by
Research Competitive Grant DIPA-PT Coordination of Private-
Higher Education Region VII, East Java, Indonesia fiscal year
2015 no. 20/SP2H/PDSTRL PEN/LPPM-UKP/IV/2015 entitled
(in Bahasa Indonesia) “Aplikasi Pengenalan Aksara Jawa Guna
Digitalisasi Dokumen Beraksara Jawa Untuk Mendukung Pe-
lestarian Budaya Nasional”.

References

1. Adipranata R, Liliana, Indrawijaya M, Budhi GS. Feature extraction for
Java character recognition. In: Proc. of 4th International Conference on
Soft Computing, Intelligent System and Information Technology. Bali, In-
donesia; 2015. Available from: http://fportfolio.petra.ac.id/user files/99-015/

FeatureExtractionforJavaCharacterRecognition.pptx.
2. Gonzalez R, Woods R. Digital Image Processing. 3rd ed. New Jersey: Pren-

tice Hall; 2008.
3. Hough PVC. Machine analysis of bubble chamber pictures. In: Proc. 2nd

International Conference on High-Energy Accelerators and Instrumentation
(HEACC 1959). vol. C590914. CERN, Geneva, Switzerland; 1959. p. 554–
558. Available from: http://inspirehep.net/record/919922/files/HEACC59
598-602.pdf.

4. Duda RO, Hart PE. Use of the Hough transformation to detect lines and
curves in pictures. Commun ACM. 1972 Jan;15(1):1115. Available from:
http://dx.doi.org/10.1145/361237.361242.

5. Parker JR. Algorithm for Image Processing and Computer Vision. New York:
John Wiley and Sons; 2010.

6. Daryanto. Kawruh Basa Jawa Pepak. Surabaya:Apollo Lestari; 1999. Avail-
able from: http://onesearch.id/Record/IOS1-INLIS000000000629660.

7. Javanese Alphabet (Carakan); 2015. Available from: http://www.omniglot.
com/writing/javanese.htm.

8. Hastuti D. Learning Java Character; 2011. Wordpress Blog.
Available from: https://dhenokhastuti.wordpress.com/2011/04/11/

mari-belajar-lagi-menulis-aksara-jawa/.
9. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A. Automatic feature ex-

traction using genetic programming: An application to epileptic EEG classi-
fication. Expert Systems with Applications. 2011 Aug;38(8):10425–10436.
Available from: http://dx.doi.org/10.1016/j.eswa.2011.02.118.

10. Jafri MZM, Deravi F. Efficient algorithm for the detection of parabolic curves.
In: Melter RA, Wu AY, editors. Proc. SPIE 2356, Vision Geometry III. SPIE-
Intl Soc Optical Eng; 1995. p. 53–61. Available from: http://dx.doi.org/10.
1117/12.198623.

11. Specht DF. Probabilistic neural networks. Neural Networks. 1990
Jan;3(1):109118. Available from: http://dx.doi.org/10.1016/0893-6080(90)
90049-Q.

Biographies

Rudy Adipranata is currently a senior
lecturer in Informatics Department, Pe-
tra Christian University, Surabaya, In-
donesia.

He received his bachelor degree
in Electrical Engineering from Pe-
tra Christian University, Surabaya, In-
donesia, and master degree in Software
Engineering from Graduate School of
Software, Dongseo University, Busan,
South Korea.

His research interests are image pro-
cessing and computer vision.

http://fportfolio.petra.ac.id/user_files/99-015/Feature Extraction for Java Character Recognition.pptx
http://fportfolio.petra.ac.id/user_files/99-015/Feature Extraction for Java Character Recognition.pptx
http://inspirehep.net/record/919922/files/HEACC59_598-602.pdf
http://inspirehep.net/record/919922/files/HEACC59_598-602.pdf
http://dx.doi.org/10.1145/361237.361242
http://onesearch.id/Record/IOS1-INLIS000000000629660
http://www.omniglot.com/writing/javanese.htm
http://www.omniglot.com/writing/javanese.htm
https://dhenokhastuti.wordpress.com/2011/04/11/mari-belajar-lagi-menulis-aksara-jawa/
https://dhenokhastuti.wordpress.com/2011/04/11/mari-belajar-lagi-menulis-aksara-jawa/
http://dx.doi.org/10.1016/j.eswa.2011.02.118
http://dx.doi.org/10.1117/12.198623
http://dx.doi.org/10.1117/12.198623
http://dx.doi.org/10.1016/0893-6080(90)90049-Q
http://dx.doi.org/10.1016/0893-6080(90)90049-Q


R. Pruengkarn et al. / ITMSOC Transactions on Information Technology Management 01 (2016) 19–25 25

Gregorius Satia Budhi is currently
a senior lecturer in Informatics De-
partment, Petra Christian University,
Surabaya, Indonesia.

He received his bachelor degree in
Electrical Engineering, minority on
computer science from Adhi Tama In-
stitute of Technology, Surabaya, In-
donesia, and master degree in Infor-
matics from Sepuluh November Insti-
tute of Technology, Surabaya, Indone-
sia.

His research interests are artificial intelligence and data mining.

Liliana is currently a senior lecturer in
Informatics Department, Petra Chris-
tian University, Surabaya, Indonesia.

She received her bachelor degree
in Informatics from University of
Surabaya, Indonesia, and master de-
gree in Visual Content from Graduate
School of Software, Dongseo Univer-
sity, Busan, South Korea.

Her research interests are image pro-
cessing and computer vision.

Bondan Sebastian is currently a web
developer at Smart-IT, Surabaya, In-
donesia.

Hereceived his bachelor degree in
Informatics from Petra Christian Uni-
versity, Surabaya, Indonesia.


	Introduction
	Java Character
	Skeletonizing
	Feature Extraction
	Flood Fill Algorithm
	Hough Transform

	System Design
	Experimental Results
	Conclusions
	References
	Biographies
	Rudy Adipranata
	Gregorius Satia Budhi
	Liliana
	Bondan Sebastian


