
Available online at: https://proceeding.researchsynergypress.com/index.php/rsfconferenceseries1
RSF Conference Series: Business, Management, and Social Sciences

e-ISSN 2807-5803/p-ISSN 2807-6699
Volume 2 Number 1 (2022): 231-241

Corresponding author
khanissatya@gmail.com
DOI: https://doi.org/10.31098/bmss.v2i1.539 Research Synergy Foundation

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca
Hardayaperkasa

Khanis Satya1, Indriati N. Bisono1, Hanijanto Soewandi2

1International Business Engineering Program, Universitas Kristen Petra, Surabaya, Indonesia

2MicroStrategy, Tysons Corner, VA, USA

Abstract

We propose to manage a (MicroStrategy) Business Intelligence Server in term of RAM allocation for
its Intelligent Cubes as a two-stage resource allocation problem in which the first stage is formulated
as an multi criteria problem that can be solved using Analytic Hierarchy Process (AHP) and the
second stage is multiple (several) 0-1 classic Knapsack problems with the constraints that are
obtained using the result from the first stage. This Approach happens to have advantage in term of
computational complexity as well, it reduces from O(nM) to O(max{nj}max{Mj}) when calculated in
parallel. We illustrate our proposal with a numerical example based on our experience.

Keywords: Business Intelligence Server; Analytic Hierarchy Process; Knapsack problem.

This is an open access article under the CC-BY-NC license

INTRODUCTION

In recent years, Business Intelligence (BI) is growing very rapidly in Indonesia. Inkwood Research
predicted that between 2017 – 2022, the compound annual growth rate (CAGR) is 9.7%. Recent
prediction for global BI world-wide is also expected to grow further from USD 23.1B to USD 33.3B
from 2020 to 2025. Therefore, it is not surprising that many companies and organizations in
Indonesia started to adopt BI technology. One of the Business Intelligence is the MicroStrategy BI
enterprise software which is the subject of our research.

Each MicroStrategy Project essentially starts with a collection of lookup tables, relationship tables,
and fact tables from Data Warehouse (or Datamart). These tables are then imported, and from these
tables a BI Architect will create a set of schema objects, i.e., Attributes (grouping of data, e.g., Item,
Region, Month, etc.) and Facts (measures of interest, e.g., Cost, Profit, etc.). The Facts (together with
aggregation functions/other type of calculations, e.g., Sum, Avg, Min, Max, etc.) are then used to
construct Metrics (e.g., Revenue, Profit, etc.). To provide those business analysts with access to the
data, the most common method is to use several Intelligent Cubes (I-Cubes) within a MicroStrategy
Project. Figures 1 and 2 are very high-level pictures of MicroStrategy BI Server in the context of I-
Cubes, Project, usages, and some statistics.

In Figure 1, an Intelligent Cube in a particular project is shared as a single in-memory dataset,
among the different reports created by many users. Multiple reports are built that gather data from
the Intelligent Cube instead of querying the data warehouse.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

232 │

Figure 2 illustrates the fact that in a single
MicroStrategy BI Server, there could be multiple projects (in the above example, there are 3
projects) and each project will have multiple I-Cubes (2 I-Cubes belong to “Finance” project, 4 I-
Cube belongs to “Human Resource Analysis” project, and 2 I-Cubes belong to “Marketing” project).
Furthermore, it is worth to point out that each I-Cube will have its own size, i.e., use memory, and
it can have different Status, namely: A = Active, F = File, L = Loaded (to memory). There is also “hit
count” concept to illustrate how often a particular cube is being used in the past.

Now, imagine the task for a BI Administrator to manage this (MicroStrategy) BI Server. The BI
Administrator is given a computer with a certain amount of memory (e.g., 32 GB, 128 GB, or several
TBs in real large-scale implementation) in which (s)he needs to load multiple I-Cubes that are
grouped in multiple (MicroStrategy) Projects to serve many users (business analysts) so that they
can create their Reports/Dashboards. This is the problem that we consider in this paper.

We have to consider this problem as a two-stage resource allocation problem because considering
all I-Cubes may lead to a situation in which some particular projects do not have any I-Cube loaded
into the memory. Similarly, loading all I-Cubes from a particular important project may leave other
project with very little (or even no) I-Cubes being loaded. Furthermore, there are multiple criteria
that need to be considered among those projects.

LITERATURE REVIEW

This type of problem is commonly known as Resource Allocation problem – a well -known problem.
In this particular case, there are two stages, i.e., the first stage is how to allocate computer memory
at the Project level considering multiple factors, and then the second stage is how to distribute
further those memory to load certain set of I-Cubes. Even though, numerous papers have been
published for two-stage resource allocation problem, none fits well with our problem. Nonetheless,
here are some that we review.

Wang et.al. (2020) presented a Mathematical Programming formulation for a problem of
scheduling surgeons and his/her assistant surgeons in the context of health care as two-stage
resource allocation optimization problem. Hong & Li (2020) considered the cloud resource
provisioning problem and they formulated as the problem as a two-stage stochastic programming
problem. This two-stage stochastic programming problem can be transformed into a deterministic
integer program and solved by exact methods such as: branch & bound and cutting plane methods,
or heuristic methods such as: genetic algorithm, particle swarm optimization, and hybrid

Figure 1. High-level MicroStrategy BI Server with

respect to I-Cubes for a particular Project Figure 2. Eight I-Cubes that belong to three

Projects with various Status

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

│ 233

algorithms. Lin & Gen (2008) considered multi-criteria human resource allocation for solving
multistage combinatorial optimization problem. They propose a multi-objective hybrid genetic
algorithm (mohGA) approach based on the multi-stage decision-making model for solving
combinatorial optimization problems. All the above literatures are elegant and appropriate to their
own problems, but not suitable for ours.

The closest papers in term of application that we can find are: Singh & Dutta (2015) and Revathy
and Sekar (2018). In the first paper, they considered AHP to solve multi criteria nature of Cloud
Computing. However, their problem is just a simple single stage selection of Cloud Computing
resources. The second one is equally interesting as they consider how to allocate Virtual Machines
(VMs) to a particular job considering multiple criteria. They also use AHP to find out a good balance.
But, again, the problem is just a single stage resource allocation.

On industrial application, Sharma & Dubey (2010) and Mohammadi et.al. (2015) are two papers
that combined AHP and Knapsack to solve industrial problems. Sharma & Dubey also considered
two-stage approach like ours. Their application is on carton sourcing. However, they use the weight
obtained from AHP as the coefficient of the constraint in the Knapsack problem. Ours is slightly
different, we will use the weight of the AHP to decide on the capacity of the knapsack. We will have
to solve multiple knapsack problem, while Sharma & Dubey only need to solve one. Unfortunately,
we could not find the paper by Mohammadi et.al. on a language that we can understand.

METHODOLOGY

The detail of our problem can be depicted in Table 1. We have 30 I-Cubes that are grouped into 5
MicroStrategy Projects (for privacy & security reasons of our client, we call them Project 1 – Project
5 and Cube 11 to Cube 54 respectively). The Server machine that hosts MicroStrategy I-Server has
32 GB of RAM and those 5 projects will use up 3.6 GB to load their Schema Objects. Similarly, we
plan to allocate:
• 2 GB for Object cache (across 5 projects) – see Figure 3 (red box),
• 2 GB for Element cache (across 5 projects) – see Figure 3 (red box),
• 4 GB for Report & Document caches (across 5 projects) – see Figure 3 (red box), and
• 8 GB for processing/calculation.

Therefore, the total available memory will only be 12.4 GB (= 32 – 3.6 – 2 – 2 – 4 – 8) to load some
out of 30 I-Cubes (notice that the sum of RAM for all 30 I-Cubes = 16053 MB > 12.4 GB). Hence, the
need for an optimization. A naïve approach would be to formulate a Knapsack problem with all 30
I-Cubes and it will result in loading all I-Cubes in Project 1 and Project 5 as indicated by the solution
in green in Table 1 (24 I-Cubes will be loaded and 6 I-Cubes are not loaded at the start-up of
Intelligent Server).

At this point, it is important to understand that MicroStrategy I-Server has some governing rules
that need to be set. Most of those governing rules are per project as shown in Figure 3 (the green
box indicates that it is per project). The red box in Figure 3 shows where the Object, Element, &
Report/Document (Result) caches can be set, and finally the black box indicates where the RAM
allocation per project for I-Cubes can be set.

In Figure 3, the check-box option that says: “Load Intelligent Cubes on startup” is not an option that
we want to do since there is NOT enough RAM to load all Cubes. Therefore, we have to selectively

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

234 │

choose which I-Cubes to load. Hence, our motivation to solve this problem as two-stage
optimization problem.

Table 1. Thirty I-Cubes that are grouped into 5 Projects

First-Stage Multi-Criteria Problem
The first-stage problem then is clearly how to allocate 12.4 GB memory across 5 projects. For this,
we will use Analytical Hierarchy Process (AHP) since there are multiple criteria that we need to
consider. We skipped reviewing/explaining AHP since there are already numerous books, journal
articles on this topic. Readers who are interested to learn about AHP can visit AHP Tutorial on
Teknomo’s website (Teknomo, 2006). For the first-stage problem, the formulation can be presented
as in Figure 5.

After talking to various managers at PT Berca Hardayaperkasa, we found out that these criteria,
namely: due date of the projects, the numbers of business analysts/users for each project, numbers
of objects (in particular Reports/Dashboards/Hypercards) in each project, processing speeds, and
overall system performance are factors that everybody wants to have. It is important to point out
that three of these criteria, e.g., Due Date, Perceived Response Time of Dashboards, and Perceived
Response Time of the System (Browsing, etc.) are subjective (or qualitative) in nature. The other
two criteria, i.e., Number of Users and Number of Objects, can be measured quantitatively.
Obviously, the more users the more important, and similarly, the more objects in a project the more
important it is. Hence, both quantitative criteria are supposed to be maximized. We can use Super
Decisions or AHPHybrid package in R to solve this problem.

For the relative importance of one criterion to another and qualitative criteria among projects, we
then construct AHP questionnaires given to a director who oversees the whole system. The result
is presented in the next section. Generally speaking, using AHP, we can calculate 𝑤𝑖∀𝑖 = 1, … , 5 that
satisfy ∑ 𝑤𝑖 = 15

𝑖=1 where wi is the normalized weight for every project. Obviously, a very simple
RAM allocation can then be made by multiplying 𝑤𝑖 with 12.4 GB.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

│ 235

Figure 3. MicroStrategy per Project Memory Allocation/Governing

Figure 4. Multi-criteria AHP Formulation for 1st Stage Problem

Second Stage Knapsack Problem
Once we have allocated RAM into each project (the result of 1st stage problem), we can then
formulate a Knapsack problem to decide on which I-Cubes within a project to load as our 2nd stage
problem. Mathematically, for every project, we can write the problem as:

Project
Prioritization

of Objects in
the Project

Perceived
Response Time
of Dashboards

of Users
Accessing the

Project
Due Date

Perceived
Response Time

of Browsing

Project 1 Project 2 Project 3 Project 4 Project 5

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

236 │

max ∑ 𝑝𝑗𝑥𝑗
𝑛𝑖

𝑗=1

s. t. ∑ 𝑐𝑗𝑥𝑗 ≤ 𝑤𝑖𝑀
𝑛𝑖
𝑗=1

 (1)

where: 𝑥𝑗 ∈ {0,1}, pj is the (historical) hit count of I-Cube j, cj is the memory requirement of I-Cube

j, wi is the normalized weight for every project as the result of AHP, and M = 12.4 GB.
Again, Knapsack is a very well-known problem that had been studied extensively. Even though, it
is still an NP-Complete problem, it actually belongs to the class of pseudo polynomial. Readers are
referred to a classic and excellent book by Martello & Toth (1990) for detail. We simply use R
packages: adagio for this purpose.

FINDINGS AND DISCUSSION

First-Stage AHP Result
The result of our questionnaire for the qualitative subjects can be summarized in Table 2 and Table
3. For the other 2 quantitative criteria, the result is given in Table 4. The quantitative criteria can
be easily converted into normalized weight directly using the following formulation:

𝑤𝑖 =
𝑥𝑖

∑ 𝑥𝑗
5
𝑗=1

 for maximization (2a)

or 𝑤𝑖 =
(∑ 𝑥𝑗

5
𝑗=1)−𝑥𝑖

∑ 𝑥𝑗
5
𝑗=1

 for minimization

 (2b)

where: 𝑥𝑖 is the value of quantitative value.

Table 2. Comparison Across Five Criteria

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

│ 237

Table 3. Pairwise comparison across three qualitative criteria

From the input, we can obtain the result as in Table 5 using AHPhybrid package. Without any
surprise, the perceived performance of both the Dashboard (or Report/Hypercard) is the most
important follows by the perceived browsing (overall system) performance, and then the number
of users, and objects. Finally, the due date came at the very bottom of the list. It is also important to
point out that all pair-wise comparison seems to meet consistency ratio.

Table 4. Quantitative criteria for five projects (both are maximizing criteria)

Table 5. AHP Result for Criteria and Overall Project Ranking

Nonetheless, the result in Table 5 provide a way to allocate available memory across 5 different
projects as we have explained previously. The RAM allocation for every project is given in the last
column of Table 5.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

238 │

Once the RAM for Intelligent Cube had been allocated for every project, we can easily proceed
solving 5 Knapsack problems. At this point, we would like to draw readers’ attention that the weight
for every project above can also be used to distribute RAM across five different projects for caching
the Object, Element, & Report/Document (Result) – see Figure 3. Basically, any resource allocation
that needs to be distributed across five different projects can be done using the above weights.

Second-stage Knapsack Result
The formulation of five knapsacks problem is relatively straight forward. We presented Table 6 for
the problem and the shaded blue part as the solution to each independent Knapsack problem.
Please note that this is still the same traditional 0-1 Knapsack problem, and NOT the 0-1 multiple
knapsack problem. We just happened to assign the constraints per project using AHP. However, one
can clearly see the advantage of this breakdown in term of computational complexity (in particular
in conjunction with parallel computation). The traditional 0-1 Knapsack problem has the
complexity O(nM) where n = 30 and M = 12698 (12.4 GB = 12698 MB) in our original example, after
the assignment of memory (RAM) across 5 different projects, the problem will reduce to O(n4M4)
where: n4 = 8 and M4 = 5499.

The solution to each Knapsack problem is marked in green in Table 6. We can immediately notice
there is a different in term of decision to which I-Cubes to load, when (MicroStrategy) BI Server
starts, compared to the original solution in table 3. This allocation of RAM makes sure that Project
4 and Project 3 which are two of the most important projects have all their I-Cubes loaded to
memory (of course, at the expense at other I-Cubes).

Very careful readers will immediately notice that there are some left over RAM from Project 3 and
Project 4 since all I-Cubes will only need 3193 + 4601 = 7794 MB, while we assign 3871 + 5499 =
9370 MB of RAM to Projects 3 and 4. Similarly, we have some unused memory from initial
assignment in Projects 1, 2, and 5. Therefore, we can further optimize by redistributing the
remaining RAM (= 131 + 87 + 678 + 898 + 41 = 1835 MB). At this point, we propose to solve another
auxiliary Knapsack problem by combining the remaining RAM as well as considering unassigned I-
Cubes’ hit-count and memory. Hence, we have the auxiliary 0-1 Knapsack problem. The problem
formulation and solution (marked in yellow) are given Table 7.

Table 6. Five independent 0-1 Knapsack problem that can be solved in parallel

Table 7. The auxiliary 0-1 Knapsack problem

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

│ 239

After the last aux Knapsack problem being solved, we have the following assignment of I-Cubes that
will be loaded from each Project as in Table 8. The amount in the last column (in red) can be used
to fill in the RAM governing in MicroStrategy BI Server in Figure 4.
We will configure to load 25 I-Cubes into Intelligent Server memory, and keep the remaining 5 I-
Cubes as Active, but not loaded into memory yet. We can contrast the final solution in Table 8 to the
original single knapsack problem in Table 1 as in Table 9.

Table 8. The final RAM assignment for all 5 Projects

Table 9. Some Statistics comparisons between single criterion vs. multi-criteria solutions

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

240 │

CONCLUSION AND FURTHER RESEARCH

We have demonstrated a two-stage approach to manage RAM allocation across several different
projects in a (MicroStrategy) Business Intelligent Server that incorporates several criteria (both
qualitative and quantitative). The approach is not limited to AHP, but it can also be extended to
other methodology as long as it can provide a reasonable weight that can be used to allocate
memory at the first stage. The result of the first stage multi criteria problem is also useful since it
can be used to allocate RAM for Object, Element, and Result caches as well (not just limited to I-
Cubes that are loaded when Intelligent Server starts).

A second stage approach using Knapsack becomes much simpler in term of computational
complexity once the problem is broken down into multiple projects. We use the last auxiliary
problem to squeeze the available RAM so that we can load as much I-Cubes as possible.

This simple multi-criteria optimization is able to satisfy more objectives with a bit extra memory
usage, but it is able to load more I-Cubes into memory.

We would like to point out that the use of AHP (& its pairwise comparison) has many criticisms, in
particular when it comes to criteria that is quantitative (see: Barzilai 1998, Saari & Sieberg 2004,
Rezaii 2015, etc.). However, it also has many supports (see: Whitaker 2007). We do not intend to
take side one way or the other. Our approach is generic enough and the AHP can be replaced by any
other multi-criteria methodology if one likes to do so (e.g., McCaffrey 2009, etc.). Nonetheless, we
choose AHP to demonstrate since it remains one of the most popular methods for multi-criteria
problem to illustrate our approach to the problem that we face.

Furthermore, in this paper, we have not considered the stochastic nature of the demand. In reality,
the setting needs to allow I-Cubes to grow up to certain percentage. So, the constraint parameter of
the knapsack problem is actually a random variable. This may provide different perspective to the
system and could be the subject for further research.

REFERENCES

Wang, J., Li, X., Chu, J. and Tsui, K.L., 2020. A two-stage approach for resource allocation and surgery
scheduling with assistant surgeons. IEEE Access, 8, pp.49487-49496.

Chen, J. and Li, H., 2020. A Two-Phase Cloud Resource Provisioning Algorithm for Cost
Optimization. Mathematical Problems in Engineering, 2020.

Lin, C.M. and Gen, M., 2008. Multi-criteria human resource allocation for solving multistage
combinatorial optimization problems using multiobjective hybrid genetic algorithm. Expert
Systems with Applications, 34(4), pp.2480-2490.

Singh, A. and Dutta, K., 2015. Apply AHP for resource allocation problem in cloud. Journal of
Computer and Communications, 3(10), p.13.

Revathy, C. and Sekar, G., 2018. Analytic hierarchy process for resource allocation in cloud
environment. Journal of Cyber Security and Mobility, pp.25-38.

Sharma, S. and Dubey, D., 2010. Multiple sourcing decisions using integrated AHP and knapsack
model: a case on carton sourcing. The International Journal of Advanced Manufacturing
Technology, 51(9), pp.1171-1178.

RSF Conference Series: Business, Management, and Social Sciences, Vol.2 (1), 231-241

Two-Stage Memory Allocation using AHP & Knapsack at PT Berca Hardayaperkasa
Khanis Satya, Indriati N. Bisono, Hanijanto Soewandi

│ 241

Mohammadi, S., Kheirkhah, A.S., & Behnamian, J. (2015), “Providing an Integrated Fuzzy AHP and
Knapsack Method in Decision-Making and Resource Allocation to Suppliers,” Arth prabandh: A
Journal of Economics and Management, 4, pp. 38 - 60.

Teknomo, K., 2006. Analytic hierarchy process (AHP) tutorial. Revoledu. com, 6(4), pp.1-20.

Martello, S. and Toth, P., 1990. Knapsack problems: algorithms and computer implementations.
John Wiley & Sons, Inc..

Barzilai, J., 1998. On the decomposition of value functions. Operations Research Letters, 22(4-5),
pp.159-170.

Saari, D.G. and Sieberg, K.K., 2004. Are partwise comparisons reliable?. Research in Engineering
Design, 15(1), pp.62-71.

Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega, 53, pp.49-57.

Whitaker, R., 2007. Criticisms of the Analytic Hierarchy Process: Why they often make no
sense. Mathematical and Computer Modelling, 46(7-8), pp.948-961.

McCaffrey, J.D., 2009, April. Using the Multi-Attribute Global Inference of Quality (MAGIQ)
technique for software testing. In 2009 Sixth International Conference on Information
Technology: New Generations (pp. 738-742). IEEE.

	First-Stage Multi-Criteria Problem
	Second Stage Knapsack Problem
	First-Stage AHP Result
	Table 2. Comparison Across Five Criteria
	Table 3. Pairwise comparison across three qualitative criteria
	From the input, we can obtain the result as in Table 5 using AHPhybrid package. Without any surprise, the perceived performance of both the Dashboard (or Report/Hypercard) is the most important follows by the perceived browsing (overall system) perfor...
	Table 4. Quantitative criteria for five projects (both are maximizing criteria)
	Table 5. AHP Result for Criteria and Overall Project Ranking
	Nonetheless, the result in Table 5 provide a way to allocate available memory across 5 different projects as we have explained previously. The RAM allocation for every project is given in the last column of Table 5.
	Once the RAM for Intelligent Cube had been allocated for every project, we can easily proceed solving 5 Knapsack problems. At this point, we would like to draw readers’ attention that the weight for every project above can also be used to distribute R...
	Second-stage Knapsack Result
	The formulation of five knapsacks problem is relatively straight forward. We presented Table 6 for the problem and the shaded blue part as the solution to each independent Knapsack problem. Please note that this is still the same traditional 0-1 Knaps...
	The solution to each Knapsack problem is marked in green in Table 6. We can immediately notice there is a different in term of decision to which I-Cubes to load, when (MicroStrategy) BI Server starts, compared to the original solution in table 3. This...
	Very careful readers will immediately notice that there are some left over RAM from Project 3 and Project 4 since all I-Cubes will only need 3193 + 4601 = 7794 MB, while we assign 3871 + 5499 = 9370 MB of RAM to Projects 3 and 4. Similarly, we have so...
	Table 6. Five independent 0-1 Knapsack problem that can be solved in parallel
	Table 7. The auxiliary 0-1 Knapsack problem
	After the last aux Knapsack problem being solved, we have the following assignment of I-Cubes that will be loaded from each Project as in Table 8. The amount in the last column (in red) can be used to fill in the RAM governing in MicroStrategy BI Serv...
	We will configure to load 25 I-Cubes into Intelligent Server memory, and keep the remaining 5 I-Cubes as Active, but not loaded into memory yet. We can contrast the final solution in Table 8 to the original single knapsack problem in Table 1 as in Tab...
	Table 8. The final RAM assignment for all 5 Projects
	Table 9. Some Statistics comparisons between single criterion vs. multi-criteria solutions

