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Abstract

Whether larger cities are greener or not is a controversial topic, and there is a lack of clear

understanding about the effect of population size on NO2 pollution levels and UHI. This is partly

because most of the studies quantifying the effects of city size on heat stress and air pollution

only concern cities in certain countries, world regions, or a few cities within the top ranks

globally. The city center is the most active area for anthropogenic activities, and many single-city

studies showed that there is a significant difference in NO2 levels between the city center and the

outskirts of the center. However, we haven’t found empirical studies that quantitatively describe

how NO2 levels change with distance to the city center (i.e. centrality) and we are not clear about

how population size affects the relationship between NO2 levels and centrality. We perform

a qualitative synthesis and a meta-analysis under the PRISMA guideline to summarize the

population effect on NO2 levels and UHI. We then use annual mean NO2 surface concentrations

and annual mean tropospheric NO2 columns to test the conclusions of NO2 derived from the

meta-analysis and perform centrality analysis. We use linear regression to investigate the effects

of population and centrality on NO2. We use RMSC and 2-step linear regression to find out

how population size affects the relationship between centrality and NO2 levels. The qualitative

synthesis shows remote sensing and monitoring stations are the main ways to measure UHI

and NO2. The meta-analysis shows larger cities always have more heat waves and higher

NO2 levels. Specifically, moving from cities with population from 1 million to 10 million, the

max UHI intensity increases by 4 °C and annual mean NO2 surface concentration increases by

22 μg/m3, and moving from cities with population from 100 thousand to 1 million, the max

UHI intensity increases by 3 °C and annual mean NO2 surface concentration increases by 15

μg/m3. The coefficients of logarithmic population we derived from empirical studies (i.e. 0.1354

and 0.1911) are very close to the one in meta-analysis (i.e. 0.1587). Logarithmic population is

positively correlated with, and logarithmic centrality is negatively correlated with logarithmic

NO2 levels. Population is more important than centrality, and monitoring station background

and background NO2 are more important than population in deciding NO2 levels. Results of

RMSC and 2-step linear regression show that the relationship between NO2 levels and centrality

is affected by population size, and NO2 levels decrease faster with centrality in large cities.
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Ĉ predicted annual mean tropospheric NO2 columns

Cf mean of annual mean NO2 columns per FUA overlaid with the stations

CFD Computational Fluid Dynamics

CIs Confidence Intervals

CO carbon monoxide

CO2 carbon dioxide

D population density

DOAS Differential Optical Absorption Spectroscopy

EAC4 ECMWF Atmospheric Composition Reanalysis 4

ECMWF Eruopean Center for Medium-Range Weather Forecasts

EEA European Environment Agency

EU European Union

FUAs Functional Urban Areas

G annual mean NO2 surface concentrations

Gf mean of annual mean NO2 surface concentrations per FUA overlaid with the

columns
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1 Introduction

We are in the process of urbanization that not only harvests huge industrial, technological, and

economic achievements, but also reshapes the environment and climate (McPhearson et al. 2021).

About 55% of the world’s population now lives in urban areas (UN 2013). Meanwhile, urban

planners design cities and determine the location of amenities and services such as transportation

hubs, hospitals, schools, and other public facilities. Practitioners in the transportation industry

work to efficiently connect major residential areas and amenities through highways, mass transit

systems, and bike lanes. Socioeconomic researchers investigate how land prices change for

housing, factories, and businesses within cities. This can be explained that the population

distribution within a city affects the spatial layout of various facilities and infrastructure in the

city. The total population of a city affects the urban planning workload, as well as the total

capacity of transportation, commercial, and residential facilities. Considering the facts that in

most cases cities are considered as "monocentric" models (Alonso 1964) and the characteristics of

land use and population density in the city are arranged radially (Lemoy and Caruso 2018), we

speculate that the environmental problems caused by impervious surfaces and human activities

are also radially distributed within the city. Therefore, this thesis attempts to investigate cities

using two key indicators: population size and the Euclidean distance to the city center (i.e.

centrality).

Some people think that as cities grow in size and population, air quality is increasingly

affected. The resulting air pollutants can adversely affect human health, leading to a range of res-

piratory and cardiovascular diseases. Air pollutants from outdoor and household sources cause

7 million premature deaths each year (WHO 2023). One of the reasons for this worrying phe-

nomenon is the transition from natural soils to impervious surfaces during urban development,

which is a prerequisite for building urban infrastructure and amenities. Impervious surfaces

cause Urban Heat Island (UHI), which makes cities warmer than countryside and contributes to

urban heat waves. Therefore, UHI can be considered as a direct environmental problem caused

by built-up areas. As residential areas expand, so does the city’s transportation system. Vehicles

on highways emit large amounts of harmful gases, including nitrogen dioxide (NO2). Both UHI

and NO2 adversely affect the health of urban populations (EEA 2016; Robine et al. 2008). Thus,
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this thesis chooses UHI and NO2 as research objects to understand how environmental problems

vary with urban population and centrality.

The rest of this introduction is arranged as follows: Section 1.1 introduces UHI and NO2

briefly and indicates why this thesis focuses on NO2 when performing empirical analysis.

Section 1.2 indicates how to quantify the impact of population size and centrality in urban

studies. Section 1.3 illustrates why we need to relate UHI or NO2 to population size, and why

we need to investigate the relationship of NO2 with centrality. Section 1.4 provides a summary

of objectives and outline.

1.1 Introduction to UHI and NO2

1.1.1 A quick overview of UHI and NO2

An UHI is defined as an urbanized area that are much warmer than its surrounding rural

areas (U.S. EPA 2023). Measuring the temperature difference between urban and rural areas

is a way to demonstrate UHI intensity (ΔT) (Howard 1833). In this thesis, we use ΔT and UHI

intensity interchangeably. UHI is caused by a combination of contributors such as urbanization,

building density, land use, transportation and climate (Vujovic et al. 2021). For example, large

areas of impervious surfaces in cities not only significantly reduce urban biodiversity (Yan et al.

2019), but also are good receivers of solar energy (John et al. 2013; Ndiaye et al. 2018). During the

day, impervious surfaces are also far less efficient at evaporating water than grass and soil (Li and

Zhang 2021). Building density is also a factor in UHI as poorly designed building density reduces

airflow between buildings and makes the building environment hostile to heat dissipation (Tian

et al. 2021). Transport also plays a role in the generation of UHI as a chemical reaction of

nitrogen (N2) and oxygen (O2) in the combustion chamber produces high temperatures (Bose

and Maji 2009). UHI is quite noticeable at night and in weak winds (Tan et al. 2010). Studies

show that UHI is negatively correlated with humidity, rainfall, and the amount of cloud cover

(Brandsma and Wolters 2012; Hu et al. 2019b; Yang et al. 2019).

Every day, millions of cars are driving on the roads, producing N2, O2, carbon dioxide (CO2),

water (H2O), nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO), hydrocarbons

(HC), and dust, etc (Seddiek and Elgohary 2014). Table 1.1 lists the main elements of the exhaust

gas and their percentages.
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Table 1.1: Typical components and percentages of exhaust gas (Seddiek and Elgohary
2014)

Component N2 O2 CO2 H2O NOx SOx CO HC Dust

% 77.50 13.75 6.25 0.025 0.212 0.17 0.005 0.005 0.0075

We can see from Table 1.1 that not all of these components are toxic: N2 is non-toxic and

inert; O2 is vital to aerobic organisms, and O2 toxicity rarely occurs in daily life (Tsan 2006);

CO2 and H2O are non-toxic; NOx is a generic expression of two kinds of toxic gas – nitric

oxide (NO) and NO2 (Tschoeke et al. 2010; WHO 1977); SOx and CO are poisonous; HC is

harmful too (Tormoehlen et al. 2014); dust can be irritating and cause health problems (Hilgers

and Achenbach 2021).

In this thesis, we choose NO2 as the only gaseous research object. This is not only because

NOx has the highest percentage compared to other poisonous pollutants in Table 1.1, but also

because NO2 is one of the air pollutants in the European Union (EU) and the World Health

Organization (WHO) air quality standards (EU 2008; WHO 2021). In fact, NO2 is sufficient

to replace NOx for monitoring air quality, since NO2 is the most common form of NOx in the

atmosphere (U.S. EPA 1999). We therefore consider the quantitative analysis of NO2 to be an

intuitive and fruitful contribution to the sustainable development of cities in Europe and around

the world.

1.1.2 Details about UHI

Problems caused by UHI

Although UHI promotes vegetation growth (Kabano et al. 2021), it has a range of negative effects

on the environment and humans. First, UHI leads to higher energy and water demands in

the cooling process, which increases greenhouse gas emissions and water use (Aboelata and

Sodoudi 2020; Guhathakurta and Gober 2010). To make matters worse, UHI interacts with air

pollutants. Heated near-surface air and primary vehicular emissions (i.e. pollutants emitted

directly into the air) create conditions for secondary air pollutants (i.e. pollutants obtained from

chemical reactions) such as ozone (O3) (Singh et al. 2020). The turbulence caused by UHI then

transports these pollutants further (Sarrat et al. 2006). UHI exacerbates overheating in cities

during heat waves (World Bank 2020), and heat waves tend to drag down the cardiovascular

system (Havenith 2005). UHI also harms the well-being of urban dwellers by reducing labor

productivity and increasing the probability of injury (UNEP 2004). More than 70,000 people died
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in Europe during the once-in-500-year (Meteorological Office 2023) summer heat wave of 2003

(Robine et al. 2008).

Ways to mitigate UHI

There are many ways to mitigate the dangerous effects of UHI. One effective way is to increase

the area of urban green space and vegetation (Shishegar 2014). Green spaces provide shade and

evaporate water, thereby reducing air temperatures. They are also an important tool for fighting

climate change and mitigating heat waves (Gilabert et al. 2021; Shazia et al. 2019). Improving

roofs and pavements in the built environment can also mitigate UHI. Roofs and pavements made

of reflective materials reflect sunlight and reduce heat gain (Cheela et al. 2021; Roman et al. 2016).

With the help of cool roof (i.e. roofs made of materials that do not heat up easily) and green roof,

roof temperatures can be reduced by 25 °C and 20 °C respectively (Costanzo et al. 2016). Policy

makers and stakeholders in urban planning can develop policies that favor public transport,

cycling, and walking.

Ways to measure UHI

There are many ways to measure UHI such as car traverse, monitoring stations, remote sensing,

and climate models. Car traverse is a common method of measuring air temperature by placing

the device (Figure 1.1) on top of the car. In car traverse, the thermal probe is wrapped inside

a long cylinder made of radiation-proof material to protect it from the sun’s rays. Placing this

device on the roof of a car is also a good way to avoid engine heat waves (Sahashi 1983). When

performing car traverse, the study area should include various land use types such as built-up

and rural areas, and the driving route chosen should pass through these different land cover

areas in order to measure the air temperature in different environments (Oke 1973; Oke and

Maxwell 1975; Sakakibara and Matsui 2005; Torok et al. 2001). The driving speed should be as

constant as possible (e.g. 50 km/h), and temperature data is obtained at the distance along the

driving route (e.g. every 1.5 km) (Roth and Chow 2012). Although researchers plan driving

routes out of research interest and attempt to plan routes covering the pilot area, the data quality

is affected by factors such as driving speed and traffic conditions (Clay et al. 2016). Another

disadvantage is that a vehicle is required for each car traverse.
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Figure 1.1: Device for car traverse (Sakakibara and Matsui 2005)

Monitoring stations measure temperature from a fixed location. Collecting data through

the monitoring station is relatively simple and convenient compared to car traverse. However,

fixed monitoring stations cannot guarantee coverage of the entire study area (Tian et al. 2021).

Remote sensing uses satellites to measure temperatures. Satellites commonly used to measure

land surface UHI intensity include Moderate Resolution Imaging Spectroradiometer (MODIS),

ASTER, and Landsat (Qiao et al. 2013; Shirani-bidabadi et al. 2019). Satellites routinely measure

UHI intensity (Tian et al. 2021) over large geographical areas compared to car traverse and

monitoring stations (ibid.), but weather can affect the quality of satellite imagery (Aflaki et al.

2017; Dwivedi and Khire 2018; Wang et al. 2016). Climate model uses existing weather data to

predict temperature in urban areas (Chang et al. 2016). Widely used climate models include

Numerical Weather Prediction (NWP), ENVI-met, and Computational Fluid Dynamics (CFD)

models (Lu et al. 2017; Wong et al. 2010a). One advantage of climate models is that they

can reproduce or predict mesoscale and microscale meteorological scenarios using a range of

parameters.

Ways to define cities when measuring UHI intensity

For studies using car traverse, visual recognition is the main way to define urban and rural

areas (Oke 1973; Oke and Maxwell 1975; Sakakibara and Matsui 2005; Torok et al. 2001). The
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measurement of UHI intensity by a monitoring station also mainly relies on visually identifying

the background of the station, if there is no official guidance document to clarify the background

of the station (Hardin et al. 2018). There are many ways to define cities when measuring UHI

intensity by climate models or satellites. For example, Ganeshan et al. (2013) defined that only

urban polygons with an impervious surface area greater than 20% can be defined as cities, and

rural areas are ring-shaped regions 30 km to 60 km away from cities. Some remote sensing

studies such as Zhou et al. (2018) also used the percentage of impervious surface to define cities.

Researchers can also distinguish land use types by visual identification (Lee 1993), land cover

maps (Du et al. 2016; Zhao et al. 2014), developing city clustering algorithms (Schwarz 2012),

or Gaussian surfaces (Tran et al. 2006). We can find that because the visual identification of the

city mainly depends on personal judgment, car traverse and monitoring stations lack a clear,

quantified definition of city.

1.1.3 Details about NO2

Multiple sources of NO2 emissions

Transport is the main source of NO2 in Europe, and NO2 concentrations in transport-related

places are well above the EU limit (EEA 2016). Diesel vehicles contribute more NO2 than gasoline

cars (Anttila et al. 2011). This is because for gasoline vehicles, only 5% of NOx is emitted as NO2,

while for diesel vehicles without modern exhaust treatment, 10% to 12% of NOx is emitted as

NO2 (Grice et al. 2009). NO2 can be as high as 70% in NOx emitted by diesel vehicles equipped

with oxidation catalysts (ibid.). Other sources and processes that require combustion and heating,

such as ships (Vinken et al. 2014), airplanes (Herndon et al. 2004), residential heating (Dedele

and Miskinyte 2016), industrial processes (Goldberg et al. 2019) also generate NO2. Combustion

of fossil fuels, including coal, oil and natural gas, is the largest contributor, producing about 46%

of NOx (i.e. 21 teragrams of nitrogen per year / 21 TgN yr−1) (Jacob 1999). Burning biomass for

planting and building space emits about 26% of NOx (i.e. 12 Tg N yr−1) (ibid.). The soil itself

emits 13% of NOx (i.e. 6 Tg N yr−1) (ibid.). The remaining 15% of NOx in the troposphere comes

from sources such as lightning (ibid.) and forest fires (Maurya et al. 2018).

Problems caused by NO2

NO2 can cause serious problems for humans and nature. Coughing, wheezing, shortness of

breath, and increased susceptibility to respiratory infections are associated with NO2 (Kelly

and Fussell 2011). NO2 is also linked to lifelong asthma (Gauderman et al. 2005) and other

declines in lung function (Schindler et al. 1998), leading to long-term breathlessness and even

cancer (Hamra et al. 2015). Exposure to NO2 also leads to higher rates of cardiovascular disease
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such as heart attack (Young and Kindzierski 2019) and stroke (Andersen et al. 2012). This is

partly because NO2 can cause blood clots and damage blood vessels (Reutov et al. 2012). NO2

may harm pregnant women and premature babies by causing affected placental development

(Cahuana-Bartra et al. 2022) and low birth weight (Shmool et al. 2015). NO2 is one of the main

precursors of acid rain (Irwin and Williams 1988), which destroys vegetation, water, and the

health of residents and animals. NO2 also contributes to harmful photochemical smog in cities.

Ways to mitigate NO2

There are various ways to reduce NO2 pollution. In fact, some methods for mitigating UHI are

also suitable for reducing NO2. For example, since car emissions are a major source of NO2,

reducing private car use and encouraging public transportation, cycling, and walking can reduce

NO2 levels and improve air quality. For factories and power plants, the use of more efficient

technologies and practices, such as energy-efficient light bulbs (Parker and Drake 2018), and

more efficient heating and cooling systems can reduce NO2 emissions (Krieve and Mason 1961).

Building large green spaces in cities can reduce NO2 (Sheridan et al. 2019). Finally, stakeholders

can develop far-sighted policies, such as progressively increasing air quality standards and

designing walkable neighborhoods.

Ways to obtain NO2 concentration values

NO2 concentration values can be obtained from the following sources: emissions inventories,

monitoring stations, remote sensing, climate models (i.e. modeled remote sensing data), and

samplers. Monitoring stations, remote sensing, and climate models are also applicable when

measuring UHI intensity. Satellites used to monitor NO2 include Ozone Monitoring Instrument

(OMI) (NASA 2023a), Scanning Imaging Absorption Spectrometer for atmospheric chartography

(SCIAMACHY) (SCIAVALIG 2023) and Sentinel-5P (ESA 2023b). Modeled NO2 can be retrieved

from climate models such as GEOS-Chem (Harvard University 2023) and ECMWF Atmospheric

Composition Reanalysis 4 (EAC4) (ECMWF 2023). Samplers detect NO2 using solvent extraction

(i.e. to convert NO2 to nitrate or nitrite ion) (Chaube et al. 1984). Nevertheless, unwanted

pyrolysis products during dissolution and some substances that evaporate with the solvent can

affect the measurement results when using a sampler (Houck and Siegel 2015). An emission

inventory is a set of data used to estimate the amount of pollutants emitted into the atmosphere

from various sources such as industry, residential, and transportation activities (Li et al. 2017c).

The steps of generating an emission inventory are summarized in Figure 1.2.
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Figure 1.2: Steps of developing an emission inventory (Behera et al. 2011)

First, researchers identify the source of air pollutant and retrieve relevant information about

the source, including location, population, and local temperature. Data is digitized in a database.

Second, researchers select emission factors and appropriate emission estimation methods. An

emission factor is a representative value indicating how much emissions a certain amount of

fuel will produce (U.S. EPA 2022a). A base map (e.g. with a resolution of 2 km x 2 km) is

prepared for further use in this step. The final emission inventory will show the spatial and

temporal distribution of air pollutant in the study area, and will also show which emission

sources these pollutants are composed of and the percentage of each emission source. Emission

inventories allow detection of a wide range of pollutants and continuous monitoring of a single

emission source (Zhao et al. 2015). However, emissions inventories may not reflect localized,

highly variable pollutant (AQEG 2013).

Chemical reaction of NO2 in the troposphere

Nearly 95% of NOx is emitted in the form of NO originally (WHO 2005). The combustion of

fossil fuels generates NO through the Zeldovich mechanism (Equations 1.1 to 1.3).

N2 +O−−→NO+N (1.1)

N+O2 −−→NO+O (1.2)
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N+OH−−→NO+H (1.3)

NO is then released into the troposphere and oxidized to NO2 (Equations 1.4 and 1.5).

2NO+O2 −−→ 2NO2 (1.4)

NO+O3 −−⇀↽−−NO2 +O2 + hv (1.5)

Equation 1.5 shows NO reacts with O3 to release NO2, O2 and emit light (i.e. the theory of

chemiluminescence, see Appendix E), and under the sunlight, NO2 and O2 also generate O3 and

NO. Tropospheric O3 is equally harmful, although stratospheric O3, which we cannot breathe,

prevents us from being exposed to excessive ultraviolet energy (U.S. EPA 1999). Equation 1.5 is

also a part of the chemical reactions of photochemical smog. The remaining chemical reactions

of photochemical smog are listed in Equations 1.6 and 1.7,

NO2 +HC−−→ PANs+ others (1.6)

NO+ ROx −−→NO2 + others (1.7)

where ROx means oxygenated organic and inorganic compounds.

Volatile Organic Compounds (VOCs) is the main source of HC. Toxic VOCs widely exist

in both nature (e.g. forest fires) and anthropogenic activities (e.g. combusting fossil fuels and

mining) (Montero-Montoya et al. 2018). The peroxyacetyl nitrates (PANs) in Equation 1.6 belong

to secondary air pollutants with a toxicity similar to that of NO2 (Vyskocil et al. 1998). High

concentrations of PANs pose a threat to both humans (Heuss and Glasson 1968) and plants (Taylor

1969; Temple and Taylor 1983). Equations 1.6 and 1.7 show areas with higher concentrations of

VOCs also tend to have more tropospheric O3, this is because VOCs is involved in the reactions

with NO and NO2, resulting in less tropospheric O3 being consumed in Equation 1.5 (South

Australia EPA 2004). The lifetime of NOx in the lower troposphere is within a day (Geffen et al.

2019). Many studies show that NO2 remains closely to its source, leading to distinct spatial

distribution (Hoek et al. 2008; Liang et al. 1998; Madsen et al. 2011; Marshall et al. 2008; Novotny

et al. 2011).

In the lower troposphere, NOx exists 3.6 h ± 0.8 h in Switzerland and the Alpine (summer)

(Schaub et al. 2007), 4 h in Riyadh (Beirle et al. 2011), 5.9 h in central-eastern China (summer)

(Shah et al. 2020), 6 h in Germany (summer) (Beirle et al. 2003), 7.6 h in southeast U.S. (summer)

(Lamsal et al. 2010), 8 h in Moscow (Beirle et al. 2011), 13.1 h ± 3.8 h in Switzerland and the

Alpine (winter) (Schaub et al. 2007), 17.8 h in southeast US (winter) (Lamsal et al. 2010), 21 h in



Introduction 10

central-eastern China (winter) (Shah et al. 2020), and 18 h to 24 h in Germany (winter) (Beirle

et al. 2003).

It is difficult to draw firm conclusions about how long NO2 stays in the lower troposphere.

Factors such as seasons (Bechle et al. 2013), latitude (Beirle et al. 2011), wind speed (Valin et al.

2013), and wind direction (Beirle et al. 2011; U.S. EPA 1999) influence the existence of NO2. For

example, Lamsal et al. (2010) pointed out that the NO2 detected by the satellite can largely be

explained by Air-Mass Factor (AMF). AMF is a measure of the relative length of the average

optical path of a photon interacting with a specific absorber in the atmosphere at a specific

wavelength with respect to the vertical path (Lorente et al. 2017). One key factor of deciding

AMF is zenith angle (i.e. the angle between the sun’s rays and the vertical direction). In summer

or at low latitudes, the zenith angle is usually small, which means that the path for solar radiation

to reach the ground is relatively short. In this case, AMF is smaller and the air pollutant is more

easily detected (Honsberg and Bowden 2023). Larger AMF values are induced in winter or at

high latitudes. Hong et al. (2017) found that land use type and aerosol are also contributors for

AMF. Higher AMF is observed for snowy ground and lower AMF is found for deciduous forest

surface (ibid.). In some specific combinations of aerosol parameters, AMF may decrease by up to

240% (ibid.). It has been well known that where the wind speed is low, the NO2 concentration

is high (Donnelly et al. 2011). Grundstrom et al. (2015) found in Gothenburg (Sweden) the

concentration of NO2 decreases with the increase of wind speed, and this relationship can be

described by a exponential function. Wind speed and wind direction together can affect NO2

results (Yu et al. 2004). For example, Carslaw et al. (2006) detected NO2 from the aircraft at a

distance of 2 km from the airport. However, the importance of wind is also affected by other

factors (Donnelly et al. 2011). For example, in Glashaboy (Ireland) wind direction has little effect

on NO2, which is due to the fact that there are major traffic roads within less than 1 km of the

monitoring point (ibid.). Therefore, the residence time of NO2 in the troposphere is complicated

and affected by many factors. If we want to know the stagnation time of NO2 in a certain region,

we need to consider a series of meteorological factors and emission sources around the region.

1.1.4 Interaction between UHI and NO2 and a focus on NO2

The interaction between UHI and NO2 is complicated, and the interaction can exacerbate the

negative effects of these two factors. For example, high temperatures in urban areas produce

more NO2 through a chemical reaction called thermal decomposition. Clark (2020) illustrated

thermal decomposition of group 2 (i.e. beryllium, magnesium, calcium, strontium and barium)

nitrates by giving Equation 1.8,
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2X(NO3)2 −−→ 2XO+ 4NO2 +O2 (1.8)

where X means any of the group 2 nitrates and XO means metal oxide. We can see that at high

temperature, group 2 nitrates decompose into meta oxide, and release NO2. Thus, thermal

decomposition leads to an increase in NO2 under UHI.

The existence of NO2 also helps to intensify the UHI effect. NO2 absorbs radiation in visible

and ultraviolet bands (Constantin et al. 2015). This radiation-absorbing property of NO2 is

particularly active during thunderstorms (Solomon et al. 1999).

UHI can be regarded as an abnormal temperature phenomenon, while NO2 is a poisonous

gas. At first glance, UHI and NO2 are different types of environmental problems, but there

are many interactions between UHI and NO2. The existence of UHI exaggerates the pollution

of NO2, and NO2 is beneficial to the formation of UHI. We also conclude that there are many

common factors leading to UHI and NO2, such as the use of private cars, burning of fossil fuels,

heating and cooling, and human activities. We also show that the same approach can be used

to reduce UHI and NO2 such as encouraging public transport, cycling, walking. So we think

that if we figure out how urban population and urbanization affect one of these two pollution

phenomena, figure out how it is distributed in cities, and improve based on these conclusions,

then the other pollution problem will also be alleviated. In addition, focusing on one pollution

phenomenon can save investigation time, increase research efficiency, and draw conclusions

sooner.

In this thesis we investigate UHI and NO2 in meta-analysis, but NO2 is the only environ-

mental problem in the empirical analysis. We focus on NO2 for a couple of reasons. First, NO2

is poisonous, and both the EU and WHO have made regulations on the content of NO2 in the

air (EU 2008; WHO 2021). These specific targets can help researchers and stakeholders quantify

results and improve air quality over time. Urban residents can also use the quantified NO2

pollution level as their own reference to improve environmental awareness. Second, NO2 itself is

a local air pollutant (Colvile et al. 2001) as its level varies evidently due to local conditions (Karr

et al. 2009; Restrepo 2021). This feature of NO2 can make it easier for researchers to monitor and

improve pollution levels in local areas, effectively improving overall air quality. Finally, due to

time constraints, we do not have time to conduct empirical experiments on UHI and NO2 at the

same time, so we choose one of them for in-depth analysis.



Introduction 12

1.2 Spatial distribution of population within and across cities

1.2.1 Rank-size rule and the environmental Kuznets curve

A city is defined as a small area with a large number of people, or an urban area having a

higher population density than its surrounding areas (O’Sullivan 2012). The development of

a city lies in the fact that, there is an efficient transport system linking urban and rural area

that enables urban dwellers to provide goods or services in exchange for agricultural products

produced by the people outside the city (ibid.). Unlike animal populations that migrate and

forage, cities provide human beings with a fixed living place, where urban residents do not

need to participate in food production, and residents outside cities provide urban residents with

the surplus agricultural products they produce (Bartlett 1998). In other words, cities are the

outcome of the evolution of productivity, and only people create productivity. Population metrics

are therefore more important than others when defining a city. Population metrics are more of

perquisites, while other factors are the by-products of productivity to judge how urbanized that

area is. If that place is not urbanized enough, then it can’t be called a city.

The patterns of the distribution of city sizes around the world can be described by the

rank-size rule. The rank-size rule says that, "if the settlements in a country are ranked by population

size, the population of a settlement ranked n will be 1/nth of the size of the largest settlement (Oxford

University Press 2023)". If we plot city sizes against ranks then we will get a concave curve; if

we plot logarithmic city sizes against logarithmic ranks then we will get a straight line. This

straight linear relationship is also known as Zipf’s law (Gabaix 1999). Rank-size rule and Zipf’s

law indicate that small cities are more common than large cities. For example, there are only a

handful of cities with a population of more than 10 million, but there are thousands of small

cities with a population of less than 100 thousand. People may migrate to big cities due to

factors such as economic conditions and natural environment (Farhana et al. 2012). However,

the relationship between population size and economy is difficult to generalize (Caldwell 1990),

as is the relationship between population size and environment (Robinson and Srinivasan 1997).

Kelley (1988) summarized the role of population as follows: population has positive and negative

impacts on cities, both direct and indirect; the impact of population on the economy will have

an impact on the economy no matter whether it is direct or indirect; population can exacerbate

problems or cause them to erupt earlier.

Economic factors also affect the relationship between environment and population. As cities

develop, the relative cost of production and the exploitation of environmental resources will be

beneficial to environmental protection (Robinson and Srinivasan 1997). For example, the envi-

ronmental Kuznets curve (i.e. an inverted U-shaped curve) helps to formulate environmental

policy (Yandle et al. 2014) and to predict the optimal size of cities. In the environmental Kuznets
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curve, the X-axis can be per capita income and the Y-axis can be environmental degradation.

However, Grossman (1993) and Grossman and Krueger (1994) proved that not all environmental

problems can be represented by the environmental Kuznets curve and the turning points of the

curves are different for different pollutants. Han et al. (2021) pointed out that NO2 is positively

correlated with China’s urban economic development, and the turning point of the curve has

not yet arrived. But so far we have found no studies on whether European NO2 emissions fit the

environmental Kuznets curve. We also haven’t found any studies of the environmental Kuznets

curve for the UHI effect.

The relationship between transportation and economy is also very complicated, and there

is even interference between different transportation modes. For example, public rapid transit

can increase wages and city size, but only in combination with policies that discourage the use

of private cars and stimulate the use of public transport (Greenaway-McGrevy and Jones 2022).

Examples from the Netherlands (Broersma and Dijk 2007) and the U.S. (Safirova 2002) show

that traffic congestion can inhibit economic growth unless teleworking is adopted, a way of

generating economic growth without posing a threat to air quality (ibid.). Technological progress

and the use of green transportation can indeed improve air quality, although urban expansion

will bring air pollution (Lu et al. 2021).

1.2.2 An example of scaling

An integrated urban science is emerging. In this urban science, the growth characteristics of

cities can be explained by the allometric theory of biology (Batty 2013; Ramaswami et al. 2018).

The relationship between population size and air pollution can be quantified by scaling, which

is a power-law relationship. Mathematically, it can be expressed by Equation 1.9,

Q = κPλ (1.9)

where Q means air pollution (e.g. CO2), P means population, and κ and λ are coefficients. If we

take the logarithm of both sides of Equation 1.9 we get a straight line (e.g. Figure 1.3).
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Figure 1.3: Scaling of transport-related CO2 emissions with the population size of the
U.S. cities from the same dataset but at different aggregation levels (Louf and
Barthelemy 2014b)

Quantitative changes in environmental and socioeconomic features associated with city size

(i.e. in terms of population size) can be also explained by power laws (Bettencourt et al. 2007;

Bornstein and Bornstein 1976; Louf and Barthelemy 2014b; Rybski et al. 2017). We present more

details of the literature in Section 4.1.2.

1.2.3 Effects of urban residents’ choices on air quality

In the classic economic models, Alonso (1964) proposed the bid-rent curve, which shows the

relationship between land prices and the distance to the city center. Alonso (ibid.) showed

retailers and office workers compete for the most profitable or convenient land in the city center,

and population density decreases when moving away from the city center. Schindler and Caruso

(2014) and Schindler et al. (2017) also used centrality as a variable for the relationship between

residents’ choice of settlement and air pollution exposure. Schindler et al. (2017) showed that
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moving away from the city center can decrease the exposure of traffic-related air pollution, but

when households intend to reduce their own exposure, the density profile becomes flatter and

total emissions rise.

However, centrality is not the only factor for determining the living places of urban residents.

Built-up area is also important. This can be partly explained by the "street canyons" formed by

adjacent buildings and tall buildings, causing the canyon effect. The canyon effect brings changes

in temperature, light, wind direction and air quality caused by tall buildings (Karimimoshaver

et al. 2021). The canyon effect increases air temperature, inhibits heat dissipation, causes winds

and increases noise levels (Matthews and Kamp 2017). Theoretical models showed that air

quality can be significantly improved by changing the urban structure design of the city, such as

increasing the green area in the city center (Schindler and Caruso 2014).

1.2.4 An example of homotheticity

The percentage of built-up area of a city is highly positively correlated with the total air pollution

level (e.g. PM2.5) of that city (Liu et al. 2018b). For the interior of a city, empirical studies showed

that the proportion of built-up areas is largely related to their relative distance to the city center,

while population size effect is explained by the largest city in the dataset and a scaling exponent,

which can be a manifestation of homotheticity (i.e. homothetic scaling) (Lemoy and Caruso

2018).

Homotheticity is a transformation that preserves the shape of an object or system while

scaling its size proportionally (Pamfilos 2021). Lemoy and Caruso (2018) expressed homothetic-

ity by Equations 1.10 and 1.11,

r′ = r
( N
NLondon

)0.5
(1.10)

SN(r′) =
SN(r)

( N
NLondon

)0.5
(1.11)

where r is the Euclidean distance from city center, NLondon is the population of London (i.e. the

largest city in the dataset), N is the population size of a city, r’ is the rescaled Euclidean distance

from city center, SN(r) is the proportion of build-up area of a city (population size N) at distance

r. SN(r’) is the rescaled proportion of build-up area of a city (population size N) at rescaled

distance r’, (NLondon
N )0.5 is the scaling factor as r’ = scaling factor * r and SN(r’) = scaling factor *

SN(r). Lemoy and Caruso (ibid.) found a scaling exponent of 0.5 for both land use shares and

population size.

Figure 1.4 is a visual expression of how homotheticity works.



Introduction 16

(a) SN(r) and r (b) SN(r’) and r’

Figure 1.4: Shares of built-up area as functions of the distance to the city center in 300
European cities (Lemoy and Caruso 2018)

We can see stratified lines due to population size in Figure 1.4(a). The lines representing

the change of built-up area with distance for large cities tends to be in the upper layer, and the

line for the change of built-up area with distance for small cities tends to be in the lower layer.

The equations of homothetic scaling (i.e. Equations 1.10 and 1.11) explain the population effect

on land use share, so in Figure 1.4(b) the population effect is not evident. The scaling exponent

(i.e. 0.5) is tested by two methods: a method called Signal over Noise Ratio (SNR) (Lemoy and

Caruso 2018), and a 2-stage linear regression (Lemoy and Caruso 2021). We explain the details in

Chapter 5.

Given that facts that the proportion of built-up area and air pollution are highly positively

correlated (Liu et al. 2018b), and residents may move out of the city center because of air quality

(Schindler et al. 2017), in Chapter 5 we perform a similar analysis on NO2 levels. We try to find

the best exponent(s) to explain the population size effect in the relationship between NO2 levels

and centrality and then test the rationality of our results.

1.2.5 Why need scaling and homotheticity

Both scaling and homotheticity aim to describe urban characteristics with the simplest possible

formulas. Scaling uses a power law to express the relationship between urban population and

the socioeconomic or environmental characteristics of a city. Homotheticity indicates that a

certain feature within a city is largely related to its relative position in the city and population

size effect is explained. They all play an important role in urban studies.

Scaling and homotheticity allow cities of different sizes and levels of development to be

compared with each other on the same indicators. Their relatively short formulas make analysis

easy. Both are also great tools for generalization. Scaling can evaluate the optimal capacity
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of urban population (Raan et al. 2016). According to the scaled distance from the city center,

homotheticity can find out where the attenuation of a certain phenomenon or indicator is the

largest or the smallest (Lemoy and Caruso 2018).

Scaling enables researchers to draw general conclusions about urban processes and phe-

nomena that can be applied to different cities or regions. Using scaling, urban planners can

quickly determine the total amount of a certain resource that a city needs (Walker 2011), or how

many emissions it will generate (Louf and Barthelemy 2014b). Comparability between cities also

helps urban planners draw the best conclusions from different settings.

Homotheticity also allows stakeholders and planners to draw general conclusions applicable

to different cities or regions (Kaufmann et al. 2022). Homotheticity focuses on finding the same

lawswithin different cities (Lemoy and Caruso 2018). For example, with the help of homotheticity,

urban planners can plan transportation facilities for multiple cities at the same time, and adjust

the number of transportation facilities in different regions according to changes in artificial land

use, so as to minimize waste of resources. In addition, homotheticity can also be used to obtain

the influence of population on a certain phenomenon or indicator. If, after the homothetic scaling,

the data representing different cities is still clearly stratified by population size, then stakeholders

cannot ignore the impact of population.

1.2.6 Why not study population density and city area

We realize that population density and urban area are also indicators of city size (Gariazzo et al.

2016; Luo et al. 2018). But apart from time constraints, there are other reasons why these two

indicators are not studied in this thesis. First, it remains unclear whether there is a significant

positive relationship between population density and ΔT. Some studies showed that population

density has no significant correlation with ΔT (Debbage and Shepherd 2015; Du et al. 2016; Ward

et al. 2016), but there are also many studies showing that population density is significantly

positively correlated with ΔT (Elsayed 2012; Steeneveld et al. 2011; Wolters and Brandsma 2012).

Interestingly, most of the articles pointing out that there is no significant relationship between

population density and ΔT define population density as the total area of the city divided by

the total population of the city, while most of the articles pointing out that there is significant

positive relationship between population density and ΔT define population density as the area

of neighborhood (Steeneveld et al. 2011; Wolters and Brandsma 2012) or city core (Elsayed 2012)

divided by the total population of that area. This is because densely populated neighborhoods

typically have higher building densities, and dense buildings trap heat (Steeneveld et al. 2011),

while the canyon effect becomes less apparent when we define population density as the total

city population divided by the total city area. Different definitions of population density also
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affect the relationship between NO2 and population density. When the population density is

defined as the total urban population divided by the total urban area, NO2 has no significant

relationship with population density (Bechle et al. 2011; Hosein et al. 1977), and when population

density is the population density around monitoring stations, NO2 is significantly correlated

with the population density (Cesaroni et al. 2012; Zhang et al. 2021a). Considering that different

definitions of population density are likely to draw opposite conclusions, the empirical analysis

of this thesis does not consider population density.

There is usually a positive correlation between the area of a city and its population (Craig

and Haskey 1978). However, this relationship is complex and can vary greatly depending

on various factors such as natural environment and urban planning. Hong Kong (China) is

mountainous and lacks farmland and flat land (Hui 2001). At the end of 1999, Hong Kong had a

population of 6,970,000 and an area of only 1,097 km2 (that is, the population density was 6,360

people/km2) (ibid.). For comparison, Indianapolis (U.S.), with a similar size (936.5 km2), had

a population of only 887,642 in 2020 (that is, the population density was 948 people/km2) (US

Census Bureau 2020). Because this thesis uses Functional Urban Areas (FUAs) as the definition

of cities, and FUAs are defined in terms of employment and economic activity (Section 3.1.1),

therefore, the impact of the natural environment on population density is greatly reduced. In

fact, after we regress the population size and city area of FUAs, we find that population size and

city area are highly positively correlated (Figure 3.2(b)) and the determination of coefficient is

0.73, which means that we are likely to draw similar conclusions if we use city area to replace

population size as one of the independent variables. As a result, we don’t explore city area in

our empirical analysis.

1.3 UHI and NO2 within and across cities

Though similar positive relations have been found from the majority of current literature which

unravels the effects of city size on UHI and NO2 (Lamsal et al. 2013; Oke 1973), such views

need to be consolidated for 3 reasons. First, there are multiple ways of measuring UHI and

NO2. UHI can be expressed either by the land surface ΔT measured by satellites (Lee 1993),

or by the near-surface ΔT measured by car traverse (Oke 1973) or monitoring stations (Hardin

et al. 2018). Climate models can also model near-surface ΔT difference (Debbage and Shepherd

2015). NO2 values can be obtained from emission inventories (Sarzynski 2012), monitoring

stations (Nguyen and Kim 2006), samplers (Hosein et al. 1977), or satellites (Jiang et al. 2021).

Tropospheric NO2 columns can be modeled to surface NO2 but the converted values are lower

than in-situ surface measurements (Lamsal et al. 2013). Second, we should pay attention to

whether the studies use the same metric or specification when comparing. For example, we
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have noticed that some population variables are in non-logarithmic form (Tran et al. 2006), some

are in natural logarithmic form (Lamsal et al. 2013), and some are in common logarithmic form

(Torok et al. 2001). As for the form of specification, we found linear regression (Bechle et al.

2011), Principal Component Analysis (PCA) (Branis and Linhartova 2012), or barely textual

description (Nguyen and Kim 2006). Last, most of the studies quantifying the effects of city size

on heat stress and air pollution only concern cities in certain countries (Oke 1973), world regions

(Lamsal et al. 2013; Oke 1973) or a few cities within the top ranks globally (Bechle et al. 2011). We

therefore want to find out whether the relationship between the population size with NO2 and

UHI can be expressed by scaling.

The spatial distribution of NO2 and UHI within the city is also worthy of study. The city

center is the center of commercial activity (Swinney 2011), which provides a large number of

jobs and contributes to the national economy (Jeffrey and Enenkel 2020). NO2 itself is considered

as a local air pollutant (Colvile et al. 2001) as its level varies evidently due to local conditions

(Karr et al. 2009; Restrepo 2021). The street canyons in the city center of Ljubljana (Slovenia)

accumulate low concentrations of NO2 from low traffic volumes to form a high-polluted area

(Vintar Mally and Ogrin 2015). The impact of street geometry in the city center is also observed

in Cambridge (UK) where the annual mean NO2 amounts in the street canyons are higher than

the one measured in the radial roads outside the central area (Kirby et al. 1998). The NO2 gap

between the central and suburban roads in Lancaster (UK) is obvious regardless of similar traffic

volumes (Nicholas Hewitt 1991). The canyon effect can make the temperature of the city center

too high, affecting the health of residents (Matthews and Kamp 2017). Knowing the temperature

variation within a city is an effective indicator to monitor the progress of urbanization, as changes

in land use types can lead to changes in the spatial temporal distribution of UHI (Li et al. 2012).

Residents move away from urban centers because of traffic-related air pollution (Schindler et al.

2017). Due to limited time and other factors (Section 1.1.4), in this thesis we only perform

empirical analysis on NO2. We therefore want to find out how NO2 changes with the distance to

the city center.

In addition, Lemoy and Caruso (2018) used homothetic scaling to show that the proportion

of artificial land use area within cities of different sizes changes with distance independently of

the urban population and is quite similar. We therefore want to test to what extent the variation

of NO2 with centrality is influenced by the population.

1.4 Objectives

We therefore make hypotheses and propose questions:
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1. If the relationship between CO2 or other socioeconomic indicators and population can be

explained by scaling, then the relationship between UHI or NO2 and population size also

follows a power law.

2. If theoretical models suggest that traffic pollution exposure is negatively correlated with

centrality, then NO2 emissions within cities are also negatively correlated with centrality.

3. Whether or not the variation of NO2 with centrality is influenced by the population.

To prove the hypothesis and answer the questions above, the principle targets of this thesis

are

1. summarize published works on revealing the relationship between UHI and city size and

quantify the influence of city size on UHI by a meta-analysis,

2. summarize published works on revealing the relationship between NO2 and city size

and quantify the influence of city size on NO2 levels by a meta-analysis, and test this

relationship by measured values from monitoring stations and satellite imagery,

3. quantify the influence of centrality on NO2 levels by measured values from monitoring

stations and satellite imagery, compare the importance of city size and centrality, and

propose models showing how surface and tropospheric NO2 changes according to city

size and centrality, and

4. test whether city size differentially affects the relationship between NO2 and centrality.

These targets are accomplished by 3 chapters.

In Chapter 2, we summarize qualitative and quantitative relations between UHI and NO2

with city size based on published works. This task is finished by a qualitative synthesis followed

by a meta-analysis. The qualitative synthesis utilizes keywords and Boolean operators to select

published works from multiple sources. Records from these sources are filtered according to

their titles, abstracts, and full-text contents. The filtered records are then subjected to qualitative

analysis, i.e. finding their commonalities and differences through textual descriptions only.

Quantitative analysis is however indispensable in the subsequent meta-analysis: From the

filtered literature, we select quantified environmental and demographic values, group them,

and perform ANalysis Of VAriance (ANOVA) on each group. The groups of variables showing

statistical significance are fitted by linear regression. Then the linear regression quantifies the

effects of population size on UHI and NO2.

Therefore the objectives of Chapter 2 are

1. perform a qualitative synthesis to collect and filter a corpus of research articles of UHI and

NO2 pollution with population size, and
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2. perform a meta-analysis to derive the effects of city size on UHI and NO2 pollution, based

on the results of the qualitative synthesis.

In Chapter 4, we test the effect of population size on NO2 which is found in Chapter 2.

We use 2 kinds of data: NO2 surface concentrations from air quality monitoring stations and

tropospheric NO2 columns from satellite imagery. The geographical extent and population size

of cities in Europe are determined by FUAs. Centrality is defined as the Euclidean distance from

a given place to the city center. We further analyze the specifications that showed statistical

significance and give the relative importance of city size and centrality.

Therefore the objectives of Chapter 4 are

1. derive the effects of city size on land surface and tropospheric NO2,

2. quantify the influence of centrality on land surface and tropospheric NO2, and

3. compare the importance of city size and centrality in determining NO2.

The data used in Chapter 5 are largely the same as in Chapter 4. We first use a method

similar to Lemoy and Caruso (2018) to find out whether the relationship between centrality and

NO2 concentration is independent of population size. Then we use a method similar to Lemoy

and Caruso (2021) to test whether our method in the previous step is reliable.

Therefore the objectives of Chapter 5 are

1. find out to what extent city size affects the relationship between NO2 and centrality.

1.5 Thesis outline

Figure 1.5 lists the layout of this thesis. This thesis is divided into 6 chapters. Chapter 2 is a

literature review consisting of qualitative synthesis and meta-analysis. The qualitative synthesis

focuses on qualitatively summarizing the effects of city size on UHI and NO2 in published

papers. The meta-analysis then picks out qualified values from the corpus and brings them into

regression. In this way the effect of city size is quantified and estimated. Chapter 3 introduces

the data and the geoprocessing used in Chapters 4 and 5. Thanks to the wide-spread monitoring

stations across European cities and the satellite imagery covering Europe, the effect of city size

on NO2 is verified by measured data in Chapter 4. The centrality effect on NO2 is also analyzed.

Chapter 5 reveals to what extent city size influences the relationship between centrality and NO2.

Finally Chapter 6 provides conclusions.
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Figure 1.5: Outline of the thesis
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2 The effect of city size on UHI and NO2 in

published works

2.1 Literature review and research gaps

Section 1.3 briefly reviews different approaches, metrics, and specifications for quantifying

the effect of city size on UHI and NO2 among research articles. The details of those articles

are summarized in this Chapter. Meanwhile, only a few literature reviews have revealed the

relationship between UHI and population so far. Common logarithmic population explains

60% of the daily minimum temperature and 38% of the daily maximum temperature of 60

cities in Japan but the coefficients of city sizes are unknown (Fujibe 2011). The annual average

maximum temperature and annual maximum temperature of 101 cities in Australia and Asia

with a population of more than 300,000 are positively correlated with common logarithmic

population, and the coefficient of determination (R2) varies between 0.55 and 0.65, but the effect

of city size is also not given (Santamouris 2015). Tzavali et al. (2015) reviewed UHI around the

world but lacked corresponding population data. So far, no literature review has been found to

quantify the association between NO2 and population.

2.2 Methods

First, we assemble the literature on both UHI and NO2 where a link is drawn, at least qualitatively,

with urban population size or density. Second, we review the relationships found in this literature

stressing the coefficients or qualitative assessments made in each paper. Since the papers involved

in the second step use different measurement methods and metrics, in the third step we collect

the values of these papers and use these values to perform regression analysis on UHI and NO2

with population.

Our literature search and filtering are mainly based on the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guideline. However, we also conduct a

supplementary search, as it appears ex-post that a segment of the literature where environmental

effect estimates are made within a broader model, i.e. the environmental Impacts, Population,
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Affluence, Technology (IPAT) framework, which could not be retrieved by keywords. Although

the IPAT-related literature mainly focuses on carbon emissions, a specific bibliographic search is

performed using IPAT and associated models in combination with UHI and NO2.

Before we present the results, Section 2.2.1 shows our PRISMA filtering and Section 2.2.2

introduces the search under the IPAT framework. Section 2.2.3 then lists the methodological

steps used in our quantitative meta-analysis. Figure 2.1 is the workflow of identifying the corpus

for this paper.

2.2.1 PRISMA application

The PRISMA guideline first appeared in the field of health care (Moher et al. 2009) and is now

also used in urban studies (Cohen 2017; Grekousis 2019). PRISMA is divided into 4 parts:

identification, screening, eligibility, and included. Identification collects records from different

sources. The records are then screened to remain non-repeating ones, and are filtered based on

titles and abstracts. Eligibility judges their full-text contents, and finally included carries out

qualitative synthesis and meta-analysis. We select UHI and NO2 papers separately.

Scopus and Google Scholar are the sources for identification. Scopus is the largest multi-

disciplinary peer-reviewed abstract and citation database (Elsevier 2019), while Google Scholar

covers a wider range of academic citations (Martín-Martín et al. 2018). Keywords such as urban,

population, UHI and NO2 are connected by Boolean operators in Scopus and Google Scholar.

The term city size is considered as it may refer to population size (Grimm et al. 2008; Tran et al.

2006). The term urban size is a synonym of city size. The term population density is one of the

keywords as it has appeared in some UHI and NO2 papers (Nguyen and Kim 2006; Sakakibara

and Matsui 2005). We use the term NOX as well because NOx is a generic term of NO2. The

full search terms are in Appendix A. UHI and NO2 papers were identified on May 6, 2019 and

May 8, 2019 respectively. We did not limit the time of publication, as only 130 UHI and 105 NO2

records were found in Scopus. We however had found Google Scholar tends to return a large

number of research results, so the results in Google Scholar were ordered by relevance, and only

the top 200 UHI and top 100 NO2 items were chosen.

Titles and abstracts of the non-repeating records are screened based on 4 criteria: 1. Peer-

reviewed research journal articles written in English. 2. In view of generalizing the relation of

UHI and NO2 with population, papers should aim at deriving the relation of UHI/NO2 with

urban population, or including the measurement of UHI/NO2 in multiple cities. 3. Of course a

simulated environment is very important for prediction, especially when it is needed to assess

the health impacts on localized population, but for understanding the effect of city size on built

environment at a more aggregated level of cities, circular reasoning should be avoided and only
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observed data should be concerned. Thus, papers should use objective, measured data that

are generated under non-simulated environment. Papers using subjective UHI/NO2 values

collected from interviews or questionnaires are excluded. 4. To find the agglomerated effect of

urban population, papers should consider all the urban population, instead of dividing people

into several groups. The excluded UHI and NO2 records are listed in Appendix B.

Under the PRISMA guideline, we use the following criteria to evaluate full-text contents:

1. As the titles and abstracts of some records do not explicitly indicate whether they fulfill the

criteria of title and abstract, the criteria there also apply to their full-text contents. 2. After we

reviewed relevant studies, we decide to use UHI intensity and ambient NO2 concentration (i.e.

NO2 surface concentration) as the metrics of heat stress and NO2. UHI intensity refers to the

temperature difference between a city and its surrounding countryside (Martin-Vide et al. 2015).

Ambient NO2 concentration refers to the measurement of NO2 contained in an air sample under

25◦C and 1 standard atmospheric pressure, and ambient air quality intuitively expresses the

hazard of outdoor air pollution to human health (WHO 2022). Papers containing only surface or

air temperature but no temperature difference are excluded. Papers containing only bias or differ-

ence of NO2 values are excluded. 3. To avoid circular reasoning, the values of environmental data

in the article should not be calculated based on population or transportation, which means values

from Land Use Regression (LUR) models and population-weighted UHI/NO2 data are thus

excluded. 4. Correlation/specification/values of population and UHI/NO2 variables should

appear in the full-text. When quantified population and environmental variables appear in the

multiple regression model, they should be extractable. 5. Both environmental and population

variables should be associated with city boundaries. 6. Correlation/specification/values of

population and UHI/NO2 variables should not duplicate the work of other studies (i.e. data

should be newly derived for at least 1 city). The excluded UHI and NO2 full-text contents are

listed in Appendix C.

2.2.2 Search under the IPAT framework

The original IPAT equation (i.e. I = PAT) states that environmental impact (I) is a function

of population size (P), affluence (A) and technology (T) (Holdren and Ehrlich 1974), and this

equation is extendable by adding additional variables to the right side. Taking the natural

logarithmic of the variables on both sides of the IPAT equation will get STochastic Impacts

by Regression on Population, Affluence, and Technology (STIRPAT) equation (Dietz and Rosa

1997), a variant of the original IPAT equation under the IPAT framework. The IPAT framework

however, focuses primarily on the topic of carbon emissions (Chertow 2000), possibly because

carbon footprint is the standard way of judging how the built environment affects the natural
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environment (IBM 2021). In the summer of 2022, we searched in Google Scholar using keywords

such as "IPAT", "STIRPAT", "NO2", and "UHI" and found 6 articles that include the relationship

between NO2 pollution and population under the IPAT framework. But we haven’t found

any articles studying UHI and population under the IPAT framework. The results under the

IPAT framework obtained are listed in Table 2.2 together with the NO2 results gained using the

PRISMA guideline.

Figure 2.1: Corpus identification

2.2.3 Meta-analysis

13 UHI and 15 NO2 articles from the qualitative synthesis are included in the meta-analysis of

the relationship between UHI and NO2 with population size. We perform the meta-analysis by:

1. selecting studies having quantified UHI intensity/ambient NO2 and population size

and/or population density. Articles are included if population variables are not specified

in the article, but can be calculated from other values described in the article, or can

be obtained from sources cited with the article. To obtain as much data as possible, if

quantitative data is not clearly stated in the full-text content, we will send queries to the

authors for the data,

2. grouping studies having the same combination of environmental and demographic

variables,

3. determining the relationship form and unit according to the qualitative synthesis and

trial calculation results of the sample data. We decide to derive UHI intensity to the



The effect of city size on UHI and NO2 in published works 27

common logarithmic population variable, the common logarithmic UHI intensity to the

common logarithmic population variable, and the common logarithmic ambient NO2 to

the common logarithmic population variable. UHI intensity is in degrees Celsius (°C)

and ambient NO2 is in microgram per cubic meter (μg/m3). Ambient NO2 in parts per

billion (ppb) is converted by the equation: 1 ppb = 1.882 μg/m3,

4. performing an ANOVA test on each group to assess the extent to which the population

variable can explain the variation in UHI/NO2,

5. for groups showing significant relationships between environmental and demographic

factors, their relationships are quantified using linear regression with dummy variables

of different papers. That is, when performing each ANOVA test, supposing there are n

papers in the group, we create n-1 dummy variables δi (i ∈ [1, n-1]), so the regression

becomes

Y = α +
n−1

∑
i=1

λiδi + βX + ε, (i ∈ [1,n− 1]) (2.1)

where:

Y = UHI intensity (ΔT)/ambient NO2 (NO2),

α and β = regression coefficients (i.e. intercept and slope),

δi = dummy variable associated with the ith paper, δi = 1 if ΔT/NO2 belongs to the ith

paper, δi = 0 otherwise,

λi = differential intercept coefficient of δi,

X = population size (P)/population density (D),

ε = error term, ε ∼ N (0, σ2), and

6. assessing the model.

Differences between ANOVA and linear regression

There are some reasons why we use ANOVA first and then linear regression analysis, although

both are used to assess the relationship between dependent and independent variables. First,

ANOVA and linear regression have different purposes. ANOVA determines whether there is a

significant difference between the means of two or more groups (Kao and Green 2008). Linear

regression fits the relationship between a dependent variable and one or more independent

variable(s) using a model. Second, ANOVA usually concerns two variables, i.e. one categorical

independent variable and one continuous dependent variable (U.S. National University Library

2023), while linear regression concerns one or more independent variable(s) and one continuous
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dependent variable. Third, ANOVA uses F-test to test whether there is a significant difference

between the means of groups, while linear regression uses coefficients and t-test to describe how

the dependent variable changes with the independent variable(s). Last, ANOVA assumes that

the variances of the groups are equal (Martin and Games 1977), while linear regression assumes

that there is a linear relationship between independent variable(s) and dependent variable. Thus,

in this chapter we first use ANOVA to test whether there is a significant difference between

population and environmental variables, and then we describe their relationship using linear

regression.

2.3 Results and discussion

The studies that pass our criteria and can be understood to relate UHI or NO2 explicitly to urban

population size or density are presented in Tables 2.1 and 2.2. We can already note that the

literature is surprisingly thin: 13 papers only relate explicitly UHI to population size, and only

15 papers do so for NO2. This very low number of studies for such an important global health

and environment issue is a first key conclusion and calls for many more cross-section analyses in

the field, especially knowing comparability is not necessarily obvious given both UHI and NO2

are spatio-temporally varying processes and because, as we show below, even within this corpus

there is much variety in measurements and methods. Also the IPAT framework does not seem to

be used so far for UHI while 6 studies use this more general framework for NO2. The general

conclusion beyond demographics, which includes technology and wealth, is even more rare.

2.3.1 Qualitative synthesis

Tables 2.1 and 2.2 list the qualitative synthesis of UHI and NO2 studies.
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Table 2.1: Qualitative synthesis of UHI studies

Measuring
Study

Locations
ΔT metric ΔT - population related conclusionstype and year

Oke (1973) 11 cities in Europe, max/mean aerial Canada: mean ΔT = 1.93log10P - 4.76
18 cities in North ΔT R2 = 0.97
America North America: max ΔT = 2.96log10P - 6.41
1969-1971 R2 = 0.96
(car traverse) Europe: max ΔT =2.01log10P - 4.06
1927-1972 R2 = 0.74
(literature) With the same increment of P, ΔT increases

more in a town than in a large city.
Oke and Maxwell (1975) 1 city in Canada max aerial ΔT none

unspecified
Car Torok et al. (2001) 7 cities in Australia max aerial ΔT max ΔT = 1.42log10P - 2.09
traverse 1992-1994 R2 = 0.997

(car traverse) With the same increment P, max ΔT
1972-1987 increases less in an Australian town than
(literature) in a North American/European town.

D may decide the
association between ΔT and P.

Sakakibara and Matsui (2005) 16 cities in Japan max/mean aerial ΔT mean ΔT = 1.33log10P - 3.83
2001-2002 R2 = 0.96

continued on the next page
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continued from the previous page

(car traverse) max ΔT = 2.078log10P - 4.2176
1983-2002 R2 = 0.7779
(literature) The relationship between P and ΔT

is affected by cloud cover and wind speed.
The correlation between D and ΔT
is not always high comparing with
the one between P and ΔT.

Ganeshan et al. (2013) 28 cities in U.S. daytime/nighttime Daytime ΔT in 8 cities is significantly positively
June, July, August, mean modeled correlated with log10P (R2 = 0.82).

Climate 2007-2008 aerial ΔT
models Debbage and Shepherd (2015) 50 cities in U.S. annual mean ΔT is insignificant

2010 modeled aerial ΔT correlated with P (R2 = 0.27)
and D (R2 = 0.30).

Hardin et al. (2018) 4 cities in U.S. daily/daytime/ P is positively correlated with
Monitoring May-September nighttime mean nighttime mean ΔT.
stations 2006-2013 aerial ΔT

Lee (1993) 23 cities in Koreaa max land surface ΔT max ΔT = 2.38log10P - 7.75
1986-1989 R2 = 0.50

P>40000: max ΔT = 3.51log10P - 14.95
R2 = 0.50
P<300000: max ΔT = 3.53log10P - 13.30
R2 = 0.35

continued on the next page

aCities are counted according to the cities listed in Figure 2 and Table 2 of Lee (1993).
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continued from the previous page

Tran et al. (2006) 8 cities in Asia daytime/nighttime/ daytime: ΔT = 0.4726(P ÷ 106) + 2.494
2001-2003 winter maximum R2 = 0.9332

monthly mean nighttime: ΔT = 0.2963(P ÷ 106) + 0.6586
land surface ΔT R2 = 0.7943

Zhao et al. (2014) 65 cities in North annual mean nighttime: ΔT = 0.64log10P - 6.0
America daytime/nighttime R2 = 0.54

Remote 2003-2012 land surface ΔT
sensing Du et al. (2016) 101 cities in China annual mean ΔT is insignificantly correlated with D.

2014 daytime/nighttime daytime: spring: R2 = 0.057, summer: R2 = 0.387
spring/summer/ autumn: R2 = 0.356, winter: R2 = 0.272
autumn/winter mean nighttime: spring: R2 = 0.258, summer: R2 = 0.261
land surface ΔT autumn: R2 = 0.217, winter: R2 = 0.422

Ward et al. (2016) 70 cities in Europe mean ΔT is insignificantly correlated with P and D.
July, 2006 land surface ΔT

Zhou et al. (2018) 56 in China annual monthly/ ΔT is positively correlated with D.
2010-2015 summer/winter

daytime/nighttime
mean land surface ΔT
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Table 2.1 shows car traverse was a popular way to measure ΔT until the early 21st century.

In the 21st century, climate models, monitoring stations and remote sensing are the main ways to

gain ΔT, and studies using climate models and remote sensing cover more cities than the one

using monitoring stations. Remote sensing measures land surface ΔT while other ways retrieve

aerial ΔT, but temperature of the Earth’s surface is different from aerial temperature (NASA 2022),

and how well they explain each other depends on factors such as terrain and season (Mutiibwa

et al. 2015). Perhaps because of the complex measurement procedure, car traverse provides far

fewer kinds of ΔT metrics than other ways. As for the related conclusions from the text, 8 papers

show ΔT is positively correlated with P, and 6 of which quantify the relation using univariate

linear regression. The 2 studies quantifying mean ΔT by car traverse show the coefficients of

log10P are 1.93 and 1.33. The studies quantifying max ΔT by car traverse reveal the coefficients

of log10P range from 1.42 to 2.96. Climate models and monitoring stations both illustrate the

positive relationship between ΔT and P but neither give quantitative equation. The quantitative

equations from remote sensing however, could not be compared side by side because of the

different ΔT used. The coefficients of log10P in the regression of max land surface ΔT range from

2.38 to 3.53, which are higher than the range of log10P in the regression of max aerial ΔT. Whether

ΔT is significantly correlated with D remains inconclusive due to the conflicting conclusions.
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Table 2.2: Qualitative synthesis of NO2 studies

Measuring
IPAT? Study

Locations
NO2 metric

Non NO2/population NO2 - population related
type and year variables of IPAT conclusions

Y Sarzynski (2012) 8032 cities ln(annual emissions) ln(GDPa per capita), ln(NO2) = 1.165lnP - 0.438lnD
globally per city [ln(GDP per capita]2, + others

[ln(GDP per capita)]3, R2 = 0.872
emission share from
energy,

Emission emission share from
inventories industry,

emission share from
transport,
population growth,
rate,
annual cooling
degree days.

N Nguyen and Kim (2006) 7 cities annual mean ambient The spatial distribution of NO2

in Korea per city may associate with D.
1998-2003

N Lertxundi-Manterola and Saez (2009) 2 cities annual mean/ none
in Spain median/minimum/

continued on the next page

aGross Domestic Product (GDP)
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continued from the previous page

1994-2004 maximum ambient
per station

N Branis and Linhartova (2012) 39 cities annual mean ambient Large P is likely to relate with high NO2.
in Czechia per city P shows positive significance (0.886) in
2001 the 2nd factor of PCA

N Masiol et al. (2013) 9 citiesa annual mean ambient none
in Italy per station
2011

Monitoring N Baró et al. (2015) 5 cities annual mean ambient none
stations in Europe per city

2011
Y Squalli (2010) U.S. states ln(annual emission) ln(proportion of ln(NO2) = 1.05lnP + others

2000 per state foreign-born), R2 = 0.68
ln(GDP per capita),
[ln(GDP per capita)]2,
ln(electricity output
in GDP),
ln(manufacturing output
in GDP).

Y Zhou and Li (2021) 30 provinces ln(PPP GDPb ln(outward foreign ln(NO2) = -0.434lnP + others

continued on the next page

aCities having stations in urban/traffic background are counted. Rural/suburban stations are unselected because of remoteness. The city having stations in industrial background (i.e.
Padova) is already counted.

bGross Domestic Product based on Purchasing Power Parity (PPP GDP)
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continued from the previous page

in China per terrogram of direct investment), R2 = 0.915
2004-2017 equivalent industrial ln(GDP per capita),

emission) ln(GDP per capita2),
per province ln(proportion of energy

consumption in GDP),
ln(ratio of pollution
discharge costs to GDP),
ln(ratio of total imports
and exports of goods
and services to GDP),
ln(oil equivalent.
per capita).

Y Han et al. (2022) 282 cities annual mean ambient industrial agglomeration, NO2 = 0.161lnP + others
in China per city ln(GDP per capita),
2015-2018 ln(energy consumption.

per GDP).

Y Cui et al. (2019) 243 cities ln(annual mean ln(GDP per capita), ln(NO2) = 0.7449lnP + others
in China tropospheric column) ln(the ratio of 2nd R2 = 0.7514
2005-2012 per city industry to 3rd industry),

ln(urban road area),
ln(total nighttime
light value),

continued on the next page
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continued from the previous page

ln(NDVIa),
ln(ambient pressure),
ln(relative pressure),

Remote ln(temperature),
Sensing ln(wind speed).

Y Jiang et al. (2021) 65 countries ln(annual mean ln(urbanization ln(NO2) = 0.2441lnP + others
in Africa, Asia, tropospheric column) level), R2 = 0.649
Europe, and per country ln(GDP per capita),
Middle East ln(GDP per capita2),
2005-2018 ln(access to electricity),

ln(foreign direct
investment),
ln(international trade),
ln(industrialization
level).

N Bechle et al. (2011) 83 cities log10(modeled annual log10NO2 is positively correlated with P but
globally mean ambient) is insignificantly related to D.
2005-2007 per city log10(NO2) = 0.41log10P + others

N Lamsal et al. (2013) 239 cities in ln(modeled annual China: lnNO2 = 0.66lnP - 0.38
Remote U.S., 757 cities mean ambient) R2 = 0.69
sensing in Europe, 244 per city Europe: ln(NO2) = 0.48lnP + 0.29,
(modeled) cities in China, R2 = 0.67

continued on the next page

aNormalized Difference Vegetation Index (NDVI)
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continued from the previous page

265 cities India: ln(NO2) = 0.36lnP - 1.43,
in India R2 = 0.59
2005 U.S.: ln(NO2) = 0.42lnP - 0.02,

R2 = 0.71

N Hosein et al. (1977) 3 cities annual summer/ NO2 is unlikely to relate with D.
in U.S. winter mean
1972-1974 ambient

Samplers per city
N Singh and Kulshrestha (2014) 2 cities annual (summer/ none

in India winter/monsoon)
2012-2013 mean/median/

minimum/maximum/
25th/75th percentile
ambient per city
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Table 2.2 shows the only 2 studies using handy samplers measure NO2 in barely 4 cities.

The only study using data from emission inventory however, covers NO2 pollution across 8,032

cities around the world but ignores cities with less than 50,000 residents. Emission inventory

is different from ambient concentration because an emission inventory is made according to

indicators including values from emission sources, extrapolated values, and emission factors,

and itself needs comprehensive assessment and calculation when updating (U.S. EPA 2022b).

Because emission sources have been identified when creating inventories, inventories may fail

to reflect localized, highly variable pollutants (AQEG 2013). Compared with NO2 emission

inventories, ambient NO2 concentration is more suitable to reflect sudden changes in real-world

pollutants, especially high vehicular emissions (Fujita et al. 1992). But even ambient NO2 come in

many varieties, including non-logarithmic forms, natural logarithmic forms (ln()), and common

logarithmic forms (log10()). The data of ambient NO2 itself, can be measured by samplers or

monitoring stations, or obtained from the satellite columns through the meteorological model,

not to mention that studies aggregate NO2 at different geographical levels. It is thus difficult

to find a consolidated NO2 metric in evaluating the effect of city size on NO2 across cities. The

only 6 studies under the IPAT framework often contain economic or technological factors along

with population variables, but behavior (B), representing environmental impact and residents’

choices, is underestimated under the IPAT framework (Schulze 2002). Considering the fact that

the use of cars, especially private cars, is largely an individual behavior, the IPAT framework may

not be a suitable choice to find the city size effect on ambient NO2. As for the NO2-population

related conclusions, 4 out of 15 papers do not give corresponding conclusions as they target for

other aims. 7 out of 8 articles providing liner regression say non-log/log10/ln NO2 is positively

correlated with log10P/lnP, but they use different metrics or form of relationship. The only paper

using PCA gives the conclusion that large cities tend to have high NO2 pollution. Only 1 article

reveals a negative lnP coefficient. Only 3 articles point to a relationship between NO2 and D, but

the conclusions are inconsistent.

2.3.2 Quantitative analysis

6 UHI studies provide quantified environmental and population variables (Hardin et al. 2018;

Oke 1973; Oke and Maxwell 1975; Sakakibara and Matsui 2005; Torok et al. 2001; Tran et al. 2006)

and we gained data from Zhou et al. (2018). But only 4 papers are enrolled in the meta-analysis

(Oke 1973; Oke and Maxwell 1975; Sakakibara and Matsui 2005; Torok et al. 2001). The paper of

Hardin et al. (2018) is excluded because it only uses data from May to September. Although Tran

et al. (2006) and Zhou et al. (2018) both measure land surface ΔT, these two papers are excluded

due to the difference in the definition of ΔT. Tran et al. (2006) approximate ΔT through a fitted
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Gaussian surface, while Zhou et al. (2018) define ΔT using absolute difference values between

urban and reference pixels. We decide not to include data from climate model into meta-analysis

(Debbage and Shepherd 2015; Ganeshan et al. 2013) as a way to avoid circular reasoning. As for

the remaining articles in Table 2.1, only Lee (1993) uses max land surface ΔT as an indicator, so

its data are not comparable. The time span of Ward et al. (2016) is only 1 month, and thus it is

not comparable. We have not got the data of Du et al. (2016), so even with the data from Zhao

et al. (2014), no remote sensing studies can be combined to investigate.

5 NO2 studies provide quantified environmental and population variables (Baró et al. 2015;

Hosein et al. 1977; Lertxundi-Manterola and Saez 2009; Nguyen and Kim 2006; Singh and

Kulshrestha 2014). Bechle et al. (2011) and Masiol et al. (2013) provided us the data. Data from

Jiang et al. (2021), Squalli (2010), and Zhou and Li (2021) are not suitable for our needs as they

aggregated the NO2 data at the level of province/state/country, so even with the data from Cui

et al. (2019), no remote sensing studies can be combined to investigate. We did not receive the

data from Lamsal et al. (2013), so no modeled ambient NO2 converted from satellite columns

can be studied. We have not received data from Branis and Linhartova (2012) and Sarzynski

(2012), and the data source of Han et al. (2022) is not accessible. The paper of Hosein et al. (1977)

is excluded due to the abnormal NO2 comparing with the ones in other studies. Specifically,

the summer mean NO2 for Ansonia (U.S.) (108.6 μg/m3) with a population of 21,200 (ibid.) is

higher than the annual mean NO2 in traffic background of Seoul (South Korea) (102.76 μg/m3)

(Nguyen and Kim 2006) with a population of 9,895,217 (Turner 2003). Finally, 4 papers are

enrolled in the meta-analysis (Baró et al. 2015; Lertxundi-Manterola and Saez 2009; Nguyen and

Kim 2006; Singh and Kulshrestha 2014). For the papers of Lertxundi-Manterola and Saez (2009)

and Masiol et al. (2013), we average the mean NO2 values from multiple stations per city as

the average of ambient NO2 per city. For the paper of Lertxundi-Manterola and Saez (2009) we

select the maximum value of the maximum ambient NO2 values gained from stations per city as

the maximum ambient NO2 of that city, and the minimum value of the minimum ambient NO2

values gained from stations per city as the minimum ambient NO2 of that city.

ANOVA

An ANOVA test is performed for each combination of environmental and demographic variables.

The ANOVA test is performed under the R 3.5.1 environment. Table 2.3 lists the results of the

ANOVA test. Appendix D shows the data taken to the ANOVA test.
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Table 2.3: Results of ANOVA

Health hazard Specification/relationship ρ Studies

UHI

max ΔT with log10P 0.0000 Oke (1973)
Oke and Maxwell (1975)
Torok et al. (2001)
Sakakibara and Matsui (2005)

log10(max ΔT) with log10P 0.0000 Oke (1973)
Oke and Maxwell (1975)
Torok et al. (2001)
Sakakibara and Matsui (2005)

NO2

log10(mean NO2) with log10P 0.0000 Nguyen and Kim (2006)
Lertxundi-Manterola and Saez (2009)
Masiol et al. (2013)
Singh and Kulshrestha (2014)
Baró et al. (2015)

log10(mean NO2) with log10D 0.0835 Nguyen and Kim (2006)
Lertxundi-Manterola and Saez (2009)
Singh and Kulshrestha (2014)
Baró et al. (2015)

log10(max NO2) with log10P 0.0746 Lertxundi-Manterola and Saez (2009)
Singh and Kulshrestha (2014)

log10(max NO2) with log10D 0.5192 Lertxundi-Manterola and Saez (2009)
Singh and Kulshrestha (2014)

statistical significant relations (ρ < 0.001) in bold

Table 2.3 shows max ΔT with log10P, log10(max ΔT) with log10P, and log10(mean NO2) with

log10P pass the test of significance at the level of 0.1%. The following analysis is based on these 3

specifications. Although Lertxundi-Manterola and Saez (2009) and Singh and Kulshrestha (2014)

provide data to build 2 specifications: min NO2 with log10P, and min NO2 with log10D, but they

can not be assessed quantitatively as the minimum annual mean ambient NO2 of each city in

Lertxundi-Manterola and Saez (2009) is 0.

Linear regression

We regress the 3 specifications having statistical significance using Equation 2.1. Tables 2.4,

2.5, and 2.6 show the details of the regression. Appendix D lists the data for the regression.

When the dummy variables are absent the regression becomes Ordinary Least Squares (OLS)

regression of environmental variables and log10P. For max ΔT, we consider the case where
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intercept is 0, as theoretically, cities with no inhabitants should not have UHI. We use R2 and

Breusch-Pagan test (BP test) to assess the regression. F value of the wald test replaces BP test in

the OLS regression without intercept (Gibbons 2011).
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Table 2.4: Regressions of max ΔT with log10P

Intercept � 0 Intercept = 0
OLS Dummy variables OLS Dummy variables
(2.1) (2.2) (2.3) (2.4)

Intercept (Oke 1973) -3.6879*** -2.0007* Intercept 0 0
(0.9998) (0.9522)

log10P 2.0401*** 1.8369*** log10P 1.3006*** 1.8369***
(0.2058) (0.1847) (0.0513) (0.1847)

Oke and Maxwell (1975) 2.5032+ Oke and Maxwell (ibid.) 0.5024
(1.4685) (0.9522)

Torok et al. (2001) -2.1688*** Torok et al. (ibid.) -4.1695***
(0.5717) (1.8140)

Sakakibara and Matsui (2005) -1.4312** Sakakibara and Matsui (ibid.) -3.4319***
(0.4469) (1.0241)

Oke (1973) -2.0007*
(0.8587)

R2 0.6455 0.7581 R2 0.5562 0.9570
BP test 10.3362** 6.5731 Wald/BP test 642.7377*** 6.5731

***ρ < 0.001 ** ρ < 0.01 * ρ < 0.05 +ρ < 0.1
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As we described in Equation 2.1, we use a certain paper as the reference level of the dummy

variable. Since we do not have specific coordinates of each study area, we cannot use the climate

zone where each study area is located as a dummy variable.

Table 2.4 shows under all circumstances log10P is positively correlated with max ΔT and

passes the test of significance at the level of 0.1%. In the theoretical case (Column 2.3), the slope

of log10P is 1.3006 and log10P explains more than half of max ΔT. Compared to data in Column

2.1, the dummy variables reduce the slope of log10P and shows some papers have a significant

impact on the regression. In both dummy variables’ cases, Torok et al. (2001) passes the test of

significance at the level of 0.1% and Oke (1973) passes the test of significance at the level of 5%.

The dummy variables also remove the heteroscedasticity in Columns 2.1 and 2.3. In general,

log10P can explain at least 56% or at most 76% of max ΔT (non-theoretical case). The coefficients

of log10P in Columns 2.1 to 2.4 are very close to the ones of Oke (1973), Sakakibara and Matsui

(2005), and Torok et al. (2001) in Table 2.1. The R2 in Column 2.1 (i.e. 0.65) is close to the results

Santamouris (2015) (i.e. between 0.55 and 0.65).
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Table 2.5: Regressions of log10(max ΔT) with log10P

Intercept � 0
OLS Dummy variables
(2.5) (2.6)

Intercept (Oke 1973) -0.0442 0.0750
(0.0770) (0.0769)

log10P 0.1625*** 0.1489***
(0.0158) (0.0149)

Oke and Maxwell (1975) 0.0896
(0.1185)

Torok et al. (2001) -0.1546**
(0.0461)

Sakakibara and Matsui (2005) -0.1082**
(0.0361)

R2 0.6607 0.7455
BP test 0.1568 2.4681

***ρ < 0.001 ** ρ < 0.01 *ρ < 0.05 +ρ < 0.1

Table 2.5 shows log10P is positively correlated with log10(max ΔT) and passes the test of

significance at the level of 0.1%. The dummy variables decrease the coefficient of log10P and

describe that Sakakibara and Matsui (2005) and Torok et al. (2001) have influence on deciding the

intercept. However, comparing with the significance in Columns 2.2 and 2.4, this time these 2

papers only pass the test of significance at the level of 1%. None of the specifications in Table 2.5

are heteroscedastic. In the log10-log10 specification, the equation of log10P with dummy variables

(Column 2.6) is the best to forecast log10(max ΔT). Column 2.6 has a log10P coefficient of 0.1489

and can explain 75% of log10(max ΔT).
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Figure 2.2: Solid line: predicted max UHI intensity (m̂ax ΔT) at different P (Column 2.1);
short solid line: m̂ax ΔT at different P (theoretical case, Column 2.3);
solid-dotted line: m̂ax ΔT at different P (log10-log10 fit, Column 2.5)

In Figure 2.2, the solid line indicates even small cities of 10,000 inhabitants are likely to have

a 4.5◦C difference to their surroundings (i.e. 2.0401*log1010000-3.6879=4.4725), and on this basis,

when the inhabitants increase by 10 times, the temperature difference increases by an additional

2◦C (i.e. 6.5126◦C). This coefficient of log10P (i.e. 2.0401) is unsurprisingly close to the coefficients

of log10P in the studies of Oke (1973), Sakakibara and Matsui (2005), and Torok et al. (2001) in

Table 2.1 as we use their data to produce Figure 2.2. Moreover, this coefficient of log10P is also

close to the one using remote sensing (Lee 1993) in Table 2.1. This may indicate land surface ΔT

and aerial ΔT are coherent. If we rather consider the log10-log10 fit as the best relationship, we

can see that the range is similar for cities with a population of less than 1 million (there is an

intersection of the solid and the solid-dotted lines after 1 million) but the heat stress definitely

gets worse for mega cities, such as 12◦C for a city having 10 million residents.

The specifications highlight the influence from Sakakibara and Matsui (2005) and Torok

et al. (2001), but Figure 2.2 shows some significantly low values of max ΔT (e.g. Melbourne in

1972 and 1993, Nagano in 1983) from past literature. It is quite difficult to know the exact reason

for these low values as decades have passed, but they can reflect that population is not the only

indicator of UHI, perhaps the disproportionate growth of impervious surfaces in cities is one of

the reasons (Strohbach et al. 2019).
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Table 2.6: Regressions of log10(mean NO2) with log10P

Intercept � 0
OLS Dummy variables
(2.7) (2.8)

Intercept (Nguyen and Kim (2006) urban bg.) 0.7045*** 0.6547***
(0.0924) (0.1528)

log10P 0.1625*** 0.1587***
(0.0164) (0.0237)

Nguyen and Kim (ibid.) traffic bg. 0.1439***
(0.0319)

Lertxundi-Manterola and Saez (2009) -0.0121
(0.0481)

Masiol et al. (2013) urban bg. 0.0504
(0.0454)

Masiol et al. (ibid.) traffic bg. 0.1700***
(0.0447)

Singh and Kulshrestha (2014) -0.0198
(0.0672)

Singh and Kulshrestha (ibid.) winter 0.1680*
(0.0672)

Singh and Kulshrestha (ibid.) summer -0.0382
(0.0672)

Baró et al. (2015) 0.0836*
(0.0366)

R2 0.7149 0.8982
BP test 0.1169 14.8008+

***ρ < 0.001 ** ρ < 0.01 * ρ < 0.05 +ρ < 0.1

Table 2.6 shows log10P is positively correlated with log10(mean NO2) and passes the test of

significance at the level of 0.1%. The dummy variable reduces the slope of log10P and describes

the impacts from the papers of Baró et al. (2015), Masiol et al. (2013), Nguyen and Kim (2006),

and Singh and Kulshrestha (2014). NO2 values measured in traffic background all pass the test of

significance at the level of 0.1%. The values taken from urban background in the paper of Nguyen

and Kim (2006) also pass the test of significance at the level of 0.1%. None of the specifications in

Table 2.6 are severely heteroscedastic. Column 2.8 of log10P with dummy variable is the best

one to forecast log10(mean NO2), and its log10P coefficient is 0.1587, which can explain 90% of
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log10(mean NO2). The coefficients of log10P in Columns 2.7 and 2.8 are much lower than the

ones of Bechle et al. (2011) and Lamsal et al. (2013) in Table 2.2.

The dummy variables on NO2 studies delineate the obvious impact of measurement back-

ground on ambient mean NO2. Values of log10(mean NO2) measured in Italian traffic back-

ground pass the test of significance at the level of 0.1% (Masiol et al. 2013). Although the urban

background is not a dense area of transportation, but with an average of 10 times the population

of Italian cities, log10(mean NO2) values measured in traffic and urban background in South

Korea pass the test of significance at the level of 0.1% (Nguyen and Kim 2006), representing the

dominant impact from population (Sarzynski 2012). The NO2 data measured in winter pass the

test of significance at the level of 5%, while the data measured in traffic background pass the test

of significance at the level of 0.1%. Therefore, traffic background may have a greater impact on

NO2 pollution levels than winter.

Figure 2.3: Predicted ambient mean NO2 (m̂ean NO2) at different P (Column 2.7)

Figure 2.3 shows a city of 200,000 inhabitants would then get a 37 μg/m3 annual mean

intake (i.e. 100.1625∗log10200000+0.7045=36.8059) while a city of 2 million residents has a 54 μg/m3

annual mean intake. The largest cities in the world, i.e. more than 20 million would get a

intake of 78 μg/m3. We can see however, that some cities can go even largely beyond, such

as Seoul on the graph, depending where the ambient NO2 was measured. We also draw the

NO2 limits suggested by the WHO (WHO 2000, 2021). We can find 53.66% of the data points

(i.e. 22/41) are above the WHO annual mean limit in 2000 (i.e. 40 μg/m3), and all the points

are above the WHO annual mean limit in 2021 (i.e. 10 μg/m3). This also means that if the

city’s mean NO2 meets the WHO annual mean limit in 2000, the population size should be less

than 350,000 (i.e. 100.1625∗log10350000+0.7045=40.3098). The predicted line however is not realistic to
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reach the WHO annual mean limit in 2021, as the population size should be less than 100 (i.e.

100.1625∗log10100+0.7045=10.7029)! So far living in any city is actually detrimental to health.

Our paper is the first to address UHI in cities with inhabitants as small as 800 and ambient

NO2 pollution in cities with inhabitants as small as 6,000, allowing stakeholders of small cities to

accurately asses current threats from built environment. Thanks to the inclusion of real small

cities, we have a comprehensive view on the contribution of population to the growth rate of

max ΔT and mean NO2. Contrary to Sarzynski (2012), who claimed that NO2 increases faster

with population in cities with populations less than 1 million, our log10-log10 specifications of

UHI and NO2 show the growth rates of m̂ax ΔT and m̂ean NO2 always increase with population,

and the growth rates are not limited by any population threshold. In fact, we couldn’t repeat

the experiments of Sarzynski (ibid.) as we could not gain the data from her. Sarzynski (ibid.)

may make this point because she did not consider cities with inhabitants of less than 50,000.

Our findings thus demonstrate that the contribution of population growth to heat stress and

NO2 is unpredictable and inevitable. Based on the results in Figure 2.3, we need to reduce NO2

emissions if we are to meet the 2021 WHO annual mean limit. Since cars are a major source of

NO2 emissions (EEA 2016), this means we may need to fundamentally change the way we travel

or drive.

We suggest that similar meta-analyses can be performed in other databases in the future,

such as Web of Science. Second, comparing the cities included in the meta-analysis with in-

habitants across continents, heat stress and NO2 pollution are over-reported in Europe, North

America and Oceania, but under-reported in Asia. Apparently African, Latin American, and the

Caribbean cities deserve more investigation.

2.4 Code availability

Code links for Table 2.3:

1st ρ value - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_ANOVA_LOGPOP_MaxUHI.py,

2nd ρ value - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_ANOVA_LOGPOP_LOGMaxUHI.py,

3rd ρ value - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_ANOVA_LOGPOP_LOGMeanNO2.py,

4th ρ value - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_ANOVA_LOGPOPDEN_LOGMeanNO2.py,

5th ρ value - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_ANOVA_LOGPOP_LOGMaxNO2.py,
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6th ρ value - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_ANOVA_LOGPOPDEN_LOGMaxNO2.py.

Code links for Table 2.4:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_MaxUHI_LOGPOP_OLS_withInter.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_MaxUHI_LOGPOP_FE_withInter.r,

3rd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_MaxUHI_LOGPOP_OLS_noInter.r,

4th column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_MaxUHI_LOGPOP_FE_noInter.r.

Code links for Table 2.5:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_LOGMaxUHI_LOGPOP_OLS_withInter.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_LOGMaxUHI_LOGPOP_FE_withInter.r.

Code links for Table 2.6:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_LOGMeanNO2_LOGPOP_OLS_withInter.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_LOGMeanNO2_LOGPOP_FE_withInter.r.

Code link for Figure 2.2:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Fig_UHI_POP_3Lines.py.

Code link for Figure 2.3:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Fig_NO2_POP_1Line.py.
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3 Data and geoprocessing

This chapter presents and analyzes the data and geoprocessing methods used in Chapters 4 and

5.

3.1 Data sources and methodology

3.1.1 FUAs

We choose FUAs developed by the Organization for Economic Co-operation and Development

(OECD) as the definition of cities (European Comission 2019). FUAs are composed of cities

and their surrounding commuting zones. Each city is a Local Administrative Unit (LAU) in

which at least half of the residents living in the urban center of the city (Eurostat 2018a). The

commuting zone of the city covers the area where the percentage of jobholders hired in the

city is at least 15% (Eurostat 2018b). In this way, FUAs define the living areas of commuters in

the core city and adjacent metropolitan areas (Simeonova 2019). Thus, FUAs are considered an

appropriate geographic domain when formulating transport and planning policies (OECD &

European Commission 2020). We download the FUAs dataset from the JRC Big Data Platform

(Schiavina et al. 2019). The dataset contains population size and areas of more than 9,000 FUAs

globally in 2015. The spatial resolution of the dataset is 1 km x 1 km. Our study area covers 378

FUAs in Europe. We use the population size provided in this dataset as the city size. We use the

locations of city halls as the city centers. All city centers are located in FUAs. The coordinates of

the city halls are provided by Lemoy, R., Kilgarriff, P. and Mader, M. The city halls were used as

the focal points of cities in a study of intra-urban land use profiles (Lemoy and Caruso 2018). We

use the locations of city centers to calculate the Euclidean distance from each monitoring station

to the city center, or the Euclidean distance from the centroid of each pixel of tropospheric NO2

layer to the city center (R).

Why choose FUAs

There are several reasons why we choose FUAs as the definition of cities. First, FUAs include not

only the core area of the city, but also the surrounding areas delineated according to employment
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status. This approach quantifies the socioeconomic activities that take place in and around urban

centers. These socioeconomic activities are generated by human activities and also affect the air

quality of cities and their surrounding areas. Since the range of human activities are quantified

by FUAs, we can assume that UHI effects or NO2 levels within FUAs are more evident than

areas outside FUAs. Second, the boundaries of FUAs do not coincide with the administrative

divisions of cities, as the latter rely on the laws and legislation of each country (Dijkstra et al.

2019). FUAs provide a unified city definition, which enables cities to use a unified standard to

evaluate economic development and population status, thereby improving the overall economic

development level of the region and easing the tension between built and natural environment.

FUAs and urban density

However, due to the definition of FUAs, FUAs may not represent some detailed features of the

city’s interior, such as urban density, artificial land use, and roads. The definition of FUAs is

determined based on the proportion of residents in the city center and the employment status of

residents around the city, but this definition does not involve too much the city’s infrastructure

construction and residents’ living conditions (Eurostat 2018a,b). One of the drawbacks of the

definition of FUAs is that, FUAs do not reflect how residents commute (e.g. Amsterdam is a city

with a well-developed road network but high bicycle usage rate (Ton et al. 2017)) and how much

air pollutants are produced on the roads (e.g. the number of people who commute by private

car). FUAs also have shortcomings in terms of reflecting urban density. Urban density refers

to the number of people or built-up structures per unit of land (Hess 2014), but FUAs ignore

urban density because they consider the inhabitants of the entire city as a whole. In addition,

FUAs do not show information of housing types, but housing types are related to both energy

consumption and pollutant emissions, and housing types also determine the urban density of a

certain area (Alrashed and Asif 2014).

FUAs and commuting distance

Since FUAs are defined based on the socioeconomic status of residents, the sizes of FUAs vary

from city to city. Therefore, the urban commuting distance of each FUA is different. Among the

378 FUAs, the largest FUA is Paris (France) (19,094 km2), and the smallest FUA is Andria (Italy)

(28 km2). FUAs of different sizes play a strong supporting role for us to explore the impact of

population size on air quality. In Section 3.2 we present the information of FUAs with maps and

graphs.
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FUAs and suburbanization

Since FUAs take into account both urban core and peri-urban populations, FUAs are inevitably

compared with the concept of suburbanization. In fact, FUAs and suburbanization are related

but two different concepts. A FUA is a geographical area delineated according to the residence

and employment status of residents (Eurostat 2018a,b). Suburbanization is a geographical

phenomenon that describes the movement of population from central urban areas to suburban

areas, leading to the formation of urban sprawl (Harper 2018; Kok and Kovacs 1999). The size of

FUAs is affected to some extent by suburbanization. On the one hand, due to the low land prices

in the suburbs and the continuous improvement of the traffic environment, suburbanization is a

response to the economic restructuring of the urban core area (Zhou and Ma 2000). On the other

hand, suburbanization may negatively affect the city center, leading to the decline of the urban

core, thereby concentrating low-income residents in the central area (Gainsborough 2002).

3.1.2 Annual mean NO2 surface concentrations

We collect annual mean NO2 surface concentrations (G) in the calendar year 2018 from the

Air Quality e-Reporting (AQ e-Reporting) dataset developed by the European Environment

Agency (EEA) (EEA 2018b). The annual mean NO2 surface concentration is in the unit of

microgram per cubic meter (μg/m3). The AQ e-Reporting dataset contains ground-based air

pollutants’ records from the monitoring stations of each European Economic Area member

country. The AQ e-Reporting dataset we downloaded not only contains the annual mean NO2

surface concentration recorded by each station, but also includes station coordinates, verification

and validity of measured values, time and data coverage of measurement, and monitoring

station backgrounds. We choose verified and valid records, then select the ones whose time and

data coverage are both greater than 75% (ibid.). Finally, 1,397 monitoring stations are included in

our study, of which 674 stations are in mixed background, 566 stations are in traffic background,

and 157 stations are in industrial background.

We use dummy variables to show the influence from the backgrounds of different monitor-

ing stations.

3.1.3 Annual mean tropospheric NO2 vertical columns

The other NO2 data is annual mean tropospheric NO2 vertical columns (C), which are calculated

from daily tropospheric NO2 vertical columns. The annual mean tropospheric NO2 column

is in the unit of mole per square meter (mol/m2). The NO2 columns are measured by the

TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor earth observation

satellite. We collect daily tropospheric NO2 vertical columns in the study area from October
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25, 2018 to October 24, 2019 from the Sentinel-5P Pre-Operations Data Hub (ESA 2021). We

choose this time period is because before October 25, 2018 some data are not available (Eskes

and Eichmann 2021). The product has a spatial resolution of 7 km x 3.5 km (Eskes and Eichmann

2021; Eskes et al. 2019).

For further centrality analysis, before obtaining a raster of annual mean tropospheric NO2

vertical columns, we mosaic the data to gain daily tropospheric NO2 vertical columns with a

spatial resolution of 7 km x 7 km. Because the original data is at the resolution of 7 km x 3.5 km,

so generating 3.5 km x 3.5 km pixels without extra algorithms will just bring redundancy (i.e.

only the resolution in the X-axis direction increases). The reason why we don’t mosaic the data

to gain a spatial resolution of 7 km x 3.5 km is because, if we do so, the resulting pixels will be

distorted. We found this phenomenon in a trial. In that trial, the length of each pixel in the X-axis

direction fluctuated. For example, we found pixels whose X-axis lengths were 8162 m and 7949

m respectively. Since the mosaic is completed by the SNAP software (ESA 2023c), therefore we

don’t have enough time and authority to understand the algorithm of the software. But to ensure

good data quality, only the pixels with qa_value higher than 75% are used (Eskes and Eichmann

2021).

3.1.4 Background NO2 and the impact of agriculture on peri-urban NO2

For annual mean NO2 column, we include the minimum annual mean tropospheric NO2 column

of each city as the background NO2. In this thesis we use background NO2 and minimum

annual mean tropospheric NO2 column per FUA (Cmin) interchangeably. This is inspired by

Nicholas Hewitt (1991) who found the mean background ground-level NO2 pollution in the

suburban of Lancaster is around 30 μg/m3.

We cannot ignore the fact that agricultural activities also have an impact on NO2 levels

at the urban fringe. Agricultural activities such as using fertilizer, livestock farming and crop

burning bring NO2.

Fertilizers contribute NO2 mainly through the process of nitrogen deposition (Goulding

et al. 1998). The process of nitrogen deposition means reduced N (e.g. ammonia (NH3)) moves

from the atmosphere into the hydrosphere or atmosphere (APIS 2023). Equations 3.1 and 3.2

show a possible way to convert NH3 to NO2.

NH3 +O2 −−→NO+H2O (3.1)

2NO+O2 −−→ 2NO2 (3.2)
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One possible source of NO2 in livestock farming is manure. Manure produces nitrous

oxide (N2O) (Moeletsi and Tongwane 2015), which can generate NO and H2O by Equation 3.3.

Then NO becomes NO2 under Equation 3.2.

2N2O+O2 −−→ 2NO+ 2N2 (3.3)

The post-harvest burning of crop residues is another way to generate NO2. N2 and O2 in

the air react to produce NO2 at high temperature.

To mitigate the impact of agriculture on NO2 levels, one way is to use slow-release fertilizer

(Guertal 2009). Slow-release fertilizer releases a small amount of nutrients continuously for a

considerable period of time, thereby reducing the release of excess nitrogen (ibid.). NO2 from

manure can be reduced by improving manure management, which includes describing and

estimating NH3 emission in the housing, storage, treatment and spreading of manure (Webb

and Misselbrook 2004). Introducing fire-free cultivation is a good way to avoid NO2 from crop

burning (Kato et al. 1999).

3.1.5 Downscaled annual mean tropospheric NO2 vertical columns

We also downscale NO2 vertical columns to obtain annual mean tropospheric NO2 vertical

columns with a resolution of 1 km x 1 km. We use the downscaled columns to gain detailed

spatial distribution of NO2 inside cities.

If we don’t consider hybrid approaches, there are 4 ways to downscale NO2 data (Hoek

et al. 2008; Jerrett et al. 2005): the proximity method (e.g. Nguyen and Kim 2006), interpolation

(e.g. Kumar et al. 2016), LUR model (e.g. Jin et al. 2019), and dispersion model (e.g. Dragomir

et al. 2015). The proximity method means that the concentration of a place is expressed by the

concentration value near it. Interpolation is the calculation of a value based on known values

around it. The LUR model predicts concentration value for a given location based on attributes

of the surrounding area, such as traffic, land use, population density, and measured pollution

concentrations nearby. The dispersion model is rooted in the Gaussian plume model (Bellander

et al. 2001), which estimates air pollution levels from weather, terrain, and emission data (Jerrett

et al. 2005). In this thesis however, we do not process data using LUR or dispersion models. It is

impractical to use a LUR model with the same predictors for multiple cities (Hoek et al. 2008),

and a dispersion model requires quite expensive input (Jerrett et al. 2005). The proximity method

simply assigns values without any calculation. As a result, we choose interpolation.

In order to test which method of interpolation is most suitable, we apply spherical, circular,

exponential, and Gaussian Kriging on 5 most (Istanbul (Turkey), London (UK), Paris (France),

Madrid (Spain), Milan (Italy)) and 2 least (Valjevo (Serbia), Sopron (Hungary)) populous FUAs
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and compare the average Standard Error (SE). We find that Gaussian Kriging has the lowest

average SE among 6 FUAs. Thus, by using Gaussian Kriging, we gain downscaled annual mean

tropospheric NO2 vertical columns at the resolution of 1 km x 1 km.

3.1.6 Pros and cons to downscale

Downscaling has advantages and disadvantages. One of the benefits is that as the resolution

increases, we can obtain a more detailed spatial distribution of NO2 within the city. The rest of

the strength comes from Gaussian Kriging itself. For example, Gaussian Kriging interpolation

can accurately represent the interrelationship between independent and dependent variables

in a complex space, and because of the use of uncertain parameters, it can explain the spatial

relationship at any location in the study area (Kleiber et al. 2012). However, downscaling also

brings disadvantages. One of them is the increase in data volume. Increasing spatial resolution

can significantly increase data processing time. Second, the improvement in spatial resolution

still cannot distinguish the source of NO2, and NO2 produced by agriculture still affects the NO2

levels at the edge of FUAs.

3.1.7 Matching NO2 with urban boundaries

Although NO2 and city definitions come from different data sources, there is no boundary mis-

match problem in this paper. First, all monitoring stations recording NO2 surface concentration

data are located within city boundaries. Second, for the satellite data, every time we use the

city boundary of a FUA to clip the satellite image, we buffer the city edge of the FUA before

cropping, and use the FUA with the buffered edge as the reference of cropping, so as to ensure

the area of NO2 column of that FUA is slightly larger than the actual boundary of the FUA.

3.1.8 Year of the data and the effect of choosing a year average

Various factors are considered when we select the year of the data. First, the reason why we

choose to study the data on and after October 25, 2018 is that the data on and before October

24, 2018 can no longer be downloaded from the website (Eskes and Eichmann 2021). Second,

when selecting the annual average NO2 surface concentration, it is hoped that the time of the

station data is as close as possible to the time of the satellite data, so as to reduce the difference

caused by time inconsistency. Our analysis started in November 2019. At that time, there were

no annual mean NO2 surface concentrations in 2019 in the AQ e-Reporting dataset (EEA 2018b),

so we can only choose the annual mean NO2 surface concentrations in 2018.
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3.1.9 Pros and cons to choose a year average

There are some advantages of using annual average in measuring NO2. First, using annual

average provides a comprehensive view of the long-term change in NO2. Thus, the annual

mean value is helpful for understanding the overall pollution of NO2. Second, using the annual

average can avoid NO2 value fluctuations due to short-term disturbances caused by extreme

weather (e.g. thunderstorms). Third, the annual average value is a commonly used indicator in

weather forecasting (Butryn et al. 2013; Yu et al. 2006). Therefore, the annual averages of different

studies can be used for comparison with each other.

However, there are also some disadvantages. First, while the annual mean NO2 shows a

long-term NO2 trend, using annual averages means that seasonal and diurnal fluctuations in NO2

may be ignored. For example, urban planners may ignore the high pollution caused by morning

peak traffic congestion or heating season. Second, collecting annual averages is expensive and

time-consuming. Researchers have to wait a year for satisfactory results. Long-term monitoring

can also increase experimental costs.

3.1.10 Data quality

We consider the data quality of the tropospheric NO2 column from Sentinel-5P to be acceptable

for this thesis for several reasons. First of all, in addition to Sentinel-5P, the satellites that measure

NO2 column include OMI and SCIAMACHY. The spatial resolution of OMI is 13 km x 24 km at

nadir (Wang et al. 2020a). The spatial resolution of SCIAMACHY is 60 km x 30 km (University

of Bremen 2018). The products of Sentinel-5P have a spatial resolution of 7 km x 3.5 km (Eskes

and Eichmann 2021; Eskes et al. 2019). Therefore, compared with OMI and SCIAMACHY, the

high spatial resolution of Sentinel-5P is more suitable for detecting NO2 pollution inside cities.

Second, TROPOMI has a wide swath width of 2,600 km (NASA 2023b), which enables it to cover

large areas at one time. Important spatial variation of NO2 within a city can thus be captured.

Finally, TROPOMI was calibrated before launching (Kleipool et al. 2018) and after collecting

NO2 data (ESA 2023a) to ensure the reliability and validity of the data.

The data quality of NO2 surface concentrations from the AQ e-Reporting dataset is also

acceptable for several reasons. First, the EEA requires all member states to use the same measure-

ment standards (EEA 2023), which helps to ensure data consistency across different European

countries. Second, the AQ e-Reporting dataset provides indicators such as time and data cover-

age, which are convenient for researchers to filter out high-quality data according to experimental

needs. Finally, the EEA also annually reviews AQ e-Reporting dataset to ensure that the EU

environmental policy is effective (European Court of Auditors 2022).
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3.1.11 Influence from wind

Wind can affect NO2 values by advection and mixing. Advection moves NO2 horizontally or

vertically through the atmosphere, while mixing reduces the NO2 concentration (Chipperfield

et al. 1994; Dieudonne et al. 2013). For example, Ghude et al. (2020) showed that a combination of

wind and traffic peaks can make tropospheric NO2 column concentrations 65% higher measured

in the afternoon than in the morning. Ghude et al. (ibid.) pointed out that the temperature

inversion formed at night and morning makes a stable air layer above the land surface, which

inhibits the advection diffusion of NO2 in the morning. The NO2 value measured at noon is not

high, because NO2 is mixed into the photochemical reaction (ibid.). However, from the afternoon

to the early evening, a steady low-velocity airflow transfer NO2 emissions from factories and

traffic peaks to surrounding areas, making the measured NO2 values very high (ibid.). Other

factors such as relative humidity (Lee et al. 1992) and sampler types (Masey et al. 2017) can also

affect NO2 measurements. In fact, similar to the situation that NO2 exists in the troposphere for

different lengths of time (Section 1.1.3), the impact of wind on NO2 is also very complicated, and

specific analysis is required for specific regions.
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3.2 Maps and graphs

3.2.1 FUAs and city centers

Figure 3.1: Locations of FUAs

Figure 3.1 shows the geographical locations of the 378 FUAs. These 378 FUAs are scattered in

Europe. The numbers of FUAs in Northern Europe, Iceland, Southeastern Europe, and Spain are

relatively small. FUAs are densely distributed in Central and Eastern Europe and England. The

area with the highest density of FUAs is located on both sides of the English Channel, indicating

that the region has intensive economic and human activities, and the pollutant content in the air

may be relatively high.
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(a) Boxplot of FUA area (b) log10 FUA area with log10 population

Figure 3.2: Graphs for FUA area

Figure 3.2(a) shows FUAs vary widely in size. The largest FUA covers an area of nearly

20,000 km2, while the vast majority of FUAs cover an area of around 2,000 km2. Because in

Chapter 2 we have found that the population-environment relationship is suitable to be described

by the log10-log10 relationship, so for Figure 3.2(b) and some of the following graphs we also

use the log10-log10 relationship. Figure 3.2(b) shows that logarithmic population is positively

correlated with logarithmic areas. This results is consistent with the findings from Rozenfeld

et al. (2011). Figure 3.2(b) is also one of the evidences that we do not consider the city area in our

empirical research (Section 1.2.6).
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Figure 3.3: Locations of city centers

Figure 3.3 illustrates the locations of city centers in the FUAs. Since each FUA has one and

only one city center, the spatial distribution of city centers across Europe is similar to that of

FUAs. In this thesis we consider cities are "monocentric" (Alonso 1964).
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(a) Boxplot of longitude (b) Logitude with log10 population

Figure 3.4: Graphs for longitude

(a) Boxplot of latitude (b) Latitude with log10 population

Figure 3.5: Graphs for latitude

Figures 3.4(a) and 3.5(a) show that the distribution FUAs is mainly concentrated in the

area from 0 ◦E to 20 ◦E, and 40 ◦N to 50 ◦N. The latitudes of FUAs are less discrete than their

longitudes. Figure 3.5(b) shows most cities are located south of 50 ◦N. Kummu and Varis (2011)

indicated that important factors such as land surface temperature and rainfall patterns cause

approximately half of the world’s population to live in regions between 20 ◦N and 40 ◦N. Climate

classification such as Köppen-Geiger climate classification, also exhibits distinct characteristics

according to latitude (Rubel and Kottek 2010).
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3.2.2 Köppen-Geiger climate classification

Figure 3.6: Köppen-Geiger climate classification in Europe

Figure 3.6 shows the Köppen-Geiger climate classification in Europe. The data source of the

climate classification is Beck et al. (2018). In general, Northern Europe, Iceland, and the Alps

have tundra (ET). Denmark, Northern Germany, the Netherlands, Belgium, and Southeastern

France form the dividing line between mild (Cfb) and cold (Dfb) year-round. Ireland and most

of the UK also fall under the Cfb classification. Dry summer (Csa) appears in Western Spain,

Southern France, the Apennines, and the Balkans.
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Figure 3.7: Histogram for the Köppen-Geiger climate classification of FUAs

Figure 3.7 shows that the vast majority of FUAs have warm summer and no dry season

(Cfb/Dfb). Areas of FUAs with dry or hot summers (Csa/Csb/Cfa) are small. No FUAs in the

tundra (ET). Although no dry season and cold summers (Dfc) predominate in Scandinavia, only

a few FUAs belong to Dfc.
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3.2.3 Wind speed

Figure 3.8: Mean of monthly mean wind speed in Europe

Figure 3.8 shows the mean of monthly mean wind speed in Europe from 2002 to 2006. The

data source is Pistocchi (2015). We can see high wind speeds, for example, in Ireland, Denmark,

Norway and Southeastern Sweden. The wind speed is low in Eastern France, Southwestern

Germany, Northern Italy and the Balkans.
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Figure 3.9: Boxplot for mean of monthly mean wind speed of FUAs

Figure 3.9 shows the median of mean of monthly mean wind speed over the FUAs is about

3.7 m/s. Most FUAs have wind speeds between 3 m/s and 4.3 m/s. The maximum wind speed

of FUAs (about 6.3 m/s) is smaller than the maximum wind speed (8.53 m/s) in Europe, and the

minimum wind speed of FUAs (about 0.9 m/s) is quite close to the minimum wind speed (0.83

m/s) in Europe.
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3.2.4 Annual mean NO2 tropospheric columns

Figure 3.10: Annual mean tropospheric NO2 columns in Europe

Donnelly et al. (2011) pointed out that NO2 concentration is negatively correlated with wind

speed, and their conclusions can be partly explained from Figure 3.10. We can see that in general,

Ireland and Norway with high wind speeds have low NO2 concentrations, while Eastern France

and Southwestern Germany with low wind speeds have high NO2 concentrations. Figure 3.10

shows that the most polluted areas are in London, the Netherlands, Belgium, Paris and Northern

Italy, and the wind speed in these areas is around 4 m/s to 6 m/s (Figure 3.8). However, as we

introduced in Section 1.1.3, NO2 concentrations are affected by many factors, so Figure 3.10 also
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shows that regions with low wind speeds, such as Spain (except Madrid) and the Balkans, also

have low NO2 levels.

Figure 3.11: Boxplot for annual mean tropospheric NO2 column of FUAs

Figure 3.11 shows that most of the NO2 column concentration values are between 40

mol/m2 and 60 mol/m2, but the highest NO2 column concentration can reach about 200 mol/m2,

which is 4 times the median.

(a) log10 annual mean tropospheric NO2 column
with log10 population

(b) log10 minimum of annual mean tropospheric
NO2 column per FUA with log10 population

Figure 3.12: Graphs for NO2 column
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Figures 3.12(a) and 3.12(b) show logarithmic population is positively correlated with loga-

rithmic annual mean NO2 columns or logarithmic background NO2 per FUA. The coefficient in

Figure 3.12(a) is higher than the one in Figure 3.12(b). This may be because background NO2 is

affected by more factors than annual average NO2. We have shown in Section 3.1.4 the impact

of agriculture on NO2 at the urban fringe. We also find that neighboring cities also have an

impact on the distribution of NO2 within the city, which makes the distribution of NO2 in the

city deviate from the theoretical model proposed by Schindler et al. (2017). In Sections 3.2.7 and

3.2.8, we use some FUAs as examples to illustrate this phenomenon.

3.2.5 Annual mean NO2 surface concentrations

Figure 3.13: Number of monitoring stations per capita in Europe
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Figure 3.13 shows that generally speaking, areas with high NO2 levels in Figure 3.10 (e.g. the

Netherlands, Belgium, Western Germany, Eastern France, and Northern Italy) also have higher

numbers of stations per capita. Surprisingly, in large cities like London and Paris, the number of

measuring stations for NO2 per capita is very low, which may indicate that the problem of NO2

pollution in large cities has not received enough attention. Capital cities such as Copenhagen

and Rome also have too few stations per capita.

Figure 3.14: Boxplot for annual mean NO2 surface concentration

Figure 3.14 shows that most of the NO2 surface concentrations are between 18 μg/m3 and

33 μg/m3, but the highest NO2 column concentration can reach more than 80 mol/m2, which

is nearly 4 times the median. Interestingly, the highest value of the NO2 columns is also about

4 times the median (Figure 3.11). This shows the consistency between NO2 columns and NO2

surface concentrations.
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Figure 3.15: log10 annual mean NO2 surface concentration with log10 population

Same as the positive effect of the population on the NO2 column in Figure 3.12(a), Figure

3.15 shows logarithmic population is positively correlated with logarithmic annual mean NO2

surface concentration.

3.2.6 Neighborhood analysis

To find out the effect of proximity to neighboring cities, we conduct a neighborhood analysis.

We create a buffer zone with a radius of 50 km from the boundary of each FUA and find out how

many neighboring city centers are within the buffer zone.

Figure 3.16: Number of neighboring city centers in 50 km with log10 population

Figure 3.16 shows logarithmic population is positively correlated with the number of neigh-

boring city centers in 50 km. This means that, overall, the larger the city, the more neighboring
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cities it has. This may also suggest that the larger the city, the more its pollution may potentially

affect its surrounding cities.

3.2.7 Sample FUAs

We select 8 FUAs as sample cities to find their detailed characteristics of geography, climate and

NO2. We choose Paris (France) as a representative city with a population greater than 10 million.

We choose Madrid (Spain) and Milan (Italy) as representative cities with a population of 5 million,

of which Madrid is far from its surrounding FUAs, and Milan is close to its surrounding FUAs.

We choose Nuremberg (Germany) and Dublin (Ireland) as representative cities with a population

of around 1 million, where Nuremberg is far from the coast and Dublin is close to the coast.

We choose Blackpool (UK), Kiel (Germany) and Ghent (Belgium) as representative cities with a

population of less than 1 million, where Blackpool is close to other cities, Kiel is a coastal city but

has no other cities nearby, and Blackpool is a coastal city but is adjacent to other cities.
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(a) Blackpool, UK (b) Kiel, Germany

(c) Ghent, Belgium (d) Nuremberg, Germany

(e) Dublin, Ireland (f) Milan, Italy

(g) Madrid, Spain (h) Paris, France

Figure 3.17: Köppen-Geiger climate classification of sample cities
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Figure 3.17 shows that the climate type of 5 of the 8 cities is Cfb, and the dominant climate

types of the remaining 3 cities are Dfb, Cfa and Bsk respectively. Both Cfa and Cfb belong to the

temperate climate type and have no dry season. The difference is that Cfa has hot summer and

Cfb has warm summer. Summers in Dfb are warm but cold year-round. Bsk is dry steppe but

not hot. Generally speaking, the climate types within the sample FUAs have little or no spatial

variation.
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(a) Blackpool, UK (b) Kiel, Germany

(c) Ghent, Belgium (d) Nuremberg, Germany

(e) Dublin, Ireland (f) Milan, Italy

(g) Madrid, Spain (h) Paris, France

Figure 3.18: Wind speed of sample cities
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Figure 3.18 shows that with the exception of Kiel, Ghent and Dublin, wind speeds are lower

in the city centers. It is worth noting that Kiel, Ghent and Dublin are coastal cities, and their

average wind speed is generally higher than that of inland cities (Nuremberg, Milan, Madrid,

Paris). Stations with traffic background in inland cities are located in areas with low wind speed.
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(a) Blackpool, UK (b) Kiel, Germany

(c) Ghent, Belgium (d) Nuremberg, Germany

(e) Dublin, Ireland (f) Milan, Italy

(g) Madrid, Spain (h) Paris, France

Figure 3.19: Annual mean tropospheric NO2 columns (resolution: 7 km x 7 km) of
sample cities
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Figures 3.19 shows that satellite imagery with a resolution of 7 km x 7 km fails to show the

spatial distribution of NO2 in cities with populations less than 1 million, especially for Blackpool.

It seems that there are sources of NO2 pollution at the fringes of Blackpool, Ghent and Milan.
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(a) Blackpool, UK (b) Kiel, Germany

(c) Ghent, Belgium (d) Nuremberg, Germany

(e) Dublin, Ireland (f) Milan, Italy

(g) Madrid, Spain (h) Paris, France

Figure 3.20: Downscaled annual mean tropospheric NO2 columns (resolution: 1 km x 1
km) of sample cities
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Figure 3.20 shows that downscaled NO2 columns are capable of showing the NO2 distribu-

tion of small cities. For example, we can observe the obvious influence from the neighboring city

of Blackpool. The NO2 levels in the north of Ghent and in the center of Ghent are lower than those

in the northeast corner of Ghent, possibly because of lower wind speeds in the northeast corner

than in the north, and also possibly because Ghent’s northeast borders another city, Antwerp

(Belgium). However, wind speed appears to have little effect on the NO2 levels in Dublin. The

east of Dublin has high wind speed (Figure 3.18(e)), but the NO2 levels are high there as well.

3.2.8 Regular and irregular intra-urban NO2 distribution

To quantify the NO2 levels inside cities, we decide to use a scatter plot to show how NO2 changes

with centrality. Figure 3.21 shows how NO2 is distributed inside sample cities.
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(a) Blackpool, UK (b) Kiel, Germany

(c) Ghent, Belgium (d) Nuremberg, Germany

(e) Dublin, Ireland (f) Milan, Italy

(g) Madrid, Spain (h) Paris, France

Figure 3.21: Scatter plots of downscaled annual mean tropospheric NO2 columns of
sample cities
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Due to the patterns of the points in Figure 3.21 we classify FUAs into 2 types: regular and

irregular. We use this classification in Chapter 5. We define that if the NO2 distribution inside a

city can be described by the following standards, then this city is a regular city.

1. The NO2 levels near the city center do not change a lot, or can increase a bit around the

city center, and then the NO2 levels should decrease evidently along the distance to the

city center.

2. The NO2 levels at the city fringe cannot be higher than those near the city center.

3. The distribution of point sets should be striped, not suddenly thick or thin.

Taking Figure 3.21 as an example, Nuremberg, Dublin, Madrid, and Paris are regular cities.

Blackpool, Kiel, Ghent, and Milan are irregular cities. According to our judgment, among the

378 FUAs, 139 FUAs are regular cities, 239 are irregular cities.

The spatial distribution of NO2 in regular cities is very similar to the spatial distribution

of land use in cities (Lemoy and Caruso 2018). The fluctuation of NO2 around the city center

may be related to the complex built environment of the city center. For example, a town hall

might appear next to a square or park (e.g. Hôtel De Ville, Esch-sur-Alzette (Luxembourg)), and

the place where the traffic jam usually occurs is far from the city center (e.g. Rue de l’Arbed,

Esch-sur-Alzette). The maximum traffic volume is also determined by factors such as road

curvature and friction (Zhu and Zhang 2012). The reason for the weakening decline at the

urban fringe may be that people prefer to live in the suburbs due to low housing prices, and the

population activities in the suburbs generate NO2.

Irregular cities are formed for many reasons, and they can be analyzed in conjunction

with Figure 3.20 and population data from European Comission (2019). Taking Blackpool as an

example, it is a seaside city and the city center is about 1 km away from the sea, which leads

to the low NO2 level in the city center. The high NO2 in the southeast of the city is mainly

caused by Preston (UK) in the southeast. Preston has a population of 385,143 and Blackpool has a

population of 287,836, which may imply that larger cities produce more NO2. The distribution of

NO2 in Ghent may also be explained by the influence of neighboring cities. Northeast of Ghent

is heavily polluted, while Antwerp lies northeast of Ghent. Ghent has a population of 899,790

and Antwerp has a population of 1,817,176. Although Milan (5,121,996 residents) is surrounded

by 5 cities, it seems that only its neighboring city to the east, Bergamo (Italy), has an impact on

the distribution of NO2 within Milan. This may also be because Bergamo is the largest of these

neighbors (958,533 residents). The remaining four cities are Lecco (Italy) (172,672 residents),

Lugano (Italy) (176,322 residents), Novara (Italy) (159,270 residents), and Pavia (Italy) (142,506

residents). However, FUAs may be flawed in how to define cities, for example when we need to
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explain the distribution of NO2 in Kiel. Kiel (376,867 residents) does not have any neighboring

cities. The nearest city is Lübeck (Germany) (329,527 residents), which is about 10 km away in the

southeast. However, Figures 3.20(b) and 3.21(b) shows that Kiel may be affected by three nearby

NO2 emission sources. We speculate that those emission sources may be factories. This may be

because FUAs are defined by employment in and around the city center (European Comission

2019), while factories are less likely to be located in the city.
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4 How city size and centrality affect land

surface and tropospheric NO2

In this chapter, we want to test the conclusions about NO2 drawn in Chapter 2 using empirical

data. We also explore how NO2 changes with centrality.

4.1 Literature review and research gaps

4.1.1 Links between land surface and tropospheric NO2

Both tropospheric NO2 columns and NO2 surface concentrations are the indicators of NO2 levels,

but they are measured in different ways.

Chemiluminescence is the reference method used by the monitoring stations in European

Economic Area member countries to measure NO2 surface concentrations (EU 2008). The details

of chemiluminescence are in Appendix E. Simply speaking, chemiluminescence relies on two

principles: NO reacts with O3 to emit light; NO2 can be converted into NO. So the first step

is to react the sampled air with O3, and calculate the NO concentration in the sampled air by

calculating the intensity of emitted light. In the second step, all the NO2 in the sampled air is

converted into NO and react with O3, and the light intensity is calculated again to obtain the NO

concentration. The subtraction of these two NO concentrations can determine how much NO

was converted from NO2 in the second step, and thus we can get the NO2 concentration in the

sampled air.

The details for measuring tropospheric NO2 vertical columns are in Appendix F. Simply

speaking, there are 3 steps to measure tropospheric NO2 vertical columns. First, total NO2 slant

columns are measured by a step called Differential Optical Absorption Spectroscopy (DOAS),

which is a step to compare modeled and measured reflectance spectra. Second, a data assimilation

system separates total NO2 slant columns into tropospheric NO2 slant columns and stratospheric

NO2 slant columns. Last, the satellite uses AMF tables to convert tropospheric NO2 slant columns

to tropospheric NO2 vertical columns.

NO2 columns are ideal to describe background NO2 concentrations, but are not suitable

to illustrate NO2 near the land surface (Lövblad et al. 1997). Due to the way how NO2 vertical
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columns are obtained, NO2 columns therefore, don’t indicate the amount of NO2 people breathe

in (NASA 2020). They are actually the average of NO2 concentrations over the optical path from

land surface to the satellite’s sensor (Lövblad et al. 1997). This means that even if the NO2 surface

concentration is 0 somewhere, the tropospheric NO2 column cannot be 0 there, because NO2 also

exists in the troposphere. We can also see from Figure 3.10 that the minimum annual mean NO2

column is 0.006 mol/m2. Therefore, this thesis does not contain any specification with an intercept of 0

when the NO2 column is used as the dependent variable.

In fact, to the best of our knowledge, we are probably one of the few articles comparing land

surface and column concentrations of NO2 in Europe. Only few studies compared NO2 surface

concentrations to tropospheric NO2 columns (Blond et al. 2007; Paraschiv et al. 2017; Wallace

and Kanaroglou 2009). Blond et al. (2007) compared annual mean NO2 surface concentration

measured by 439 monitoring stations in the UK, France, and the Netherlands with annual

mean tropospheric NO2 columns measured by the satellite SCIAMACHY, and found that the

column is positively correlated with the surface concentration (coefficient: 0.33, R2: 0.45), and

if only the stations in rural background are considered, then the coefficient rises to 1.04 and

R2 increases to 0.90. Wallace and Kanaroglou (2009) also found positive relationship between

these 2 NO2 sources in Hamilton (Canada), and found that R2 fluctuates between 0.20 and 0.35.

The annual mean NO2 surface concentration measured at the stations in traffic background is

positively correlated to the annual mean NO2 column, and R2 is between 0.51 and 0.86 (i.e. 0.51

in Bucharest (Romania), 0.53 in Athens (Greece), 0.53 in Rotterdam (the Netherlands), 0.58 in

Lisbon (Portugal), 0.65 in Rome (Italy), 0.69 in Paris (France), 0.81 in Madrid (Spain), 0.86 in

Berlin (Germany)) (Paraschiv et al. 2017).

Many factors influence the relationship between land surface and tropospheric NO2. Zhao

et al. (2020) found that adding wind speed and direction to the image of tropospheric NO2

columns significantly increases the fitness of these 2 kinds of NO2 data. Zhao et al. (ibid.) rotated

the satellite pixels around the monitoring station according to the wind direction and speed data

collected from the meteorological model. Rainfall washes away land surface NO2, causing a

negative relationship between precipitation and NO2 (Song et al. 2011; Wei et al. 2011). Rainfall

also raises relative humidity, and relative humidity changes air temperature (Harkey et al. 2015).

Temperature also has an impact on NO2, and the impact is inseparable from diurnal circulation

(Delaney and Dowding 1998), season (Ahmad and Aziz 2013), and sunshine (Harkey et al. 2015).

In addition, the cloud cover presented during rainfall influences the fitness of tropospheric NO2

columns and NO2 surface concentrations (Markovic et al. 2008). Nevertheless, in this paper

we use observed annual mean NO2 surface concentrations and annual mean NO2 columns

(including atmospheric, climate and seasonal effects) as the data sources. This is because we
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hope that our assessment of NO2 is objective and realistic, and can serve as an intuitive reference

that can be used by urban planners and policy makers.

4.1.2 Population effects on socioeconomics and environment

We show in Section 1.2.2 that there is a positive correlation between urban population size and

CO2 emissions. As early as 1976, Bornstein and Bornstein (1976) found a positive correlation

between population size and pedestrian walking speed. Bettencourt et al. (2007) used Equation

1.9 and data from China, Germany, and the U.S. to link population size with 23 factors related

to economy (e.g. wages, employment rates), health (e.g. the number of AIDS cases), scientific

research (e.g. the number of patents, research funding), and energy (e.g. household water and

electricity consumption).

Q = κPλ (1.9)

Bornstein and Bornstein (1976) found that the when the indicator is related to wealth and

innovation, the value of λ in Equation 1.9 is greater than 1, and when the indicator is related to

infrastructure, the value of λ is less than 1. Equation 1.9 can also explore the relationship between

city size and environment. Louf and Barthelemy (2014b) summarized the published literature

on whether large cities emit less CO2 per capita or smaller cities emit less CO2 per capita,

and pointed out that air pollution emissions may be underestimated when traffic congestion

is ignored. Louf and Barthelemy (ibid.) also explained through Equation 1.9 that different

definitions of cities will lead to diametrically opposite conclusions on the question of whether

big cities are greener or not. Rybski et al. (2017) classified urban population according to the

level of economic development and pointed out that the relationship between CO2 and the level

of urban development conforms to the environmental Kuznets curve (i.e. the per capita CO2

emissions in developed countries is negatively correlated with population size, while the per

capita CO2 emissions in developing countries is positively correlated with population size).

However, as can be seen from the few relevant studies in Table 2.2, the impact of urban

population on NO2 levels seems to have received insufficient attention. Only Lamsal et al. (2013)

explored NO2 using the Equation 1.9, and pointed out that NO2 is positively correlated with

population size. But Lamsal et al. (ibid.) did not use the NO2 surface concentration measured by

the station, and because of the early publication time, the data from the Sentinel-5P satellite with

higher spatial resolution was not used. Therefore, in this chapter, we use data from monitoring

stations and Sentinel-5P to study the relationship between population and NO2 levels.
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4.1.3 Centrality effect on NO2

Apart from a theoretical model (Schindler and Caruso 2014), so far we have found only 2 studies

introducing the relationship between centrality and NO2. 1 empirical study focuses on 6 U.S.

cities (Wang et al. 2020c) and the other one considers Germany (Borck and Schrauth 2021). For

each U.S. city, Wang et al. (2020c) drew straight lines from the city center to the urban fringe, and

calculated the NO2 surface concentration on these lines. (ibid.) found that annual average NO2

levels are highest in urban centers and decrease along centrality. However, (ibid.) did not use

equations or specifications to quantify the impact of centrality, so applying this method to other

cities or the 378 cities in this thesis is quite inefficient. Plus, Wang et al. (ibid.) didn’t consider

population size. Although Borck and Schrauth (2021) pointed out that the centrality and hourly

average NO2 surface concentration can be expressed by ln-ln relationship and the coefficient is

-0.00321, Borck and Schrauth (ibid.) did not consider population size as well.

Hien et al. (2020) used a LUR model to show that the distribution of annual mean NO2

surface concentration within Hanoi (Vietnam) decreases with centrality, and the NO2 at the

urban fringe is about 50% to 60% of that in the city center. However, so far we have not found

any research on the relationship between NO2 at the urban fringe and centrality of European

cities. Therefore, in this chapter, we also use data from monitoring stations and Sentinel-5P to

study the relationship between centrality and NO2 levels.

4.2 Methods

4.2.1 Data

In this chapter we use annual mean NO2 surface concentrations (G) and annual mean tropo-

spheric NO2 columns (at the resolution of 7 km x 7 km) (C) as the data sources of NO2. Centrality

is denoted as R. Population size is noted as P. Background NO2 is denoted as Cmin. We include

dummy variables as the backgrounds of NO2 monitoring stations. For details of the data, see

Chapter 3.

4.2.2 NO2 per FUA comparison

To find out to what extent annual mean NO2 surface concentration and annual mean tropospheric

NO2 column of each city are correlated, we overlay the NO2 column layer on top of the land

surface NO2 layer. We then select the monitoring stations overlapping with the column layer,

and the column pixels overlapping with the land surface layer, and calculate the mean of the

overlapping stations per city and the mean of the overlapping pixels per city. We then regress

the 378 mean values of overlapping pixels on the 378 mean values of overlapping stations. We
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also add population size as another independent variable to see how population affects the

regression.

We use the R package sandwich (Zeileis et al. 2021) when regressing. This package provides

information about heteroscedasticity (Mohr 2018).

We then perform the regressions of mean of annual mean NO2 columns per FUA overlaid

with the stations (Cf), mean of annual mean NO2 surface concentrations per FUA overlaid with

the columns (Gf), and P using Equations 4.1 to 4.4,

Cf = κ0 Gf + ε (4.1)

Cf = κ0 Gf + κ1 P+ ε (4.2)

log10Cf = κ0 log10Gf + ε (4.3)

log10Cf = κ0 log10Gf + κ1 log10P+ ε (4.4)

where κ0 and κ1 are coefficients, ε is error term.

4.2.3 Regressing NO2 on city size and centrality

We then focus on the whole study area. Due to the results of Chapter 2, we regress common

logarithmic G (log10G) and common logarithmic C (log10C) against the common logarithmic R

(log10R) and common logarithmic P (log10P) respectively and together.

For the regressions of log10G, We use dummy variables to show different backgrounds of

monitoring stations. Stations in mixed background are the reference of the dummy variables.

For the regressions of log10C, we include the common logarithmic Cmin (log10Cmin) as the

background factor. Equations 4.5 to 4.14 are the specifications to regress log10G and log10C. We

exclude the cells having the values of Cmin when performing Equation 4.14,

log10G = κ0 log10R+ ε (4.5)

log10G = κ0 log10R+
2

∑
j=1

λjδj + ε, (j ∈ [1,2]) (4.6)

log10G = κ0 log10P+ ε (4.7)

log10G = κ0 log10P+
2

∑
j=1

λjδj + ε, (j ∈ [1,2]) (4.8)

log10G = κ0 log10R+ κ1 log10P+ ε (4.9)
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log10G = κ0 log10R+ κ1 log10P+
2

∑
j=1

λjδj + ε, (j ∈ [1,2]) (4.10)

log10C = κ0 log10R+ ε (4.11)

log10C = κ0 log10P+ ε (4.12)

log10C = κ0 log10R+ κ1 log10P+ ε (4.13)

log10C = κ0 log10R+ κ1 log10P+ κ2 log10Cmin + ε (4.14)

where κ0 to κ2 are coefficients, ε means error term, δj means dummy variable associated with the

jth kind of station background, λj means differential intercept coefficient of δj, and there are 2

dummy variables in total1.

4.2.4 Predicted and measured tropospheric NO2 comparison

After we get the regression results, we calculate predicted annual mean tropospheric NO2

columns (Ĉ) through Equation 4.13 and compare them with the measured C. Unlike stations that

cannot cover the entire spatial extent of a city, the pixels of satellite imagery can cover the entire

area of a city with constant spatial resolution, so they are very suitable to evaluate the regression.

In fact, in a trial, we also tried to calculate predicted annual mean NO2 surface concentrations (Ĝ) through

Equation 4.9, and compare them with the measured G. However, due to the uneven distribution of stations

within the city, the deviation between Ĝ and G was too large. This is because the location of monitoring

stations have to fit some EU criteria. European Commission (2010) defines that the NO2 concentrations

measured by the monitoring stations represent the NO2 exposure of general population, the NO2 quality

near a road of at least 100 meters in traffic background, and the NO2 concentrations at an industrial site

with an area of at least 250 m x 250 m.

We then rank cities in ascending order of population size and choose the first, the middle,

and the last 10th percentiles of the cities, and calculate the average values of each group as the

representatives of small (group S), medium (group M), and large (group L) cities. The average

values of population for groups S, M, and L are 93,744.5, 341,002.5, and 4,312,730.1 respectively.

The details of the 3 groups are listed in Table 4.1.

We then bring the average values of groups S, M, and L and their R values to Equation 4.13

to get Ĉ . Then, for each group, we plot the average and SD (i.e. error bar) of C every 5 km.

1Because we have 3 kinds of monitoring station backgrounds, so we set 2 dummy variables to avoid
multicollinearity.
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Table 4.1: Group S, M, and L

Group Range of No. of Min P Max P Ave P Min R Max R
percentile FUAs (m) (m)

S min to 10th 38 67160.9 111179.4 93744.5 636.3 35036.3
M 45th to 55th 38 300393.4 380293.0 341002.5 179.2 56429.2
L 90th to max 38 1687394.8 14921595 4312730.1 495.8 121995.8

4.3 Results and discussion

4.3.1 NO2 per FUA comparison

Table 4.2 shows the results of Equations 4.1 and 4.2. Table 4.3 shows the results of Equations 4.3

and 4.4.

Table 4.2: Regressions of C f with G f and P

C f

(4.1) (4.2)

coefficients
intercept 24.5667*** 27.0337***

(3.1726) (2.9456)
G f 1.1739*** 0.8795***

(0.1242) (0.1203)
P n/a 6.1807e-06***

n/a (7.6155e-07)
relative importance

G f n/a 0.4635
P n/a 0.5365

R2 0.1919 0.3126

378 FUAs, 33 countries, 1085 cells
***ρ < 0.001 **ρ < 0.01 *ρ < 0.05 +ρ < 0.1

Table 4.2 shows that C f is positively correlated with G f and P. G f and P pass the test of

significance at the level of 0.1%. G f can explain around 20% of C f by itself. The result of Column
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4.2 shows after adding P, G f and P together can explain more than 30% of C f , and the slope of

G f drops slightly from 1.17 to 0.88.

The results of relative importance show that, comparing with G f , P has more explanatory

ability in influencing C f , but the difference of the relative importance between P and G f is less

than 10%.

The coefficient of G f in Column 4.2 is similar to the value (i.e. 1.04) of Blond et al. (2007),

and R2 in Column 4.2 is similar to the one of the results (i.e. 0.35) of Wallace and Kanaroglou

(2009).

Table 4.3: Regressions of log10C f with log10G f and log10P

log10C f

(4.3) (4.4)

coefficients
intercept 0.9627*** 0.1717+

(0.0678) (0.0979)
log10G f 0.5320*** 0.3449***

(0.0499) (0.0478)
log10P n/a 0.1868***

n/a (0.0183)
relative importance

log10G f n/a 0.3946
log10P n/a 0.6054

R2 0.2320 0.3995

378 FUAs, 33 countries, 1085 cells
***ρ < 0.001 **ρ < 0.01 *ρ < 0.05 +ρ < 0.1

Table 4.3 shows that log10C f is positively correlated with log10G f and log10P. log10G f and

log10P pass the test of significance at the level of 0.1%. log10G f can explain around 23% of log10C f

by itself. The result of Column 4.4 shows after adding log10P, log10G f and log10P together can

explain nearly 40% of log10C f , and the slope of log10G f drops from 0.53 to 0.34.

The results of relative importance show that, the influence of population becomes more

evident in Column 4.4 than in Column 4.2. The difference of the relative importance between

log10P and log10G f is around 20%.
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So far we haven’t found any article comparing G and C using the log10−log10 relationship,

we think the log10−log10 relationship is better for comparing G and C than the non-logarithmic

relationship as it stresses the relative importance of P.

Figure 4.1: Plot of the regression of C f with G f

We plot the regression result of Column 4.1 in Figure 4.1. Figure 4.1 shows that in most

cases G f is less than 40 μg/m3 and C f is less than 75 μmol/m2. When P is small, the points tend

to stay close with the line, and when P increases, the points spread. This figure shows that P is

an important factor in deciding C f and G f .

When examining Figure 4.1, we can find the top 3 FUAs with the highest values of C f

(Bergamo, Milan, and Brescia (Italy)) and the top 2 FUAs with the highest values of G f (Ankara

and Kayseri (Türkiye)) are all located in the Southern Europe. Cyrys et al. (2012) also indicated

high NO2 concentrations in Southern Europe and Mediterranean cities, and attributed these

phenomena to transportation, climate conditions, compact built-up environment, and diesel cars.

Diesel cars emit more NO2 than gasoline cars (Bares et al. 2018), and today’s diesel cars have a

higher NO2/NOx emission ratio than the past ones (Degraeuwe et al. 2016).

The coefficient of G f in Figure 4.1 is similar to the value (i.e. 1.04) of Blond et al. (2007), and

R2 in Figure 4.1 is similar to one of the results (i.e. 0.19) of Wallace and Kanaroglou (2009).
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Figure 4.2: Plot of the regression of log10C f with log10G f

We plot the regression result of Column 4.3 in Figure 4.2. Compared with Figure 4.1, we can

find that the points are more evenly distributed, and the NO2 levels of small and medium-sized

cities can be clearly distinguished in Figure 4.2.

Given the small number of countries covered by current articles comparing G and C (e.g. 3

countries in Blond et al. (2007), 1 country in Wallace and Kanaroglou (2009), and 8 countries in

Paraschiv et al. (2017)), we believe that the log10-log10 relationship is more suitable to compare G

and C in regional studies.

4.3.2 Regressing NO2 on city size and centrality

Tables 4.4 and 4.5 are the regressions results of Equations 4.5 to 4.14.
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Table 4.4: Regressions of log10G with log10R, log10P

log10G
(4.5) (4.6) (4.7) (4.8) (4.9) (4.10)

coefficients
intercept (dummy variable-mixed bg.) 1.6537*** 1.3581*** 0.5622*** 0.4831*** 0.7278*** 0.5890***

(0.0380) (0.0331) (0.0574) (0.0452) (0.0524) (0.0430)
log10R -0.0734*** -0.0189* n/a n/a -0.1763*** -0.1162***

(0.0100) (0.0085) n/a n/a (0.0097) (0.0083)
log10P n/a n/a 0.1372*** 0.1343*** 0.2208*** 0.1911***

n/a n/a (0.0096) (0.0075) (0.0098) (0.0081)
dummy variable-traffic bg. n/a 0.2379*** n/a 0.2458*** n/a 0.2201***

n/a (0.0098) n/a (0.0087) n/a (0.0083)
dummy variable-industrial bg. n/a -0.0475** n/a -0.0269* n/a 0.0021

n/a (0.0150) n/a (0.0136) n/a (0.0129)
relative importance

log10R n/a 0.0554 n/a n/a 0.3463 0.1155
log10P n/a n/a n/a 0.2620 0.6537 0.3093

dummy variables n/a 0.9446 n/a 0.7380 n/a 0.5752
R2 0.0371 0.3555 0.1275 0.4742 0.2943 0.5395

378 FUAs, 33 countries, 1397 stations in total, 674 stations in mixed background,
566 stations in traffic background, 157 stations in industrial background

***ρ < 0.001 **ρ < 0.01 *ρ < 0.05 +ρ < 0.1
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In Table 4.4, all 4 specifications having log10R show log10R is negatively correlated with

log10G. The coefficients of log10R range from -0.1763 to -0.0189. 3 of 4 log10R coefficients pass

the test of significance at the level of 0.1%. All 4 specifications considering log10P show larger

cities have higher levels of log10G. The coefficients of log10P range from 0.1343 to 0.2208. All the

coefficients of log10P pass the test of significance at the level of 0.1%. Comparing with Column

4.9, the introduction of dummy variables dampens both the negative profile of log10R and the

positive profile of log10P. All the coefficients of dummy variables of traffic background fluctuate

between 0.22 and 0.25, and are statistically significant at the level of 0.1%.

Among the 6 specifications, the one of log10R, log10P, and dummy variable has the strongest

ability of estimating log10G. This specification has a log10R coefficient of -0.1162 and a log10P

coefficient of 0.1911. It also indicates concentrations measured at the traffic background station

are 22% higher than the log10G measured at the mixed background station.

The coefficient of log10P in Column 4.10 is close to the one we derived (i.e. 0.1587 in Column

2.8) from the meta-analysis. The difference between these two coefficient values may be partly

due to the different ways of counting P (Louf and Barthelemy 2014b). Other possible reasons are

the differences in wind speed (Figure 3.8) and climate types (Figure 3.6), etc.

If we express the coefficient of log10P in Column 4.10 according to Equation 1.9 we get

a value of 1.5527 for λ. According to the points of Bornstein and Bornstein (1976), we infer

that this indicates land surface NO2 levels are related to the way of creating wealth or other

socioeconomic factors.
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Table 4.5: Regressions of log10C with log10R, log10P, and log10Cmin

log10C
(4.11) (4.12) (4.13) (4.14)

coefficients
intercept 1.7142*** 0.7195*** 1.2004*** 0.1585***

(0.0176) (0.0131) (0.0164) (0.0080)
log10R -0.0082* n/a -0.1823*** -0.1453***

(0.0040) n/a (0.0040) (0.0018)
log10P n/a 0.1620*** 0.2161*** 0.1354***

n/a (0.0022) (0.0024) (0.0011)
log10Cmin n/a n/a n/a 0.8692***

n/a n/a n/a (0.0027)
relative importance

log10R n/a n/a 0.1314 0.0295
log10P n/a n/a 0.8686 0.1623

log10Cmin n/a n/a n/a 0.8082
R2 0.0002 0.1796 0.2434 0.8531
378 FUAs, 33 countries, 24816 cells for (9)-(11), 24238 cells for (12)

***ρ < 0.001 **ρ < 0.01 *ρ < 0.05 +ρ < 0.1

In Table 4.5, all the specifications considering log10R indicate log10R is negatively correlated

with log10C. The coefficients of log10R range from -0.1823 to -0.0082. 2 of 3 log10R coefficients

pass the test of significance at the level of 0.1%. All the specifications considering log10P show

larger cities have higher levels of log10C. The coefficients of log10P range from 0.1354 to 0.2161.

All the log10P coefficients pass the test of significance at the level of 0.1%. Comparing with

Column 4.13, log10Cmin restrains the profile of both the log10R and log10P. Its coefficient is 0.8692

and it passes the test of significance at the level of 0.1%.

R2 values show when specifications contain only 1 independent variable, log10R is much

less capable of explaining log10C than log10P. log10R and log10P together can explain nearly 30%

of log10C. Adding log10Cmin improves explanatory ability evidently. The specification of log10R,

log10P, and log10Cmin is the best to forecast log10C. This specification has a log10R coefficient of

-0.1453 and a log10P coefficient of 0.1354. The relatively high R2 in Column 4.14 may indicate the

importance of background NO2. Also, after we consider background NO2, the effect of log10P

becomes less strong.

The patterns of relative importance in Tables 4.4 and 4.5 are quite similar. log10P is always

more important than log10R regardless of the NO2 sources. The explanatory ability of dummy

variables and log10Cmin are higher than log10P, if any of them appears in the specifications. This

means the ground NO2 levels are mainly determined by the background of the monitoring
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station while the tropospheric NO2 levels depend heavily on background NO2. R is not an

influential factor in affecting the NO2 levels. The relative importance of log10P in Column 4.14 is

lower than the one in Column 4.10.

The coefficient of log10P is still close to the one we derived from the meta-analysis (i.e.

0.1587 in Column 2.8). Compared with Table 4.4, 1 new factor causing the difference between the

two coefficients is the troposphere. This is due to the fact that Table 4.5 uses tropospheric NO2

columns, while the values used in the meta-analysis are NO2 surface concentrations. These 2

kinds of data are collected in different ways (Section 4.1.1).

If we express the coefficient of log10P in Column 4.14 according to Equation 1.9, we get a

value of 1.3658 for λ. According to the points of Bornstein and Bornstein (1976), we infer that

this may indicate tropospheric NO2 levels are also related to the way of creating wealth or other

socioeconomic factors. The 2 similar λ values (i.e. 1.5527 and 1.3658) also show the coherence of

G and C.

4.3.3 Regression summary

The coefficients of log10R in Tables 4.4 and 4.5 are always negative. This results confirms the

theory proposed by Schindler et al. (2017) and the results of Borck and Schrauth (2021) and Wang

et al. (2020c). We have only found 1 paper so far stating that centrality and hourly average NO2

surface concentration can be expressed by the ln-ln relationship with a coefficient of -0.00321

(Borck and Schrauth 2021), and our coefficients of log10R are lower than theirs (-0.1162 in Column

4.10 and -0.1453 in Column 4.14). One of the reasons is that our specifications are different. Borck

and Schrauth (ibid.) used independent variables including population density, distance to the

city center and distance to street but did not consider population size.

log10R is always the least important factor when other variables are in the specifications.

The R2 value reveals that log10R can only explain 4% log10G and 0.02% log10C if it is the only

variable in the specification. This may be due to the fact that the NO2 concentration may drop

rapidly within 200 m from the main road (Bermejo-Orduna et al. 2014; Gilbert et al. 2003; Laffray

et al. 2010). The ability of satellite data to explain centrality is weaker than that of stations

data is partly due to differences in the way satellites and stations collect NO2 data (Section

4.1.1). NO2 columns don’t indicate the amount of NO2 people breathe in (NASA 2020). They

are actually the average of NO2 concentrations over the optical path from land surface to the

satellite’s sensor (Lövblad et al. 1997). Another possible explanation is that satellites are subject

to more atmospheric factors when collecting NO2 data, and the same climate conditions may

have different influences on stations and satellites. For example, we have explained the impact
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of rainfall on NO2 data in Section 4.1.1, but for satellites, the cloud over the land surface during

rainfall is also one of the influencing factors (Markovic et al. 2008).

log10P is always more important in deciding the NO2 levels when log10P and log10R appear

simultaneously. Among all of our specifications, log10P always passes the test of significance at

the level of 0.1% and its coefficient is constantly positive. The positive effect of city size on NO2

ground and tropospheric concentrations have been reported in Cyrys et al. (2012) and Lamsal

et al. (2013). There are many reasons that make city size more important than centrality. These

factors include but are not limited to: First, huge volumes of anthropogenic activities brought by

large population size increase NO2 emissions. Second, NO2 emissions from those anthropogenic

activities could be exacerbated by urban canyons (Vintar Mally and Ogrin 2015) and large cities

tend to have more urban canyons as a way of utilizing land intensively. Third, adsorbed and

re-radiated solar energy from urban land use and anthropogenic heat are the main causes of UHI

in cities (Rizwan et al. 2008). UHI can change thermal structure of cities and dispersion patterns

of air pollutants (Ngarambe et al. 2021).

Dummy variables and log10Cmin are always the most important factor in affecting NO2

concentrations if any of them appears in the specification. Monitoring stations at traffic back-

ground record higher NO2 surface concentrations than other types of stations as NO2 levels are

mainly contributed by transportation in Europe (EEA 2016). Our results are similar to those

of Cyrys et al. (2012), who showed that the NO2 surface concentration depends largely on the

background of the measuring site. However, for the coefficient of the dummy variable of the

industrial monitoring station, we find its value can be positive or negative, and it doesn’t pass

the test of significance at the level of 0.1%. This is probably because the industrial areas are too

far to affect the NO2 in urban areas (Coppalle et al. 2001). Furthermore, only 157 of the 1,397

stations are located in industrial areas, and not all FUAs have stations in industrial areas (e.g.

Paris, Figure 3.19(h)).

4.3.4 Regression-based prediction for NO2

To visualize the effects of centrality and city size, we plot Ĝ according to Column 4.9 in Figure

4.3 and Ĉ according to Column 4.13 in Figure 4.4.
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Figure 4.3: Ĝ at different R by Column 4.9

Figure 4.4: Ĉ at different R by Column 4.13

Figures 4.3 and 4.4 show how Ĝ and Ĉ vary for cities with populations of 100 thousand, 1

million and 10 million inhabitants residents. The variation of Ĝ and Ĉ with R is similar in both

figures. The difference in NO2 caused by population size is higher near the city center than in

places far away. When R is the same, the Ĝ and Ĉ levels of big cities are always higher than those
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of small cities. For each city, Ĝ and Ĉ decrease sharply near the city center and then the rate of

decline of Ĝ and Ĉ decreases sharply. The attenuation of NO2 levels off when R is larger than 4

km. As can be expected, the 3 curves of each figure are also highly unlikely to intersect at the far

end.

However, Figures 4.3 and 4.4 are predicted values, but the reality is more complicated. For

example, we can see from Figure 3.21 that the Cmin value and the maximum value of C in Milan

are higher than those in Paris. This is partly because the high mountains around Milan trap

air pollutants, causing high NO2 levels in the city center (Park et al. 2021). Area of FUAs also

affects background NO2. We can see that the area of Milan is smaller than the area of Paris

(Figure 3.20). This shows that residents at the fringe of Paris tend to work in the center of Paris,

but may live in suburban because of the low housing prices. Milan does not provide as many

employment opportunities as Paris, so residents not far from the center of Milan may consider

finding employment in neighboring cities. As a result, Milan’s background is higher than that of

Paris (Figure 3.21).

Figures 4.3 and 4.4 also show that the suburban of a large city may have the same level of

NO2 as the center of a small city. For example, the values of Ĉ at 500 meters from the center of a

city with a population of 1 million are similar to the values of Ĉ at about 8 km from the center

of a city with a population of 10 million. In fact, the reality is more complicated. For example,

we know that the population of Paris is about 10 times that of Nuremberg (Figure 3.20). Figure

3.21 shows that C is still around 140 mol/m2 at a distance of 8 km from the center of Paris, while

the maximum C in Nuremberg is only 84 mol/m2. We speculate that this may be partly due

to the tall buildings in the center of Paris exacerbates NO2 pollution levels, which may make

commuting more expensive for residents living in large cities than predicted in Figure 4.4, if they

want to reduce their NO2 exposure.

When examining the patterns of the 95% Confidence Intervals (CIs), we find that first, in

general, the width of CIs in Figure 4.3 is wider than the ones of Figure 4.4. This means the

number of monitoring stations are much less than the quantity of satellite columns. Second, for

each figure, the width of CIs of the larger cities is wider than the ones of the smaller cities. This

indicates our data set includes more smaller cities than larger cities. Third, for Figure 4.3, the

width of CIs is not consistent when moving from the city center to the places far away. This

shows the spatial heterogeneity of the distribution of monitoring stations. All of these findings

can be verified by observing the maps in Section 3.2.

To quantify and generalize the effects of centrality and city size on G and C, we calculate

Ĝ and Ĉ for cities with a population of 100 thousand, 1 million and 10 million inhabitants at

different R. The results of Ĝ and Ĉ are listed in Tables 4.6 and 4.7.
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Table 4.6: Ĝ by Column 4.9 and relative changes at different R

Ĝ (μg/m3) and its relative change comparing to the left column
R (km) 0.1 0.5 1 5 10

P = 1e5 30.1439 22.6972 20.0863 15.1242 13.3844
(% decrease) (n/a) (24.70%) (11.50%) (24.70%) (11.50%)
P = 1e6 50.1187 37.7374 33.3964 25.1462 22.2536
(% decrease) (n/a) (24.70%) (11.50%) (24.70%) (11.50%)
P = 1e7 83.3297 62.7439 55.5265 41.8092 36.9999
(% decrease) (n/a) (24.70%) (11.50%) (24.70%) (11.50%)

Table 4.7: Ĉ by Column 4.13 and relative changes at different R

Ĉ (μmol/m2) and its relative change comparing to the left column
R (km) 0.1 0.5 1 5 10

P = 1e5 82.4708 61.5004 54.2001 40.4183 35.6205
(% decrease) (n/a) (25.43%) (11.87%) (25.43%) (11.87%)
P = 1e6 135.6438 101.1528 89.1456 66.4780 58.5868
(% decrease) (n/a) (25.43%) (11.87%) (25.43%) (11.87%)
P = 1e7 223.1002 166.3711 146.6223 109.3397 96.3607
(% decrease) (n/a) (25.43%) (11.87%) (25.43%) (11.87%)

Although Ĝ and Ĉ are derived from different NO2 data sources, however, it is interesting to

find some similarities from the relative changes in Tables 4.6 and 4.7. The relative changes of Ĝ

when R increases from 100 m to 500 m are as same as the ones when R increases from 1 km to 5

km. The relative changes of Ĝ when R increases from 500 m to 1 km are equal to the ones when

R increases from 5 km to 10 km. These 2 characteristics can also be found in the relative change

of Ĉ. Moreover, when R increases from 100 m to 500 m and from 1 km to 5 km, the relative

changes of Ĝ and Ĉ are very close (i.e. 24.70% vs. 25.43%). We can also find the same patterns

on the relative changes of Ĝ and Ĉ when R increases from 500 m to 1 km and from 5 km to 10

km (11.50% vs. 11.87%). The similarity of the relative changes of Ĝ and Ĉ are due to the similar

coefficients of log10R and log10P in Equations 4.9 and 4.13. These are good results showing the

coherence between land surface and tropospheric NO2.

Given the above results, we think urban planners can rely on both to evaluate NO2 levels.

Monitoring stations are close to the emission sources and they may neglect the accumulated NO2
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up into the street canyon and other built environment (e.g. street geometry, proportion of diesel

cars) and climate (e.g. topography, winds). That is a probable reason why the R2 of Equation

4.10 is only 54%, comparing with the one of Equation 4.14 (85%) by Sentinel-5P. Sentinel-5P not

only captures the effects of population size and centrality, but also includes the impacts from

other sources such as climate. In other words, Ĝ guides people to choose a place considering

surrounding environment while Ĉ is good at telling background NO2 in a holistic view. Urban

planners and policy makers can rely on NO2 surface concentrations to evaluate the inhaled NO2

of a specific location in a city, and count on NO2 tropospheric columns to assess the level of

sustainability and development of the city. And both kinds of NO2 concentrations have similar

abilities when required to show the effects of city size and centrality on NO2.

4.3.5 Predicted and measured tropospheric NO2 comparison

Figure 4.5 shows the comparison results of Ĉ and C every 5 km for the population group S, M,

and L.

Figure 4.5: Ĉ by Column 4.13 and C

The values of R in Figure 4.5 are completely determined by the data, and we do not specify

a maximum value for R as we do in Figures 4.3 and 4.4. Therefore we can find that cities with

larger population expand further. The regression results of Equation 4.13 are credible as the

mean values of C are situated closely with the predicted Ĉ. The huge deviation of the last 3

points around the curve of group L are acceptable, because in this group only 10 tropospheric
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columns have R values greater than 110 km. SE decreases with R. This is because more imagery

cells appear as R increases.

The data points in Figure 4.5 show that the NO2 levels at the urban fringes of Groups L and

M are roughly 50% to 60% of those in the city center, which is the same as the results obtained in

Hien et al. (2020), and we find that the variation of NO2 with centrality in Group S is not obvious.

This may be because the spatial resolution of the satellite imagery we use is 7 km x 7 km, and the

R value of the S group is about 40 km. We also show in Figure 3.19 that 7 km x 7 km satellite

resolution fails to reveal the detail of NO2 variation with centrality in small cities.

4.4 Limitations

To our knowledge, this is the first paper exploring the effects of city size and the Euclidean

distance to the city center on NO2 data gained by monitoring stations and the satellite across

European cities. However, our studies have some limitations. First, in this study we use FUAs

as the definition of cities. Therefore, results may vary when defining cities in other ways (e.g.

municipal boundaries (Branis and Linhartova 2012), population density (Lamsal et al. 2013) or

satellite imagery (Bechle et al. 2011)). Second, we use logarithmic variables in the specifications.

But because of the undefined log(0), so the monitoring stations situated close to the city center

and the NO2 columns overlapped with the city center should be examined separately to find

out the NO2 concentration at the exact point of the city center, which shows that there are some

difficulties in using power laws to predict real-world air pollution. Third, although Figures 3.18

and 3.20 show a certain correlation between wind speed and NO2 levels, our specifications do

not add wind correction. Our specifications also do not include the relationship between climate

classification (e.g. Figure 3.17) and NO2, although climate classification is related to the land

surface feature, and the land surface feature affects the NO2 column (Hong et al. 2017). Last, we

believe that the intra-urban profiles of land surface NO2 concentrations could be better described

if more monitoring stations were built. Cyrys et al. (2012) made a similar point.

4.5 Suggestions for urban planners

We show that both land surface NO2 and NO2 columns are reliable and useful tools for exploring

urban NO2 levels. Monitoring stations are close to the emission sources, therefore they are

suitable for describing changes in NO2 concentration over short distances, while NO2 columns

are suitable for describing the extent of NO2 in the whole city.

We also find out that our regression-based prediction underestimates the pollution levels

in the central areas of large cities, thus residents living in large cities need to move farther than
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predicted to obtain lower NO2 exposure. We therefore suggest that urban planners should

decrease NO2 levels in the urban core (e.g. building green spaces (Sheridan et al. 2019), introduce

congestion charges (Tonne et al. 2008)) and optimize the transportation network connecting the

urban core and suburbs (e.g. subways). Finally, urban planners cannot only count on economic or

population growth to gain reduced NO2 levels, as so far we’ve found that relationship between

NO2 and city size does not conform to the environmental Kuznets curve.

4.6 Code availability

Code link for Table 4.1:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

GroupSML_and_Boxplot.py.

Code links for Table 4.2:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_Station_C1.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_Station_Pop_C2.r.

Code links for Table 4.3:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_Station_C1a.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_Station_Pop_C2a.r.

Code links for Table 4.4:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Station_LOGNO2_LOGDIS_C3.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Station_LOGNO2_LOGDIS_FIX_C4.r,

3rd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Station_LOGNO2_LOGPOP_C5.r,

4th column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Station_LOGNO2_LOGPOP_FIX_C6.r,

5th column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Station_LOGNO2_LOGDIS_LOGPOP_C7.r,

6th column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/
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Tab_Station_LOGNO2_LOGDIS_LOGPOP_FIX_C8.r.

Code links for Table 4.5:

1st column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_LOGNO2_LOGDIS_C9.r,

2nd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_LOGNO2_LOGPOP_C10.r,

3rd column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_LOGNO2_LOGDIS_LOGPOP_C11.r,

4th column - github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_Satellite_LOGNO2_LOGDIS_LOGPOP_minFUA_C12.r.

Code link for Table 4.6:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_calculatePredictedStation.r.

Code link for Table 4.7:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Tab_calculatePredictedRS.r.

Code link for Figure 4.1:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Fig_Satellite_Station_Pop_B_and_W.py.

Code link for Figure 4.2:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Fig_Satellite_Station_Pop_B_and_W1.py.

Code link for Figure 4.3:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Fig_EffectPlot_Model7_B_and_W.py.

Code link for Figure 4.4:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

Fig_EffectPlot_Model11_B_and_W.py.

Code link for Figure 4.5:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

GroupSML_and_Boxplot.py.
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5 About the scaling of individual NO2

profile

5.1 Literature review and research gaps

5.1.1 Motivation

In Chapter 4, we have found that larger cities have higher NO2 levels, and NO2 concentrations

inside the city decrease with centrality, and we have tested how well the measured annual mean

NO2 columns match the predicted values using three sets of FUA population data. However,

since we do not control population effect in Chapter 4, we cannot explore further the details of

urban centrality and intra-urban NO2 levels. In other words, if we follow Figure 4.4 to plot the

NO2 levels of cities of different sizes, the curves will not overlap, which make them difficult for

us to compare side by side. After studying the relationship between air pollution indicators (i.e.

PM2.5, Air Quality Index (API)) and urban form attributes of 83 Chinese cities, Liu et al. (2018b)

found that the relationship between air pollution indicators and urban form attributes showed

consistency only when cities with similar populations were grouped together for analysis. Liu

et al. (ibid.) also suggested that the impact of urban population size should be explained for a

clear relationship between urban air pollution and urban form.

In fact, we can also see the direct or indirect impact of population on NO2 levels by

combining the data in Chapter 3 and the specifications in Chapter 4. For example, for Paris,

whose population is about 10 times that of Nuremberg, the measured annual mean NO2 column

at a distance of 8 km from the city center is about 140 mol/m2 (Figure 3.21(h)), which is higher

than the concentration predicted by Column 4.13 (i.e. 103.84 mol/m2). The highest annual

average column concentration near the center of Nuremberg is 84 mol/m2 (Figure 3.21(d)), but

this value is lower than the predicted value by Column 4.13 (i.e. 105.80 mol/m2 when R equals

500 m).

We have pointed out in previous chapters that human activities including car emissions,

industrial processes (Section 1.1.3) and agricultural activities at the urban fringe (Section 3.1.4)

are important contributors to NO2 emissions. Another possible reason for high NO2 levels in

large cities is that cities with large populations have large built-up areas (Wania et al. 2014).
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Large areas of impervious surfaces not only provide conditions for human activities that emit

air pollution, but also create canyon effects (Karimimoshaver et al. 2021) and UHI (Clark 2020),

which exacerbate NO2 pollution levels. So in this chapter we explore the impact of population

size on centrality.

Meanwhile, in Chapter 4, we have found that no matter we use NO2 columns or NO2 surface

concentrations as the data source, the logarithm of centrality is always negatively correlated

with the logarithm of NO2 level. This offers us the possibility to describe the effect of centrality

on NO2 using simple models such as radial analysis. Although radial analysis may ignore

NO2 fluctuations far away from the city center (e.g. industrial emission sources), it can reflect

the contribution of the city center to the overall pollution level of the city, thus providing the

possibility of comparing cities side by side.

So far we have found some experiments using radial analysis to investigate UHI and land

use inside the cities. The annual mean UHI intensity of Chinese cities decays exponentially from

the built-up area to the area of 6 times the built-up area (Zhou et al. 2015). But Zhou et al. (ibid.)

used the entire built-up area instead of a single point in the city center as the starting area for the

radial analysis, which made the method unsuitable for the NO2 analysis inside the city as the

NO2 changes obviously around the emission source (Colvile et al. 2001). Irwin and Bockstael

(2007) and Schneider and Woodcock (2008) also used the urban core area rather than a point as

the starting area for the radial analysis. Although Seto and Fragkias (2005) used the city center

as the starting point for the radial analysis of the urban landscape, Seto and Fragkias (ibid.)

built 3 buffer zones (i.e. 0 km to 3km, 3 km to 10 km, 10 km to 20 km) from the city center and

summarized the landscape within these 3 buffer zones, this method thus could not continuously

observe the changes of geographical phenomena with centrality. Although Jiao (2015) used a

radial analysis starting from the city center to describe how urban land use density changes

continuously with centrality, the function he used was too complicated. We hope to use a model

as simple as possible to describe how population affects the relationship between centrality and

NO2 levels, so as to provide an intuitive and clear reference for citizens and urban planners.

5.1.2 Radial analysis and homothetic scaling of land use

Lemoy and Caruso (2018) proposed an innovative approach to study the relationship between

artificial land use share and centrality. This method not only includes a radial analysis with the

city center as the starting point, but also systematically describes the impact of population size

on the relationship between centrality and artificial land use share.

In order to conduct profile analysis, Lemoy and Caruso (ibid.) made concentric rings with

the city center as the start point, and the width of each ring was about 141 m. Lemoy and Caruso
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(ibid.) then calculated the Euclidean distance from each ring to the city center and the artificial

land use share within the ring. To find out population effects on artificial land use share and

centrality, Lemoy and Caruso (2018) then performed homothetic scaling on artificial land use

share of each ring and the Euclidean distance from the ring to the city center.

We have introduced the definition of homothetic scaling (i.e. homotheticity) in Section

1.2.4. In short, homothetic scaling makes the relationship between centrality and artificial

land use share largely explained by the city’s population, the largest city’s population, and a

scaling exponent, making the intra-urban land use distribution across cities presents similar

characteristics (i.e. homotheticity) (Equations 1.10 and 1.11).

r′ = r
( N
NLondon

)0.5
(1.10)

SN(r′) =
SN(r)

( N
NLondon

)0.5
(1.11)

The reason why Lemoy and Caruso (ibid.) chose 0.5 (i.e. the reciprocal of 2) as the scaling

exponent is that the artificial land use share is a geographical phenomenon that occurs in 2-

dimensional space and thus conforms to the square-cube law1. Lemoy and Caruso (ibid.) then

performed homothetic scaling in both X and Y directions. The scaled centrality and artificial land

use share are shown in Figure 1.4(b).

(a) SN(r) and r (b) SN(r’) and r’

Figure 1.4: Shares of built-up area as functions of the distance to the city center in 300
European cities (Lemoy and Caruso 2018)

1Area scales with the square of length while volume scales with the cube of length. (Hey 2023)
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5.1.3 Ways to find/test a scaling exponent

SNR

Lemoy and Caruso (2018) tested the rationality of using 0.5 as the scaling exponent in Equations

1.10 and 1.11 using a method called SNR. Assuming α is the scaling exponent, Lemoy and Caruso

(ibid.) stated that for a given rescaled Euclidean distance from the city center r’, the rescaled

proportion of build-up area of a city (population size N) at this rescaled distance SN(r’) is the

signal, and in this situation, the standard deviation σ(Sα(r)) is the noise. The SNR is defined

as the average value of signal over ratio between r’ = 0 and r’, such that the value of Sα(r) is

a threshold value t. Lemoy and Caruso (ibid.) tried different combinations of α and t to get a

variety of SNR values (Figure 5.1).

Figure 5.1: SNR for the artificial land use share (Lemoy and Caruso 2018)

Figure 5.1 shows the highest value of SNR appears when α is close to 0.5. Therefore 0.5 is a

suitable scaling exponent in expressing the relationship between centrality and artificial land use

share.

2-step linear regression (Lemoy and Caruso 2021)

Lemoy and Caruso (2021) proposed another way to find the scaling exponent by performing

a 2-step linear regression. This 2-step linear regression can be carried out in 2 ways: either by

linear fits or by nonlinear fit. The details of the 2-step linear regression are:

1. for each city Lemoy and Caruso (ibid.) regress artificial land use share SN(r) on centrality

r as a way to predict artificial land use share in the city center aN and characteristic distance

lN . This step can be finished by a linear fit (Equation 5.1) or a nonlinear fit (Equation 5.2),

log10(SN(r)) = log10(aN)− r
lN

+ ε (5.1)
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SN(r) = aN e
−r
lN + ε (5.2)

where SN(r) is the proportion of build-up area of a city (population size N) at distance r,

aN is the proportion of build-up area in the city center, r is the Euclidean distance from

city center, lN is the predicted characteristics distance, ε is error term.

2. regress lN on population size N. This step can also be finished by a linear fit (Equation

5.3) or a nonlinear fir (Equation 5.4),

log10(lN) = log10(l1) + α log10N + ε (5.3)

lN = l1 Nα + ε (5.4)

where l1 is a constant, N is population size, α is the scaling exponent, ε is error term.

Lemoy and Caruso (2021) summarized the results of the 2-step linear regression in Table

5.1. Simple nonlinear regression (SNL) is a theoretical scenario where the proportion of built-up

area in city center is 100% (i.e. SN(0) = 1). SNL20 and NL20 only consider continental cities.

Table 5.1: Regression of lN with N (Lemoy and Caruso 2021)

Model L NL SNL NL20 SNL20

Scaling exponent α 0.317 0.499 0.496 0.500 0.494
(0.024) (0.013) (0.013) (0.012) (0.011)

l1 (m) 114.4 7.43 7.04 7.38 7.69
(42.3) (1.32) (1.34) (1.28) (1.19)

Observations 293 293 293 237 237
R2 0.372 0.845 0.826 0.877 0.895

L=linear, NL=nonlinear, SNL=simple nonlinear,
NL20=continental cities only, nonlinear,

SNL20=continental cities only, simple nonlinear

Table 5.1 shows that the NL model is the optimal choice when all cities are considered,

because it has the highest R2 (i.e. 0.845) and the lowest SEs (i.e. 0.013 and 1.32). If only continental

cities are considered, then the SNL20 model is the optimal choice, because it has the highest R2

(i.e. 0.895) and the lowest SEs (i.e. 0.011 and 1.19). But no matter whether we choose the NL or
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the NL20 model, the scaling exponent is very close to 0.5. Therefore, Lemoy and Caruso (2021)

showed that the homothetic scaling expressing the impact of population on the relationship

between land use share and centrality is appropriate to use a scaling exponent of 0.5.

5.1.4 Comparison and expectations

SNR and 2-step linear regression give very close exponents when deriving the relationship

between centrality and land use share under cities of different sizes. The difference is that SNR

calculates and compares all possible SNR values by trying to build all possible combinations

of exponent and land use share threshold, so as to test the rationality of 0.5 as the exponent

proposed by Lemoy and Caruso (2018). In the 2-step linear regression, instead of specifying an

exponent value, Lemoy and Caruso (2021) put raw data into linear or nonlinear regression, and

then the exponent appears as part of the regression results.

We are not sure what exponent we would get if we applied something like SNR or 2-step

linear regression to find the relationship between centrality and NO2 levels, since land use is

a 2-dimensional geographic phenomenon and NO2 is distributed in 3-dimensional space. The

NO2 concentration fluctuates with factors such as meteorological conditions (e.g. Section 3.1.11)

and built environment (e.g. canyon effect). Thus, in this case, the obtained exponent may not be

0.5. However, we hope to explain the influence of population size on the relationship between

centrality and NO2.

5.1.5 Importance and significance

The model proposed by Lemoy and Caruso (2018) shows that the relationship between built-up

share and centrality can be described by homotheticity, and this relationship can be explained

by population size. This simple model facilitates regional geographic research from many

perspectives. On one thing, it involves few parameters, so it is simple and easy to understand

for both the public and researchers. For another thing, by using this model, urban planners

can compare cities of different sizes and cultural backgrounds side by side, and can predict

the land use challenges that will arise in a city as urbanization accelerates. Urban planners can

also formulate plans based on the homotheticity of artificial land use, such as estimating the

amount of built-up land resources required for a certain place and the location and quantity of

infrastructure based on centrality, thereby allocating resources efficiently. The homotheticity of

artificial land use share also inspires us to further explore urban forms, for example, whether or

not the air pollution that occurs on artificial land is also homothetic. Answering this question

helps us build sustainable cities and resilient urban environment.
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5.2 Methods

5.2.1 Data

In this chapter we use annual mean tropospheric NO2 columns (at the resolution of 1 km x

1 km) (C) as the data source of NO2. Centrality is denoted as R. Population size is noted

as P. Background NO2 is denoted as Cmin. The reason why we don’t include NO2 surface

concentrations this time is because stations cannot cover the entire spatial extent of a city,

therefore we cannot gain land surface NO2 data covering the entire area of a city with constant

spatial resolution. Because we want to gain details about how NO2 levels decrease along

centrality so we interpolate satellite data and use annual mean tropospheric NO2 columns at the

resolution of 1 km x 1 km this time. For details of the data, see Chapter 3.

We use 2 ways to find how city size affects centrality: RMSC and 2-step linear regression.

5.2.2 RMSC

Inspired by Lemoy and Caruso (2018), the method of RMSC is very similar to the one of SNR. We

need to find the minimum value of RMSC and the corresponding scaling exponents of centrality

and NO2 levels. We assume the scaling exponents of centrality and NO2 levels may not be the

same.

We select 30 regular FUAs to calculate the scaling factors. The definition of regular FUAs is

in Section 3.2.8. Table 5.2 lists the 30 FUAs.
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Table 5.2: Selected FUAs for RMSC

FUA Country FUA population

1. Altamura Italy 70389.22
2. Caceres Spain 89925.35
3. Ravenna Italy 119043.26
4. Ceske Budejovice Czech Republic 156917.20
5. Erfurt Germany 239680.63
6. Oldenburg Germany 241914.29
7. Salzburg Austria 261062.85
8. Split Croatia 289206.83
9. Pilsen Czech Republic 311181.29
10. Aberdeen United Kingdom 327687.31
11. Timisoara Romania 358871.40
12. Salerno Italy 379125.53
13. Plymouth United Kingdom 397096.87
14. Bratislava Slovakia 523360.46
15. Augsburg Germany 547174.87
16. Ostrava Czech Republic 550274.95
17. Rennes France 569011.48
18. Skopje Macedonia 576711.20
19. Leicester United Kingdom 691528.57
20. Riga Latvia 788480.59
21. Bremen Germany 868843.17
22. Nantes France 895937.40
23. Wroclaw Poland 926637.90
24. Kayseri Turkey 936403.55
25. Bordeaux France 1045640.53
26. Budapest Hungary 2822154.57
27. Athens Greece 3747423.88
28. Berlin Germany 4290482.74
29. Madrid Spain 6131919.00
30. Paris France 11709852.56
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We define that α is the scaling exponent of centrality R and β is the scaling factor of NO2

levels C. We use a similar expression to Equations 1.10 and 1.11 to express how we find scaling

exponents using Equations 5.5 and 5.6,

R′ = R
( P
PParis

)α
(5.5)

CP(R′) =
CP(R)
( P
PParis

)β
(5.6)

where R is the Euclidean distance from the centroid of the pixel of satellite imagery to the city

center, PParis is the population of the largest city in the dataset (i.e. Pairs), P is the population size

of a city, R’ is the rescaled Euclidean distance from the centroid of the pixel of satellite imagery to

the city center, CP(R) is the annual mean tropospheric NO2 column of a city (population size P)

at distance R. CP(R’) is the rescaled annual mean tropospheric NO2 column of a city (population

size P) at rescaled distance R’.

For each city of the dataset, we calculate the square of Pearson correlation coefficient

between CP(R’) and log10 P. We repeat calculating Pearson correlation coefficient between R = 0

and R = T, such that T is the maximum centrality of each city. We use a set of values of α and β to

calculate RMSC each time. α ∈ [0,1]. β ∈ [0,1]. We then compare all the RMSC values, and the α

and β values corresponding to the lowest RMSC value are the desired scaling factors. We use

Equation 5.7 to find the lowest value of RMSC,

RMSC =

√
∑30

i=1 ρ2(CP(R′), log10P)
30

(5.7)

where ρ2 means the square of Pearson correlation coefficient.

5.2.3 2-step linear regression

Inspired by Lemoy and Caruso (2021), we use 2-step linear regression as the second method

to find the population effect on the relationship between centrality and NO2 levels. In the first

step, we perform linear regression on each city, and in the second step, we regress all the cities

together.

The details of the 2-step linear regression are:

1. for each city we regress log10C on log10R, so we perform 378 linear regression (Equation

5.8) and we can derive 1 intercept (A) value, 1 slope (B) value, and 1 log10P value from

each fitted line,
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∀i, i ∈ [1,378] : log10C = Ai + Bi log10R+ ε (5.8)

where ε is error term.

2. we regress all intercepts (A) on log10P (Equation 5.9), and regress all slopes (B) on log10P

(Equation 5.10),

A = α0 + α1 log10P+ ε (5.9)

B = β0 + β1 log10P+ ε (5.10)

where α0, α1, β0, and β1 are coefficients.

We create 3 variations based on Equations 5.8 to 5.10.

1. We replace log10C with logarithmic annual mean tropospheric NO2 columns without

background effects (log10(C-Cmin)) to find out the effect of background NO2.

2. We calculate R from the centroid of the pixel with the highest annual mean NO2 column

as the starting point (if a city has multiple pixels with the same highest NO2 value, the

position of the highest value is the average value of the coordinates of these pixels) to find

out the effect of the location of the city center.

3. We replace log10R with R to find out the effect of logarithm.

To sum up, we perform 2-time linear regression by using Equations 5.11 to 5.18.

log10R calculated from the highest NO2 pixel:

log10C = α0 + α1 log10P+ (β0 + β1 log10P) log10R+ ε (5.11)

log10(C− Cmin) = α0 + α1 log10P+ (β0 + β1 log10P) log10R+ ε (5.12)

log10R calculated from the city center:

log10C = α0 + α1 log10P+ (β0 + β1 log10P) log10R+ ε (5.13)

log10(C− Cmin) = α0 + α1 log10P+ (β0 + β1 log10P) log10R+ ε (5.14)
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R calculated from the highest NO2 pixel:

log10C = α0 + α1 log10P+ (β0 + β1 log10P) R+ ε (5.15)

log10(C− Cmin) = α0 + α1 log10P+ (β0 + β1 log10P) R+ ε (5.16)

R calculated from the city center:

log10C = α0 + α1 log10P+ (β0 + β1 log10P) R+ ε (5.17)

log10(C− Cmin) = α0 + α1 log10P+ (β0 + β1 log10P) R+ ε (5.18)

5.3 Results and discussion

5.3.1 RMSC

By using Equation 5.7, we get the lowest RMSC value (i.e. 5.1106e-15) when α = 0.45 and β =

0.95. We then apply these values of α and β on Equations 5.5 and 5.6 for 30 regular FUAs (Figure

5.2(a)) and all the cities (Figure 5.2(c)). The rescaled results are Figures 5.2(b) and 5.2(d).
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(a) CP(R) and R, selected cities (b) CP(R’) and R’, selected cities

(c) CP(R) and R, all cities (d) CP(R’) and R’, all cities

Figure 5.2: Applying RMSC on selected or all cities, before (a, c) and after (b, d)

Figure 5.2(b) shows that RMSC is not suitable to find out the effect of population size on the

relationship between centrality and NO2 levels. This is because, although the relative position of

the lines in Figure 5.2(b) changes compared to Figure 5.2(a), if we compare Figure 5.2(b) with

the results of rescaled centrality and artificial land use share in Figure 1.4(b), we find that the

relative position of the lines in Figure 5.2(b) is still mainly determined by population size.

When we apply RMSC on all the cities, the results again show that RMSC is not a suitable

tool. First, the RMSC does not largely attenuate, or explain, the effect of population size. For

example, the purple lines representing large cities at the top of Figure 5.2(c) move to the bottom

in Figure 5.2(d), and the bright yellow lines representing small cities at the bottom in Figure

5.2(c) just move to the upper layer of the line group in Figure 5.2(d). Second, RMSC cannot

eliminate or weaken the influence of surrounding cities. For example, the rescaled NO2 levels in

Lecco increase evidently with rescaled centrality in Figure 5.2(d). Because Lecco is one of the

neighboring cities of Milan, so we use Figure 5.3 as an example to illustrate why the NO2 levels

of Lecco show an upward trend in Figure 5.2(d).
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(a) Climate classification (b) Wind speed

(c) Annual mean NO2 columns (d) Scatter plot of annual mean NO2 columns

Figure 5.3: Milan and surrounding FUAs (i.e. Bergamo, Brescia, Lecco, Lugano, Novara,
Pavia)

We use Milan and its surrounding FUAs (Figure 5.3) to illustrate why the use of RMSC is not

suitable to find the scaling exponents of centrality and NO2 columns. Lecco is a small city located

in the northeast of Milan (Figure 5.3(a)). Influenced by the Alps, the climate type in the north of

Lecco is different from that in the south (Figure 5.3(a)), and the wind speed is high in the north of

Lecco and low in the south (Figure 5.3(b)). The city center of Lecco is located in a place with low
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wind speed, but it is affected by the neighboring large city Milan, thus the NO2 concentration

on the south side of Lecco city is higher than that of the city center. From Figure 5.3(c) we can

see that the NO2 pollution levels of Milan have a great impact on the surrounding cities, so that

the city of Brescia, which is a little far from Milan, does not show that the concentration of NO2

decreases with centrality. That is why we see the NO2 levels increase with centrality in Lecco in

Figure 5.3(d).

Thus, we think RMSC is not suitable to find the effect of population size on centrality.

Different from artificial land use share used in SNR (Lemoy and Caruso 2018), the NO2 con-

centration is affected by many factors such as climate type, wind speed, and influence from

surrounding cities. Although similar to Lemoy and Caruso (ibid.), the relative position of the

lines representing cities of different sizes changes after using RMSC, suggesting that population

affects the relationship between centrality and NO2 to some extent, but we think in the future,

scaling factors considering climate type, terrain, and proximity should be added to improve the

performance of RMSC.

5.3.2 2-step linear regression

Tables 5.3 and 5.4 are the regression results of the 2-step linear regression.

Table 5.3: Regressions of A and B with log10P (log10R is used in the regression)

R calculated from the highest NO2 pixel R calculated from the city center
log10C log10(C-Cmin) log10C log10(C-Cmin)
(5.11) (5.12) (5.13) (5.14)

α0 -2.6456*** -8.6668*** α0 -2.7186*** -11.4110***
(0.1821) (0.6980) (0.1662) (0.6973)

α1 0.8343*** 2.0820*** α1 0.8330*** 2.4862***
(0.0325) (0.1246) (0.0297) (0.1244)

β0 0.7069*** 1.1166*** β0 0.7350*** 1.8556***
(0.0367) (0.1640) (0.0370) (0.1676)

β1 -0.1425*** -0.2936*** β1 -0.1442*** -0.4052***
(0.0065) (0.0293) (0.0066) (0.0299)

R2 (Equation 5.9) 0.6368 0.4263 R2 (Equation 5.9) 0.6772 0.5150

continued on the next page
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R2 (Equation 5.10) 0.5574 0.2113 R2 (Equation 5.10) 0.5589 0.3280

***ρ < 0.001 ** ρ < 0.01 * ρ < 0.05 +ρ < 0.1

Table 5.3 shows that the signs of the coefficients of α0, α1, β0, and β1 do not change from

Columns 5.11 to 5.14, and the coefficients all pass the test of significance at the level of 0.1%. α1

indicates the positive effect of log10P on log10C or log10(C-Cmin). Columns 5.11 and 5.13 show a

1% increase in log10P leads to 0.83% increase in log10C, and Columns 5.12 and 5.14 show a 1%

increase in log10P leads to around 2% increase in log10(C-Cmin).

β1 shows how log10P changes with slope (B) (Equation 5.10) and the values of β1 are

negative in Table 5.3. This means the value of B of a big city is low, and the value of B of a small

city is high. B shows how log10C or log10C-Cmin changes with log10R (Equation 5.8), and in most

cases B is negative (i.e. NO2 levels decrease with centrality). This means for example, if the value

of B of a big city is -2, then the value of B of a small city can be -1, which means that the NO2

levels decrease faster with centrality in large cities. This can be explained by the siphon effect of

large cities. The centripetal road networks agglomerate commercial activities, bring resources

and population far away to the city center of big cities (Wang et al. 2018), generate high NO2

emission at the city center, and result in a greater decline in NO2 levels within the city.

We also compare the data in Column 5.13 with the data in Column 4.13 of Chapter 4. The

coefficient of log10P in Column 5.13 is 0.8330, while the coefficient of log10P in Column 4.13 is

0.2161. We also collect all the values of B when calculating Column 5.13, and we find the mean of

all the values of B is -0.0707. As a comparison, the coefficient of log10R in Column 4.13 is -0.1823.

This means Columns 5.13 and 4.13 derive similar scaling exponents of P and R.

Table 5.4: Regressions of A and B with log10P (R is used in the regression)

R calculated from the highest NO2 pixel R calculated from the city center
log10C log10(C-Cmin) log10C log10(C-Cmin)
(5.15) (5.16) (5.17) (5.18)

α0 0.1682 -3.3670*** α0 0.1490 -3.8588
(0.1062) (0.2126) (0.1015) (0.2010)

α1 0.2714*** 0.7968*** α1 0.2728*** 0.8710***
(0.0190) (0.0379) (0.0181) (0.0359)

continued on the next page
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β0 7.4235e-6*** -7.1207e-5*** β0 1.2152e-5*** 3.1579e-6
(1.3085e-6) (1.2794e-5) (1.4093e-6) (1.1461e-5)

β1 -1.7972e-6*** 9.1697e-6*** β1 -2.5368e-6*** -3.1508e-6
(2.3349e-7) 2.2830e-6) (2.5148e-7) (2.0451e-6)

R2 (Equation 5.9) 0.3530 0.5398 R2 (Equation 5.9) 0.3763 0.6106
R2 (Equation 5.10) 0.1361 0.0411 R2 (Equation 5.10) 0.2130 0.006

***ρ < 0.001 ** ρ < 0.01 * ρ < 0.05 +ρ < 0.1

Table 5.4 shows compared with log10R, R is not a suitable independent variable in finding

how city size affects centrality. In Table 5.4, the signs of the coefficients of α0, α1, β0, and β1

are not consistent from Columns 5.15 to 5.18, and only part of the coefficients pass the test of

significance at the level of 0.1%. In each column, the coefficient of α1 is lower than the coefficient

of α1 in Table 5.3, and the coefficient of β1 is much lower than the coefficient of β1 in Table 5.3,

which means that using R as an independent variable does not reflect the effects of log10P and

log10R on log10C or log10(C-Cmin) well.

We also compare the data in Column 5.17 with the data in Column 4.13 of Chapter 4. The

coefficient of log10P in Column 5.17 is 0.2728, while the coefficient of log10P in Column 4.13 is

0.2161. We also collect all the values of B when calculating Column 5.17, and we find the mean

of all the values of B is -2.0196e-06. As a comparison, the coefficient of log10R in Column 4.13 is

-0.1823. This means Columns 5.13 and 4.13 only derive similar scaling exponent of P.

We then calculate predicted C (Ĉ) by Columns 5.13 and 5.17 and compare those values with

the values of Ĉ in Table 4.7 of Chapter 4. We list the results in Tables 5.5 and 5.6.
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Table 5.5: Ĉ by Column 5.13 and relative changes at different R

Ĉ (μmol/m2)
and its relative change comparing to the left column

and over-(+)/under-(-)estimated volume of Ĉ compared to Ĉ in Table 4.7
R (km) 0.1 0.5 1 5 10

P = 1e5 29.8126 32.6493 30.7893 31.4909 31.7980
(% decrease) (n/a) (-9.5152%) (5.6969%) (-2.2788%) (-0.9751%)
(+/-) -52.6582 -28.8511 -23.4108 -8.9274 -3.8225

P = 1e6 104.4720 84.7216 77.4105 62.7761 57.3588
(% decrease) (n/a) (66.2486%) (22.3927%) (47.5310%) (17.2026%)
(+/-) -31.1718 -16.4312 -11.7351 -3.7019 -1.2280

P = 1e7 366.1002 235.3979 194.6256 125.1419 103.4666
(% decrease) (n/a) (76.8584%) (67.115%) (67.7452%) (54.1650%)
(+/-) +143.0000 +69.0268 +48.0033 +15.8022 +7.1059

Table 5.5 shows Ĉ declines faster in large cities than in small ones. Different from the data

in Table 4.7, the values of "% decrease" in Table 5.5 are all different. Compared with Table 4.7,

Table 5.5 tends to underestimate the NO2 pollution levels of small cities and overestimate the

NO2 levels of large cities, and the overestimation or underestimation is very obvious within 1

km from the city center. When the centrality is 10 km, the difference between the estimates of

Tables 4.7 and 5.5 is within 10 mol/m2.
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Table 5.6: Ĉ by Column 5.17 and relative changes at different R

Ĉ (μmol/m2)
and its relative change comparing to the left column

and over-(+)/under-(-)estimated volume of Ĉ compared to Ĉ in Table 4.7
R (km) 0.1 0.5 1 5 10

P = 1e5 32.5797 32.5637 32.5438 32.3847 32.1870
(% decrease) (n/a) (0.0490%) (0.0612%) (0.4888%) (0.6106%)
(+/-) -49.8911 -28.9367 -21.6563 -8.0336 -3.4335

P = 1e6 61.0229 60.8507 60.6361 58.9462 56.9000
(% decrease) (n/a) (0.5287%) (0.6591%) (5.1926%) (6.3186%)
(+/-) -74.6209 -40.3021 -28.5095 -7.5318 -1.6868

P = 1e7 114.2982 113.7096 112.9781 107.2932 100.5875
(% decrease) (n/a) (46.7615%) (46.6746%) (47.8251%) (46.9678%)
(+/-) -108.802 -52.6615 -33.6442 -2.0465 +4.2268

Table 5.6 shows Ĉ declines much faster in large cities than in small ones. Similar to the

data in Table 5.5, the values of "% decrease" in Table 5.6 are all different. Compared with Table

4.7, Table 5.6 tends to underestimate most NO2 pollution levels except for areas 10 km from the

center of large cities. When the centrality is 5 km or 10 km, the difference between the estimates

of Tables 4.7 and Column 5.6 is within 10 mol/m2.

In order to find out the effect of background NO2, we calculate the difference of A and

the difference of B when calculating R in 2 ways. Tables 5.4 and 5.5 show the differences using

scatter plots.
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(a) Difference of A (Column 5.11 - Column 5.13) (b) Difference of B (Column 5.11 - Column 5.13)

(c) Difference of A (Column 5.12 - Column 5.14) (d) Difference of B (Column 5.12 - Column 5.14)

Figure 5.4: Differences of A or B of Table 5.3

Figures 5.4(a) and 5.4(b) show the majority of data points fluctuate around the line of Y =

0. The outliers in Figures 5.4(a) and 5.4(b) show no evident relationship with log10P. The offset

between the city center and the location of the highest NO2 is independent of city size. This

means that the location of city center chosen when calculating centrality does not affect the

impact of city size on centrality. Lemoy and Caruso (2018) proposed similar views.

In Figures 5.4(c) and 5.4(d), the groups of points near the line of Y = 0 are less concentrated

than the ones in Figures 5.4(a) and 5.4(b). The outliers of small cities tend to drift further than the

ones of larger cities. It shows the NO2 levels in small cities are more susceptible to background

NO2 than the NO2 levels in large cities. This means large cities create conditions for high NO2

levels, such as anthropogenic activities (Section 1.1.3) and the interaction between UHI and NO2

(Section 1.1.4) in built environment.
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(a) Difference of A (Column 5.15 - Column 5.17) (b) Difference of B (Column 5.15 - Column 5.17)

(c) Difference of A (Column 5.16 - Column 5.18) (d) Difference of B (Column 5.16 - Column 5.18)

Figure 5.5: Differences of A or B of Table 5.4

Figure 5.5 shows that R is not suitable to be used as an independent variable in finding the

population size effect on centrality. This is because the points in Figure 5.5 show heteroscedastic-

ity (i.e. the standard deviations of Y values increase with log10P).

5.4 Limitations

The methods used in this chapter have some drawbacks. First, RMSC cannot describe the impact

of population size on centrality, partly because the spatial distribution of NO2 is much more

complex than the distribution of artificial land use studied by Lemoy and Caruso (2018). We

hope that future studies can improve RMSC by adding scaling factors related to wind speed and

neighborhood analysis etc. Second, due to limited time, unlike Lemoy and Caruso (2021), our

2-step linear regression does not consider the use of nonlinear regression to explore the effect of

population size on centrality. We think that the use of non-linear regression can improve, for

example, the overestimation or underestimation in Tables 5.5 and 5.6 to some extent as Lemoy

and Caruso (ibid.) proposed similar views.
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5.5 Suggestions for urban planners

Our results of RMSC find that the relationship between NO2 concentration and centrality cannot

be explained solely by population size. Factors such as neighboring large cities and wind speed

influence the NO2 levels inside the city, and in some cases, the intra-urban NO2 levels of the city

are even almost irrelevant to centrality if the NO2 pollution levels of the neighboring city are

high enough (e.g. Brescia). Therefore, while NO2 is generally considered to be a local pollutant

(Colvile et al. 2001), however, if urban planners want to reduce the NO2 levels in one city, then

the NO2 levels in neighboring large cities must also be controlled.

Our results of 2-step linear regression suggest that large cities are less affected by back-

ground NO2 than smaller cities, because large cities have conditions to generate extremely high

NO2 levels (e.g. large populations, built environment). Therefore, urban planners should use

some measures to improve the built environment of city centers and prevent excessive NO2

pollution levels. Because the NO2 levels in large cities decrease faster with centrality than in

small cities, therefore, urban planners can develop Bus Rapid Transit (BRT) or subways that

connect the city center to the outskirts of the city in order to reduce citizens’ NO2 exposure.

5.6 Code availability

Code link for calculating minimum NO2 column of each FUA of 378 FUAs:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

CaculateminFUA_for1kmResolutionRaster_ALLCITIES.py.

Code link for Equation 5.7:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/blob/main/

rmsceqa.py.

Code links for Table 5.3:

1st column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C41_AlgP.py,

1st column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C41_BlgP.py,

2nd column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C42_AlgP.py,

2nd column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C42_BlgP.py,

3rd column (Equation 5.9, α0, α1) - github.com/WeiYufei/
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PHD_Thesis_University_of_Luxembourg/blob/main/C43_AlgP.py,

3rd column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C43_BlgP.py,

4th column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C44_AlgP.py,

4th column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C44_BlgP.py.

Code links for Table 5.4:

1st column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C41_AlgPR.py,

1st column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C41_BlgPR.py,

2nd column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C42_AlgPR.py,

2nd column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C42_BlgPR.py,

3rd column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C43_AlgPR.py,

3rd column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C43_BlgPR.py,

4th column (Equation 5.9, α0, α1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C44_AlgPR.py,

4th column (Equation 5.10, β0, β1) - github.com/WeiYufei/

PHD_Thesis_University_of_Luxembourg/blob/main/C44_BlgPR.py.

Code links for Table 5.5:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/attenNO_logR.py,

Code links for Table 5.6:

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/attenNO_logRR.py,

Code link for Figure 5.2(a):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/rmscSelectedcitiesUSC.py.
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Code link for Figure 5.2(b):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/rmscSelectedcities.py.

Code link for Figure 5.2(c):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/rmscAllcitiesUSC.py.

Code link for Figure 5.2(d):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/rmscAllcities.py.

Code link for Figure 5.4(a):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/interceptDif.py.

Code link for Figure 5.4(b):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/slopeDif.py.

Code link for Figure 5.4(c):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/interceptDif_extractedNO2.py.

Code link for Figure 5.4(d):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/slopeDif_extractedNO2.py.

Code link for Figure 5.5(a):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/interceptDifR.py.

Code link for Figure 5.5(b):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/SlopeDifR.py.

Code link for Figure 5.5(c):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/interceptDif_extractedNO2R.py.



About the scaling of individual NO2 profile 128

Code link for Figure 5.5(d):

github.com/WeiYufei/PHD_Thesis_University_of_Luxembourg/

blob/main/slopeDif_extractedNO2R.py.
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6 Conclusions

Today, over half of the world’s population lives in urban areas (UN 2013). The number of people

in a city determines the amount of infrastructure and public transportation used, while the

distribution of the population within the city determines how infrastructure and transportation

are allocated in the city. At the same time, we also note that anthropogenic activities in cities,

including the use of private cars, can lead to a series of environmental problems. For example, the

construction of city infrastructure and housing requires the conversion of soil into impermeable

surfaces, which can absorb a large amount of solar radiation and heat during the day and release

them at night (John et al. 2013; Ndiaye et al. 2018), forming UHI that causes temperatures in

urban areas to be much higher than in surrounding rural areas (U.S. EPA 2023). Private cars

driven by fossil fuels emit large amounts of toxic gases, with NO2 being the most prominent

toxic exhaust gas (Seddiek and Elgohary 2014). UHI threatens citizen’s health (Havenith 2005;

Robine et al. 2008; UNEP 2004), while NO2 damages residents’ respiratory and cardiovascular

systems (Andersen et al. 2012; Gauderman et al. 2005; Kelly and Fussell 2011; Schindler et al.

1998). UHI and NO2 can interact with each other and exacerbate each other’s destructive effect

(Clark 2020; Constantin et al. 2015). Therefore, this thesis includes a meta-analysis on UHI and

NO2. However, due to time constraints and the similarity of causes and mitigation strategies for

UHI and NO2 (Section 1.1.4), this thesis chooses NO2 as the sole urban environmental problem

in empirical analysis.

Due to the complex relationship between a city’s economic level and environmental prob-

lems, some recent studies attempted to compare cities to living organisms and used power laws

based on the allometric theory to describe the relationship between population size and socioeco-

nomic features or environmental problems (Batty 2013; Ramaswami et al. 2018). Power laws can

answer questions such as whether the development of a city increases or decreases its emissions

or not (Louf and Barthelemy 2014b). We find some articles that used power laws to describe

how the effect of population size affects UHI or NO2 levels, but these articles used different

measurement methods and indicators when measuring UHI or NO2 (Section 1.3). Therefore, we

perform a qualitative synthesis and a meta-analysis to summarize the effect of population on

UHI or NO2 levels in published works (Chapter 2).
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In Chapter 2, we conduct a qualitative synthesis and a meta-analysis based on the PRISMA

guideline. PRISMA has four steps. In general, first, we identify the resources that make up

the corpus using a series of keywords and remove duplicate records from Scopus and Google

Scholar. Then, in the second and third steps, we filter the titles and full-text contents of the

articles to ensure that either the data related to UHI intensity (i.e. ΔT) or NO2 concentrations

and population size are included in the articles, or the relationship between UHI intensity or

NO2 concentrations and population size are clearly stated. Finally, in the fourth step, we conduct

qualitative synthesis and meta-analysis of these papers. It is worth noting that although we

initially find 287 and 192 non-duplicate UHI and NO2 records at the initial stage of PRISMA,

only 13 UHI and 9 NO2 articles are suitable for qualitative and quantitative analyses after the

third step. Meanwhile, we add 6 articles to the corpus that describe the relationship between

NO2 concentrations and population size under the IPAT framework, as the keywords we use in

PRISMA cannot find relevant literature under the IPAT framework. We carry out the qualitative

synthesis by reading the full-text contents of the articles in the corpus. We perform meta-analysis

using ANOVA test and linear regression. We add dummy variables representing different articles

to the linear regression.

The qualitative synthesis of UHI shows car traverse was a popular way to measure ΔT until

the early 21st century but now climate models, monitoring stations and remote sensing are the

main ways to gain ΔT. Remote sensing measures land surface ΔT while other ways retrieve aerial

ΔT. 8 papers show ΔT is positively correlated with P, but whether ΔT is significantly correlated

with D remains inconclusive due to the conflicting conclusions. The 2 studies quantifying mean

aerial ΔT by car traverse show the coefficients of log10P are 1.93 and 1.33. The studies quantifying

max aerial ΔT by car traverse reveal the coefficients of log10P range from 1.42 to 2.96. The studies

quantifying max land surface ΔT by remote sensing reveal the coefficients of log10P range from

2.38 to 3.53. Studies using climate models and monitoring stations both illustrate the positive

relationship between aerial ΔT and P but neither give quantitative equations.

The qualitative synthesis of NO2 shows only 2 studies using handy samplers measure NO2

in barely 4 cities. The only study using data from emission inventory covers NO2 pollution across

8,032 cities around the world but ignores cities with less than 50,000 residents. It is difficult to

find a consolidated NO2 metric in evaluating the effect of city size on NO2 across cities because

different forms of equations and metrics are found among the studies. 4 out of 15 papers do

not give corresponding conclusions as they target for other aims. 7 out of 8 articles providing

liner regression say non-log/log10/ln NO2 is positively correlated with log10P/lnP, but they use

different metrics or form of relationship. Only 3 articles point to a relationship between NO2 and

D, but the conclusions are inconsistent.
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We then group studies having the same combination of environmental and population

variables and carry out ANOVA test for each group. The ANOVA test shows the regression of

max ΔT with log10P, log10(max ΔT) with log10P, and log10(mean NO2) with log10P pass the test

of significance at the level of 0.1%. Thus these 3 kinds of relationships are used in the linear

regression. The results of linear regression show log10-log10(max ΔT) is better than log10-max

ΔT relationship in showing the population effect on UHI. log10P can explain 75% of log10(max

ΔT) and in this case the coefficient of log10P is 0.1489. We find that even small cities of 10,000

inhabitants are likely to have a 4.5◦C difference to their surroundings, and this difference can

increase to 12◦C for a city having 10 million residents. For the meta-analysis of NO2, around

half of the data points are above the WHO annual mean limit in 2000 (i.e. 40 μg/m3), and all

the points are above the WHO annual mean limit in 2021 (i.e. 10 μg/m3). Our results suggest

that people should change their dependence on fossil fuels in transportation, as so far no city

has an annual mean NO2 surface concentration that meets the 2021 annual mean limit of WHO

(WHO 2021). We find that log10P can explain nearly 90% of log10(mean NO2) and in this case the

coefficient of log10P is 0.1587. In Chapter 4, we test rationality of the coefficient of log10P derived

from the meta-analysis using empirical data of annual mean NO2 surface concentrations and

annual mean NO2 columns. The coefficient of log10P is 0.1911 when using monitoring station

data, and the coefficient of log10P is 0.1354 when using satellite data. Our meta-analysis and

empirical analysis results confirm Hypothesis 1 (Section 1.4), that the relationship between

UHI or NO2 and population size follows a power law, and larger cities have higher levels of

UHI or NO2.

In urban economics, Alonso (1964) proposed the bid-rent curve, which suggests that pop-

ulation density and land prices decrease with centrality. Schindler et al. (2017) pointed out

that residents relocate to areas farther away from the city center to reduce the exposure of

traffic-related pollution. The canyon effect in the city center exacerbates air pollution and UHI

(Karimimoshaver et al. 2021), and theoretical models suggest that improving the built environ-

ment in the city center can significantly improve air quality (Schindler and Caruso 2014). The

single-city studies we find show that the NO2 pollution level in the city center is significantly

higher than that in the surrounding areas (Kirby et al. 1998; Nicholas Hewitt 1991; Vintar Mally

and Ogrin 2015). The multi-city studies we find either focus on qualitative descriptions without

quantitative analysis (Wang et al. 2020c), or do not consider population size (Borck and Schrauth

2021). Therefore, in Chapter 4, we use empirical data from monitoring stations and satellites to

describe the impacts of population size and centrality on NO2 levels, and compare the relative

importance of population size and centrality. Specifically, we regress log10G or log10C on log10R

and log10P respectively and together. We include dummy variables showing the backgrounds
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of NO2 monitoring stations when regressing land surface NO2. We consider log10Cmin when

regressing tropospheric NO2.

The results of Chapter 4 show that log10P is always positively correlated with log10G

or log10C, while log10R is always negatively correlated with log10G or log10C. Our empirical

analysis results confirm Hypothesis 2 (Section 1.4), that the NO2 emissions within cities are

negatively correlated with centrality. log10P is always relatively more important than log10R.

When dummy variables or log10Cmin appears in linear regression, then dummy variables or

log10Cmin is the most important factor in deciding the NO2 levels. We compare measured

NO2 columns with predicted NO2 columns obtained through linear regression using 3 sets of

population data, each set consisting of 38 cities, and find that the predicted values are fairly close

to the measured values. However, the predicted values tend to underestimate the NO2 levels

in the city center of large cities (e.g. Paris) and overestimate the NO2 levels in the city center of

small cities (e.g. Nuremberg). We think that this may be related to the built environment in city

centers and the effect of population size.

Therefore, in Chapter 5, we use annual mean NO2 columns to investigate the impact of

population size on centrality. Due to the characteristic of decreasing NO2 levels with centrality

within cities, we use a radial analysis in this chapter, which involves analyzing geographic

phenomena within concentric circles starting from a point or area. We find some studies using

radial analysis to study land use or UHI, however, they either use urban core area as the start

(Irwin and Bockstael 2007; Schneider and Woodcock 2008; Zhou et al. 2015), or aggregate land

use data within the circles (Seto and Fragkias 2005), or use complicated functions (Jiao 2015).

Because NO2 is a local air pollutant (Colvile et al. 2001), thus the radial analysis we use is

similar to the one used by Lemoy and Caruso (2018). Lemoy and Caruso (ibid.) calculated R

from the location of city center (rather than the area of urban core), and continuously described

how NO2 levels change along with centrality. Lemoy and Caruso (ibid.) used 0.5 as the scaling

exponent and built scaling factors for centrality and artificial land use share based on the scaling

exponent, population size, and the maximum population size. Lemoy and Caruso (ibid.) found

that the artificial land use share is largely related to centrality, and population size has a very

small impact on artificial land use share, thus proving the homotheticity of spatial distribution

of artificial land use share. Lemoy and Caruso (ibid.) used a method called SNR, to test the

rationality of using 0.5 as the scaling exponent. Therefore, we use RMSC, which is similar to

SNR, to find the scaling exponents for centrality and NO2 levels to test whether the relationship

between NO2 levels and centrality conforms to homotheticity (i.e. population size has a very

small impact). We find the scaling exponent of centrality is 0.45, and the scaling exponent of

NO2 levels is 0.95. However, RMSC does not reveal the homotheticity of spatial distribution

of NO2 levels within cities, as NO2 concentrations are affected by factors such as wind speed,



Conclusions 133

climate, and the NO2 levels from neighboring large cities. For a small city near a large city, the

feature of decreasing NO2 levels along centrality may not be shown.

Lemoy and Caruso (2021) proposed another way to find scaling exponent by using a 2-step

linear regression. Lemoy and Caruso (ibid.) regressed artificial land use share on centrality to get

the value of characteristic distance, and then regressed characteristic distance on population size.

Lemoy and Caruso (ibid.) used both linear regression and nonlinear regression to perform 2-step

regression separately, and in both cases the scaling exponent of population size is close to 0.5.

Inspired by Lemoy and Caruso (ibid.) we also try a 2-step linear regression to find the coefficients

showing the impact of population size on centrality. In the first step, for each city we regress

log10C on log10R and get the values of slope and intercept of the regression. In the second step,

we regress the slope values of all the cities on log10P, and regress the intercept values of all the

cities on log10P. We also consider 1) NO2 levels without background effect; 2) calculate R from

the pixel having the highest NO2 value; 3) replace log10R with R. Our results indicate that: 1)

The NO2 pollution levels in small cities are more affected by background NO2 than in large cities.

2) NO2 levels decrease faster along centrality in large cities than in small cities. 3) Changing the

starting point of calculating centrality does not alter the decreasing trend of NO2 levels along

centrality. 4) The coefficients of log10P we derived (i.e. 0.8330 and 0.2728) are close to that of

log10P in Chapter 4 (i.e. 0.2161). Our results thus answer the question in Section 1.4, that the

variation of NO2 with centrality is influenced by population size, and NO2 levels decrease

faster along centrality in large cities than in small cities.

To sum up, we show that both NO2 surface concentrations and tropospheric NO2 columns

are reliable and useful tools for exploring urban NO2 levels. Monitoring stations are close to

the emission sources, therefore they are suitable for describing changes in NO2 concentrations

over short distances, while NO2 columns are suitable for describing the extent of NO2 in the

whole city. Larger cities have higher UHI and NO2 levels. We have not found the turning point

of environmental Kuznets curve of NO2 and UHI, which means urban planners cannot only

count on economic or population growth to gain reduced NO2 levels and heat waves. However,

different cities have different climate types, different average wind speeds, different proximity to

the nearest large city, thus population size is not the only factor that can decide the NO2 levels

inside the city. So if urban planners want to reduce the NO2 levels in one city, then climate factors

should be considered and the NO2 levels in neighboring large cities must be controlled. Large

cities have conditions to generate extremely high NO2 levels, and the NO2 levels in large cities

decrease faster with centrality than in small cities. Therefore, urban planners can develop BRT or

subways that connect the city center to the outskirts of the city in order to reduce citizens’ NO2

exposure.
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6.1 Limitations and future works

However, this thesis has some limitations and many future works can be carried out based on

the content of this thesis.

We performed the the qualitative synthesis and meta-analysis in 2019 but I started to write

this thesis in 2022. Therefore, papers showing the relationship between UHI or NO2 with urban

population published during the past 3 years are not included. Given that only 13 UHI and 15

NO2 studies are included in the qualitative synthesis and meta-analysis in Chapter 2, and only

the data from 4 UHI and 5 NO2 papers show statistical significance in ANOVA test, inclusion of

newly published articles would enable researchers to more accurately assess the UHI and NO2

pollution incurred by urban population. Furthermore, in Chapter 2, we use Google Scholar and

Scopus as the data sources to construct a corpus based on the PRISMA guideline. However, in

the future, we can explore searching in more databases such as Web of Science and Microsoft

Bing. Scopus was launched in 2004 (Elsevier 2019), while Web of Science was launched in 1900

(Winter et al. 2014), so we may find more historical literature in Web of Science. The Journal

Citation Reports (JCR) provided by Web of Science (Clarivate 2023) contains an evaluation of the

impact of journals. So in the future, the literature can be screened according to the evaluation of

the journals recommended by JCR, which can improve the accuracy and credibility of the results

of qualitative synthesis and meta-analysis. The reason why we suggest to use Microsoft Bing

is that different search engines have different search algorithms (Shahzad et al. 2018), so using

Bing may help to discover literature that we cannot find when using Google Scholar. Another

limitation of Chapter 2 is that, the articles in qualitative synthesis and meta-analysis study UHI

and NO2 in Asia, Europe, North America, and Oceania, but other regions of the world such as

Africa, Latin America, and the Caribbean are not included in the investigation. Therefore, in

the future, we can include studies on more countries and regions by changing the keywords or

optimizing the data sources when searching.

Another drawback in Chapter 2 is that we use different articles as dummy variables because

we do not have specific coordinates for the study area in each article. Therefore, we cannot use

geographical conditions or climate types of study areas as dummy variables.

In our empirical studies of Chapters 4 and 5, we only focus on NO2 and do not consider

UHI. Although we explain in Section 1.1.4 of this thesis that it is reasonable for us to study NO2,

UHI and NO2 are different types of pollution (i.e. the former is a temperature difference, and the

latter is toxic gas). Therefore, empirical studies on the effects of population and centrality on

UHI intensity, whether UHI intensity is related to centrality, and how population size affects the

relationship between centrality and UHI intensity would provide intuitive support for urban

planners in planning urban green spaces and optimizing roof materials. Or, we can regress UHI
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intensity on the areas of green spaces and water to find out the effects of green spaces and water

bodies on UHI intensity. We can also investigate whether increasing the areas of green spaces

and water bodies alone can lead to a continuous decrease in UHI intensity, and whether the rate

of decrease is gradually increasing or decreasing.

For the empirical study of NO2, although we have explained in Section 1.2.6 why we do

not consider population density and built-up areas in this thesis, we can carry out empirical

studies on the effect of population density on NO2 levels and the effect of built-up area on NO2

levels in the future. Considering that we found in Section 1.2.6 that different definitions of

population density and built-up areas can affect conclusions, our future empirical studies should

be conducted from two spatial scales: the entire city and local neighborhoods.

In our empirical studies of Chapters 4 and 5, we use FUAs as the definition of cities. FUAs

are defined by the employment and commuting patterns of residents (Simeonova 2019). However,

this definition has drawbacks. For example, as we discussed in Section 3.2.8, FUA may ignore 3

possible factories around Kiel (Figure 3.20(b)), leading to an underestimation of the NO2 levels

of this FUA. Therefore, in the future, we suggest to design a unified definition of cities when

exploring the relationship between environmental problems and population. This definition

should not only consider the employment and commuting patterns of residents, but also take

into account the emission sources of pollutants and their proximity to the city center. Then we

can use this newly designed definition of cities for studying the relationship between NO2 and

population in countries outside Europe.

The independent variables we use in Chapters 4 and 5 also need improvement. We use

population, centrality and background NO2 as the independent variables and the background of

monitoring station as the dummy variable. However, these variables are not sufficient to explain

the spatial distribution of NO2 inside some cities (e.g. Lecco in Figure 5.2(d)). Therefore, in

the future, we can add the following variables: distance to the coast, wind speed and direction,

distance to nearby large cities, and distance to transportation hubs (e.g. airports (Zhang et al.

2021b)).

We include logarithmic variables in this thesis, but because of the undefined log(0), so the

monitoring stations situated close to the city center and the NO2 columns overlapped with the

city center should be examined separately to find out the NO2 concentrations at the exact point

of the city center, which shows that there are some difficulties in using power laws to predict

real-world air pollution.

Due to limited time, we don’t include nonlinear regression in our 2-step linear regression

analysis in Chapter 5. According to Lemoy and Caruso (2021), the results derived by nonlinear

regression may be more satisfactory because of their lower values of SEs and higher values of R2.

Also because of limited time, in this thesis we don’t consider predicted surface concentration
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values from satellite columns. Predicted NO2 surface concentrations come from climate models

such as GEOS-Chem and EAC4. In climate models, tropospheric NO2 columns are converted to

NO2 surface concentrations by considering anthropogenic emissions, biomass burning emissions,

and assimilated trace gases retrievals, etc (Johnson et al. 2016). There are some advantages

in using predicted NO2 surface concentrations from satellites. First, for instance, the spatial

resolution of GEOS-Chem can reach to 12.5 km x 12.5 km, which is higher than most NO2

satellites except Sentinel-5P (Hu et al. 2018). Second, climate models provide comprehensive

chemistry of atmosphere through a combination of model systems, users can customize the

choice of the models, and can customize and predict the influence of weather on ground surface

NO2 for specific scenarios (Inness et al. 2019). The predicted NO2 is positively correlated with

measured NO2 surface concentration, and the coefficient of determination can reach to 86% in

analyzing spring and winter data (Lamsal et al. 2008). Therefore in the future, we can perform

linear regression and time-series studies for predicted NO2 surface concentrations, for example,

in different seasons. Seasonal analysis can overcome the limitation of using annual mean NO2

levels because the annual mean value ignores the impact of seasonal differences in anthropogenic

activities on NO2 levels (e.g. cooling and heating).
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Appendices

A Literature identification in Scopus and

Google Scholar

A.1 Search term for finding UHI studies in Scopus

TITLE ( ( "city size" OR "urban size" OR "population size" OR "population density" ) AND (

urban OR city ) AND ( "urban heat island" OR UHI) ) OR ABS ( ( "city size" OR "urban size" OR

"population size" OR "population density" ) AND ( urban OR city ) AND ( "urban heat island"

OR UHI) ) OR KEY ( ( "city size" OR "urban size" OR "population size" OR "population density" )

AND ( urban OR city ) AND ( "urban heat island" OR UHI) ) AND ( LIMIT-TO ( SRCTYPE , "j" ) )

AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) )

A.2 Search term for finding UHI studies in Google Scholar

(city size OR urban size OR population size OR population density) AND (urban OR city) AND

(urban heat island OR UHI)

A.3 Search term for finding NO2 studies in Scopus

TITLE ( ( "city size" OR "urban size" OR "population size" OR "population density" ) AND ( urban

OR city ) AND ( "nitrogen dioxide" OR no2 OR nox) ) OR ABS ( ( "city size" OR "urban size" OR

"population size" OR "population density" ) AND ( urban OR city ) AND ( "nitrogen dioxide"

OR no2 OR nox) ) OR KEY ( ( "city size" OR "urban size" OR "population size" OR "population

density" ) AND ( urban OR city ) AND ( "nitrogen dioxide" OR no2 OR nox) ) AND ( LIMIT-TO

( SRCTYPE , "j" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( LANGUAGE ,

"English" ) )
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A.4 Search term for finding NO2 studies in Google Scholar

(city size OR urban size OR population size OR population density) AND (urban OR city) AND

(nitrogen dioxide OR no2 OR nox)

B Excluded records in screening 1
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D Data for ANOVA and linear regression

D.1 Data for max ΔT with log10P and log10(max ΔT) with log10P

Table D.1: Data for max ΔT with log10P and log10(max ΔT) with log10P

Study City Country P max ΔT (°C)

continued on the next page
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Oke (1973) Montreal Canada 2000000 12
Oke (ibid.) St. Hyacinthe Canada 23600 6.6
Oke (ibid.) St. Hubert Canada 18200 6.3
Oke (ibid.) Chambly Canada 12000 5.1
Oke (ibid.) Marieville Canada 4250 5.2
Oke (ibid.) Saint-Basile-le-Grand Canada 4000 3.7
Oke (ibid.) St. Cesaire Canada 2400 4.3
Oke (ibid.) St.Pie Canada 1550 3.3
Oke (ibid.) Ste. Angele-de-Monnoir Canada 1150 2.7
Oke (ibid.) Ste. Madeleine Canada 1100 1.8
Oke (ibid.) Vancouver Canada 1000000 10.2
Oke (ibid.) San Francisco USA 784000 11.1
Oke (ibid.) Winnipeg Canada 534000 11.6
Oke (ibid.) Edmonton Canada 401000 11.5
Oke (ibid.) Hamilton Canada 300000 9.5
Oke (ibid.) San Jose USA 101000 7.7
Oke (ibid.) Palo Alto USA 33000 6.9
Oke (ibid.) Corvallis USA 21000 6.1
Oke (ibid.) London UK 8500000 10
Oke (ibid.) Berlin Germany 4200000 10
Oke (ibid.) Vienna Austria 1870000 8
Oke (ibid.) Munich Germany 822000 7
Oke (ibid.) Sheffield UK 500000 8
Oke (ibid.) Utrecht Netherlands 278000 6
Oke (ibid.) Malmo Sweden 275000 7.4
Oke (ibid.) Karlsruhe Germany 160000 7
Oke (ibid.) Reading UK 120000 4.4
Oke (ibid.) Uppsala Sweden 63000 6.5
Oke (ibid.) Lund Sweden 50000 5.8
Oke and Maxwell (1975) Vancouver Canada 1100000 11.6
Torok et al. (2001) Camperdown Australia 3315 2.7

continued on the next page
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Torok et al. (2001) Cobden Australia 1477 2.6
Torok et al. (ibid.) Colac Australia 9171 2.8
Torok et al. (ibid.) Hamilton Australia 9753 5.4
Torok et al. (ibid.) Melbourne (1993) Australia 3022157 7.1
Torok et al. (ibid.) Melbourne (1972) Australia 2500000 6.8
Torok et al. (ibid.) Hobart Australia 130000 5.7
Torok et al. (ibid.) Adelaide Australia 870000 4.4
Sakakibara and Matsui (2005) Nagano (2001) Japan 364000 8
Sakakibara and Matsui (ibid.) Nagano (1983) Japan 325000 3
Sakakibara and Matsui (ibid.) Obuse (2001) Japan 11800 4.8
Sakakibara and Matsui (ibid.) Obuse (1996) Japan 11800 5.4
Sakakibara and Matsui (ibid.) Suzaka Japan 54100 5.7
Sakakibara and Matsui (ibid.) Toyono Japan 10200 4.4
Sakakibara and Matsui (ibid.) Wakahowatauchi Japan 6100 2.5
Sakakibara and Matsui (ibid.) Wakahokawada Japan 3500 2.1
Sakakibara and Matsui (ibid.) Asahikawa Japan 362000 9
Sakakibara and Matsui (ibid.) Koshigaya Japan 292000 5.5
Sakakibara and Matsui (ibid.) Matsumoto Japan 208000 6.1
Sakakibara and Matsui (ibid.) Nozawa & Nakagome Japan 23300 3.8
Sakakibara and Matsui (ibid.) Iwamurada Japan 13000 5
Sakakibara and Matsui (ibid.) Hakuba Japan 9600 4.1
Sakakibara and Matsui (ibid.) Asashina Japan 3500 2.7
Sakakibara and Matsui (ibid.) Akaiwa &Tokida Japan 2200 2.6
Sakakibara and Matsui (ibid.) Tomono Japan 1200 1.7
Sakakibara and Matsui (ibid.) Koundai Japan 800 3.2

D.2 Data for log10(mean NO2) with log10P

Table D.2: Data for log10(mean NO2) with log10P

Study City Country P
mean NO2
(μg/m3)

Nguyen and Kim (2006) urban bg. Seoul Korea 9895217 65.31
Nguyen and Kim (ibid.) urban bg. Busan Korea 3662884 47.61

continued on the next page
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Nguyen and Kim (2006) urban bg. Daegu Korea 2480578 50.81
Nguyen and Kim (ibid.) urban bg. Incheon Korea 2475139 50.81
Nguyen and Kim (ibid.) urban bg. Gwangju Korea 1352797 38.58
Nguyen and Kim (ibid.) urban bg. Daejeon Korea 1368207 40.27
Nguyen and Kim (ibid.) urban bg. Ulsan Korea 1014428 36.89
Nguyen and Kim (ibid.) traffic bg. Seoul Korea 9895217 102.76
Nguyen and Kim (ibid.) traffic bg. Busan Korea 3662884 62.29
Nguyen and Kim (ibid.) traffic bg. Daegu Korea 2480578 69.82
Nguyen and Kim (ibid.) traffic bg. Incheon Korea 2475139 85.44
Nguyen and Kim (ibid.) traffic bg. Gwangju Korea 1352797 46.67
Nguyen and Kim (ibid.) traffic bg. Daejeon Korea 1368207 49.68
Nguyen and Kim (ibid.) traffic bg. Ulsan Korea 1014428 52.88
Lertxundi-Manterola and Saez (2009) Barcelona Spain 2377703 43.65
Lertxundi-Manterola and Saez (ibid.) Bilbao Spain 801770 39.24
Masiol et al. (2013) urban bg. Belluno Italy 37000 24
Masiol et al. (ibid.) urban bg. Treviso Italy 84000 37
Masiol et al. (ibid.) urban bg. Vicenza Italy 116000 38.5
Masiol et al. (ibid.) urban bg. Schio Italy 40000 24
Masiol et al. (ibid.) urban bg. Legnago Italy 25000 25
Masiol et al. (ibid.) urban bg. Verona Italy 264000 41
Masiol et al. (ibid.) urban bg. Padova Italy 215000 32
Masiol et al. (ibid.) urban bg. Venice Italy 271000 36
Masiol et al. (ibid.) urban bg. Rovigo Italy 53000 26
Masiol et al. (ibid.) traffic bg. Vicenza Italy 116000 49
Masiol et al. (ibid.) traffic bg. Verona Italy 264000 45
Masiol et al. (ibid.) traffic bg. Padova Italy 215000 43.7
Masiol et al. (ibid.) traffic bg. Venice Italy 271000 48
Masiol et al. (ibid.) traffic bg. Rovigo Italy 53000 38
Singh and Kulshrestha (2014) Okhla India 98415 24.4
Singh and Kulshrestha (ibid.) Mai India 5997 18.8
Singh and Kulshrestha (ibid.) winter Okhla India 98415 39.6

continued on the next page
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Singh and Kulshrestha (2014) winter Mai India 5997 27.5
Singh and Kulshrestha (ibid.) summer Okhla India 98415 24.5
Singh and Kulshrestha (ibid.) summer Mai India 5997 17.2
Baró et al. (2015) Barcelona Spain 1615908 53.78
Baró et al. (ibid.) Berlin Germany 3431675 53.38
Baró et al. (ibid.) Stockholm Sweden 810120 38.5
Baró et al. (ibid.) Rotterdam the Netherlands 582951 48.66
Baró et al. (ibid.) Salzburg Austria 147169 45.21

D.3 Data for log10(mean NO2) with log10D

Table D.3: Data for log10(mean NO2) with log10D

Study City Country P
Area mean NO2
(km2) (μg/m3)

Nguyen and Kim (2006) urban bg. Seoul Korea 9895217 606 65.31
Nguyen and Kim (ibid.) urban bg. Busan Korea 3662884 760 47.61
Nguyen and Kim (ibid.) urban bg. Daegu Korea 2480578 886 50.81
Nguyen and Kim (ibid.) urban bg. Incheon Korea 2475139 965 50.81
Nguyen and Kim (ibid.) urban bg. Gwangju Korea 1352797 501 38.58
Nguyen and Kim (ibid.) urban bg. Daejeon Korea 1368207 540 40.27
Nguyen and Kim (ibid.) urban bg. Ulsan Korea 1014428 1056 36.89
Nguyen and Kim (ibid.) traffic bg. Seoul Korea 9895217 606 102.76
Nguyen and Kim (ibid.) traffic bg. Busan Korea 3662884 760 62.29
Nguyen and Kim (ibid.) traffic bg. Daegu Korea 2480578 886 69.82
Nguyen and Kim (ibid.) traffic bg. Incheon Korea 2475139 965 85.44
Nguyen and Kim (ibid.) traffic bg. Gwangju Korea 1352797 501 46.67
Nguyen and Kim (ibid.) traffic bg. Daejeon Korea 1368207 540 49.68
Nguyen and Kim (ibid.) traffic bg. Ulsan Korea 1014428 1056 52.88
Lertxundi-Manterola and Saez (2009) Barcelona Spain 2377703 230 43.65
Lertxundi-Manterola and Saez (ibid.) Bilbao Spain 801770 208 39.24

continued on the next page
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Singh and Kulshrestha (2014) Okhla India 98415 9 24.4
Singh and Kulshrestha (ibid.) Mai India 5997 6.17 18.8
Singh and Kulshrestha (ibid.) winter Okhla India 98415 9 39.6
Singh and Kulshrestha (ibid.) winter Mai India 5997 6.17 27.5
Singh and Kulshrestha (ibid.) summer Okhla India 98415 9 24.5
Singh and Kulshrestha (ibid.) summer Mai India 5997 6.17 17.2
Baró et al. (2015) Barcelona Spain 1615908 101.6 53.78
Baró et al. (ibid.) Berlin Germany 3431675 891.1 53.38
Baró et al. (ibid.) Stockholm Sweden 810120 215.8 38.5
Baró et al. (ibid.) Rotterdam the Netherlands 582951 277.4 48.66
Baró et al. (ibid.) Salzburg Austria 147169 65.7 45.21

D.4 Data for log10(max NO2) with log10P and max NO2 with

log10D

Table D.4: Data for log10(max NO2) with log10P and log10(max NO2) with log10D

Study City Country P
Area max NO2
(km2) (μg/m3)

Lertxundi-Manterola and Saez (2009) Barcelona Spain 2377703 230 148
Lertxundi-Manterola and Saez (ibid.) Bilbao Spain 801770 208 199
Singh and Kulshrestha (2014) Okhla India 98415 9 63.7
Singh and Kulshrestha (ibid.) Mai India 5997 6.17 40.6

E Principle of chemiluminescence

The principle of chemiluminescence in this section is based on the reference measurement method

EN 14211:2005 of the European Commission (European Committee for Standardization 2005).

The concentration of NO in the sampled air is determined by the reaction of NO with O3.

To do this, the sampled air is mixed with excessive O3 as a way to get excited NO2 (Equation E.1).
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The excited NO2 then decomposes into NO2 and emits near-infrared lights (Equation E.2). The

radiation is converted into electrical signals by a photomultiplier or a photodiode. The volume

of the lights is proportional to the concentration of NO in the sampled air.

NO+O3 −−→NO2
∗ +O2 (E.1)

NO2
∗ −−→NO2 + hv (E.2)

NO2
converter (catalyst)−−−−−−−−−−→NO (E.3)

The sampled air also goes through a converter where all the NO2 in it is reduced to NO

(Equation E.3). The NO then reacts with the excessive O3 in the same way (i.e. Equations E.1 and

E.2). The volume of the emitted lights in this step is proportional to the sum of the concentration

of NO in the sampled air and the concentration of NO converted from NO2. The subtraction of

these two NO concentrations can determine how much NO was converted from NO2, and thus

we can get the NO2 concentration in the sampled air.

F Retrieval of tropospheric NO2 vertical

columns

This section is mainly based on the works of Chance (2002) and Geffen et al. (2019, 2020). To

generate the tropospheric NO2 vertical columns, the steps are

1. get total NO2 slant columns using the method of DOAS. In this case, the main idea is

to obtain slant column of NO2 by comparing modeled and observed reflectance spectra.

DOAS is introduced in Appendix G,

2. separate the total NO2 slant columns into tropospheric NO2 slant columns and strato-

spheric NO2 slant columns using a data assimilation system of the global 3D chemistry

transport model (e.g. TM5-MP CTM), and

3. subtract the stratospheric NO2 slant columns from the total NO2 slant columns to get the

tropospheric NO2 slant columns. The tropospheric NO2 vertical columns are then gained
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by converting the tropospheric NO2 slant columns to tropospheric NO2 vertical columns.

The parameters of the conversion come from pre-calculated AMF look-up tables.

G General principle of DOAS

This section is mainly based on the works of Chance (2002), ESA (2022), Geffen et al. (2019, 2020),

and Platt and Stutz (2008). This section focuses on how DOAS is used in the latest NO2 sensor

- TROPOMI. The earlier-launched sensor OMI uses the same principle with slightly different

parameters (Chance 2002).

Suppose a reflectance spectrum at the wavelength λ observed by TROPOMI is denoted as

Rmeas(λ), and is defined as Equation G.1,

Rmeas(λ) =
π ∗ I(λ)

μ0 ∗ E0(λ)
(G.1)

where I(λ) is the radiance at the top of the atmosphere, μ0 is the cosine of the solar zenith angle,

E0(λ) is the extraterrestrial solar irradiance which is measured once every day.

The reflectance spectrum at the wavelength λ modeled by TROPOMI is denoted as Rmod(λ),

and is defined as Equation G.2,

Rmod(λ) = P(λ) ∗ exp
[
−

Nk

∑
k=1

σk(λ) ∗ Ns,k

]
∗
(
1+ Cring ∗

Iring(λ)
E0(λ)

)
(G.2)

where

P(λ) =
Np

∑
m=1

ak ∗ λm (G.3)

In Equations G.2 and G.3, P(λ) represents the scattering and absorbing of molecular, the

scattering of aerosol, and the effects of surface albedo. For TROPOMI, usually Np equals 5. am is

the coefficient of this polynomial.

The sum in the square brackets of Equation G.2 represents the intensity of lights absorbed

by the specific gas (in this case, NO2) and secondary trace gases as the lights exits the sun, travels

through the atmosphere, and are finally captured by TROPOMI. TROPOMI observes NO2 by the

channel of visible light with wavelength ranges from 440 nm to 496 nm. In this range, O3, water



Inferring NO2 surface concentrations using 3D atmospheric models 259

vapor (H2Ovap), collisions between two oxygen molecules (O2-O2), and liquid water (H2Oliq)

are found to have ability of absorb the lights as well, so O3, H2Ovap, O2-O2, and H2Oliq are the

secondary trace gases in this case. The σk(λ) values of the specific gas and the secondary trace

gases are collected from published literature (e.g. Geffen et al. 2015; Gorshelev et al. 2014; Pope

and Fry 1997; Serdyuchenko et al. 2014; Thalman and Volkamer 2013; Vandaele, A.C. et al. 2015)

and are substituted to G.2. k is the amount of molecule.

The formula in the brackets of Equation G.2 accounts for the Ring spectrum effects, which

are caused by the inelastic Raman scattering of incoming sunlight. Cring is the coefficient. The

value of Iring(λ) is collected from Chance and Spurr (1997).

To get the values of am, Ns.k (i.e. the slant column amount of molecule k=1,..., Nk), and Cring,

Rmod(λ) and Rmeas(λ) are compared by the minimization of a chi-square function (Equation G.4)

or Root Mean Square (RMS) Equation G.5. The routine of Optimal Estimation (OE) is used in

this step,

χ2 =
Nλ

∑
i=1

(
Rmeas(λi)− Rmod(λi)

ΔRmeas(λi)

)2

(G.4)

where ΔRmeas(λi) is the precision of the measurements decided by TROPOMI.

RRMS =

√√√√ 1
Nλ

Nλ

∑
i=1

(Rmeas(λi)− Rmod(λi))
2 (G.5)

H Inferring NO2 surface concentrations

using 3D atmospheric models

Popular 3D atmospheric models including EAC4 and GEOS-Chem. In this section they are

briefly introduced. Please refer to other works (e.g. Bey et al. 2001; Inness et al. 2019; Wang et al.

1998) for the details of GEOS-Chem and EAC4.

EAC4 is a global reanalysis dataset of atmospheric composition developed from Eruopean

Center for Medium-Range Weather Forecasts (ECMWF). Until 2016, its horizontal resolution is

40 km and it divides the vertical space from the surface to the atmospheric pressure of 0.1 hPa

into 60 model layers. It contains 3 model systems: MACCRA, CIRA, and CAMSRA. Each model

system considers components such as anthropogenic emissions, biomass burning emissions,
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biogenic emissions and assimilated trace gases retrievals. It provides results of analyses and

forecasts at the temporal resolution ranges from 1h to 6h. The latest model system CAMSRA

contains 3 trace gases: O3, CO, and NO2 (Wang et al. 2020b). The assimilated tropospheric

column NO2 retrievals use information from SCIAMACHY, OMI, and GOME-2. The NO2

mixing ratio is given by the minimization of the comparison between the model’s background

fields and the observation values. The minimization is evaluated using National Meterological

Center (NMC) method (Parrish and Derber 1992) or the forecast differences (Inness et al. 2015).

GEOS-Chem is another global 3D model for modeling tropospheric chemistry developed

from assimilated meteorological data from NASA Data Assimilation Office (Bey et al. 2001). Its

main idea is to simulate tropospheric O3, NOx, and HC by tracking 24 tracers (ibid.). GEOS-Chem

also considers emissions from anthropogenic activities, biomass burning, and natural sources.

It’s horizontal spatial resolution is 2.5o x 2o in the simulation of the NOx-Ox-HC interaction

(Grajales and Baquero-Berna 2014) and it divides the vertical space from the surface to the

atmospheric pressure of 0.01 hPa into 72 model layers (Global Modeling and Assimilation Office

2021).

The NO2 surface concentrations can be inferred from tropospheric NO2 vertical columns by

Equation H.1 (Jeong and Hong 2021),

SA =
SL
CL
∗ CA (H.1)

where SA is the inferred NO2 surface concentrations, SL is the surface level NO2 mixing ratio

provided by EAC4, C2 is the tropospheric NO2 columns provided by EAC4, and CA is the

tropospheric NO2 vertical columns from satellite.

Similar to EAC4, GEOS-Chem also provides values of SL and CL so that the NO2 surface

concentrations can be calculated from tropospheric NO2 vertical columns in the same way

(Lamsal et al. 2008).

Lamsal et al. (ibid.) refined Equation H.1 and proposed another way of inferring NO2

surface concentrations from satellite columns (Equation H.2),

SA =
v ∗ SL

v ∗ CL − (v− 1) ∗ CF
L
∗ CA (H.2)

where v is the ratio of the local tropospheric NO2 vertical column to the mean satellite field over

a GEOS-Chem grid, and CF
L is the simulated free tropospheric (i.e. range from 750 hPa to 250

hPa) NO2 column over the GEOS-Chem grid.
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