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A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), 
raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The 
sbv IMPROVER metagenomics diagnosis for inflammatory bowel disease challenge investigated 
computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in 
this challenge were given independent training and test metagenomics data from IBD and nonIBD 
subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed Taxonomy- 
and Function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were 
received between September 2019 and March 2020. Most participants’ predictions performed better 
than random predictions in classifying IBD versus nonIBD, Ulcerative Colitis (UC) versus nonIBD, 
and Crohn’s Disease (CD) versus nonIBD. However, discrimination between UC and CD remains 
challenging, with the classification quality similar to the set of random predictions. We analyzed the 
class prediction accuracy, the metagenomics features by the teams, and computational methods 
used. These results will be openly shared with the scientific community to help advance IBD research 
and illustrate the application of a range of computational methodologies for effective metagenomic 
classification.
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SC2	� Sub-challenge 2
svmLinear	� Support vector machine with linear kernel
UC	� Ulcerative colitis
WSR	� Weighted sum of ranks
XGBoost	� EXtreme gradiant boosting

Inflammatory bowel disease (IBD) is a group of disorders characterized by chronic inflammation of the gastro-
intestinal tract. The two main IBD manifestations are ulcerative colitis (UC) and Crohn’s disease (CD). Despite 
UC and CD differing in their location, histology, and distribution of inflamed areas1–5, similarities in symptoms 
and some disease phenotype overlap make precise, distinct classification difficult6. The current diagnostic gold 
standard is based on histopathologic and endoscopic criteria (lesion pattern and anatomical distribution)7. 
However, differential diagnosis is currently infeasible in up to 10% of IBD patients5, making it impossible to 
plan an appropriate treatment strategy. Thus, while the classical diagnosis – prognosis – treatment paradigm is 
firmly anchored on the anatomical and pathological classification of CD and UC, identification of new entities or 
processes involved in IBD pathogenesis, as well as new tools to analyze the resulting data are needed to provide 
more accurate diagnoses. In this regard, non-invasive, cost-effective, rapid, and reproducible biomarkers would 
help clinicians diagnose IBD and select appropriate treatment plans for individual patients.

Dysbiosis, defined as an imbalanced gut microbial community, has been consistently reported in IBD patients 
over the last 15 years8,9. Pre-clinical and clinical studies10, as well as the recently published data from the Integra-
tive Human Microbiome Project11, have revealed distinct IBD metagenomics features, such as a global decrease 
in biodiversity and lower proportions of Firmicutes and Bacteroidetes relative to those of Proteobacteria and 
Actinobacteria. Technological advances in DNA sequencing methods, greater data accessibility, and the devel-
opment of new computational tools for data integration have improved characterization of the gastrointestinal 
microbiome, highlighting microbiota assessment as a novel tool to support IBD diagnostics and/or prognostics.

Proper and accurate data analysis is crucial to reveal the information contained within a metagenome. The 
core process for metagenomics analysis is called profiling and is intended to quantify characteristics of metagen-
omics datasets (hereafter called features). Features can be obtained by applying various reference-based (com-
paring metagenomics reads to the known sequences) and reference-free analyses, allowing the determination of 
features using sequencing reads alone. There is a growing number of studies highlighting the potential of both 
reference-based and reference-free types of features for metagenomics-based IBD diagnostics12. However, a 
systematic investigation comparing different aspects of metagenomics-based diagnostics is still missing.

The Metagenomics Diagnosis for Inflammatory Bowel Disease Challenge (herein referred to as the “MEDIC 
Challenge” or “Challenge”), organized as part of the sbv IMPROVER project13, was aimed at investigating the 
diagnostic potential of metagenomics data in discriminating between IBD patients (UC or CD) and subjects 
without IBD (nonIBD), and to distinguish between UC and CD subjects among IBD patients (Fig. 1A). The 
Challenge was organized into two sub-challenges. In the first sub-challenge, “MEDIC RAW” or SC1, participants 
received shotgun metagenomics sequencing reads from fecal samples of human subjects diagnosed with IBD, 
including CD and UC, and subjects without IBD. In SC1, participants had the option to process raw metagen-
omic data with their own analysis pipeline before classifying samples. In the second sub-challenge, “MEDIC 
PROCESSED” or SC2, participants were provided with taxonomic and functional matrices resulting from the 
processing of raw metagenomics sequencing reads by the organizers using a standardized pipeline. This enabled 
participation in the MEDIC Challenge without having to process raw metagenomics data, and therefore without 
in-depth metagenomics knowledge. Participants could choose to participate in either one or both SCs. The chal-
lenge results together with extensive post-challenge analysis allowed for unbiased evaluation of the diagnostics 
potential of metagenomics data, as well as the assessment of metagenomics profiling techniques and classification 
pipelines which used various machine learning (ML) approaches.

Results
Participation summary and challenge results.  Worldwide participation of teams in the MEDIC chal-
lenge led to a total of 80 submissions, including 17 and 63 submissions for the SC1 and SC2, respectively. Three 
submissions for both SC1 and SC2 were deleted as they were fully duplicated. During post-challenge data analy-
sis, a collaboration with an expert research group in the field of metagenomics resulted in three additional sub-
missions for SC1. However, these submissions were not considered as part of the participant submissions and 
were used to develop a deeper understanding of the scientific problem addressed by the challenge. Thus, the total 
amount of submissions was equal to 17 (among which 14 were eligible for awarding) in the case of SC1 and 60 
in case of SC2 (all eligible for awarding).

Anonymized participants’ predictions submitted for each SC were independently scored according to the 
strategy defined before challenge closure (Fig. 1B and detailed description in “Methods” section). Briefly, two 
complementary metrics—Matthews’ correlation coefficient (MCC) and the the area under the precision recall 
(AUPR)—were computed by comparing participants’ predictions in the form of confidence values [0,1], reflect-
ing the probability that a sample belongs to group 1, with the gold standard (true class labels of the test dataset). 
This comparison was made for all four pairwise classification tasks and data types (Taxonomy and Function for 
SC2 only). Participants’ predictions were considered non-significant when MCC and AUPR scores were lower 
than the 95th percentile of MCC and AUPR values from distributions obtained with 10 000 random predictions 
(Supplementary Fig. 1; here and after called the null distribution). MCC and AUPR values were then converted 
into ranks and aggregated as a weighted sum of ranks (WSR) as described in Fig. 1B. Overall, the ranking of final 
participants’ submissions for SC1 and SC2 is shown in Fig. 2, and detailed scores are provided in Supplementary 
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Figure 1.   Overview of the metagenomics for IBD diagnosis challenge. (A) challenge design, (B) challenge 
scoring schema.
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Table 1. After the review and acceptance of the scoring results by an independent, external expert panel, the 
identities of the top three winning teams for each SC were disclosed14.

Post‑challenge analysis.  Metagenomics data are informative to discriminate IBD versus nonIBD subjects 
but insufficient for UC versus CD distinction.  The majority of submitted predictions, regardless of the SC, suc-
cessfully classified “IBD versus nonIBD” better than random (Table 1, Supplementary Fig. 1), providing signifi-
cant (higher than the 95th percentile of the corresponding null distribution) MCC and/or AUPR values.

The number of submissions with MCC and/or AUPR significantly better than random was larger for the “CD 
versus nonIBD” classification task compared with the “UC versus nonIBD” task. This may be due to a training 
set imbalance, as there were more CD than UC samples in the training dataset. The discrimination of CD and 
UC samples within the IBD group was a more challenging task (Table 1). Indeed, none of the SC1 submissions 
performed significantly better than random. In the case of SC2, three submissions based on Taxonomy and 
Function data types (not matching among data types) had significant MCCs. Among those, only one submission 
(based on Function data type) also showed a significant AUPR. Thus, the number of submissions with MCC or 
AUPR better than 95th percentile of the corresponding null distribution for “CD versus UC” task (3 out of 60) 
was not higher than in a setting where all submissions were randomly generated.

Tree‑based ML approaches along with reference‑free features demonstrated the best overall performance.  The 
scoring results (Fig. 2, more details per-task visualization in Supplementary Fig. 2), combined with the charac-
teristics of the participants’ computational approaches used to tackle the challenge, enabled a visualization of 
key observations made in the scope of the post-challenge analysis regarding effective classification strategies.

Figure 2.   Final submissions ranking in the sbv IMPROVER MEDIC Challenge. Results for SC1(A) and SC2 
(B) are shown separately. Bar plot of the weighted sum of ranks (WSR) sorted from the lowest (best) to the 
highest (worst) WSR. A heatmap shows the WSR stratified by 2-class task and data type (applicable only for 
SC2 submissions). Submission details such as the submitting team number, feature type (applicable only for SC1 
submissions), ML algorithms used for feature selection and classification, and pipeline options are also shown. 
For optimization purposes, the legend contains additional information not shown on the current summary 
graphics but required for the interpretation of results in other figures. This and all following figures were 
generated using Matplotlib python library (version 3.3.3, https://​matpl​otlib.​org).

https://matplotlib.org
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SC1 participants had the freedom to process raw metagenomics data with their own analysis pipeline, as well 
as the possibility to use additional training datasets. Features produced by SC1 raw metagenomics data analysis 
pipelines were either reference-based (Taxonomic or Functional profiles, with feature generation algorithms dif-
ferent from ones used by the challenge organizers for SC2 data generation) or reference-free (k-mers of various 
length, Metagenome-Assembled Genomes (MAGs) or Metagenome-Assembled Genes). The use of reference-
free features and an external dataset for model training was associated with higher classification performance 
in comparison with standard reference-based features in the case of SC1 (Fig. 2A, Supplementary Fig. 2A-D).

The best-performing submission for SC1 (SC1 submission 6, Fig. 2A) involved a simple statistical technique 
for sample labelling. The classification approach was based on the search of unique “discriminative” k-mers in 
the training data. The subsequent sample class label decision was based on the comparison of the proportions 
of k-mers from each group found in the sample. Except for this latter submission done in the context of SC1, all 
other top-performing predictions for both SC1 and SC2 challenges used tree-based ML methods (e.g., random 
forest (RF) and various boosting approaches) for sample classification. This conclusion on the superiority of 
tree-based methods was based on the final aggregation score and was consistent across different tasks of SC1 
(Supplementary Fig. 2A-D). However, for SC2, the performance of algorithms varied depending on the task and 
data type (Supplementary Fig. 2E-L).

IBD samples were more often misclassified than nonIBD samples.  Box plots of confidence values (Supplemen-
tary Fig. 3) showed clear separation between the IBD and nonIBD groups of samples for the submissions with 
highest performance (with significant MCC and/or AUPR values) and no clear separation for submissions with 
the lowest performance. The class separation was especially pronounced for the “IBD versus nonIBD” task (Sup-
plementary Fig. 3A, E, and I) and was not observed in the “CD versus UC” task (Supplementary Fig. 3D, H, and 
L). The same figure shows that most predictors classified samples more consistently as nonIBD, thus increasing 
the false positive rate for IBD classification. However, there are several exceptions (e.g., SC1 submission 17 and 
SC2 Taxonomy submission 37). Finally, several SC2 submissions (mostly belonging to one team) demonstrated 
predictions better than random across different tasks in the case of inverted sample labels.

Sample misclassification was investigated more closely for each SC, data type (in the case of SC2), and task 
using the binarization of confidence values to allocate a sample to one or the other class. To avoid biases, only 
44 out of 60 SC2 submissions were considered for this task since 16 pairs of SC2 submissions (all provided by 
the same team) were identical regarding binarized predictions (but different regarding confidence values) due 
to the significant similarities in their classification algorithms and the fact that the same features were used for 
the model training (Supplementary Figs. 4–6, Supplementary Table 1). As shown in Fig. 3, the level of misclas-
sification rate for IBD samples was statistically higher compared with that of nonIBD samples. The same figure 
shows the correlation between the misclassification rate and the Shannon diversity index of samples. In the case 
of SC2, the correlation coefficient was positive for IBD samples and negative for nonIBD samples.

The best predictive models for discriminating IBD versus nonIDB subjects were characterized by specific combina‑
tions between Taxonomy or Function features and ML algorithms.  One of the key findings from the previous 
sbv IMPROVER Systems Toxicology challenge was that feature selection is a key step to build a performant 
predictive model. Indeed, once relevant discriminative features have been selected, the impact of ML methods’ 
performance did not reveal significant differences on the final performance15.

To verify whether this observation was also true for the MEDIC challenge, seven popular ML methods 
(hereafter called the in-house ML pipeline)—k-nearest neighbor (kNN), linear discriminant analysis (LDA), RF, 
support vector machine with linear kernel (SVMlinear), partial least squares discriminant analysis (PLS-DA), 
naïve Bayes (NB), and extreme gradient boosting (XGBoost)—were used to assess the performance of Taxonomy- 
and Function-based discriminative signatures selected by SC2 participants for the “IBD versus nonIBD” task. 

Table 1.   MEDIC prediction statistics.

Sub-challenge Task Total submissions

Performance better than random

MCC AUPR MCC and AUPR

SC1

IBD versus nonIBD

17

12 11 10

CD versus nonIBD 13 10 8

UC versus nonIBD 8 6 6

CD versus UC 0 0 0

SC2 Taxonomy

IBD versus nonIBD

60

52 36 36

CD versus nonIBD 50 36 35

UC versus nonIBD 29 22 18

CD versus UC 3 0 0

SC2 Function

IBD versus nonIBD

60

40 31 26

CD versus nonIBD 38 21 16

UC versus nonIBD 29 23 17

CD versus UC 3 1 1
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As described earlier, only 44 out of 60 SC2 submissions were analyzed given that 16 pairs of submissions had 
identical signatures.

As shown in Fig. 4, no significant correlation was found between participants’ model performance and the 
performance obtained using in-house ML pipeline in combination with participants’ Taxonomy- or Function-
based signatures. There was also no significant correlation between the number of features selected and the 
performance (either demonstrated by participants’ ML algorithms or the in-house ML pipeline). Thus, the suc-
cess of the best-performing SC2 “IBD versus nonIBD” submissions was attributed to the specific combination 
between the selected features and the ML algorithm used to solve the task. Interestingly, among in-house ML 
methods, tree-based methods (RF and XGBoost) demonstrated higher predictive performance (both metrics) 
than the other tested ML methods using participants’ Taxonomy- and Function-based signatures.

AUPR obtained with consensus Taxonomy and Function signature‑based predictive models outperformed AUPR 
resulting from individual participants’ signature‑based predictions.  The consensus signatures were built by 
combining the most commonly occurring Taxonomy- or Function-based features across the top-10 best SC2 
submissions (only for “IBD versus nonIBD” task). There were 197 signatures generated with numbers of fea-

Figure 3.   Distribution of sample misclassification rates stratified by group. Results for different SC, data types 
(for SC2), and 2-class tasks are shown separately. Results for SC2 also have additional panels representing the 
correlation between samples’ misclassification rate and diversity. Samples are stratified by group. Correlation 
coefficients between misclassification rate and diversity are shown on the lower right corner of each SC2-related 
plots. *next to the correlation coefficient implies P value < 0.05.
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Figure 4.   Robustness of individual SC2 “IBD versus nonIBD” signatures controlled using seven in-house ML 
methods. Results for each data type and metric are shown separately. Submissions are sorted from the best to the 
worst based on the challenge performance for the relevant data type. Individual performances are shown with 
dashed black line, performances of each of the seven in-house ML methods are shown with colored lines. The 
classification algorithm used in each individual submission is shown using the square symbol, the legend can be 
found on the Fig. 2. The top panel for each graphics represents the number of features per signature in a log10 
scale. Finally, the right panel represents the distribution of scores obtained when using individual signatures per 
ML method.

Figure 5.   Classification performance of SC2 consensus signatures tested using seven in-house ML methods. 
Results are shown per metric and per SC2 data type. Each graphic also includes the boxplot showing the metric 
distribution for the individual SC2 predictions obtained for “IBD versus nonIBD” task and each data type.
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tures ranging from 4 to 200. In general, increasing the size of consensus signatures increased the performance 
(AUPR) of predictive models built using seven in-house ML methods (Fig. 5). The AUPR performance increase 
was particularly pronounced when using an RF classification algorithm. Overall, the performance of tree-based 
methods (RF and XGBoost) was higher than that of other ML approaches when using consensus signatures. The 
abundance of the features included in consensus signatures in the test samples was visualized using the Log2-
fold-change relative to the average abundance of the feature across all test samples. A high heterogeneity rate in 
consensus signature abundance connected to sample misclassification can be observed in Fig. 6.

Comparison of the SC2 taxonomic consensus signature and k‑mer‑based signature showed low overlaps.  The 
discriminative features (k-mers, k = 31) identified by the best performer (SC1 submission 6) for the SC1 “IBD 

Figure 6.   Log2-fold change abundance of the consensus signature features in the test samples. Results for 
Taxonomy and Function data types are shown separately. Samples are sorted first per label (nonIBD or IBD) and 
then based on the misclassification rate within each sample group.
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versus nonIBD” task were translated into a k-mer-based Taxonomic signature (see Methods). Shortly, reads 
containing discriminative k-mers for each group (CD, UC, and nonIBD) were extracted and went through the 
taxonomic annotation using the same pipeline as for SC2 Taxonomy data creation with the final annotation at 
species level (Table 2). The final set of obtained species was split into three groups: species associated exclusively 
with IBD (included CD and/or UC reads), nonIBD, and those commonly shared between the IBD and nonIBD 
groups. The k-mer-based taxonomic signature was compared to the largest (200 taxa, 120 of which were on spe-
cies level) SC2 consensus taxonomic signature.

The union of both signatures is visualized as taxonomic tree in Fig. 7, which shows little overlap between 
signatures at the species and genera levels. Similarly to what was previously observed, we identified seven major 
phyla represented by the taxa from either signature that were detected in the vast majority of samples: Firmicutes, 
Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Cyanobacteria, and Verrucomicrobia. The classical 
IBD dysbiotic feature at the phylum level has been observed with increased abundance of Proteobacteria, Act-
inobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia10,16. 
Taxa from 12 other bacterial phyla, viruses, and archaea were usually only detected in a small proportion of 
samples and were predominantly covered by the SC2 consensus signature.

There are many molecular mechanisms connected to IBD-related microbiome alteration. For this reasons, 
the study analysis paid specific attention to bacteria involved in the most studied of these processes (short chain 
fatty acid (SCFA) production; pro-or anti-inflammatory cytokine mediation; butyrate, formate, acetate and folate 
production; host immune response mediation; hydrogen metabolism, etc.). Table 3 summarizes the information 
about bacterial taxa detected in both signatures with a previously described connection to IBD.

Interestingly, there are notable differences between signatures (Fig. 7): most species included in the SC2 
consensus signature already differentiate the IBD and nonIBD groups simply by their presence or absence. This 
observation is specifically pronounced for the phyla Actinobacteria, Cyanobacteria, Bacteroidetes, and Proteo-
bacteria. Finally, genera differentiating both IBD groups of samples from nonIBD samples obtained during an 
independent analysis of the challenge test set (published shortly after the challenge closure51) have large overlap 
with the k-mer-based taxonomic signature.

Wisdom of the crowd.  The “Wisdom of the crowd” phenomenon refers to the theory that the collective 
knowledge of a community (or the aggregation of solutions) is greater than the knowledge of any individual (or 
individual solution)52. We investigated whether consensus classification based on several submitted predictions 
was more accurate than any of the individual classification submissions. However, prior to this analysis, the 
list of submissions was alternated to avoid over-weighting particular feature-selecting and classification algo-
rithms. For this purpose, one random submission was selected for each group of submissions performed by the 
same team and using same feature-selection and classification algorithms. Additionally, submissions identified 
as inverted—where across several 2-class tasks the inverted-labeled predictions have demonstrated classification 
quality better than random—were also excluded from the analysis. This resulted in 17 submissions for SC1 and 
25 submissions for SC2 Taxonomy and SC2 Function. The complete list of selected submissions for consensus 
classification can be found in Supplementary Table 2.

The aggregation strategy leading to the incorporation of several individual predictions into one is described 
in the Methods section and schematically represented on Supplementary Fig. 7. Briefly, the confidence values 
of the aggregated predictions were calculated per sample as the average of the confidence values for that sample 
in all incorporated individual predictions.

On average, randomly aggregated predictions performed better than individual predictions even when integrating 
small sets of individual predictions.  A set of aggregated predictions incorporating randomly selected 3, 5, 10, 
and all 17 submissions for SC1 (5, 10, 20, 15, and all 25 submissions for SC2) was created. In cases where the 
number of all possible random combinations exceeded 1 000, only 1 000 randomly selected combinations were 
used. The classification performances of aggregated and individual predictions were compared. As shown in 
Fig. 8, on average, aggregation-based methods performed better than individual approaches, even when inte-
grating small sets of individual predictions (e.g., just three). Performance increased further with a larger number 
of integrated methods (except for SC2 Function, MCC, “UC versus nonIBD” task). However, it is important to 
note that the aggregation-based prediction including all the individual submissions rarely out-performed the 
best of the individual ones.

Reference-based analysis of the metagenomics data usually implies two different but complementary direc-
tions for the dataset description: the understanding of “who is there” (Taxonomic profiling) and “what are they 
doing” (Functional profiling). Each of the SC2 submissions included the individual Taxonomy- and Function-
based predictions for all four binary classification tasks. This provided an opportunity to compare them in a 

Table 2.   Taxonomic annotation of k-mer-based reads. Only k-mers identified by the best SC1 performer were 
used for reads selection.

Group Number of k-mers Reads extracted Reads classified

CD 2 926 215 368 9 762 179 3 369 427 (34.52%)

UC 3 044 646 402 80 967 9 526 (11.77%)

nonIBD 2 559 326 025 3 436 809 9 829 (0.29%)
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pairwise manner and assess the classification performance of the aggregated prediction. In the first analysis, the 
results indicated that aggregating Taxonomy- and Function-based prediction is useful. Paired-sample Wilcoxon 
signed-rank test showed that for three 2-class binary classification tasks, aggregating Taxonomy- and Function-
based predictions provided a statistically superior or similar performance than each of the integrated predictions 
separately (Supplementary Fig. 8). However, more detailed analysis demonstrated that this effect only persists 
when the difference in individual performances between Taxonomy- and Function-based predictions is small. 
Once one of the predictions is significantly superior to the other (especially if the better performing one is 
Function-based), the aggregation of predictions will have a lower performance in comparison with the strongest 
performer (Supplementary Fig. 9).

Aggregation‑based predictions are robust to random noise.  Robustness of the aggregated prediction to the inclu-
sion of a subset of poorly performing individual methods was investigated using the following approach. All but 
the three best and three worst predictions were integrated to create a so-called “initial” assembly. One-by-one, 

Figure 7.   Taxonomic tree showing SC2 Taxonomy consensus signature- and SC1 k-mer-based taxa. Branches 
are colored per super-kingdom and per phyla for the Bacteria super-kingdom. The taxon origin is represented 
by the node symbol. For each tree leaf, the proportion of nonIBD and IBD test samples in which the taxon was 
detected is shown in the first and second outer rings, respectively.
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the worst three or best three methods were added to form additional combinations, whose performances were 
investigated using MCC and AUPR metrics. In case of AUPR, adding poor predictions (which usually introduce 
noise) did not affect the classification quality of the “initial” assembly of methods. On the other hand, additional 
integration of the best predictions increased the performance of the aggregation-based approach, although not 
always reaching the predictive performance of the best of the individual methods (Supplementary Fig. 10).

Discussion
Recent progress in metagenomics and next-generation sequencing methods created the prospect of using the 
human microbiome as a widespread diagnostics tool. One major challenge is the data complexity coupled with 
the broad range of computational approaches for data analysis that necessitates developing accurate and inde-
pendent methods and results verification. Crowdsourcing was shown to be a powerful tool for solving many 
computational and biological problems53–57, specifically for independent verification of methods, results, and 
conclusions. Here, we discuss the results from the crowdsourced sbv IMPROVER MEDIC computational chal-
lenge designed to investigate the diagnostics potential of metagenomics data in the scope of IBD. The challenge 
was opened to the scientific community between September 2019 and March 2020. There were several studies 
dedicated to microbiome-based IBD diagnostics prior to the MEDIC challenge; however, most of these works 
are at risk of bias since the same sample cohort is used for algorithm training and testing, introducing potential 
limitations with generalizability12. In the scope of the MEDIC challenge, participants were offered the option 
to train their prediction models on two different IBD cohorts and apply it on the third one, thus removing the 
cohort bias. Participants of the challenge could apply their own metagenomics processing pipeline to obtain 
microbiome-based features and then develop predictive models or use already computed standard metagenome-
associated features to apply their predictive model on them. This allowed us to compare the quality of diagnosis 

Table 3.   Taxa detected in SC2 taxonomic consensus signature and k-mer-based signature connected to IBD 
through the literature review. Taxonomy levels are marked as: Class (C), Order (O), Family (F), Genus (G), 
Species (S), Strain (STR).

Relevant tax group Signature Connection to IBD

FIRMICUTES, Clostridia order

 G: Roseburia, Ruminococcus, Eubacterium, Faecalibacterium k-mer & SC2 Short Chain Fatty Acids (SFCA) production17

 S: R. hominis, A. hardus
k-mer & SC2 Butyrate production18–20

 F: Eubacteriaceae

 S: F. prausnitzii k-mer &SC2 Butyrate and anti-inflammatory cytokine production, suppression of pro-inflammatory cytokines18

 S: C. difficile k-mer IBD-induced (due to bile acids inhibition) growth causing IBD symptoms and complications21,22

FIRMICUTES, Lactobacillales order

 Order in general k-mer IBD-associated relative abundance change23

 S: L. gazeri k-mer Improves colitis symptoms in mice24

 S: L. rhamnosus, E. faecium, L. plantarum, L. acidophilus k-mer Multi-strain probiotic associated with decreased inflammation in patients with UC, but not in CD25

PROTEOBACTERIA

 G: Klebsiella, Salmonella
 S: E. coli k-mer & SC2 Pro-inflammatory and colitogenic pathobionts26–29

 G: Pseudomonas SC2 Pro-inflammation (epithelial cell damage) agent30

 G: Campylobacter SC2 Pro-inflammatory cytokines production31

 STR: cytogenic strains of Class Alphaproteobacteria SC2 Antagonizing Lachnospiraceae family, thus increasing IBD symptoms32

 C: Bettaproteobacteria k-mer IBD-associated relative abundance change33

BACTEROIDETES

 O: Flavobacteriales, Cytophagales SC2 Decreased abundance is associated with IBD status. Through the sphingolipids production influ-
ences the severity of intestinal inflammation and alters host ceramide pools34–37 O: Bacteroidales k-mer

 S: B. fragilis, B. vulgatus k-mer Attenuates pathogenic bacteria-induced colitis38,39

 STR: B. fragilis (enterotoxigenic strains) k-mer Increases inflammation by producing certain toxins and pro-inflammatory cytokines40

 S: B. longum k-mer Immune responses induction and regulation; inflammatory cytokines expression reduction41

 S: B. adolescentis k-mer Folate productions (reduces the inflammation)42

 Coriobacteriaceae Lactate, formate, acetate, and hydrogen sulfate metabolism regulation43–45

 Eggerthellaceae IBD-associated relative abundance change46

FUSOBACTERIUM

 S: F. nucleatum k-mer Promotion of proinflammatory cytokine secretion and thus damaging the intestinal barrier47

CYANOBACTERIA SC2 IBD-associated relative abundance change48

VERRUCOMICROBIA

 G: Akkermansia Verrucomicrobium SC2 SCFA-producing, decreased relative abundance in IBD subjects49,50

 S: A. muciniphilia SC2 Colonic mucus restoration50
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based on different types of microbiome-based features. Finally, the challenge scoring strategy used two comple-
mentary metrics, allowing better result interpretation.

Metagenomics data were sufficiently informative to classify IBD and nonIBD samples, but were not sufficient 
for differentiating between CD and UC using metagenomics data only. From one side, this can be explained by 
insufficiency of metagenomics data to solve challenging task of CD and UC classification. In that case, incorpo-
ration of other omics- and meta-omics data types as well as clinical predictors (age, sex, body mass index, etc.) 
might be necessary to build discriminative models. Alternatively, since many recent studies suggested additional 
heterogeneity within patients diagnosed with CD or UC, the differentiation problem might be caused by an 
inaccurate gold standard. In that case, the IBD categorization may require further refinement analysis of larger 
patient datasets aimed to identify potential disease sub-types that could thus improve the quality of “CD versus 
UC” predictions.

The use of reference-free metagenomics features was associated with better classification outcomes compared 
with standard reference-based features. Reference-free features incorporate all the genomic information in ana-
lyzed datasets since they do not rely on often incomplete reference databases. However, utilizing reference-free 
features produces sparse data that is difficult to analyze and biologically interpret. Thus, the introduction of 
the reference-free yet biologically interpretable features for metagenomics data profiling (e.g., using catalogs of 
MAGs or species, k-mer agglomerations, etc.) could be a promising direction for the further development of 
non-invasive IBD diagnostics.

Overall, tree-based ML classification algorithms demonstrated better performance compared with other 
types of classification techniques. This observation is consistent with previous metagenomic-based IBD diag-
nostics studies58–61. Tree-based ML approaches involve hyper-rectangular partitioning of the feature space and 
may therefore reflect complex patterns specific to smaller sub-regions of the feature space more adequately than 
linear ML approaches. We noticed, however this was not always true for certain data types and tasks. Particularly, 
the “UC versus nonIBD” task is best tackled by using Function-based data in combination with different linear 
regression ML algorithms.

None of the signatures developed by the participants in the scope of SC2 “IBD versus nonIBD” task could 
demonstrate robust performance when applying a set of different classification algorithms, demonstrating that 
prediction success relies on the combination between the classification algorithm and the set of features. In con-
trast to the original hypothesis that the set of features is primary to the classification algorithm15, we observed that 
across all participants’ signatures in the scope of SC2 for the “IBD versus nonIBD” task, tree-based algorithms 
(RF and XGBoost) were associated with higher classification accuracy. This supports the previous conclusion 
about the superior performance of tree-based algorithms for the task of metagenomic-based IBD diagnostics.

Using participants’ signatures, we designed consensus signatures containing the most co-occurring features 
among the top-10 Taxonomy and Function-based submissions. Application of the consensus signatures did 
improve prediction quality in comparison with individual participants’ signatures. We observed little overlap 
between the SC2 consensus and SC1 k-mer-based taxonomic signatures. This can be explained by the different 
training data and approaches used to generate Taxonomic features. Despite the low overlap, the union of signa-
tures was enriched with taxa previously reported to be associated with IBD.

Figure 8.   Comparison of the performance of assembly-based versus individual predictions. Results for different 
SCs, data types, 2-class tasks, and metrics are shown separately. The first boxplot depicts the performance 
distribution of individual methods. Further boxplots represent the performance when integrating > 1 randomly 
sampled methods. The last boxplot demonstrates one value obtained after integrating all the individual methods.
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The results revealed that IBD samples were misclassified more often than nonIBD samples. Further investi-
gation identified a connection of samples’ misclassification and diversity: IBD samples with high diversity and 
nonIBD samples with low diversity had high misclassification rates. This relationship was especially pronounced 
for the taxa included in the SC2 taxonomic consensus signature. At the same time, taxa from the SC2 consensus 
signature had high abundance variability in IBD samples compared with nonIBD samples, and this observation 
could explain the higher misclassification rate of IBD samples. The higher the diversity of IBD samples, the more 
frequently IBD samples tend to be misclassified. Indeed, these latter IBD samples tend to show taxa abundance 
profiles similar to those of nonIBD samples. It is important to note that recent studies observed variability of 
diversity across different IBD samples62,63 and even stressed the necessity of considering samples’ diversity when 
performing IBD sample classification11. We believe that the influence of sample diversity, as well as possible pre-
classification diversity-based samples grouping, might be beneficial for metagenome-based IBD diagnostics.

Our research revealed special advantages in aggregating individual predictions to improve the classification 
quality. This “Wisdom of the crowd” effect was previously described for various system biology studies64–66. We 
experimented with aggregating different predictions within one data type, as well as aggregating results of the 
same predictive model applied to different data types. On average, aggregating predictions within the same data 
type randomly demonstrated better classification than individual predictions, although the aggregation-based 
prediction did not always outperform the best of the individual ones. Additionally, the aggregation of predictions 
was robust to the inclusion of the random noise. This observation suggests that in the case of no prior knowledge 
of the algorithm’s performance, it can be beneficial to use different algorithms for the subsequent prediction 
aggregation. A similar conclusion was reached for the aggregation of predictions obtained using same algorithm 
but different reference-based data types.

Several new non-invasive routines for IBD diagnostics have been proposed in recent years. Fecal samples 
collection followed by the analysis of stool IBD biomarkers—especially fecal calprotectine (FCP)—demon-
strates both sensitivity and specificity to IBD (https://​doi.​org/​10.​3389/​fmed.​2022.​920732, https://​doi.​org/​10.​
3109/​00365​521.​2014.​987809). Despite the presence of well-established routines like FCP testing, the develop-
ment of microbiome-based diagnostics is highly important for better disease understanding and subsequent 
possible treatment. Also, the diagnostic potential of the human microbiome will continually increase with the 
number of sequenced IBD samples. Finally, merging different non-invasive diagnostic approaches by performing 
a multi-omics analysis and thus combining signals originating from the different marker types could potentially 
improve non-invasive diagnostics in the future. It is also important to note that despite being the most informa-
tive non-invasive technique, fecal sampling has high patient non-compliance, which hampers the translatability of 
fecal IBD biomarkers research to clinical practice67–70. This problem should be addressed by better pre-sampling 
education of the patients.

Overall, we believe that coupling the power and wisdom of the crowd with the independent and unbiased 
evaluation of computational methods increased knowledge in the field of microbiome-based IBD diagnostics 
and revealed potential directions for its further development.

Conclusions

•	 The diagnostic potential of metagenomics data was shown to be sufficient to classify IBD and nonIBD sam-
ples, but not CD and UC samples.

•	 Overall, the use of reference-free metagenome profiling and tree-based classification algorithms were associ-
ated with better classification outcomes.

•	 The combination of discriminative features determined by the most successful predictions was enriched with 
organisms for with strong connections with IBD have been previously reported.

•	 IBD samples were statistically more frequently misclassified than nonIBD samples, with sample misclas-
sification strongly connected to their taxonomical and functional alpha diversity.

•	 The assessment of individual and aggregated predictions demonstrated that in case of no prior knowledge 
of the algorithms’ classification performance, it can be beneficial to aggregate the predictions from multiple 
different algorithms.

Methods
Specific tasks.  Participants of both SCs were asked to tackle four binary classification problems by classify-
ing samples as follows:

•	 IBD (class 1) versus nonIBD (class 2)
•	 UC (class 1) versus nonIBD (class 2)
•	 CD (class 1) versus nonIBD (class 2)
•	 UC (class 1) versus CD (class 2)

Participants developed classification models for the four binary classification problems using training datasets 
recommended by the challenge organizers and/or their private dataset (only for SC1) and then applied their 
models to the test dataset. For each sample of the test dataset, participants were asked to provide a confidence 
value, ranging between 0 (lowest confidence) and 1 (highest confidence), reflecting the estimated probability 
that a sample belongs to the class 1 of the certain problem.

https://doi.org/10.3389/fmed.2022.920732
https://doi.org/10.3109/00365521.2014.987809
https://doi.org/10.3109/00365521.2014.987809
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SC2 participants were additionally asked to provide the list of selected features (a subset of TaxIDs or Path-
IDs) used in their classification prediction model(s) applied on the test dataset, and their associated value of 
importance (optional).

Finally, challenge participants were asked to describe their classification approaches by providing informa-
tion to allow reproducibility.

Challenge data.  For both SCs, the organizers proposed that the participants use shotgun metagenomics 
sequencing data from two previously published human studies71,72 as training datasets, and the challenge organ-
izers provided a test dataset from an unpublished (at the time of competition) human study51. The datasets were 
provided as quality controlled raw and processed data as described below. The class labels associated with test 
dataset samples constituted the gold standard against which participants’ submissions were scored.

Training datasets.  The overview of the training datasets given to participants is shown in Table 4. Challenge 
organizers provided participants with class labels associated with selected samples from each of the training 
datasets. The metadata extracted from the original publications associated with the training datasets can be 
found in the Supplementary Table 3. Participants were free to use additional publicly available data.

Test dataset.  The sbv IMPROVER test dataset consisted of 105 paired-end whole genome sequencing of fae-
cal samples from patients with CD or UC and nonIBD individuals living in the republic of Tatarstan (Russian 
Federation).

The testing dataset was not publicly available during the Challenge. A detailed description of the study design 
and generation of the metagenomics sequencing dataset were previously published51. The study was reviewed 
and approved by the local ethics committee of the Kazan Federal University, Kazan, Russia. All methods were 
carried out in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later 
amendments. Written informed consent was obtained from all study participants before enrollment.

Sample quality checking and selection.  The quality control (QC) pipeline described below was used to assess the 
quality of samples from each dataset. The reasons behind using this pipeline were to filter out potential human 
and technical contaminating sequences and confirm the good overall quality of the remaining sequencing reads.

Raw reads were mapped to the human genome (hg38) using Minimap2 (version 2.8) aligner73 with options –a 
(Concise Idiosyncratic Gapped Alignment Report and output alignment in SAM format) and –x sr (short single-
end reads without splicing). Unmapped reads were collected using the SAMtools (version 1.7) view74 command 
with the –f 12 SAM flag (both paired reads are unmapped). Obtained reads were subjected to contaminants and 
adapter trimming using the BBDUKprogram of the BBTools toolkit (version 37.99)75 with the k size set to 23. 
QC reports for the raw, pre-, and post-trimming reads were generated using FastQC (version 0.11.6) software76 
and collated using the MultiQC (version 1.7) module for Python77. Sample selection was based on the samples’ 
metadata and the results of the QC pipeline (Table 5).

Generation of Taxonomy and functional abundance matrices.  Samples that passed the QC were used to gener-
ate Taxonomy and Functional abundance matrices for all three datasets (both training datasets and the testing 
dataset).

Taxonomic classification of reads was performed for each sample using Kraken278 and abundance re-estima-
tion at the Species, Genus, Family, Order, Class, Phylum, and Superkingdom levels using Bracken (version 2.079). 
The Kraken2 reference database was built using the -standard option that enforces the download of the RefSeq80 
bacteria/archaeal genomes, RefSeq plasmid sequences, RefSeq complete viral genomes, and GRCh38 human 
genome (database built in February 2019). The Bracken database was built using a read length of 100 bp for the 

Table 4.   MEDIC Challenge training datasets.

Dataset
Original 
publication Country of origin Total samples Samples selected Inclusion criteria nonIBD CD UC

1 14 USA 1338 54 QC, one sample per 
person 14 23 17

2 15 China 123 116 QC 53 63 0

Table 5.   Criteria used for sample selection.

Dataset Provided for Reads pairs in the post-QC data Subjects’ age Additional criteria

Training dataset 1 Training  > 10 × 106  ≥ 18 years old One time-point sample (the earliest one) per subject

Training dataset 2 Training  > 20 × 106  ≥ 18 years old Included samples that are not marked as “host contaminated” in the original research 
metadata

sbv IMPROVER Testing  > 20 × 106  ≥ 18 years old Confirmed IBD diagnosis as CD or UC
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training datasets, 75 bp for the testing dataset, and k-mer length of 35 bp. Bracken correction was performed 
with the minimum of 10 reads required for classification at the specified taxonomic rank. For each dataset, 
sample-associated relative abundance profiles were organized as a taxonomy matrix. Each taxonomy matrix was 
distributed in a tab-separated file. The column names represented the sample identification number. The first 
column contained the TaxID associated with relative abundances reported for each sample at Species, Genus, 
Family, Order, Class, Phylum, and Superkingdom levels. The relative abundances (ranging from 0 to 100%) 
calculated for a sample corresponded to the percentage of reads assigned to a specific taxon, relative to the total 
number of reads classified for all taxons at a specific taxonomy level. In addition to the taxonomy abundance 
matrices, Challenge participants were provided with a “TaxID description” file that contained the taxonomy rank 
and full name associated with each TaxID.

Functional matrices for SC2 were generated using pathways abundances. Starting from the raw reads, pathway 
abundances matrices were generated using the Biobakery’s “wmgx” pipeline81 using default settings and refer-
ence databases. An exception was the 16S database that was generated using a text search for “16S” in the NCBI 
nucleotide database; selecting all sequences belonging to “Fungi”, “Protists”, “Bacteria”, “Archaea”, and “Viruses”; 
with a range of length between 700 and 2000 bp; and storing those sequences into a FASTA file. More specifi-
cally, the HUMAnN2 component of the Biobakery pipeline computed pathway abundances for each sample 
by associating reads with MetaCyc reaction pathways, stratified where possible by species. Pathway abundance 
files generated for each sample using the Biobakery pipeline were joined into a single matrix with the sample 
identification numbers as column names and the unique pathway identification number as row names. When 
pathway abundance was missing for a sample, the pathway abundance value was set to 0.

In addition to the pathway abundances matrices, Challenge participants were provided with a “PathID 
description” file that contained the full pathway information associated with each PathID.

Scoring procedure.  The schematic representation of the scoring procedure is shown in Fig. 1B. The scoring 
procedure is described below in detail.

Scoring participant submissions.  For each SC and 2-class binary classification problem, anonymized partici-
pant predictions were scored against the gold standard corresponding to the true class labels of samples from 
the testing dataset using the MCC and the AUPR curve metrics. These metrics are complementary since MCC 
is threshold dependent while the AUPR is threshold independent. Samples for which the label was not part of 
the gold standard for the 2-class binary classification problem under evaluation were ignored for both metrics’ 
calculations.

For each sample, participants provided confidence values Px (x = 1 or 2 for class 1 and class 2, respectively) 
that a sample belongs to class 1 (P1) or class 2 (P2 = 1 − P1). The class confidence values Px ranged between 0 and 
1, with 1 being the most confident and 0 the least confident.

For MCC calculation, a confusion matrix was built using a fixed threshold of 0.5 to binarize the predictions 
between class 1 and class 2. For AUPR calculation, confusion matrices were built using a moving threshold from 
1 to 0.5. At each threshold value, recall and specificity were calculated and used to build the AUPR curve and 
calculate the area under the curve as a score of prediction performance.

Each SC included four 2-class binary classification problems: (1) IBD versus nonIBD, (2) CD versus nonIBD, 
(3) UC versus nonIBD, and (4) CD versus UC. For SC2, the predictions for all four 2-class binary classification 
problems were based on the provided input taxonomy and function abundance matrices. Thus, participants had 
to generate four and eight predictions for SC1 and SC2, respectively. Based on participant submissions, the MCC 
and AUPR scores were computed.

Score significance evaluation.  To assess if a prediction was better than random, distributions of scores from 
random predictions were generated. For that, a confidence value between 0 and 1 (from the uniform distribu-
tion) was assigned independently to each of 105 samples (test set size). Ten thousand sets of 105 samples were 
generated as random predictions. For each random prediction and 2-class problem, the MCC and AUPR were 
computed, considering only samples for which the label was part of the gold standard for the 2-class binary clas-
sification problem under evaluation. The score distributions of 10 000 random predictions were generated for 
each of the 2-class problems and metrics. Participant scores were compared with the random score distribution. 
Scores greater than the value at the 95th percentile (threshold) of the random prediction score distribution were 

Figure 9.   Overview of prediction randomness evaluation.
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considered as significant. Scores smaller than the value at the 95th percentile of the random prediction score 
distribution were considered to not be better than random, and their value was set to the score obtained at the 
95th percentile of the random prediction score distribution (Fig. 9).

Score aggregation and final submission and team ranking.  To determine the teams with the overall 
best performance for each SC, scores were aggregated as follows:

•	 For each metric and 2-class problem, scores were ranked across teams (the highest score gets the lowest rank) 
using the “rank” function of pandas.DataFrame package for Python with the option method set to average 
(i.e., it assigns the average of ranks to the similar values).

•	 For each 2-class problem and submission, ranks across different metrics were averaged:

•	 For each submission, the aggregation of results consisted in a weighted sum of ranks (WSR) giving more 
weight to the “CD versus UC” 2-class problem that was more challenging.

For SC1: 

For SC2, the final WSR was calculated as an average across the values obtained for two abundance matrices.

For each SC, the top three teams with the lowest WSR were declared as the best-performing teams after final 
review and approval by the Scoring Review Panel.

Sample misclassification.  Misclassification analysis identified samples that were misclassified in each 
participants’ submission. Rates of misclassification for each sample were calculated as the proportion of submis-
sions for which this sample was incorrectly classified relative to the total number of non-replicated submissions 
(some teams provided multiple submissions with exactly the same predictions after binarizing confidence val-
ues, although the confidence values themselves were different. In this case, only one submission was kept and 
used to calculate the sample misclassification rate). This calculation was performed independently for each SC 
and 2-class problem.

Statistical and mathematical tools.  Within-sample diversity was estimated with the Shannon index 
(H′) using the following formula:

where pi represents the relative abundance of the i-th taxa or i-th pathway.
Statistical analysis for the independent set of values was performed using non-parametric Mann–Whitney 

U tests. Statistical hypothesis testing for dependent sets of values were tested using Wilcoxon signed-rank tests.

SC2 consensus signature generation.  A consensus signature analysis was performed only for the "IBD 
versus nonIBD" task of SC2. The 10 best submissions based on the rank across different metrics were selected 
separately for Taxonomy- and Function-based predictions without considering predictions with duplicated 
absolute values. Within each prediction, features were ranked according to the importance value provided by 
the participants, and ranks across all selected predictions were averaged to obtain final rank for each feature. 
Top-200 features were selected for both Taxonomy and Function data types as a SC2 consensus signatures.

SC1 k‑mer‑based Taxonomic signature generation.  The discriminative k-mers (k = 31) identified by 
the best SC1 performer (SC1 submission 6) for the SC1 “IBD versus nonIBD” task were processed to obtain 
biologically interpretable features. Discriminative k-mers were split into three groups: unique for CD, UC, and 
nonIBD groups of samples in the training data. Reads containing discriminative k-mers for each group (CD, 
UC, and nonIBD) were extracted and went through taxonomic annotation using Kraken274 with the following 
abundance re-estimation at the Species level using Bracken (version 2.075). Results for the CD and UC groups 
were further merged into results of the IBD group.

In‑house ML pipeline.  Individual SC2 “IBD versus nonIBD” signatures as well as SC2 consensus signa-
tures were evaluated using in-house ML pipeline including seven different ML classifiers: NB, XGBoost, kNN, 
svmLinear, LDA, RF, PLS-DA. For the performance evaluation MCC and AUPR were used. Seven different ML 
were chosen based on the methods submitted by different teams and literature15. The R package caret with ver-

Rproblem =
RAUPR
problem + RMCC

problem

2

WSRSC1 = RIBD vs nonIBD + RCD vs nonIBD + RUC vs nonIBD + 2× RCD vs UC

WSRSC2 =
1

2
× {(RIBD vs nonIBD + RCD vs nonIBD + RUC vs nonIBD + 2× RCD vs UC)T
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sion 6.0.8182 provides a universe interface to use the above methods. The default parameters in caret were used. 
We directly used the XGBoost package rather than the wrapper function xgbTree in package caret because there 
is a parallel issue for xgbTree in caret. Five-fold cross-validation with 10 times repeats were used to obtain the 
performance in cross-validation.

Aggregation‑based predictions creation.  Aggregated predictions were created by averaging the confi-
dence value per sample across individual predictions selected to be aggregated (Supplementary Fig. 7).

Ethics approval and consent to participate.  Any individual or team had to register in the sbv 
IMPROVER platform to participate and access the challenge data. By registering, participants agreed to comply 
with the terms and conditions of the challenge. Data submitted by challenge participants were anonymized dur-
ing their upload on the website. The scoring was conducted blindly following a strict procedure detailed in the 
“Scoring methodology” section of the Methods.

Data availability
Sequencing reads for the test dataset were deposited on the Sequence Read Archive and available under project 
number PRJNA893901 (https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​893901). Challenge submissions (per-
task and data type confidence values) can be found in Supplementary Table 4.
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