

PhD-FSTM-2023-031
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 21/03/2023 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Ahmed KHANFIR
Born on 3rd December 1989 in Tunis, Tunisia

TARGETED, REALISTIC AND NATURAL

FAULT INJECTION
(USING BUG REPORTS AND GENERATIVE LANGUAGE MODELS)

Dissertation defence committee

Dr. Yves Le Traon, dissertation supervisor
Professor, Université du Luxembourg

Dr. Mike PAPADAKIS, Chairman
Professor, Université du Luxembourg

Dr. Gilles PERROUIN, Vice-Chairman
Professor, University of Namur, Belgium

Dr. Roberto NATELLA, Member & Reviewer
Professor, Università degli Studi di Napoli Federico II, Italy

Dr. Jie ZHANG, Member & Reviewer
Professor, Kings College London, England

To

my mother & my wife

To

my family

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Yves Le Traon, and my co-supervisor,

Prof. Mike Papadakis, for their trust, flexibility and support, throughout this thesis; from

the day I was interviewed for the PhD student position, until today. I would like also to

thank them for giving me the chance and encouraging me to work on side projects and

collaborate with other researchers, including co-supervising master students, which

improved my skills and deepened my knowledge in different domains.

I am particularly grateful to my daily supervisor, Prof. Mike Papadakis, for his guid-

ance and assistance. He played a major training role during this thesis period and had

a large and valuable contribution in every phase of it, including; proposing the research

topic and ideas, asking pertinent research questions, designing the experimental setup,

analyzing and interpreting the results, writing papers and presenting research work.

I would like to thank all of my co-authors for their feedback, efforts and support

which helped to achieve this thesis. I would like also to thank my colleagues for the

great atmosphere and good discussions we had (I am not talking about the COVID-19

pandemic lockdown period, of course).

I am very grateful also to the jury members for their time and effort invested in my

dissertation. I am also thankful to the National Research Fund of Luxembourg (FNR -

TestFast Project, ref. 12630949) for funding my thesis.

Finally, I would like to thank my wife, Enjie Ghorbel, for her constant encouragement

and support and particularly for her patience during this PhD. I thank also my son Habib,

i

who joined us during this thesis, for enlightening our house and our lives. I would like

also to thank my parents and my brother, Leila, Jamel and Youssef, who have supported

and assisted me, ever since I can remember. Many thanks also to my family-in-law,

Molka, Faouzi and Emna for their encouragement. I would like also to thank my friends

and family members who made this journey enjoyable.

ii

Index

1 Introduction 1

1.1 Software Testing and Fault injection . 1

1.2 Challenges . 3

1.2.1 Targeted Fault Injection . 5

1.2.2 Realistic Faults . 5

1.2.3 Effective Context-aware Mutation Testing 7

1.2.4 Generic Code Naturalness Measure 8

1.3 Contributions and Dissertation Organization 9

1.3.1 Contributions . 9

1.3.2 Dissertation Organization . 12

2 Background 13

2.1 Mutation Testing . 13

2.2 Software Fault Injection (SFI) and Mutation Testing 15

2.3 Fault Localisation . 16

2.4 Fix Patterns . 17

2.5 Generative Language Models . 18

3 Related Work 20

3.1 Mutation Operators (Fault Patterns) . 20

iii

3.2 Fault Injection via Pre-trained Language Models 22

3.3 Injection-Relevant Locations . 23

3.4 Mutant Selection . 24

3.5 Test Execution . 25

3.6 Relation between Mutants and Faults 26

3.7 Code-naturalness . 27

4 Leveraging Bug Reports and Automated Program Repair Patterns for a

Targeted and Realistic Fault Injection 30

4.1 Introduction . 31

4.2 Scope & Motivation . 34

4.2.1 Assessment of testing techniques 34

4.2.2 Fault tolerance assessment . 35

4.3 Approach . 35

4.3.1 Bug Report driven Fault Localisation 38

4.3.2 Fault patterns . 40

4.3.3 Fault injection . 42

4.3.4 Demonstration Example . 43

4.4 Research Questions . 47

4.5 Experimental Setup . 49

4.5.1 Dataset & Benchmark . 49

4.5.2 Experimental Procedure . 50

4.5.3 Implementation . 52

4.6 Results . 53

4.6.1 RQ1: Semantic similarity between IBIR injections and the targeted

real faults . 53

4.6.2 RQ2: IBIR Vs Mutation Testing at particular classes 57

4.6.3 RQ3: Fault Coupling . 59

iv

4.6.4 RQ4: Fault detection estimates 60

4.7 Discussion . 63

4.7.1 Injecting large number of faults 65

4.7.2 Distribution of the patterns inducing most effective injections . . 66

4.7.3 IBIR Vs typical mutation operators 68

4.7.4 Project size and IBIR’s effectiveness 70

4.8 Threats to Validity and Limitations . 72

4.9 Conclusion . 74

5 Context-aware and Natural Mutation Testing via Pre-Trained Language

Models 75

5.1 Introduction . 76

5.2 Approach . 79

5.2.1 AST Nodes Selection . 80

5.2.2 Token Masking . 81

5.2.3 CodeBERT-MLM prediction . 81

5.2.4 Condition seeding . 82

5.2.5 Mutant filtering . 84

5.3 Research Questions . 84

5.4 Experimental Setup . 86

5.4.1 Dataset & Benchmark . 86

5.4.2 Experimental Procedure . 86

5.4.3 Implementation . 89

5.5 Experimental Results . 89

5.5.1 RQ1: µBERT Additive mutations 89

5.5.2 RQ2: Fault Detection comparison with Pitest 93

5.5.3 RQ3: Qualitative Analysis . 100

5.6 Threats to Validity . 104

v

5.7 Conclusion . 106

6 Generic Code Naturalness Measure via Pre-trained Language Models 107

6.1 Introduction . 108

6.2 Naturalness through CodeBERT . 111

6.2.1 Naturalness Metrics . 111

6.2.2 CODEBERT-NT . 113

6.3 Research Questions . 115

6.4 Experimental Setup . 117

6.4.1 Dataset & Benchmark . 117

6.4.2 n-gram ranking . 118

6.4.3 Lines ranking . 119

6.4.4 Threats to Validity . 121

6.5 Results . 122

6.5.1 RQ1: Metrics and aggregation methods 122

6.5.2 RQ2: Comparison with random and complexity based rankings . 125

6.5.3 RQ3: Comparison with n-gram 128

6.6 Discussion . 130

6.6.1 Impact of interesting lines selection 130

6.6.2 Which metric to use for which bug? 134

6.6.3 Impact of generating more predictions per token? 137

6.7 Conclusion . 139

7 Conclusions 140

8 List of Papers and Tools 144

8.1 Papers included in the dissertation . 144

8.2 Papers not included in the dissertation 146

vi

8.2.1 Fault Injection . 146

8.2.2 Software Security . 148

8.3 Software developed during PhD . 150

vii

List of Abbreviations

TAC . Test Adequacy Criterion

TS . Test Suite

PUT . Program Under Test

AST . Abstract Syntax Tree

FD . Fault Detection

BR . Bug Report

FL . Fault Localisation

IRFL . Information Retrieval Fault Localisation

APR . Automated Program Repair

ML . Machine Learning

NMT . Neural Machine Translation

NL . Natural Language

PL . Programming Language

MLM . Masked Language Modeling

viii

JP . Java Parser

UTF8 . Universal Character Set Transformation Format - 8 bits

KN . Kneser Ney

MKN . Modified Kneser Ney

SD . Standard Deviation

JVM . Java Virtual Machine

conv . conventional

cos . cosine

conf . confidence

acc . accuracy

min . minimum

max . maximum

SE . Software Engineering

RQ . Research Question

SOA . State Of the Art

w.r.t. with regards to

aka. also known as

i.e. in example

e.g. example general

ix

List of Figures

4.1 The IBIR fault injection workflow. 37

4.2 Example of IBIR’s input: the bug report MATH-329 (1- the summary, 2-

the summary hints, 3- the description, 4- the description hints, 5- code

elements) and the Commons-Math git repository (6-). 45

4.3 Example of IBIR’s execution on the bug report MATH-329: the IRFL ex-

tracts tokens from the bug-report and the projects repository. Then, it

outputs a list of statements ranked by their suspicioussness (7- the 2 first

ranked statements by IBIR). The mutator loads every statement in this

list, parses its AST, selects the applicable patterns and apply them one

by one to inject faults (8- the statement with the highest suspicioussness,

9- faults injected when processing the first statement). 46

4.4 Distribution of semantic similarities of 100 injected faults per targeted

(real) fault. 54

4.5 Semantic similarity per targeted (real) fault, top values. IBIR injects faults

with higher similarity coefficients than mutation testing. 55

4.6 Semantic similarity of all injected faults. IBIR injects faults with higher

similarity coefficients than mutation testing. 56

4.7 Semantic similarity of injected faults at particular classes. IBIR injects

faults with higher similarity coefficients than mutation testing (at class

level granularity). 58

x

4.8 Percentage of real faults that are coupled to injected ones when injecting

5 to 1000 faults. 59

4.9 Correlation coefficients of test suites (samples from the original project

test suite). The two related variables are a) the percentage of injected

faults that were detected by the sampled test suites and b) whether the

targeted fault was detected or not by the same test suites. 62

4.10 Number of (real) faults where injected faults provided good indications of

fault detection. Particularly, number of cases with statistically significant

difference, in terms of ratios of injected faults detected, between failing

and passing test suites (w.r.t. real faults). 63

4.11 Vargha and Delaney values for IBIR. Â12 values computed on the detec-

tion ratios of injected faults of the test suites that detect and do not detect

the (real) faults. 64

4.12 Distribution of the patterns inducing mutants with an Ochiai coefficient

higher than 0.8 for IBIR when injecting 1000 faults. 67

4.13 Correlation between the semantic similarities and the project size (100

injected faults per targeted (real) fault). 71

5.1 The Workflow of µBERT: (1) input Java code parsing, and extraction of the

target expressions to mutate; (2) creation of simple-replacement mutants

by masking the selected tokens and invoking the model; (3) mutants gen-

eration via masked tokens replacements with the corresponding model

predictions; (4) complex mutants generation via a) conditions-seeding,

b) tokens masking then c) replacement by CodeBERT predictions; and

finally, (5) discarding of not compiling and syntactically identical mutants. 79

5.2 Fault-detection performance improvement when using additive patterns.

Comparison between µBERT and µBERTconv, w.r.t. the fault-detection of

test suites written to kill all generated mutants. 90

xi

5.3 Fault-detection comparison between µBERT and µBERTconv, with the

same effort: where the maximum effort is limited to the minimum effort required

to analyse all mutants of any of them, which is µBERTconv in most of the cases. 92

5.4 Fault-detection comparison between µBERT and PiTest, with the same

effort: where the maximum effort is limited to the minimum effort required to

analyse all mutants of any of them, which is Pit-default in most of the cases. . 94

5.5 Comparison between µBERT and Pitest, relative to the fault-detection of

test suites written to kill all generated mutants. 96

5.6 Number of faults discovered by test-suites written to kill mutants gener-

ated by µBERT and Pitest versions when analysing the same number of

mutants (same effort). 99

6.1 The CODEBERT-NT source-code metrics calculation workflow. 114

6.2 Buggy lines ranking using the three available metrics with different aggre-

gation functions. A line is more likely to be buggy when it has a low min

CBnt conf, a high max CBnt cos and low mean CBnt acc. 123

6.3 Comparison of the buggy lines rankings by CODEBERT-NT (CBnt conf),

Random and Complexity (number of tokens by line). CODEBERT-NT

outperforms Random and Complexity in ranking buggy lines. 126

6.4 Comparison of the buggy lines rankings by CODEBERT-NT (CBnt conf),

UTF8 n-gram and JP n-gram models (created respectively using UTF8

and Java Parser tokenizers). CODEBERT-NT ranking is comparable to

the n-gram models one. 129

6.5 Comparison of the buggy lines rankings by CODEBERT-NT (CBnt conf),

UTF8 n-gram and JP n-gram models (created respectively using UTF8

and Java Parser tokenizers) when ranking all lines. CODEBERT-NT rank-

ing is comparable to the n-gram models one and ranking the business-

logic source-code lines first give it an advantage over the n-gram ranking. 131

xii

6.6 Comparison of the buggy lines rankings by worst possible scores, UTF8

n-gram and JP n-gram models (created respectively using UTF8 and Java

Parser tokenizers) when targeting the buggy versions not exposing any

business-logic-related buggy line. n-gram techniques perform similarly to

random on these subject buggy versions. 132

6.7 Which metric ranks the best the buggy lines, in most of the cases?

CodeBERT confidence CBnt conf performs the best for around 50% of

the cases, followed by CBnt cos then CBnt acc which perms almost

similarly to random. Therefore, There’s no big benefit in using CBnt acc

while it could be interesting to complement CBnt conf capabilities, using

CBnt cos. 134

6.8 Distribution of Bugs best-ranking-metric by standard deviation of the

metrics measured on their corresponding subject lines. Except for few

scores, CBnt conf ranks the majority of the bugs the best independently

from the measured SDs. 135

6.9 Buggy lines ranking using 1, 2, 3, 4 and 5 predictions per token. The more

predictions we use, the more the information about the confidence gets

dissipated, thus the more the ranking performance decreases, except for

CBnt acc. 138

xiii

List of Tables

4.1 Information retrieval features collected from bug reports and source code

files by iFixR [42]. 39

4.2 iBIr fault injection patterns. 41

4.3 Vargha and Deianey Â12 (IBIR VS Mutation) of Kendall and Pearson

correlation coefficients. 60

4.4 Percentage of injected faults that are coupled to real ones when injecting

5 to 1000 faults. 65

5.1 Example of µBERT conventional mutations, available in the preliminary

version of the approach [45], denoted by µBERTconv. 82

5.2 Paired (per subject bug) statistical tests of the average fault detection

of test suites written to kill the same number of mutants generated by

each approach (data of Figure 5.4a). 95

5.3 Paired (per subject bug) statistical tests of the average fault detection of

test suites written to kill all the mutants generated by each approach

(data of Figure 5.5a). 97

5.4 Example of µBERT mutants that helped find the bug Lang-49 from De-

fects4J. 101

xiv

5.5 Example of mutants generated by µBERT that helped in finding bugs

from Defects4J and could not be generated when limiting the maximum

number of surrounding tokens to 10. 103

6.1 Paired Vargha and Delaney Â12 effect size values of the buggy lines

ranking by different pairs of metrics-aggregation methods in ascendant

and descendant order. cos refers to CBnt cos, conf refers to CBnt conf

and the acc metric refers to CBnt acc. 122

6.2 Vargha and Delaney Â12 of CODEBERT-NT low-confidence-metric (CBnt conf)

rankings compared to the other ones. 127

6.3 Vargha and Delaney Â12 of CODEBERT-NT low-confidence-metric (CBnt conf)

rankings compared to n-gram and Random ones. 130

xv

Abstract

Artificial faults have been proven useful to ensure software quality, enabling the simula-

tion of its behaviour in erroneous situations, and thereby evaluating its robustness and

its impact on the surrounding components in the presence of faults. Similarly, by intro-

ducing these faults in the testing phase, they can serve as a proxy to measure the fault

revelation and thoroughness of current test suites, and provide developers with testing

objectives, as writing tests to detect them helps reveal and prevent eventual similar

real ones. This approach – mutation testing – has gained increasing fame and interest

among researchers and practitioners since its appearance in the 1970s, and operates

typically by introducing small syntactic transformations (using mutation operators) to

the target program, aiming at producing multiple faulty versions of it (mutants).These

operators are generally created based on the grammar rules of the target programming

language and then tuned through empirical studies in order to reduce the redundancy

and noise among the induced mutants.

Having limited knowledge of the program context or the relevant locations to mutate,

these patterns are applied in a brute-force manner on the full code base of the program,

producing numerous mutants and overwhelming the developers with a costly overhead

of test executions and mutants analysis efforts. For this reason, although proven useful

in multiple software engineering applications, the adoption of mutation testing remains

limited in practice.

xvi

Another key challenge of mutation testing is the misrepresentation of real bugs by

the induced artificial faults. Indeed, this can make the results of any relying application

questionable or inaccurate. To tackle this challenge, researchers have proposed new

fault-seeding techniques that aim at mimicking real faults. To achieve this, they suggest

leveraging the knowledge base of previous faults to inject new ones. Although these

techniques produce promising results, they do not solve the high-cost issue or even

exacerbate it by generating more mutants with their extended patterns set.

Along the same lines of research, we start addressing the aforementioned challenges

– regarding the cost of the injection campaign and the representativeness of the artificial

faults – by proposing IBIR; a targeted fault injection which aims at mimicking real faulty

behaviours. To do so, IBIR uses information retrieved from bug reports (to select

relevant code locations to mutate) and fault patterns created by inverting fix patterns,

which have been introduced and tuned based on real bug fixes mined from different

repositories. We implemented this approach, and showed that it outperforms the fault

injection performed by traditional mutation testing in terms of semantic similarity with

the originally targeted fault (described in the bug report), when applied at either project

or class levels of granularity, and provides better, statistically significant, estimations

of test effectiveness (fault detection). Additionally, when injecting only 10 faults, IBIR

couples with more real bugs than mutation testing even when injecting 1000 faults.

Although effective in emulating real faults, IBIR’s approach depends strongly on the

quality and existence of bug reports, which when absent can reduce its performance to

that of traditional mutation testing approaches. In the absence of such prior and with the

same objective of injecting few relevant faults, we suggest accounting for the project’s

context and the actual developer’s code distribution to generate more “natural” mutants,

in a sense where they are understandable and more likely to occur.

xvii

To this end, we propose the usage of code from real programs as a knowledge base

to inject faults instead of the language grammar or previous bugs knowledge, such as

bug reports and bug fixes. Particularly, we leverage the code knowledge and capability

of pre-trained generative language models (i.e. CodeBERT) in capturing the code

context and predicting developer-like code alternatives, to produce few faults in diverse

locations of the input program. This way the approach development and maintenance

does not require any major effort, such as creating or inferring fault patterns or training a

model to learn how to inject faults. In fact, to inject relevant faults in a given program, our

approach masks tokens (one at a time) from its code base and uses the model to predict

them, then considers the inaccurate predictions as probable developer-like mistakes,

forming the output mutants set. Our results show that these mutants induce test suites

with higher fault detection capability, in terms of effectiveness and cost-efficiency than

conventional mutation testing.

Next, we turn our interest to the code comprehension of pre-trained language models,

particularly their capability in capturing the naturalness aspect of code. This measure

has been proven very useful to distinguish unusual code which can be a symptom of

code smell, low readability, bugginess, bug-proneness, etc, thereby indicating relevant

locations requiring prior attention from developers. Code naturalness is typically pre-

dicted using statistical language models like n-gram, to approximate how surprising a

piece of code is, based on the fact that code, in small snippets, is repetitive. Although

powerful, training such models on a large code corpus can be tedious, time-consuming

and sensitive to code patterns (and practices) encountered during training. Conse-

quently, these models are often trained on a small corpus and thus only estimate the

language naturalness relative to a specific style of programming or type of project.

xviii

To overcome these issues, we propose the use of pre-trained generative language

models to infer code naturalness. Thus, we suggest inferring naturalness by masking

(omitting) code tokens, one at a time, of code sequences, and checking the models’

ability to predict them. We implement this workflow, named CODEBERT-NT, and

evaluate its capability to prioritize buggy lines over non-buggy ones when ranking code

based on its naturalness. Our results show that our approach outperforms both, random-

uniform and complexity-based ranking techniques, and yields comparable results to the

n-gram models, although trained in an intra-project fashion.

Finally, we provide the implementation of tools and libraries enabling the code

naturalness measuring and fault injection by the different approaches and provide the

required resources to compare their effectiveness in emulating real faults and guiding

the testing towards higher fault detection techniques. This includes the source code of

our proposed approaches and replication packages of our conducted studies.

xix

Chapter 1

Introduction

We introduce in this chapter the general context and challenges of our work. Particularly,

we present the main use cases of fault injection and mutation testing, together with

their main application challenges, which we tackle in our dissertation. Finally, we give a

summary of our contributions and the dissertation organization.

1.1 Software Testing and Fault injection

Software is playing an essential role in diverse domains, such as finance, health, trans-

portation, etc. This broad adoption made multiple tasks dependent on it, and thus, at risk

of outage or malfunctioning whenever the software quality is compromised. Therefore,

as in all engineering fields, software engineering practitioners employ mechanisms to

ensure software quality and validity.

To assess the reliability and robustness of software as well as to prevent severe

failures from happening in real situations, practitioners simulate software execution

in faulty or unexpected circumstances [1]. To this end, they inject artificial faults and

evaluate how they impact the software and its surrounding environment. Based on

how the software handles those faults and how they impact its dependencies and

1

dependents, we can approximate its dependability, robustness and fault tolerance [2], in

similar real-world scenarios. This practice is known as Software Fault Injection [2].

Another commonly employed activity to ensure software quality is testing, which

aims at validating program behaviour and finding faults early in the development cycle.

Testing can be summarized in a nutshell as the activity of executing a program (or

part of it) within a given scenario and assessing that it behaves correctly [3], [4], i.e., it

returns the expected output when given a specific input. Consequently, as we validate

the software through its tested behaviour, its end quality depends on the thoroughness

of those tests (test suites). It entails that thoroughly tested software is more trustworthy

regarding its behaviour than poorly tested ones. As it is tedious and often impossible to

consider every possible scenario, developers tend to focus on testing the most probable

use cases or on some key business components of the program. This may lead to

the negligence of corner cases, allowing eventual faults to bypass the testing phase,

consequently producing a faulty program.

To ensure the quality and thoroughness of test suites, researchers have proposed

test adequacy criteria (TAC) [5], [6], such as measuring the portion of code covered

(executed) when the tests are being executed. Among these TAC, the usage of artificial

faults as a testing objective has been proven effective in guiding testing towards higher

fault detection capabilities; guiding the production of test suites that reveal more faults

[6]–[8]. This approach is known as mutation testing [9]. It aims at seeding faults in the

program under test that would simulate eventual faults and code mistakes, by applying

simple syntactic transformations to its code. These mutated versions of the program

(mutants) are used to approximate the strength of the test suite based on its ability to

detect a difference between the original and the modified version of the program. This

way we can attribute a fault permeability score (mutation score) to a test suite which is

computed by the ratio between the number of detected mutants and the total generated

ones. Intuitively, the not detected (not killed) mutants can also serve as indicators of the

2

not covered scenarios or components of the program, guiding this way the developers

in improving their test suites. This is done by analyzing those mutants and designing

test cases that reveal them, thereby preventing and revealing real bugs.

Artificial faults have also been proven useful in multiple other adjacent software

engineering tasks, like comparing bug detection capabilities, bug fixing, debugging, fault

localization, test generation, etc [9]. For instance, a bibliometric analysis performed in

2016 [10] found that fault injection is used in around 19% of all software testing studies

published in major software engineering conferences.

In this dissertation, we address challenges that concern fault injection in general,

with a particular focus on mutation testing.

1.2 Challenges

Although proven very useful in multiple applications, the adoption of mutation testing

in practice remains limited [11], [12]. This is mainly because of its high machine and

human costs. In fact, mutation testing tends to produce many mutants, against which

tests need to be executed and then manually analysed if they are not killed.

To inject faults into a program, mutation testing operates typically by changing its

source code, and creating new faulty versions of it [13]. Considering the infinite number

of possible modifications that one could apply to a program, one key challenge is to limit

the number of generated mutants, in a manner that enables its practical usability without

hindering intolerably its efficiency, i.e. introducing few productive mutants that provoke

relevant faulty behaviours. Intuitively, if we consider a simple statement involving the

addition of integers b = a+ 100, just by replacing the integer 100 with another value, we

may introduce as many mutants as the number of valid integers allowed by the target

language. This large number of mutants would cause a huge consequent computational

and manual cost to the practitioners, considering the effort to spend in executing tests

3

and analyzing mutants [9], [14], [15]. When applied to large programs, this would hinder

further the usability of the approach, or even make it inconceivable [16].

Another problem with mutation testing is the equivalent mutant problem [17], [18],

i.e., the fact that mutants may be functionally equivalent to the original program, despite

being syntactically different. Equivalent mutants introduce issues by wasting computa-

tional resources, they are executed with tests without these being able to kill them, by

obscuring mutation score measurements [18], and by making developers lose time in

analysing them [17], [19].

To deal with these problems, since the early days of mutation testing, mutant gener-

ation has been limited to simple syntactic transformations in order to keep their number

to a relatively small set of mutants [3], [9]. To this end, studies on the mutant cou-

pling [20] have shown that test suites detecting all simple mutants are also capable of

detecting almost all complex ones, thereby establishing that simple faults are a good

approximation of the test suites’ strengths.

The set of mutation operators has been further tuned through empirical studies

aiming at reducing the noise and redundancy among the generated mutants. The most

prominent results in this direction are the set of five operators proposed by Offut et

al. [21] which ended up being incorporated in most mutation testing tools [22]. Although

this filtering process limits the number of mutants, it still results in excessive numbers

of mutants, the majority of which are of low utility [10], [23]. This is mainly due to the

fact that mutation operators are applied in a brute-force manner, i.e., regardless of the

target code context or the relevant locations to mutate. Additionally, limiting the mutation

operators causes the restriction of the type of faults that can be injected, and thus,

the decrease of the overall fault injection efficiency in terms of diversity and real faults

representativeness.

To summarize, fault injection challenges mainly originate from the difficulty of auto-

matically generating a few faults, that are relevant and productive in any use case and

4

given any project [13]. In the remainder of this section, we present the challenges that

we identified and addressed in this dissertation.

1.2.1 Targeted Fault Injection

To reduce the number of candidate faults, researchers have proposed to restrict the

injection to relevant locations, depending on the target applications. For instance, to

ameliorate the usability of mutation testing in continuously evolving projects (i.e. Contin-

uous Integration [24] driven projects), researchers have proposed to target the code

locations that are impacted by the commit changes [25], [26], instead of reconducting

the whole mutation campaign. This, of course, saves large efforts of rerunning the tests

or reanalysing the same mutants, on every new version while only a smaller part of the

project has been changed.

Similarly, one could target the injection on a specific feature or component of the

project. To do so, the code related to this specific feature must be separated from the

rest of the program, before being able to apply any fault injection. Considering that some

components’ implementations and invocations could be spread on multiple places or

files, particularly on large programs, the task of selecting the relevant locations to target

can become harder, even inconceivable or discouraging by itself, requiring considerable

knowledge of the project implementation.

1.2.2 Realistic Faults

One of the challenges of fault injection techniques, i.e. mutation testing, is to inject

faults that mimic the behaviour of real bugs [27], [28]. This aspect of similarity with real

bugs is very important, especially considering the fact that many software engineering

tasks rely on fault injection techniques [9]. Meaning that these artificial-faults-based

applications can be misled if they consider faults that do not represent real bugs.

5

For instance, mutation testing operates typically by making changes in the target code

by applying a set of mutation operators (a set of simple syntactic transformations) [29].

These operators definition is based on the language grammar [3] and are applied

randomly in a brute-force manner on the entire program code, introducing a numerous

amount of mutants, among which some are eventually realistic faults. This means that

the approach is agnostic towards the fault types and locations of the injection.

Recent research in the field has proposed enhanced techniques of mining fault

patterns [27], [30] to introduce some form of realism in the injected faults with regard

to real ones. These results are encouraging and show the impact of the patterns

in bringing realism to the injection by answering the ”what” to inject, however, these

approaches lack control over the locations ”where” to inject. Considering this limitation,

the approaches would inject faults everywhere in the program code-base and lead to

comparable results as conventional techniques: 1) a large number of faults inducing a

very high cost with 2) probably a small ratio of faults that couple with real ones [7].

Ideally, one would use real faults mined from project repositories or create manually

targeted faults to assess or improve its testing technique, i.e. comparing and improving

the fault detection capability of fuzzing techniques based on real defects. Although this

solution brings some realism, it is tedious and labour-intensive. Particularly, because

older buggy versions have often different tests, code and dependencies than the current

version, and thus cannot be used as-are in most cases, but instead, the bugs need to

be isolated in their occurring versions and then reintroduced in the current one. This

explains also why it is difficult to collect and create a real, diverse and reliable bug

dataset, as well as, why artificial faults form a convenient alternative to real ones in

performing controlled studies [10].

6

1.2.3 Effective Context-aware Mutation Testing

Among the purposes of fault-driven applications is to enable practitioners to account

for and prevent eventual bugs, through artificial ones [2], [9]. For instance, mutation

testing analysis consists of introducing faults in a program that developers can target

to write and improve their tests. Therefore, these faults should be convenient and

understandable by developers to identify their cause and faulty behaviour, and thereby

be able to avoid them by strengthening the tests or even changing the program’s code.

For instance, in this regard, mutation testing tends to rely on mutation operators that

apply small syntactic transformations of code [3], providing small changes to examine

by developers. However, such approaches still introduce faults, among which many

are perceived as unnatural in the sense that they are unlikely to be introduced by

developers, i.e. non-conforming to common coding conventions and practices [16], [31].

This becomes further inevitable when enlarging the mutation possibilities beyond the

conventional operator’s ones, as more mutants with eventually larger changes will be

introduced.

Moreover, considering the large diversity of projects, introducing automatically nat-

ural, interesting and engaging faults for developers, i.e. developer-like mistakes, is a

difficult task as some mutations can be relevant in some contexts while not in others.

Intuitively, a developer can consider a mutant generated by flipping a + to - relevant in

some cases or locations of the program, while discarding similar mutants in others.

This is among the reasons that motivated research in proposing fault injection

approaches that account for the project context and semantics at hand [32]–[34], instead

of just checking whether an operator can be applied or not based on the target code’s

AST. For instance, to emulate real faults Tufano et al. [32] proposed the use of an

NMT-based technique that mutates a given code in a context-preserving manner while

applying changes learned from real mined bugs. Precisely, the proposed approach

takes as input the code of a target method (function) and outputs a new modified version

7

of it, which is eventually faulty. Although the approach favours the mutants that are the

closest syntactically (text distance) to the original code, the diff between the original and

the mutated code remains relatively important, as the approach introduces changes in

the whole method. This can cause extra overhead for developers to analyse the mutants

and distinguish the root cause of the fault from the irrelevant noisy changes introduced

by the approach. Moreover, it is not clear whether favouring the syntactically similar

mutants over the others can bring any advantage to the mutation testing campaign’s

effectiveness in terms of emulating or revealing faults [35].

Overall, it is challenging to capture any 1) given code’s context, 2) adapt the mutations

to it and 3) automatically generate valid (compilable) code but faulty, 4) which is judged

relevant by developers and 5) induces the writing (or generation) of thorough test suites.

1.2.4 Generic Code Naturalness Measure

Much of software-engineering research relies on the naturalness of code [36], the fact

that code, in small snippets, is repetitive. Considering code as recurrent sequences

of words, the naturalness of a given sequence is typically estimated from its likelihood

to occur [37]. This notion of naturalness can be very powerful as it helps identify code

discrepancies, like detecting unusual and eventually bad programming practices, which

are often considered as symptoms of bug-proneness and bugginess [38]. Hence, it can

indicate relevant code locations, requiring prior attention from developers.

Typically, language statistical models – like n-gram ones – are used to estimate code

naturalness, and thus expressing how surprising a sequence of code is w.r.t the code

seen during its training. As training such models on large code corpus can be hard

and costly, their training is often limited to smaller ones, which results in introducing

models that estimate the naturalness relative to a particular style of programming or

type of project [36]. Additionally, their sensitivity to code representation can lead to

an accumulation of models, while not being applicable in a cross-project context. For

8

instance, to estimate the naturalness of a given code file, we would typically use an

n-gram model that has been trained using the other files from the same project [39],

thereby measuring its relative naturalness w.r.t the rest of the project.

1.3 Contributions and Dissertation Organization

In this section, we start by presenting our contributions to address the aforementioned

challenges. Next, we explain how the remainder of this dissertation is organized.

1.3.1 Contributions

Leveraging Bug Reports and Automated Program Repair Patterns for a Targeted

and Realistic Fault Injection.

We propose introducing realism into the fault injection via targeting reported bugs. More

precisely, since bug reports have often relevant information for multiple tasks such

as debugging, automatically localising and repairing faults [40]–[42], we leverage this

information to guide our injection. Associated with fault patterns collected through the

examination of real faults, we can target the injection towards specific features of the

program, producing faults that emulate real buggy behaviours. In addition, the use of

bug reports makes it possible to inject targeted faults without any deep knowledge of the

target system, source code or tests. We implemented this approach, which we name

IBIR [43], and assessed its fault injection performance when targeting real bug reports.

IBIR outperforms significantly conventional mutation testing in terms of injecting faults

that semantically resemble and couple with real ones, in the vast majority of the cases.

This approach allows researchers and practitioners to construct sets of artificial faults

that resemble specific bugs or target particular features from the code. However, as the

injection approach depends on input bug reports, its performance can be impacted by

9

the quality of these ones and inherits all the information retrieval limitations (because of

its IRFL component). Moreover, the approach may also be useless in new projects, i.e.

where no bugs have already been reported, or in use cases not targeting particular bugs

or bug reports. Intuitively, in such situations, one could use the Mutator component of

the approach without the IRFL, by injecting faults in all locations in a brute-force manner

or eventually with a limited budget per location or pattern (i.e. maximum 5 mutants per

line or method or pattern, etc.). However, this method may lead to similar results as

most of the traditional mutation techniques, with an overwhelming number of faults to

analyse for the end-user. Indeed, the number of injected faults would be even more

important than the one injected by traditional mutation testing techniques due to the

newly introduced fault patterns by IBIR.

Therefore, we investigate other possibilities to tackle the challenge of injecting a

few relevant mutants, without targeting any particular bug [44]. For instance, with the

absence of any specific input i.e. a bug report, we believe that the injection should

be focused on the code locations that are the most relevant to review and check by

the practitioners, like the code locations that are responsible for the business logic of

the program. Additionally, to decrease the injection campaign cost and better serve

mutation analysis applications, we should reduce the number of injected faults per code

location instead of blindly applying all possible operators on the whole project codebase,

i.e. favouring ”natural” or likely-to-occur mutations over others. Therefore, we turned

our interest to the usage of generative language models to inject few faults in diverse

business-logic-responsible locations from the target project.

Context-aware and Natural Mutation Testing via Pre-Trained Language Models

Aiming at seeding faults that are both “natural” in a sense easily understood by devel-

opers and strong (have high chances to reveal faults), we propose using pre-trained

generative language models (i.e. CodeBERT) that have the ability to produce developer-

10

like code. This way, when inaccurate, the model would provide developer-like mistakes,

introducing probable alterations of code. Hence, the model has the ability to seed

natural faults, thereby offering opportunities to perform mutation testing.

Additionally, the usage of actual code from real programs as a knowledge base to

inject faults, instead of the language grammar or previous bugs knowledge, makes the

approach more flexible and adaptable to the target project. Meaning that it would not

produce the same transformations, following predefined patterns regardless of the given

project, but rather the fittest mutants to the context of the input code to mutate. Moreover,

as the approach uses already trained models, its development and maintenance do not

require any major effort, such as creating or inferring fault patterns or training a model

to learn how to inject faults.

We realise this idea by implementing µBERT [45], [46], a mutation testing technique

that performs mutation testing using CodeBERT and empirically evaluated it using

real faulty program versions. Our results show that µBERT is more effective and cost-

efficient in guiding the testing towards fault detection than state-of-the-art mutation

testing (Pitest), yielding test suites with an average of up to 17% higher fault detection

capabilities.

Next, we turned our attention to investigating whether we could distinguish relevant

locations to review and check by developers, without any given prior, like a target bug

report. Therefore, we investigate whether and how we could measure code natural-

ness through pre-trained language models, thereby distinguishing locations that are

”unnatural” and thus more likely buggy, bug-prone, etc.

Generic Code Naturalness Measure via Pre-trained Language Models

To overcome the drawbacks of the n-gram-based naturalness metric, we suggest

leveraging the knowledge gained by pre-trained language models (i.e. CodeBERT)

during their training on large-scale corpora of projects, to infer the code naturalness.

11

This offers the possibility to obtain a more generic naturalness metric, in the sense that

it is not specific to a particular project or any narrow scope while saving the training

efforts and bypassing the limitations of n-gram models.

We implemented this approach, named CODEBERT-NT [47], in which we incorpo-

rated CodeBERT [48], a large pre-trained language model. To attribute a naturalness

score to a code sequence, CODEBERT-NT omits its composing nodes (one at a time),

then asks the model to predict them and finally infers the naturalness from the variation

in the prediction performance. To this end, it computes three metrics for every prediction,

which are the exact match of the prediction with the original code, the embeddings

similarity between the original and the predicted code and the confidence of the model

when overtaking the task.

We empirically assessed CODEBERT-NT capability in prioritizing buggy lines over

non-buggy ones when ranking source code based on its naturalness. We found that the

unnaturalness is best reflected by the confidence decrease of the model. Moreover, our

results show that it outperforms both, random-uniform and complexity-based ranking

techniques, and yields comparable results to n-gram models, although trained in an

intra-project fashion.

1.3.2 Dissertation Organization

The remainder of this dissertation is organised as the following: in Chapter 2, we

present an overview of the background and concepts used in our work. Next, Chapter

3 discusses previous related works. In Chapter 4, we present and evaluate IBIR, a

bug-report-driven fault injection approach. Chapter 5 presents and evaluates µBERT,

our proposed mutation testing approach that is based on pre-trained language model

predictions. In Chapter 6, we present and evaluate CODEBERT-NT, our proposed

approach to measure code naturalness through pre-trained language model predictions.

12

Chapter 2

Background

In this section, we present the general background, definitions and concepts employed

in this dissertation.

2.1 Mutation Testing

Mutation testing is an established fault-based testing technique [9]. It operates by

introducing artificial faults into a program, thereby creating many different versions

of it (named mutants). The artificial faults are injected through syntactic changes

to all program locations in the original program, based on predefined rules named

mutation operators [3]. Such operators can, for instance, invert relational operators

(e.g., replacing ≥ with <).

Mutants can be used to indicate the strengths of test suites, based on their ability

to distinguish the original program from the mutated versions (mutants). A mutant is

said to be killed if any of the tests fail (aka. distinguishes the mutant from the original

program) when executed on it, otherwise, it is said to be live or survived. Some mutants

cannot be killed as they are functionally equivalent to the original program, otherwise,

they are said to be killable.

13

The mutation score measures the test suite adequacy and is equal to the percentage

of killed mutants among all the generated ones. The not killed mutants serve as test

objectives (criterion) for developers to improve the fault detection capabilities of their

test suites. To do so, developers analyse those mutants, extract the not covered faulty

behaviours and write tests to reveal them, thereby killing these mutants. This way, and

based on the principle of ”the more mutants a test suite kills, the more faults it can find”,

mutation testing can both: 1) assess and 2) guide testing towards higher fault detection

capabilities.

Aiming at improving the efficiency and reducing the cost of mutation testing, re-

searchers defined some mutant categories to help identify the ones that are more

relevant than others. Those categories are mainly defined depending on 1) the relation

of a mutant with the original code, 2) the relation between a mutant and other generated

mutants and 3) the tests that they fail or pass. For instance, automatically generating

mutants is deemed to generate almost inevitably redundant mutants, which can be

duplicates [18] – meaning equivalent between each other – or equivalent [18], [49]

to the original program. Researchers try to reduce and avoid the generation of such

mutants as they cause an additional unnecessary effort to the mutation campaign while

falsifying the overall tests adequacy measure, i.e. inflating or deflating the number of

killed mutants.

In addition, it is preferable to produce hard-to-kill [50] mutants than trivial (easy-to-

kill) ones, which are easily killed by many tests. One similar way to categorise whether

a mutant is relatively interesting or special among others is by studying the subsumption

relationship between mutants, based on the results of their execution on the same

test suite, particularly the failing tests by each mutant. In this case, the subsuming

ones are those that when killed by a test suite engender the killing of all remaining

(killable) mutants, which are said subsumed. We note also that a subsuming mutant

can only be subsumed by subsuming mutants. This way, developers can save effort

14

when focusing on killing the subsuming mutants, in order to write test suites that kill all

(killable) mutants.

To summarise, mutation testing has two main usages, a) providing guidance for test

generation [8], [51], i.e., mutants are the objectives of the test generation process, and

b) mutants are used as a test adequacy metric [5], i.e., used to decide when to stop

testing. The mutation testing approach is powerful and has been applied for the testing

of different software artefacts, such as program specifications [52], [53], program input

models [53], [54] and behavioural models [55], [56]. In this thesis, we are focusing on

code-based mutation testing and analysis.

2.2 Software Fault Injection (SFI) and Mutation Testing

Software Fault Injection and Mutation Testing (mutation analysis) are two fault-based

software quality assurance techniques [2]. Although very similar, as they both involve

introducing artificial faults in software, they present few differences due to their different

application scopes.

In a nutshell, mutation testing is typically used as a test adequacy criterion, where

the faulty induced versions (mutants) are used to evaluate the thoroughness and the

fault permeability of a test suite, as well as to guide the testing towards higher fault

detection capabilities [9]. In a sense where writing tests to kill those mutants will

allow preventing, detecting and discovering similar real bugs. Whereas, Software Fault

Injection is typically applied later in the process, meaning after testing, for the purpose

of assessing software robustness and fault tolerance [28], risk analysis [57], [58] and

dependability evaluation [2], [59].

This application difference explains their slightly different functioning, targets and

terminologies. Particularly, mutation testing operates by executing tests on mutated

versions of the program under test, while SFI executes the program itself under different

15

workloads (i.e. multiple runs of the software with different inputs) and faultloads (i.e.

different faults) that can be initially present in the program or submitted later during its

execution [2].

Nevertheless, as both approaches rely on artificially introduced faults, they both face

similar challenges, including our main goal, which is producing few relevant faults. For

instance, among the desired properties of a relevant or productive fault (mutant) in the

context of mutation testing is the fact that it is killable but hard-to-kill. Meaning that it is

not easily detected by any test, but only by specific ones, and thus, hard-to-kill. While in

Software Fault Injection, a relevant fault is preferably a residual one, which bypassed

the testing checks. Meaning that it is not detected by the current tests. Similarly, such a

fault is considered relevant when introduced in a mutation testing campaign, as it would

engender the writing of new tests and thus, improve the fault detection of the test suite.

2.3 Fault Localisation

Fault localisation (FL) is the activity of identifying the suspected fault locations, where

the code should be fixed. Several automated fault localisation approaches have been

proposed [60], among which many consist of dynamically analysing the target program

to locate the buggy code via instrumentation of passing and failing test executions. For

instance, among the most famous FL techniques are the spectrum-based ones, which

typically measure the likelihood of a statement to be buggy or not depending on its

coverage (i.e. the statement code coverage [61] or the statement’s killed mutants [41])

by failing or passing tests. Therefore, most of those approaches require the existence

of at least one failing test by the bug among the given test suite, which will indicate

the origin of the target bug. This condition is never met in fault injection applications,

which typically function by altering the code of a project that has only passing tests and

16

without any knowledge of existing bugs. Consequently, we consider such approaches

inadequate for the purpose of identifying relevant locations to mutate.

Recent research has proposed static-analysis fault localisation approaches which

require neither test executions nor failing tests to identify the buggy code, thereby offering

possibilities to be used in fault injection campaigns. For instance, fault localisation

techniques based on Information Retrieval (IR) [62]–[65] exploit textual bug reports

to identify code chunks relevant to the bug, without relying on test cases. Given an

input bug report, IR-based fault localisation tools start by parsing it and extracting

tokens from it, with which a query is formulated then compared with the collection

source code files [40], [66]–[70]. Then, they rank the documents based on their

relevance to the query, such that source files ranked higher are more likely to contain

the fault. Recently, automated program repair methods have been designed on top

of IR-based fault localisation [42]. They achieve comparable performance to methods

using spectrum-based fault localisation, yet without relying on the assumption that test

cases are available, particularly failing ones.

In Chapter 4, we leverage IR-based fault localisation to achieve a different goal;

instead of localising the reported bug, we aim at injecting faults at code locations that

implement functionality similar to the one described by the bug report.

2.4 Fix Patterns

In automated program repair [71], a common way to generate patches is to apply fix

patterns [72] (also named fix templates [73] or program transformation schemes [74])

in suspicious program locations (detected by fault localisation). Patterns used in the

literature [72]–[79] have been defined manually or automatically (mined from bug fix

datasets).

17

Instead of fix patterns, IBIR (Chapter 4) uses fault patterns that are fix patterns

inverted. Since fix patterns were designed using recurrent faults, their related fault

patterns introduce them. This helps injecting faults that are similar to those described in

the bug reports. IBIR inverts and uses the patterns implemented by TBar [80] as we

detail in Chapter 4.

2.5 Generative Language Models

Advances in deep learning approaches gave birth to new language models for code

generation [81]–[84]. These models are trained on large corpora counting multiple

projects, thereby acquiring a decent knowledge of code, enabling them to predict

accurately source code to developers. Among these pre-trained models, CodeBERT [84],

a language model that has been recently introduced and made openly accessible for

researchers by Microsoft.

CodeBERT is an NL-PL bimodal pre-trained language model (Natural Language

Programming Language) that supports multiple applications such as code search, code

documentation generation, etc. Same as most large pre-trained models, i.e. BERT [85],

CodeBERT’s developing adopts a Multilayer Transformer [86] architecture. Its training

involved a large code and natural language corpus collected from over six million

projects available on GitHub, counting 6 different programming languages, including

Java. The model was trained in a cross-modal fashion, through bimodal NL-PL data,

where the input data is formed by pairs of source code and its related documentation,

as well-as unimodal data, including either natural language or programming language

sequences per input. This way, it enables the model to offer both – PL and NL-PL –

functionalities. The training targets a hybrid objective function, that is based on replaced

token detection.

18

µBERT (Chapter 5) incorporates the Masked Language Modeling (MLM) function-

ality [48] of CodeBERT in its workflow, to generate “natural” mutants. The CodeBERT

MLM pipeline takes as input a code sequence of maximum 512 tokens, including among

them one masked as <mask>, whose value will be predicted by the model based on

the context captured from the remaining tokens. CodeBERT provides by default 5

predictions per token, among which we use the inaccurate and compilable predicted

codes as mutants.

Similarely, in Chapter 6, we incorporate the Masked Language Modeling (MLM) func-

tionality [48] of CodeBERT in our experiments pipeline, in order to study the possibility

of inferring code naturalness from the CodeBERT prediction results.

19

Chapter 3

Related Work

In this section, we present the related works to our contributions. Additionally, we

position and discuss our choices and decisions based on the results and findings of

these related works.

3.1 Mutation Operators (Fault Patterns)

Mutation testing [87] has been widely studied since the 1970s and has been proven

useful in multiple software engineering and testing applications [9], [10].

Despite this long history of research, the generation of relevant mutants remains

an open question. Most of the related research has focused on the design of fault

patterns (mutation operators) which are usually defined based on the target language

grammar [3], [9] then refined through empirical studies [21], [22], [88] aiming at reducing

the redundancy and noise among their generated mutants.

The most prominent mutant selection approach is that of Offutt et al. [21], which

proposed a set of 5 mutation operators:

• ABS: makes every arithmetic expression take a zero, a positive and a negative

value.

20

• AOR: replaces every arithmetic operator with every other possible operator that is

syntactically valid.

• LCR: replaces every logical connector (AND and OR) with every other possible

logical connector.

• ROR: replaces relational operators with other relational operators.

• UOI: inserts unary operators in front of expressions.

This set has been incorporated in most of the modern mutation testing tools [22]

and is similar to the one that we use in our baseline [89] in chapter 4. The continuous

advances in this sense were followed by a constant emergence of pattern-based

mutation testing tools and releases [89], [90]. Some of these tools are becoming popular

and widely adopted by researchers and practitioners, such as PiTest [90], [91], from

which we consider three configurations as our comparison baseline in Chapter 5.

Recent research has focused their interest on improving the representativeness of

artificial faults aiming at reducing the mutation space to real-like faults. For instance,

instead of basing the mutation operators’ design on the programming language grammar,

Brown et al. [30] proposed inferring them from real bug fixes. Similarly, Tufano et al. [27],

[32] and Tian et al. [34] proposed a neural machine translation technique that learns

how to inject faults from real bug fixes. Along the same line, Patra et al. [33] proposed

a semantic-aware learning approach, that learns and then adapts fault patterns to the

project of interest. Their results are promising, however, the fact that these techniques

depend on the availability of numerous, diverse, comprehensive and untangled fix

commits [92] of uncoupled faults [20], which is often hard to fulfil in practice, may hinder

their performance. Nevertheless, IBIR (Chapter 4) goal is complementary to the above

studies as it aims at mimicking real bugs by applying fault patterns that have been

constructed by inverting fix-patterns, collected and designed via the mining and the

study of multiple developer bug fixes in various projects.

21

3.2 Fault Injection via Pre-trained Language Models

Overall, designing the mutation operators based on the known faults space yields more

diverse mutants, representing more fault types. However, these extended operator sets

tend to increase the number of generated mutants and consequently the general cost

of the mutation campaign i.e. the fault patterns proposed by Brown et al. [30] as well

as the ones we propose in IBIR counted also most of the conventional mutators in

addition to new ones. Unlike these techniques, we propose in Chapter 5, µBERT which

leverages pre-trained models to introduce mutants based on code knowledge instead

of the faults one. As code is more available than faults, it offers a more flexible and

complete knowledge base than faults, i.e. it perms to overcome the limitations and

efforts required 1) to collect clean bug-fixing commits, 2) to capture the faulty behaviour

and 3) design fault patterns, be it manually or via machine learning techniques.

The closest related work to our approach presented in Chapter 5 is a preliminary im-

plementation of µBERT that was recently presented in the 2022 mutation workshop [45].

This implementation, denoted as µBERTconv in our evaluation, includes the conventional

mutations (to mask and replace tokens by the model predictions), but it does not include

the condition-seeding additive mutations that provide major benefits for fault detection.

Moreover, µBERTconv was evaluated only on 40 bugs from Defects4J, and compared

only to an early version of Pitest (similar to Pit-rv-all). In this work, we perform an

extensive experimental evaluation including 689 bugs from Defects4J and compare

µBERT effectiveness with three different configurations from Pitest. Moreover, we show

that µBERT finds on average more bugs than µBERTconv without requiring more effort.

Recently, Richter et al. [93] employed pre-trained language models to produce

context-dependent artificial faults. Their results showed that their approach can inject

natural and realistic faults that can be used as artificial bug datasets, in order to train

and improve the accuracy of learning-based bug detectors. Their approach is very

22

similar to the one of µBERTconv, thus should yield same results in terms of fault detection

effectiveness and cost-efficiency, when evaluated in a mutation testing context.

3.3 Injection-Relevant Locations

To improve the effectiveness and cost-efficiency of fault injection, researchers have

proposed different strategies to reduce the effort lost in treating redundant and trivial

(easily-killed) mutants [9].

For instance, the studies of Andrews et al. [94] Natella et al. [28] and Chekam et al.

[95] showed that the pair of mutant location and type is what makes mutants powerful

and not the type or the applied operator itself. These findings motivated the importance

of selecting relevant locations to mutate.

In this regard, Mirshokraie et al. [96] propose an approach that computes complexity

metrics from program executions to extract locations with good observability to mutate.

Sun et al. [97] suggest mutating multiple places within diverse program execution paths.

Gong et al. [98] also propose the mutation in diverse locations of the program extracted

from graph analysis. Along the same lines of research, in Chapter 5 we do not target any

specific feature or narrow use case, but instead perform fault injection in a brute-force

way similar to mutation testing, aiming at covering diverse locations of the program.

Other approaches restrict the fault injection on specific locations of the program, such

as the code impacted by the last commits [26], [99] for better usability in continuous

integration. Similarly, in our current approach IBIR (Chapter 4) we target locations

related to a given bug report to target a specific feature or behaviour.

23

3.4 Mutant Selection

Random mutant sampling forms a natural cost-reduction method proposed since the

early days of mutation testing [29]. Despite that, most of the mutant selection methods

fail to perform better than it. Recently, Kurtz et al. [100] and Chekam et al. [95]

demonstrated that selective mutation and random mutant sampling perform similarly.

This implies that despite the efforts put into selective mutation, random mutant sampling

remains among the most effective fault injection techniques. That is the reason why we

adopt it as a baseline in our experiments.

More recent advances have resulted in powerful techniques for cost-effectively

selecting mutants, i.e., by avoiding the analysis of irrelevant mutants (basically, duplicate,

equivalent and subsumed ones) [101]–[103]. For instance, Natella et al. [28] used

complexity metrics as machine learning features and applied them on a set of examples

in order to identify (predict) which injected faults have the potential to emulate well the

behaviour of real ones. Chekam et al. [95] also used machine learning, with many static

mutant-related features to select and rank mutants that are likely fault revealing (have

high chance to couple with a fault). Garg et al. [101] utilises the knowledge of mutants’

surrounding context, using a Seq2Seq-based learning approach, to predict whether

a mutant is likely to be subsuming (as defined in Section 2.1) or not. These studies

assume the availability of historical faults to train on and do not aim at injecting specific

faults as done by IBIR in Chapter 4.

More generally, these approaches address the problem of mutant or (fault) selection

(prioritisation), once the mutants are generated and do not aim at injecting faults like

IBIR and µBERT in Chapters 4 and 5. Nevertheless, we believe that these approaches

can complement and be associated with our proposed techniques to improve their cost

efficiency [104].

24

3.5 Test Execution

Among the issues with mutation testing stands its high computational cost. The problem

stems from the vast number of faults that are injected, which need to be executed with

large test suites, thereby requiring expensive computational resources [9], taking several

minutes if not hours per every mutant execution. Intuitively, reducing the number of

injected faults reduces the tests execution cost, however, this cost remains important

when tests have to be executed on every mutant separately, with a large number

of mutants. Moreover, the mutant execution problem becomes intractable when test

execution is expensive or the test suites involve system-level tests, thereby often limiting

mutation testing application to the unit level.

Aiming to reduce this cost, several approaches have been proposed to limit the test

executions [14]. For instance, Kim et al. [105] proposed to execute only the tests that

trigger the infection of the program state by the considered mutation. Vercammen et

al. [106] suggested executing only the tests that are related to the mutated method

(function) instead of running all tests for all mutants. Wang et al. [107] suggested lever-

aging the mutant schemata concept [108] to enable shared execution states between

different mutants’ test execution, and thus reducing their computational costs.

Overall, these methods offer promising results in terms of mutant execution reduction

but cannot be applied in fault tolerance assessment and do not aim at injecting faults

as done by IBIR (Chapter 4) and µBERT (Chapter 5). Although we acknowledge the

importance of reducing this cost, we consider it as out of our dissertation’s scope and

focus on the faults generation phase challenges and not on the test execution ones.

Precisely, we executed mutants in parallel separately, achieving a considerable cost gain

in conducting our experiments without compromising the effectiveness and precision of

our results.

25

Recent studies aim at reducing the computational demands of the mutant execution

through a combination of static and dynamic metrics [15], i.e. by predicting whether a

mutant will be killed or not without executing any test. While this approach offers the

possibility of obtaining quick estimates of the adequacy of test suites, it does not offer

accurate and precise indications on which mutants to target and thereby which tests to

write.

Nevertheless, we believe that these test execution cost-reduction strategies can

be incorporated or combined with both of our proposed approaches. Together with

parallel mutant executions, they may offer considerable improvements in the usability of

mutation testing and hence, encourage and facilitate its adoption in practice.

3.6 Relation between Mutants and Faults

The relationship between injected and real faults has also received some attention [9].

The studies of Ojdanic et al. [35], Papadakis et al. [7], Just et al. [109] and Andrews et

al. [110] investigated whether mutant kills and fault detection ratios follow similar trends.

The results show the existence of a correlation and, thus, that mutants can be used in

controlled experiments as alternatives to real faults.

In the context of testing, i.e., using mutants to guide testing, injected faults can help

identify corner cases and reveal existing faults. The studies of Frankl et al. [111], Li

et al. [112] and Chekam et al. [6] demonstrated that guidance from mutants leads to

significantly higher fault revelation than that of other test techniques (test criteria).

Based on these findings, we assess the proposed approaches – IBIR and µBERT

(in Chapters 4 and 5) – based on the relation between the injected and real faults, in

terms of failing tests.

26

3.7 Code-naturalness

Estimating the naturalness of source code and thus its latent predictability has been

widely investigated. Research on this area started from the observation of Hindle et

al. [37] that code alike natural language is repetitive and thus techniques designed for

the latter could be applied to the former. This led to the development of code naturalness

which quantifies how surprising a piece of code is, given a reference corpus and amidst

the neighbouring pieces.

The most notable way to evaluate naturalness is through the use of Language

models and particularly n-gram ones. N-gram models approximate the naturalness of

a sequence of tokens based on its occurrence likelihood, estimated relatively to the

sequences observed in the training set. This probability follows a Markov chain condi-

tional probability series, where the probability P (t) of a token t to occur depends on the

n− 1 preceding tokens. To highlight irregular sequences (low probabilities of occurring),

the naturalness of a sequence is usually expressed through cross-entropy [113], [114]

which is computed by aggregating the logarithm of the token probabilities as follows:

H(S) = −
∑m

i=1 log(P (ti|ti−n+1...ti−1))

n
, (3.1)

where n denotes the order of the n-gram model, {t1, ..., tm} the set of m tokens forming

the sequence S and P (ti|ti−n+1...ti−1) the probability P (ti) knowing ti−n+1...ti−1. Con-

sequently, n-gram models attribute high entropy values to unusual (unnatural) code

relatively to regular (natural) code.

Still, n-gram models fail to assign a probability to every token and sequence of

tokens. Indeed, it is often the case in programming like in natural language to observe

sequences and tokens that are unseen in the training corpus, like variable names. To

avoid assigning a zero probability in these scenarios, n-gram models usually replace

every token occurring less than k times by a placeholder i.e. <UNK> and attribute a

27

non-zero probability to it, where k and <UNK> are usually called the unknown threshold

and unknown word [39], [115], [116]. Similarly, to deal with unseen sequences of tokens

in the training set, smoothing techniques can be applied. Several have been proposed

and evaluated over the past decades, among which Kneser Ney (KN) [117] and Modified

Kneser Ney (MKN) [116] are the best performing smoothers [37], [39], [116].

Although code naturalness has broad use, its related n-gram-based metric is suf-

fering from various drawbacks. Indeed, the n-gram models tend to overspecialize and

become specific to the project and programming practices at hand [36]. To obtain a

more generic naturalness measure and overcome the training limitations, we propose

inferring code naturalness through Large Language Models predictions. We introduce

this approach (CODEBERT-NT) in Chapter 6.

Naturalness and Buggyness

Since its appearance, many applications of the naturalness of code have been devel-

opped [36]. Baishakhi et al. [38] have shown empirical evidence that buggy lines are

on average less natural than not-buggy ones and that n-gram entropy can be useful

in guiding bug-finding tasks at both file- and line-level. Jimenez et al. [39] evaluated

the sensitivity of n-gram w.r.t. its parameters and code tokenization techniques, via a

file-level naturalness study. Their results confirmed Baishakhi et al. [38] findings and

provided recommendations on the best n-gram configurations for naturalness-based

applications, including the differentiation between buggy and fixed code.

Based on these findings, we conduct a study to investigate whether and how we

can approximate code naturalness using pre-trained language models and compare

the measured metrics to that computed by n-gram models, trained following Jimenez

et al. [39] recommendations. We present this study and the underlying approach

(CODEBERT-NT) in Chapter 6 and provide an empirical evaluation of its capability

28

in capturing code naturalness, based on its accuracy in distinguishing buggy from

non-buggy code.

29

Chapter 4

Leveraging Bug Reports and

Automated Program Repair Patterns

for a Targeted and Realistic Fault

Injection

Much research on software engineering relies on experimental studies based on fault

injection. Fault injection, however, is not often relevant to emulate real-world software

faults since it “blindly” injects large numbers of faults. It remains indeed challenging to

inject few but realistic faults that target a particular functionality in a program. In this

work, we introduce IBIR, a fault injection approach that addresses this challenge by

exploring change patterns associated to user-reported faults. To inject realistic faults,

we create mutants by re-targeting a bug report driven automated program repair system,

i.e., reversing its code transformation templates. IBIR is further appealing in practice

since it requires deep knowledge of neither code nor tests, but just of the program’s

relevant bug reports. Thus, our approach focuses the fault injection on the feature

targeted by the bug report. We assess IBIR by considering the Defects4J dataset.

30

Experimental results show that our approach outperforms the fault injection performed

by traditional mutation testing in terms of semantic similarity with the original bug, when

applied at either system or class levels of granularity, and provides better, statistically

significant, estimations of test effectiveness (fault detection). Additionally, when injecting

100 faults, IBIR injects faults that couple with the real ones in around 36% of the cases,

while mutation testing achieves less than 4%.

This chapter is based on the following article:

Ahmed Khanfir, Anil Koyuncu, Mike Papadakis, Maxime Cordy, Tegawende F. Bis-

syandé, Jacques Klein, and Yves Le Traon. IBiR: Bug Report driven Fault Injection. In :

ACM Transactions on Software Engineering and Methodology (TOSEM 2022). Accepted

on May 2022. https://doi.org/10.1145/3542946

4.1 Introduction

A key challenge of fault injection techniques (such as mutation analysis) is to emulate

the effects of real faults. This property of representativeness of the injected faults is of

particular importance since fault injection techniques are widely used by researchers

when evaluating and comparing bug finding, testing and debugging techniques, e.g., test

generation, bug fixing, fault localisation, etc, [9]. This means that there is a high risk of

mistakenly asserting test effectiveness in case the injected faults are non-representative.

Typically, fault injection techniques introduce faults by making syntactic changes

in the target programs’ code using a set of simple syntactic transformations [28], [29],

[118], usually called mutation operators. These transformations have been defined

based on the language syntax [3] and are “blindly” mutating the entire codebase of the

projects, injecting large numbers of mutants, with the hope to inject some realistic faults.

This means that there is a limited control on the fault types and the locations where to

31

inject faults. In other words, the appropriate “what” and “where” to inject faults in order

to make representative fault injection has been largely ignored by existing research.

Fault injection techniques may also draw on recent research that mines fault patterns

[27], [30] and demonstrate some form of realism w.r.t. real faults. These results indicate

that the injected faults may carry over the realism of the patterns, fact that removes

a potential validity threat. However, at the same time, they are limited as they do

not provide any control on the locations and target functionality, thus impacting fault

representativeness [7], [28], [95].

This is an important limitation especially for large real-world systems because of the

following two reasons: a) injecting faults everywhere escalates the application cost due

to the large number of mutants introduced and b) the results could be misleading since

a tiny ratio of the injected faults are coupled to the real ones [7] and the injected set of

faults does not represent the likelihood of faults appearing in the field [28]. Therefore,

representativeness of the injected faults in terms of fault types and locations is of utmost

importance w.r.t. both application cost and accuracy of the method.

To bypass these issues, one could use real faults (mined from the projects’ reposito-

ries) or directly apply the testing approach to a set of programs and manually identify

potential faults. While such a solution brings realism into the evaluations, it is often

limited to few fault instances (of limited diversity), requires an expensive manual effort

in identifying the faults and fails to offer the experimental control required by many

evaluation scenarios.

We advance in this research direction by bringing realism in the fault injection via

leveraging information from bug reports. Bug reports often include sufficient information

for debugging techniques in order to localise [40], debug [41] and repair faults [42]

that happened in the field. Therefore, together with specially crafted defect patterns

(mined through systematic examination of real faults) such information can guide fault

injection to target critical functionality, mimic real faulty behaviour and make realistic

32

fault injection. Perhaps more importantly, the use of bug reports removes the need for

knowledge of the targeted system or code.

Our method starts from the target project and a bug report (BR) written in natural

language. It then applies Information Retrieval (IR)-based fault localisation [40] in

order to identify the relevant places where to inject faults. It then injects recurrent fault

instances (fault patterns) that were manually crafted using a systematic analysis of

frequent bug fixes, prioritized according to their position and type. This way our method

performs fault injection, using realistic fault patterns, by targeting the features described

by the bug reports. Moreover, by applying our method on many programs and BRs

(injecting few bugs per BR), one gets fault pools to be used for test and fault tolerance

assessment.

We implemented our approach in a system called IBIR and evaluated its ability to

imitate 280 real faults. In particular we evaluated a) the semantic similarity of real and

injected faults, b) the coupling1 relation between injected and real faults, and c) the

ability of the injected faults to indicate test effectiveness (fault detection) when tested

with different test suites. Our results show that IBIR manages to imitate the targeted

faults, with a median semantic similarity value of 0.577, which is significantly higher

than the 0.134 achieved by using traditional mutation testing, when injecting the same

number of faults.

Interestingly, we found that IBIR injects faults that couple with the real ones in around

36% of the targeted cases. This is achieved by injecting 100 faults per target (real) fault

and it is approximately 9 times higher than the coupled mutants produced by mutation

testing. Fault coupling is one of the most important testing properties [22], [50], here

indicating that one can use the injected faults instead of the real ones.

1Injected faults couple with the real ones when injected faults are detected only by test cases that
detect the real faults. This implies that the injected faults provide good indications on whether tests are
capable of detecting the coupled faults.

33

Another key finding of our study is that the injected faults provide much better

indication on test effectiveness (fault detection) than mutation testing as their detection

ratios discriminate between actual failing and passing test suites, while mutant detection

rates cannot. This implies that the use of IBIR yields more accurate results than the

use of traditional mutation testing.

4.2 Scope & Motivation

IBIR aims at injecting realistic faults, i.e., faults imitating the behaviour of previously

reported ones, to be used for test and fault tolerance assessment. As such, it injects

faults in a current stable (fixed) version of the same system where test techniques are

assessed with respect to a) fault revelation potential, in the case of test assessment, and

b) the reaction of the system under unexpected (faulty) behaviour to support controlled

studies. This means, that we assume the existence of relatively stable projects with

Fixed/Closed bug reports. In principle, IBIR could be use to guide testing towards

open bug reports or to support the discovery of bugs that are similar to those reported.

However, these two use cases regard the fault revelation ability of the fault injection

campaigns (the test guidance provided by fault injection) and not the realistic fault

injection problem (the ability of injecting faults to imitate the behaviour of real ones) that

we are aiming at. Therefore, we have left them open for future research.

4.2.1 Assessment of testing techniques

Fault injection is used extensively by researchers as a tool to evaluate the fault-revealing

capability of automated test techniques such as automated test generation techniques.

This approach was found to be used by approximately 19% of all software testing studies

published in major SE conference by a bibliometric analysis performed in 2016 [10].

34

This is because real and diverse bug-datasets are hard to collect and make it hard to

perform controlled studies as they usually result in faulty versions including single faults.

Fault injection is thus a fast and convenient way to perform control studies since it avoids

the costly and tedious work of creating fault-datasets. In such cases, the realism of the

injected faults is a major validity question that may impact the results of the experiments.

Recent studies [7] have shown that conventional mutation testing doesn’t perform well

in this regard as it introduces many faults that are unrealistic. To deal with such cases,

we develop IBIR and show that it injects more semantically similar faults than traditional

mutation testing.

4.2.2 Fault tolerance assessment

Fault injection is also frequently used to evaluate the system’s performance under

faulty test executions. In such a case, the injected faults simulate the effects of real

ones by performing arbitrary code changes everywhere. To this end, IBIR guides the

injection towards specific error-prune targets/features and fault types. This is particularly

important in order to improve the realism of the analysis. Interestingly, previous research

on fault tolerance assessment [28] has shown that fault injection realism can be improved

by appropriately controlling the locations and types of the injected faults. We therefore,

propose a way to do so by leveraging information from bug reports.

4.3 Approach

We propose IBIR, the first fault injection approach that utilizes information extracted

from bug reports to emulate real faults. A high level view of the way IBIR works is

shown in Figure 4.1 and a step by step overview of IBIR’s approach is illustrated in the

Algorithm 1. Our approach takes as input (1) the source code of the program of interest

35

Algorithm 1 IBIR approach algorithm
Require: bugReport, projectRepository, numberOfFaults

1: patterns[]← loadListOfPatterns()
2: patches[]← []
3: result[]← []
4: rankedSuspF iles[]← fileLevelIRFL(bugReport, projectRepository)
5: first20RankedSuspF iles[]← head(rankedSuspF iles, 20)
6: rankedStatements[]← statementLevelIRFL(bugReport, first20RankedSuspF iles[])
7: for statement in rankedStatements[] do
8: fileAstTree← loadAstTree(statement.containingF ile)
9: statementNodes[]← parseTree(tree, statement)

10: for astNode in statementNodes[] do
11: for pattern in patterns[] do
12: if patternIsAppliableOnNode(pattern, astNode) then
13: patch← createPatch(pattern, astNode, fileAstTree)
14: add(patch, patches[])
15: end if
16: end for
17: end for
18: end for
19: for patch in patches[] do
20: faultyV ersion← apply(patch, projectRepository)
21: if isCompilable(faultyV ersion) then
22: add(patch, result[])
23: end if
24: if numberOfFaults == length(result[]) then
25: return result[]
26: end if
27: end for
28: return result[]

36

Figure 4.1: The IBIR fault injection workflow.

and (2) a bug report of that program. The objective is to inject artificial faults in the

program (one by one, creating multiple faulty versions of it) which imitate the original

bug. To do so, IBIR proceeds in three steps.

First step: IBIR identifies relevant locations to inject the faults. It applies IR-based

fault localisation to determine, from the bug report, the code locations (statements) that

are likely to be relevant to the target fault. These locations are ranked according to their

likelihood to be the feature described by the bug report, hence are relevant to inject

faults.

Second step: IBIR mutates the identified code locations by applying fault patterns.

We build our patterns by inverting fix ones, that have been proposed and used in

automated program repair (APR) approaches [80]. Our intuition is that, since fix patterns

are used to fix bugs, inverted patterns may introduce a fault similar to the original bug.

For each location, we apply only patterns that are syntactically compatible with the code

location. This step yields a set of faults to inject, i.e., pairs composed of a location and

a pattern.

Third step: our method ranks the location-pattern pairs w.r.t. the location likelihood

and priority order of the patterns. Then IBIR takes each pair (in order) and applies the

pattern to the location, injecting a fault in the program. We repeat the process until the

37

desired number of injected faults has been produced or until all location-pattern pairs

have been considered.

4.3.1 Bug Report driven Fault Localisation

IR-based fault localisation (IRFL) [119], [120] leverages eventual similarity between the

description and content of a bug report and the source code of the target program to

identify eventual relevant buggy code locations. To do so, these approaches operate

typically by formulating a query using tokens extracted from an input bug report, then

computing its similarity with the documents’ composing tokens. For instance, when

applied on the file level of granularity, each source code file is considered as a document,

and hence, part of the target search space [40], [66]–[69], [121]. Next, IRFL techniques

rank these files based on their measured similarities with the given bug report, providing

insights on which files are more likely to be related to this latter. Meaning that the files

that are more likely to be buggy are ranked first.

We follow the same principle to identify promising locations where to inject realistic

faults, relying on information contained in bug report to find the code location with

the highest similarity score. Most IRFL approaches focus on file-level localisation,

which can be coarse-grained for our purpose of fault injecting. Thus, we rather use a

statement-level IRFL approach that has been successfully applied to support program

repair [42].

It is to be noted that, contrary to program repair, we do not aim to identify the exact

bug location. We are rather interested in locations that allow injecting realistic faults

(similar to the bug). This means that IRFL may pinpoint multiple locations of interest for

fault injection even if those were not buggy code locations.

To identify fault injection locations that are related to the targeted bug-report, we

leverage an existing IRFL tool that was originally developed as part of the iFixR [42] tool.

The IRFL works by matching words of a bug report with source code file(s) using 17

38

Table 4.1: Information retrieval features collected from bug reports and source code
files by iFixR [42].

Bug Report Features
Feature Description
summary The title and the summary of the bug report
description The description part of the bug report
rawBugReport The whole bug report as in textual form
stackTraces The stack traces in the bug report
codeElements Code snippets in the bug reports
summaryHints Code-related terms in summary
descriptionHints Code-related terms extracted when parsing the description

Source Code Features
Feature Description
packageNames The parsed package names of the source code files
classNames The parsed class names of the source code files
methodNames The parsed method names of the source code files
methodInvocations The parsed method invocation of the source code files
formalParameters The parsed formal parameters of the source code files
memberReferences The parsed member references of the source code files
documentation The parsed class names of the source code files
rawSource Source file as a text
hunks The hunks from the commits on the file
commitLogs The commit logs of the file

features. These features are extracted from the bug report (7 features) and the source

code git repository (10 features) and are listed in Table 4.1.

For every feature, the tokenizer applies a lexical analysis where (1) it extracts tokens

from the retrieved text, (2) then drops stopwords to reduce the noise, i.e., caused by the

programming language keywords, and (3) applies stemming on all the tokens to obtain

homogeneous tokens based on their roots. The tokens are extracted by considering

both white space and source code specific separators, such as punctuation and camel

case splitting, i.e., calculateMaximum is split to calculate and Maximum. Next, the

tokens are filtered by checking them with the WordNet [122] dictionary and discarding

39

the unknown ones. An additional sanity check is then applied in order to extract the

stack-traces and source code elements, using regular expressions.

The IRFL calculates then the similarity coefficient (Cosine [123]) between the bug

report and a source code file using a revised Vector Space Model (rVSM) [40] based on

the occurrences-frequency of the extracted tokens in the preprocessing tokenization

step (the vectors are calculated using tf − idf [124]).

Next, an ensemble of classification models provided by D&C [125] was used in order

to rank the source code files according to their suspiciousness. This ensemble takes

as input the calculated 7x10 weights of all pairs < bug report, source code file > and

outputs their averaged prediction results. This ensemble was used as it has been shown

to work well on a diverse set of bug reports [125] since every classifier of the ensemble

model was trained on a different set of data.

In a last step, as iFixR [42], the IRFL localises suspicious statements from the 20

most suspicious files based on their rVSM cosine-similarity [123] with the given bug

report (the vectors are calculated using tf − idf [124]) and outputs these statements

in a list of statements ranked according to their suspiciousness. Further details on the

IRFL can be found in the D&C work [125] and our implementation [126].

4.3.2 Fault patterns

We start from the fix patterns developed in TBar [80], a state of the art pattern-based

program repair tool. Any pattern is described by a context, i.e., an AST node type

to which the pattern applies, and a recipe, a syntactical modification to be performed

similar to program repair techniques [127]. For each pattern, we define a related fault

injection pattern that represents the inverse of that pattern. For instance, inverting the

fix pattern that consists of adding an arbitrary statement yields a remove statement fault

pattern. Interestingly, some fix patterns are symmetric in the sense that their inverse

pattern is also a fix pattern, e.g., inverting a Boolean connector. These patterns can

40

Table 4.2: iBIr fault injection patterns.

Pattern category Bug injection pattern example input example output

Insert Statement Insert a method call,
before or after the localised statement. someMethod(expression); someMethod(expression);

method(expression);
Insert a return statement,
before or after the localised statement. statement; statement;

return VALUE;

Wrap a statement with a try-catch. statement;
try{
statement;
} catch (Exception e){ ... }

Insert an if checker: wrap a
statement with an if block. statement; if (conditional exp) {

statement; }

Mutate Class
Instance Creation

Replace an instance creation call by
a cast of the super.clone() method call. ... new T(); ... (T) super.clone();

Mutate Conditional
Expression

Remove a conditional expression.
Insert a conditional expression.

condExp1 && condExp2
condExp1

condExp1
condExp1 && condExp2

Change the conditional operator. condExp1 && condExp2 condExp1 || condExp2

Mutate Data Type Change the declaration type of a variable. T1 var ...; T2 var ...;
Change the casting type of an expression. ... (T1) expression ...; ... (T2) expression ...;

Mutate float or
double Division

Remove a float or a double cast
from the divisor.

... dividend / (float) divisor ...;

... intVarExp / 10d ...;
... dividend / divisor ...;
... intVarExp / 10 ...;

Remove a float or a double cast ... (float) dividend / divisor ...; ... dividend / divisor ...;
from the dividend. ... 1.0 / var ...; ... 1 / var ...;
Replace float or double multiplication ... (1.0 / divisor) * dividend dividend / divisor ...;
by an int division. ... 0.5 * intVarExp ...; ... intVarExp / 2 ...;

Mutate Literal
Expression

Change boolean, number or string
literals in a statement by another literal
or expression of the same type.

... string literal1 ...

... int literal ...

... string literal2 ...

... int expression ...

Mutate Method
Invocation

Replace a method call by another one.
Replace a method call argument.

... method1(args) ...

... method(arg1, arg2) ...
... method(args) ...
... method(arg1, arg3) ...

Remove a method call argument. ... method(arg1, arg2) method(arg1) ...
Add an argument to a method call ... method(arg1) method(arg1, arg2) ...

Mutate Return
Statement Replace a return experession. return expr1; return exp2;

Mutate Variable Replace a variable by another variable
or an expression of the same type.

... var1 ...

... var1 ...
... var2 ...
... exp ...

Move Statement Move a statement to another position. statement;
...

...
statement;

Remove Statement Remove a statement. statement;
... ...

Remove a method. method(args){ statement; } ...

Mutate Operators Replace an Arithmetic operator. ... a + b a - b ...
Replace an Assignment operator. ... c += b c -= b ...
Replace a Relational operator. ... a <b a >b ...
Replace a Conditional operator. ... a && b a || b ...
Replace a Bitwise or a Bit Shift operator. ... a & b a | b ...
Replace an Unary operator. a++ a--
Change arethmetic operations order. a + b * c c + b * a

41

thus be used for both bug fixing and fault injection. Table 4.2 enumerates the resulting

set of fault injection patterns used by our approach.

Given a location (code statement) to inject a fault into, we identify the patterns that

can be applied to the statement. To do so, our method starts from the AST node of

the statement and visits it exhaustively, in a breadth-first manner. Each time it meets

an AST node that matches the context of a fault pattern, it memorizes the node and

the pattern for later application. Then the method continues until it has visited all AST

nodes under the statement node. This way, we enumerate all possible applications of

all fault patterns onto the location.

Since more than one pattern may apply to a given location, we prioritize them

by leveraging heuristic priority rules previously defined in automated program repair

methods (these were inferred from real-world bug occurrences [80]). This means that

every fault injection pattern gets the priority order of its inverse fix pattern.

4.3.3 Fault injection

The last step consists of applying, one by one, the fault patterns to inject faults at

the program locations identified by IRFL. Locations of higher ranking are considered

first. Within a location, pattern applications are ordered based on the pattern priority.

By applying a pattern to a corresponding AST node of the location, we inject a fault

within the program before recompiling it. If the program does not compile, we discard

the fault and restart with the next one. We continue the process until it reaches the

desired number of (compilable) injected faults or all locations and patterns have been

considered.

42

4.3.4 Demonstration Example

Figures 4.2 and 4.3 illustrate the execution steps of IBIR when injecting faults in

commons-math project, based on the content of the bug report MATH-3292.

IBIR starts by parsing the bug report and extracting its relevant information: the

summary (1), the summary hints (2), the description (3), the description hints (4), code

elements (5) and the raw bug-report. This example bug report does not contain any

stack-trace as the corresponding bug causes a misbehavior but does not trigger any

crash or throw any exception.

IBIR loads also all the required information from the projects repository (6) then

uses all of these features to find the code locations that are the most likely related to

the input bug-report. This search happens in two steps - file-level then statement-level

localisation - and ends by the output of a sorted list of source-code lines (7), as detailed

in subsection 4.3.1.

IBIR parses these lines one by one starting with the highest rank. In

this example, the 1st rank is attributed to the line number 303 of the file

src/main/java/org/apache/commons/math/stat/Frequency.java (8), which corre-

sponds to a return statement that invokes the method getPct with a variable v which

is cast to the type Comparable. IBIR selects all compatible fault patterns with this

statement’s AST and applies them one by one on the source-code, inducing multiple

faults. In Figure 4.3 we illustrate the modified source-code corresponding to 5 faults

injected in the line 303 of the Frequency.java file (9): Faults 1 and 2 are injected by

invoking respectively the methods getCumPct and getCumFreq instead of getPct. In

fault 3, the method getPct is invoked with the field this.freqTable as variable instead

of v. Faults 4 and 5 are injected by inserting additional method calls before the return

statement, respectively addValue(v); and clear();.

2Bug report link: https://issues.apache.org/jira/browse/MATH-329

43

IBIR continues parsing the sorted source code locations by the IRFL until all of them

are treated or the requested number of faults has been injected.

44

Bug-report MATH-329

packages

packageName, classNames, methodNames, methodInvocations,
formalParameters, memberReferences, documentation, rawSource

Classes

Commits (commit logs and hunks)
Git history

Commons-Math git repository

1

2

4

3

5

6

Figure 4.2: Example of IBIR’s input: the bug report MATH-329 (1- the summary, 2- the
summary hints, 3- the description, 4- the description hints, 5- code elements) and the
Commons-Math git repository (6-).

45

IR-based fault

localisation

Rank Likeli-
hood File Line

number

1 0,698 src/main/java/org/apache/commons/
math/stat/Frequency.java 303

2 0,642 src/main/java/org/apache/commons/
math/stat/Frequency.java 475

… … … …

Frequency.java

Fault injection Compatible fault

pattern selection

Fault 4Frequency.java

Fault 5Frequency.java

Insert a new statement

Fault 1Frequency.java

Fault 2Frequency.java

Invoke another method

Fault 3Frequency.java

Invoke the method with another variable

MATH-329
Bug-report

Commons-
Math git

repository

78

8

9

Figure 4.3: Example of IBIR’s execution on the bug report MATH-329: the IRFL ex-
tracts tokens from the bug-report and the projects repository. Then, it outputs a list of
statements ranked by their suspicioussness (7- the 2 first ranked statements by IBIR).
The mutator loads every statement in this list, parses its AST, selects the applicable
patterns and apply them one by one to inject faults (8- the statement with the highest
suspicioussness, 9- faults injected when processing the first statement).

46

4.4 Research Questions

Our approach aims at injecting faults that imitate real ones by leveraging the information

included in bug reports. Therefore, a natural question to ask is how well IBIR’s faults

imitate the targeted (real) ones. Thus, we ask:

RQ1 (Imitating bugs): Are the IBIR faults capable of emulating, in terms of semantic

similarity, the targeted (real) ones? How they compare with mutation testing?

To answer this question, we check whether any of the injected faults imitate well the

targeted ones. Following the recommendations from the mutation testing literature [7]

we approximate the program behaviour through the project test suites and compare

the behaviour similarity of the test cases w.r.t. their pass and failing status using the

Ochiai similarity coefficient. This is a typical way of computing the semantic similarity of

mutants and faults in mutation-based fault localisation [41], [128].

We then compare these results with the mutation testing ones by injecting mutants

using the standard operators employed by mutation testing tools [22] and measuring

their semantic similarity with the targeted faults. To make a fair comparison, we inject

the same number of faults per target. For IBIR we selected the top-ranked mutants

while for mutation testing we randomly sampled mutants across the entire project code-

base. Random mutant sampling forms our baseline since it performs comparably to the

alternative mutant selection methods [95], [100]. Also, since we are interested in the

relative differences between the injected fault sets, we repeat our experiments multiple

times using the same number of faults (mutants).

Our approach identifies the locations where bugs should be injected through an

IR-based fault localisation method. This may give significant advantages when applied

at the project level, but these may not carry on individual classes. Such class level

granularity may be well suited for some test evaluation tasks, such as automatic test

generation [129]. To account for this, we performed mutation testing (using the traditional

47

mutation operators) at the targeted classes (classes where the faults were fixed). To

make a fair comparison we also restricted IBIR to the same classes and compared the

same number of mutants. This leads us to the following question:

RQ2 (Comparison at the target class): How does IBIR compare with mutation testing,

in terms of semantic similarity, when restricted to particular classes?

We answer this question by injecting faults in only the target classes using the

IBIR bug patterns and the traditional mutation operators. Then we compare the two

approaches the same way as we did in RQ1.

Up to this point, the answers to the posed questions provide evidence that using our

approach yields mutants that are semantically similar to the targeted bugs. Although,

this is important and demonstrates the potential of our approach, it does not necessarily

mean that the injected faults are strongly coupled with the real ones3. Mutant and

fault coupling is an important property for mutants that significantly helps testing [109].

Therefore, we seek to investigate:

RQ3 (Mutant and fault coupling): How does IBIR compare with mutation testing with

respect to mutant and fault coupling?

To answer this question we check whether the faults that we inject are detected only

by the failing tests, i.e., only by the tests that also reveal the target fault. Compared to

similarity metrics, this coupling relation is stricter and stronger.

After answering the above questions we turn our attention to the actual use of

mutants in test effectiveness evaluations. Therefore, we are interested in checking the

correlations between the failure rates of the sets of the injected faults we introduce and

the real ones. To this end, we ask:

3Mutants are coupled with real faults if they are killed only by test cases that also reveal the real faults

48

RQ4 (Failure estimates): Are the injected faults leading to failure estimates that are

representative of the real ones? How do these estimates compare with mutation

testing?

The difference of RQ4 from the other RQs is that in RQ4, a set of injected faults is

evaluated while, in the previous RQs only isolated mutant instances.

4.5 Experimental Setup

4.5.1 Dataset & Benchmark

To evaluate IBIR we needed a set of benchmark programs, faults and bug reports. We

decided to use Defects4J [130] since it is a benchmark that includes real-world bugs

and it is quite popular in software engineering literature.

Linking the bugs with their related reports

We used the bug-report to revision-id (commit) mapping provided by the Defects4J

dataset. Unfortunately, none of the provided revisions-ids for the projects Lang and Math

were pointing to the actual git repositories. As the projects have been migrated into

GitHub but the revision-ids didn’t get updated in the dataset. So for these two projects,

we mapped the bug reports with their corresponding bugs in Defects4J, by following the

same process as in the study of Koyuncu et al. [42]. We used the bug-linking strategies

that are available in Jira and used the approach of Fischer et al. [131] and Thomas et al.

[132] to map the sought bugs with the corresponding reports. Precisely, we crawled the

relevant bug reports and checked their links. We selected bug reports that were tagged

as “BUG” and marked as “RESOLVED” or “FIXED” and have a “CLOSED” status. Then

we searched the commit logs to identify related identifiers (IDs) that link the commits

with the corresponding bug.

49

Additionally, because of limitations in our current IRFL implementation, we included

only the projects that are using Jira as issue tracking software.

Our resulting bug dataset included the 316 faults of Defect4J related to the Cli (39),

Codec (18), Collections (4), Compress (47), Csv (16), JxPath (22), Lang (64) and Math

(106) projects. We discarded 36 defects because they were sharing the same bug

report and we could not map the correct one with its related issue, or issues with the

buggy program versions such as missing files from the repository, or execution issues,

at the reporting time. This leaves us with a total of 280 faults.

4.5.2 Experimental Procedure

To compare the fault injection techniques we need to set a common basis for comparison.

We set this basis as the number of injected faults since it forms a standard cost metric

[21] that puts the studied methods under the same cost level. We used sets of 5, 10, 30,

and 100 injected faults since our aim is to equip researchers with few representative

faults, per targeted fault, in order to reach reasonable execution demands. To reduce

the arbitrariness due to the stochastic nature of mutation testing, we reproduced the

injection 15 times, then we sorted the executions by their average Ochiai coefficient (for

every bug separately) and we reported the mean execution. In the other hand, we run

iBiR only once as its approach does not depend on random decisions.

To measure how well the injected faults imitate the real ones (answer RQ1 and RQ2)

we use a semantic similarity metric (Ochiai coefficient) between the test failures on

the injected and real (targeted) faults. Precisely, let fTSM and fTSB be the sets of

failing tests when executing a test suite TS correspondingly on a mutant M and a buggy

project B, the Ochiai coefficient is 0 if any of fTSM or fTSB is empty, else is calculated

as

Ochiai(M,B) =
|fTSM ∩ fTSB|√
|fTSM |.|fTSB|

, (4.1)

50

where |set| denotes the set size. In our study, as we’re executing the fixed-version

test-suites provided by defects4j, every targeted bug breaks at least one test, thus,

fTSB is never empty. This coefficient quantifies the similarity level of the program

behaviours exercised by the test suites and is often used in mutation testing literature

[7]. The metric takes values in the range [0, 1] with 0 indicating complete difference and

1 exact match. We treated the injected faults that were not detected by any of the test

suites as equivalent mutants [17], [49]. This choice does not affect our results since

we approximate the program behaviours through the projects test suites, i.e., they are

never killed.

To measure whether the injected faults couple with the existing ones (answer RQ3),

we followed the process suggested by Just et al. [109] and identified whether there were

any injected faults that were killed by at least one failing test (test that detects the real

fault) and not by any passing test (test that does not detect the real fault). In RQ4 we

randomly sampled 50 test suites, random subsets of the accompanied test suites, that

included between 10% to 30% test cases of the original test suite (provided by defects4j).

Thus, we ensure that the selected samples (1) are smaller than the original test suite,

(2) have different sizes and (3) different ratios of killing the mutants and detecting the

targeted bug. Then we recorded the ratios of the injected faults that are detected when

injecting 5, 10, 30 and 100 faults. We also recorded binary variables indicating whether

or not each test suite detects the targeted fault. This process simulates cases where

test suites of different strengths are compared. Based on these data, we computed two

statistical correlation coefficients, the Kendall and Pearson.

To further validate whether the two approaches provide sufficient indicators on the

effectiveness of the test suites, we check whether the detection ratios of the injected

faults are statistically higher when test suites detect the targeted faults than when they

do not.

51

To reduce the influence of stochastic effects we used the Wilcoxon test with a

significance level of 0.05. This helped deciding whether the differences we observe

can be characterised as statistically significant. Statistical significance does not imply

sizable differences and thus, we also used the Vargha Delaney effect size Â12 [133].

In essence, the Â12 values quantify the level of the differences. For instance, a value

Â12 = 0.5 can be interpreted as a tendency of equal value of the two samples. Â12 > 0.5

suggest that the first set has higher values, while Â12 < 0.5 suggest the opposite.

4.5.3 Implementation

To perform our experiments, we implemented IBIR’s approach as described in Sec-

tion 4.3: we have used the IRFL implementation proposed in iFixR [42] and implemented

the mutator component which is responsible of injecting faults in specific locations, as

a java standalone application. Second, for the mutation testing, denoted as “Muta-

tion” in our experiments, we used randomly sampled mutants from those produced by

typical mutation operators, coming from mutation testing literature. In particular we

implemented the muJava intra-method mutation operators [89], which are the most

frequently used [22]. Third to reduce the noise from stillborn mutants, i.e., mutants

that do not compile, we discarded without taking into any consideration, i.e., prior to

our experiment, every mutant that did not compile or its execution with the test suite

exceeded a timeout of 5 minutes. Fourth, when answering the RQ1, we found out

that there were many cases where IBIR injected less than 100 faults. To perform a

fair comparison, we discarded these cases (for both approaches). This means that

we always report results where both studied approaches manage to inject the same

number of faults.

52

4.6 Results

4.6.1 RQ1: Semantic similarity between IBIR injections and the

targeted real faults

To check whether the injected faults imitate well the targeted ones, we measured their

behaviour (semantic) similarity w.r.t. the project test suites (please refer to Section 4.5

for details). Figure 4.4 shows the distribution of the similarity coefficient values that were

recorded in our study. As can be seen, IBIR injects hundreds of faults that are similar to

real ones, whereas mutation testing (denoted as Mutation in Figure 4.4) did not manage

to generate any. At the same time, as typically happens in mutation testing [7], a large

number of injected faults have low similarity. This is evident in our data, where mutations

have 0 similarity.

To investigate whether IBIR successfully injects any fault that is similar (semantically)

to the targeted ones, we collected the best similarity coefficients, per targeted fault,

when injecting 5, 10, 30 and 100 faults. Figure 4.5 shows the distribution of these results.

For more than half of the targeted faults, IBIR yields a best similarity value higher than

0.5, when injecting 100 faults, indicating that IBIR’s faults imitate relatively well the

targeted ones. We also observe that in many faults the best similarity values are above

0 by injecting just 10 faults. This is important since it indicates that IBIR successfully

identifies relevant locations for fault injection.

To establish a baseline and better understand the value of IBIR, we need to contrast

IBIR’s performance with that of mutation testing when injecting the same number of

faults. Mutation testing forms the current SOA of fault injection and thus a related

baseline. As can be seen from Figure 4.5, the similarity values of mutation testing are

significantly lower than those of IBIR.

53

0.0 0.2 0.4 0.6 0.8 1.0
Semantic similarity

0

5000

10000

15000

20000

Fr
eq

ue
nc

y
IBIR
Mutation

(a) All injected faults.

0.0 0.2 0.4 0.6 0.8 1.0
Semantic similarity

0

200

400

600

800

1000

Fr
eq

ue
nc

y

IBIR
Mutation

(b) Faults with an Ochiai coefficient higher than zero.

Figure 4.4: Distribution of semantic similarities of 100 injected faults per targeted (real)
fault.

54

5 10 30 100
Injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

IBIR
Mutation

Figure 4.5: Semantic similarity per targeted (real) fault, top values. IBIR injects faults
with higher similarity coefficients than mutation testing.

55

5 10 30 100
Injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

IBIR
Mutation

Figure 4.6: Semantic similarity of all injected faults. IBIR injects faults with higher
similarity coefficients than mutation testing.

IBIR injects faults that resemble those described in Bug Reports. IBIR injects a

fault that imitates the real targeted one, significantly better than traditional mutation

testing.

Figure 4.6 shows the distribution of the semantic similarities, between real and

injected faults, when injecting 5, 10, 30 and 100 faults. As can be seen from the

boxplots, the trend is that a large portion of faults injected by iBiR have positive similarity

scores with the targeted ones.

Interestingly, in mutation testing, only outliers have their similarity above 0. In

particular, mutation testing injected faults with similarity values higher than 0 in 87, 112,

145, 189 of the targeted faults (when injecting 5, 10, 30, 100 faults), while IBIR injected

in 130, 156, 190, 226 of the targeted faults, respectively.

56

To validate this finding, we performed a statistical test (Wilcoxon paired test) on

the data of both figures 4.5 and 4.6 to check for significant differences. Our results

showed that the differences are significant, indicating the low probability of this effect to

be happening by chance. The size of the difference is also big, with IBIR yielding Â12

values between 0.64 and 0.68 indicating that IBIR injects faults with higher semantic

similarity to real ones in the great majority of the cases. Due to the many cases with 0

similarity values, the average similarity values of IBIR’s faults is 0.163, while for mutation

it is 0.010, indicating the superiority of IBIR.

IBIR injects faults that better resemble real faults, than traditional mutation testing,

in 64%-68% of the cases.

4.6.2 RQ2: IBIR Vs Mutation Testing at particular classes

To check the performance of IBIR at the class level of granularity we repeated our

analysis by discarding, from our priority lists, every mutant that is not located on the

targeted classes, i.e., classes where the targeted faults have been fixed. Figure 4.7

shows the distribution of the semantic similarities when injecting 5, 10, 30 and 100

faults at a particular class. As expected, mutation testing scores are higher than those

presented before, but still mutation testing falls behind.

To validate this finding, we performed a statistical test and found that the differences

are significant. The size of the difference is between 0.62 and 0.65, meaning that IBIR

scores more than 60% times higher than mutation testing. The average similarity values

of the IBIR faults is 0.217, while for mutation is 0.066, indicating that IBIR is better.

IBIR outperforms traditional mutation testing, imitating real faults, even when

restricted to a particular (target) class. The difference is significant with IBIR

scoring more than 60% of the time higher than mutation testing.

57

5 10 30 100
Injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

IBIR
Mutation

Figure 4.7: Semantic similarity of injected faults at particular classes. IBIR injects faults
with higher similarity coefficients than mutation testing (at class level granularity).

58

5 10 30 100 200 500 1000
Injected faults

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

15.7
18.6

24.6

35.7

45.7

53.6

61.1

1.1 0.4 1.1
3.9 6.1

11.8

18.2

IBIR
Mutation

Figure 4.8: Percentage of real faults that are coupled to injected ones when injecting 5
to 1000 faults.

4.6.3 RQ3: Fault Coupling

The coupling between the injected and the real faults forms a fundamental assumption

of the fault-based testing approaches [130]. An injected fault is coupled to a real one

when a test case that reveals the injected fault also reveals the real fault [130]. This

implies that revealing these coupled injected faults results in revealing potential real

ones. We therefore, check this property in the faults we inject and contrast it with the

baseline mutation testing approach.

Figure 4.8 shows the percentage of targeted faults where there is at least one

injected fault that is coupled to a real one. This is shown for the scenarios where 5, 10,

30 and 100 faults, per target, are injected. As we can see from these data, IBIR injects

coupled faults for approximately 16% of the target faults when it aims at injecting 5 faults.

59

Table 4.3: Vargha and Deianey Â12 (IBIR VS Mutation) of Kendall and Pearson correla-
tion coefficients.

Number of injected faults 5 10 30 100

Kendall 0.605 0.620 0.681 0.655

Pearson 0.580 0.612 0.627 0.652

This percentage increases to 36% when the number of injected faults is increased to

100.

Perhaps surprisingly, mutation testing did not perform well (it injected coupled faults

for around 4% of the targeted, when injecting 100 faults per target). These results differ

from those reported by previous research [7], [109], because a) previous research only

injected faults at the faulty classes and not the entire project and b) previous research

injected all possible mutant instances and not 100 as we do.

IBIR injects coupled faults for approximately 16%-36% of the cases, while mutation

testing does it in around 4%. This is achieved by injecting 5-100 faults.

4.6.4 RQ4: Fault detection estimates

The results presented so far provide evidence that some of the injected faults imitate well

the targeted ones. Though, the question of whether the injections provide representative

results of real faults remains, especially since we observe a large number of faults with

low similarity values. Therefore, we check the correlations between the failure rates of

the sets of injected faults and the real faults when executed with different test suites,

(please refer to section 4.5 for details).

60

Figure 4.9 shows the distribution of the correlation coefficients, when injecting

different numbers of faults. Interestingly, the results on both figures show a trend in

favour of IBIR. This difference is statistically significant, shown by a Wilcoxon test, with

an effect size of approximately 0.6. Table 4.3 records the effect size values, Â12, for

the examined strategies. In essence, these effect sizes mean that IBIR outperforms

the mutant injection in 60% of the cases, suggesting that IBIR could be a much better

choice than mutation testing, especially in cases of large test suites with expensive test

executions.

To further validate whether IBIR’s faults provide good indicators (estimates) of test

effectiveness (fault detection) we split our test suites between those that detect the

targeted faults and those that do not. We then tested whether detection ratios of

the injected faults in the test suite group that detects the real faults are significantly

(statistically) higher than those in the group that does not detect it. In case this happens,

we have evidence that our injected faults favour test suites capable of detecting real

faults. This is important when comparing test generation techniques, where the aim is

to identify the most effective (at detecting faults) technique.

Figure 4.10 records the number of faults where (real) fault detecting test suites

detect a statistically higher number of injected faults than those test suites that do not

detect them. As can be seen by these results, IBIR differs greatly from mutation, i.e.,

it distinguishes between passing and failing test suites in 126 faults, while Mutation in

55 faults. We also measured the Vargha and Delaney Â12 effect size values on the

same data, recorded in Figure 4.11. Of course it does not make sense to contrast

insignificant cases, so we only performed that on the results where IBIR has statistically

significant difference. Interestingly big differences are recorded (in approximately 80%

of the cases) in favour of our approach.

61

5 10 30 100
Injected faults

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Ke

nd
al

l

IBIR
Mutation

(a) Kendall

5 10 30 100
Injected faults

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

IBIR
Mutation

(b) Pearson

Figure 4.9: Correlation coefficients of test suites (samples from the original project
test suite). The two related variables are a) the percentage of injected faults that were
detected by the sampled test suites and b) whether the targeted fault was detected or
not by the same test suites.

62

5 10 30 100
Injected faults

0

20

40

60

80

100

120

140

160
Si

gn
ifi

ca
nt

 d
iff

er
en

ce
s

91
100

117
126

37
47 50 55

IBIR
Mutation

Figure 4.10: Number of (real) faults where injected faults provided good indications of
fault detection. Particularly, number of cases with statistically significant difference, in
terms of ratios of injected faults detected, between failing and passing test suites (w.r.t.
real faults).

IBIR injects faults that provided better fault detection estimates than traditional

mutation testing in approximately 80% of the cases.

4.7 Discussion

The effectiveness of IBIR in generating faults that are similar to real ones is endorsed by

its two main components: the IRFL and the mutator. The IRFL indicates where the faults

need to be injected and the mutator decides what changes should be made, depending

on the AST tree of each location.

63

5 10 30 100
Injected faults

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Â1
2

va
lu

es

Figure 4.11: Vargha and Delaney values for IBIR. Â12 values computed on the detection
ratios of injected faults of the test suites that detect and do not detect the (real) faults.

64

Table 4.4: Percentage of injected faults that are coupled to real ones when injecting 5 to
1000 faults.

Number of injected faults 5 10 30 100 200 500 1000

IBIR 5.93% 5.61% 5.78% 5.23% 4.57% 3.43% 2.57%
Mutation 0.29% 0.04% 0.05% 0.06% 0.06% 0.07% 0.07%

Particularly, compared to conventional mutation testing, we can see that the IRFL is

narrowing down the area of injection to the source-code features described by the bug

report, while the patterns-set of IBIR extends the injection possibilities in that area. In

the other hand, conventional mutation testing targets all the source code and injects

faults only in statements where their operators are applicable. For instance, applying

the typical mutation operators - the Mutate Operators and Remove Statement ones -

on a specific area of code would not induce any fault, if no statement can be removed

without breaking the compilation, or there is no operator to mutate. While in such case,

IBIR may inject faults by applying other patterns like mutating the method invocation or

the used parameters or inserting a statement, etc.

4.7.1 Injecting large number of faults

The Figure 4.8 shows that IBIR injects much more faults that couple with the real ones

than conventional mutation testing. In fact, it achieves a higher coupling percentage

when injecting only 10 faults than the percentage achieved by conventional mutation

testing when injecting 1000 faults. We can see also that when injecting 1000 faults

we achieve the coupling percentages of 61.1% and 18.2% for respectively IBIR and

mutation testing. This is obviously because the more faults we inject, the more chances

we have to inject faults that couple with the real ones. Considering that injecting more

faults comes with a considerable consequent cost-increase, as the practitioners will

65

need more time to analyse the produced mutants, this option is often not favoured in

practice, where it is better to have few relevant faults than many.

To have a better understanding of the impact of injecting multiple faults, we illustrate

in Table 4.4 the averaged faults-coupling success-rates when injecting 5, 10, 30, 100,

200, 500 and 1000 faults with IBIR and mutation testing. We define the success rate

as the percentage of coupled faults among all the injected ones. As an example, a

coupling success-rate of 5% corresponds to 5 coupled faults when injecting 100 ones.

In our study, IBIR achieves a much higher success rate than mutation testing: 20,

87, 49 and 36.7 times higher when injecting 5, 100, 500 and 1000 faults. Even if the

coupling percentage increases by injecting more faults (Figure 4.8), we can see that

the more we inject faults, the more the success rate decreases for IBIR. This is a

direct consequence of the decrease of the injection-locations likelihood to be related to

the targeted bug-report. As we explain further in Section 4.3, IBIR starts by injecting

faults in the highly ranked code locations found by its IRFL then iterates further until all

locations are treated or the requested number of faults has been injected. So the higher

the requested number of injected faults is, the more faults in lower ranked locations

are injected. In the other hand, we see that the success rate of conventional mutation

testing remains relatively low and far behind the one of IBIR. For instance, it remains at

0.07% even when doubling the number of injected faults from 500 to 1000. In Table 4.4,

we notice that injecting 5 faults with mutation testing achieves a success rate of 0.29%

which is much higher than the ratios achieved when injecting more faults, by the same

technique. This is caused by the randomness in the conventional mutation testing

results.

4.7.2 Distribution of the patterns inducing most effective injections

To understand better the impact of the used patterns in injecting faults that are similar to

real ones, we grouped the faults by their creating patterns and compared the sizes of

66

42.3% Add Conditional Expression
29.5% Mutate Variable
10.4% Mutate Operators
4.9% Remove Statement
4.5% Insert Statement
4.0% Mutate Method Invocation or Class Instance Creation
3.0% Move Statement
0.9% Remove Conditional Expression
0.2% Mutate Literal Expression
0.2% Mutate Return Statement
0.1% Mutate Data Type

Figure 4.12: Distribution of the patterns inducing mutants with an Ochiai coefficient
higher than 0.8 for IBIR when injecting 1000 faults.

67

each group. Figure 4.12 illustrates the proportion of every pattern’ induced faults that

have high Ochiai Coefficients (more than 0.8), when injecting 1000 faults by IBIR in the

current dataset. Clearly, more than 70% of the faults with high similarity coefficients have

been generated by patterns that are not commonly used in conventional mutation testing

techniques: mainly by adding conditional expressions (42.3%) or by mutating variables

(29.5%). This is significantly higher than the 15.3% generated with the commonly used

conventional mutation operators (10.4% by mutating operators and 4.9% by removing

statements). This highlights the fact that IBIR’s patterns are bringing a clear advantage

over mutation-testing.

These percentages and the general performance of every pattern depends on the

targeted bug-report and the project nature. For instance, the low percentages of multiple

patterns in Figure 4.12 can be the consequence of multiple factors, such as: 1) the

fact that some faults are occurring less frequently in the current dataset or 2) the

fact that some patterns are only applicable on few specific statement-ASTs or 3) that

some patterns produce relatively more mutants in the same location, thus have higher

percentages (i.e. the ”Mutate Method Invocation” which induced Fault 1 and Fault 2 in

the same statement in Figure 4.3 in Section 4.3.4).

4.7.3 IBIR Vs typical mutation operators

Early research on mutation testing defined mutation operators based on all possible

simple removals or replacements of programming language elements [134], [135]. This

practice was then adopted when defining mutation operators for other languages, such

as Java, and in defining object oriented related mutants [89], [136]. To reduce the

number of mutants involved, many tool developers applied a restrictive set of mutation

operators, usually referred to as the 5-operator set, based on the selective mutation

testing studies performed by Offutt et al. [21], [137] with the result that the majority of

68

modern mutation testing tools implementing a version of this 5-operator set together

with some deletion operators [9], [138].

In view of the above all the IBIR injections that involve addition of code elements,

i.e., “Insert Statement” and “Mutate Return Statement” categories of Table 4.2, are

fundamentally different from what has been used in mutation testing studies over the

years. The “Mutation Literal Expression” category is also something that has not been

used by mutation testing studies. The rest of the operators have some similarities with

operators used in some studies overall differ significantly from the operators used by

any single tool or study. In the following we provide a detailed list of IBIR operators and

their related similarities (or novelties) with respect to other studies.

Operators that have not been used by other studies:

• Insert Statement : Insert a method call, Insert a return statement, Wrap a state-

ment with a try-catch, Insert an if checker.

• Mutate Conditional Expression : Insert a conditional expression.

• Mutate float or double Division : Remove a float or a double cast from the divisor,

Remove a float or a double cast from the dividend, Replace float or double

multiplication by an int division.

• Mutate Literal Expression : Change boolean, number or string literals in a state-

ment by another literal or expression of the same type.

• Mutate Return Statement : Replace a return expression by an other one.

Operators that have similarities with those used by other studies:

• Mutate Class Instance Creation : Replace an instance creation call by a cast of

the super.clone() method call. Similar to the class mutation operators of MuJava

[136].

69

• Mutate Data Type : Change the declaration type of a variable, Change the casting

type of an expression. Similar to the interface mutation in C [135], [139].

• Mutate Method Invocation : Replace a method call by another one, Replace a

method call argument by another one, Remove a method call argument, Add an

argument to a method call. Similar to the interface mutation [139].

• Mutate Variable : Replace a variable by another variable or an expression of the

same type. Similar to the variable mutations in C [135].

• Move Statement: Move a statement to another position. Similar to the move out of

a loop operators in C [135], [139].

Operators that are frequently used by other studies:

• Mutate Conditional Expression : Remove a conditional expression, Change the

conditional operator [134], [135].

• Remove Statement : Remove a statement, Remove a method [94], [134], [138].

• Mutate Operators : Replace an Arithmetic operator, Replace an Assignment

operator, Replace a Relational operator, Replace a Conditional operator, Replace

a Bitwise or a Bit Shift operator, Replace an Unary operator, Change arithmetic

operations order [94], [134], [138].

4.7.4 Project size and IBIR’s effectiveness

Considering the fault injection as a search task where the target is injecting faults similar

to real ones and the search space is the combination of the source-code locations

and mutation possibilities, we were interested in assessing IBIR’s performance for

different project sizes. Figure 4.13a and Figure 4.13b show the scatter plots of the

semantic similarity by the project size in terms of number of classes. Figure 4.13a and

70

200 400 600 800 1000
Project size

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

y=-0.0001x+0.2

(a) All injected faults.

200 400 600 800 1000
Project size

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

y=-0.0002x+0.6

(b) Faults with an Ochiai coefficient higher than zero.

Figure 4.13: Correlation between the semantic similarities and the project size (100
injected faults per targeted (real) fault).

71

Figure 4.13b consider respectively all the injected faults and the faults having an Ochiai

coefficient higher than zero. We can see that the project size has no impact on the

effectiveness of IBIR.

4.8 Threats to Validity and Limitations

The question of whether our findings generalise, forms a typical threat to validity of em-

pirical studies. To reduce this threat, we used real-world projects, developer test suites,

real faults and their associated bug reports, from an established and independently built

benchmark. Still though, we have to acknowledge that these may not be representative

of projects from other domains. In addition, as the approach’s injection depends on

the input bug reports, its effectiveness may be impacted by the content of the reports,

such as partial/incomplete or vague descriptions. To reduce this threat, we have run our

experiments with all available bug reports in the studied dataset without any particular

selection and got encouraging results. We acknowledge though that the results may

vary depending on the information provided in the reports. In practice, one should make

a careful selection of bug reports based on which IBIR could be applied to avoid such

cases. Nevertheless, the appropriate selection of bug reports falls outside the scope of

this work and has been left open for future research.

Other threats may also arise from the way we handled the injected faults and mutants

that were not killed by any test case. We believe that this validation process is sufficient

since the test suites are relatively strong and somehow form the current state of practice,

i.e., developers tend to use this particular level of testing. Though, in case the approach

is put into practice things might be different. We also applied our analysis on the fixed

program version provided by Defects4J. This was important in order to show that we

actually inject the actual targeted faults. Though, our results might not hold on the cases

that the code has drastically changed since the time of the bug report. We believe

72

that this threat is not of actual importance as we are concerned with fault injection

at interesting program locations, which should be pinpointed by the fault localisation

technique we use. Still future research should shed some light on how useful these

locations and faults are.

Furthermore, some implementation changes of IBIR may improve its usability. For

instance, adding an advanced integrity check before applying the patterns would shorten

the execution time of the tool. As currently, the generated faulty programs are mainly

validated via the compilation, only 52% of the mutants are compilable and thus outputted,

while the rest are discarded. Also, one can consider using the same approach with

different IRFL techniques. This would eliminate the training cost and reduce the eventual

risk of threats that may be induced by the machine-learning module currently used to

rank the suspicious files. In fact, some of the projects in our evaluation set has been

used during the training phase of this latter. Although, we did not notice any bias or bad

impact on our results, we are aware that this can be considered as an additional threat

to validity. However, these threats concern only the file-level localisation of the IRFL and

not the statement-level one, thus, they would not impact its results. This is because the

IRFL is performing a VSM cosine-similarity to rank the suspicious statements without

involving any machine learning technique in this step, as explained in Section 4.3.1.

Finally, our evaluation metrics may induce some additional threats. Our comparison

basis measurement, i.e., number of injected faults, approximates the execution cost

of the techniques and their chances to provide misleading guidance [7], while the

fault couplings and semantic similarity metrics approximate the effectiveness of the

approaches. These are intuitive metrics, used by previous research [95], [100] and aim

at providing a common ground for comparison.

73

4.9 Conclusion

We presented IBIR; a bug-report driven fault injection tool. IBIR (1) equips researchers

with faults (to inject) targeting the critical functionality of the target systems, (2) mimics

real faulty behaviour and (3) makes relevant fault injection.

IBIR’s use case is simple; given a program and some bug reports, it injects faults

emulating the related bugs, i.e., IBIR generates few faults per target bug report. This

allows constructing realistic fault pools to be used for test or fault tolerance assessment.

This means that IBIR’s faults can be used as substitutes of real faults, in controlled

studies. In a sense, IBIR can bring the missing realism into fault injection and therefore

support empirical research and controlled experiments. This is important since a large

number of empirical studies rely on artificially-injected faults [10], the validity of which is

always in question.

While the use case of IBIR is in research studies, the use of the tool can have

applications in a wide range of software engineering tasks. It can, for instance, be used

for asserting that future software releases do not introduce the same (or similar) kind

of faults. Such a situation occurs in large software projects [140], where IBIR could

help by checking for some of the most severe faults experienced. Testers could also

use IBIR for testing all system areas that could lead to similar symptoms than the ones

observed and resolved. This will bring benefits when testing software clones [141] and

similar functionality implementations.

Another potential application of IBIR is fault tolerance assessment, by injecting faults

similar to previously experienced ones and analysing the system responses and overall

dependability. We hope that we will address these points in the near future.

To support this research and enable reproducibility, we have made our data and

code available [126].

74

Chapter 5

Context-aware and Natural Mutation

Testing via Pre-Trained Language

Models

Mutation testing operates by seeding faults into a program under test and asking

developers to write tests that reveal them. To this end, mutation testing should seed

faults that are both “natural” in a sense easily understood by developers and strong (have

high chances to couple with real bugs). To achieve this we propose using pre-trained

generative language models (i.e. CodeBERT) that have the ability to produce developer-

like code that operates similarly, but not exactly, as the target code. This means that the

models have the ability to seed natural faults, thereby offering opportunities to perform

mutation testing. We realise this idea by implementing µBERT, a mutation testing

technique that performs mutation testing using CodeBERT and empirically evaluated it

using 689 faulty program versions. Our results show that the fault revelation ability of

µBERT is higher than that of a state-of-the-art mutation testing (Pitest), yielding tests

that have up to 17% higher fault detection potential than that of Pitest. Moreover, we

75

observe that µBERT can complement Pitest, being able to detect 47 bugs missed by

Pitest, while at the same time, Pitest can find 13 bugs missed by µBERT.

This chapter is based on the following article:

Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon. Efficient

Mutation Testing via Pre-Trained Language Models. Submitted to : IEEE Transactions

on Software Engineering (TSE 2023). 2023. https://doi.org/10.48550/arXiv.2301.03543

5.1 Introduction

Mutation testing aims at seeding faults using simple syntactic transformations [29].

These transformations, also known as mutation operators are typically constructed

based on syntactic rules crafted based on the grammar of the target programming

language [3], i.e. replacing an arithmetic operator with another such as a + by a

-. Unfortunately, such techniques generate mutants (seeded faults), many of which

are “unatural”, i.e., non-conforming to the way developers code, thereby perceived as

unrealistic by developers [142]. At the same time, the syntactic-based fault seeding

fails to capture the semantics of the code snippets that they apply, leading to numerous

trivial or low utility faults [50].

To deal with the above issue we propose forming natural mutations by using big

code. Thus, we aim at introducing modifications that follow the implicit rules, norms

and coding conventions followed by programmers, by leveraging the capabilities of pre-

trained language models to capture the underlying distribution of code and its writing,

as learned by the pre-training process on big code.

To this end, we rely on CodeBERT [84], an NL-PL bimodal language model that has

been trained on over 6.4 million programs. More precisely, we use its Masking Modelling

Language (MLM) functionality, which given a code sequence with a masked token,

predicts alternative replacements to that token, that is best matching the sequence

76

context. This is important, since the predictions do not follow fixed predefined patterns

as is the case of conventional mutation testing, but are instead adapted to fit best the

target code. For instance, given a sequence int a = 1;, we pass a masked version

of it as int a = <mask>;, then CodeBERT by default proposes 5 predictions sorted

by likelihood score: 0, 1, b, 2, and 10. Being the most likely fitting tokens to the code

context, our intuition is that replacing the masked token with these predictions would

induce “natural” mutants.

Precisely, we introduce µBERT, a context-aware mutation testing approach that lever-

ages a pre-trained language model (CodeBERT) to restrict the mutant space to the most

probable code alterations, thereby, producing more natural mutants. µBERT iterates

through the program statements and modifies their tokens by the model predictions.

Our results of the previous Chapter 4, particularly the distribution of patterns inducing

faults with high semantic similarity to real ones in Figure 4.12, shows that some real bugs

are best resembled by using complex patterns, i.e. patterns that require more than one

token mutation. To account for such cases, µBERT is equipped with additive mutations,

i.e., mutations that add code (instead of deleting or altering). For example, consider a

boolean expression e1 (typically present in if, do, while and return statements), which

is mutated by µBERT by adding a new condition e2, thereby generating a new condition

e1||e2 (or e1&&e2), which is then masked and completed by CodeBERT. For instance,

given a condition if(a == b), µBERT produces a new condition if(a == b || a > 0)

that is masked and produces if(a == b || b > 0).

We implement µBERT, and evaluate its ability to serve the main purposes of mutation

testing, i.e. guiding the testing towards finding faults. We thus, evaluate µBERT effective-

ness and cost-efficiency in revealing1 689 bugs from Defects4J. Our results show that

µBERT is very effective in terms of fault revelation, finding on average 84% of the faults.

This implies that µBERT mutants cover efficiently faulty behaviours caused by real bugs.

1Tests are written/generated to kill (reveal) the mutants. A bug is revealed by a mutation testing
approach, if the written tests to kill its mutants also reveal the bug.

77

More importantly, the approach is noticeably more effective and cost-efficient than a

traditional mutation testing technique, namely Pitest [90], that we use as a baseline in

our evaluation. Precisely, we consider three different configurations for Pitest that uses

different sets of mutation operators (DEFAULT, ALL and RV2). In fact, test suites that

kill all mutants of µBERT find on average between 5.5% to 33% more faults than those

generated to kill all mutants introduced by Pitest. Moreover, even when analysing the

same number of mutants, µBERT induces test suites that find on average 6% to 16%

more faults than Pitest. These results are promising and endorse the usage of µBERT

over the considered mutation testing technique, as a test generation and assessment

criterion.

We also study the impact of the condition-seeding-based mutations in the fault

detection capability of µBERT. We observe that test-suites designed to kill both kinds of

µBERT mutants – induced by 1) direct CodeBERT predictions and 2) a combination of

conditions-seeding with CodeBERT predictions – find on average over 9% more bugs

than the ones designed to kill direct CodeBERT prediction mutants only (1).

Overall, our main contributions are:

• We introduce the first mutation testing approach that uses pre-trained language

models, µBERT. It leverages the model’s code knowledge captured during its

pretraining on large code corpora and its ability to capture the program context, to

produce “natural” mutants.

• We propose new additive mutations which operate by seeding new conditions in

the existing conditional expressions of the target code, then masking and replacing

their tokens with the model predictions.

• We provide empirical evidence that µBERT mutants can guide testing towards

higher fault detection capabilities, outperforming those achieved by SOA tech-
2Research Version of Pit: it enables the usage of ALL Pit mutation operators in addition to experimental

ones, that have been made available for researchers.

78

niques (i.e. Pitest), in terms of effectiveness and cost-efficiency. In our empirical

study, we validate also the advantage of employing the new additive mutation

patterns, w.r.t improving the effectiveness and cost-efficiency in writing test suites

with higher fault revelation capability.

5.2 Approach

 if (a != b)

return a != d || b>0;

Source-code
AST nodes

locations

1. AST Nodes

selection

Y
Y

3. Masked code  
prediction

Model

Predictions

Predict°

4. Conditions seeding

5. Injection &
Compilation

check

Injected faults

if (a != b)

return a != d;

if (a != b && b>i)
return a != d;

 a = b + c;

return a <mask> d;

2. AST Nodes

Masking

a = b + c;

return a == d;

a = <mask> + c;
return a == d;

Figure 5.1: The Workflow of µBERT: (1) input Java code parsing, and extraction of the
target expressions to mutate; (2) creation of simple-replacement mutants by masking
the selected tokens and invoking the model; (3) mutants generation via masked tokens
replacements with the corresponding model predictions; (4) complex mutants generation
via a) conditions-seeding, b) tokens masking then c) replacement by CodeBERT predic-
tions; and finally, (5) discarding of not compiling and syntactically identical mutants.

We propose µBERT, a generative language-model-based mutation testing approach,

which is described step by step in Figure 5.1. Given an input source code, µBERT

leverages CodeBERT’s knowledge of code and its capability in capturing the program’s

context to produce “natural” mutations, i.e. that are similar to eventual developer

mistakes.To do so, µBERT proceeds as follows in six steps:

1. First, it extracts relevant locations (AST 3 nodes) where to mutate

3AST: Abstract Syntax Tree.

79

2. Second, it masks the identified node-tokens, creating one masked version per

selected token.

3. Then, it invokes CodeBERT to predict replacements for these masked tokens.

4. In addition to the mutants produced in Step (3), µBERT also implements some

condition-seeding additive mutations that modify more than one token. Precisely, it

modifies the conditional expressions in the control flow (typically present in if, do,

while and return statements) by extending the original condition with a new one,

combined with the logical operator && or ||. Then, the new conditional expression

is mutated by following the same steps (2) and (3) – masking and replacing the

masked tokens by the CodeBERT predictions.

5. Finally, the approach discards duplicate predictions or those inducing similar code

to the original one, or not compiling, and outputs the remaining ones as mutants,

from diverse locations of the target code. More precisely, it iterates through the

statements in random order and outputs in every iteration one mutant per line,

until achieving the desired number of mutants or all mutants are outputted.

5.2.1 AST Nodes Selection

µBERT parses the AST of the input source code and selects the lines that are more likely

to carry the program’s specification implementation, excluding the import statements

and the declaration ones, e.g. the statements declaring a class, a method, an attribute,

etc. This way, the approach focuses the mutation on the business-logic portion of

the program and excludes the lines that are probably of lower impact on the program

behaviour. It proceeds then, by selecting from each of these statements, the relevant

nodes to mutate, i.e. the operators, the operands, the method calls and variables, etc.,

and excluding the language-specific ones, like the separators and the flow controls, i.e.

80

semicolons, brackets, if, else, etc. Table 5.1 summarises the type of targeted AST

nodes by µBERT, with corresponding example expressions and induced mutants. We

refer to these as the conventional mutations provided by µBERT, denoted by µBERTconv

in our evaluation, previously introduced in the preliminary version of the approach [45].

5.2.2 Token Masking

In this step, we mask the selected nodes one by one, producing a masked version from

the original source code for each node of interest. This means that every masked version

contains the original code with one missing node, replaced by the placeholder <mask>.

This way, µBERT can generate several mutants in the same program location. For

instance, for an assignment expression like res = a + b, µBERT can create up-to 25

mutants using the following masked sequences:

• <mask> = a + b

• res <mask>= a + b

• res = <mask> + b

• res = a <mask> b

• res = a + <mask>

5.2.3 CodeBERT-MLM prediction

µBERT invokes CodeBERT to predict replacements for the masked nodes. To do so, it

tokenizes every masked version into a tokens vector then crops it to a subset one that

fits the maximum size allowed by the model (512) and counts the masked token with the

surrounding code-tokens. Next, our approach feeds these vectors to CodeBERT MLM

to predict the most probable replacements of the masked token. Our intuition is that

81

Table 5.1: Example of µBERT conventional mutations, available in the preliminary
version of the approach [45], denoted by µBERTconv.

Ast node Expression Masked Expression Mutant Example

literals res + 10 res + <mask> res + 0

identifiers res + 10 <mask> + 10 a + 10

binary expressions a && b a <mask> b a || b

unary expressions --a <mask>a ++a

assignments sum += current sum <mask>= current sum -= current

object fields node.next node.<mask> node.prev

method calls list.add(node) list.<mask>(node) list.push(node)

array access arr[index + 1] arr[<mask>] arr[index]

static type references Math.random() * 10 <mask>.random() * 10 Random.random() * 10

the larger the code portion accompanying the mask placeholder, the better CodeBERT

would be able to capture the code context, and consequently, the more meaningful its

predictions would be. This step ends with the generation of five predictions per masked

token.

5.2.4 Condition seeding

µBERT generates second-order mutants by combining condition seeding with Code-

BERT prediction capabilities. To do so, our approach modifies the conditions in control

flow and return statements, including if, do, while and return conditional expressions.

For every one of these statements, it starts by extending the original condition by a new

one, separated with the logical operator && or ||, in both orders (original condition first or

the other way around) and with or without negation (!).

Next, all substitute conditions are put one by one in place in the original code, forming

multiple condition-seeded code versions, that we pass as input to Step (2), in which

their tokens are masked and then (3) passed each to CodeBERT to predict the best

substitute of their corresponding masked tokens.

The seeded conditions are created in two ways:

82

Using existing conditions in the same class

To mutate a given condition – if, do, while and return conditional expressions –, we

collect all other conditions existing in the same class, then combine each one of them

with the target condition, using logical operators.

Precisely, let Expt a conditional expression to mutate and SE = {Exp0, ..., Expn}

the set of other conditional expressions appearing in the same class, excluding the

null-check ones (i.e. var == null). The alternative replacement conditions generated

for Expt are the combinations of:

• Expt op neg Expi and

• Expi op neg Expt,

where op is a binary logical operator taking the values in {&&,||}, neg is either the

negation operator ! or nothing and Expi is a condition from SE.

Using existing variables in the same class

When the target if conditional expression to mutate contains variables (including fields),

we create new additional conditions by combining these variables with others of the

same type from the same class. Then we combine each one of the newly created

conditions with the original one, using logical operators.

Precisely, let Expt be a conditional expression to mutate containing a set of variables

Svt. For every variable vart in Svt, we load Sv = {var0, ..., varn} the set of other variables

appearing in the same class and of the same type T as vart, then we generate the

following new conditions:

• Expt op (vart relop vari) and

• (vart relop vari) op Expt,

83

where op is a binary logical operator taking the values in {&&,||}, relop is a relational

operator applicable on the type T and vari is a variable from Sv.

5.2.5 Mutant filtering

In this step, our approach starts by discarding accurate and duplicate predictions; the

redundant predictions and the ones that are exactly the same as the original code.

Then, it iterates through the statements and selects in every iteration one compilable

prediction by line, while discarding not compilable ones. Once all first-order mutants are

selected (issued by one single token replacement), our approach proceeds by selecting

second-order ones (issued by the combination of condition seeding and one token

replacement) in the same iterative manner. µBERT continues iterating until achieving

the desired number of mutants or all mutants are outputted.

5.3 Research Questions

We start our evaluation by assessing the advantage brought by the additive mutations

(a.k.a. conditions seeding ones) on the fault detection capability of our proposed

approach. Thus we start by asking:

RQ1 (µBERT Additive mutations) What is the added value of the additive mutations on

the fault detection capabilities of µBERT?

To answer this question, we generate two sets of mutants using µBERT: 1) the first

set using all possible mutations that we denote as µBERT and 2) a second one using

only the conventional µBERT’ mutations – part of our preliminary implementation [45],

excluding the additive ones – that we denote as µBERTconv. Then we compare the fault

detection ability of test suites designed to kill the mutants from each set.

84

The answer of this question provides evidence that the additive mutations increase

the fault detection capability of µBERT. Yet, to assess its general performance we

compare it to state-of-the-art (SOA) mutation testing, particularly Pitest [90], and thus,

we ask:

RQ2 (Fault detection) How does µBERT compare with state-of-the-art mutation testing,

in terms of fault detection?

To answer this question, we generate mutants using the latest version of Pitest [90],

on the same target projects as for RQ1. As we are interested in comparing the ap-

proaches and not the implementations of the tools, we exclude the subjects on which

Pitest did not run correctly or did not generate any mutant. This way we ensure having a

fair base of comparison by counting exactly the same study subjects for both approaches

(further details are given in Section 5.4). Then, we compare the fault detection capability

of test suites selected to kill the same number of mutants produced by each approach.

Finally, we turn our attention to the specificity of the generated mutants by µBERT and

particularly how our design intuitions are reflected in the outcome mutants. Therefore,

we analyse manually some mutants that helped µBERT find bugs in the previous RQs

to answer:

RQ3 (Qualitative analysis) How different are µBERT mutants from those generated

by conventional mutation testing, in terms of diversity, readability and program

context-fitting?

To answer this question, we selected some mutants that have been generated by

µBERT and helped in detecting bugs that Pitest missed. Additionally, we discuss the

program-context-capturing importance in µBERT’s functioning, by rerunning it with a

reduced size of the masked codes passed to the model, and comparing examples of

yielded mutants with those obtained in our original setup.

85

5.4 Experimental Setup

5.4.1 Dataset & Benchmark

To evaluate µBERT’s fault detection, we use real bugs from a popular dataset in the

software engineering research area – Defects4J [143] v2.0.0. In this benchmark, every

subject bug is provided with a buggy version of the source code, its corresponding fixed

version, and equipped with a test suite that passes on the fixed version and fails with at

least one test on the buggy one. The dataset includes over 800 bugs from which, we

exclude the ones presenting issues, i.e. with wrong revision ids, not compiling or with

execution issues, or having failing tests on the fixed version, at the reporting time. Next,

we run µBERT and Pitest on the corresponding classes impacted by the bug from the

fixed versions of the remaining bugs and exclude the ones where no tool generated

any mutant, ending up with 689 bugs covered by µBERT and 457 covered by Pitest.

As we’re interested in comparing the approaches and not the tools’ implementations,

and to exclude eventual threats related to the environment (i.e. supported java and

juint versions by each technique, etc.) or the limitations and shortages of the dataset,

we establish every comparison study on a dataset counting only bugs covered by all

considered approaches: 689 bugs to answer RQ1 and 457 to answer RQ2 and RQ3.

5.4.2 Experimental Procedure

To assess the complementary and added value in terms of fault revelation of the

condition-seeding-based mutations (answer to RQ1), we run our approach with and

without those additional mutations – that we name respectively µBERT and µBERTconv–,

and thus, generating all possible mutants on our dataset programs’ fixed versions. Next,

we compare the average effectiveness of the test suites generated to kill the mutants of

each set; induced by µBERT and µBERTconv.

86

Once the added value of the proposed condition-seeding-based mutations is val-

idated, we compare its performance to S.O.A. mutation testing (answer to RQ2 and

RQ3). We use Pitest [90], a stable and mature Java mutation testing tool, because

it has been more effective at finding faults than other tools [22] and it is among the

most commonly used by researchers and practitioners [9], [144], as of today. The tool

proposes different configurations to adapt the produced mutations and their general

cost to the target users, by excluding or including mutators. Among these configurations

we used the three following:

• Pit-all (ALL) which counts all available mutation operators available in the current

version4.

• Pit-default (DEFAULTS) whose mutators are selected to form a stable and cost-

efficient subset of operators by producing less but more relevant mutants.

• Pit-rv-all (ALL) which is a version5 that includes the mutators of Pit-all and extra

experimental [146] ones that are made available for research studies.

To compare the different approaches, we evaluate their effectiveness and cost-

efficiency in achieving one of the main purposes of mutation testing, i.e., to guide

the testing towards higher fault detection capabilities. For this reason, we simulate

a mutation testing use-case scenario, where a developer/tester selects mutants and

writes tests to kill them [95], [100].

We run every approach on the fixed versions and test suites provided by Defects4J,

then collect the mutants and their test execution results; whether the mutant is killed

(breaks at least one test of the test suite) and if yes by which tests. Next, we suppose

that the not killed mutants are equivalent or irrelevant, explaining why no tests have been

4Version 1.9.4 available in Pitest’s [145] GitHub repository (branch=master, repo=https://github.
com/hcoles/pitest.git, rev-id=17e1eecf)

5Version 1.7.4 available in Pitest’s [145] GitHub repository (branch=master, repo=https://github.
com/hcoles/pitest.git, rev-id=2ec1178a)

87

written to kill them by the developers. Then, we simulate the scenario of a developer

testing the fixed version, in a state where 1) it did not have any test 2) thus all mutants

did not have killing tests and 3) the developer had no knowledge of which mutants are

equivalent or not. This way, we can reproduce the developer flow of

1. selecting and analysing one mutant,

2. to either (a) discard it from the mutant set if it is equivalent (not killed in the actual

test suite) or (b) write a test to kill it (by selecting one of the actual killing tests of

the mutant),

3. then discarding all killed mutants by that test and

4. iterating similarly over the remaining mutants until all of them are analysed.

We say that a bug is found by a mutation testing technique if the resulting test suite –

formed by the written (selected) tests by the developer – contains at least one test that

reveals it; a test that breaks when executed on the buggy version.

We express the testing cost in terms of mutants analysed, and hence, we consider

the effort required to find a bug as the number of mutants analysed until the first bug-

revealing test is written. To set a common basis of comparison between the approaches,

accounting for the different number of generated mutants, we run the simulations

until the same maximum effort is reached (maximum number of mutants to analyse),

which we set to the least cost required to kill all the mutants by one of the compared

approaches. During our evaluation study, we use the same mutation selection strategy

for all compared approaches, iterating through the lines in random order and selecting 1

arbitrary mutant per line per iteration. To reduce the process randomness impact on

our results (in the selection of mutants and tests), we run every simulation 100 times,

then average their results for every target-bug and considered approach. Finally, we

aggregate these averages computed on all target bugs and normalise them as global

percentages of achieved fault detection by spent effort, in terms of mutants analysed.

88

Finally, to answer RQ3, we select example mutants that enabled µBERT to find

bugs exclusively (not found by any of Pitest versions), from the results of RQ2. Then

we discuss the added value of µBERT mutations through the analysis of the mutants’

behavioural difference from the fixed version and similarity with the buggy one.

5.4.3 Implementation

We implemented µBERT’s approach as described in Section 5.2: we have used

Spoon [147] and Jdt [148] libraries to parse and extract the business logic related

AST nodes and apply condition-seeding mutators. To predict the masked tokens we

have used our implementation proposed in our next Chapter 6 (CodeBERT-nt), using

CodeBERT Masked Language Modeling (MLM) functionality [48], [84].

We provide the implementation of our approach and the reproduction package of its

evaluation at https://github.com/Ahmedfir/mBERTa.

5.5 Experimental Results

5.5.1 RQ1: µBERT Additive mutations

To answer this question we compare the fault detection effectiveness of test suites

written to kill mutants generated by µBERT with and without additive mutations, noted

respectively µBERT and µBERTconv. Figure 5.2 depicts the fault detection improvement

when extending µBERT mutations by the additive ones. In fact, µBERT fault detection

increased on average by over 9% compared to the one achieved by µBERTconv, achieving

84.64% on average. We can also see that besides outliers, the majority of bugs are

found in 100% of the times. Moreover, when examining the bugs separately, we find

that µBERT finds 20 more bugs than µBERTconv (with fault detection > 0%), and 70

more when considering bugs found with fault detection percentages above 90%. This

89

BERT BERTconv
tool

0

20

40

60

80

100

Fa
ul

t d
et

ec
tio

n
%

84.64%

75.30%

(a) Effectiveness: mean fault-detection per subject.

0 20 40 60 80 100
Effort % (number of analysed mutants)

0

20

40

60

80

Fa
ul

t d
et

ec
tio

n
%

tool
BERT
BERTconv

(b) Cost-efficiency: fault detection by the number of mutants analysed.

Figure 5.2: Fault-detection performance improvement when using additive patterns.
Comparison between µBERT and µBERTconv, w.r.t. the fault-detection of test suites
written to kill all generated mutants.

90

confirms that the additive patterns induce relevant mutants ensuring the detection of

some bugs always or in most of the cases, as well as representing better new types of

faults, which were not detectable otherwise.

To check the significance of the fault detection advantage brought by the additive

patterns, we performed a statistical test (Wilcoxon paired test) on the data of Figure 5.2a

to validate the hypothesis “the fault detection yielded by µBERT is greater than the

one by µBERTconv”. The very small obtained p-values of 5.92e-21 (≪ 0.05) showed

that the differences are significant, indicating the low probability of this fault detection

amelioration to be happening by chance. The difference size confirms also the same

advantage, with Â12 values of 0.5827 (> 0.5), indicating that µBERT induces test-suites

with higher fault detection capability in the majority of the cases.

Next, we compare the fault detection performance of µBERT and µBERTconv when

analysing the same number of mutants, and illustrate in Figure 5.3 their average fault

detection effectiveness and cost-efficiency in terms of analysed mutants. The box-plots

of the Subfigure 5.3a show that even when spending the same effort as µBERTconv,

µBERT keeps a similar advantage of on average 6.05% higher fault detection, achieving

a maximum of 81.35%. From the line-plots of the Subfigure 5.3b, we can see that both

approaches achieve a comparable fault detection (≈ 70%) at (≤≈ 40%) of the maximum

costs. At higher costs, µBERTconv’s curve increases slowly until achieving a plateau

at ≈ 60% of the effort, whereas µBERT’s curve keeps increasing towards higher fault

detection ratios even when achieving the ≈ 100% of the fixed maximum effort.

To validate these findings we re-conducted the same statistical tests on the data of

Subfigure 5.3a and found that µBERT outperforms significantly µBERTconv with negligible

p-values of 1.15e-19 and Â12 values of 0.5711.

91

BERT BERTconv
tool

0

20

40

60

80

100

Fa
ul

t d
et

ec
tio

n
%

81.35%
75.30%

(a) Effectiveness: mean fault-detection per subject.

0 20 40 60 80 100
Effort % (number of analysed mutants)

0

10

20

30

40

50

60

70

80

Fa
ul

t d
et

ec
tio

n
%

tool
BERT
BERTconv

(b) Cost-efficiency: fault detection by the number of mutants analysed.

Figure 5.3: Fault-detection comparison between µBERT and µBERTconv, with the same
effort: where the maximum effort is limited to the minimum effort required to analyse all mutants
of any of them, which is µBERTconv in most of the cases.

92

The additive patterns increased the fault detection capability of µBERT by over

6% on average, when analyzing the same number of mutants and over 9% on

average when all mutants are analyzed, yielding respectively an average FD of

81.35% and 84.64%.

5.5.2 RQ2: Fault Detection comparison with Pitest

To answer this research question we reduce our dataset to the bugs covered by µBERT

and the 3 considered versions of Pitest approaches: ”Pit-default” which contains the

default mutation operators of Pitest, ”Pit-all” containing all Pitest operators including the

default ones and ”Pit-rv-all” which contains experimental operators [146] in addition to

the ”Pit-all” ones. Then, we perform the same study as in RQ1, where we compare the

considered approaches’ effectiveness and cost-efficiency based on the fault detection

capability of test suites written to kill their generated mutants. To have a fair base of

comparison, we compare the approaches under the same effort in analysing mutants,

which is equal to the least average effort required to kill all mutants of one of the

approaches (which is the one of Pit-default in the majority of the cases). As we are

interested in comparing the mutation testing approaches and not mutant selection

strategies, we run the simulation with the same one-mutant-per-line random sampling

of mutants for all techniques (see Subsection 5.4.2).

Figure 5.4b shows that with small effort (≤≈ 5%) all approaches yield comparable

fault detection scores (≈ 10%). However, the difference becomes more noticeable

when spending more effort, with µBERT outperforming all versions of Pitest; achieving

on average 16.53% higher fault detection scores than Pit-default, 10.10% higher than

Pit-rv-all and 5.56% higher than Pit-all (see Figure 5.4a).

To validate these results, we performed the same statistical tests as in RQ1, checking

the hypothesis that ”µBERT yields better fault detection capabilities than the other

93

BERT Pit-all Pit-default Pit-rv-all
tool

0

20

40

60

80

100

Fa
ul

t d
et

ec
tio

n
%

66.43%
60.87%

49.90%
56.33%

(a) Effectiveness: mean fault-detection per subject.

0 20 40 60 80 100
Effort % (number of analysed mutants)

0

10

20

30

40

50

60

Fa
ul

t d
et

ec
tio

n
%

tool
BERT

Pit-all
Pit-default
Pit-rv-all

(b) Cost-efficiency: fault detection by the number of mutants analysed.

Figure 5.4: Fault-detection comparison between µBERT and PiTest, with the same
effort: where the maximum effort is limited to the minimum effort required to analyse all mutants
of any of them, which is Pit-default in most of the cases.

94

Table 5.2: Paired (per subject bug) statistical tests of the average fault detection of test
suites written to kill the same number of mutants generated by each approach (data
of Figure 5.4a).

(a) Wilcoxon paired test p-values computed on every dataset subject, comparing each approach
(A1) from the first column to the other approaches (A2). p-values smaller than 0.05 indicate that
(A1) yields an average fault detection significantly higher than that of (A2).

p-values Pit-rv-all Pit-default Pit-all

µBERT 7.78e-11 1.18e-12 3.32e-02
Pit-all 1.54e-22 8.87e-06 –
Pit-default 9.55e-01 – –

(b) Vargha and Delaney Â12 values computed on every dataset subject, comparing each ap-
proach (A1) from the first column to the other approaches (A2). Â12 values higher than 0.5
indicate that (A1) yields an average fault detection higher than that of (A2) in the majority of the
cases.

Â12 Pit-rv-all Pit-default Pit-all

µBERT 0.6488 0.5514 0.5066
Pit-all 0.7210 0.4956 –
Pit-default 0.5449 – –

approaches”. We illustrate in the first row of Tables 5.2a and 5.2b the corresponding

computed Wilcoxon paired test p-values and Vargha and Delaney Â12 values. Our results

show that µBERT has a significant advantage over the considered SOA approaches

with p-values under 0.05. Additionally, µBERT scores Â12 values above 0.5 which

confirms that guiding the testing by µBERT mutants instead of those generated by SOA

techniques yields comparable or higher fault detection ratios, in the majority of the cases.

Indeed, the Â12 difference between Pit-all and µBERT is small (0.5066), indicating that

both approaches perform similarly or better on some studied subjects and worst on

others.

We notice also from the sub-figure 5.4b that Pit-default achieves a plateau at around

60% of the effort while the other tools keep increasing, showing that they are able to

95

BERT Pit-all Pit-default Pit-rv-all
tool

0

20

40

60

80

100

Fa
ul

t d
et

ec
tio

n
%

82.92%

65.49%

49.90%

66.35%

(a) Effectiveness: mean fault-detection per subject.

0 20 40 60 80 100
Effort % (number of analysed mutants)

0

20

40

60

80

Fa
ul

t d
et

ec
tio

n
%

tool
BERT

Pit-all
Pit-default
Pit-rv-all

(b) Cost-efficiency: fault detection by the number of mutants analysed.

Figure 5.5: Comparison between µBERT and Pitest, relative to the fault-detection of test
suites written to kill all generated mutants.

96

achieve higher fault detection capabilities, at a higher cost. This is very noticeable when

we compare the sub-figures (a) and (b) of Figure 5.4 with the figure 5.2, where the

average fault detection of µBERT is way lower than what it achieves in RQ1 – around

66% instead of 84%. This is a direct consequence of the fact that Pit default produces

fewer mutants than the other approaches, limiting considerably the maximum effort

of the mutation campaigns and thus the fault detection ratios, in the majority of the

cases. Indeed, as illustrated in Figure 5.5, all approaches score higher fault detection

percentages when spending more effort, achieving on average ≈65% for Pit-all, ≈66%

for Pit-rv-all and ≈83% for µBERT. We explain the small decrease of 1.72% in the mean

fault detection achieved by µBERT in comparison with RQ1 (82,92% in RQ2 instead of

84.64% in RQ1) by the difference in the considered dataset for each RQ.

Table 5.3: Paired (per subject bug) statistical tests of the average fault detection of test
suites written to kill all the mutants generated by each approach (data of Figure 5.5a).

(a) Wilcoxon paired test p-values computed on every dataset subject, comparing each approach
(A1) from the first column to the other approaches (A2). p-values smaller than 0.05 indicate that
(A1) yields an average fault detection significantly higher than that of (A2).

p-values Pit-rv-all Pit-default Pit-all

µBERT 2.49e-13 2.14e-33 1.47e-14
Pit-all 4.71e-01 2.76e-23 –
Pit-default 1.00e+00 – –

(b) Vargha and Delaney Â12 values computed on every dataset subject, comparing each ap-
proach (A1) from the first column to the other approaches (A2). Â12 values higher than 0.5
indicate that (A1) yields an average fault detection higher than that of (A2) in the majority of the
cases.

Â12 Pit-rv-all Pit-default Pit-all

µBERT 0.6028 0.7123 0.6061
Pit-all 0.5077 0.6400 –
Pit-default 0.3676 – –

97

In Table 5.3, we illustrate the Â12 and p-values computed on data of the boxplots in

Sub-figure 5.5a. The results confirm that µBERT outperforms significantly SOA mutation

testing w.r.t the fault detection capability of test suites written to all kill mutants generated

by each approach.

µBERT outperforms significantly Pitest in inducing test suites with higher fault

detection. With the same number of mutants, it scores an average FD of 16.53% ,

10.10% and 5.56% higher than that of Pit-default, Pit-rv-all and Pit-all.

Next, we turned our interest to the set of particular bugs that every approach can

and cannot reveal when spending the same effort. Hence, we map each bug with its

revealing tool, from the simulation results of Figure 5.4a and illustrate their corresponding

Venn diagrams in Figure 5.6.

From the disjoint sets in Sub-figure 5.6a, we notice a clear advantage in using µBERT

over the considered SOA baselines, as it finds most of the bugs they find in addition to

finding exclusively 47 bugs when spending the same effort. More precisely, µBERT finds

52, 77 and 52 more bugs than Pit-all, Pit-default and Pit-rv-all, respectively, whereas

they find each 13, 10 and 13 bugs that µBERT missed.

This endorses the fact that µBERT introduces mutants that represent more real

bugs than SOA mutation techniques, and encourages the investigation of the eventual

complementary between the approaches. This observation is more noticeable when

considering the overlapping between bugs found by each approach in at least 90% of

the simulations (Sub-figure 5.6b). We notice that the approaches perform comparably,

with a particular distinction of Pit-all and Pit-default results which find exclusively 19

and 21 bugs with these high fault detection percentages instead of 0, as observed

in Sub-figure 5.6a. Nevertheless, µBERT conserves the same advantage over the

considered baselines in this regard, finding exclusively 42 bugs more. It finds also 50,

98

47

0

1

0

1

0

3

0

3

3
23

0

1

10

354

Pit-all
Pit-default
Pit-rv-all

BERT

(a) Faults discovered at least once per 100 runs (Fault detection > 0%).

42

2

3

21

3

0

2

19

10

3
8

15

14

22

114

Pit-all
Pit-default
Pit-rv-all

BERT

(b) Faults discovered in over 90% of the runs (Fault detection≥ 90%).

Figure 5.6: Number of faults discovered by test-suites written to kill mutants generated
by µBERT and Pitest versions when analysing the same number of mutants (same
effort).

99

63 and 69 more bugs than respectively Pit-all, Pit-default and Pit-rv-all, whereas they

find each 59, 58 and 27 bugs that µBERT missed.

µBERT can complement the fault detection capabilities of Pitest, as it is able to

reveal exclusively 52, 77 and 52 more bugs than Pit-all, Pit-default and Pit-rv-all,

respectively, with the same effort in terms of mutants analyzed. µBERT can also

find all bugs revealed by Pitest versions, except for 13, 10 and 13 bugs found

respectively by each of Pit-all, Pit-default and Pit-rv-all, which µBERT missed.

5.5.3 RQ3: Qualitative Analysis

To answer this research question we investigate the mutants generated by µBERT,

which induced test suites able to find bugs that were not detected otherwise, i.e. by the

considered SOA approaches (see Figure 5.6). Meaning that the mutants break similar

tests as the target real buggy version.

As a simple bug example (requiring only one change to fix it), we consider Lang-49

from Defects4J and we investigate mutants that have been generated by µBERT and

helped in generating tests that reveal it. This bug impacts the results of the method

reduce() from the class org.apache.commons.lang.math.Fraction, which returns a

new reduced fraction instance, if possible, or the same instance, otherwise. The bug is

caused by a miss-implementation of a specific corner case, which consists of calling

the method on a fraction instance that has 0 as numerator. In Table 5.4, we illustrate

example mutants generated by µBERT that helped in revealing this bug. Every mutant

is represented by a diff between the fixed and the mutated version by µBERT.

As can be seen, µBERT can generate mutants that can be induced by applying

conventional pattern-based mutations, i.e., Mutant 1 replaces a relational operator (==)

with another (>) and Mutant 2 replaces an integer operand (0) with another one (1).

100

Table 5.4: Example of µBERT mutants that helped find the bug Lang-49 from Defects4J.

Mutant 1: replacing binary operator

@@ org . apache . commons . lang . math . F rac t i on : 466 @@
− i f (numerator == 0) {
+ i f (numerator > 0) {

Mutant 2: replacing literal implementation

@@ org . apache . commons . lang . math . F rac t i on : 466 @@
− i f (numerator == 0) {
+ i f (numerator == 1) {

Mutant 3: adding a condition to an if statement

@@ org . apache . commons . lang . math . F rac t i on : 466 @@
− i f (numerator == 0) {
+ i f ((numerator == 0)
+ | | ! (numerator== In tege r . MIN VALUE)) {

Mutant 4: replacing a condition

@@ org . apache . commons . lang . math . F rac t i on : 467 @@
− r e t u r n equals (ZERO) ? t h i s : ZERO;
+ r e t u r n t h i s ;

Mutant 5: replacing this access by another object

@@ org . apache . commons . lang . math . F rac t i on : 467 @@
− r e t u r n equals (ZERO) ? t h i s : ZERO;
+ r e t u r n equals (ZERO) ? ONE: ZERO;

Mutant 6: replacing method argument

@@ org . apache . commons . lang . math . F rac t i on : 469 @@
i n t gcd = greatestCommonDivisor (
− Math . abs (numerator) , denominator) ;
+ Math . abs (numerator) , 1) ;

Mutant 7: replacing a variable

@@ org . apache . commons . lang . math . F rac t i on : 473 @@
− r e t u r n F rac t i on . ge tF rac t i on (numerator / gcd ,
+ r e t u r n F rac t i on . ge tF rac t i on (numerator / 3 ,

denominator / gcd) ;

Mutant 8: adding a condition to a return statement

@@ org . apache . commons . lang . math . F rac t i on : 840 @@
return (getNumerator () == other . getNumerator ()
− && getDenominator () == other . getDenominator ()) ;
+ && getDenominator () == other . getDenominator ()))
+ | | (numerator == other . numerator) ;

101

In addition, it proposes more complex mutations that are unlikely achievable without

any knowledge of either the AST or the context of the considered program. For instance,

it can generate Mutant 4 by changing a conditional return statement with (this) the

current instance of Fraction, which matches the return type of the method. Similarly,

to generate Mutant 5, it replaces (this) the current instance of the class Fraction by

an existent instance of the same type (ONE), making the statement returning either the

object ONE or the object ZERO.

To produce more complex mutants, µBERT applies a condition seeding followed

by token-masking and CodeBERT prediction, such as adding || (numerator ==

other.numerator) to the original condition of a return statement, inducing Mutant 8,

or adding || !(numerator == Integer.MIN VALUE) to the original condition of an if

statement, inducing Mutant 3.

To investigate further the impact of the code context captured by the model on

the generated mutants, we have rerun µBERT on 5 subjects from our dataset, with

a maximum number of surrounding tokens equal to 10 (instead of 512). Then, we

compared manually the induced mutants with those generated by our default setup, in

the same locations. From our results, we observed a noticeable decrease in the number

of compilable predictions, indicating the general performance decrease of the model

when it lacks information about the code context. Particularly, we notice that it is not able

to produce program-specific mutants, i.e. by changing an object by another or a method

call with another. In Table 5.5, we illustrate some example mutants that helped find each

of the studied subjects (breaking same tests as the original bug), which µBERT failed to

generate when the maximum number of surrounding tokens is limited to 10.

102

Table 5.5: Example of mutants generated by µBERT that helped in finding bugs from
Defects4J and could not be generated when limiting the maximum number of surround-
ing tokens to 10.

Mutant 1 (JacksonCore-4) : replacing a method call

@@ com. fas te rxm l . jackson . core . u t i l . Tex tBu f fe r : 515 @@
− unshare (1) ;
+ expand (1) ;

Mutant 2 (Closure-26) : replacing an object

@@ com. google . j a v a s c r i p t . jscomp . ProcessCommonJSModules : 89 @@
− . r e p l a c e A l l (Pa t te rn . quote (F i l e . separa tor) , MODULE NAME SEPARATOR)
+ . r e p l a c e A l l (Pa t te rn . quote (f i lename) , MODULE NAME SEPARATOR)

Mutant 3 (Closure-35) : replacing a method call

@@ com. google . j a v a s c r i p t . jscomp . TypeInference : 1092 @@
− scope = t rave rseCh i l d ren (n , scope) ;
+ scope = t rave rse (n , scope) ;

Mutant 4 (Lang-27) : replacing a method call

@@ org . apache . commons . lang3 . math . NumberUti ls : 526 @@
− i f (! (f . i s I n f i n i t e () | | (f . f l o a t V a l u e () == 0.0F && ! a l l Ze ros))) {
+ i f (! (f . i s I n f i n i t e () | | (f . round () == 0.0F && ! a l l Ze ros))) {
/ / a lso ” f . f l o a t V a l u e () ” to ” f . sca le () ”

Mutant 5 (Math-64) : replacing an object

@@ org . apache . commons . lang . math . F rac t i on : 852 @@
− f o r (i n t j = k ; j < j acob ian . leng th ; ++ j) {
+ f o r (i n t j = k ; j < beta . leng th ; ++ j) {

Mutant 6 (Lang-27) : replacing an object

@@ org . apache . commons . lang3 . math . NumberUti ls : 526 @@
− i f (! (f . i s I n f i n i t e () | | (f . f l o a t V a l u e () == 0.0F && ! a l l Ze ros))) {
+ i f (! (f . i s I n f i n i t e () | | (f . round () == 0.0F && ! zero))) {

103

µBERT can introduce similar mutants as those generated by conventional pattern-

based mutation testing techniques, i.e. changing a + operator by a -, in addition

to more complex ones, i.e. via condition seeding or by changing variables and

method calls. The performance of the approach depends on the model’s gained

ability to capture the context of the input code, which is decisive when it comes to

proposing meaningful transformations, such as proposing relevant variables or

methods to use instead of the original ones.

5.6 Threats to Validity

One external threat to validity concerns the generalisation of our findings and results in

the empirical evaluation. To reduce this threat, we used a large number of real bugs from

popular open-source projects with their associated developer test-suites, provided by an

established and independently built benchmark (i.e. Defects4J [143]). Nevertheless, we

acknowledge that the results may be different considering projects in different domains.

Other threats may arise from our way of assessing the fault detection capability

of mutation testing approaches, based on their capability of guiding the testing via a

developer/tester simulation in which we assume that the current test suites are complete

and the not killed mutants are equivalent. Although we acknowledge that this may

not be the case in real-world scenarios, we believe that this process is sufficient to

evaluate our approach, particularly considering the fact the test suites provided by

Defects4J are relatively strong. Additionally, to mitigate any comparison threat between

the considered approaches, we use consistently and similarly the same test-suites,

setups and simulation assumptions in all our study.

104

The choice of our comparison baseline may form other threats to the validity of our

findings. While different fault-seeding approaches have been proposed recently, Pitest

remains among the most mature and stable mutation testing tools for Java programs,

thus, forming an appropriate comparison baseline to evaluate our work. Furthermore,

we compared our results with those obtained by mutants from different configurations

proposed by Pitest, enlarging our study to the different audiences targeted by this

latter. We acknowledge however that the results may change when considering other

techniques and consider the evaluation of the effectiveness and cost-efficiency of

different mutation testing techniques as out of the scope of this paper.

Other construct threats may arise from considering the number of mutants analysed

as metric to measure the effort required to find a fault. In addition to the fact that this

metric has been widely used by the literature [9], [100], [110], we believe that it is

intuitive and representative of the global manual effort of the tester in analysing the

mutants, discarding them or writing tests to kill them. While being the standard in the

literature, we acknowledge that this measure does not account for the cost difference

between mutants, attributing the same cost to all mutants. This is simply because we

do not know the specific effort required to analyse every specific mutant or to write

every specific test. Additionally, our cost-efficiency results may be impacted by costs

that are not captured with this metric, such as the execution or the developing effort of

either CodeBERT, the key component of µBERT, or the set of patterns and execution

enhancements over the different releases of Pitest. Nevertheless, we tried to mitigate

any major threats that can be induced by the implementation of the different tools, i.e.

we reduce the dataset subjects to those on which every approach generated at least

one mutant and consider any implementation difference between the approaches as

out of the current scope.

105

5.7 Conclusion

We presented µBERT; a pre-trained language model-based fault injection approach.

µBERT provides researchers and practitioners with easy-to-understand “natural” mutants

to help them in writing tests of higher fault revelation capabilities.

Unlike state-of-the-art approaches, it does neither require nor depend on any kind of

faults knowledge or language grammar but instead on the actual code definition and

distribution, as written by developers in numerous projects. This facilitates its developing,

maintainability, integration and extension to different programming languages. In fact, it

reduces the overhead of learning how to mutate, be it via creating and selecting patterns

or collecting good bug-fixes and learning from their patches.

In a nutshell, µBERT takes as input a given program and replaces different pieces

of its code base with predictions made by a pretrained generative language model,

producing multiple likely-to-occur mutations. The approach targets diverse business

code locations and injects either simple one-token replacement mutants or more complex

ones by extending the control-flow conditions. This provides probable developer-like

faults impacting different functionalities of the program with higher relevance and lower

cost to developers. This is further endorsed by our results where µBERT induces high

fault detection test suites at low effort, outperforming state-of-the-art techniques (Pitest),

in this regard.

We have made our implementation and results available [149] to enable reproducibil-

ity and support future research.

106

Chapter 6

Generic Code Naturalness Measure via

Pre-trained Language Models

Much of recent software-engineering research has investigated the naturalness of code,

the fact that code, in small code snippets, is repetitive and can be predicted using

statistical language models like n-gram. Although powerful, training such models on

large code corpus can be tedious, time-consuming and sensitive to code patterns (and

practices) encountered during training. Consequently, these models are often trained

on a small corpus and thus only estimate the language naturalness relative to a specific

style of programming or type of project. To overcome these issues, we investigate

the use of pre-trained generative language models to infer code naturalness. Pre-

trained models are often built on big data, are easy to use in an out-of-the-box way and

include powerful learning associations mechanisms. Our key idea is to quantify code

naturalness through its predictability, by using state-of-the-art generative pre-trained

language models. Thus, we suggest to infer naturalness by masking (omitting) code

tokens, one at a time, of code-sequences, and checking the models’ ability to predict

them. We explore three different predictability metrics; a) measuring the number of exact

matches of the predictions, b) computing the embedding similarity between the original

107

and predicted code, i.e., similarity at the vector space, and c) computing the confidence

of the model when doing the token completion task regardless of the outcome. We

implement this workflow, named CODEBERT-NT, and evaluate its capability to prioritize

buggy lines over non-buggy ones when ranking code based on its naturalness. Our

results, on 2,510 buggy versions of 40 projects from the SmartShark dataset, show

that CODEBERT-NT outperforms both, random-uniform and complexity-based ranking

techniques, and yields comparable results to the n-gram models.

This chapter is based on the following article:

Ahmed Khanfir, Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. CODEBERT-

NT: code naturalness via CodeBERT. In : 22nd IEEE International Conference on

Software Quality, Reliability and Security (QRS’22). 2022.

6.1 Introduction

There is a large body of research demonstrating that code alike natural language, in

small snippets, is repetitive and thus predictable [37]. A typical way to capture and

leverage this repetitiveness is through the use of statistical language models, such

as n-grams [115]. Indeed, those models can determine the appearance likelihood of

a sequence amidst the ones preceding (or succeeding) it, given a reference corpus,

usually composed of the project’s other code components. Through this likelihood,

practitioners can quantify how surprising a code sequence is with respect to other

sequences, i.e. within a project. This quantification, commonly referred to as naturalness,

has been proven useful in identifying unusual code sequences, that may reflect code

that is smelly [150], [151], of low readability [152], [153], or simply a rare specific

implementation instance [154].

Although powerful, training such models on a large code corpus can be tedious,

time-consuming and is sensitive to code patterns (and specificities) of the used projects.

108

Additionally, the resulting models are sensitive to numerous meta-parameters such

as tokenizers, smoothing techniques, unknown thresholds and n values [39]. Conse-

quently, this often leads to an accumulation of models trained on smaller and more

contextual corpora to which their naturalness will relate [37], with questionable, even

poor, generalization ability [36].

In this paper, we intend to address this shortcoming of naturalness-based metrics, i.e.

the accumulation of models due to their poor generalization, by leveraging generative

pre-trained language models, such as CodeBert. Pre-trained models have been shown

to provide strong results on several cross-project code-related tasks such as code

generation and translation. They are built upon large corpora of code, are easy to use

in an out-of-the-box way and include powerful learning associations mechanisms that

allow them to generalize well to unseen code and projects, making them interesting

candidates. However, extracting naturalness metrics out of such models is not a

straightforward process due to their generative nature, i.e. they are not designed to

output naturalness-like metrics.

To bypass this, we hypothesize that code naturalness can be seen as a derived form

of predictability and can thus be inferred by measuring how well code tokens generated

by the models correspond to actual ones. This means that by masking tokens in a

sequence and evaluating the ability of a model to find them back, we could evaluate

code naturalness.

To this end, we implement a code-prediction-based approach, which we call

CODEBERT-NT 1 on top of the CodeBERT pre-trained generative model, and derive the

following metrics from it:

• counting the number of exact matches of the predictions.

• computing the embedding similarity between the original and predicted code, i.e.,

similarity at the vector space.
1https://github.com/Ahmedfir/CodeBERT-nt

109

• computing the confidence of the model when doing the token completion task,

regardless of the outcome.

To evaluate those metrics’ suitability for code naturalness estimation, we need to

compare them with traditional naturalness metrics based on n-grams models. Yet, as

the naturalness of code is a relative measure, i.e. strongly related to the model’s data

and parameters, we cannot directly contrast the value of one metric over another. Thus,

we compare the metrics relative performance on an end task, for which we have solid

ground truth. In particular, we evaluate the performance of the metrics w.r.t. their ability

to rank buggy lines of code.

Indeed, previous work has shown that unusual code is often linked with bug prone-

ness and bugginess, thereby making n-gram-based naturalness a tool capable of

identifying likely buggy code [38], [154]. This means that the tendency of buggy lines to

be unnatural, or at least more unnatural compared to the clean ones should be found in

our metrics.

We, therefore, investigate the ability of CODEBERT-NT to distinguish natural (clean)

from unnatural (buggy) code. To do so, we need a solid ground truth of buggy and

clean code. Hence we select the SmartShark dataset [155], which contains manually

untangled buggy and fixed code versions. This allows us to know the buggy code lines

for which we can perform our experiment. We thus, used 2,510 buggy versions from 40

projects and investigated the performance of CODEBERT-NT and contrast it with that of

typical baselines such as uniform-random and complexity-based rankings [95]. Overall,

we find that buggy lines are indeed less natural in our metrics, especially when basing it

on the decrease in prediction confidence.

To further validate this, we also compared our results with that of n-gram models

when trained on an intra-project fashion (as typically performed in the literature [38],

[39]). Our results suggest that our (inter-project) CODEBERT-NT yields comparable

110

results (slightly better) than the (intra-project) naturalness predictions of the n-gram

models.

Overall, our primary contributions are:

• We demonstrate that pre-trained generative models like CodeBERT capture the

language naturalness notion. We can infer the naturalness aspect of a source-code

from the CodeBERT prediction results.

• We introduce a novel approach to compute source-code naturalness that works

in cross-project context and does not rely on the aspects of naturalness that are

tied to a specific project. For instance, It does not require any further training or

specific knowledge of the target project, to rank its lines by bugginess likelihood,

thus can be easily used in the future as a baseline.

• We provide a tool for computing code naturalness that is applicable in a cross-

project fashion, allowing both researchers and practitioners to integrate natural-

ness computations (as features) in their ML-based approaches and perform for

instance bug detection [38], code smell detection [150], [151], code readability

analysis [152], [153], support mutation testing [156], automated bug fixing [157]

and many other applications, as surveyed in the work of Allamanis et al. [36].

6.2 Naturalness through CodeBERT

6.2.1 Naturalness Metrics

In this study, we explore the possibility to rely on pretrained generative models and more

precisely CodeBERT to evaluate the naturalness of code.

While these models are neither designed to output metrics nor related to naturalness

at first sight, they can be easily used on existing code by simply masking tokens and

111

requesting suggestions. This means that by evaluating the ability of models to find back

masked tokens, it is possible to estimate how predictable the code is according to the

models.

From this, we hypothesize that code naturalness can be seen as a derived form of

predictability and thus this predictability could be considered as a form of naturalness

computation. Yet, to reach naturalness metrics, we still need to quantify this predictability

through the suggestions of the model.

One possibility, perhaps the simplest one, is to select a sequence, successively

mask the tokens and report the number of tokens of accurate guess of the model. While

this type of metric can work with any available model, it reflects neither the confidence

of the model in its suggestions nor the ranking of suggestions. Thus, we suggest two

additional metrics based on additional information provided by CodeBERT, i.e., the

prediction confidence score. Indeed, this score provides along with the suggestions the

confidence in the said suggestion, which brings us closer to the behaviors of n-gram

models and their probabilities.

From there, we investigate the following metrics:

• CBnt conf: the prediction confidence score of CodeBERT. This metric represents

a probability, thus is a floating number varying between 0 and 1, where the closer

to 1 its value is, the more CodeBERT is confident about the prediction.

We believe that this metric may mirror directly the naturalness of code as it reflects

how predictable and usual is the code, relatively to the code knowledge learned

by the model through its training phase on a large-scale code dataset. Thus, low

confidence scores may imply low naturalness.

• CBnt cos: the cosine similarity between the CodeBERT embeddings of the pre-

dicted and the original source-code. This metric has also a float value varying

between 0 and 1, where 1 implies an exact similarity between the two embeddings

112

and 0 the absence of similarity. This metric is often used in NLP and has shown

some interesting results in filtering unnatural sentences [158]. CodeBERT embed-

ding is the encoded representation of the code in the latent space, where every

token is represented by 1 vector. To calculate the cosine similarity between the

embeddings, we start by concatenating their token-vectors into two vectors, one

for each embedding, then we compute the cosine as follows:

Cosine(Vo,Vp) =
Vo.Vp

∥Vo∥.∥Vp∥
, (6.1)

where Vo and Vp are the concatenated embedding vectors of respectively the

original and predicted code.

Our intuition is that the less natural the code is, the more CodeBERT will have

difficulties noticing small changes in it, i.e., changing a single token in unnatural

code would not impact much its resulting embeddings. Consequently, a high

similarity between both embeddings – of the original and predicted code – may be

a symptom of unnaturalness in the code.

• CBnt acc: the accuracy of prediction (whether the predicted code matches the

original one or not). This is a Boolean metric where 1 is attributed to a matching

prediction and 0 otherwise. Intuitively, we believe that the more the code is natural,

the more CodeBERT predictions are accurate.

6.2.2 CODEBERT-NT

We implemented a tool named CODEBERT-NT able to compute those metrics, which

process is described in Figure 6.1. More precisely, CODEBERT-NT proceeds as follows:

For every selected file, the tool starts by parsing the Abstract Syntax Tree (AST) and

extracting the interesting nodes to mask, excluding the language-specific tokens such

113

Source-code AST nodes

locations

AST Nodes

selection

AST Nodes

Masking

a = b + c;

return a==d;

a = b + c;

return a <mask> d;

a = <mask> + c;

return a==d;
Masked  

code

<mask>

Masked code  
prediction

CodeBERT

Source-code  
Prediction Metrics

Prediction metrics
calculation

Predicted  
code

Predict°

Figure 6.1: The CODEBERT-NT source-code metrics calculation workflow.

as control flow and import-related tokens, e.g., if, else, for, while, import, etc. Then,

for every line, the tool iterates over the selected set of nodes and replaces each node’s

content by the placeholder <mask>, thus, generating one masked version of the input

code per selected node.

Next, every masked version is tokenized into a vector of tokens using the CodeBERT

tokenizer and crops it to only encompass the masked token and its surroundings, as

the model encoder can only take up to 512 tokens. Once the shrinking is done, the

sequences of masked code are fed to CodeBERT to determine the best fitting substitute

for the mask placeholder. By default, the model provides 5 propositions ranked by

likelihood (also called confidence) to match the masked node’s original value. In our

setting, we only consider the first proposition as we believe it to be the most naturalness-

revealing one (we discuss this choice further in Section 6.6.3) and compute the 3

suggested metrics.

Finally, each line is mapped with its prediction scores forming a matrix M ∈ R3×n

where n is the number of collected propositions in that source-code line.

The AST parsing and node-location extraction part has been implemented in Java

and uses Spoon [147], a Java code-source analysis library. Whereas, the rest of the

process has been implemented in python using PyTorch [159] and the CodeBERT

Masked Language Modeling (MLM) task to predict the masked codes and compute the

metrics.

114

6.3 Research Questions

In this paper, we explore the possibility to rely on pre-trained generative models to

evaluate the naturalness of code.

Naturalness of code is by essence a relative measure, i.e., it strongly depends

on the models and training data used, which means that we cannot directly establish

that metrics actually reflect naturalness. Therefore, we contrast them based on their

performance on an end task, for which we have a solid ground truth. In particular, we

evaluate the performance of our metrics w.r.t. the naturalness of bugs hypothesis that

states: ”unnatural code is more likely to be buggy than natural code” [38]. This means

that a good naturalness metric should be capable of distinguishing natural (clean) from

unnatural (buggy) code.

Hence, we ask:

RQ1 (CODEBERT-NT metrics): Which metric leads to the best segregation between

buggy and not buggy lines?

To answer this question, we check if any metric discriminates better the buggy from

the clean lines. In particular, we investigate each metric performance with several

aggregation methods as well as ordering directions. This results in a best discriminating

combination of aggregation and ordering per metric which can then be compared

against.

However, observing better results doesn’t necessarily indicate that the metric is

of actual use. We thus, turn our attention to the significance of these results and

contrast them with some obvious baselines, such as the random order and source-code

complexity order (ranking the most complex lines first). Random order offers a sanity

check for coincidental results, and complexity offers an unsupervised baseline [160],

i.e., shows that our metrics do not simply measure complexity instead of naturalness.

Therefore, we ask:

115

RQ2 (Comparison with baseline metrics): How does CODEBERT-NT metrics compare

with random and source-code complexity, in terms of buggy lines ranking?

To check whether the naturalness captured by CODEBERT-NT is useful, we compare

the values observed in RQ1 to the ones from the 2 aforementioned baselines on the

same subject lines and buggy versions. A clear advantage of the CODEBERT-NT

metrics would validate that the metrics capture more than complexity. Yet, as those

baselines are relatively weak, we also want to compare our metrics with n-gram models

that were originally used to show the naturalness of buggy code hypothesis. This leads

us to the following question:

RQ3 (Comparison with existing naturalness metrics): How does CODEBERT-NT com-

pare with n-gram based naturalness metrics in terms of lines ranking by buggi-

ness?

We answer this question by ranking the subject lines based on their naturalness, i.e.,

cross-entropies, measured by n-gram models trained on the source-code of the same

version of the considered project and comparing it to the results of our metrics, in a

similar way as of RQ2. More precisely, for every considered bug we train two n-gram

models (using each of UTF8 and Java Parser tokenizers) on the source code of the files

that have not been changed by the fix patch. Then, we use these models to calculate

the cross-entropies of the subject lines.

This obviously caused an accumulation of models – precisely 2 per target bug in

this case – which highlights a major drawback of this approach. Nonetheless, the RQ3

comparison does not aim at answering the question of which model is best but to show

a relative performance of the models. Indeed, as the training corpora of the models are

significantly different, the associated learning differs with each one having significant

associated advantages. In particular, CodeBERT would benefit from being trained on

116

a much larger corpus, while n-grams would have the advantage of operating on an

intra-project fashion, which provides more information on the context at hand [36].

6.4 Experimental Setup

6.4.1 Dataset & Benchmark

To perform our investigation, we use a recently crafted dataset of commits;

SmartSHARK [155]. This dataset is distributed as a MongoDB database describ-

ing commit-details extracted from multiple open-source python and java projects. A

specificity of Smartshark is that its data are manually refined, i.e., the commits are

untangled and the fix validated, hence reducing the threat of noisy data.

In our study, we use the issue-fixing commits of the 40 available java projects the

dataset includes.

Buggy versions selection

For most of the issues, SmartSHARK provides one or more related commits, among

which the fixing-commits are labeled as validated fix-commits. Thus, to build our bugs

dataset, we exclude all issues having no corresponding fix-commit, or having multiple

fix-commits. While the first case is straight forward, the latter is applied to further

reduce noise in the data as pinpointing bugs origin from multiple fixing commits is

harder and more error prone. This way, we obtain one fix-commit per issue where

the changed lines form the complete set of buggy lines. Then, as we focus on Java

source-code naturalness, we exclude the issues whose fixes are not involving java

files, e.g., configuration files. Finally, we map the resulting issues to their related buggy

version, i.e., the project version preceding the fix commit.

117

Lines subject to study

For every considered issue, we retrieve the files changed by the patching commit,

among which we mark as buggy any line changed by the fixed commit and define as

neutral ones the remaining lines in these files.

Then to ensure that the observed ranking performances are related to code natu-

ralness extraction and not to any non-uniform distribution of the buggy-lines over the

code, we exclude all lines that are not part of the business-logic of the program like

the imports, the fields declaration, the brackets, etc. We do so to focus on logic types

of faults, which are unlikely to be caused by non-business-logic statements as also

suggested by the work of Rahman et al. [161]. Moreover, the naturalness of these lines

is unlikely to be insightful. (We discuss this further in Section 6.6.1)

Additionally, this allows us to exclude any interference between comparing the

ranking-performance by naturalness and other forms of rankings related to the buggy

lines unequal distribution between business-logic and not business-logic related source-

code portions. In fact, close to half of the considered bugs see all of their buggy lines

located within the business-logic code, while only 10% of the bugs see all of their

buggy-lines outside of it. Unaccounting for those 10%, we observe a median of 90% of

buggy lines located within the business-logic code per bug, while this type of line only

amounts to 60% of the lines overall.

To sum-up, by excluding these lines we exclude 257 bugs out of 2510 to end up with

a final dataset counting 2253 buggy versions, represented by a set of business-logic

buggy and not buggy lines.

6.4.2 n-gram ranking

To compare CODEBERT-NT with n-gram models in terms of code naturalness aspect

capturing, we proceed as follows:

118

For every considered issue, we train two n-gram models specific to that version of

the project using two distinct tokenization techniques2:

• Java Parser tokenizer (noted JP) which tokenizes the code according to the Java

grammar, and thus, discarding empty lines as well as java-doc and code-comment

lines.

• UTF8 tokenizer (noted UTF8), which operates on the full raw representation of the

source-code.

We name the created models based on their underlying tokenization technique, JP

and UTF8 n-gram. In the training phase, we use all the lines from the files that have

not been changed by the fix commit, then we use each of these models to attribute a

cross-entropy score to the subject lines of the buggy files, counting buggy and neutral

lines as detailed in Sub-section 6.4.1. Finally, we rank the lines according to their

cross-entropy score in a descendant order such-as high values of cross-entropy are

associated with less code naturalness and higher likelihood of bugginess.

To run this experiment, we use the current version of the n-gram utilities library

Tuna [162] with one of the recommended configurations by Jimenez et al. [39] for

distinguishing buggy and fixed lines: 4 as n-order, 1 as unknown threshold and Kneser

Ney smoothing (KN). Note that we use KN instead of the Modified Kneser Ney smoothing

(MKN) because it is not suited for short sequences.

6.4.3 Lines ranking

To assess the relevance of the information inferred from the CODEBERT-NT predictions,

we rely on its ability to rank the buggy lines before the supposed neutral ones. As we

2We use UTFLineTokenizer and JavaLemmeLineTokenizer available in Tuna [162] GitHub reposi-
tory under tokenizer/line/ (branch=master,repo=https://github.com/electricalwind/tuna, rev-
id=44188e1)

119

do not have any labelling of ”natural” and ”unnatural” source-code dataset and based

on the buggy-code naturalness hypothesis, we believe that the prediction variation of

CODEBERT-NT under naturalness variation of the input source-code can be observed

through its ranking of buggy and not buggy lines. (Please see Section 6.3 for more

details)

For every considered approach, metric and aggregation method considered in our

experiments, we rank all the lines by bug first, then normalise the ranks by the total

number of studied lines for that bug. We report two ranking results per bug per approach:

• the first hit: corresponds to the rank of the first-ranked buggy line and

• mean: corresponds to the mean of the ranks of all buggy lines.

To cut ties when multiple lines share the same score, we attribute the estimated rank by

a uniform random selection. For instance, if we have 100 lines sharing the same rank,

among which 3 lines are buggy, the random first hit rank will be equal to 25, while the

mean rank of the 3 buggy lines will be 50.

To check whether any of the 3 aforementioned metrics are impacted by the natu-

ralness variance of the source-code (answer to RQ1), we generate one CodeBERT

prediction only by masked token. Then we aggregate the scores of each line’s predic-

tions by applying one of the following aggregation metrics: minimum, maximum, mean,

median and entropy. Where the entropy is calculated as the following:

H(l,m) = −
∑n

i=1 log(si)

n
(6.2)

where {s1, s2, ..., sn} denotes the set of n scores attributed to the line l for the metric

m.

We then rank the subject lines by each of the metrics using the different aggregation

methods and following both sorting directions: ascending and descending. As most of

120

the results are close to each other, we calculate the paired Vargha and Delaney Â12

ratios, to conclude which combinations are the best in terms of buggy lines ranking.

To check whether the extracted information from CodeBERT predictions (answer to

RQ2) reflect actually code naturalness, we compare the ranking results of the 3 metrics

using their best performing aggregation method and sorting order, with the rankings

results of random and complexity-based rankings. Where, the complexity of a line

corresponds to its number of Java Parser tokens. This is inspired from the study of

Leszak et al. [163], where complex source code has been proven to be more likely to

be buggy. For the random ranking, instead of rerunning the ranking multiple times, we

simply used a basic probability calculation of the rankings.

Finally, to compare the effectiveness of CODEBERT-NT with similar techniques

in capturing code naturalness we compare its buggy-line rankings with the n-gram

cross-entropy, measured as described in Sub-section 6.4.2 (answer to RQ3). For this

comparison, we consider the CODEBERT-NT rankings effectuated by its best performing

metric, selected from the previous research questions.

To have a better understanding on the differences significance we run statistical

tests of Wilkixon and Vargha and Delaney Â12 on all of our comparison results.

6.4.4 Threats to Validity

The question of whether our findings generalise, forms a typical threat to validity of

empirical studies. To reduce this threat, we used real-world projects, real faults and

their associated commits, from an established and independently built benchmark. Still,

we have to acknowledge that these may not be representative of projects from other

programming languages, domains or industrial systems.

Other threats may also arise from the assumption that all changed lines by the fix

commits are buggy lines. While our heuristics are the standard in the literature, we

believe that this selection process is sufficient given that we have used a dataset where

121

Table 6.1: Paired Vargha and Delaney Â12 effect size values of the buggy lines ranking
by different pairs of metrics-aggregation methods in ascendant and descendant order.
cos refers to CBnt cos, conf refers to CBnt conf and the acc metric refers to CBnt acc.

Metric
agg

conf
min

conf
max

conf
mean

conf
median

conf
entropy

cos
min

cos
max

cos
mean

cos
median

cos
entropy

acc
min

acc
max

acc
mean

acc
median

1st hit 0.6196 0.4993 0.5528 0.5542 0.4387 0.5084 0.4763 0.5016 0.4989 0.4980 0.5004 0.4996 0.5118 0.4996
Mean 0.6325 0.5009 0.5613 0.5530 0.4350 0.5138 0.4818 0.5027 0.5058 0.4980 0.5004 0.4996 0.5122 0.4996

the fix commits have been manually untangled. Additionally, we focus our study on the

sole business logic lines, thus reducing further the risk of considering as buggy, lines

irrelevant to the bug at hand.

Finally, our evaluation metrics may induce some additional threats. Our comparison

basis measurement, i.e., comparing the ranking of source-code lines that has been

trained on the same source-code’s project with approaches that are agnostic and has

been trained on multiple projects. It is hard to compare the advantage gained by training

CodeBERT on a large number of projects, including eventually the projects in our

dataset, against the advantage gained by the n-gram models when trained on a specific

project source-code and predicting the naturalness of lines of that same project.

6.5 Results

6.5.1 RQ1: Metrics and aggregation methods

To evaluate the CODEBERT-NT metrics, we rank the subject lines according to the

aforementioned metrics. We start by calculating one score per line for every metric, by

aggregating the scores of the predictions in that line. Then, we sort the lines according

to their score in both orders - ascendant and descendant - and calculate the paired (by

bug) Vargha and Delaney Â12 difference between both orders effectiveness in terms of

attributing the lowest ranks to the buggy lines; more precisely the average ranking of

122

0

20

40

60

80

100
B

ug
gy

 li
ne

 ra
nk

 %
Comparison = 1st hit rank

min
max
mean
median
entropy

CBnt_conf CBnt_cos CBnt_acc
Metric

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = Mean rank

min
max
mean
median
entropy

Figure 6.2: Buggy lines ranking using the three available metrics with different aggrega-
tion functions. A line is more likely to be buggy when it has a low min CBnt conf, a high
max CBnt cos and low mean CBnt acc.

123

the buggy lines and the smallest rank attributed to a buggy line, per bug. (Please refer

to section 6.4 for details)

These results are depicted in Table 6.1 where values around 0,5 depict that the

considered pair of metric-aggregation method does not bring any advantage in ranking

buggy lines first, while values above 0,5 confirm an advantage for the ascendant sorting

order and below 0,5 an advantage for the descendant one. From these results, we

select the most suited sorting order for each pair of metric-aggregation and use it in the

following experiments.

Figure 6.2 depicts the box-plots of the normalised rankings by number of lines of

each bug. Interestingly, the prediction confidence score (CBnt conf) seems to be a good

indicator of naturalness and thus of bugginess likelihood. Noticeably, low confidence

scores are more often attributed to buggy lines than neutral ones. This explains why

aggregating this metric by using the maximum value by line gives the worst guidance to

our target, while sorting by the minimum score gives the best ranking over all considered

pairs metric-aggregation.

At the same time, we do not observe any relevant differences when ranking the

lines by either the cosine of the embedding (CBnt cos) or the correctness of predictions

(CBnt acc). This is also confirmed by the Table 6.1 where most of the Â12 values

are around 0,5 when using each of the aggregation methods on these two metrics.

Nevertheless, we notice that the best method to rank the buggy lines by cosine similarity

is via ranking the lines by their highest scores of similarity, where the high (max) values

are considered as symptoms of unnaturalness. We also notice a trend that confirms the

correlation between naturalness and code predictability, such as the lower the mean of

correct predictions in a code is, the less natural is the code.

By checking Table 6.1 we also see that the difference of ranking the lines by low

confidence, from the other metric-aggregation methods is significant, Vargha and

Delaney Â12 effect size values are more than 0.6, which are significantly higher to the

124

rest of confidence aggregation rankings. Less noticeable, the ranking by increase of

the line’s maximum embeddings cosine-simalirity and mean prediction accuracy yield

respectively Â12 values of around 0,52 and 0,51 when compared to the other studied

aggregation methods when applied on the same metrics.

CODEBERT-NT can infer the naturalness of code through masked token predic-

tions. The unnatural information can be inferred the best from the decrease of

prediction confidence (considering the minimum value per line), the increase of

cosine similarity between the embedded original and predicted code (considering

the maximum value per line) and the decrease of average prediction accuracy per

line.

6.5.2 RQ2: Comparison with random and complexity based rank-

ings

Figure 6.3 shows the distribution of the normalised rankings of the first ranked buggy

line and the average rank of buggy lines by bug when using CODEBERT-NT metric-

aggregation pairs selected from the results of RQ1 (ascendant minimum CBnt conf,

descendent maximum CBnt cos and ascendant mean CBnt acc), uniform random

ranking and token-number-complexity descendant ranking.

Surprisingly, random and complexity lead to similar rankings with a small advantage

for random. This observation implies that tokens-number-complexity does not capture

well the code naturalness in the studied setup: naturalness on the line-level-granularity

of the business-logic code.

As can be seen from the boxplots, CODEBERT-NT outperforms the baseline tech-

niques in ranking the buggy lines first, using any of its three metrics. In fact, except

for a small portion of our dataset bugs, CODEBERT-NT low-confidence performs the

best in estimating the bugginess of the target lines, with respectively a 1st hit and mean

125

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = 1st hit rank

CBnt_conf CBnt_cos CBnt_acc Complexity Random
Ranking approach

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = Mean rank

Figure 6.3: Comparison of the buggy lines rankings by CODEBERT-NT (CBnt conf),
Random and Complexity (number of tokens by line). CODEBERT-NT outperforms
Random and Complexity in ranking buggy lines.

126

Table 6.2: Vargha and Delaney Â12 of CODEBERT-NT low-confidence-metric (CBnt conf)
rankings compared to the other ones.

CBnt conf Vs CBnt cos CBnt acc Complexity Random

1st hit 0.578 0.609 0.605 0.607
mean 0.565 0.619 0.620 0.622

buggy-line ranks lower in average by around 6% and 4.7% than the following ranks

– attributed by the cosine similarity – and around 11% and 5% lower than the least

performing ranking effectuated by uniform random. This noticeable difference between

the CODEBERT-NT results with the two considered techniques, more specifically the low

confidence CBnt conf ranking, endorses the fact that CODEBERT-NT can be considered

as a comparison baseline and a new method for naturalness based tasks.

Although, the two remaining CODEBERT-NT metrics, average accuracy CBnt acc

and high embeddings similarity CBnt cos, outperform both baselines and yield lower

rankings than uniform random by respectively 3% and 5% in ranking the first hit buggy

line, they perform however similarly to the baselines when comparing their mean ranking

of all the buggy lines, with a small advantage of only 0,4% for the ranking by embeddings

similarity.

To validate this finding, we perform a statistical test (Vargha and Delaney Â12 and

Wilcoxon paired test) on the data of Figure 6.3 to check for significant differences.

Our results showed that the differences are significant, indicating the low probability

of this effect to be happening by chance. As illustrated in Table 6.2, the size of the

difference is also big, with CODEBERT-NT low-confidence yielding Vargha and Delaney

Â12 values between 0.58 and 0.6 indicating that CBnt conf ranks the buggy lines the

best in the great majority of the cases. However, the CODEBERT-NT accuracy and

embeddings-similarity metrics outperform random respectively, in only 51% and 48% of

the cases.

127

CODEBERT-NT metrics describe source-code naturalness more accurately than

the baselines uniform-random-selection and tokens-count-complexity based rank-

ings. CODEBERT-NT low confidence (CBnt conf) is the most effective metric and

outperforms the uniform-random-ranking by 11% in ranking the first hit buggy line

and 5% in ranking all the buggy lines, in average.

6.5.3 RQ3: Comparison with n-gram

To answer this question, we train two n-gram models per buggy version of our dataset

that we then use to compute the cross-entropies of the subject lines from the correspond-

ing bug, then we rank these lines according to the resulting values and reproduce the

same analysis as in RQ2. We illustrate in Figure 6.4 the distribution of the normalised

rankings of the first ranked buggy line and the average rank of buggy lines by bug

when using CODEBERT-NT low confidences ranking – CBnt conf –, the descendant

cross-entropy ranking from a UTF8-tokenizer-based n-gram model and a JavaParser-

tokenizer-based one. Additionally, we illustrate the random ranking in the boxplots as

the simplest baseline for this task.

As expected, the three approaches outperform the uniform-random-ranking in most

of the cases and yield very comparable results with a small advantage to CODEBERT-NT

on ranking the first buggy line over the n-gram techniques and a small advantage to

JP n-gram in regards of the average rank of buggy lines. In both comparisons, UTF8

n-gram falls slightly behind these two latter techniques.

To validate this finding, we performed a similar statistical test as in RQ2 on the

data of Figure 6.4 and found that the differences with random are significant, while the

differences between n-gram cross-entropy and CODEBERT-NT low-confidence rankings

are negligible. As illustrated in Table 6.3, the size of the Â12 differences are equal to

0.518 and 0.468 between CODEBERT-NT and JP n-gram models and 0.536 and 0.502

128

0

20

40

60

80

100
B

ug
gy

 li
ne

 ra
nk

 %
Comparison = 1st hit rank

CodeBERT-nt JP n-gram UTF8 n-gram Random
Ranking approach

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = Mean rank

Figure 6.4: Comparison of the buggy lines rankings by CODEBERT-NT (CBnt conf),
UTF8 n-gram and JP n-gram models (created respectively using UTF8 and Java Parser
tokenizers). CODEBERT-NT ranking is comparable to the n-gram models one.

129

Table 6.3: Vargha and Delaney Â12 of CODEBERT-NT low-confidence-metric (CBnt conf)
rankings compared to n-gram and Random ones.

Approaches Â12
Random UTF8 JP

1st hit mean 1st hit mean 1st hit mean

CBnt conf 0.606 0.621 0.536 0.502 0.518 0.468
JP 0.575 0.630 0.559 0.588
UTF8 0.560 0.602

between CODEBERT-NT and UTF8 n-gram models for both reported rankings, meaning

that both approaches yield comparable results, which confirms that CODEBERT-NT

can carry out code naturalness related applications with similar effectiveness as the

statistical language n-gram models.

CODEBERT-NT masked token prediction confidence indicates naturalness of bugs

as accurately (slightly better) as program-specific n-gram models.

6.6 Discussion

6.6.1 Impact of interesting lines selection

Our empirical results show evidence that CODEBERT-NT can infer source-code natural-

ness yielding the same results as n-gram models and outperforming the uniform-random

and code-complexity based techniques in attributing higher ranks to buggy lines when

sorting source-code by naturalness. These experiments have been driven on the same

buggy versions source-code whose lines count at least one buggy line. Precisely, we

have excluded all the lines outside the business-logic source-code and kept only the

bugs that counted at least one buggy line within their remaining lines.

To better understand the impact of this line selection step, we reintroduce all the

bugs with their full source-code in our dataset and reproduce the same study as in

130

0

20

40

60

80

100
B

ug
gy

 li
ne

 ra
nk

 %

Comparison = 1st hit rank

CodeBERT-nt JP n-gram UTF8 n-gram Random
Ranking approach

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = Mean rank

Figure 6.5: Comparison of the buggy lines rankings by CODEBERT-NT (CBnt conf),
UTF8 n-gram and JP n-gram models (created respectively using UTF8 and Java Parser
tokenizers) when ranking all lines. CODEBERT-NT ranking is comparable to the n-gram
models one and ranking the business-logic source-code lines first give it an advantage
over the n-gram ranking.

131

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = 1st hit rank

Worst-score JP n-gram UTF8 n-gram Random
Ranking approach

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = Mean rank

Figure 6.6: Comparison of the buggy lines rankings by worst possible scores, UTF8
n-gram and JP n-gram models (created respectively using UTF8 and Java Parser
tokenizers) when targeting the buggy versions not exposing any business-logic-related
buggy line. n-gram techniques perform similarly to random on these subject buggy
versions.

132

RQ3. We have then attributed the worst rank to all unranked lines by CODEBERT-NT,

i.e., outside of the business-logic. This implies that for CODEBERT-NT, the business-

logic lines are ranked first by their min-confidence and the remaining lines are ranked

after with a random uniform selection logic. The n-gram approaches ranking is applied

as described previously, the same way on all lines – business- and non-business-logic

related ones – having each two cross-entropy values from every corresponding n-gram

model. The ranking distributions are illustrated in Figure 6.5.

Although the results of the three approaches remain comparable, the trend is that

for a noticeable portion of studied bugs, CODEBERT-NT remains able to rank buggy

lines better than the n-gram models. The difference is wider and more visible between

the ranks of the first buggy line which can be seen in the left boxplot of Figure 6.5.

Interestingly, we observe that ranking the business-logic lines with CODEBERT-NT

and the remaining lines with a uniform random ranking outperforms ranking all the

lines (business- and not business-logic related ones) by their n-gram calculated cross-

entropies. These results lead to the conclusion that the naturalness analysis of the

non-business-logic lines do not contribute with useful information to the considered

ranking tasks, but instead alters its results when attributing a higher rank to the targeted

lines.

To check whether this observed decrease of performance for n-gram is indeed

caused by the additional lines or because they performed worst on the previously

excluded bugs from our dataset, we reproduce the same comparison on the subset

of our dataset where all bugs are located outside of the business-logic code, implying

that CODEBERT-NT will attribute the worst score to every buggy line. We illustrate the

rankings distribution of the ”worst-score” strategy (ranking all buggy-lines last), JP and

UTF8 n-gram models and uniform-random in Figure 6.6.

Although small, the n-gram models kept some advantage over random ranking

as in the Figures 6.4 and 6.5, in contrast to CODEBERT-NT’s ”worst-score” results.

133

20

41

418

782

0

0

5

974

0

0
4

9

0

0

0

CBnt_conf
CBnt_cos
CBnt_acc
Random

Figure 6.7: Which metric ranks the best the buggy lines, in most of the cases? Code-
BERT confidence CBnt conf performs the best for around 50% of the cases, followed by
CBnt cos then CBnt acc which perms almost similarly to random. Therefore, There’s
no big benefit in using CBnt acc while it could be interesting to complement CBnt conf
capabilities, using CBnt cos.

The contrasting results between the Figures 6.6 and 6.5 highlight the negative impact

of ranking the not business-logic lines by naturalness as they compensated CODEBERT-

NT’s disadvantage of attributing the worst ranks to buggy lines, in 10% of the stud-

ied cases. Consequently, these results reinforce our conclusion that including the

non-business-logic lines in the analysis adds noise to the search-space [161], and

consequently hinders the ranking accuracy.

6.6.2 Which metric to use for which bug?

The empirical results driven on our large set of buggy versions highlight the effectiveness

of CODEBERT-NT in capturing the naturalness of source-code, especially via its low-

134

CBnt_conf

0.15
0.20

0.25
0.30

0.35
0.40

CBnt_
co

s

0.000
0.025

0.050
0.075

0.100
0.125

0.150
0.175

C
B

nt
_a

cc

0.1

0.2

0.3

0.4

0.5

0.6

CBnt_conf
CBnt_cos
CBnt_acc
Random

(a) Scatterplot of bugs best-ranking-metric by
standard deviation.

0.15 0.20 0.25 0.30 0.35 0.40
SD

0

20

40

60

80

100

C
ou

nt

Metric = CBnt_conf

0.00 0.05 0.10 0.15
SD

Metric = CBnt_cos

0.1 0.2 0.3 0.4 0.5 0.6
SD

Metric = CBnt_acc

CBnt_conf CBnt_cos CBnt_acc Random

(b) Histogram of bugs best-ranking-metric by standard deviation.

Figure 6.8: Distribution of Bugs best-ranking-metric by standard deviation of the metrics
measured on their corresponding subject lines. Except for few scores, CBnt conf ranks
the majority of the bugs the best independently from the measured SDs.

.

135

confidence metric. However, from the outliers in the Figures 6.2, 6.3, 6.4 and 6.5, we

notice that CODEBERT-NT does not perform equally on all considered bugs. Which

means for instance that it outperforms uniform-random ranking in the majority of the

cases, but yields worst rankings for a small portion of the dataset. Therefore, we turn our

attention towards investigating the possibility of better handling those bugs, leveraging

one of the other CODEBERT-NT metrics.

We start by mapping every metric with the bugs on which it attributed the best

mean ranking to the buggy lines. In figure 6.7, we illustrate a Venn diagram of this

distribution, including uniform-random-ranking as baseline. As shown in our results, the

CODEBERT-NT confidence is the best naturalness indicator for the majority of bugs,

followed by the cosine similarity and the prediction accuracy. We also notice that except

for a minority of 20 bugs, at least one of the CODEBERT-NT metrics achieves better

scores or similar to random-uniform ranking. Additionally, except the large intersection

set of bugs that are best-ranked by the prediction accuracy and uniform-random-ranking,

the metrics rarely achieve their best rankings of the buggy lines for the same bugs.

This observation introduces the hypothesis that the metrics are complementary and

eventually, one could rely on different metrics for different bugs.

Aiming at distinguishing between our dataset bugs, we measure the metrics standard

deviation (SD) per studied lines. In this setup, we exclude from our clusters the bugs

that are intersecting with random and plot the SD distributions of the remaining ones, in

Figure 6.8. The plots illustrate that the bugs from different clusters share similar ranges

of SD with mean values around 0.27, 0.09 and 0.31 for respectively CBnt conf, CBnt cos

and CBnt acc. Also in the majority of the cases, the SD of the bugs best treated by other

metrics than CBnt conf fall in the same range of this latter, thus, cannot be distinguished

from each other. However, we notice that for some SD values, CBnt cos ranks better

more bugs than CBnt conf. This difference is noticeable for roughly: SD(CBnt conf)

values between 0.2 and 0.24 or above 0.35, SD(CBnt cos) values above 0.14 and

136

SD(CBnt acc) values below 0.05 or between 0.19 and 0.28 or between 0.395 and

0.42. These SD ranges represent a small fraction of our dataset, exactly 357 bugs,

among which 193 where CBnt cos performed the best and 200 where it outperformed

CBnt conf, which correspond respectively to 15.8%, 8.5% and 8.8% of the studied bugs.

Nevertheless, these results may motivate future investigation on the use of CBnt cos

over CBnt conf in similar cases, on different setups.

6.6.3 Impact of generating more predictions per token?

To have a better understanding on whether generating more predictions from the model

could improve the bugginess information retrieved by CODEBERT-NT, we extend our

experiment of RQ1 by comparing the ranking results using the best proven pairs of

metric-aggregation from our results, when generating 1, 2, 3, 4 and 5 predictions per

token. We illustrate in Figure 6.9 the box-plots of the normalised rankings by number

of lines of each bug. Although comparable, the results depict a clear dissipation of the

bugginess indicators retrieved from the prediction confidence and the cosine similarity

metric, when we aggregate the values of more than one prediction by token. In the other

hand, we can see that the ranking performance effectuated by the prediction accuracy

raises when we consider 2 and 3 predictions then converges to a stable value. Besides

the fact that this increase confirms further the correlation between code-naturalness

and predictability, it remains negligible and keeps this metric-ranking far below the low-

confidence one. Therefore, we believe that it would be more cost-efficient and appealing

for similar studies, to generate only 1 – eventually up to 3 – predictions instead of 5, as

the default setting of CodeBERT.

137

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = 1st hit rank

1
2
3
4
5

CBnt_conf CBnt_cos CBnt_acc
Metric

0

20

40

60

80

100

B
ug

gy
 li

ne
 ra

nk
 %

Comparison = Mean rank

1
2
3
4
5

Figure 6.9: Buggy lines ranking using 1, 2, 3, 4 and 5 predictions per token. The more
predictions we use, the more the information about the confidence gets dissipated, thus
the more the ranking performance decreases, except for CBnt acc.

138

6.7 Conclusion

Naturalness of code forms an important attribute often needed by researchers when

building automated code analysis techniques. However, computing the naturalness of

code using n-gram requires significant amount of work and a salable infrastructure that

is not often available. An alternative solution is to use other readily available language

models, perhaps more powerful than n-grams, such as transformer-based generative

models (CodeBERT-like). Unfortunately, these models do not offer any token-based

appearance estimations since they aim at generating tokens rather than computing their

likelihood. To this end, we investigate the use of predictability metrics, of code tokens

using the CodeBERT model and check their appropriateness in bug detection. Our

results show that computing the confidence of the model when masking and generating

a token, irrespective of whether the predicted token is the one that was actually predicted

by the model, offers the best results, which are comparable (slightly better) to that of

n-gram models trained on the code of the same project (intra-project predictions).

139

Chapter 7

Conclusions

Dissertation Summary

This dissertation presents studies, approaches and tools that tackle important challenges

of fault injection, with the aim of improving the usability of artificial faults and mutation

testing in practice. The main contributions are: 1) an approach to introduce faults

that mimic the behaviour of real bugs using information retrieved from bug reports

and inverted automated-program-repair fix-patterns, 2) a mutation testing approach

that seeds “natural” faults based on big code knowledge by leveraging pre-trained

language models and 3) an approach that measures code naturalness through pre-

trained language models prediction. We made the implementation of these approaches

as well as the reproduction packages of our studies publicly available, to support further

research in this direction.

In the first part, we propose a targeted bug-report driven fault injection approach, that

we untitled IBIR. Its key goal is to enable researchers and practitioners to inject “realistic”

faults in a specific targeted feature or component of the software or system under test.

This way IBIR faults can be used as substitutes of real ones in targeted test assessment

and fault tolerance campaigns. To do so, it takes as input the target project and bug

140

report. It starts by finding the locations that are the most likely to be related to the input

bug report description by applying an information retrieval fault localisation technique

(IRFL). Then it applies on these locations, fault-patterns that has been created by

inverting fix-patterns collected by automated-program-repair researchers from multiple

real bug fixes. This way, our approach brings realism to the injection by targeting the

features described in the given bug report and applying patterns crafted from real bug

fixes.

In the second part, we approach the fault injection challenges from a different

perspective, i.e. in a mutation testing context, in which we target the whole scope of

the project under test and not a specific bug or feature. We propose an approach, that

we named µBERT, which aims at generating “natural” mutants, in the sense that they

are easy to understand and more likely to happen, in order to guide practitioners in

writing tests of higher fault detection capabilities. To do so, µBERT replaces different

pieces of the input program with pre-trained language model predictions, producing

numerous likely-to-occur mutations. The approach targets diverse business code

locations and injects either simple one-token replacement mutants or more complex

ones by extending the control-flow conditions. This provides probable developer-like

faults impacting different functionalities of the program with higher relevance and lower

cost to developers.

In the third part, we turn our interest to the possibility of identifying relevant locations

for developers, without any given prior such as a target bug report or commit changes.

Particularly, we investigated whether we could infer code naturalness through pre-trained

language model predictions, thereby distinguishing unnatural code locations from natu-

ral ones. This unnaturalness can be an indicator of smelly code or of low-readability

which may be a symptom of bugginess and bug-proneness, and thus requiring prior

attention from developers and testers. Although powerful, computing this measure can

be tedious, involving training language models, typically n-gram ones, which suffer from

141

scalability issues and tend to overspecialize. For this purpose, we propose the usage of

already trained generative language models to estimate code naturalness through their

prediction performance. This way, we overcome the training issues and efforts and en-

able the computing of a more generic code naturalness measure. We implemented this

approach which we untitled CODEBERT-NT and showed empirically that it can capture

naturalness efficiently, particularly obtaining comparable results as intra-project n-gram

models and outperforming random and complexity-based approaches in distinguishing

buggy lines.

Perspectives

In the following, we discuss some potential future research that follows the contributions

and ideas presented in this dissertation:

• Complementarity of mutation approaches: from Figure 5.6, we can see that some

faults are found by one mutation testing approach and not by the others. This

indicates that the tools complement each other and it would be interesting if we

could find an efficient way to take advantage of each approach’s capabilities. This

is further highlighted by the distribution of IBIR most semantically similar faults

with respect to their inducing patterns in Figure 4.12. Although with different

proportions, we can see that all patterns succeed to introduce strong mutants.

Hence, it is interesting to envisage the subsumption study of the mutation operators

from different approaches and eventually propose a more “complete” fault injection

approach, able to represent and reveal a larger space of faults, while producing

fewer duplicate and equivalent mutants.

• Mutant selection and prioritization: Our experiments provide empirical evidence

that IBIR is efficient in injecting faults that emulate target bugs. However, as the

142

injection approach depends on input bug reports, it may be useless in new projects,

i.e. where no bugs have already been reported, or in use cases not requiring

particular bugs or bug reports to target. Intuitively, in such situations, one could use

the mutator component of IBIR without the IRFL, by injecting faults in all locations

in a brute-force manner. However, this method may lead to similar results as

most of the traditional mutation techniques, with an overwhelming number of faults

to analyse for the end-user. Similarly, µBERT injects currently faults in diverse

locations of the code in an arbitrary order. It would be interesting to investigate

whether we could improve the usability of the proposed approaches by employing

a smart mutant selection strategy, i.e. prioritizing subsuming ones or those with

higher fault detection probability over the others, as explained in the Related Works

in Section 3.4. One could also investigate whether we could amend such selection

approaches with new code features, such as the naturalness of the mutant or the

mutated location, as they may give hints on whether a location is likely to be buggy

or not, and thus may favour fault revealing mutants over others.

• Generative language model based code naturalness: From Figure 6.7, we can

see that the low confidence of the model is not always the best indicator of code

unnaturalness, or of probable bugginess. Indeed, for a large proportion of our

dataset, the cosine of the embeddings distinguished better the buggy lines from

the others. Although it is hard to clearly define these cases, we could determine

some of them based on the standard deviation of the target code measured by

CODEBERT-NT metrics. This remains a shallow first step in this direction and it

would be interesting to investigate whether other techniques or measures could

better determine which naturalness metric to use depending on the project at

hand.

143

Chapter 8

List of Papers and Tools

8.1 Papers included in the dissertation

1. Ahmed Khanfir, Anil Koyuncu, Mike Papadakis, Maxime Cordy, Tegawende F.

Bissyandé, Jacques Klein, and Yves Le Traon.

IBiR: Bug Report driven Fault Injection.

In: ACM Transactions on Software Engineering and Methodology (TOSEM 2022).

Accepted on May 2022.

https://doi.org/10.1145/3542946

2. Ahmed Khanfir, Matthieu Jimenez, Mike Papadakis, and Yves Le Traon.

CODEBERT-NT: code naturalness via CodeBERT.

In: 22nd IEEE International Conference on Software Quality, Reliability and Secu-

rity (QRS’22). 2022.

http://hdl.handle.net/10993/53506

3. Ahmed Khanfir.

Effective and scalable fault injection using bug reports and generative language

models.

144

In: Proceedings of the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).

2022. Association for Computing Machinery, New York, NY, USA, 1790–1794.

https://doi-org.proxy.bnl.lu/10.1145/3540250.3558907

4. Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon.

Efficient Mutation Testing via Pre-Trained Language Models.

Submitted to: IEEE Transactions on Software Engineering (TSE 2023). 2023.

https://doi.org/10.48550/arXiv.2301.03543

145

8.2 Papers not included in the dissertation

During my journey at the Interdisciplinary Centre of Security Reliability and Trust (Uni-

versity of Luxembourg) as a PhD student, I had the opportunity to collaborate on side

projects related to the fields of Fault Injection and Software Security. These research

activities involved collaboration with researchers at the national and international levels,

precisely from:

• the Interdisciplinary Centre of Security Reliability and Trust, University of Luxem-

bourg, Luxembourg,

• the University of Namur, Namur, Belgium,

• the Sabanci University, Üniversite Caddesi No:27 34956 Istanbul, Turkey and

• the University of Copenhagen, Umeå University, Sweden

8.2.1 Fault Injection

In these collaborative works, we show that:

1. The syntactic similarity (code textual similarity) of injected faults w.r.t. real ones

does not imply their semantic similarity to real bugs [35]. In addition, we show

that real bugs can be semantically resembled by artificially injected faults. For

instance, IBIR [43] is able to resemble 76.44% of the considered real bugs in this

study, followed by Pitest [164] and µBERTconv [45], resembling respectively 65.11%

61.39% and 9.76% of the considered real bugs.

More details on this work can be found on the following article:

Milos Ojdanic, Aayush Garg, Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis

and Yves Le Traon.

146

Syntactic Vs. Semantic similarity of Artificial and Real Faults in Mutation Testing

Studies. Submitted revision to : IEEE Transactions on Software Engineering (TSE

2023). 2023. https://doi.org/10.48550/arXiv.2112.14508

2. Mutation Testing techniques do not benefit equally from the cost reduction offered

by Mutant Selection strategies, which give an advantage to certain approaches

over others [165]. This leads to observing different results when comparing the

cost efficiency of mutation testing techniques (in inducing test suites that reveal

real faults), under different mutant selection strategies. For instance, among other

results, we observed that IBIR is the most effective in inducing test suites that

reveal real bugs (an average of about 90% of the studied bugs). However, its

cost-efficiency is comparable to other considered approaches (µBERTconv, Pitest),

under a uniform random mutant selection strategy. In contrast, when the selection

is guided by CEREBRO [101] (an NMT-based mutant selection strategy), we

observed an improvement in the cost-efficiency of all the approaches, with a

significant advantage for µBERTconv. In fact, test suites written to kill µBERTconv

mutants reveal more bugs than other studied approaches, when spending the

same effort.

More details on this work can be found in the following article:

Milos Ojdanic, Ahmed Khanfir, Aayush Garg, Renzo Degiovanni, Mike Papadakis

and Yves Le Traon.

On Comparing Mutation Testing Tools through Learning-based Mutant Selection.

In: The 4th ACM/IEEE International Conference on Automation of Software Test

(AST 2023). 2023.

147

8.2.2 Software Security

In these side projects, we address challenges related to Software Security, particularly to

the fields of vulnerability detection, vulnerability injection and Android malware detection.

1. We proposed Confuzzion [166], a novel java virtual machine (JVM) fuzzer that

aims at detecting java type confusion vulnerabilities. The fuzzer generates input

java programs through mutations (i.e. adding methods and statements), which it

executes on a JVM under test aiming at revealing type confusion vulnerabilities.

A contract checker is added after each statement to verify whether the variable

types at run-time correspond to their declared ones or otherwise, a type confusion

has been triggered. The fuzzer decisions (i.e. which mutation operator to apply

or which method to target) are pseudo-random. In fact, they are guided by the

execution results from the previous iterations, to help in generating valid input

programs that enable exploring new/diverse execution paths. More precisely, It

keeps evolving valid (successfully executed) inputs and favours invoking methods

that are harder to execute successfully; those that tend to throw exceptions, as

they may require specific arguments that are hard to construct randomly.

More details on this work can be found in the following article:

William Bonnaventure, Ahmed Khanfir, Alexandre Bartel, Mike Papadakis and

Yves Le Traon.

Confuzzion: A Java Virtual Machine Fuzzer for Type Confusion Vulnerabilities. In :

21st IEEE International Conference on Software Quality, Reliability and Security

(QRS’21). 2021. https://doi.org/10.1109/QRS54544.2021.00069

2. We proposed IntJect [167], a novel vulnerability injection technique that combines

semantic-preserving mutations with an NMT learning approach. Given a dataset

of vulnerabilities (presented as < benign, vulnerable > code pairs), our approach

148

creates a new semantically similar dataset by employing semantic-preserving pro-

gram mutations on the pairs’ code. Then, it learns how to inject the vulnerabilities

via an NMT approach (Seq2Seq). The idea behind using Seq2Seq is to learn the

intent (context) of the vulnerable code in a manner that is agnostic of the specific

program instance.

More details on this work can be found in the following article:

Benjamin PETIT, Ahmed Khanfir, Ezekiel Soremekun, Gilles Perrouin, Michail

Papadakis.

IntJect: Vulnerability Intent Bug Seeding. In : 22nd IEEE International Conference

on Software Quality, Reliability and Security (QRS’22). 2022.

http://hdl.handle.net/10993/53858

3. We have investigated the possibility of detecting Android Malware based on the

Manifest data of the applications, by tuning BERT (a pre-trained language model)

for this task [168]. We have also investigated whether we could train BERT to

classify malware into families. To this end, we used a large-scale dataset of

Android applications (containing malware and goodware) to train multiple models

on top of BERT, using different features from the applications’ manifests. Our

study showed that BERT can accurately (97%) distinguish between malware and

goodware. In addition, BERT can also classify accurately (93%) malware into their

corresponding families. Moreover, we observed that the Android permissions are

not the key data responsible for classifying whether an application is malware or

goodware.

More details on this work can be found in the following article:

Badr Souani, Ahmed Khanfir, Alexandre Bartel, Kevin Allix and Yves Le Traon.

Android Malware Detection Using BERT. In: Security in Machine Learning and its

Applications (SiMLA 2022). 2022. https://doi.org/10.1007/978-3-031-16815-4 31

149

8.3 Software developed during PhD

• IBIR: a java fault injection tool using bug reports and automated program repair

(APR) patterns. https://github.com/serval-uni-lu/IBIR.git

• CODEBERT-NT: a tool to measure code-naturlaness using CodeBERT predictions.

https://github.com/Ahmedfir/CodeBERT-nt.git

• µBERT: a tool to inject faults using CodeBERT predictions.

https://github.com/Ahmedfir/mBERTa.git

• Mutation testing developer simulation for effectiveness and cost-efficiency compar-

ison. https://github.com/Ahmedfir/mu-FD-simulation.git

150

References

[1] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,”

Computer, vol. 30, no. 4, pp. 75–82, 1997.

[2] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with

software fault injection: A survey,” ACM Comput. Surv., vol. 48, no. 3, Feb.

2016, ISSN: 0360-0300. DOI: 10.1145/2841425. [Online]. Available: https:

//doi.org/10.1145/2841425.

[3] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge Univer-

sity Press, 2008, ISBN: 978-0-521-88038-1. DOI: 10.1017/CBO9780511809163.

[Online]. Available: https://doi.org/10.1017/CBO9780511809163.

[4] G. Fraser and J. M. Rojas, “Software testing,” Handbook of Software Engineering,

pp. 123–192, 2019.

[5] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and adequacy,”

ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, 1997. DOI: 10.1145/267580.

267590. [Online]. Available: https://doi.org/10.1145/267580.267590.

[6] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An empirical study

on mutation, statement and branch coverage fault revelation that avoids the

unreliable clean program assumption,” in Proceedings of the 39th International

Conference on Software Engineering, ICSE 2017, 2017, pp. 597–608. DOI:

151

10.1109/ICSE.2017.61. [Online]. Available: https://doi.org/10.1109/ICSE.

2017.61.

[7] M. Papadakis, D. Shin, S. Yoo, and D. Bae, “Are mutation scores correlated with

real fault detection?: A large scale empirical study on the relationship between

mutants and real faults,” in Proceedings of the 40th International Conference on

Software Engineering, ICSE 2018, 2018, pp. 537–548. DOI: 10.1145/3180155.

3180183. [Online]. Available: https://doi.org/10.1145/3180155.3180183.

[8] T. T. Chekam, M. Papadakis, M. Cordy, and Y. L. Traon, “Killing stubborn mutants

with symbolic execution,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2, 19:1–

19:23, 2021. DOI: 10.1145/3425497. [Online]. Available: https://doi.org/10.

1145/3425497.

[9] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman, “Chapter

six - mutation testing advances: An analysis and survey,” Advances in Computers,

vol. 112, pp. 275–378, 2019. DOI: 10.1016/bs.adcom.2018.03.015. [Online].

Available: https://doi.org/10.1016/bs.adcom.2018.03.015.

[10] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats to

the validity of mutation-based test assessment,” in Proceedings of the 25th

International Symposium on Software Testing and Analysis, ISSTA 2016, 2016,

pp. 354–365. DOI: 10.1145/2931037.2931040. [Online]. Available: https://doi.

org/10.1145/2931037.2931040.

[11] B. H. Smith and L. Williams, “Should software testers use mutation analysis

to augment a test set?” Journal of Systems and Software, vol. 82, no. 11,

pp. 1819–1832, 2009. DOI: 10.1016/j.jss.2009.06.031. [Online]. Available:

https://doi.org/10.1016/j.jss.2009.06.031.

152

[12] J. Možucha and B. Rossi, “Is mutation testing ready to be adopted industry-

wide?,” Nov. 2016, pp. 217–232, ISBN: 978-3-319-49093-9. DOI: 10.1007/978-

3-319-49094-6_14.

[13] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” English,

in Mutation Testing for the New Century, vol. 24, 2001, pp. 34–44, ISBN: 978-1-

4419-4888-5. DOI: 10.1007/978-1-4757-5939-6_7.

[14] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro, “A systematic

literature review of techniques and metrics to reduce the cost of mutation testing,”

Journal of Systems and Software, vol. 157, p. 110 388, 2019, ISSN: 0164-1212.

DOI: https://doi.org/10.1016/j.jss.2019.07.100. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0164121219301554.

[15] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Predictive

mutation testing,” IEEE Trans. Software Eng., vol. 45, no. 9, pp. 898–918, 2019.

DOI: 10.1109/TSE.2018.2809496. [Online]. Available: https://doi.org/10.

1109/TSE.2018.2809496.

[16] M. Beller, C.-P. Wong, J. Bader, et al., What it would take to use mutation testing

in industry–a study at facebook, 2021. arXiv: 2010.13464 [cs.SE].

[17] M. Papadakis, M. E. Delamaro, and Y. L. Traon, “Mitigating the effects of equiva-

lent mutants with mutant classification strategies,” Sci. Comput. Program., vol. 95,

pp. 298–319, 2014. DOI: 10.1016/j.scico.2014.05.012. [Online]. Available:

https://doi.org/10.1016/j.scico.2014.05.012.

[18] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial compiler equivalence:

A large scale empirical study of a simple, fast and effective equivalent mutant

detection technique,” in 37th IEEE/ACM International Conference on Software

Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, A. Bertolino,

G. Canfora, and S. G. Elbaum, Eds., IEEE Computer Society, 2015, pp. 936–946.

153

DOI: 10.1109/ICSE.2015.103. [Online]. Available: https://doi.org/10.1109/

ICSE.2015.103.

[19] D. Schuler and A. Zeller, “Covering and uncovering equivalent mutants,” Softw.

Test. Verification Reliab., vol. 23, no. 5, pp. 353–374, 2013. DOI: 10.1002/stvr.

1473. [Online]. Available: https://doi.org/10.1002/stvr.1473.

[20] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Trans.

Softw. Eng. Methodol., vol. 1, no. 1, pp. 5–20, 1992. DOI: 10.1145/125489.

125473. [Online]. Available: https://doi.org/10.1145/125489.125473.

[21] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental

determination of sufficient mutant operators,” ACM Trans. Softw. Eng. Methodol.,

vol. 5, no. 2, pp. 99–118, 1996. DOI: 10.1145/227607.227610. [Online]. Available:

https://doi.org/10.1145/227607.227610.

[22] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N. Malevris, and Y. L.

Traon, “How effective are mutation testing tools? an empirical analysis of java

mutation testing tools with manual analysis and real faults,” Empir. Softw. Eng.,

vol. 23, no. 4, pp. 2426–2463, 2018. DOI: 10.1007/s10664-017-9582-5. [Online].

Available: https://doi.org/10.1007/s10664-017-9582-5.

[23] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation testing alter-

natives: A collateral experiment,” in 17th Asia Pacific Software Engineering

Conference, APSEC 2010, Sydney, Australia, November 30 - December 3, 2010,

J. Han and T. D. Thu, Eds., IEEE Computer Society, 2010, pp. 300–309. DOI:

10.1109/APSEC.2010.42. [Online]. Available: https://doi.org/10.1109/APSEC.

2010.42.

[24] M. Fowler, Continuous integration, https://martinfowler.com/articles/

continuousIntegration.html, Online; accessed 10 February 2020.

154

[25] W. Ma, T. T. Chekam, M. Papadakis, and M. Harman, “Mudelta: Delta-oriented

mutation testing at commit time,” in 43rd IEEE/ACM International Conference

on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021, IEEE,

2021, pp. 897–909. DOI: 10.1109/ICSE43902.2021.00086. [Online]. Available:

https://doi.org/10.1109/ICSE43902.2021.00086.

[26] W. Ma, T. Laurent, M. Ojdanic, T. T. Chekam, A. Ventresque, and M. Papadakis,

“Commit-aware mutation testing,” in Proceedings of the 36th IEEE International

Conference on Software Maintenance and Evolution, ICSME, 2020.

[27] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshyvanyk,

“Learning how to mutate source code from bug-fixes,” in 2019 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2019, IEEE, 2019,

pp. 301–312. DOI: 10.1109/ICSME.2019.00046. [Online]. Available: https:

//doi.org/10.1109/ICSME.2019.00046.

[28] R. Natella, D. Cotroneo, J. Durães, and H. Madeira, “On fault representativeness

of software fault injection,” IEEE Trans. Software Eng., vol. 39, no. 1, pp. 80–96,

2013. DOI: 10.1109/TSE.2011.124. [Online]. Available: https://doi.org/10.

1109/TSE.2011.124.

[29] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:

Help for the practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34–41,

1978. DOI: 10.1109/C-M.1978.218136. [Online]. Available: https://doi.org/

10.1109/C-M.1978.218136.

[30] D. B. Brown, M. Vaughn, B. Liblit, and T. W. Reps, “The care and feeding

of wild-caught mutants,” in Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2017, ACM, 2017, pp. 511–

522. DOI: 10.1145/3106237.3106280. [Online]. Available: https://doi.org/10.

1145/3106237.3106280.

155

[31] M. Jimenez, T. T. Chekam, M. Cordy, et al., “Are mutants really natural?: A

study on how ”naturalness” helps mutant selection,” in Proceedings of the 12th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ESEM 2018, Oulu, Finland, October 11-12, 2018, M. Oivo, D. M.

Fernández, and A. Mockus, Eds., ACM, 2018, 3:1–3:10. DOI: 10.1145/3239235.

3240500. [Online]. Available: https://doi.org/10.1145/3239235.3240500.

[32] M. Tufano, J. Kimko, S. Wang, et al., “Deepmutation: A neural mutation tool,”

in Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Companion Proceedings, 2020, pp. 29–32.

[33] J. Patra and M. Pradel, “Semantic bug seeding: A learning-based approach

for creating realistic bugs,” ser. ESEC/FSE 2021, Athens, Greece: Association

for Computing Machinery, 2021, pp. 906–918, ISBN: 9781450385626. DOI: 10.

1145 / 3468264 . 3468623. [Online]. Available: https : / / doi . org / 10 . 1145 /

3468264.3468623.

[34] Z. Tian, J. Chen, Q. Zhu, J. Yang, and L. Zhang, “Learning to construct better mu-

tation faults,” in Proceedings of the 37th IEEE/ACM International Conference on

Automated Software Engineering, ser. ASE ’22, Rochester, MI, USA: Association

for Computing Machinery, 2023, ISBN: 9781450394758. DOI: 10.1145/3551349.

3556949. [Online]. Available: https://doi.org/10.1145/3551349.3556949.

[35] M. Ojdanic, A. Garg, A. Khanfir, R. Degiovanni, M. Papadakis, and Y. L. Traon,

“Syntactic vs. semantic similarity of artificial and real faults in mutation testing

studies,” arXiv preprint arXiv:2112.14508, 2021.

[36] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of machine

learning for big code and naturalness,” ACM Computing Surveys (CSUR), vol. 51,

no. 4, p. 81, 2018.

156

[37] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness

of software,” in Proceedings of the 34th International Conference on Software

Engineering, ser. ICSE ’12, Zurich, Switzerland: IEEE Press, 2012, pp. 837–847,

ISBN: 9781467310673.

[38] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu, “On the

”naturalness” of buggy code,” in 2016 IEEE/ACM 38th International Conference

on Software Engineering (ICSE), 2016, pp. 428–439. DOI: 10.1145/2884781.

2884848.

[39] M. Jimenez, C. Maxime, Y. Le Traon, and M. Papadakis, “On the impact of

tokenizer and parameters on n-gram based code analysis,” in 2018 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME), IEEE,

2018, pp. 437–448.

[40] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more accurate

information retrieval-based bug localization based on bug reports,” in Proceed-

ings of the 2012 International Conference on Software Engineering (ICSE), 2012,

pp. 14–24.

[41] M. Papadakis and Y. Le Traon, “Metallaxis-fl: Mutation-based fault localization,”

Software Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[42] A. Koyuncu, K. Liu, T. F. Bissyandé, et al., “iFixR: Bug report driven program

repair,” in Proceedings of the 13th Joint Meeting on Foundations of Software

Engineering (FSE), 2019.

[43] A. Khanfir, A. Koyuncu, M. Papadakis, et al., “Ibir: Bug report driven fault injection,”

ACM Trans. Softw. Eng. Methodol., May 2022, ISSN: 1049-331X. DOI: 10.1145/

3542946. [Online]. Available: https://doi.org/10.1145/3542946.

157

[44] A. Khanfir, “Effective and scalable fault injection using bug reports and generative

language models,” in Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering, ser. ESEC/FSE 2022, Singapore, Singapore: Association for Computing

Machinery, 2022, pp. 1790–1794, ISBN: 9781450394130. DOI: 10.1145/3540250.

3558907. [Online]. Available: https://doi.org/10.1145/3540250.3558907.

[45] R. Degiovanni and M. Papadakis, “µbert: Mutation testing using pre-trained

language models,” in 15th IEEE International Conference on Software Testing,

Verification and Validation Workshops ICST Workshops 2022, Valencia, Spain,

April 4-13, 2022, IEEE, 2022, pp. 160–169. DOI: 10.1109/ICSTW55395.2022.

00039. [Online]. Available: https://doi.org/10.1109/ICSTW55395.2022.00039.

[46] A. Khanfir, R. Degiovanni, M. Papadakis, and Y. L. Traon, “Efficient mutation

testing via pre-trained language models,” CoRR, vol. abs/2301.03543, 2023.

DOI: 10.48550/arXiv.2301.03543. arXiv: 2301.03543. [Online]. Available:

https://doi.org/10.48550/arXiv.2301.03543.

[47] A. Khanfir, M. Jimenez, M. Papadakis, and Y. L. Traon, “Codebert-nt: Code

naturalness via codebert,” 22nd IEEE International Conference on Software

Quality, Reliability and Security (QRS’22), 2022.

[48] Codebert, https://github.com/microsoft/CodeBERT.

[49] M. Kintis, M. Papadakis, and N. Malevris, “Employing second-order mutation for

isolating first-order equivalent mutants,” Softw. Test. Verification Reliab., vol. 25,

no. 5-7, pp. 508–535, 2015. DOI: 10.1002/stvr.1529. [Online]. Available: https:

//doi.org/10.1002/stvr.1529.

[50] M. Papadakis, T. T. Chekam, and Y. L. Traon, “Mutant quality indicators,” in 2018

IEEE International Conference on Software Testing, Verification and Validation

Workshops, ICST Workshops, Västerås, Sweden, April 9-13, 2018, IEEE Com-

158

puter Society, 2018, pp. 32–39. DOI: 10.1109/ICSTW.2018.00025. [Online]. Avail-

able: http://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00025.

[51] M. Papadakis and N. Malevris, “Automatic mutation test case generation via

dynamic symbolic execution,” in IEEE 21st International Symposium on Software

Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4 November 2010,

IEEE Computer Society, 2010, pp. 121–130. DOI: 10.1109/ISSRE.2010.38.

[Online]. Available: https://doi.org/10.1109/ISSRE.2010.38.

[52] P. Ammann, “System testing via mutation analysis of model checking specifi-

cations,” ACM SIGSOFT Softw. Eng. Notes, vol. 25, no. 1, p. 33, 2000. DOI:

10.1145/340855.340862. [Online]. Available: https://doi.org/10.1145/

340855.340862.

[53] W. Krenn and B. K. Aichernig, “Test case generation by contract mutation in

spec#,” Electron. Notes Theor. Comput. Sci., vol. 253, no. 2, pp. 71–86, 2009.

DOI: 10.1016/j.entcs.2009.09.052. [Online]. Available: https://doi.org/10.

1016/j.entcs.2009.09.052.

[54] M. Papadakis, C. Henard, and Y. L. Traon, “Sampling program inputs with

mutation analysis: Going beyond combinatorial interaction testing,” in Seventh

IEEE International Conference on Software Testing, Verification and Validation,

ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, IEEE Computer

Society, 2014, pp. 1–10. DOI: 10.1109/ICST.2014.11. [Online]. Available:

https://doi.org/10.1109/ICST.2014.11.

[55] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens, and P. Hey-

mans, “Featured model-based mutation analysis,” in Proceedings of the 38th

International Conference on Software Engineering, ICSE 2016, Austin, TX,

USA, May 14-22, 2016, L. K. Dillon, W. Visser, and L. A. Williams, Eds., ACM,

159

2016, pp. 655–666. DOI: 10.1145/2884781.2884821. [Online]. Available: https:

//doi.org/10.1145/2884781.2884821.

[56] B. K. Aichernig, E. Jöbstl, and S. Tiran, “Model-based mutation testing via

symbolic refinement checking,” Sci. Comput. Program., vol. 97, pp. 383–404,

2015. DOI: 10.1016/j.scico.2014.05.004. [Online]. Available: https://doi.

org/10.1016/j.scico.2014.05.004.

[57] J. Christmansson and R. Chillarege, “Generation of error set that emulates soft-

ware faults based on field data,” in Digest of Papers: FTCS-26, The Twenty-Sixth

Annual International Symposium on Fault-Tolerant Computing, 1996, IEEE Com-

puter Society, 1996, pp. 304–313. DOI: 10.1109/FTCS.1996.534615. [Online].

Available: https://doi.org/10.1109/FTCS.1996.534615.

[58] J. M. Voas, F. Charron, G. McGraw, K. W. Miller, and M. Friedman, “Predicting

how badly ”good” software can behave,” IEEE Softw., vol. 14, no. 4, pp. 73–83,

1997. DOI: 10.1109/52.595959. [Online]. Available: https://doi.org/10.1109/

52.595959.

[59] J. Arlat, A. Costes, Y. Crouzet, J. Laprie, and D. Powell, “Fault injection and de-

pendability evaluation of fault-tolerant systems,” IEEE Trans. Computers, vol. 42,

no. 8, pp. 913–923, 1993. DOI: 10.1109/12.238482. [Online]. Available: https:

//doi.org/10.1109/12.238482.

[60] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software

fault localization,” IEEE Transactions on Software Engineering, vol. 42, no. 8,

pp. 707–740, 2016.

[61] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based multiple fault

localization,” in Proceedings of the 24th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2009, pp. 88–99.

160

[62] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,

“Indexing by latent semantic analysis,” en, Journal of the American Society for

Information Science, vol. 41, no. 6, pp. 391–407, Sep. 1990, ISSN: 1097-4571.

[63] W. B. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures and

Algorithms, 1st ed. Prentice Hall, Jun. 1992, ISBN: 0-13-463837-9.

[64] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language

Processing, English, 1 edition. Cambridge, Mass: The MIT Press, Jun. 1999,

ISBN: 978-0-262-13360-9.

[65] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval. New

York, NY, USA: McGraw-Hill, Inc., 1986, ISBN: 978-0-07-054484-0.

[66] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using latent Dirichlet

allocation,” Information and Software Technology, vol. 52, no. 9, pp. 972–990,

2010.

[67] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug localization

using structured information retrieval,” in Proceedings of the 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2013,

pp. 345–355.

[68] S. Wang and D. Lo, “Version History, Similar Report, and Structure: Putting Them

Together for Improved Bug Localization,” in Proceedings of the 22nd International

Conference on Program Comprehension (ICPC), 2014, pp. 53–63.

[69] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from software

changes,” in Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2016, pp. 262–273.

[70] K. C. Youm, J. Ahn, J. Kim, and E. Lee, “Bug Localization Based on Code

Change Histories and Bug Reports,” in Proceedings of the 2015 Asia-Pacific

Software Engineering Conference (ICSE), 2015, pp. 190–197.

161

[71] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program repair,”

Commun. ACM, vol. 62, no. 12, pp. 56–65, 2019. DOI: 10.1145/3318162. [Online].

Available: https://doi.org/10.1145/3318162.

[72] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from

human-written patches,” in Proceedings of the 35th ICSE, IEEE, 2013, pp. 802–

811.

[73] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining fix patterns for

findbugs violations,” IEEE Transactions on Software Engineering, vol. 47, no. 1,

pp. 165–188, 2018.

[74] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program repair

with on-demand candidate generation,” in Proceedings of the 40th International

Conference on Software Engineering (ICSE), 2018, pp. 12–23.

[75] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective object-oriented

program repair,” in Proceedings of the 32nd IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2017, pp. 648–659.

[76] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic patch genera-

tion for null pointer exceptions using metaprogramming,” in Proceedings of the

24th SANER, IEEE, 2017, pp. 349–358.

[77] A. Koyuncu, K. Liu, T. F. Bissyandé, et al., “Fixminer: Mining relevant fix patterns

for automated program repair,” Empirical Software Engineering, vol. 25, no. 3,

pp. 1980–2024, 2020.

[78] M. Martinez and M. Monperrus, “Ultra-large repair search space with automati-

cally mined templates: The cardumen mode of astor,” in Proceedings of the 10th

SSBSE, Springer, 2018, pp. 65–86.

162

[79] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing semantic bugs

with fix patterns of static analysis violations,” in Proceedings of the IEEE 26th

International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2019, pp. 1–12.

[80] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting template-based

automated program repair,” in Proceedings of the 28th ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis (ISSTA), 2019, pp. 31–

42.

[81] Github copilot, https://github.com/features/copilot.

[82] M. Chen, J. Tworek, H. Jun, et al., “Evaluating large language models trained on

code.(2021),” arXiv preprint arXiv:2107.03374, 2021.

[83] Amazon codewhisperer, https://aws.amazon.com/codewhisperer/.

[84] Z. Feng, D. Guo, D. Tang, et al., “Codebert: A pre-trained model for programming

and natural languages,” in Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event,

16-20 November 2020, T. Cohn, Y. He, and Y. Liu, Eds., ser. Findings of ACL,

vol. EMNLP 2020, Association for Computational Linguistics, 2020, pp. 1536–

1547. DOI: 10.18653/v1/2020.findings-emnlp.139. [Online]. Available: https:

//doi.org/10.18653/v1/2020.findings-emnlp.139.

[85] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-

rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,

2018.

[86] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances

in neural information processing systems, vol. 30, 2017.

[87] J. M. Voas and G. McGraw, Software Fault Injection: Inoculating Programs

against Errors. USA: John Wiley & Sons, Inc., 1997, ISBN: 0471183814.

163

[88] M. Marcozzi, S. Bardin, N. Kosmatov, M. Papadakis, V. Prevosto, and L. Corren-

son, “Time to clean your test objectives,” in Proceedings of the 40th International

Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27

- June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, Eds.,

ACM, 2018, pp. 456–467. DOI: 10.1145/3180155.3180191. [Online]. Available:

https://doi.org/10.1145/3180155.3180191.

[89] Y. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated class mutation system,”

Softw. Test. Verification Reliab., vol. 15, no. 2, pp. 97–133, 2005. DOI: 10.1002/

stvr.308. [Online]. Available: https://doi.org/10.1002/stvr.308.

[90] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT: a practi-

cal mutation testing tool for java (demo),” in Proceedings of the 25th International

Symposium on Software Testing and Analysis, ISSTA 2016, 2016, pp. 449–452.

DOI: 10.1145/2931037.2948707. [Online]. Available: https://doi.org/10.

1145/2931037.2948707.

[91] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans, “Towards

security-aware mutation testing,” in 2017 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 2017, pp. 97–

102. DOI: 10.1109/ICSTW.2017.24.

[92] K. Herzig and A. Zeller, “Untangling changes,” Unpublished manuscript, Septem-

ber, vol. 37, pp. 38–40, 2011.

[93] C. Richter and H. Wehrheim, “Learning realistic mutations: Bug creation for

neural bug detectors,” in 2022 IEEE Conference on Software Testing, Verification

and Validation (ICST), 2022, pp. 162–173. DOI: 10.1109/ICST53961.2022.

00027.

[94] J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation analysis

for assessing and comparing testing coverage criteria,” Software Engineering,

164

IEEE Transactions on, vol. 32, no. 8, pp. 608–624, 2006, ISSN: 0098-5589. DOI:

10.1109/TSE.2006.83.

[95] T. T. Chekam, M. Papadakis, T. F. Bissyandé, Y. L. Traon, and K. Sen, “Selecting

fault revealing mutants,” Empirical Software Engineering, vol. 25, no. 1, pp. 434–

487, 2020. DOI: 10.1007/s10664- 019- 09778-7. [Online]. Available: https:

//doi.org/10.1007/s10664-019-09778-7.

[96] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Guided mutation testing for

javascript web applications,” IEEE Trans. Software Eng., vol. 41, no. 5, pp. 429–

444, 2015. DOI: 10.1109/TSE.2014.2371458. [Online]. Available: https://doi.

org/10.1109/TSE.2014.2371458.

[97] C. Sun, F. Xue, H. Liu, and X. Zhang, “A path-aware approach to mutant reduction

in mutation testing,” Information & Software Technology, vol. 81, pp. 65–81, 2017.

DOI: 10.1016/j.infsof.2016.02.006. [Online]. Available: https://doi.org/

10.1016/j.infsof.2016.02.006.

[98] D. Gong, G. Zhang, X. Yao, and F. Meng, “Mutant reduction based on dominance

relation for weak mutation testing,” Information & Software Technology, vol. 81,

pp. 82–96, 2017. DOI: 10.1016/j.infsof.2016.05.001. [Online]. Available:

https://doi.org/10.1016/j.infsof.2016.05.001.

[99] M. Ojdanic, W. Ma, T. Laurent, T. T. Chekam, A. Ventresque, and M. Papadakis,

“On the use of commit-relevant mutants,” Empir. Softw. Eng., vol. 27, no. 5,

p. 114, 2022. DOI: 10.1007/s10664-022-10138-1. [Online]. Available: https:

//doi.org/10.1007/s10664-022-10138-1.

[100] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and N. Gökçe, “An-

alyzing the validity of selective mutation with dominator mutants,” in Proceed-

ings of the 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,

165

2016, pp. 571–582. DOI: 10.1145/2950290.2950322. [Online]. Available: https:

//doi.org/10.1145/2950290.2950322.

[101] A. Garg, M. Ojdanic, R. Degiovanni, T. T. Chekam, M. Papadakis, and Y. L. Traon,

“Cerebro: Static subsuming mutant selection,” IEEE Trans. Software Eng., DOI:

10.1109/TSE.2022.3140510.

[102] C. B. Junior, V. H. S. Durelli, R. S. Durelli, S. R. S. Souza, A. M. R. Vincenzi,

and M. E. Delamaro, “A preliminary investigation into using machine learning

algorithms to identify minimal and equivalent mutants,” in 13th IEEE International

Conference on Software Testing, Verification and Validation Workshops, ICSTW,

IEEE, 2020, pp. 304–313. DOI: 10.1109/ICSTW50294.2020.00056. [Online].

Available: https://doi.org/10.1109/ICSTW50294.2020.00056.

[103] R. Gheyi, M. Ribeiro, B. Souza, et al., “Identifying method-level mutation sub-

sumption relations using Z3,” Inf. Softw. Technol., vol. 132, p. 106 496, 2021.

DOI: 10.1016/j.infsof.2020.106496. [Online]. Available: https://doi.org/

10.1016/j.infsof.2020.106496.

[104] J. M. Zhang, L. Zhang, D. Hao, L. Zhang, and M. Harman, “An empirical com-

parison of mutant selection assessment metrics,” in 2019 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

2019, pp. 90–101. DOI: 10.1109/ICSTW.2019.00037.

[105] S.-W. Kim, Y.-S. Ma, and Y.-R. Kwon, “Combining weak and strong mutation

for a noninterpretive java mutation system,” Software Testing, Verification and

Reliability, vol. 23, no. 8, pp. 647–668, 2013.

[106] S. Vercammen, M. Ghafari, S. Demeyer, and M. Borg, “Goal-oriented mutation

testing with focal methods,” in Proceedings of the 9th ACM SIGSOFT Interna-

tional Workshop on Automating TEST Case Design, Selection, and Evaluation,

ser. A-TEST 2018, Lake Buena Vista, FL, USA: Association for Computing

166

Machinery, 2018, pp. 23–30, ISBN: 9781450360531. DOI: 10.1145/3278186.

3278190. [Online]. Available: https://doi- org.proxy.bnl.lu/10.1145/

3278186.3278190.

[107] B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation analysis

via equivalence modulo states,” in Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ser. ISSTA 2017,

Santa Barbara, CA, USA: Association for Computing Machinery, 2017, pp. 295–

306, ISBN: 9781450350761. DOI: 10.1145/3092703.3092714. [Online]. Available:

https://doi-org.proxy.bnl.lu/10.1145/3092703.3092714.

[108] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using mutant

schemata,” SIGSOFT Softw. Eng. Notes, vol. 18, no. 3, pp. 139–148, Jul. 1993,

ISSN: 0163-5948. DOI: 10.1145/174146.154265. [Online]. Available: https:

//doi-org.proxy.bnl.lu/10.1145/174146.154265.

[109] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are

mutants a valid substitute for real faults in software testing?” In Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2014, 2014, pp. 654–665. DOI: 10.1145/2635868.2635929. [Online].

Available: https://doi.org/10.1145/2635868.2635929.

[110] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using mutation

analysis for assessing and comparing testing coverage criteria,” IEEE Trans.

Software Eng., vol. 32, no. 8, pp. 608–624, 2006. DOI: 10.1109/TSE.2006.83.

[Online]. Available: https://doi.org/10.1109/TSE.2006.83.

[111] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing: An exper-

imental comparison of effectiveness,” J. Syst. Softw., vol. 38, no. 3, pp. 235–

253, 1997. DOI: 10.1016/S0164-1212(96)00154-9. [Online]. Available: https:

//doi.org/10.1016/S0164-1212(96)00154-9.

167

[112] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of four

unit test criteria: Mutation, edge-pair, all-uses and prime path coverage,” in

Second International Conference on Software Testing Verification and Validation,

ICST, 2009, Workshops Proceedings, IEEE Computer Society, 2009, pp. 220–

229. DOI: 10.1109/ICSTW.2009.30. [Online]. Available: https://doi.org/10.

1109/ICSTW.2009.30.

[113] C. E. Shannon, “Prediction and entropy of printed english,” The Bell System

Technical Journal, vol. 30, no. 1, pp. 50–64, 1951. DOI: 10.1002/j.1538-

7305.1951.tb01366.x.

[114] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.1538-

7305.1948.tb01338.x.

[115] M. Allamanis and C. Sutton, “Mining source code repositories at massive scale

using language modeling,” in 2013 10th working conference on mining software

repositories (MSR), IEEE, 2013, pp. 207–216.

[116] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for

language modeling,” Computer Speech & Language, vol. 13, no. 4, pp. 359–394,

1999, ISSN: 0885-2308. DOI: https://doi.org/10.1006/csla.1999.0128.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0885230899901286.

[117] R. Kneser and H. Ney, “Improved backing-off for m-gram language modeling,” in

1995 International Conference on Acoustics, Speech, and Signal Processing,

vol. 1, 1995, 181–184 vol.1. DOI: 10.1109/ICASSP.1995.479394.

[118] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “Error models

for the representative injection of software defects,” in Software Engineering &

Management 2015, Multikonferenz der GI-Fachbereiche Softwaretechnik (SWT)

168

und Wirtschaftsinformatik (WI), FA WI-MAW, 17. März - 20. März 2015, ser. LNI,

vol. P-239, GI, 2015, pp. 118–119.

[119] C. Parnin and A. Orso, “Are automated debugging techniques actually helping

programmers?” In Proceedings of the 20th ISSTA, ACM, 2011, pp. 199–209.

[120] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of ir-based fault

localization techniques,” in Proceedings of the 2015 International Symposium on

Software Testing and Analysis (ISSTA), 2015, pp. 1–11.

[121] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei, “Boosting

Bug-Report-Oriented Fault Localization with Segmentation and Stack-Trace

Analysis,” in Proceedings of the 2014 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2014, pp. 181–190.

[122] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[123] G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between euclidean and

cosine angle distance for nearest neighbor queries,” in Proceedings of the 2004

ACM Symposium on Applied Computing, ser. SAC ’04, New York, NY, USA:

Association for Computing Machinery, 2004, pp. 1232–1237, ISBN: 1581138121.

DOI: 10.1145/967900.968151. [Online]. Available: https://doi.org/10.1145/

967900.968151.

[124] M. T. Maybury, “Karen spärck jones and summarization,” in Charting a New

Course: Natural Language Processing and Information Retrieval, Springer, 2005,

pp. 99–103.

[125] A. Koyuncu, T. F. Bissyandé, D. Kim, et al., “D&c: A divide-and-conquer approach

to ir-based bug localization,” arXiv preprint arXiv:1902.02703, 2019.

[126] A. Khanfir, A. Koyuncu, M. Papadakis, et al., Ibir, 2022. [Online]. Available:

https://github.com/serval-uni-lu/IBIR.

169

[127] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware patch genera-

tion for better automated program repair,” in Proceedings of the 40th International

Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27

- June 03, 2018, ACM, 2018, pp. 1–11. DOI: 10.1145/3180155.3180233. [Online].

Available: https://doi.org/10.1145/3180155.3180233.

[128] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating faulty programs

for fault localization,” in Seventh IEEE International Conference on Software

Testing, Verification and Validation, ICST 2014, IEEE Computer Society, 2014,

pp. 153–162. DOI: 10.1109/ICST.2014.28. [Online]. Available: https://doi.

org/10.1109/ICST.2014.28.

[129] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans. Software

Eng., vol. 39, no. 2, pp. 276–291, 2013. DOI: 10.1109/TSE.2012.14. [Online].

Available: https://doi.org/10.1109/TSE.2012.14.

[130] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults

to enable controlled testing studies for Java programs,” in Proceedings of the

2014 International Symposium on Software Testing and Analysis (ISSTA), 2014,

pp. 437–440.

[131] M. Fischer, M. Pinzger, and H. C. Gall, “Populating a release history database

from version control and bug tracking systems,” in 19th International Conference

on Software Maintenance (ICSM 2003), The Architecture of Existing Systems,

2003, IEEE Computer Society, 2003, p. 23. DOI: 10.1109/ICSM.2003.1235403.

[Online]. Available: https://doi.org/10.1109/ICSM.2003.1235403.

[132] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The impact of

classifier configuration and classifier combination on bug localization,” IEEE

Trans. Software Eng., vol. 39, no. 10, pp. 1427–1443, 2013. DOI: 10.1109/TSE.

2013.27. [Online]. Available: https://doi.org/10.1109/TSE.2013.27.

170

[133] A. Vargha and H. D. Delaney, “A critique and improvement of the cl common

language effect size statistics of mcgraw and wong,” Journal of Educational

and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000. DOI: 10.3102/

10769986025002101.

[134] K. N. King and A. J. Offutt, “A fortran language system for mutation-based

software testing,” Softw., Pract. Exper., vol. 21, no. 7, pp. 685–718, 1991.

[135] H. Agrawal, R. A. DeMillo, B. Hathaway, et al., “Design of mutant operators for

the c programming language,” Purdue University, West Lafayette, Indiana, Tech.

Rep. SERC-TR-41-P, Mar. 1989.

[136] A. J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The class-level mutants of mujava,” in

Proceedings of the International Workshop on Automation of Software Test

(AST’06), Shanghai, China, May 2006, pp. 78–84.

[137] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of selective

mutation,” in Proceedings of the 15th International Conference on Software En-

gineering, Baltimore, Maryland, USA, May 17-21, 1993, 1993, pp. 100–107. [On-

line]. Available: http://portal.acm.org/citation.cfm?id=257572.257597.

[138] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. Le Traon, and A. Ventresque,

“Assessing and improving the mutation testing practice of pit,” in 2017 IEEE

International Conference on Software Testing, Verification and Validation (ICST),

IEEE, 2017, pp. 430–435.

[139] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface mutation: An

approach for integration testing,” IEEE Trans. Software Eng., vol. 27, no. 3,

pp. 228–247, 2001. DOI: 10.1109/32.910859. [Online]. Available: https://doi.

org/10.1109/32.910859.

171

[140] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller, “Faults in

linux: Ten years later,” in Proceedings of the sixteenth international conference

on Architectural support for programming languages and operating systems,

2011, pp. 305–318.

[141] M. Mondal, M. S. Rahman, R. K. Saha, C. K. Roy, J. Krinke, and K. A. Schneider,

“An empirical study of the impacts of clones in software maintenance,” in The 19th

IEEE International Conference on Program Comprehension, ICPC 2011, IEEE

Computer Society, 2011, pp. 242–245. DOI: 10.1109/ICPC.2011.14. [Online].

Available: https://doi.org/10.1109/ICPC.2011.14%5C%5C.

[142] M. Beller, C. Wong, J. Bader, et al., “What it would take to use mutation testing

in industry - A study at facebook,” in 43rd IEEE/ACM International Conference

on Software Engineering: Software Engineering in Practice, ICSE (SEIP), IEEE,

2021, pp. 268–277. DOI: 10 . 1109 / ICSE - SEIP52600 . 2021 . 00036. [Online].

Available: https://doi.org/10.1109/ICSE-SEIP52600.2021.00036.

[143] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to

enable controlled testing studies for java programs,” in Proceedings of the 2014

International Symposium on Software Testing and Analysis, ser. ISSTA 2014,

San Jose, CA, USA: Association for Computing Machinery, 2014, pp. 437–440,

ISBN: 9781450326452. DOI: 10.1145/2610384.2628055. [Online]. Available:

https://doi.org/10.1145/2610384.2628055.

[144] A. B. Sánchez, P. Delgado-Pérez, I. Medina-Bulo, and S. Segura, “Mutation

testing in the wild: Findings from github,” Empir. Softw. Eng., vol. 27, no. 6,

p. 132, 2022. DOI: 10.1007/s10664-022-10177-8. [Online]. Available: https:

//doi.org/10.1007/s10664-022-10177-8.

[145] Pitest, http://pitest.org/.

[146] Pitest-rv-plugin, https://github.com/pitest/pitest-rv-plugin.

172

[147] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “Spoon: A

Library for Implementing Analyses and Transformations of Java Source Code,”

Software: Practice and Experience, vol. 46, pp. 1155–1179, 2015. DOI: 10.

1002/spe.2346. [Online]. Available: https://hal.archives-ouvertes.fr/hal-

01078532/document.

[148] J. Eclipse, Eclipse java development tools (jdt), 2013.

[149] Mberta, https://github.com/Ahmedfir/mBERTa.

[150] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell detection by

deep direct-learning and transfer-learning,” Journal of Systems and Software,

vol. 176, p. 110 936, 2021, ISSN: 0164-1212. DOI: https://doi.org/10.1016/

j.jss.2021.110936. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0164121221000339.

[151] B. Lin, C. Nagy, G. Bavota, and M. Lanza, “On the impact of refactoring oper-

ations on code naturalness,” in 2019 IEEE 26th International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2019, pp. 594–598.

DOI: 10.1109/SANER.2019.8667992.

[152] D. Posnett, A. Hindle, and P. Devanbu, “Reflections on: A simpler model of

software readability,” SIGSOFT Softw. Eng. Notes, vol. 46, no. 3, pp. 30–32,

Jul. 2021, ISSN: 0163-5948. DOI: 10.1145/3468744.3468754. [Online]. Available:

https://doi.org/10.1145/3468744.3468754.

[153] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like this? evaluating

code contributions with language models,” in 2015 IEEE/ACM 12th Working

Conference on Mining Software Repositories, 2015, pp. 157–167. DOI: 10.1109/

MSR.2015.22.

173

[154] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram: Bug detection

with n-gram language models,” in Proceedings of the 31st IEEE/ACM Interna-

tional Conference on Automated Software Engineering, ser. ASE 2016, Sin-

gapore, Singapore: Association for Computing Machinery, 2016, pp. 708–719,

ISBN: 9781450338455. DOI: 10.1145/2970276.2970341. [Online]. Available:

https://doi.org/10.1145/2970276.2970341.

[155] S. H. Alexander Trautsch Fabian Trautsch, The smartshark repository mining

data, 2021. arXiv: 2102.11540.

[156] J. Kim, J. Jeon, S. Hong, and S. Yoo, “Predictive mutation analysis via natural

language channel in source code,” CoRR, vol. abs/2104.10865, 2021. [Online].

Available: https://arxiv.org/abs/2104.10865.

[157] S. Kang and S. Yoo, “Language models can prioritize patches for practical

program patching,” in 3rd IEEE/ACM International Workshop on Automated

Program Repair, APR@ICSE 2022, Pittsburgh, PA, USA, May 19, 2022, IEEE,

2022, pp. 8–15. DOI: 10.1145/3524459.3527343. [Online]. Available: https:

//doi.org/10.1145/3524459.3527343.

[158] Z. Sun, J. M. Zhang, Y. Xiong, M. Harman, M. Papadakis, and L. Zhang, “Improv-

ing machine translation systems via isotopic replacement,” in 2022 IEEE/ACM

44th International Conference on Software Engineering (ICSE), 2022, pp. 1181–

1192.

[159] Pytorch, https://pytorch.org/.

[160] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect prediction

techniques,” International Journal of Applied Science and Engineering, vol. 17,

pp. 331–344, 4 Dec. 2020, ISSN: 1727-7841. DOI: 10.6703/IJASE.202012_17(4)

.331.

174

[161] M. Rahman, D. Palani, and P. C. Rigby, “Natural software revisited,” in 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019,

pp. 37–48. DOI: 10.1109/ICSE.2019.00022.

[162] M. Jimenez, C. Maxime, Y. Le Traon, and M. Papadakis, “Tuna: Tuning naturalness-

based analysis,” in 2018 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME), 2018, pp. 715–715. DOI: 10.1109/ICSME.2018.

00087.

[163] M. Leszak, D. E. Perry, and D. Stoll, “Classification and evaluation of defects

in a project retrospective,” Journal of Systems and Software, vol. 61, no. 3,

pp. 173–187, 2002, ISSN: 0164-1212. DOI: https://doi.org/10.1016/S0164-

1212(01)00146- 7. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0164121201001467.

[164] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit: A

practical mutation testing tool for java (demo),” in Proceedings of the 25th In-

ternational Symposium on Software Testing and Analysis, ser. ISSTA 2016,

Saarbrücken, Germany: Association for Computing Machinery, 2016, pp. 449–

452, ISBN: 9781450343909. DOI: 10.1145/2931037.2948707. [Online]. Available:

https://doi.org/10.1145/2931037.2948707.

[165] M. Ojdanic, A. Khanfir, A. Garg, R. Degiovanni, M. Papadakis, and Y. L. Traon,

“On comparing mutation testing tools through learning-based mutant selection,”

4th ACM/IEEE International Conference on Automation of Software Test (AST

2023), 2023.

[166] W. Bonnaventure, A. Khanfir, A. Bartel, M. Papadakis, and Y. Le Traon, “Con-

fuzzion: A java virtual machine fuzzer for type confusion vulnerabilities,” in IEEE

21st International Conference on Software Quality, Reliability and Security (QRS),

Dec. 2021, pp. 586–597. DOI: 10.1109/QRS54544.2021.00069.

175

[167] B. PETIT, A. Khanfir, E. Soremekun, G. Perrouin, and M. Papadakis, “Intject:

Vulnerability intent bug seeding,” in 22nd IEEE International Conference on

Software Quality, Reliability, and Security, 2022.

[168] B. Souani, A. Khanfir, A. Bartel, K. Allix, and Y. Le Traon, “Android malware

detection using bert,” in Applied Cryptography and Network Security Workshops:

ACNS 2022 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P,

SCI, SecMT, SiMLA, Rome, Italy, June 20–23, 2022, Proceedings, 2022, pp. 575–

591.

176

