
Tropical Backpropagation

Özgür Ceyhan
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg
Luxembourg

ozgur.ceyhan@uni.lu

Federico Lucchetti
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg
Luxembourg federico.lucchetti@uni.lu

Abstract

This work introduces tropicalization, a novel technique that delivers tropical neural
networks as tropical limits of deep ReLU networks. Tropicalization transfers the
initial weights from real numbers to those in the tropical semiring while maintain-
ing the underlying graph of the network. After verifying that tropicalization will
not affect the classification capacity of deep neural networks, this study introduces
a tropical reformulation of backpropagation via tropical linear algebra. Tropical
arithmetic replaces multiplication operations in the network with additions and
addition operations with max, and therefore, theoretically, reduces the algorithmic
complexity during the training and inference phase. We demonstrate the latter by
simulating the tensor multiplication underlying the feed-forward process of state-
of-the-art trained neural network architectures and compare the standard forward
pass of the models with the tropical ones. Our benchmark results show that tropi-
calization speeds up inference by 50 %. Hence, we conclude that tropicalization
bears the potential to reduce the training times of large neural networks drastically.

1 Introduction

Scientists and engineers often use logarithmic scales to distinguish between data subjected to different
power laws. For instance, the change of coordinates,

(x, y) 7→ (u, v) =: (ln(x), ln(y))

expands the first quadrant R2
+ to the whole plane R2 while transforming the curve defined by y = axk

into the straight line v = ku+ b with slope k and a = eb, which easily differentiates the curves for
different powers of k independently of the scale.

Tropicalization is a formalisation of this simple premise: we first replace the polynomial p(x) =∑
k akx

k (with ak ≥ 0, for now) with one-parameter family pℏ(x) =
∑

k a
1/ℏ
k xk and ℏ > 0. The

graph of the logarithmic image ℏ ln(pℏ(x)) forms a smooth family for ℏ > 0, and more importantly,
the graphs tend towards the graph of piecewise linear functions

Mp(x) = max
k

(ku+ bk) where ak = ebk (1)

in the C0 sense as ℏ → 0. In other words, taking the limit ℏ → 0 transforms the polynomial geometry
into piecewise linear geometry while preserving its topological properties. This limit is called the

Preprint. Under review.

tropical limit. The effective use of tropicalization can be traced back to the 1980s and Oleg Viro’s
construction of real algebraic varieties with the prescribed topology. Over the last decade, tropical
algebraic geometry has become a fully-fledged research field in itself (see (IMS) for an overview).

1.1 Tropical neural networks at first sight: Related studies

Even at first glance, the tropical limit (1) suggests an intimate connection with feedforward ReLU
networks. This similarity triggered an interest in tropical versions of neural networks, particularly
in their feedforward properties and transferring specific combinatorial/geometric tools. However,
this also restricted the research to the diegesis of the tropical limit itself and overlooked the limiting
process and, therefore, its implications.

Initial studies focused only on the equivalence between the tropical rational maps and the tropical
neural networks. Among other things, a characterization of feedforward ReLU neural networks in
terms of polytopes (ZNL18), and the number of regions which these networks can distinguish have
been investigated (see (CM18) and also (MCT21)).

The interest in tropicalization in the context of neural networks has quickly widened into several areas,
including localisation of spoofing attacks (TM18), the convex regression problem (MT19), the lottery
ticket hypothesis, the generation of adversarial attacks (ABHGG), cardiac diagnostics (YDGZAGN).
The training of feedforward neural networks in a tropical setup was studied in (Cey21).

1.2 Contributions

Building on the origins of tropicalization (Vi01), we develop a general framework for analyzing
the correspondence between deep ReLU networks and their tropical limits. We set the generic
classification problem in terms of geometric properties of a deep network and consider them in a
one-parameter family. These intermediary models, depending on the free parameter ℏ, can realize the
same classification problem without touching the underlying combinatorics of the network. More
importantly, these models show that the tropical limit has the same classification capacity. This
fundamental property follows from the continuity of the tropical limit.

Our description of tropical networks as a limit yields a significant improvement over previous results,
as it enables the transfer of backpropagation into the tropical realm. Tropical backpropagation
approximates a tropical network that is as capable. Moreover, tropical backpropagation has algorith-
mic advantages with almost no drawbacks. Tropicalization reduces the algorithmic complexity by
eliminating multiplications in favor of addition and maximum.

In summary:

• We develop a general framework for analyzing the correspondence between the deep ReLU
networks and their tropical limits.

• We set the generic classification problem in terms of geometric properties of a DNN and
consider them in a one-parameter family. Here we show that, in the tropical limit, the
classification capacity remains unchanged.

• We show how tropicalization reduces the algorithmic complexity by eliminating multiplica-
tions and put forward the tropical formulation of the backpropagation algorithm.

• We demonstrate the latter in a set of benchmark performance tests.

2 Classification problem, its one-parameter family, and backpropagation

In this section, we set the generic classification problem in terms of geometric properties of a smooth
function, and then give its extension to a one-parameter family preserving all essential properties.
This one-parameter family will be the foundation for the transition towards tropical neural networks
and tropical backpropagation, which we present in §3.

2

2.1 Classification via the level sets of a smooth function

Consider a smooth map f : Rn
+ → R+, defined over the cone Rn

+ = (0,∞)n, and the following level
sets

Zf (k) := {x ∈ Rn
+ | ek ≤ f(x) < ek+1},∀k ∈ Z

of f . We define the map
F : Rn

+ → Z : x 7→ k, ∀x ∈ Zf (k).

Given an arbitrary finite data set Ω in Rn
+, we can formulate a classification problem

N : Ω → {1, . . . ,M} (2)

as the problem of finding a smooth map f which assigns the elements of Ω in the same class into the
same level set Zf (k). That is, for x,y ∈ Ω,

N(x) = N(y) ⇐⇒ F (x) = F (y).

Clearly, this reformulation requires that the image f(Rn
+) contains at least [0,M + 1) so that F can

realise the classification problem (2).

2.2 Backpropagation in a nutshell

Multilayered feedforward neural networks using ReLU as activation function can produce arbitrarily
close approximations for any continuous and piecewise smooth function on any compact domain in
Rn, see for instance (Sp64; Cy89; H91). Therefore, we can use the approximations of f discussed in
§2.1 in order to implement a solution of the classification problem (2).

Consider a multi-layered ReLU network realising the function

fW : Rn
+ → R. (3)

Such a function, by its defitinion, is the iterative composition of finite linear sums∑
σ(b

(k)
i +

n∑
j=1

w
(k)
ij xj), σ(x) = max(0, x) (4)

each realising the connections between the layers k − 1 and k with the weight matrix W(k) :=[
w

(k)
ij

]
, and the bias vectors b(k) =

[
b
(k)
i

]
. The backpropagation algorithm aims at minimising a

predetermined error function, e.g.,

E : R|W| × Ωtr → R : (W,xtr) 7→ fW(xtr)− f(xtr) (5)

which measures the difference between the value of the targeted function f and its approximation
fW, over the space of weights R|W| := {W(k) | k = 1, . . . , L} and the set of finite training data
Ωtr := {xtr,j , j = 1, . . . , T}. By following an iterative gradient descent procedure, one calculates
the gradient matrix

(∇E)(k) =

[
∂E

∂w
(k)
ij

]
(xtr),∀ k & xtr

for training data, and adjusts the weight matrix W(k) by adding a correction term ∆W(k) =
−ϵ∇(k)E in order to minimise the error function. The backpropagated error on the k-th layer is
computed via an iterative matrix multiplication

∆W(k) = D(k)W(k+1) · · ·D(l)W(l+1)e (6)

where for each layer k, the matrix D(k) is the diagonal matrix composed of the derivatives of the
activation function with respect to its arguments, and the vector e contains the derivatives of the
output errors with respect to the arguments of the last layer. Depending on the size and the depth of
the ReLU network, this algorithm produces a function fW that remains as close as possible to the
targeted function f on the training set Ωtr. For details, see for instance (Ro96, §7.3.3) or (DBBNG,
§6.5). For the deep ReLU networks, these approximations work effectively (see (PV17; Ya16)).

3

2.3 Classification problem in a one-parameter family, its realisation and backpropagation

The function fW realised by a multi-layered ReLU network (3) is a composition of linear functions
and max, therefore it is a sum of linear monomials

a
(L)
ef · · · a(2)jk a

(1)
ij xi (7)

in their definition domains in Rn
+. The coefficients a(m)

jk are either the weights w(m)
jk or the biases

b
(m)
i in (4).

Any real polynomial fW is a difference f+
W−f−

W of polynomials with positive coefficients. Consider
now a one-parameter family of ReLU network

f+
W,ℏ − f−

W,ℏ : Rn
+ → R, (8)

realised by the deep ReLU with the same combinatorial network structure, but with new weights and
biases;

(w
(m)
ij)1/ℏ, & (b

(m)
i)1/ℏ, ℏ ∈ [0, 1]. (9)

Thus, the monomials in (7) can be replaced as follows;

a
(L)
ef · · · a(2)jk a

(1)
ij xi 7→

{
(a

(L)
ef · · · a(2)jk a

(1)
ij)1/hxi if a(L)

ef · · · a(2)jk a
(1)
ij > 0, i.e., in f+

W,

−(a
(L)
ef · · · a(2)jk a

(1)
ij)1/hxi if a(L)

ef · · · a(2)jk a
(1)
ij < 0, i.e., in f−

W.

Remark 2.3.1 Note that the separation of positive and negative coefficients, that is, f±
W and f±

W,ℏ, is
essential to keep these monomials well defined without choosing a non-trivial branch of the logarithm.

Lemma 2.3.2 For ℏ ∈ (0, 1], the level sets Zf+
W,ℏ−f−

W,ℏ
(k/ℏ) form a one-parameter smooth family

and, it specializes to the level set ZfW(k) when ℏ = 1.

The above statement follows directly from the definition of the one parameter family f+
W,ℏ − f−

W,ℏ,

that is, when ℏ = 1, one can directly calculate the limit f+
W,1 − f−

W,1 = fW as limℏ→1(w
(m)
ij)1/ℏ =

w
(m)
ij and limℏ→1(b

(m)
i)1/ℏ = b

(m)
i .

Moreover, it allows us define the error function
Eℏ := f+

W,ℏ − f−
W,ℏ − f,

and provide a one-parameter family of solutions via the gradient matrix of Eℏ, i.e.,

∆W
(k)
ℏ = D

(k)
ℏ W

(k+1)
ℏ · · ·D(l)

ℏ W
(l+1)
ℏ eℏ. (10)

While the introduction of the parameter ℏ in (8) and the backpropagation (10) extends our target
(the classification in (2)) to a family of solutions, its limit ℏ → 0 does not exists in this form as
the exponents 1/ℏ in (9) blow up in that limit. However, this limit can be reinstated via rescaling
and taking logarithmic image of the family f+

W,ℏ − f−
W,ℏ, which takes us to the realm of tropical

geometry.

3 Tropical neural networks and tropical backpropagation

In this section, we introduce the basic notions in tropical arithmetics and tropical geometry, which we
then use to introduce the tropical neural networks as universal approximators as well as a tropical
version of the backpropagation algorithm.

3.1 Tropical semiring: Arithmetic without multiplication

The tropical semiring is the limit ℏ → 0 of the continuous family of semirings Sℏ := (R+,⊕ℏ,⊗ℏ)
defined by the following arithmetic operations; for a, b ∈ R+,

a⊕ℏ b :=

{
ℏ ln(ea/ℏ + eb/ℏ) when ℏ > 0,

max{a, b} when ℏ → 0,

a⊗ℏ b := ℏ ln(ea/ℏ · eb/ℏ) = a+ b. (11)

4

For ℏ > 0, the logarithmic map Dℏ

Dℏ : R+ → R : x 7→ ℏ ln(x) (12)

is a semiring isomorphism, i.e., Dℏ(a+ b) = Dℏ(a)⊕ℏ Dℏ(b) and Dℏ(a · b) = Dℏ(a)⊗ℏ Dℏ(b).
Therefore Sℏ for ℏ > 0 can be considered as a copy of (R+,+,×) with the usual operations of
addition and multiplication1.

The family Sℏ relates the ordinary addition and multiplication operations on the set of real numbers
with the tropical arithmetic in the limit. This limiting process is also called the Maslov dequantization,
see, for instance (IMS; Vi01). The tropical limit S0 admits a tropical division, however, the subtraction
is impossible due to the idempotency of ⊕ℏ, i.e. x⊕∞ x = max{x, x} = x.

3.2 Classification problem in the tropical limit

For ℏ > 0, we define the level sets Zf+
W,ℏ−f−

W,ℏ
(k/ℏ) in terms of the solutions of the equations

f+
W,ℏ(x) = f−

W,ℏ(x) + ek/ℏ.

In order to make sense of its limit ℏ → 0, we simply consider its image under the map Dℏ.

Proposition 3.2.1 The level sets defined by Dℏ(f
+
W,ℏ(x)) = Dℏ(f

−
W,ℏ(x) + ek/ℏ) are all diffeo-

morphic for small enough ℏ.

We prove this proposition by showing that all those level sets for ℏ ∈ [0, ϵ) for small ϵ are homeomor-
phic to the level sets at the limit ℏ → 0. Moreover, the correspondence is smooth for ℏ > 0.

This statement essentially requires, for a function fℏ : Rn
+ → R+ : x 7→

∑
(ai)

1/ℏxi + a
1/ℏ
0

with positive real coefficients ai = ebi , to compare the log graph f and the maximum mfℏ(x) =

max((a1)
1/ℏx1, . . . , (an)

1/ℏxn, (a0)
1/ℏ). Set xi = eui/ℏ and consider the limit

lim
ℏ→0

Dℏ(fℏ) = lim
ℏ→0

ℏ ln(e(u1+b1)/ℏ + · · ·+ e(un+bn)/ℏ + eb0/ℏ)

= lim
ℏ→0

ℏ ln(max(e(u1+b1)/ℏ, . . . , e(un+bn)/ℏ, eb0/ℏ))

= lim
ℏ→0

max(ℏ ln e(u1+b1)/ℏ, . . . , ℏ ln e(un+bn)/ℏ, ℏ ln eb0/ℏ)

= max(a1x1, . . . , anxn, a0).

The passage from the first line to the second follows from the fact that, in the limit ℏ → 0, the
function ea/ℏ + eb/ℏ is dominated by ea/ℏ if a > b. We use the monotonicity of ln to pass to the
third line, and the final result follows from the definition of the variables.

We conclude the homeomorphic nature of limiting and nearby level sets simply by computing the
derivative,

lim
ℏ→0

d

dℏ
Dℏ(fℏ) = 0

which essentially dictates that the level set Zf+
W,ℏ−f−

W,ℏ
(k/ℏ) for small enough ℏ is topologically the

same as the limit set at the limit ℏ → 0.

Proposition 3.2.2 The correspondence in Proposition 3.2.1 transforms the realisation of the classifi-
cation problem (2)

3.3 Tropicalisation of backpropagation

Proposition 3.2.2 states that we can apply the map Dℏ (12) to each step of the backpropagation
algorithm (10) in one-parameter family and take the limit ℏ → 0 to define the tropical version of
the backpropagation algorithm. This provides us a different realization of the original classification
problem (2) via different level sets as stated above (via preserving the topology of the level sets).

1The parameter ℏ is not just the reminiscent of the Planck constant. The tropical limit ℏ → 0 is essentially
the quasi-classical (i.e., zero temperature) limit of a certain model in quantum mechanics.

5

ReLU network Log image of ReLU network in family

fW : Rn
+ → R+ Dℏ(f

+
W), Dℏ(f

−
W + ek/ℏ) : Rn

+ → R
Monomials a

(L)
ef · · · a(2)jk a

(1)
ij xi c

(L)
ef · · · c(2)jk c

(1)
ij xi where a

(∗)
∗∗ = ec

(∗)
∗∗ /ℏ

Level sets ZfW(k) Homeomorphic to Zf+
W,ℏ−f−

W,ℏ
(k/ℏ) ∀ ℏ << 1

Classification x 7→ k, ∀ x ∈ Zf (k) x 7→ k, ∀x ∈ Zf+
W,ℏ−f−

W,ℏ
(k/ℏ)

While the classification problem in one parameter family preserves its nature, the computational
properties of backpropagation change in the limit ℏ → 0.

The transition to the limit ℏ → 0 is accomplished by taking the tropical image of each entry of
the matrices, and then replacing the matrix addition and multiplication by their respective tropical
arithmetic operations ⊕∞ and ⊗∞ in (11):

Let A = [aij] and B = [Bij] be n×m matrices. The tropical matrix sum, A⊕∞B, is then obtained
by evaluating the tropical sum ⊕∞ in (11) of the corresponding matrix entries as follows;

(A⊕∞ B)ij := aij ⊕∞ bij = max{aij , bij}.

The tropical multiplication A⊗∞ B of two matrices A = [aij] ∈ Rm×n and B = [bij] ∈ Rn×p is
given by the matrix C = [cij] ∈ Rm×p with entries

Cij := ⊕∞(aik ⊗∞ bkj) = max
k

{aik + bkj}. (13)

It is calculated using tropical arithmetic operations ⊕∞ and ⊗∞ in (11).

By using the image of the error term (5) under limℏ→0 Dℏ and the tropical linear algebra defined
above, we formulate the tropical gradient descent iteration as follows

W(k)
new = W(k) ⊕∞ ∆W(k)

= W(k) ⊕∞ −ϵ
(
D(k) ⊗∞ W(k+1) ⊗∞ · · · ⊗∞ D(l) ⊗∞ W(l+1) ⊗∞ e

)
. (14)

Propositions 3.2.1 and 3.2.2 allow us to conclude that

Corollary 3.3.1 The tropical backpropagation algorithm in (14) approximates to a deep ReLU
network which is as capable as the function fW, produced by the regular backpropagation (6) in
solving the classification problem stated in (2).

4 Evaluation

In this section, we show the performance gains from tropicalization.

Custom Implementation. To demonstrate the performance gain from tropical tensor multiplication,
we implemented a custom matrix multiplication using a CUDA kernel in Python and compiled it
with Numba (NUMBA)2. Moreover, we wrote a blocked algorithm and leveraged the availability
of CUDA’s fast shared memory in order to parallelize blocks and cooperatively distribute the
computational task to multiple threads. This task served as skeleton for both the standard and the
tropic matrix multiplication. We fixed the number of threads per block to 32 for both approaches.

Simulations. We limited our evaluation to the inference stage in which, for simplicity, we simulated
the feed-forward process of state-of-the-art DNN architectures. The latter are typically composed of
stacked feed-forward single layer perceptron (SLP) and convolutional neural network (CNN) layers,
both of which heavily rely on multidimensional tensor multiplications. Input data shapes range from
(10, 10) to (299, 299, 3). Each CNN layer is composed of between 16 to 512 filters, and performs
matrix multiplication using a kernel shape of 3x3 or 5x5. The number of neurons inside a SLP
range from 16 to 512 and are mainly stacked in the classifier part of neural-network models, usually

2All source code and benchmark scripts are provided in the additional materials.

6

standard

Figure 1: Performance results comparing standard and tropic matrix multiplication for different
matrix sizes. Top figure shows absolute execution times where the shaded filled areas depict one
standard deviation. Bottom figure shows boost due to the tropicalization.

accepting flattened 1D arrays of sizes ranging from 10 to 10000. Hence, the feed-forward process
of SLPs can involve a significant amount of matrix multiplications up to (1,50000)x(50000,512),
resulting in an algorithmic complexity of O(106). We denote by A ·B the matrix multiplication and
define the total multiplication size (proportional to the complexity) C = N3 where (N,N), (N,N)
are the shapes of A and B respectively. For a fixed value of C, we executed 100000 single-precision
floating-point operations. Values for C ranged from 32 to 512 with step sizes equal to the number of
threads per block (32).

Hardware. We evaluated our benchmarks on a a 8-core AMD Ryzen 7 3700X with 64GB RAM
memory and a NVIDIA RTX3090 graphic processing unit, running Ubuntu 20.04.

Results. Figure 1 shows the results of our benchmarks. Absolute execution times for both approaches
stay low for relatively small matrix sizes but then quickly increase. Comparatively, performance
boost due to the tropicalization stays below 6 % for small matrix sizes below 4 ·104, but quickly
increases up to 50 % after this limit.

5 Discussions and Conclusions

5.1 Algorithmic complexity of backpropagation: Standard vs Tropical

The algorithmic complexity of the standard backpropagation computations in (6) has two components:
(1) The complexity of calculating the matrix product. (2) The complexity of the arithmetic operations
involved in the matrix multiplications.

The standard multiplication of matrices of size n×m and m× p has the algorithmic complexity of
O(nmp). Any simplification in the structure of the network will decrease the algorithmic complexity
as the sizes of the resulting matrices will decrease.3,4 Therefore, simplifying the network structure
would be one of the strategies to decrease the algorithmic complexity as the number of nonzero
matrix entries decreases. However, it would require changes in the code.

The tropicalization of DNNs does not touch the combinatorial structure of the network itself, it only
changes the underlying arithmetic with the following effect on computational complexity.

3One can design smaller and more robust neural networks via advanced pruning techniques, see for example
(HMD15; LKDSG; TF97; YCS16).

4Even though there are matrix multiplication algorithms with better asymptotic complexities (see, for instance,
(Ga12)), they come with a large constant factors in their running times.

7

5.2 Complexities of real and tropical arithmetics

As part of accelerating matrix multiplication, both the vector operation ci,j =
∑

k ai,kbkj and the
embedded multiply-accumulate operation received several optimization steps at hardware level. For
example, while addition amounts to O(n) complexity for n-bits, solutions such as various forms of
carry look-ahead adders reduced this complexity to O(log(n)). Similar optimizations are applicable
for taking the maximum (with constant complexity on average and O(log(n)) in general) and for
multiplication (e.g., from O(n2) to O(nlog2(3)) for Karatsuba algorithm (Ka95)). However, the
general trend remains: O(nλ) with λ > 1 for multiplication versus O(log(n)) for a respective radix
implementation of addition and maximum.

Lower algorithmic complexities are achieved only asymptotically, and they are usually effective
only for integer arithmetic. While neural networks are often used in combination with 8-bit integer
arithmetic, this entails a loss of precision that may not be acceptable in all application scenarios. We
conclude that

Corollary 5.2.1 The tropical backpropagation algorithm in (14) has a lower algorithmic com-
plexity relative to the backpropagation algorithm (6) on the ring of real numbers.

5.3 Execution time and energy consumption

The actual execution time of a specific code depends on numerous factors, such as the processor
speed, the instruction set, disk speed, and the compiler used. An old rule of thumb in designing
numerical experiments that dictates avoiding multiplications and divisions in simulations in favor
of additions and subtractions in order to improve the actual execution time may heuristically seem
redundant on modern processors as they closed the time-cost-gap between addition and multiplication
drastically. However, one can still observe the advantages in carefully designed setups, see Figure 1.

The energy consumption does not favor multiplications over summations either: the required energy
for multiplication is always considerably higher than the summation (Hor14, pg. 32). Both execution
time and energy consumption measures suggest that the reduction of algorithmic complexity has
considerable benefits.

It should further be noted that similar instruction combinations are possible with maximum-addition
as we have seen for multiply-accumulate and that all traversal and cache optimizations that apply to
the original matrix, still hold for its tropical variant.

5.4 Final remarks

This work laid out the mathematical framework of tropical neural networks and their training via back-
propagation. After demonstrating theoretically that the tropicalization decreases the computational
complexity while preserving the training objectives, we then proceeded by simulating the forward
pass of a DNN using standard and tropical matrix multiplications in various sizes. We confirmed
that the tropicalization does indeed benefit matrix multiplications in terms of drastic improvement in
processing speed hence we can extrapolate with confidence the same conclusion to the forward pass
and consequentially to the training of DNNs.

References
[ABHGG] M. Alfarra, A. Bibi, H. Hammoud, M. Gaafar, B. Ghanem On the Decision Boundaries of

Neural Networks: A Tropical Geometry Perspective. https://arxiv.org/abs/2002.08838.

[Cey21] Ö. Ceyhan Algorithmic Complexities in Backpropagation and Tropical Neural Networks.
https://arxiv.org/abs/2101.00717.

[CM18] V. Charisopoulos, P. Maragos. A Tropical Approach to Neural Networks with Piecewise
Linear Activations. (2018), https://arxiv.org/abs/1805.08749.

[Cy89] G. Cybenko, Approximations by superpositions of sigmoidal functions. Mathematics of
Control, Signals, and Systems (1989), 2 (4),303–314.

8

https://arxiv.org/abs/2002.08838
https://arxiv.org/abs/2101.00717
https://arxiv.org/abs/1805.08749

[DBBNG] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, R. Garcia, Incorporating Second-Order
Functional Knowledge for Better Option Pricing. Advances in Neural Information Processing
Systems 13, MIT Press, 2001, 472–478.

[Ga12] F. Le Gall, Faster algorithms for rectangular matrix multiplication, Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pp. 514–523.

[HMD15] S. Han, H. Mao, W.J. Dally, Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. https://arxiv.org/abs/1510.00149

[H91] K. Hornik, Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks,
4(2) (1991), 251–257.

[Hor14] M. Horowitz, 1.1 computing’s energy problem (and what we can do about it). Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014.

[IMS] I. Itenberg, G. Mikhalkin, E.I. Shustin, Tropical Algebraic Geometry. Oberwolfach Series
Birkhäuser; 2 edition (2009).

[Ka95] A.A. Karatsuba, The Complexity of Computations. Proceedings of the Steklov Institute of
Mathematics. 211 (1995): 16–183.

[LKDSG] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning Filters for Efficient ConvNets.
https://arxiv.org/abs/1608.08710

[MCT21] P. Maragos, V. Charisopoulos, E. Theodosis, Tropical Geometry and Machine Learning,
Proceedings of the IEEE, pp. 728-755, vol. 109, no. 5, 2021, doi: 10.1109/JPROC.2021.3065238.

[NUMBA] S.K. Lam, A. Pitrou, & S. Seibert, (2015). Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (pp. 1–6).

[MT19] P. Maragos, E. Theodosis, Tropical Geometry and Piecewise-Linear Approximation of
Curves and Surfaces on Weighted Lattices, https://arxiv.org/abs/1912.03891.

[PV17] P. Petersen, F. Voigtlaender, Optimal approximation of piecewise smooth functions using
deep ReLU neural networks. https://arxiv.org/abs/1709.05289v3

[Ro96] R. Rojas, Neural Networks: A Systematic Introduction. Springer, 1996.

[Ru16] S. Ruder, An overview of gradient descent optimization algorithms. https://arxiv.org/
pdf/1609.04747.pdf.

[ST19] G. Smyrnis, P. Maragos Tropical Polynomial Division and Neural Networks, https://
arxiv.org/abs/1911.12922.

[Sp64] D. Sprecher, On the Structure of Continuous Functions of Several Variables, Transactions of
the American Mathematical Society, Vol. 115 (1964), pp. 340–355.

[TM18] E. Theodosis, P. Maragos, An Adaptive Pruning Algorithm for Spoofing Localisation Based
on Tropical Geometry, https://arxiv.org/abs/1811.01017.

[TF97] G. Thimm, E. Fissler, Pruning of neural networks. http://publications.idiap.ch/
downloads/reports/1997/rr97-03.pdf

[Vi01] O. Viro, Dequantization of Real Algebraic Geometry on a Logarithmic Paper. Proceedings
of the 3rd European Congress of Mathematicians, Birkhäuser, Progress in Math, 201, (2001),
135–146.

[YDGZAGN] H. Yao, H. Derksen, J.R. Golbus, J. Zhang, K.D. Aaronson, J. Gryak, K. Najarian,
A Novel Tropical Geometry-based Interpretable Machine Learning Method: Application in
Prognosis of Advanced Heart Failure. https://arxiv.org/abs/2112.05071

[Ya16] D. Yarotsky, Error bounds for approximations with deep ReLU networks. https://arxiv.
org/abs/1610.01145

9

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1912.03891
https://arxiv.org/abs/1709.05289v3
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/abs/1911.12922
https://arxiv.org/abs/1911.12922
https://arxiv.org/abs/1811.01017
http://publications.idiap.ch/downloads/reports/1997/rr97-03.pdf
http://publications.idiap.ch/downloads/reports/1997/rr97-03.pdf
https://arxiv.org/abs/2112.05071
https://arxiv.org/abs/1610.01145
https://arxiv.org/abs/1610.01145

[YCS16] T.J. Yang, Y.H. Chen, V. Sze, Designing Energy-Efficient Convolutional Neural Networks
using Energy-Aware Pruning. https://arxiv.org/abs/1611.05128

[ZNL18] L. Zhang, G. Naitzat, L.H. Lim, Tropical Geometry of Deep Neural Networks. Proceedings
of the 35th International Conference on Machine Learning, PMLR 80:5824-5832, 2018. https:
//arxiv.org/abs/1805.07091

10

https://arxiv.org/abs/1611.05128
https://arxiv.org/abs/1805.07091
https://arxiv.org/abs/1805.07091

	Introduction
	Tropical neural networks at first sight: Related studies
	Contributions

	Classification problem, its one-parameter family, and backpropagation
	Classification via the level sets of a smooth function
	Backpropagation in a nutshell
	Classification problem in a one-parameter family, its realisation and backpropagation

	Tropical neural networks and tropical backpropagation
	Tropical semiring: Arithmetic without multiplication
	Classification problem in the tropical limit
	Tropicalisation of backpropagation

	Evaluation
	Discussions and Conclusions
	Algorithmic complexity of backpropagation: Standard vs Tropical
	Complexities of real and tropical arithmetics
	Execution time and energy consumption
	Final remarks

