
Citation: Jahić, B.; Guelfi, N.; Ries, B.

SEMKIS-DSL: A Domain-Specific

Language to Support Requirements

Engineering of Datasets and Neural

Network Recognition. Information

2023, 14, 213. https://doi.org/

10.3390/info14040213

Academic Editor: José J. Pazos Arias

Received: 3 March 2023

Revised: 24 March 2023

Accepted: 29 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

SEMKIS-DSL: A Domain-Specific Language to Support
Requirements Engineering of Datasets and Neural Network
Recognition
Benjamin Jahić † , Nicolas Guelfi † and Benoît Ries *,†

Department of Computer Science, Faculty of Science, Université du Luxembourg, Technology and Medecine,
Campus Belval, L-4365 Esch-sur-Alzette, Luxembourg; nicolas.guelfi@uni.lu (N.G.)
* Correspondence: benoit.ries@uni.lu; Tel.: +352-46-66-44-5267
† These authors contributed equally to this work.

Abstract: Neural network (NN) components are being increasingly incorporated into software sys-
tems. Neural network properties are determined by their architecture, as well as the training and
testing datasets used. The engineering of datasets and neural networks is a challenging task that
requires methods and tools to satisfy customers’ expectations. The lack of tools that support require-
ments specification languages makes it difficult for engineers to describe dataset and neural network
recognition skill requirements. Existing approaches often rely on traditional ad hoc approaches, with-
out precise requirement specifications for data selection criteria, to build these datasets. Moreover,
these approaches do not focus on the requirements of the neural network’s expected recognition skills.
We aim to overcome this issue by defining a domain-specific language that precisely specifies dataset
requirements and expected recognition skills after training for an NN-based system. In this paper,
we present a textual domain-specific language (DSL) called SEMKIS-DSL (Software Engineering
Methodology for the Knowledge management of Intelligent Systems) that is designed to support
software engineers in specifying the requirements and recognition skills of neural networks. This
DSL is proposed in the context of our general SEMKIS development process for neural network
engineering. We illustrate the DSL’s concepts using a running example that focuses on the recogni-
tion of handwritten digits. We show some requirements and recognition skills specifications and
demonstrate how our DSL improves neural network recognition skills.

Keywords: neural network; domain-specific language; method; requirements; model-driven
engineering

1. Introduction

Software engineers are increasingly developing neural networks (NN) for customers
in various domains such as finance, medicine, and autonomous driving. It goes without
saying that these NNs must satisfy customers’ needs and requirements. Software engineers
rely on methods and tools that support requirements engineering (RE). However, there is a
lack of such methods and tools [1] to engineer datasets and NNs satisfying the requirements.

In traditional approaches to dataset engineering, data scientists consider high-level
requirements in building datasets for training and testing NNs. They often build datasets
using time-consuming and expensive ad hoc approaches [2]. These approaches are often
not generic and do not rely on precise data selection criteria based on customer require-
ments. In addition, they typically utilize manual data collection [3,4] to construct datasets
for training NNs. As such, they are error-prone, which can lead to numerous data col-
lection/labeling and NN training iterations due to inaccurate neural networks. These
NNs may not accurately recognize some data within a certain equivalence class, failing to
meet the requirements. We define an equivalence class [5] as a group of related artifacts
that an NN recognizes within its category. As a result, multiple exhaustive and costly

Information 2023, 14, 213. https://doi.org/10.3390/info14040213 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14040213
https://doi.org/10.3390/info14040213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1120-1196
https://orcid.org/0000-0003-0785-3148
https://orcid.org/0000-0002-8680-2797
https://doi.org/10.3390/info14040213
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14040213?type=check_update&version=2

Information 2023, 14, 213 2 of 25

iterations are required to enhance the NN’s recognition skills and meet the customer’s
requirements. We define recognition skills [5] as informal textual descriptions of the NN’s
learned capacity to correctly map input data to the corresponding equivalence class. To
address the need for methods and tools for dataset engineering, we introduce a software
engineering (SE) methodology [6] that is designed as an iterative business process and
focuses on augmenting datasets with synthetic data to improve NNs. To semi-formally
describe the data selection criteria for augmenting these datasets, we introduce the notion of
key properties [7] to describe the NN’s acquired recognition skills after training. Our initial
approach specifically addresses recognition skills requirements and dataset requirements in
this domain. Rather than developing an entirely new requirements engineering method, we
analyze and experiment with existing general SE methods for traditional software systems.

We define the NN’s key properties [5] as quantitative and qualitative attributes that
describe the NN’s recognition skills. The purpose of the key properties is to help engineers
precisely understand the NN’s recognition skills and determine the precise data selection
criteria for enhancing datasets to improve NNs. We use model-driven engineering (MDE)
principles to develop an approach for automated data generation that is based on customer
requirements and NN key properties. In MDE, models are used to describe a conceptual
representation of a domain problem or system using a limited vocabulary. Moreover,
these models can be transformed into other models using model transformation rules (e.g.,
model-to-text transformation).

In this paper, we introduce a textual domain-specific language (DSL) called SEMKIS-
DSL that is designed to help software engineers specify the requirements and recognition
skills for neural networks. We first define a metamodel to outline the concepts related
to customer requirements and NN key properties. Then, we present the domain-specific
language, which is compliant with the metamodel and serves as an MDE tool to support the
specification of requirements and key properties. The DSL guides users to create structured,
readable, and maintainable requirements and key properties. We also describe how some
informal model transformations from these specification models can be transformed into a
data synthesizer.

The research topic we address in this paper is how to facilitate requirements engineer-
ing in NN-based systems for dataset and recognition capabilities using a domain-specific
language. Our aim is to enable the artificial intelligence (AI) community to benefit from
the MDE principles for specifying the customer requirements and NN key properties to
automate data generation. This contribution is the first step towards a fully automated
transformation of the requirements and key-properties model into a data synthesizer imple-
mentation. Thanks to the MDE principles, we aim to reduce the costs and efforts required
for performing dataset engineering activities.

This paper is organized as follows. Section 2 presents the background materials,
methods, and relevant references we use to design and implement the SEMKIS-DSL. In
Section 3, we present the results of the SEMKIS-DSL and the basis for the development
of the model transformations and demonstrate our concepts. In Section 4, we present the
works and relevant references related to (1) the software development process for dataset
engineering, (2) MDE for deep learning, and (3) MDE for deep learning using NNs for
dataset augmentation. In Section 5, we discuss some limitations, threats to the validity
of our approach, and potential research directions. Finally, we present a summary of our
work, the main contributions, and some ideas for future works in Section 6.

2. Materials and Methods

In this section, we present the materials and methods that serve as input for the design
and implementation of the SEMKIS-DSL. We also present the model-driven engineering
principles employed in the SEMKIS-DSL for automating dataset engineering activities.
Additionally, we present the SEMKIS methodology of which the SEMKIS-DSL is an integral
part. Finally, we present the method used to design the SEMKIS-DSL.

Information 2023, 14, 213 3 of 25

2.1. Material
2.1.1. Model-Driven Engineering Context

Fondement and Silaghi [8] define MDE as an SE methodology that relies on conceptual
specifications to describe a particular domain problem and its solution. These conceptual
specifications, known as domain models, can be specified at different levels of abstraction.
MDE follows a top-down approach to designing software systems by starting with a
domain model specification at a high abstraction level and culminating in a refined domain
model specification at a lower abstraction level.

A tool that is commonly used to specify domain models is domain-specific lan-
guages (DSL). Tomaž et al. [9] define a domain-specific language as a tailor-made and
high-abstraction-level language that is based on concepts and properties from a specific ap-
plication domain. There exist two different types of DSLs: textual and graphical DSLs. Both
consist of defined grammar and semantics for specifying domain models within a specific
domain problem. DSLs are often designed as intermediate languages that are translated
into another domain model (e.g., into a different language) using model transformations.
For example, a DSL specification enables the development of an automated code generator
that generates source code (e.g., Java, Python). DSLs, with their higher level of abstraction,
can be designed to facilitate the specification of domain models that are comprehensible
and specifiable by domain experts from diverse IT backgrounds.

Therefore, DSLs help to create a pleasant environment for domain experts who can
focus on solving domain problems. Textual editors for DSLs typically offer features such as
auto-completion, templates, and error detection to increase the efficiency of the modeling
process.

The AI community can benefit from these MDE principles and tools to automatize
some dataset engineering activities for improving NNs. Rather than following traditional
dataset engineering approaches, we aim to design an MDE process to automate the gen-
eration of synthetic data based on precise data selection criteria. In an MDE process, an
engineer specifies a data model that presents a specification of certain data selection criteria
in collaboration with domain experts. By separating the conceptual specification from the
concrete dataset construction, we allow domain experts to validate the targeted dataset
early in the development process. Hence, errors can be detected earlier, resulting in fewer
corrective development iterations. After the model has been validated, the resulting val-
idated data selection model can be interpreted and transformed into a data synthesizer
implementation using model transformation techniques. Finally, a data synthesizer can be
used to generate synthetic data to build improved datasets for training and testing NNs.

With the SEMKIS-DSL defined in this paper, we take one step closer to an MDE process
(see Figure 1) integrated within our SEMKIS methodology to support software engineers in
their deep learning (DL) development projects.

Information 2023, 14, 213 4 of 25

Figure 1. SEMKIS MDE process overview.

2.1.2. SEMKIS Methodology Overview

SEMKIS is an SE methodology that supports software engineers in improving their
datasets and NN engineering activities. We designed SEMKIS as an iterative business
process [6] that consists of various datasets and NN engineering activities with a few
input/output data objects. The aim of this process is to provide precisely defined SE
activities that can help software engineers iteratively augment datasets with synthetic data
to re-train NNs and improve their recognition skills.

To improve the selection of synthetic data for building datasets, we take into account
both the customer’s requirements and the NN’s acquired recognition skills when defining
the precise data selection criteria. As a result, we extend our initial process with RE
activities, which include a subprocess for analyzing the test results of a trained NN, and
the notion of key properties to describe the NN’s recognition skills [5]. The customer’s
requirements serve to define the NN architecture and certain data selection criteria for
creating the initial datasets for training and testing the NN. After testing the NN, the
software engineer analyses the test results to specify the NN’s key properties by describing
its acquired recognition skills during the training. By comparing the requirements and
key-properties specification, the engineer can perform the following tasks:

• Determine whether the NN satisfies the requirements.
• Validate the NN’s key properties against the customer’s requirements.
• Identify new data selection criteria to augment the datasets.

Thus, we use the data selection criteria to synthesize additional data to augment
our datasets and re-train the NN. Firstly, the data selection criteria depend on the cus-
tomer’s requirements. For example, we may define some data selection criteria such as
(1) incorporating synthetic data of an equivalence class to strengthen its recognition, as
the customer has assigned a higher recognition priority to it; (2) reducing the amount of
data of an equivalence class as its recognition precision is not critical for the customer;
and (3) dividing an equivalence class into two sub-equivalence classes so that the NN can
recognize the data separately. Secondly, we can determine some data selection criteria
from the key properties to improve the NN’s recognition. We may adjust the quantity of
data and the variation/balancing of data within specific equivalence classes to improve the
recognition. Our process can be executed many times until the customer validates the NN.

We analyzed our SEMKIS activities to improve the engineering of a dataset based on
a customer’s requirements and an NN’s key properties. As a result, we decided to work
on an MDE process that supports automated dataset generation from requirements and
key-properties specifications. Among the SEMKIS activities, we identified two activities
that can be used to specify requirements and key properties with the SEMKIS-DSL:

Information 2023, 14, 213 5 of 25

• Pre-activity:This involves specifying the requirements that will serve as input to the
process for engineering the initial datasets and NN architecture.

• Test monitoring data analysis: This involves analyzing the NN’s test results to deter-
mine its key properties, which will serve as input to analyze the satisfaction of the
requirements and augment the datasets accordingly.

In this paper, we introduce a domain-specific language known as SEMKIS-DSL to
support software engineers in specifying these requirements and key properties during the
execution of the SEMKIS process. We build the SEMKIS-DSL in the context of our SEMKIS
methodology. Our aim is for engineers to benefit from these MDE principles [8] by writing
specifications at a higher level of abstraction that focus only on customer requirements
and key properties. Thus, we aim to improve their understanding of the customer’s
requirements and NN’s key properties. By refining these abstract specifications using
MDE techniques (model transformations), we aim to generate appropriate datasets for
engineering improved NNs. In addition, due to its many features (e.g., auto-completion,
templates, outline view, hovering, syntax highlighting), our SEMKIS tool supported by the
SEMKIS-DSL can help engineers to efficiently write improved specifications. The roles of
the SEMKIS stakeholders with respect to the SEMKIS-DSL are as follows:

• The software engineer is responsible for engineering the datasets and the NN, eliciting
and specifying the customer’s requirements, analyzing the NN’s test results and
specifying the key properties, and discussing the key properties and the requirements
with the customer.

• The dataset engineer is responsible for identifying and suggesting the required data
with the software engineer for building the datasets, training the NN to satisfy the
customer’s requirements, and analyzing the customer’s validation feedback, require-
ments, and key-properties specifications to propose a dataset augmentation strategy
for improving the NN.

• The customer is responsible for ordering an NN, participating in meetings with the
software engineer to express their requirements, and validating the specified NN’s
key properties.

2.2. Method

We used a top-down approach to define the different concepts of the SEMKIS-DSL
in the context of engineering appropriate datasets to improve NNs. The SEMKIS-DSL
was designed in the context of the SEMKIS methodology to support software engineers
in improving their datasets and NN engineering activities. The steps for constructing the
results for the customer requirements specifications using SEMKIS-DSL were as follows:

1. We designed an academic case study that was small in size but rich enough to support
the research process described below.

2. We analyzed the preliminary activity of the dataset augmentation process [5] in the
context of the SEMKIS methodology to identify any weaknesses. This preliminary
activity focuses on specifying the customer’s requirements and defining the target
NN.

3. We analyzed the identified weaknesses and found that:

• Specifying requirements is a complicated, time-consuming, and costly task due
to the manual work involved.

• Our specifications are often handcrafted and unstructured as they are written in
basic textual editors (e.g., Word, Excel). These textual editors lack advanced fea-
tures such as syntax highlighting, code completion, templates, cross-references,
and file organization.

• There are only basic guidelines to help engineers specify the requirements. The
engineers still rely on domain experts (AI and dataset engineers), who have a
broad knowledge of NN and dataset concepts, to specify the requirements.

Information 2023, 14, 213 6 of 25

4. We designed a metamodel (concept model) that defined the various concepts that
were required to specify the requirements for dataset and NN engineering concepts.

5. We designed grammar (Xtext grammar) for tackling the above-mentioned weaknesses
to allow for textual specifications of the requirements.

6. We specified some requirements for the MNIST case study [10] to experiment and
validate our SEMKIS-DSL.

7. We analyzed the SEMKIS-DSL to propose a basis for developing model-to-text trans-
formations to allow the code-skeleton generation of synthetic data generators or target
NN architecture templates.

Similar to the steps for constructing the results for the customer requirements speci-
fications, the steps for constructing the results for the key-properties specifications using
SEMKIS-DSL were as follows:

1. We analyzed the activity (Analyze Test Monitoring Data (activity F)) of the dataset
augmentation process to identify any weaknesses. This activity is a subprocess
comprising four activities for analyzing and specifying the NN’s key properties from
the collected recognition data (test monitoring data) of the NN’s training and testing.

2. We analyzed the identified weaknesses and found, similar to the customer require-
ments, that:

• Specifying key properties is a complicated, time-consuming, and costly task due
to the manual and handcrafted work involved.

• Our specifications are often handcrafted and unstructured as they are written
in basic textual editors (e.g., Word, Excel). These textual editors lack advanced
features.

• There is a lack of guidelines to help engineers analyze the test monitoring data
and specify the key properties. The engineers rely even more on AI and dataset
experts to specify the key properties.

• The specifications have to be manually interpreted to determine new data selec-
tion criteria for improving the datasets.

3. We designed a metamodel (concept model) that defined the various concepts that
were required to specify the key properties of trained NNs.

4. We designed grammar (Xtext grammar) for tackling the above-mentioned weaknesses
to allow for textual specifications of the key properties.

5. We trained an NN to recognize handwritten digits from the MNIST case study [10]
and specified some key properties to experiment and validate our SEMKIS-DSL.

6. We analyzed the specifications to propose a basis for developing model-to-text trans-
formations to allow the code-skeleton generation of a synthetic data generator for
augmenting our datasets to re-train the NN.

3. Results: SEMKIS-DSL—A Language for Specifying Requirements and
Key-Properties of Neural Networks

This section constitutes the core contribution of this paper. In this section, we present
the SEMKIS-DSL concepts in the context of the two activities mentioned in the previous
section. We introduce a conceptual model (metamodel) for business stakeholders, which
we use to engineer the SEMKIS-DSL grammar. The DSL can support software engineers in
specifying the customer’s requirements (for describing the customer’s needs and determin-
ing the data selection criteria) and the NN’s key properties (for describing and validating
the NN’s recognition skills). These specifications are used to automatize the generation
of improved datasets utilizing an MDE method. We aim to generate additional synthetic
data to improve the datasets and, thus, improve an NN until it satisfies the customer’s
requirements. The SEMKIS-DSL is developed using the Xtext framework [11], which is an
open source framework for engineering textual domain-specific languages that provides
textual editors for the defined DSLs. The Xtext framework is implemented as a plugin
to Eclipse IDE and, consequently, benefits from Eclipse IDE support for languages. The
complete SEMKIS-DSL grammar is publicly available on Github [12,13].

Information 2023, 14, 213 7 of 25

3.1. MNIST Running Example

To illustrate the concepts of the SEMKIS-DSL, we use the MNIST case study [10] as a
running example. In this paper, we consider a subset of the MNIST dataset and focus on
the recognition of the handwritten digits “0” and “7”. We simulate an artificial customer
who requires a neural network. The customer meets with a software engineer to outline his
needs for the NN. In this context, we instantiate our SEMKIS process to demonstrate the
concrete requirements and key-properties specifications. We simulate the engineering of
datasets containing images of handwritten digits that are used to train and test the NN.

3.2. Requirements Specifications Using SEMKIS-DSL

In this section, we present the SEMKIS-DSL concepts related to the requirements
specifications. We present the requirements concepts to describe the customer’s needs in
the context of dataset engineering for NNs. We utilize a traditional approach to define the
non-functional and functional requirements, as proposed by Sommerville [14], which we
apply in the context of deep learning.

RE is the typical starting point of SE lifecycle models [15]. During the RE phase, a
software engineer meets with a customer to discuss their needs concerning the required
software. The aim of this phase is to understand the customer’s needs and develop software
that satisfies them.

Our process starts with the so-called pre-activity that focuses on RE to describe the
customer’s needs for an NN. A software engineer meets with a customer to understand
and discuss their needs concerning the required NN. After the first meeting, the software
engineer specifies an initial set of requirements based on their understanding. Then, the
software engineer meets with the customer again to discuss the specified requirements
for validation. If the requirements have been validated, the software engineer proceeds to
engineer the datasets. Otherwise, the requirements must be updated and discussed with
the customer for validation. The final requirements are used as input in the next activities
to engineer the datasets and the target NN.

3.2.1. Concept Model

In this section, we define a metamodel that comprises the concepts related to the RE
phase. Figures 2–4 illustrate these concepts in a UML class diagram [16]. We indicate in
parentheses the associated UML class for each concept.

The software engineer specifies each of the customer’s requirements (ctRequirements)
as either a functional or non-functional requirement. Each requirement must be named
and described, and a purpose and priority should be specified. Functional requirements
(ctFunctionalRequirement) describe the expected behaviors that the target NN must offer.
The functional requirements describe the targeted recognition skills of the target NN. Each
functional requirement defines the expected target NN’s output given a certain target
NN’s input. As a result, we specify the following two concepts related to the functional
requirements, as illustrated in Figure 3, and the datasets, as illustrated in Figure 2:

• The target NN’s input (ctTargetNNInput) describes the customer’s required input data
and some technical details about the target NN’s architecture such as the input format
and size. The input data (ctInputData) represent the data elements (ctDataElement)
of a dataset (ctDataset). Additionally, they define the target NN’s input value format
that must be readable by an NN. Datasets consist of data elements, which are classified
into equivalence classes (ctEquivalenceClass). We define an equivalence class as a
group of related artifacts that an NN recognizes within its category. A data element can
be a numerical value, image, video, voice, or any other input data that is processable by
an NN. In practice, the software engineer starts by specifying the datasets, their data
elements, and equivalence classes. Then, the engineer specifies the target NN’s input
characteristics and associates the input data with the data elements of the dataset.

• The target NN’s output (ctTargetNNOutput) describes the customer’s expected output
given a certain input. Given an input data element, an NN typically outputs a

Information 2023, 14, 213 8 of 25

probability distribution over multiple equivalence classes that describes the likelihood
that the data element belongs to an equivalence class. Hence, the target NN’s output
specifies the output format and size, as well as the accepted value range. Additionally,
the output specifies the equivalence classes for which a probability is computed by
the NN.

Figure 2. SEMKIS-DSL Metamodel: Dataset specification concepts.

Figure 3. SEMKIS-DSL Metamodel: Functional requirements specification concepts.

Information 2023, 14, 213 9 of 25

Figure 4. SEMKIS-DSL Metamodel: Nonfunctional requirements specification concepts.

Non-functional requirements (ctNonFunctionalRequirement) (see Figure 4) describe
the expected characteristics of the system under development. Typically, these characteris-
tics include performance, reliability, maintainability, and robustness, among others. In the
context of NN engineering, engineers usually evaluate the performance, robustness, and
reliability of an NN based on specific properties. We focus on the following four properties:

• Accuracy (ctTargetAccuracy) describes the ratio between the number of correctly
recognized data by the target NN and the number of all data elements within the
dataset.

• Loss (ctTargetLoss) is a numerical value that describes the recognition error between
the target NN’s actual output and its expected output.

• Precision (ctTargetPrecision) describes the ratio between the number of correctly
classified and recognized data and the total number of data elements.

• Recall (ctTargetRecall) describes the ratio between the number of correctly classified
and recognized data and the number of both correctly/incorrectly classified and
recognized data.

3.2.2. Model Transformation—Engineering Datasets and Neural Networks

According to the SEMKIS methodology, a software engineer analyzes the requirements
specifications during the dataset and NN engineering activities in two stages. Firstly,
the software engineer extracts the relevant data selection criteria from the requirements
for engineering the datasets. The data selection criteria serve as input to either collect
existing data or synthesize data using a program. Such a program may take the form of a
traditional algorithm (e.g., manipulation of pixels) or an NN (e.g., generative adversarial
network). The resulting NN can be trained and tested on engineered datasets. Secondly,
the software engineer determines the NN’s architectural components (e.g., input/output
layer, layer types, activation functions) from the customer’s requirements to engineer the
NN’s architecture.

In this subsection, we provide the basics for the development of model-to-text trans-
formations (i.e., generators), which includes the two aforementioned stages. Two transfor-
mations are developed:

1. Data synthesizer: generates the skeleton code for synthesizing the data.

Information 2023, 14, 213 10 of 25

2. Target NN architecture synthesizer: generates the skeleton code for the target NN’s
architecture in Python.

We identify the relevant information (e.g., data selection criteria or architectural
components) that can be extracted from the previously presented requirements concepts of
the SEMKIS-DSL to be taken as input for the model-to-text transformations.

For the definition of the “data synthesizer” model-to-text transformation, the dataset
elements and the equivalence classes can be extracted from the functional requirements
specifications. Firstly, the specification of the target NN input, ctTargetNNInput, defines
the required data elements to be processed by the NN. Thus, we can determine some
properties of the datasets such as the dataset size, dataset type, dataset format, and data
types (e.g., images, numbers). Other data properties that can be extracted from the data
elements include the data type, data format, and data content. Secondly, the target NN’s
output specification, ctTargetNNInput, defines the recognized equivalence classes for a
given data input. From the equivalence classes, we can extract the labels of each data
element in the dataset or the NN’s output, including the NN’s output values for formatting
the dataset’s labels and the interpretation of the NN’s output values. The customer’s
recognition priorities and the recognition precision of the NN can be extracted from the
non-functional requirements specifications. We can make some assumptions about the
number of required data and the diversity of the data per equivalence class based on the
recognition priorities and recognition precision. If an equivalence class must be recognized
correctly with a high priority, we can generate additional data to strengthen the NN’s
recognition.

For the definition of the “Target NN architecture synthesizer” model-to-text trans-
formation, we can determine the NN’s architecture from the SEMKIS-DSL requirements
specifications. From the functional requirements, we can extract some architectural com-
ponents (e.g., layers, activation functions, target NN’s input and output). From the non-
functional requirements, we can extract the training parameters, as well as the parameters
for evaluating the trained NN.

3.2.3. Running Example

To demonstrate a requirements specification using SEMKIS-DSL, we perform the
SEMKIS requirements pre-activity using a running example. During this activity, the
customer meets with a software engineer to order an NN that can recognize the two hand-
written digits “0” and “7”. They discuss the functional and non-functional requirements of
this NN. After the meeting, the software engineer is in charge of modeling the requirements
specifications. Concerning the functional requirements, we specify the NN’s input and
output data. The functional requirements specified for the handwritten digit “7” are:

• The input data consist of 28× 28 images that contain a centered and white handwritten
digit “7” on a black background.

• An image is a matrix of pixels, where each pixel is represented by a grayscale value of
[0, 255].

• The digit 7 can be curved and may or may not contain a middle dash.

The non-functional requirements specified for the digit “7” are:

• An equivalence class named ec7 that includes the digit “7”.
• The accuracy for ec7 on the test dataset should reach a value of [98%, 100%]
• The accuracy of the test dataset should reach a value of [98%, 100%].
• Both accuracies have a high priority and are important for the customer.

In Listing 1, we show some of the concrete functional and non-functional requirements
specifications of the handwritten digit “7”. Note that the requirements can be easily
modified and adapted to the customer’s needs. The customer could wish to place higher
importance on recognizing a handwritten digit “7” with a middle dash. In this case, the
equivalence class ec7 could be refined into two separate classes (ec7-MiddleDash and
ec7-NoMiddleDash) to categorize images of a digit 7 with and without a middle dash.

Information 2023, 14, 213 11 of 25

The software engineer then has the option to specify different accuracies for each class.
Thus, the number of data and the data diversity can be adapted for each class based on the
new accuracies. For example, it could be useful to add more data to the equivalence class
ec7-MiddleDash to strengthen the NN’s recognition.

Listing 1. Sample requirements specifications for recognition of the digit “7”.

Requirements {
functionalRequirements {

Requirement FR1 {
NeuralNetworksInput {

neuronsSize 784
neuronsFormat [28, 28]
inputData {

InputData inputSeven {
neuronValues [0; 255]
dataElements imgDigitSeven }}}}

Requirement FR2 {
NeuralNetworksOutput{

neuronsSize 10
neuronsFormat [1, 10]
outputValueRange [0; 1]
outputNeurons [seven]
inputData FR1.inputSeven }}

}
nonfunctionalRequirements {

Requirement NFR1 {
description “Global accuracy on testing dataset”
purpose “Tolerated accuracy on testing dataset”
priority high
TargetAccuracy globalTestAcc for dataset dstest {

minAccuracy 98
maxAccuracy 100
targetAccuracy 99.7 }}

Requirement NFR2 {
description “Equivalence class 7 test accuracy”
purpose “Tolerated accuracy for ec7 on the testing dataset”
priority high
TargetAccuracy tarEcSevenAcc for dataset dstest {

equivalenceClasses seven
minAccuracy 99
maxAccuracy 100
targetAccuracy 99.9 }}

}

3.3. Key-Properties Specifications Using SEMKIS-DSL

In this section, we present the SEMKIS-DSL concepts related to the key- properties
specifications. Key properties are used to describe the NN’s acquired recognition skills
after training.

3.3.1. SEMKIS Process–Test Monitoring Data Analysis

The testing phase is one of the last steps in an SE lifecycle that occurs just before the
software is deployed into production for a customer. During this phase, software engineers
test and analyze the software to verify if the functional and non-functional requirements
have been met based on the initial specifications. The main objective of this phase is to
evaluate the software’s behavior to obtain customer validation for deploying the software.

Information 2023, 14, 213 12 of 25

In SEMKIS, we defined two activities for the testing phase. In the first activity, a soft-
ware engineer tests a target NN to collect data for identifying its recognition skills. We refer
to this collected data as the test monitoring data. During the testing of the NN, the testing
dataset is given as input to the target NN and then the target NN’s output is analyzed. The
test monitoring data may comprise quantitative values (e.g., accuracy, loss), (in-)correctly
recognized equivalence classes, or graphical visualizations (e.g., confusion matrices, heat
maps, categorized recognized images). In the second activity, an engineer reviews the test
monitoring data and makes some observations about the target NN’s acquired recogni-
tion skills. The purpose of these observations is to understand the recognition skills and
precisely specify the key properties using the SEMKIS-DSL. Then, the specifications are
analyzed to verify that they are consistent with the customer’s requirements. The purpose
of the key properties is to define the target NN’s recognition strengths and weaknesses,
which are presented to the customer who then validates the produced target NN. If the
customer validates the target NN, the software engineer proceeds to deploy the target NN.
Otherwise, the software engineer proceeds to analyze the requirements and key properties
to define the precise data selection criteria for preparing a dataset augmentation. Hence,
the augmented datasets are used to re-train the target NN to improve its recognition skills
during an additional SEMKIS process iteration. The process is iterated until the customer
validates the target NN.

3.3.2. Concept Model

We introduce the concept of key properties to precisely describe the acquired recog-
nition skills of a target NN after training. Figures 5 and 6 present the concepts related to
the key properties in a UML class diagram [16]. We indicate in parentheses the associated
UML class of each key-property concept presented in this section.

Figure 5. SEMKIS-DSL Metamodel: Quantitative key-properties specification concepts.

Information 2023, 14, 213 13 of 25

Figure 6. SEMKIS-DSL Metamodel: Qualitative key-properties specification concepts.

A software engineer specifies the target NN’s key properties (ctKeyproperties) as
qualitative or quantitative. Each key property must be named, given a detailed description,
a state (i.e., toBeDiscussed, todo, done, inReview, validated), and a priority. The quantitative
key properties (ctQuantitativeKeyproperty) describe the characteristics of an NN that are
specified as numerical values (e.g., accuracy, loss, precision). We illustrate the conceptual
model related to the quantitative key properties in Figure 5. Software engineers use the
quantitative key properties to describe the statistical details of the target NN’s recognition
skills. We identified two types of quantitative key properties, continuous and discrete key
properties.

The continuous key properties (ctContKeyProperty) are numerical values in a
non-countable set (e.g., accuracy, loss, precision, and recall) that characterize the target
NN’s recognition skills using. These characteristics specify the metrics of the acquired target
NN’s recognition skills after training. We use the four non-functional requirements (i.e.,
accuracy, loss, etc.) to define the continuous key properties, accuracy (ctReachedAccuracy),
loss (ctReachedLoss), precision (ctReachedPrecision), and (ctReachedRecall). However, at
this stage, we specify the measurements of the achieved recognition skills rather than the
targeted recognition skills (accuracy, loss).

The discrete key properties (ctDiscKeyProperty) are numerical values in a countable
set (e.g., dataset size, categorizations, number of (in-)/correctly classified/recognized
data) that describe a statistical analysis of the recognition of the specific data elements,
datasets, and subsets, as well as data within an equivalence class. The software engi-
neer can specify the number of data elements (in-)/correctly recognized within groups
of data elements. Therefore, we defined two types of discrete key properties: quan-
titative data analysis (ctQuantitativeDataAnalysis) and quantitative dataset analysis
(ctQuantitativeDatasetAnalysis) that include these specifications.

Information 2023, 14, 213 14 of 25

The qualitative key properties (ctQualitativeKeyProperties) are textual descriptions
or boolean expressions that describe the target NN’s recognition skills. We illustrate the
conceptual model related to the qualitative key properties in Figure 6. The quantitative key
properties precisely describe the characteristics and attributes of the target NN’s acquired
recognition skills. For example, they can precisely describe the recognized objects in an
image, insufficiently recognized equivalence classes, any recognition anomalies, or untested
equivalence classes. Software engineers can use the qualitative key properties to precisely
describe the different aspects (achieved recognitions, anomalies, incorrect recognitions) of
the target NN’s recognition. We defined three types of quantitative key properties: nominal,
ordinal, and logical.

The nominal key properties (ctNomKeyProperty) are textual descriptions that char-
acterize the recognition of specific data elements or their content (e.g., images and image
content). Firstly, the nominal key properties specify equivalence classes that have not been
(or insufficiently been) tested. Thus, the software engineer may indicate that further tests
are required to evaluate the target NN’s recognition skills on an equivalence class. Secondly,
the nominal key properties specify the identified recognition anomalies within the test data
elements. The software engineer specifies the different characteristics that describe a prob-
lem with recognizing concrete data elements, their content, or an entire equivalence class.
Thirdly, the nominal key properties specify the concrete recognition skills of the target NN.
The software engineer precisely specifies the recognition of the data elements and charac-
terizes the detected and accepted correct recognitions. Therefore, we defined three types of
nominal key properties: recognition characteristics (ctRecognitionCharacteristic), untested
equivalence classes (ctUntestedClasses), and recognition anomalies (ctRecoAnomaly).

The ordinal key properties (ctOrdKeyProperty) specify the different characteristics
of the equivalence classes within the dataset. Firstly, the ordinal key properties are used
to specify the selection criteria for a recognized equivalence class when the target NN
processes a data element. The target NN often outputs a probability distribution that
describes the probability that a data element has been recognized within an equivalence
class. Therefore, it is necessary to define a selection criterion (e.g., maximal probability) to
select the recognized equivalence class. It is important to understand how the equivalence
class has been selected, as the selection criteria may have an impact on the evaluation of
the target NN’s recognition skills. There may be some recognition issues due to poorly
chosen selection criteria. Secondly, the ordinal key properties specify the evaluation of the
target NN’s recognition. The software engineer specifies the different evaluation criteria
(i.e., very well, bad, satisfactory, unrecognizable, etc.) that describe the level of recognition
of a set of data elements. To describe these concepts, we defined two types of ordinal
key properties: selection of a recognized equivalence class (ctEquivClassSelection) and
recognition evaluation (ctRecognitionEvaluation).

The logical key properties (ctLogKeyProperty) are boolean-based values that describe
the recognition accuracy of the equivalence classes, categories of data elements, entire
datasets, or individual data elements. Firstly, the logical key properties are used to specify
a general evaluation of the recognition of an equivalence class. The software engineer spec-
ifies whether the data elements within this equivalence class have been correctly classified
and recognized. Secondly, the logical key properties are used to specify an evaluation
of the recognition of specific data elements (or groups of data elements). Similarly, the
software engineer specifies whether the data elements within these groups have been cor-
rectly classified and recognized. Therefore, we defined two types of ordinal key properties:
the accuracy of recognizing an equivalence class (ctEquivClassRecoCorrectness) and the
accuracy of recognizing a set of data elements (ctDataClassRecoCorrectness).

The resulting key-properties specifications describe the recognition strengths and
weaknesses of the target NN. These strengths and weaknesses are validated by the customer
in order to deploy the target NN into production. Otherwise, we proceed to dataset
augmentation to re-engineer the datasets to improve the recognition skills of the target NN.

Information 2023, 14, 213 15 of 25

During each iteration, the key-properties specifications are updated to describe the target
NN’s recognition in order to be validated by the customer.

3.3.3. Model Transformation—Dataset Augmentation

According to the SEMKIS methodology, dataset augmentation is performed if the
customer is yet to validate the target NN’s key properties. In this case, the software engineer
analyzes the key-properties specifications during the dataset augmentation specification
activity. The software engineer compares the requirements and key-properties specifications
to define the data selection criteria for augmenting the datasets. The purpose of the data
selection criteria is to implement the data synthesizer (i.e., a traditional synthesizer program
or an AI-based data synthesizer). The aim of dataset augmentation is to improve the
recognition skills of the target NN by training it on the augmented dataset to meet the
customer’s requirements.

We do not intend to tackle the problem of dataset augmentation in machine learn-
ing in detail. Rather, we informally describe a model transformation that produces an
output related to the dataset augmentation activity. The requirements and key-properties
specifications serve as input for the model-to-text (M2T) transformation, which generates
the skeleton code for a dataset augmentation synthesizer. Both specifications are used to
extract the relevant data to be fed as input to the M2T transformation. Below, we identify
the relevant input data that can be extracted to establish the basics for the development of
the M2T transformation.

From the untested classes (ctUntestedClasses), we can extract the equivalence classes
that are to be tested further. We generate additional data elements for the testing dataset to
improve the evaluation of the target NN’s recognition skills for an equivalence class. From
the nominal key properties that characterize the recognition evaluation
(ctRecognitionEvaluation), we can extract the poor or unrecognizable equivalence classes.
We generate variations of the data elements for the training dataset to train the target NN
and improve its recognition skills.

From the non-functional requirements and quantitative key properties, we can extract
the amount of correctly and incorrectly recognized categories of data elements (e.g., recog-
nized data elements within an equivalence class). The amount of correctly and incorrectly
recognized data elements helps us to estimate the probability that a target NN performs a
correct or incorrect recognition. Based on these results, we can generate additional data
within a sufficiently correctly recognized equivalence class to strengthen its recognition.
Otherwise, we can generate additional variations of the data elements to improve their
recognition within the incorrectly recognized equivalence classes. Our objective is to
improve the target NN’s recognition in order to meet the customer’s requirements. There-
fore, we generate enough specific data elements by considering the recognition priorities
specified in the requirements.

From the functional requirements and nominal and ordinal key properties, we can
determine the recognizability of specific data elements and their content. We can compare
the targeted functional requirements to the achieved recognition skills and determine the
required data for improving specific recognition skills. Thus, we can generate additional
data for sample data elements with specific content (e.g., images containing a specific
object) to strengthen the NN’s recognition. These specifications help us to focus on the
prioritized requirements and, therefore, generate additional data to strengthen the NN’s
recognition. Finally, we can also determine the NN’s architecture. From the equivalence class
selection criteria, we can define the target NN’s output (selected recognized equivalence
class). Thus, when changing the selection criteria or adding more equivalence classes due
to refinement, we can generate another NN architecture skeleton that is compliant with the
updated requirements.

Information 2023, 14, 213 16 of 25

3.3.4. Running Example

To demonstrate a key-properties specification using SEMKIS-DSL, we perform the
SEMKIS test monitoring data analysis activity using a running example. The test monitoring
data comprise collected information about the NN’s recognition after training. Figure 7
shows some results of the NN’s initial training on the left-hand side. The engineer has to
follow the concepts defined in the SEMKIS-DSL to identify the key properties in the testing
data. Thus, he is required to qualitatively and quantitatively analyze the test monitoring
data from which he can determine the key properties.

Initial training diagram Training diagram after retraining

Figure 7. Training diagram of NN recognition after initial and second training.

During this activity, the software engineer analyzes the test monitoring data to make
some observations about the recognition of the handwritten digits “0” and “7”. From the
confusion matrix (quantitative results) on the left-hand side in Figure 8, we can see that
there were some issues with the recognition of the handwritten “7”, whereas the recognition
of “0” was acceptable. The target NN incorrectly recognized a handwritten “7” nine times
and a handwritten “0” twice. On the left-hand side in Figure 9, we illustrate the incorrectly
recognized images for qualitatively analyzing the NN’s recognition skills. The images are
ordered from “0” to “9”. By analyzing the incorrectly recognized images on the left-hand
side, we can confirm that “7” was often incorrectly recognized. Additionally, in Figure 10,
we can see that a handwritten “2” was often recognized as a “7”. We specify these results
in parallel using the SEMKIS-DSL.

Concerning the incorrectly recognized “0”, we can see that one image (id = 1 in left
Figure 9) was incorrectly classified as it did not contain a “0”. We consider this image to
be unrecognizable and it will be removed from the dataset. The other image has been
incorrectly recognized. Hence, the target NN resulted in only 1 error for “0”, which we
accept as it is compliant with the customer’s requirements.

Concerning the incorrectly recognized “7”, we can see that they were often recognized
as the equivalence class 2 or 1. Thus, the target NN could not sufficiently distinguish
between images containing a handwritten “7”, “2”, or “1”. Since the customer requires the
recognition of “7”, we must improve the target NN’s recognition skills. Thus, we generate
additional images of a handwritten “7” to improve the target NN. The above-mentioned
key properties are specified in parallel using the SEMKIS-DSL.

Information 2023, 14, 213 17 of 25

Initial confusion matrix of testing dataset

recognised class

e
q

u
iv

a
le

n
c
e

 c
la

s
s

e
q

u
iv

a
le

n
c
e

 c
la

s
s

predicted label

Confusion matrix of testing dataset after retraining

Figure 8. Confusion matrices comparing the performance of the initial and second training on the
testing dataset.

Initially incorrectly recognised images Incorrectly recognized images after retraining

Figure 9. Incorrectly recognized test images after initial and second training.

Incorrectly recognised images - results Incorrectly recognised images - results after retraining

Figure 10. Details of incorrectly recognized test images after initial and second training.

Information 2023, 14, 213 18 of 25

In Listing 2, we show some concrete key-properties specifications for the handwritten
“7”. According to the requirements and key-properties specifications, we need to improve
the recognition of the handwritten “7”. Therefore, we need to augment the dataset with
additional images of “7” to improve the target NN. We thus iterate the process and re-train
the target NN until the target NN satisfies the customer’s requirements. The right-hand
sides of Figures 7–10 show the results after re-training the NN on the augmented datasets.
We can confirm that we improved the recognition of the handwritten “7”, as well as the
recognition of the handwritten “2”. These new key properties can then be specified in the
SEMKIS-DSL to perform an additional reiteration to improve the NN’s recognition. An
example would be to improve the recognition of the handwritten “9”, which is also often
incorrectly recognized.

Listing 2. Sample key-properties specifications for recognition of “7”.

Key Properties {
Qualitative Key Properties {

Nominal Key Property nkp1 {
Recognition Anomaly recoanomly_seven {

description “Seven recognized often as 2 or 1”
equivalenceClasses seven }}

OrdinalKeyProperty okp1 {
RecognitionEvaluation recoeval_seven {

equivalenceClasses seven
recognitionValue bad }}

Logical Key Property lkp1 {
EquivalenceClassRecognitionCorrectness erc {

recognitionCorrectness incorrectly
classificationCorrectness correctly
equivalenceClasses seven }}

}
QuantitativeKeyProperties {

ContinuousKeyProperty ckp2 {
name “Recognition of equivalence class 7”
description “Accuracy of the equivalence class 7”
priority high
status toBeDiscussed
ReachedAccuracy acc_test_seven {

equivalenceClasses seven
accuracyValue 0.9}}

Discrete Key Property dkp2 {
name “ Digit 7 incorrect recognition ”
description “ Number of incorrectly recognized digit 7.”
priority high
status toBeDiscussed
incorrectly recognized QuantitativeDataAnalysis inc_reco for dataset dstest {

equivalenceClasses seven
amount 9}}

}}

3.3.5. Tool Support

The SEMKIS-DSL has been developed using the Xtext framework [11] within the open
source software engineering environment Eclipse IDE. We extended Eclipse using the Xtext
plugin to develop the SEMKIS-DSL grammar in an .xtext file. The grammar comprises
many syntactical rules that must be followed by the specifications in the SEMKIS-DSL.
The syntactical rules define fixed keywords, optional words, relation types, user-selectable

Information 2023, 14, 213 19 of 25

keywords, and cross-references. These rules were determined from our conceptual models
representing the NN’s requirements and key properties.

In addition to these syntactical rules, the textual editor offers many features that can
help software engineers efficiently write complete and structured specifications. These fea-
tures can also help engineers avoid specification errors, speed up the specification process,
structure their specifications, and improve the readability and traceability of the specifica-
tions by introducing a folder/file structure and supporting multiple specification views.
Figure 11 shows a screenshot of the Eclipse IDE in which we specified our requirements
and key properties. Other useful features include syntax highlighting, quick fixes, scoping,
auto-completion, specification outlines, comparison views, and templates.

The aim of the SEMKIS-DSL and its textual editor is to guide engineers in analyzing
the training monitoring data by introducing precisely defined concepts that need to be
specified. Moreover, engineers can benefit from the SEMKIS-DSL to improve the readabil-
ity, traceability, maintainability, and validation of their requirements and key-properties
specifications.

Figure 11. SEMKIS-DSL tool support [5] with sample key-properties specification.

4. Related Works
4.1. Software Development Process for Dataset Engineering

Rahimi et al. [17] provided some techniques and tools for RE in machine learning (ML).
The authors aimed to improve dataset construction and thus the ML model by analyzing,
understanding, and specifying the concepts of the domain problem. The objective of their
approach was to create different ontologies, which structured the information collected
about the domain problem, datasets, and ML model using the following three steps:

Information 2023, 14, 213 20 of 25

1. Benchmarking the domain via a web search to identify and specify the properties that
need to be recognized by an ML model.

2. Interpreting the dataset’s domain to identify problems in the collected data (e.g., risks,
data inconsistencies), as inappropriate datasets may generate training issues that can
result in inaccurate ML models.

3. Interpreting the domain learned by the ML model by extracting its features and using
AI techniques to transform the model into more comprehensible models (e.g., a set of
logical rules).

Finally, the acquired knowledge and the ontologies were compared to identify the
correlations between the properties and the concepts. Thus, different quality concerns,
e.g., incomplete or inconsistent requirements specifications or incompletely specified con-
cepts could be detected. In this paper, we use the customer’s requirements and NN’s key
properties to define the precise data selection criteria for iteratively augmenting datasets.
The resulting augmented datasets are used to train an NN until it meets the requirements.

Villamizar et al. [18] analyzed 35 studies on RE in ML that were published in confer-
ences and journals between 2018 and 2021. These studies presented guidelines, checklists,
quality models, and taxonomies for RE in ML software. The authors analyzed the studies to
identify the challenges and characteristics of RE in ML. The authors identified the following
challenges:

• A lack of quality metrics for ML software.
• A lack of methods and tools for specifying requirements.
• The complexity of understanding non-functional requirements in ML.
• Measuring the satisfiability of the requirements.
• Customers have a limited understanding of ML.

Other researchers [1,19,20] have confirmed that requirements are becoming increas-
ingly important in the development of AI software and that more research must be carried
out. In their papers, these authors identified challenges related to the definitions of ML
model performance (e.g., quality metrics, quality attributes such as reliability and avail-
ability), non-functional requirements, and the requirements related to datasets, as well as
the lack of methods/tools for specifying and maintaining the requirements. We agree with
the authors that RE is becoming increasingly important in the development of artificial
intelligence software systems and thus for engineering ML software or NNs.

4.2. Model-Driven Engineering for Deep Learning

Hu et al. [21] proposed an approach that focused on specifying robustness require-
ments to build trustworthy safety-critical ML software. In this context, they designed an
approach for specifying requirements that express the input/output behavior of ML soft-
ware. They defined the requirements as image transformations by considering the human
perception of objects (e.g., pedestrian recognition in the automotive industry). These robust-
ness requirements consisted of formally defined image transformations (e.g., light changes,
weather conditions). In our work, we address more general requirements engineering of
ML-based systems. We develop a DSL intended for the SE and AI communities for the
specification of requirements to further engineer improved datasets and NNs.

Several papers have presented DSLs for specifying NNs or ML software as math-
ematical operations or high-level textual descriptions of directed acyclic graphs. Zhao
and Huang [22] presented DeepDSL, a DSL for specifying an NN as a composition of
mathematical functions. Elango et al. [23] presented Diesel, a DSL for specifying the ar-
chitecture of NNs using linear algebra mathematical operations. The primary objective of
these DSLs is to optimize memory usage, reduce computational time, and reduce execution
time when training, testing, and using an NN. StreamBrainDSL [24] was developed for
specifying the architecture of NNs as layers of neurons (e.g., convolutional, fully connected
layers). This DSL is embedded inside a Python framework for engineering NNs that are
deployable on high-performance computing platforms. The aim of this DSL is to engi-

Information 2023, 14, 213 21 of 25

neer NNs that can be trained, tested, and executed on various backends to optimize their
execution time. AiDSL [25] is a textual DSL for specifying the architecture of NNs. The
authors developed an MDE approach for automatically generating an NN implementation
in Java from a textual specification. Other DSLs have been designed to support engineers in
developing various ML applications. Tensorflow Eager [26] and OptiML [27] are DSLs for
designing and implementing an NN architecture. The aim of these DSLs is to facilitate the
implementation of ML software using high-level descriptive languages without affecting
the performance (e.g., accuracy, execution time) of the ML models. In this paper, we do
not discuss DSLs that support the specification of the architecture of NNs. Neither do we
consider the specification of mathematical operations or directed acyclic graphs for defining
the architecture. In our work, we develop a DSL for precisely specifying the requirements
and acquired recognition skills of an NN. We aim to support software engineers in precisely
defining data selection criteria for improving NNs.

4.3. Model-Driven Engineering for Deep Learning Using Neural Networks for
Dataset Augmentation

Ries et al. [28] introduced an MDE method to help DL scientists engineer requirements
and build datasets for their DL. The method was developed as an iterative elicitation process
for identifying dataset requirements. The requirements are described as formal dataset
requirements concept models, which can be interpreted using MDE techniques to generate
data specification instances. These instances are then analyzed to iteratively improve and
validate the DRCM model. In this paper, we develop a DSL that, on the one hand, focuses
on specifying the dataset requirements of an NN-based system without formal models and,
on the other hand, focuses on specifying its key properties. The specifications written using
our DSL can be used as input to a model transformation generating a data synthesizer.

Other papers have developed approaches or domain-specific languages for gener-
ating synthetic data to improve NNs without precise data selection criteria. Some pa-
pers [3,29,30] follow approaches for generating a large amount of data to construct large
datasets to improve the training or testing of NNs without precise data selection criteria.
Fremont et al. [31] introduced Scenic, a DSL that can specify digital objects in a virtual
3D space to produce images and videos. It is used to specify and generate car-driving
scenarios in the domain of autonomous driving. The aim of our DSL is to specify the
dataset requirements and NN-based systems’ key properties for the generation of a data
synthesizer. Then, according to the methodology defined in this paper, the NN dataset
is augmented using synthetic data generated from the data synthesizer until it meets the
customer’s requirements and has been validated by the customer.

5. Discussion

In this section, we discuss some limitations, challenges to the validity of our approach,
and potential research directions.

5.1. Limitations

We believe that the main limitations of the work presented in our paper concern the
metamodel coverage and the automation support.

Metamodel coverage: The proposed metamodel offers only a reduced set of concepts
and, more specifically, lacks the concepts needed to specify the refined accuracy and loss
metrics of the NN or any other required quality metrics.

Automation: There are currently no translational semantics available for performing
the proposed model-to-text transformations, which involve converting the requirements
and key-properties model into a data synthesizer implementation. Therefore, this step must
be carried out manually. To ensure requirements satisfiability, the NN’s key properties are
manually compared against the specified requirements. However, an automated module
for satisfaction evaluation is currently lacking, which poses a challenge for verification and
validation.

Information 2023, 14, 213 22 of 25

5.2. Threats to Validity

The main threat to the validity of our approach is its scalability. The utilized research
methodology is susceptible to the well-known scalability problem that plagues the field of
software engineering methods. In this research domain, our aim is to provide solutions
that, on the one hand, have all the characteristics required by engineering for real-world
application development and are supported by software engineering environments, and,
on the other hand, are scientifically sound, complete, and accurate.

Given that our scope covered a broad range of topics, including the development
process and domain-specific language for model-driven engineering, we focused our
solution on a very limited case study that was primarily intended to illustrate and validate
our approach.

The current version of our solution is far from scalable in its current form, making its
validity for “real system development” questionable. This must be addressed by a serious
and measurable experimental phase, which is discussed below. Despite its scalability
limitations, the SEMKIS approach is still the most advanced from a software engineering
perspective.

5.3. Perspectives

The main issues that we plan to address in the future concern experimentation and
tool support.

• Experimentation:

– In order to overcome the threat to the validity of our approach discussed above,
the first phase of development should be to assess the SEMKIS methodology,
including the SEMKIS-DSL, in an industrial context with software engineers
and deep learning experts.

– This case study should be conducted using a selection of companies and with a
traditional dataset and NN engineering methods. For each of them, we propose
to follow a simple yet reasonable process consisting of the following steps:

1. Initial interviews with the software engineers to understand and discuss
the current methodologies used by the company.

2. Presentation of the SEMKIS methodology and its application to a concrete
project that includes the SEMKIS-DSL.

3. Delimitation of application modules that currently use neural networks in
their products.

4. Utilization of the SEMKIS approach for the maintenance of these modules
in cooperation with SEMKIS experts.

5. Follow-up interviews with software engineers to discuss their experience
with the SEMKIS and determine its costs, complexity, usability, and main-
tainability.

6. Evaluation of the data collected through experimentation and interviews.

– The objective of this case study is to obtain enough data to assess the following
aspects of the SEMKIS and its DSL:

* the cost/time reduction for NN and dataset engineering;
* the learning curve of using the SEMKIS-DSL;
* the maintainability and readability of the specifications in the SEMKIS-DSL;
* the traceability of NN’s recognition issues to the requirements specifica-

tions;
* the completeness, accuracy, and adequacy of the metamodel concepts.

• Tool support:

– Another issue is the use of adequate tools, e.g., Xtend, to define and imple-
ment the model-to-text transformations to provide full automation of our MDE
method for the generation of synthetic data based on requirements and key

Information 2023, 14, 213 23 of 25

properties. Moreover, we could extend our SEMKIS toolkit with a requirements
and key-properties specification interpreter to generate a data synthesizer im-
plementation.

6. Conclusions

In this paper, we introduce the SEMKIS domain-specific language to specify a cus-
tomer’s requirements and an NN’s key properties. We utilize an MDE approach for
automatizing data generation from the requirements and key properties specifications. In
this context, our main contributions are (1) a SEMKIS-DSL conceptual model, which is used
to engineer the SEMKIS-DSL grammar, for business stakeholders that contains the main
concepts needed to specify the NN’s requirements and key properties; (2) an approach for
applying model transformations to translate these specifications into a data synthesizer or
an NN architecture; and (3) an illustration of the SEMKIS-DSL using a running example,
where we specify some requirements and key properties for the MNIST [10] problem.

We illustrate the SEMKIS-DSL concepts in the context of the recognition of handwritten
digits. Our running example shows promising results and demonstrates the potential of
our approach to support software engineers during the RE, testing, and validation phases
for releasing an NN into production, as well as engineer improved NNs with appropriate
datasets.

In future work, we intend to evaluate the SEMKIS methodology in an industrial envi-
ronment. Our objective is to assess and validate the SEMKIS methodology, including the
SEMKIS-DSL and the model transformations, with software engineers on larger projects
and in an industrial context. We also intend to assess specific aspects such as the reductions
in costs and time for NN and dataset engineering, the complexity of the learning curve of
the SEMKIS-DSL for software engineers, and the readability and traceability of the specifi-
cations on large projects. Another idea for future work could be to extend the SEMKIS-DSL
to allow for the specification of dependable NNs using the DREF framework [32]. We
intend to extend our language with additional concepts to specify metrics for the resilience
of NNs, as well as facilitate the specification of the satisfiability of the customer’s require-
ments, including some tolerance margins. These metrics will allow us to measure the
satisfiability evolution of the customer’s requirements after each updated version of an
NN. The software engineer would then be able to analyze the metrics and define new data
selection criteria to improve the datasets for re-training the NN. The resulting NNs would
then meet the customer’s requirements within the specified tolerance.

Author Contributions: All authors contributed to the study’s conception and design. Material
preparation, data collection, and analysis were performed by B.J. The first draft of the manuscript
was written by B.J. B.R. made some revisions to the first draft of the manuscript and all authors
commented on the previous versions of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors did not receive funds, grants, or other support from any external funding
agency in the public, commercial, or not-for-profit sectors for the submitted work.

Data Availability Statement: The data generated and/or analyzed during the current study are avail-
able in the following public Github repository; https://github.com/Benji91/lu.uni.lassy.phdthesis.
semkis.toolkit.experimentations, (accessed on 28 March 2023).

Conflicts of Interest: The authors have no competing, financial, non-financial, or other interests
to disclose.

https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations
https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations

Information 2023, 14, 213 24 of 25

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
DL Deep Learning
DSL Domain-Specific Language
MDE Model-Driven Engineering
ML Machine Learning
M2T Model-to-Text Transformation
NN Neural Network
RE Requirements Engineering
SE Software Engineering

SEMKIS
Software Engineering Methodology for the Knowledge Management of
Intelligent Systems

UML Unified Modeling Language

References
1. Heyn, H.M.; Knauss, E.; Muhammad, A.P.; Eriksson, O.; Linder, J.; Subbiah, P.; Pradhan, S.K.; Tungal, S. Requirement engineering

challenges for ai-intense systems development. In Proceedings of the 2021 IEEE/ACM 1st Workshop on AI Engineering-Software
Engineering for AI (WAIN), Online, 30–31 May 2021; pp. 89–96.

2. Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2691–2699.

3. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las
Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243.

4. You, Q.; Luo, J.; Jin, H.; Yang, J. Building a large scale dataset for image emotion recognition: The fine print and the benchmark.
In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

5. Jahic, B. SEMKIS: A Contribution to Software Engineering Methodologies for Neural Network Development. Ph.D. Thesis,
University of Luxembourg, Esch/Alzette, Luxembourg, 2022.

6. Jahić, B.; Guelfi, N.; Ries, B. Software engineering for dataset augmentation using generative adversarial networks. In Proceedings
of the 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20
October 2019; pp. 59–66.

7. Jahić, B.; Guelfi, N.; Ries, B. Specifying key-properties to improve the recognition skills of neural networks. In Proceedings of the
2020 European Symposium on Software Engineering, Online, 6–8 November 2020; pp. 60–71.

8. Fondement, F.; Silaghi, R. Defining model driven engineering processes. In Proceedings of the Third International Workshop in
Software Model Engineering (WiSME), Lisbon, Portugal, 11–15 October 2004.

9. Kosar, T.; Martı, P.E.; Barrientos, P.A.; Mernik, M. A preliminary study on various implementation approaches of domain-specific
language. Inf. Softw. Technol. 2008, 50, 390–405. [CrossRef]

10. LeCun, Y.; Cortes, C.; Burges, C.J.C. The MNIST Database of Handwritten Digits. 2022. Available online: http://yann.lecun.com/
exdb/mnist/ (accessed on 28 March 2023).

11. Bettini, L. Implementing Domain-Specific Languages with Xtext and Xtend; Packt Publishing Ltd.: Birmingham, UK, 2016.
12. Jahič, B. SEMKIS-DSL Complete Grammar (v2.0). 2022. Available online : https://github.com/Benji91/lu.uni.lassy.phdthesis.

semkis.toolkit.experimentations/blob/main/eclipse-workspace-semkis-dsl/lu.uni.lassy.phd.dsl.semkis.parent/lu.uni.lassy.
phd.dsl.semkis/src/lu/uni/lassy/phd/dsl/semkis/Semkis.xtext (accessed on 28 March 2023).

13. Jahič, B. SEMKIS-DSL (v2.0). 2022. Available online: https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.
experimentations (accessed on 28 March 2023).

14. Sommerville, I. Engineering Software Products; Pearson: London, UK, 2020; Volume 355,
15. Ruparelia, N.B. Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes 2010, 35, 8–13. [CrossRef]
16. Object Management Group B. Unified Modeling Language 2.5.1; Object Management Group: Milford, MA, USA, 2017.
17. Rahimi, M.; Guo, J.L.; Kokaly, S.; Chechik, M. Toward requirements specification for machine-learned components. In Proceedings

of the 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), Jeju Island, Republic of Korea,
23–27 September 2019; pp. 241–244.

18. Villamizar, H.; Escovedo, T.; Kalinowski, M. Requirements engineering for machine learning: A systematic mapping study. In
Proceedings of the 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Online, 1–3
September 2021; pp. 29–36.

19. Habibullah, K.M.; Horkoff, J. Non-functional requirements for machine learning: Understanding current use and challenges in
industry. In Proceedings of the 2021 IEEE 29th International Requirements Engineering Conference (RE), Notre Dame, IN, USA,
20–24 September 2021; pp. 13–23.

http://doi.org/10.1016/j.infsof.2007.04.002
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations/blob/main/eclipse-workspace-semkis-dsl/lu.uni.lassy.phd.dsl.semkis.parent/lu.uni.lassy.phd.dsl.semkis/src/lu/uni/lassy/phd/dsl/semkis/Semkis.xtext
https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations/blob/main/eclipse-workspace-semkis-dsl/lu.uni.lassy.phd.dsl.semkis.parent/lu.uni.lassy.phd.dsl.semkis/src/lu/uni/lassy/phd/dsl/semkis/Semkis.xtext
https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations/blob/main/eclipse-workspace-semkis-dsl/lu.uni.lassy.phd.dsl.semkis.parent/lu.uni.lassy.phd.dsl.semkis/src/lu/uni/lassy/phd/dsl/semkis/Semkis.xtext
https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations
https://github.com/Benji91/lu.uni.lassy.phdthesis.semkis.toolkit.experimentations
http://dx.doi.org/10.1145/1764810.1764814

Information 2023, 14, 213 25 of 25

20. Vogelsang, A.; Borg, M. Requirements engineering for machine learning: Perspectives from data scientists. In Proceedings of the
2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), Jeju Island, Republic of Korea, 23–27
September 2019; pp. 245–251.

21. Hu, B.C.; Salay, R.; Czarnecki, K.; Rahimi, M.; Selim, G.; Chechik, M. Towards requirements specification for machine-learned
perception based on human performance. In Proceedings of the 2020 IEEE Seventh International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE), Zurich, Switzerland, 1 September 2020; pp. 48–51.

22. Zhao, T.; Huang, X. Design and implementation of DeepDSL: A DSL for deep learning. Comput. Lang. Syst. Struct. 2018, 54, 39–70.
[CrossRef]

23. Elango, V.; Rubin, N.; Ravishankar, M.; Sandanagobalane, H.; Grover, V. Diesel: DSL for linear algebra and neural net computa-
tions on GPUs. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages, Philadelphia, PA, USA, 18 June 2018; pp. 42–51.

24. Podobas, A.; Svedin, M.; Chien, S.W.; Peng, I.B.; Ravichandran, N.B.; Herman, P.; Lansner, A.; Markidis, S. StreamBrain: An HPC
DSL for Brain-like Neural Networks on Heterogeneous Systems. In Proceedings of the 11th International Symposium on Highly
Efficient Accelerators and Reconfigurable Technologies, Online, 21–23 June 2021.

25. Cueva-Lovelle, J.M.; García-Díaz, V.; Pelayo, G.; Bustelo, C.; Pascual-Espada, J. Towards a standard-based domain-specific
platform to solve machine learning-based problems. Int. J. Interact. Multimed. Artif. Intell. 2015, 3, 6–12.

26. Agrawal, A.; Modi, A.; Passos, A.; Lavoie, A.; Agarwal, A.; Shankar, A.; Ganichev, I.; Levenberg, J.; Hong, M.; Monga, R.; et al.
TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. Proc. Mach. Learn. Syst. 2019, 1, 178–189.

27. Sujeeth, A.; Lee, H.; Brown, K.; Rompf, T.; Chafi, H.; Wu, M.; Atreya, A.; Odersky, M.; Olukotun, K. OptiML: An implicitly
parallel domain-specific language for machine learning. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 609–616.

28. Ries, B.; Guelfi, N.; Jahic, B. An mde method for improving deep learning dataset requirements engineering using alloy and
uml. In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development, SCITEPRESS,
Online, 8–10 February 2021; pp. 41–52.

29. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, Mountain View, California, USA, 13-15 November 2017; pp. 1–16.

30. Pei, K.; Cao, Y.; Yang, J.; Jana, S. Deepxplore: Automated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, 28–31 October 2017; pp. 1–18.

31. Fremont, D.J.; Dreossi, T.; Ghosh, S.; Yue, X.; Sangiovanni-Vincentelli, A.L.; Seshia, S.A. Scenic: A language for scenario
specification and scene generation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Phoenix, AZ, USA, 22–26 June 2019; pp. 63–78.

32. Guelfi, N. A formal framework for dependability and resilience from a software engineering perspective. Open Comput. Sci. 2011,
1, 294–328. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cl.2018.04.004
http://dx.doi.org/10.2478/s13537-011-0025-x

	Introduction
	Materials and Methods
	Material
	Model-Driven Engineering Context
	SEMKIS Methodology Overview

	Method

	Results: SEMKIS-DSL—A Language for Specifying Requirements and Key-Properties of Neural Networks
	MNIST Running Example
	Requirements Specifications Using SEMKIS-DSL
	Concept Model
	Model Transformation—Engineering Datasets and Neural Networks
	Running Example

	Key-Properties Specifications Using SEMKIS-DSL
	SEMKIS Process–Test Monitoring Data Analysis
	Concept Model
	Model Transformation—Dataset Augmentation
	Running Example
	Tool Support

	Related Works
	Software Development Process for Dataset Engineering
	Model-Driven Engineering for Deep Learning
	Model-Driven Engineering for Deep Learning Using Neural Networks for Dataset Augmentation

	Discussion
	Limitations
	Threats to Validity
	Perspectives

	Conclusions
	References

