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1 INTRODUCTION

What grabs user attention in the setting of looking at user interfaces (UIs) is a long-standing interest in HCI research.
Understanding this is essential for designers hoping to guide users’ attention, convey critical information, and avoid
visual clutter [75, 81]. However, after many years of work on this topic, we still have only a rudimentary sense of
how different types of UIs differ in visual saliency. For instance, posters often bring together only a few images, while
desktop and mobile UIs typically apply more components, structured as widgets. Awareness of how such differences
carry over to eye-movement patterns is crucial. The hypothesis underlying the work presented here is that one should
expect the users’ gaze patterns to reflect the visual features of the UI.

This paper represents a two-pronged approach to advancing the understanding of eye movements that occur with
particular UI types. Firstly, we collected and analyzed the UEyes, a novel eye-tracking dataset captured by a high-fidelity
in-lab eye tracker at a large scale. While previous work used mouse movements or manual annotations as a proxy
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for eye movements, UEyes offers access to fine-granularity ground-truth data for visual saliency. Our dataset offers
multi-duration saliency maps and scanpaths of 62 users who looked at 1,980 different UIs, 495 each from desktop,
mobile, webpage, and poster applications. With this paper, we analyze and compare saliency-related tendencies across
the UI types, addressing both bottom-up factors related to the visual primitives of the stimulus, such as color bias, and
top-down (learned) ones connected with the distribution of features in the dataset, such as location bias and scanpath
direction. We present several previously unreported findings illuminating what distinguishes particular UI types.

Secondly, the dataset informed the assessment and improvement of computational models for visual saliency. Given
a UI as input, a saliency model can predict saliency maps or scanpaths, simulating how users perceive that UI. These
models assist UI designers by predicting where users are likely to fix their gaze within a given design: this enables
updating it to emphasize the important areas in the UI better. Such models may help them ‘reflow’ UI designs and
create versons that maintain the desired visual emphases across various screen sizes.

Data-driven approaches require high-quality datasets if they are to employ modern computational models (e.g., based
on deep learning) effectively and improve our understanding of visual saliency. There is a plethora of work on saliency
modeling, predicting where viewers look [21, 36, 39, 41, 48, 51, 55, 68], and numerous scanpath models, predicting
gaze over time [2, 3, 33, 47, 64, 89]. Current approaches all display a limitation, though: they work well only when
domain-specific data are available. Yet, datasets thus far have been relatively small (e.g., MASSVIS [11] and iSUN [96])
and often limited to specific types of designs (e.g., only mobile UIs [53]). In contrast, our UEyes dataset is composed
of high-quality eye-tracking data for various UI types – webpages, mobile UIs, desktop UIs, and posters – so is more
generalizable and valuable for a broader range of applications. In addition, although Leiva et al. [53] proposed analysis
for mobile UIs, no prior research that we know of has analyzed biases in saliency maps (e.g., location bias) and in
scanpaths (e.g., saccade angle) for comparison across UI types. We aimed to fill this gap by systematically analyzing and
comparing eye-tracking data across several UI types.

Furthermore, the UEyes dataset enables dedicated models to predict visual saliency and scanpaths between distinct UI
types. A multi-type dataset is important because accuracy decreases significantly when tested on UI types not included
in the training data. Designers could use these models to inform a better user experience for interfaces. With visual
saliency models, designers can improve their designs by means of well-grounded conclusions about how users are
likely to view their UIs [15]. Predictive models for scanpaths are unlike saliency maps in that they retain information
about the order of fixations and their temporal dynamics. It is important that the applications keep this information
available. For example, these models allow designers to understand visual flows and adjust their designs to encourage
users to view the UI elements in the desired order [69].

The prior project most relevant for our work proposed a crowdsouced dataset (Imp1k) and a Unified Model of
Saliency and Importance (UMSI) trained on images from various design classes: webpages, movie posters, mobile UIs,
infographics, and advertisements [29]. It created a generalizable model for visual importance that performed well for
various design types. However, it did not further address differences in how users view those particular types. Our
collection and classification of images accomplished that aim by focusing on common UI types and introducing a
systematic eye-tracking analysis and comparison across the respective types. Unlike the UMSI researchers, we collected
real-time eye-tracking data via an eye tracker. Although crowdsourcing approaches enable amassing large datasets
(e.g., Imp1k and SALICON [39]) via proxies for eye-tracking data, such as cursor- or webcam-based methods, they
cannot simulate the results collected by actual eye trackers. Webcam-based approaches suffer from low accuracy, while
cursor-based methods reflect cognitive processes different from those behind eye movements [83].

In sum, this paper makes three contributions:
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(1) We present the first analysis and comparison of eye movements across commonly used UI types. We report
differences related to location bias, color bias, saccade angle and amplitude, and visited vs. revisited elements.

(2) We compare the performance of several predictive models for saliency maps and scanpaths across the UI types. In
light of our data, we present improvements to existing models, such as changes in loss terms, training strategies,
and modeling features (e.g., “inhibition of return”).

(3) We release the largest in-lab eye-tracking dataset (from 62 participants and 1,980 UI screenshots), with associated
metadata and eye-tracking logs, grouped into webpages, desktop UIs, mobile UIs, and posters.

2 RELATEDWORK

Predicting where people look is paradigmatically more ambiguous than such typical tasks related to computer vision as
image segmentation [63] and object detection [42]. For a starting point, we hypothesized that significant differences
should be observable among UI types for the same reasons that considerable differences have been reported between
scenes and between individuals. Differences among individuals and stimulus types can be attributed both to physio-
logically determined bottom-up factors and to learned top-down features [100]. On one hand, the biological basis for
bottom-up saliency is rooted in the parallel processing of retinal input in the visual cortex [85]. Bottom-up features are
constituted by a few physiologically determined visual primitives – size, color, shape, orientation, and motion [54, 92].
Objects that in the given context stand out in one or more of these respects tend to attract attention. For instance, larger
objects, which also have more stimulus energy, have greater saliency too. Top-down factors, on the other hand, bring in
task-linked goals and expectations. Expectations form through repeated exposure to instances of a particular type of
stimulus [78].

2.1 Visual Saliency in Natural Scenes

Previous work on visual saliency outside the human-computer interaction (HCI) domain has focused on non-UI stimuli
and natural scenes. Consequently, viewing patterns reported for them may not hold for UIs. Research looking at the
saliency of natural scenes has found several replicated effects, or (viewing) biases, which we revisit in this paper:

Center bias: Researchers have reported a bias toward looking at the center of the screen when viewing natural
scenes [35, 65]. The effect has been replicated with artificial media, especially video [59], text [73], and single
objects [65]. Whether it is present for UIs is unclear, since much of their most informative elements lie in the
upper half of the display.

Horizontal bias: In observation of natural images that feature objects, fixation paths tend to be distributed more
horizontally than vertically [65, 66]. Again, UIs differ from natural scenes in that they arrange the information
vertically rather more than horizontally. Therefore, we might expect to see the effect weaken.

Color bias: Color brightness and contrast are among the primary features driving bottom-up saliency [27, 32].
Visual designs such as websites and mobile UIs typically contain colorful icons and images perceived as highly
salient. Therefore, we would expect this bias to remain.

2.2 Visual Saliency in UI Designs

The HCI field’s research into visual saliency has looked at either eye-movement data limited to a single UI type (e.g.,
mobile UIs [53]) or proxy constructs that, while correlated with eye movements, are not ideal for saliency modeling.
The visual impression is the reported visual appeal of a UI’s graphical regions or objects as measured via rating scales;
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results have been reported for both desktop [56] and mobile interfaces [61]. In contrast, visual saliency is a construct
related to the control of visual attention, not self-reports on what is felt to be important.

A concept closely related to saliency is that of visual importance. Bylinskii et al. [15] extended a pretrained neural
network [79] for predicting which regions in a graphic design are felt to be more critical. Their work measured
importance by utilizing cursor exploration of a blurred page. However, a “poor man’s eye tracker” [19], which involves
an element of reflective judgment of importance, is not a good proxy for gauging visual saliency [83]. Finally, research
on visual clutter is directly motivated by theories of saliency. Work by Rosenholtz [75] showed how one might exploit
models of visual saliency to compute indices for how cluttered users perceive a display to be.

2.3 Visual Saliency Datasets

Many existing visual saliency datasets cover only specific types of designs or feature a relatively small number of
saliency results. Most of them encompass one specific type of visual design alone, with data collected from a set of
participants in a context limited to visualization (e.g.,MASSVIS [11]), indoor and outdoor natural images (e.g., iSUN [96],
SALICON [39], MIT1003 [43], MIT300 [41], and NUSEF [72]), mobile user interfaces [53]), visual flows in viewing
of comics [16], webpages [80], posters [67], etc. While CAT2000 [9] comprises 20 categories, all of them are classes
of natural images, with additional augmented natural images (including the non-photorealistic rendering of natural
images, such as sketches and cartoons, and noisy natural images, such as low-resolution scenes and Gaussian-noised
images). UEyes, the dataset we collected for this work, contains eye-tracking data for four common categories of UIs
and extensive variety of images, with focus on visual designs.

Although prior work has explored the power of crowdsourced collection of saliency-related data, (e.g., Imp1k [29] and
SALICON [39]), crowdsourcing precludes the use of high-fidelity in-lab eye trackers. As noted above, the proxy sensors,
such as cursor movements or webcams, present issues of their own. For instance, accuracy issues with webcam-based
methods [96] may arise during facial landmark tracking, eye region extraction, and calibration with the webcam. Cursor-
based approaches [4, 39, 44, 45], in turn, reflect slower, more deliberative cognitive processes than eye movements
do.

2.4 Computational Visual Saliency Models

Given a stimulus image, a computational model of visual attention predicts a saliency map [7] or a scanpath showing
the order in which eye fixations are expected to occur over the image area [53]. Stimulus-driven saliency models
are computed via visual primitives [8, 10]. They work well for first-time exposure, for things the user has not seen
before [31, 37]. In contrast, task-driven models gauge a user’s familiarity [78], which is affected by expectations, location
memory, and search strategies. Data-driven modeling makes predictions based on image features, and the architectural
assumptions allow it to capture domain-specific viewing tendencies [53] better than other sorts of modeling.

Computational modeling of saliency has attracted computer vision and HCI researchers’ interest since the work of
Itti and Koch [37]. More recent research on saliency maps has explored emerging types of deep learning architecture. An
early approach applied an ensemble of deep networks (eDN) [87], using deep nets as extractors for hierarchical features
and combining the outputs with a support vector machine. DeepGaze I [48] followed the same logic, considering a
sparsification loss term, center bias, and a smoothing kernel. ML-Net [20] fine-tuned the features for saliency prediction
to improve on the previous two models. Then, the Saliency Attentive Model (SAM) [21] added temporal tuning by
employing progressive formation of saliency with ConvLSTM blocks to process features.
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To consider the evolution of saliency maps over time, Fosco et al. [30] proposed a multi-duration saliency factor,
predicting saliency with distinct durations. Generative adversarial networks (GANs) also reached a good approximation
of saliency distributions [17, 68]. Somemodels improved the prediction performance by exploiting contextual information
and encoding the similarity between images [46, 58, 71]. SalFBNet [25] is especially noteworthy for employing a recursive
feedback architecture feeding later computation blocks back to an earlier stage in the computations; it proved useful in
recognition tasks when compared to purely feedforward networks [97]. All these advances in technique notwithstanding,
similar results could be achieved by increasing the networks’ capacity. For example, EML-NET [38] has been applied
for multi-branch prediction at the decoding stage. UniSal [26] unified the prediction of saliency between image and
video stimuli. DeepGazeIIE [55] employed a combination of multiple backbones.

Scanpath prediction is a more challenging problem, since information on the order of fixations must be retained. Itti
and Koch [37] implemented an inhibition of return (IOR) mechanism to generate a sequence of fixations by means of the
computed saliency maps. This work inspired a group of techniques that utilize a saliency map for scanpath generation.
For example, Tavakoli et al. [74] proposed a joint sampling mechanism to estimate the saliency and gaze points. Wloka
et al. [91] improved on the Itti saccade-generation system by considering the high-level saliency estimated with deep
nets and a peripheral conspicuity map obtained via low-level approaches to saliency. In other work, Chen and Sun [18]
introduced an advanced architecture to learn the inhibition of return maps from data. Xia et al. [94] estimated joint
saliency and fixation location with an auto-encoder in a framework mimicking [74].

Other recent work has developed scanpath models that can generate a sequence of fixation locations. For example,
Verma and Sen [86] employed a recurrent architecture to generate a sequence of fixations in a grid-based representation,
and PathGAN [3] uses GAN-based training to estimate a fixation sequence with location and duration. Our project
considered such prior work by comparing several well-known predictive models that use saliency maps and scanpaths,
assessing their ability to model observed differences among UI types.

3 THE DATASET: UEYES

The UEyes dataset is composed of both the 1,980 UI screenshots and the associated metadata and eye-tracking logs
from 62 viewers, collected in a laboratory by means of a modern eye tracker. This dataset contains 495 screenshots
from each of the following UI types:

Webpage: We collected 494 webpage images from the Alexa 500 dataset [90], 1,507 images from the Visual
Complexity and Aesthetics dataset [62], and 200 images from the Imp1k dataset [29]. We extended the breadth
of the webpage image set by capturing 103 additional webpage screenshots.

Desktop UI: The desktop UI image set contains the Waltteri Github desktop UI dataset [23], representing 51
desktop UIs, and an additional 303 desktop UI images collected in line with the criteria presented below.

Mobile UI: We extracted a sample of 1,761 images from among the 46,064 mobile UI images from the RICO
dataset [24]. We extended the set with 42 further mobile UI images.

Poster: The poster image set contains 200 ads and 198 infographics from the Imp1k dataset [29], along with 103
additional posters we collected.

The images additional to the ones from pre-existing dataset were chosen either for breadth of representation (being
substrantially different from the others) or because of their widespead use in day-to-day life. The additional mobile UI
images we collected besides the ones in existing datasets are in the categories of school apps, library apps, music apps,
and setting pages. This was to ensure a diversity-rich and representative dataset. Also, the addition of more desktop UI
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Webpage Desktop UI Mobile UI Poster

Fig. 1. Examples of user interfaces in the UEyes dataset. The full dataset contains 495 images of each UI type: webpage, desktop UI,
mobile UI, and poster.

images supported a balanced final dataset. Images containing pornography were filtered out, and then all images of
each type were pooled together and sampled randomly to create “image blocks” for user assessment (55 blocks in all for
the study). Each block included nine images representing each UI type, for 36 images per block.

For the data collection process, the screen angle was adjusted for each participant to mimic the user-specific typical
viewing experience. Participants sat approximately 50–65 cm from the screen, and the same visual angle was used for
all UI types, even the mobile UIs, to ensure a fair comparison. This allowed for consistent data collection and analysis
across the UI types: consistent presentation across the types guarantees that the tracking technology’s accuracy limits
do not disproportionately affect the mobile UI results.

3.1 Participants

We recruited 66 participants (23 male and 43 female) via mailing lists and social-media-based promotion. The average
age was 27.25 (SD = 7.26). Participants had normal vision (43) or, from wearing glasses (18) or contact lenses (5),
corrected-to-normal vision. No participant was colorblind. We dropped four users’ gaze data for reason of inaccurate
eye-tracking calibration. The study took one hour for each user, who received 30 Euros in compensation.

3.2 Experimental Design

From the pool of 55 blocks, our system randomly selected nine blocks for each user (for 36 images in all, as described
above). Hence, each block included nine images for each UI type. Within each block, the images were presented in a
randomized order.
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3.3 Apparatus

The images were shown on a desktop monitor (HP Compaq LA2405wg, 24 inches). The monitor’s dimensions were
32.5 × 52 cm and its resolution was 1920 × 1200 px. We used a Gazepoint GP3 eye tracker with a sampling rate of 60
Hz to collect high-quality gaze data. The eye tracker was placed under the screen and tilted upward. Its angle was
adjusted to suit the individual participant. With the participants seated approximately 50–65 cm from the tracker, the
eye-tracking software (Gazepoint Control) indicated a desirable distance.

3.4 Procedure

The procedure began with calibrating the tracker via Gazepoint Control’s nine-point calibration and testing on the
calibration test screen. After that calibration, the participant was shown three images, of differently sized grids, and
instructed to look at the corners of the grids, starting from the top left and moving clockwise. This served quality
control in the post-processing stage. Each participant then completed nine blocks as defined above, with self-managed
breaks. The participant looked at each UI image presented, for seven seconds, and was asked to examine the images as
if in a corresponding real-world situation. Just as in other bottom-up saliency studies, no specific task was assigned.
After the last block of UI images, the participant filled out a demographics questionnaire.

3.5 Data Processing

We double-checked the collected data to guarantee the dataset’s quality, and we removed any user data exhibiting
inaccurate calibration or duplicate results. Accordingly, the final dataset contains 94.86% of the raw data collected.
Fixations beyond image boundaries (6.8% of the fixations) were not considered for analysis. We describe the UEyes
dataset in detail in Supplementary Materials.

4 FINDINGS

With the discussion below, we examine the data related to location bias, color bias, saccade angle and amplitude, and
visited vs. revisited elements, across all UI types.

4.1 Effect of Location

(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster

Fig. 2. Location bias – the distribution of fixations over normalized screens. In contrast against the center bias of natural images,
fixations in user-interface settings are mostly in the upper left.

Figure 2 shows the location bias for each of the UI types, and Figure 3 displays the corresponding distribution of
fixations by quadrant. We computed the location bias by normalizing the saliency distribution relative to the individual
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(e) Poster

Fig. 3. Location bias – fixations’ distribution by quadrant. The upper-left quadrant tends to attract more fixations than other quadrants,
across all UI types.

UI image’s size and then aggregating all the UI saliency results associated with each UI type. Overall, in contrast against
the recognized center bias with natural images [13], we noticed that the upper-left quadrant of all UI types tends to
attract more fixations than the other quadrants. This general result indicates that participants paid more attention
to the upper-left portion of the UIs. For the webpages, mobile UIs, and posters, fixations are spread across the entire
upper-left region, while there are two bands of salient regions in desktop UIs: one right above the center of the UI and
the other near the upper left-hand corner. The most salient area of webpages is around the center-right section of the
upper-left quadrant, while that quadrant’s uppermost portion attracts the most attention in the mobile UI condition.
Desktop UIs and posters deviate from this pattern, with the most salient area appearing just above the center of the
desktop UIs and posters.

An omnibus test revealed statistically significant differences in the average number of fixations per user for the
visual content specific to each quadrant (where Q1 = top right, Q2 = top left, Q3 = bottom left, and Q4 = bottom right).
For example, in the general (all-UI-type) condition, 𝜒2 (3) = 183.930, 𝑝 < .0001. Similar results were obtained for each
specific type of UI.

We then ran Bonferroni-Holm corrected pairwise comparisons in post-hoc testing and found that the difference
between Q1 and Q2 was statistically significant in all cases (𝑝 < .001). The Q1 vs. Q3 difference and the Q1 vs. Q4 one
were statistically significant when users viewed the images for three seconds or longer (𝑝 < .001), Also, the difference
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between Q2 and Q3 and that between Q2 and Q4 was statistically significant in all cases (𝑝 < .001). Finally, the Q3 vs.
Q4 difference was significant when the viewing time was three seconds or longer (𝑝 = .018).

4.2 Effect of Color

(a) All UI types (b) Webpage (c) Desktop UI

(d) Mobile UI (e) Poster

Fig. 4. Color bias – the 16 most prevalent colors in UIs (top row) and the 16 colors fixated upon most, by frequency, for fixations
lasting up to 1 s (second row), up to 3 s (third row), and up to 7 s (bottom row).

We show color bias across different UI types in Figure 4. The top color bar shows the 16 most prevalent colors in the
original UI images for different UI types. The other color bars rank the top 16 colors by the number of fixations on those
colors, sorted by frequency. We computed the 16 most prevalent colors using 𝑘-means clustering, therefore similar
colors are merged together. Figure 4 characterizes the color bias across the UI types examined. The uppermost bar in
each pane shows the 16 most prevalent colors in the original UI images, for the relevant UI type. The other bars present
those top 16 colors ordered by the frequency of fixations on them. We computed the 16 most prevalent colors by using
𝑘-means clustering; therefore, similar colors are merged. Figure 5 compares the colors displayed (“All colors” in the plots)
with those colors receiving fixations. This comparison of brightness reveals that, on average, brighter colors attract
more attention than darker ones. Designs for webpages, desktop UIs, and mobile UIs seem to draw greater attention
to more brightly colored areas relative to the color mix displayed. Posters constitute the only exception: the average
brightness value of the colors where fixations occur is lower than that of the colors displayed. However, the single color
at which participants look most often in posters is still a light one. Although desktop UIs’ fixation-receiving colors
are brighter, on average, than the colors shown overall, the three colors with the largest numbers of fixation points
in these UIs are dark ones. To investigate further whether a reliable effect exists, we computed the pixel brightness
values by using sRGB Luma coefficients (ITU Rec. 709) [6], which reflect the corresponding standard chromaticities, and
compared distributions between fixation and non-fixation brightness values. Bartlett’s test of homogeneity of variances
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Fig. 5. Color-brightness bias plots comparing the brightness of all the colors displayed and fixated upon. Overall, brighter colors tend
to attract slightly more attention than darker ones, especially for short time spans.

was statistically significant neither for all UIs combined (𝜒2 (3) = 1.003, 𝑝 = .8004) nor for any UI type individually
(𝜒2 (3) ≤ 0.832, 𝑝 ≥ .8416). Therefore, we conclude that color does not significantly affect visual saliency.

4.3 Saccade Angle and Amplitude

(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster

Fig. 6. Analyzing saccade bias reveals the direction and distance between consecutive fixation points. Gaze directions lead mainly
toward the right or bottom portion of the UIs, with the distances being larger near the right – users prefer moving the gaze from left
to right (with larger motions) and from top to bottom.

Saccade angle and amplitude reveal the tendency and speed of eye movements. Such data can facilitate optimizing
UI elements’ placement and the flow of information in a UI. By understanding these metrics, designers can align their
designs well with the natural gaze behavior of users, thereby potentially promoting a better user experience. Figure 6
shows the distributions for the direction and distance between two consecutive fixation points, represented by the
saccade angle and amplitude in the polar-coordinate system. We can see that, overall, user gaze moved mainly towards
the right or bottom portion of the UIs. However, UI types do differ markedly in this respect. Users showed a greater
preference for left-to-right movement in the webpage condition than with other UI types. Similarly, users tended to
scan posters from left to right, with a small number of downward movements, but they showed greater variety in the
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distances by which the gaze moved rightward. In contrast, users looked both from left to right and from top to bottom
when viewing desktop UIs and mobile UIs. The distances in moves toward the right are larger than those toward the
bottom in the desktop condition. They remained in about the same range for mobile UI designs.

A Kruskal-Wallis chi-squared test showed statistical significance for all UI types (e.g., 𝜒2 (3) = 484.41, 𝑝 < .0001
overall), so we ran pairwise comparisons (Bonferroni-Holm corrected) as post-hoc tests, finding that all directions were
significantly different from each other for all UI types; the rightward direction is the most frequent, followed by motion
toward the left, bottom, and top.

4.4 Visited vs. Revisited Elements

(a) All UI types (b) Webpage (c) Desktop UI (d) Mobile UI (e) Poster

Fig. 7. Visit vs. revisit bias analysis showing the ratios of visited to revisited elements in three element categories. Text elements are
more likely than images to be visited and to be revisited.

We segmented the UIs and classified the UI elements into three categories – image, text, and face – by extending the
functionality of the UIED model [95], a model for detecting images and texts on UIs. Then, we counted the number of
elements in each category that were visited (fixated upon) and revisited (fixated upon again). Once visited, an element
is considered revisited if it receives at least three fixation points and the previous fixation was on another element.
The results are shown in Figure 7. We observed that text elements have a higher fixation probability in our data than
images. While the dataset’s desktop UIs feature many small images (such as icons), which are more prominent than
text, the opposite was visible in posters: they had large images, typically in a small quantity. Webpages have about the
same number of image and text elements. It is worth noting that mobile UIs exhibited lower visit and revisit ratios both
than other UI types, reflecting mobile UIs’ reduced opportunities for users returning to the same content later.

We found statistically significant differences in visit and in revisit ratios between element types (image, text, and
face) for all UI types. For example, in comparison of the visit ratios for the overall condition, 𝜒2 (2) = 9.295, 𝑝 < .01.
Post-hoc pairwise comparisons (Bonferroni-Holm corrected) revealed statistical significance for all UI types compared.
We conclude that text attracts fixations the most, followed by images and then faces.

4.5 Summary

We can summarize our results thus: The upper-left quadrant tends to attract the most fixations, while brighter colors
do not attract significantly more fixations than less bright colors. As users gaze at UIs, their saccades move mainly
from left to right and from top to bottom. Participants in our experiment tended to spend more time looking at text
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elements than images, which accounts for the saccade directions’ left-to-right tendency. Overall, our findings related to
mobile UIs are consistent with the results of Leiva et al. [13]. When introducing further analysis metrics, we found
biases specific to each UI type. The following characteristics and differences emerged, recapped here by UI type:

Webpage: Participants preferred to scan more from left to right when looking at webpages, with larger distances
between consecutive fixations than they showed with other UI types.

Desktop UI: Rather than fixations being spread over the top-left quadrant, the salient areas of desktop UIs are
separated into two areas: right above the center and around the top-left corner.

Mobile UI: Mobile UIs exhibit lower visit and revisit ratios than other UI types. This indicates that users tend to
focus more on a few elements of the UI (the most attractive ones) while ignoring others and that there is less
likelihood of going back to look at the same elements.

Poster: In comparison to desktop UIs and mobile UIs, participants demonstrated a much stronger intention to scan
from left to right, with only a small proportion of saccades being directed from top to bottom. The distances
between consecutive fixation points show more significant variation here than with other UI types.

5 ASSESSING SALIENCY MAP MODELS

With the backdrop of the differences identified between UI types, we conducted a comparison among data-driven
predictive models for saliency maps. We considered the state-of-the-art traditional optimization-based model (GBVS)
and data-driven models (the SAM and UMSI) alongside improved versions that we developed ourselves, SAM++ and
UMSI++.

Graph-Based Visual Saliency (GBVS) [34]. GBVS is a bottom-up saliency map model for detecting informative features
on the basis of the entire image. It employs the saliency-based visual attention model proposed by Itti and Koch [37]
to extract visual features as computed via linear center-surround operations with Gaussian pyramids for intensity,
color, and orientation. It then forms graph-based activation maps from visual features and normalizes them to highlight
conspicuity. The global visual feature extraction and graph-based activation maps enable the model to capture saliency
maps at the global level, which is more efficient than prior approaches relying on local information.

Saliency Attentive Model (SAM) [21, 22]. SAM incorporates an attentive convolutional long-short term memory
(Attentive ConvLSTM) saliencymapmodel to focus on distinct spatial location features to enhance sequential predictions.
The model iteratively and progressively refines the predicted saliency map results via the LSTM architecture. The SAM
learns a set of prior maps generated with Gaussian functions to learn saliency priors, such as the center bias typical of
human eye fixations, thereby obtaining improved feature-extraction capabilities without needing hand-crafted prior
information.

UMSI [29]. UMSI is a unified model of saliency and importance trained on images from several design classes,
including posters, infographics, mobile UIs, and natural images. It uses an encoder-decoder architecture and aggregates
image information at multiple scales to predict visual importance in the input graphic designs. The UMSI employs an
automatic classification module for the input graphic designs, to better capture the saliency patterns with class-specific
information. It was trained on a dataset for visual importance from cursor-based crowdsourced data. Again, while the
cursor is a good proxy for eye-tracking, it cannot properly simulate the results captured via data from eye trackers.
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UMSI++ and SAM++ (Ours). UMSI++ and SAM++ are variants we created by employing new loss terms and a
two-step training process. The main module of the original UMSI model was trained with KL-divergence [40] and
Cross-Correlation [52] losses with coefficients 10 and -3. The output of the UMSI model is the flipped saliency maps
requiring post-processing via black-to-white inversion. Our UMSI++ model employs an end-to-end joint training
process that entails refining the model via multiple loss terms. Over the first 10 epochs of training, the model approaches
the ground-truth saliency maps by using the Mean Squared Error (MSE) loss between the predicted and the ground-truth
saliency maps. This helps the model accurately predict the saliency maps. For the remaining epochs, the model is trained
with a combination of loss terms, including the KL-divergence and Cross-Correlation loss terms [52] used in the UMSI,
alongside two additional loss terms: the Normalized Scanpath Saliency (NSS) loss and the Similarity loss. The NSS
loss quantifies the average normalized saliency at fixation points, while the Similarity loss measures the intersection
between the predicted and the ground-truth saliency maps. These loss terms help the model better capture fixations
and improve its overall performance. Both KL-divergence and Cross-Correlation are distribution-based: they focus on
the continuous distributions of the saliency maps, rather than on individual points or locations. In contrast, NSS and
Similarity are location-based in that they focus on the locations of fixation points in the saliency maps. Together, these
loss terms have been shown to perform well in predicting fixation points, and they can help the model better capture
eye fixations [12, 99]. Computation details are given in Supplementary Materials. The training takes about an hour on
one NVIDIA GeForce RTX 2080Ti GPU. For comparison, we apply the same training pipeline and loss terms to the
SAM architecture to get the result for the SAM++ model.

5.1 Evaluation Metrics

We evaluated the accuracy by means of six widely applied metrics.

Area under ROC Curve (AUC). AUC is the most commonly used metric for saliency map performance. It evaluates the
saliency map as a binary classifier of fixation points at various thresholds. The Receiver Operating Characteristic Curve
(ROC Curve) shows the rates of the actual positive points and the false positive ones at multiple discrimination threshold
values. AUC is defined as the area under such a curve measuring the true and false positive rates under the binary
classifier, which one can compute by taking the integral of the area under the ROC curve in practice. AUC-Judd [14, 43]
is a variation of AUC. The true positive rate is defined as the ratio of the number of true positive points to the number
of ground-truth fixation points above various threshold values, while the false positive rate is that of the number of
false positive points to the total number of non-fixation pixels.

Normalized Scanpath Saliency (NSS) [70]. NSS is the average normalized saliency at fixation points. Relative to the
AUC metric, NSS is more sensitive in detecting false positive points. The AUC score can be high even when there are
many false positive points, given a large number of true positive points – low-valued false positive points do not affect
the AUC score. However, all false positive points decrease the normalized saliency value. Thus the NSS score penalizes
all the false positive points.

Information Gain (IG) [49, 50]. IG is used for measuring saliency results beyond systematic bias.

Similarity (SIM) [76, 82]. SIM refers to the intersection between the predicted and the ground-truth saliency maps,
thereby indicating the overlapping of the two maps. It is defined as the sum of the minimum value of the normalized
predicted saliency map and of the normalized ground-truth map. The similarity score is lower for sparse maps. It is
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sensitive to failed detection of saliency points: the absence of saliency values points to zero similarity, hence reducing
the similarity score.

Pearson’s Correlation Coefficient (CC) [52]. CC is employed for evaluating the correlation or dependence between the
predicted and the ground-truth saliency maps.

Kullback-Leibler (KL) Divergence [40]. KL Divergence quantifies the difference between the distributions of the
saliency map prediction and the ground truth, while the other metrics listed here measure the similarity.

Computation details are provided in Supplementary Materials. The various metrics differ in their sensitivity to false
positives or false negatives, what is measured, and the category of metric involved, thus:

Sensitivity: All these metrics are sensitive to false negatives, with the KL, IG, and SIM significantly penalizing
false negatives, especially when the predicted values are close to zero. The normalization step of NSS increases
the penalty for detecting false positives and thus makes it more sensitive to false positives than other metrics.
The CC is, by definition, a symmetric metric, so it shows equal sensitivity to false positives and false negatives.
The AUC score is insensitive to false positives – it can be high even if the resulting saliency maps have many
true positives.

Measurement: The KL measurement assesses dissimilarity while the other metrics gauge similarity. Accordingly,
better models have lower KL scores but higher scores for other metrics.

Metric category: The location-based metrics (AUC, NSS, and IG) evaluate models in terms of fixation points,
while distribution-based ones (SIM, CC, and KL) compute evaluation based on saliency maps as the continuous
distribution.

5.2 Results

To set a benchmark for saliency maps’ prediction, we compared the computational saliency map models qualitatively
and quantitatively and judged the predicted location bias. We used the dataset’s first 52 image blocks (1,872 images) as
the training data and the remaining three blocks of images (108 images) for testing. All the results shown here come
from evaluation with the test data.

5.2.1 Qualitative Evaluation. We present the qualitative comparison of the various models by UI type in Figure 8. For
all the models, false positive errors constitute the main kind of error in the results. All of them can capture informative
areas such as images and text elements, but not all of these truly attract the user’s attention, and sometimes, only a small
part of an image is considered salient. Therefore, it is generally challenging for predictive models to distinguish between
informative areas and salient areas. Both GBVS and the pretrained UMSI typically capture all image and text areas,
which leads to high false positive error levels. Models trained on UEyes achieve better results than the pretrained models.
Our improved model UMSI++ generates the saliency maps that most closely approach the ground-truth fixations,
relative to the other models and across all the UI types.

5.2.2 Quantitative Comparison across UI Types. We begin by addressing the importance of training on multiple types
of UIs, because training with only one type leads to accuracy reductions with other types. We trained our UMSI++
model on either mobile UI or webpage data from UEyes, respectively, and testing on all UI types used the same test set.
Accuracy in predictions for other UI types (those different from what was seen during training) dropped significantly.
For example, when the model was trained on mobile UIs, its accuracy fell from 0.899 to 0.844 when it was tested instead
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Fig. 8. Saliency maps’ qualitative comparison. Compared to other models, our improved model UMSI++ generates saliency maps
closer to ground truth across all UI types.
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on webpages, from 0.890 to 0.803 for desktop UIs, and from 0.924 to 0.849 for posters. Similarly, when the model was
trained on webpages, its accuracy decreased from 0.905 to 0.832 for mobile UIs, from 0.890 to 0.813 for desktop UIs, and
from 0.924 to 0.848 for posters. How people perceive visual hierarchies and look at UIs when viewing any given type of
UIs could not truly be generalized to other UI types.

Quantitative comparison of the models as evaluated via the metrics detailed in Section 5.1 attests that training
on UEyes provides both the SAM and the UMSI models with higher accuracy and stronger generalization ability.
Furthermore, our improved model, UMSI++, outperforms the state-of-the-art models by most metrics, as Table 1
indicates. Since AUC is a standard evaluation metric with a range of 0 to 1 for saliency map prediction (where larger
values indicate higher accuracy), it lets us quantitatively evaluate and compare the models across UI types graphically
in the manner shown in Figure 9. The pretrained SAM model performs better than the pretrained UMSI. However, after
training on UEyes, the two perform similarly for all the UI types. By introducing new loss terms, UMSI++ achieved
the best performance across all the UI types, while SAM++ does did not show greater accuracy than the original SAM
trained on UEyes. For both SAM and UMSI architectures, the predictions for desktop UIs were the least accurate for
every UI type. This is consistent with our observations from the qualitative results.

Model AUC-Judd ↑ NSS ↑ IG ↑ SIM ↑ CC ↑ KL ↓
GBVS 0.756 ± 0.104 0.256 ± 0.197 3.214 ± 0.668 0.513 ± 0.097 0.314 ± 0.193 3.916 ± 2.630
SAM Pretrained 0.822 ± 0.074 0.377 ± 0.170 3.143 ± 0.768 0.562 ± 0.081 0.522 ± 0.146 2.721 ± 1.457
SAM on UEyes 0.885 ± 0.057 0.434 ± 0.185 3.337 ± 0.774 0.663 ± 0.081 0.720 ± 0.127 2.016 ± 1.263
SAM++ on UEyes 0.868 ± 0.060 0.414 ± 0.179 3.165 ± 0.774 0.666 ± 0.080 0.717 ± 0.127 1.604 ± 1.185
UMSI Pretrained 0.778 ± 0.090 0.346 ± 0.178 3.177 ± 0.796 0.521 ± 0.078 0.431 ± 0.155 3.757 ± 1.769
UMSI on UEyes 0.878 ± 0.066 0.424 ± 0.187 3.376 ± 0.807 0.639 ± 0.085 0.699 ± 0.156 2.676 ± 1.408
UMSI++ on UEyes 0.905 ± 0.044 0.401 ± 0.173 3.320 ± 0.744 0.733 ± 0.069 0.833 ± 0.078 1.166 ± 0.772

Table 1. Saliency maps’ quantitative evaluation, with mean ± SD reported for each metric. Arrows indicate the direction of the
importance; e.g., ↑ means “higher is better”. The best result in each column is presented in bold. UMSI++ outperforms the other
models for most evaluation metrics.

5.2.3 Predicted Location Bias. Figure 10 presents a visualization of the location bias of the saliency maps predicted
by the various models considered. All models except GBVS can capture the upper-left location bias identified for UIs.
The models trained on our UEyes dataset can capture that location bias more accurately than the pretrained ones.
After training with UEyes, the SAM, SAM++, and UMSI models achieved similar results for saliency location bias. Our
improved model displays the greatest similarity to the ground truth for location bias. It is clearly evident from the
visualization that all the models over-capture the salient areas and produce many false positive errors, which aligns
with what we found in the qualitative comparison. Saliency is tricky to detect for mapping predictions in contexts of
webpages and (especially) desktop UIs. Salient areas are spread more sparsely in the upper-left quadrant of webpages
than in other UI types. The salient portions of desktop UIs are separated into the two sub-areas mentioned earlier on,
one right above the center line and the other near the top left. It is far more challenging for the models to simulate
sparser areas. Still, the models trained on UEyes capture such sparse salient areas better, while other models can only
capture the entire areas, with many more false positives. All of the models except GBVS can capture the most salient
parts of mobile UI designs (the upper-left quadrant) and posters (right above the center) well. The ones trained on
UEyes are similarly accurate in their location bias results across webpages, desktop UIs, and mobile UIs; however,
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GBVS SAM Pretrained SAM on UEyes SAM++ on UEyes

UMSI Pretrained UMSI on UEyes UMSI++ on UEyes

Fig. 9. Comparison of saliency map models’ predictive accuracy, with AUC-Judd (designed to measure saliency map performance) as
the metric. Larger values indicate higher accuracy. The figure shows that UMSI++ performs best across all the UI types.

UMSI++ reveals the location bias connected with posters better than the other models do, thanks to its detection of
lower saliency at the top of posters.

6 ASSESSING SCANPATH MODELS

In scanpath prediction, the goal is to predict a sequence of fixations. The problem is much more challenging than that of
saliency maps because the order of the fixations must be retained. Below, we report on how well computational models
fared with the four UI types, from a comparison of four models:

Itti-Koch-based model [37]. The Itti-Koch-based model is a model proposed in the pre-deep-learning era. It generates
a saliency map by extracting visual features for intensity, color, and orientation through a set of linear center-surround
operations, then employs a “winner-takes-all” strategy to select the attended position. The model repeatedly applies
inhibition of return feedback to inhibit the chosen position in the saliency map and, thereby, arrive at the resulting
scanpath.

DeepGaze III [47]. DeepGaze III predicts the sequence of fixation points in scanpaths over static images. It takes both
the input image and the positions of the previous four fixation points to predict the density/probabilistic map for the
next fixation point. After that, it generates the scanpath by recursively selecting the next fixation point with the highest
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Fig. 10. Comparison of the location bias of saliency maps predicted by different models across UI types. UMSI++ shows the greatest
similarity to the ground-truth location bias.
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probability value from the density map and adding the new predicted fixation point to infer the density map for the
next point. DeepGaze III’s method concentrates on applying fixation point detection to form the final scanpath.

DeepGaze++ (Ours). DeepGaze++ offers an alternative. Although DeepGaze III can take the information of previous
fixation points to generate the density of the next point, it often arrives at similar density maps for consecutive fixation
point predictions. In the proposed modification, we repeatedly select the position with the highest probability from
the density map and apply inhibition of return to inhibit the chosen position in the saliency map. For the 𝑖th previous
fixation point’s information, we assign a weight of 1 − 0.1 · (𝑖 − 1) to the inhibition of return feedback so that older
fixation points have less effect on the prediction results.

PathGAN [3]. PathGAN is a deep convolutional-recurrent neural network trained on adversarial examples. The
generator takes the image as input to generate the corresponding scanpath. The discriminator encodes both the image
and the scanpath to ascertain whether a scanpath is realistic for a given image. This enables PathGAN to generate more
realistic scanpaths. However, it focuses exclusively on the path and cannot predict fixation points.

PathGAN++ (Ours). The PathGAN model can generate more accurate trajectories for scanpaths than other models,
but we can increase the scanpaths’ accuracy still further to have PathGAN++ by adding a Dynamic Time Warping
(DTW) loss term that maximizes the similarity between the predicted scanpath and the ground truth in temporal order.

6.1 Evaluation Metrics

We used six metrics, measuring various properties, to evaluate the scanpath models. All are commonly applied for
scanpath evaluation [1, 28], with the first three described below seeing the most frequent use in this field, since they
capture the temporal and spatial aspects of visual attention. The final three metrics were employed for completeness.

Dynamic Time Warping (DTW). DTW is a standard metric for similarity between two temporal sequences, of different
lengths [5, 77]. The DTW metric finds the optimal match and computes the distance for two scanpaths monotonically
without missing essential features.

Time Delay Embedding (TDE). TDE creates the sets of time-delay embedding vectors for the predicted and the
ground-truth scanpaths by collecting all the consecutive subscanpaths of a given length as vectors [84, 88]. We look for
the vector from the predicted scanpath for each time-delay embedding vector from the ground-truth scanpath with the
minimal distance. Thus, TDE measures the differences between subscanpaths to evaluate the scanpaths.

Eyenalysis. Eyenalysis performs a double mapping between two scanpaths [60]: for each fixation point along one
scanpath, the procedure finds the spatially closest fixation point on the other scanpath, and then it performs the same
procedure the other way around. Eyenalysis measures the average distances for all the closest pairs found.

Cross-Recurrence (REC). REC involves measuring the matching ratio of fixation points within the two scanpaths [98].
To use this metric, we truncate the two scanpaths to the same length, that of the shorter of the two scanpaths. Then, we
define fixation pairs whose distance is below a certain threshold value as recurrences (we set the threshold to be the
image size scaled by 0.05). The REC process counts the recurrences and computes the percentage of recurrences out of
all the fixation pairs on the two scanpaths.

Weighted Determinism (DET). DET is the percentage of recurrent fixation points on subscanpaths in which all the
pairs of corresponding fixation points are recurrences and all such recurrent fixation point pairs contain different
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fixation points from both scanpaths [1, 28]. In its original formulation, the Determinism metric [1] produces only the
number of corresponding subscanpaths. We propose computing their percentage, to measure the subscanpaths better.

Center of Recurrence Mass (CORM). CORM refers to the distance between the center of recurrences, thus indicating
the dominant lag of recurrences [1, 28]. The CORM score is lower when the recurrent fixation point pairs on the
scanpaths are closer in time.

Whereas DTW, TDE, and Eyenalysis measure fixations’ position and sequence in temporal order as they match the
two sequences differently, REC and DET measure only the similarity of fixation positions. They have higher values if
the fixation points in the two sequences are close, irrespective of the temporal order. The CORM measurement serves
to detect the dominant lag of recurrences.

6.2 Results

6.2.1 Qualitative Evaluation. Our qualitative comparison of the various models across UI types is depicted in Figure 11.
Overall, the models cannot predict results accurately relative to the ground-truth data. The pretrained PathGAN model
and the DeepGaze III model get stuck in local areas, so the predicted points end up in clusters. Because of the similar
density maps predicted by DeepGaze III for consecutive fixation points, that model selects positions for fixation points
that are nearby, thereby producing a cluster of points and getting “bogged down” in that cluster. PathGAN can only
generate the scanpath, without considering fixation points. Therefore, it is impossible to infer which points users give
more visual attention from the PathGAN results. The Itti-Koch-based model, PathGAN trained on UEyes, DeepGaze++,
and PathGAN++ show better prediction results. That said, most scanpaths predicted by PathGAN and PathGAN++
trained on UEyes are biased to be around the center of the UIs. Also, all the models tend to predict scanpaths with many
fixation points, not all of them in salient areas.

6.2.2 Quantitative Evaluation. Table 2 presents how the models stack up by each of the evaluation metrics outlined
in Section 6.1. For a fair comparison, since these metrics depend on the scanpath length, we made sure that the predicted
scanpaths generated by all the models have exactly 15 fixation points. Since DTW is a standard metric for scanpaths’
evaluation (where smaller values indicate higher accuracy), we can elaborate on our comparison of the models across
UI types in the manner shown in Figure 12. For all models apart from the Itti-Koch-based one, desktop UIs have
higher DTW values, indicating lower accuracy of the predicted values than seen with other UI types: scanpaths in
desktop UI conditions are harder to predict. All of the models are at their best with mobile UIs. DeepGaze III was the
worst-performing model for all UI types except mobile UIs. The PathGAN++ model shows superior performance in
comparison to the other models by the DTW, TDE, and Eyenalysis metrics. This is a testament to our model’s ability to
simulate real scanpath trajectories. However, the results are still qualitatively inaccurate. We can conclude, then, that
the metrics currently applied for evaluating scanpaths may not be sufficient to capture the more nuanced aspects of eye
movements.

6.2.3 Comparison between PathGAN++ and DeepGaze++. Comparing the performance of PathGAN++ and DeepGaze++
reveals that each model has its own strengths and limitations. Though PathGAN++ excels at generating realistic
trajectories by dint of the discriminative component in the model architecture, it falls short in predicting proper fixation
points, and the points generated often lie outside the areas of interest. DeepGaze++, on the other hand, is better at
predicting fixation points, since its operation is based on saliency maps that highlight elements in the UIs. However,
it can suffer from repetitive density maps for consecutive fixation point predictions, leading to unrealistic scanpaths.
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Fig. 11. Scanpaths’ qualitative comparison. DeepGaze++ can predict fixation points better but cannot predict realistic scanpaths.
PathGAN++ is able to predict a realistic trajectory but not accurate fixation points. Trajectories’ first portion is presented in blue, and
their end in black (color gradient). The starting point is highlighted with a red border.
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Itti-Koch-based DeepGaze III
Pretrained DeepGaze++ PathGAN

Pretrained
PathGAN
on UEyes

PathGAN++
on UEyes

Fig. 12. Comparison of predictive accuracy for scanpath models, with DTW as the metric (measuring the fixation sequence in
temporal order). Smaller values indicate higher accuracy. The figure shows that DeepGaze++ performs best, across all UI types.

Additionally, the mechanism for inhibition of return is deterministic and not differentiable, so it cannot be optimized by
means of any loss terms. This trait can hamper its optimization.

Model DTW ↓ TDE ↓ Eyenalysis ↓ REC ↑ DET ↑ CORM ↓
Itti-Koch-based 6.282 ± 0.973 0.147 ± 0.027 0.043 ± 0.022 2.224 ± 2.053 2.021 ± 10.854 34.497 ± 22.890
DeepGaze III Pretrained 7.650 ± 2.899 0.250 ± 0.078 0.124 ± 0.072 1.290 ± 3.281 1.025 ± 8.510 13.838 ± 24.082
DeepGaze++ 5.230 ± 1.180 0.133 ± 0.031 0.043 ± 0.022 1.876 ± 1.700 1.778 ± 10.046 31.590 ± 23.120
PathGAN Pretrained 4.381 ± 1.559 0.160 ± 0.054 0.072 ± 0.036 3.896 ± 5.049 7.039 ± 18.651 22.528 ± 22.970
PathGAN on UEyes 4.354 ± 1.322 0.121 ± 0.040 0.045 ± 0.024 2.414 ± 2.455 5.687 ± 17.960 27.613 ± 21.644
PathGAN++ on UEyes 4.236 ± 1.332 0.120 ± 0.041 0.043 ± 0.022 2.810 ± 2.743 5.761 ± 16.053 27.956 ± 21.544
Table 2. Evaluation of scanpaths, with the mean ± SD reported for each metric. Arrows denote the direction of the importance; e.g., ↑
means “higher is better.” Each column’s best result is highlighted in boldface. PathGAN++ outperforms the other models by all three
metrics applied for measuring the fixation sequence in temporal order (DTW, TDE, and Eyenalysis).

6.2.4 Saccade Angle and Amplitude Distribution. Figure 13 characterizes the saccade-angle and amplitude-distribution
aspect of our comparison. None of the models can capture the same distributions as the ground-truth data. Human
saccade directions are primarily from left to right, with a small proportion of motions from top to bottom. The pretrained
PathGAN model and DeepGaze III have clustered distributions due to the “stuck points” on the predicted scanpaths.
PathGAN trained on UEyes and PathGAN++ both display an incorrect center bias to the distribution. Furthermore,
the inhibition of return implemented in the Itti-Koch-based model and DeepGaze++ avoids small distances between
consecutive fixation points. Hence, the saccade amplitudes are more significant than in the ground truth. We found
that most saccade directions predicted by DeepGaze++ are rightward ones for desktop UIs, mobile UIs, and posters,
which demonstrates that DeepGaze++ can capture the actual tendencies visible with these UI types. However, it is still
incorrect for webpages and cannot predict the gaze’s tendency to move toward the bottom of the UIs.

6.2.5 Visited and Revisited Elements. Our comparison of visited- and revisited-element ratios for the various models is
described in Supplementary Materials. All the models can correctly predict that text elements are more likely to receive
fixations than images are. The pretrained PathGAN model and DeepGaze III underestimate the visiting and revisiting
ratios both. DeepGaze++ displays the best prediction for the former but overestimates the revisit ratios for all UI types.
All the models reflect the fact that both ratios are lower with mobile UIs than with other UI types. Still, every model
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Fig. 13. Distributions of saccade angles and amplitudes compared across scanpath-based predictive models. Human saccade directions
are primarily left-to-right, with a small proportion being from top to bottom. None of the models can capture the same distributions
as the ground-truth data.
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except DeepGaze++ underestimates the visiting and the revisiting ratio for this type of UI. Most models’ predictions
for element visit and revisit ratios are the closest to the ground truth in the case of poster designs. PathGAN++ is the
model that yields the predictions closest to the ground truth for visiting and revisiting of elements, with the exception
of its underestimation for mobile UIs.

7 DISCUSSION

Our study sheds new light on the eye-movement behavior that occurs with specific UI types. Here, we summarize the
main findings pertaining to how people look at UIs, then discuss the challenges and limitations that accompany current
computational models.

7.1 How People Look at UIs

We have found that, in general, users pay more attention to the upper-left region in a UI. While prior work demonstrated
this for mobile UIs [53], we can now confirm a similar pattern extending across all types of UI considered in our project,
inclusive of poster designs. Also, we have found that saccades take the gaze mainly toward the right or bottom portion
of the UI. Further, movements of the gaze toward the right exhibit larger distances between consecutive points than
motions toward the bottom.

At the same time, we found that text elements are more likely to be fixated on than images, which explains saccades’
typical motion from left to right rather than vice versa, although the latter result may be an artifact of our dataset, since
most of our UIs, being in the English language, forced participants to read the text from left to right. Still, the ratio
of images to text does not affect the ratios of visited and revisited elements in these two element categories. Another
noteworthy finding is that saccades toward the right-hand part of the UIs show larger distances between consecutive
points than those landing nearer the bottom. It is among the evidence that user interfaces are not glanced at in the
same manner as natural scenes [53]. Instead of a center bias, there is a strong top-left bias.

Our data allow a deeper dive into various subtle differences among the types of UIs examined. Several distinctions
exemplify this:

Webpages: We found that users tend to look from left to right on webpages, showing larger inter-fixation distances
than with the other interface types. These large distances might explain why computational scanpath models
exhibit their worst performance with webpages while computational saliency models perform quite well with
other types of UIs.

Desktop UIs: Because desktop UIs have two salient areas (one just above the center and the other at top left), it
proves difficult for computational models of saliency maps and scanpaths to deliver accurate predictions. These
were found to perform poorly with the multi-modal gaze distributions in such conditions.

Mobile UIs: Mobile UIs have lower visit and revisit ratios than other UI types, indicating that users focus more
on the “attractive” elements while ignoring the others and that there is less of a tendency to return to the
same content. Further, we noticed that most scanpath models can predict the low visit ratio of mobile UIs and,
accordingly, display better predictive accuracy with mobile UIs than with all other UI types.

Posters: As with other UIs, users tend to scan posters from left to right, with a small number of saccades toward
the bottom and with highly varied fixation distances. Here, the distances of consecutive fixation points show
more pronounced variation than other UI types’. This renders their prediction by current computational scanpath
models harder.
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7.2 Current Computational Models

Our results highlight that, in efforts to predict visual saliency, training of computational models with eye movement
over user interfaces yields superior performance to training with proxy data, such as mouse movements or manual
annotations, or even training with data collected from viewing of natural scenes. While that is unsurprising, we have
demonstrated this superiority quantitatively. In particular, we showed that training the UMSI on UEyes increases its
AUC performance score from 0.778 to 0.878. Upon inspecting the predictions, we found that much of this difference can
be attributed to cases of over-detection by the UMSI: it predicts saliency across expanses of the UI more extensive than
what the user may have had time to inspect, and this is reflected in its high false positive rate. That said, after training
on our dataset and with our modifications to the model, the accuracy of the UMSI improved considerably.

7.3 Limitations and Future Work

7.3.1 The Mobile UI Viewing Setting. The fixed-screen setting used in our experiment, while guaranteeing consistent
data collection and analysis across UI types, does not accurately simulate the real-world experience of viewing a mobile
UI while holding a cellular phone. To improve the realism in this regard, one could rescale the mobile UI screenshots for
a mean viewing distance of 30 cm, as prior literature recommends [53, 57]. With our roughly 60 cm distance between
participants’ eyes and the screen, the physical size of the stimuli displayed should be about twice what it is on a mobile
screen. This issue notwithstanding, our findings for mobile UIs corroborate reports by Leiva et al. [53].

7.3.2 Semantic Understanding of UI Elements. The current classification of visited and revisited UI elements into broad
categories (text, image, and face) does not capture the semantic differences within each category. Future work could
focus on developing more detailed and nuanced classification of visited and revisited UI elements by extracting their
semantic meaning [93] to afford a greater understanding of users’ gaze-related behaviors.

7.3.3 False Positives in Saliency Maps. While computational models of saliency maps can capture informative areas
such as images and text regions, they still tend to generate false positive errors and over-detect salient areas, thereby
producing low accuracy and reliability. Future work can improve the model’s ability to differentiate between truly
salient areas and false positives, and it could bring additional features, such as user task goals, into play to guide the
saliency prediction.

7.3.4 Inaccurate ScanpathModels. Today, no single scanpathmodel can accurately capture both the scanpath trajectories
and the fixation points of human eye movements. Further improving the model requires a fuller understanding of the
factors that influence gaze behavior (such as visit and revisit tendencies) and incorporation of those factors into the
model. Additionally, better metrics are needed for assessing the quality of predicted scanpaths. Developing such metrics
should contribute to a deeper understanding of the scanpath models’ performance and, by doing so, guide the design of
better models.

7.3.5 Individual-Specific Differences. Individuals differ in the viewing strategies they apply when looking at user
interfaces. Person-to-person variations in viewing strategy can affect gaze behavior, and predictive models need to take
them into account. Future work could focus on understanding and modeling the individual-to-individual differences in
viewing strategies, in general terms and for each of the UI types. This can be accomplished by means of personalized
predictive models that account for differences between individuals.

25



CHI ’23, April 23–28, 2023, Hamburg, Germany Y. Jiang et al.

8 CONCLUSION

In this paper, we present UEyes, a large-scale eye-tracking dataset that covers 1,980 UIs of various types, along with
multi-duration saliency maps and scanpaths. Moreover, we present the first in-depth analysis and comparison of
eye-movement tendencies across common UI types. We also contribute solid performance analysis of state-of-the-art
predictive models for saliency maps and scanpaths across the various UI types.

Open Science

The dataset and trained models are available at https://userinterfaces.aalto.fi/ueyeschi23. The dataset includes raw CSV
log files recorded with the GP3 HD eye tracker, associated heatmaps and scanpaths, the image stimuli (screenshots),
and metadata referring to the design type.
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