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Abstract 
 
Driven by the development and upscaling of fast genome sequencing and assembly pipelines, the 
number of protein-coding sequences deposited in public protein sequence databases is increasing 
exponentially. Recently, the dramatic success of deep learning-based approaches applied to protein 
structure prediction has done the same for protein structures. We are now entering a new era in protein 
sequence and structure annotation, with hundreds of millions of predicted protein structures made 
available through the AlphaFold database. These models cover most of the catalogued natural proteins, 
including those difficult to annotate for function or putative biological role based on standard, homology-
based approaches. In this work, we quantified how much of such “dark matter” of the natural protein 
universe was structurally illuminated by AlphaFold2 and modelled this diversity as an interactive 
sequence similarity network that can be navigated at https://uniprot3d.org/atlas/AFDB90v4. In the 
process, we discovered multiple novel protein families by searching for novelties from sequence, 
structure, and semantic perspectives. We added a number of them to Pfam, and experimentally 
demonstrate that one of these belongs to a novel superfamily of translation-targeting toxin-antitoxin 
systems, TumE-TumA. This work highlights the role of large-scale, evolution-driven protein comparison 
efforts in combination with structural similarities, genomic context conservation, and deep-learning 
based function prediction tools for the identification of novel protein families, aiding not only annotation 
and classification efforts but also the curation and prioritisation of target proteins for experimental 
characterisation.  
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Introduction 
 
When we consider all possible sequences that can be built out of a simple alphabet of 20 amino acids, 
there is an infinite number of putative proteins. Since the sequencing of the first protein, large-scale 
genomic efforts brought about by the development of faster and cheaper genome sequencing efforts 
have shed light into some of the sequences that nature has sampled so far, with more than 200 million 
protein coding sequences deposited in UniProt and more than 2 billion in MGnify (Richardson et al., 
2023; UniProt Consortium, 2023). 

The rate by which this number is increasing is much faster than that by which each individual 
protein can be experimentally characterised. To close the gap, functional information is gathered for a 
subset of individual protein representatives and then the findings are extrapolated to close homologs 
that are identified by computational approaches. Manual curation of such functional annotation is carried 
out by those assembling the genomes and by biocurators (Boutet et al., 2016) most of which is 
incorporated into automated annotation pipelines such as InterPro (Paysan-Lafosse et al., 2023). 
However, despite the great success of such approaches, only 83% of UniProt sequences are covered 
by InterPro, and many of these correspond to Domain of Unknown Function (DUF) domains, indicating 
that there is a large number of protein sequences that remain functionally unannotated and unclassified. 

In 2009, it was predicted that circa 20% of the proteins deposited in sequence databases 
represented such “dark matter” of the protein universe (Levitt, 2009). Some of these proteins may just 
correspond to highly divergent forms of known protein families and thus lie beyond the detection horizon 
of the automated, homology-based methods employed; others could belong to so far undescribed 
protein families with yet-to-be determined molecular or biological functions. 

The 3D structure of a protein is an important source of information about its molecular 
mechanism or biological role. Obtaining such data experimentally is, however, an expensive and time-
consuming process. As of March 2023, only about 200’000 experimental 3D structures of proteins and 
protein complexes are known and made available through the Protein Data Bank (PDB) (Bittrich et al., 
2023), which contrasts with the more than 320 million unique protein sequences in UniRef100 (Suzek 
et al., 2015). Computational protein structure prediction is a way of bridging this gap, but with the current 
wealth of experimentally determined protein structures, homology-based approaches can expand 
structural coverage only up to a certain point (Bienert et al., 2017). On one hand, there are not enough 
experimentally determined templates that cover the full wealth of sequenced proteins and, from the 
other, even when a remote homolog of known structure is available, the lower the sequence similarity 
the higher the uncertainty in the predicted model. 

Deep-learning-based approaches have recently circumvented this limitation by achieving 
extremely high levels of accuracy for proteins without any known homologs of known structure. The 
main player here was AlphaFold2, a deep neural network that performs end-to-end protein structure 
prediction based on evolutionary, physical and geometric information (Jumper et al., 2021). Its success 
drove its developers at DeepMind, in collaboration with the EMBL-EBI, to produce predicted structural 
models for all natural proteins catalogued in the UniProt Knowledgebase (UniProtKB) and set up the 
AlphaFold database (AFDB) (Varadi et al., 2022). AFDB version 4 (AFDBv4) includes structural models 
for about 215 million protein sequences and excludes those from viruses and those with more than 
1’300 residues (2’700 for selected proteomes). This means that it provides models not only for well-
studied proteins whose 3D structure is unknown, but also for all of those that make the “dark matter” of 
protein sequence databases. 

In this work, we combine sequence, structure and genomic context similarities with deep 
learning-based function prediction tools to shed light into these proteins and the reasons why some of 
them remain unannotated based solely on sequence similarity and homology-based approaches. For 
that, we first revised the proportion of such sequences in UniProtKB and constructed, for the first time, 
a sequence similarity network of all catalogued proteins with high quality predicted structural models. 
We then combined our results with protein structure information as predicted by AlphaFold2 and 
evaluated how much structural novelty is encompassed in these proteins, using an evaluation of 
substructure compositions based on natural language processing. We also looked into the diversity of 
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protein names, both those derived from homology transfer and those predicted by recent deep learning 
methods. 

Our analysis demonstrates that functional annotation of proteins, even from a purely 
computational perspective, requires a combination of data sources and approaches. We show this with 
four examples of cases where (1) while neither sequence nor structure similarity could pinpoint a 
possible protein function, analysis of genomic context and looking for remote homologs of genomic 
neighbourhood provided an experimentally testable hypothesis, resulting in the definition of a novel 
toxin-antitoxin system superfamily TumE-TumA; (2) structure alignment and remote homology searches 
find novel subfamilies; (3) deep-learning based protein name prediction gives a variety of names for a 
set of related proteins that form previously undefined protein families; and (4) examining structural 
outliers finds novel fold families and incorrect or incomplete proteins. 
 
Results and Discussion 
 

1. Functional darkness in the UniProt and AlphaFold databases 
 

As of August 2022, there were more than 520 million unique protein sequences in UniProt (i.e., 
UniRef100 clusters). This includes more than 500’000 manually curated proteins in Swiss-Prot, more 
than 220 million sequences in TrEMBL and more than 300 million sequences in UniParc from other 
sources not yet included in UniProtKB. The total number of sequences drops drastically to circa 50 
million unique sequences if one filters the UniRef100 dataset to a maximum sequence identity of 50% 
(UniRef50). We define the “functional brightness” of a given protein as the full-length coverage with 
annotations of its close homologs, with 0% meaning “dark” and 100% meaning “bright” and a UniRef50 
cluster being as “bright” as the “brightest” sequence it encompasses (Fig. 1A). For that, we only 
considered those annotations that correspond to domains and families whose title does not include 
“Putative”, “Hypothetical”, “Uncharacterised” and “DUF”, and included those corresponding to structural 
features as coiled coil segments and predicted intrinsically disordered stretches. With this, we excluded 
any functional darkness resulting from predicted intrinsically disordered or coiled-coiled proteins, and 
focused solely on that from proteins with a potential for a globular (or other) fold type.  
 

 
Figure 1. General workflow for the collection, classification and mapping of functionally dark proteins in UniProt and 
AlphaFold database. (A) Starting from the clusters in UniRef50, we collected all the functional annotations for all included 
UniProtKB and UniParc entries, excluding all of those with “Putative”, “Hypothetical”, “Uncharacterised” and “DUF” in their names, 
and selected as the functional representative of each cluster the protein with the highest full-length annotation coverage (i.e., 
brightness). (B) From the collected UniRef50 clusters, we selected only those with a structural representative with pLDDT >90, 
and constructed a large-scale sequence similarity network by all-against-all MMseqs2 searches, representing the sequence 
landscape of more than 6 million UniRef50 clusters. 
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By looking at the functional brightness distribution across all UniRef50 clusters, we observed 
that 34% of them do not reach a value higher than 5% (Fig. 2A). This means, 17’878’697 UniRef50 
clusters have none of their protein sequences annotated for domains and families of known function, or 
for disorder and coiled coil propensities. All together, these clusters encompass 37’761’109 sequences, 
corresponding to 10% of all UniRef100. Strikingly, only 0.09% of them correspond to clusters of proteins 
assigned to a predefined DUF family (Fig. 2E). 

While the functional brightness of a UniRef50 cluster is not directly proportional to the number 
of sequences it groups (Pearson correlation coefficient of 0.0), fully bright clusters (functional brightness 
≥ 95%) tend to be larger than those whose members are poorly annotated, with an average of 19 ± 123 
non-redundant sequences. Indeed, fully dark UniRef50 clusters are composed, on average, of only 2 
non-redundant sequences, but cases with more than 2’000 sequences were also found (e.g. 
UniRef50_A0A091P6G5, which corresponds to multiple transposons). 

Thanks to AFDBv4, we now have access to high quality models for most of the proteins in 
UniProtKB (excluding UniParc and viruses). We observed that only 41’983’943 UniRef50 clusters (78% 
of all clusters) have members with a predicted structure in AFDBv4, and that 29% of these are 
functionally dark (Fig. 2B). The percentage of dark UniRef50 clusters decreases when considering only 
those UniRef50 clusters with high and extremely high predicted accuracy models (Fig. 2C,D), with 21% 
dark clusters with a structural representative with an average pLDDT > 70, and 15% with an average 
pLDDT > 90. This highlights that (1) there is a considerable amount of dark UniRef50 clusters without 
models in AFDB, (2) but there is also a good quantity of functionally unknown proteins for which there 
is structural information that we can now use to learn about them. 
 

 
Figure 2. Distribution of functional darkness in UniProt and AFDB. Functional brightness distribution in (A) UniRef50, (B) 
UniRef50 clusters with models in AFDB (which excludes long proteins, and those UniRef50 clusters composed solely of UniParc 
entries and viral proteins), (C) UniRef50 clusters whose best structural representative has an average pLDDT > 70, and (D) 
UniRef50 clusters whose best structural representative has an average pLDDT > 90. For each set, the percentage of fully dark 
UniRef50 clusters, and corresponding brightness bin, are highlighted in purple. The bar associated with functionally bright 
UniRef50 clusters (functional brightness >95%) is marked in white. (E) Percentage of fully dark UniRef50 clusters with proteins 
annotated as a domain of unknown function (DUF) in each set A-D.  
 

We observe that the proportion of DUFs in UniRef50 and AFDBv4 remains in the range of 0.1-
0.2% independently of the pLDDT cut-off (Fig. 2E). This indicates that most dark UniRef50 clusters are 
not associated with a previously defined DUF, and AFDBv4 harbours high quality structure information 
for many more, yet to be defined, families. 
 

2. Large-scale sequence similarity network of AFDB90 
 
For the remainder of the work, we focused only on those dark UniRef50 clusters with high average 
pLDDT representatives, as these represent protein clusters that can be more confidently studied at a 
structural level. While UniRef50 clustering provides us with groups of sequences that are overall 
identical at the sequence level, such clustering does not reach the family and superfamily levels and 
does not account for local similarities. Thus, to search for those UniRef50 clusters that belong to the 
same families and superfamilies and identify those that are locally identical, we constructed a large-
scale sequence similarity network of all Uniref50 clusters whose structural representative has an 
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average pLDDT > 90 (the AFDB90 dataset). This corresponds to 6’136’321 UniRef50 clusters and, 
thus, to only 11% of the initial set of UniRef50 clusters. 

To construct the network in a time efficient manner, we employed MMseqs2 (Steinegger and 
Söding, 2017) for all-against-all sequence searches (Fig. 1B). In these searches, two sequences were 
deemed as adjacent if there was an alignment that covered at least 50% of one of the proteins at an E-
value better than 1x10-4. After simplification of the resulting graph by considering the 4 nearest 
neighbours of each node, we obtained a graph with 10’339’158 edges involving 4’270’404 nodes, which 
include 43% of the dark UniRef50 clusters in the full dataset (Fig. 3). The resulting graph (Fig. 3A, 
https://uniprot3d.org/atlas/AFDB90v4) is composed of 242’876 connected components with at least 2 
nodes, with the largest encompassing about 50% of all UniRef50 clusters. Out of these components, 
46’318 (19%) have an average brightness content below 5% and are, thus, “fully dark galaxies” in the 
protein sequence space represented by the network (Fig. 3D). However, not all dark UniRef50 clusters 
are enclosed in these dark connected components. Indeed, these components count only for 241’203 
(60%) of the dark UniRef50 clusters in the graph. The remaining 40% are spread in components of 
variable brightness and thus represent remote global or local homologs of well- or partially well-
annotated proteins. 
 

 
Figure 3. Large-scale sequence similarity network for over 6 million UniRef50 cluster representatives with high predicted 
accuracy models in AFDB (AFDB90). (A) Layout of the resulting network, as computed with Cosmograph 
(https://cosmograph.app/). For simplicity, the network was reduced to a set of 688’852 communities connected by a total of 
1’488’764 edges. The 1’865’917 UniRef50 clusters that did not connect to any other in the MMseqs2 searches were excluded. 
Only the 473’612 communities that have at least one inbound or outbound edge (degree of 1) are displayed in the figure. Nodes 
are coloured by the average functional brightness of the UniRef50 clusters included in the corresponding community. An 
interactive version is available at https://uniprot3d.org/atlas/AFDB90v4, where all singletons are arranged outside the main circle. 
(B) Histograms of functional brightness content for connected components with more than 50’000 and with only 5 to 2 nodes 
(UniRef50 clusters), highlighting their different darkness content. (C) Scatter plot of the component size (i.e. number of UniRef50 
clusters) cut-off and the percentage of functionally dark UniRef50 clusters. (D) Distribution of the average brightness per 
component. Size distribution for (E) fully dark connected components (average brightness < 5%) and (F) fully bright connected 
components (average brightness > 95%). 
 

As expected, the percentage of UniRef50 clusters in dark connected components decreases 
with the component's size (Fig. 3B,C), meaning that the lower the number of homologs the harder a 
protein is to annotate. Still, and while the distribution is skewed towards smaller sizes in both fully dark 
(i.e., average functional brightness <5%) and fully bright (i.e., average functional brightness >95%) 
connected components (Fig. 3E,F), the largest dark connected component in our network has 836 
members, totalling 4’889 unique proteins. We selected two examples for further analysis: (1) component 
27, which is the largest functionally dark connected component; and (2) component 159, a large 
component composed of various prokaryotic proteins without any structural homolog in the PDB. 
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3.1. A new family in a well-studied superfamily of transmembrane glycosyltransferases 
 
The largest functionally dark connected component in our set is component 27, with 836 UniRef50 
entries that include a total of 4’889 unique bacterial protein sequences (Fig. 4A). The structural 
representatives for each UniRef50 cluster have a median length of 665 ± 169 amino acids, and most 
are predicted to be transmembrane. Foldseek (van Kempen et al., 2022) finds multiple, medium 
confidence (TM-score ~0.6) matches in the PDB for the structural representative with a length closest 
to the median (UniProtID A0A7X7MB17, Fig. 4B). These matches include multiple structures of 
eukaryotic Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit STT3 and its 
bacterial homolog oligosaccharyltransferase PglB (Kelleher and Gilmore, 2006; Szymanski and Wren, 
2005), both of which are absent from our network because their structure representatives have an 
average pLDDT < 90. Indeed, the proteins in this component that are not called “Uncharacterised 
protein” mostly have the title “YfhO family protein”, which corresponds to a family important for 
lipoteichoic acid or wall teichoic acid glycosylation (Rismondo et al., 2018). However, the representative 
of component 27 superposed poorly to the representative of the YfhO family (TM-score 0.58) and the 
average brightness of this component is 2±13%, with only 9 UniRef50 members (corresponding to 101 
unique protein sequences) being full-length annotated as containing the “YfhO” InterPro domain. 
 In order to understand the relationship between those proteins in component 27, STT3, PglB 
and YfhO, we combined the sequences of all four groups and built a sequence similarity network (Fig. 
4A). This network highlights that most dark proteins in component 27 are not members of the same 
group as the reference YfhO and make a cluster by themselves. The YfhO-like protein family is linked 
to the STT3/PglB groups by multiple hypothetical proteins, mostly of prokaryotic origin, that are in some 
cases annotated as “Glycosyltransferase family 39 protein”. These results indicate that component 27 
is a hitherto undescribed bacterial protein family belonging to a well-studied superfamily of 
transmembrane oligosaccharyl- and glycosyltransferases and may also be involved in the glycosylation 
of membrane lipids. This example illustrates the power of structural alignment to resolve undetected 
remote homology relationships in this new age of widespread predicted protein structure availability.  

 
Figure 4. Connected component 27 is a new family in a well-studied superfamily of transmembrane glycosyltransferases. 
(A) High resolution sequence similarity network for 7’004 homologs of the sequences in component 27, computed with CLANS 
at an E-value threshold of 1x10-20. Points represent individual proteins and grey lines BLASTp matches at an E-value better than 
1x10-20. Individual clusters are coloured and labelled accordingly to their representative members. Only YfhO-like and STT3/PglB 
sequences are highlighted, with grey dots depicting other homologous groups. AglB corresponds to the PglB/STT3-like 
sequences from archaea. Black dots depict those sequences that make component 27 in our network, and white dots mark those 
that are bright. (B) Predicted structural models as in AFDBv4 for the representative of component 27 (C27), and YfhO, and 
experimental structures of the PglB and STT3 cluster representatives. Models are coloured according to the colour of their 
corresponding cluster in (A). The membrane regions, as predicted with PPM 3.0 server (Lomize et al., 2022), are marked by 
dashed lines. 
 
3.2. A new toxin-antitoxin superfamily 
 
Component 159 (Fig. 5) is composed of 327 UniRef50 clusters, which correspond to 1222 unique 
protein sequences, whose members are mostly annotated as “Domain of Unknown Function 6516” (i.e. 
DUF6516). According to AFDB, these proteins may adopt a conserved α+β fold, where two α-helices 
pack against an antiparallel β-sheet with 7 strands (Figs. S1). Contrary to component 27, structural 
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similarity searches over the PDB with a structure representative (UniProtID A0A6N7ITV5) using 
Foldseek found no matches at a TM-score better than 0.5.  

We constructed a high resolution similarity network for component 159 representatives, 
additionally enriched with close sequence homologs (Fig. 5A). The network contains 7 distinct classes 
of DUF6516-containing proteins, which DeepFRI (Gligorijević et al., 2021) predicted may bind DNA or 
other nucleic acids and carry a hypothetical catalytic site with a potential hydrolase activity over ester 
bonds (Fig. 5C, Supplementary file 1), To gain insight into the potential biological functions of DUF6516, 
we used the high-resolution network as input for GCsnap (Pereira, 2021). This tool compares the 
genomic contexts of the target homologous protein-coding genes and annotates the neighbourhood 
outputs with functional and structural information retrieved from UniProt and the SWISS-MODEL 
repository (SMR) (Bienert et al., 2017), respectively. Strikingly, DUF6516 is commonly found in a 
conserved two-gene (bicistronic) genomic arrangement, with DUF6516 predominantly located 
downstream of the conserved bicistronic “partner” (clusters 1, 2, 4 and 6).  
 

 
Figure 5. Connected component 159 is a novel toxin in the hitherto undescribed toxin-antitoxin superfamily TumE-TumA. 
(A) High resolution sequence similarity network for 2’453 homologs of the 327 sequences in component 159, computed with 
CLANS at an E-value threshold of 1x10-10. Points represent individual proteins and grey lines BLASTp matches at an E-value 
better than 1x10-4. Individual subclusters are labelled 1-7, with their subclusters labelled a-c. The consensus genomic context 
as identified with GCsnap (Pereira, 2021), with different flanking families coloured from blue to red and labelled accordingly. A 
gradient fill highlights the fusion between DUF6516-encoding genes and their putative antitoxin (which occurs in cluster 5, where 
the corresponding proteins are fused with a domain of unknown function and do not occur in a conserved genomic context). (B) 
3D model of the complex between the putative toxin and antitoxin from Allochromatium tepidum strain NZ, modelled with 
AlphaFold-Multimer, highlighting the regions where DNA would interact with the antitoxin based on DeepFRI predictions and the 
structural features predicted for the antitoxin that resemble DNA binding regions. (C) Structural model of A. tepidum 
TumE/DUF6516 toxin (EntrezID WP_213381069.1) coloured according to the two most frequent molecular functions predicted 
for 100 homologs with DeepFRI. The corresponding residues responsible for the predictions are highlighted in red, and the 
percentage labelled reflects the frequency of the highlighted prediction. (D) Validation of tumE-tumA TA pairs using toxicity 
neutralization assay. Putative toxin expression plasmids (pBAD33 derivates) were cotransformed into E. coli BW25113 cells with 
cognate antitoxin expression plasmids or the empty pMG25 vector. Bacteria were grown for five hours in liquid LB media 
supplemented with appropriate antibiotics and 0.2% glucose for suppressing the production of putative toxins. The cultures were 
normalized to OD600 = 1.0, serially diluted and spotted on LB agar plates containing appropriate antibiotics and 0.2% arabinose 
for toxin induction and 500 µM IPTG for antitoxin induction. The plates were scored after an overnight incubation at 37 °C. (E) 
Metabolic labelling assays with wild-type E. coli BW25113 expressing A. tepidum TumE/DUF6516 toxin. 
 

While most of the “partner” genes associated with DUF6516 code for “hypothetical proteins” of 
unknown function, one of the partners in cluster 1 is a remote homolog of RelB, a well-characterised 
antitoxin (Gotfredsen and Gerdes, 1998). The bicistronic arrangement is typical for toxin-antitoxin (TA) 
systems (Jurėnas et al., 2022). When active, the TA toxin proteins abolish bacterial growth, and the 
control of this toxicity is executed by the antitoxin, which, in the case of so-called “type II TA systems”, 
is a protein that acts by forming an inactive complex with the toxin. Structure-based molecular function 
prediction for DUF6516 partners using DeepFRI (Gligorijević et al., 2021) suggests they may bind DNA 
(Supplementary file 1), an activity characteristic for diverse antitoxins (Jurėnas et al., 2022), and co-
folding prediction with AlphaFold-Multimer generated high confidence models (93 average pLDDT, 
0.902 iPTM) that support the interaction between the two proteins as a dimer of dimers (Fig. 5B), as 
observed for type II TA systems. Therefore, we hypothesised that DUF6516 is a novel toxic TA effector 
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that is neutralised either in trans by diverse unrelated antitoxins (subclusters 1-4, 6 and 7) or in cis by 
a fused unknown antitoxin domain (UnkD, subcluster 5). 

To validate the putative TAs experimentally and gain insights into the mechanism of DUF6516-
mediated toxicity, we used our established toolbox for TA studies (Kurata et al., 2022). We targeted TA 
from six Gammaproteobacterial species (Thioploca ingrica, Thiothrix litoralis, Crenothrix sp. D3, 
Methylotuvimicrobium alcaliphilum, Ectothiorhodospiraceae bacterium, Allochromatium tepidum strain 
NZ) for testing in E. coli surrogate host, and all the putative toxins dramatically abrogated E. coli growth 
(Fig. 5D) while the putative antitoxins had no effect (Fig. S2). Neutralisation assays showed full 
suppression of toxicity when the toxins were co-expressed with cognate antitoxins (Fig. 5D), thus 
directly validating that these gene pairs are, indeed, bona fide TA systems. To probe the mechanism of 
DUF6516-mediated toxicity, we carried out metabolic labelling assays with 35S methionine (a proxy for 
translation), or 3H uridine (a proxy for transcription) or 3H thymidine (a proxy for replication). Expression 
of Allochromatium tepidum strain NZ DUF6516 toxin resulted in a decrease in efficiency of 35S 
methionine incorporation (Fig. 5E), indicative of the inhibition of protein synthesis. We hypothesize that 
the effect could be mediated by the yet-unproven RNase activity of the DUF6516 toxin. We conclude 
that DUF6516 is a bona fide translation-targeting toxic effector of a novel TA family, and propose 
renaming it TumE (for “dark” in Estonian), with the antitoxin components dubbed as TumA, with A for 
“antitoxin”. 

This example illustrates the difficulty of automating functional annotation for proteins from 
completely novel superfamilies without any functionally characterised member. In this case, the 
combination of genomic context information, remote homology searches on genomic neighbours, and 
deep learning-based function prediction helped formulate a functional, testable hypothesis.  

 
3. Semantic diversity of protein names in functionally dark connected components  

 
Recently, ProtNLM (Gane et al., 2022), a large language model, was implemented as an approach to 
automatically name proteins in TrEMBL titled as “Uncharacterised protein”. Upon the first release of 
such predictions in UniProtKB, we investigated how diverse the names predicted for those proteins in 
dark connected components were, and compared it to those fully bright components. In both cases, we 
observed that the distributions of name and word diversities (collectively referred to as “semantic 
diversity”) across components were highly skewed towards extremely low values, but the fully dark set 
was significantly different in both cases from the fully bright set (Kolmogorov–Smirnov p-value = 1x10-

16, Fig. 6).  
 

 
Figure 6. Diversity of the (A) names and (B) their word composition, for the individual fully dark and fully bright 
connected components. Name diversity is calculated as the number of unique protein names within a component by the total 
number of component proteins. Word diversity is calculated as the number of unique words across all protein names within a 
component by the total number of words, ignoring the words "protein", "domain", "family", “containing”, and “superfamily”. 
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As expected, most bright connected components had a low semantic diversity, indicating a 

coherent and consistent naming. The maximum word diversity in bright connected components was 
33%, which corresponds to cases where multiple varieties of the same name are present. One example 
is component 100’340, which is composed of multiple reviewed “Cytotoxin” names with different labels 
(e.g., Cytotoxin SP15a, Cytotoxin 10, etc.).  

On the other hand, fully dark connected components tended to have a higher semantic 
diversity, with a name diversity of 19% (compared to 10% in fully bright components) and a word 
diversity of 7% (compared to 4% in fully bright components). The less diversely named dark 
components are those with previously submitted names not predicted by ProtNLM, such as component 
159, where most proteins are named “DUF6516”. Conversely, the dark component with the highest 
semantic diversity was component 3’314, with a word diversity of 45%.  

Component 3’314 is composed of 53 proteins that were given a wide variety of unrelated 
predicted names, from “Integrase” to “NADH-quinone oxidoreductase subunit F”, “Dynein light chain”, 
“Prophage protein”, etc. Despite their diverse predicted names, proteins in component 3’314 share a 
common fold (Fig. S3A) but find no structural homologs in the PDB. HMM searches over the PDB with 
HHpred highlighted a small local match to the tubulin-binding domain of Chlamydomonas reinhardtii 
TRAF3-interacting protein 1 (PDBID 5FMT, chain B) at a probability of 71%, but when clustered 
together, these two groups of proteins only form a few weak connections (Fig. S3A). We found a few 
members of component 3’314 dispersed throughout bacteria and bacteriophages, and they do not share 
a conserved genomic context (Fig. S3B). Together with the presence of prophage-associated protein 
encoding genes in these genomic contexts, such as “Host-nuclease inhibitor protein Gam” (Akroyd et 
al., 1986), these data support the “Prophage protein” title. 

Our work highlights that the ProtNLM language model when presented with families with no 
homologs was hallucinating a diverse range of names. We identified 281 functionally dark components 
with a word diversity >20% and are now defining Pfam families for each of them (Mistry et al., 2020), 
with 22 already available in the upcoming Pfam release 36.0 (Table S1). This includes component 
3’314, which gave rise to the PF21779 family and whose members are now titled DUF6874. As we 
define new Pfam families, the naming of these families should become consistent as future versions of 
ProtNLM consume this data. Starting from UniProt release 2023_01, the criteria for displaying ProtNLM 
names has changed to include an ensemble approach, an increased confidence threshold, and an 
automatic corroboration pipeline (https://www.uniprot.org/help/ProtNLM), thus many of these 
hallucinated names have reverted to “Uncharacterised protein”.  
 

4. Structural outlier diversity in AFDB90 
 
The availability of high quality predicted structures allows us to expand functional curation efforts to 
include structure-based similarities. One useful approach for this is structure-based alignment, which is 
described in (Barrio-Hernandez et al., 2023), and also incorporated into our examples to find similarities 
to proteins with known PDB structures using Foldseek. Here, we look into another angle of structure 
comparison, which is based on the concept of a “structural outlier”. By using an alphabet of substructure 
representations, covering 1’024 local structural contexts (16 residues in sequence and 10 Å spatial 
neighbourhood, Fig. S4), we trained an outlier detector on PDB structures and predicted the AFDB90 
structures that have substructure compositions which are rare or absent in the PDB (See Methods 
Section 5). With this, 699'084 AFDB90 structures across 143’352 communities were predicted to be 
structural outliers,  30% of which are functionally dark (Fig. 7A). This analysis gives us a measure of 
plausibility that can help prioritise protein family definition. Importantly, in selecting the examples to 
explore in previous sections, we focused on structural inliers.  

We observed that structural outliers tend to be shorter and more repetitive than inliers (Fig. 
7A,B), indicating that such an approach could be applied to predicted structures to annotate fragments 
and low complexity proteins, some of which could contain sequencing errors or not have translation-
level evidence. Outliers can also represent novel folds, as in the example below.   
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Figure 7. Structural outliers are diverse and can represent novel folds, protein fragments, repetitive proteins, or those 
that require folding conditions out of the scope of AlphaFold2. (A-B) Distribution of brightness, shape-mer diversity and 
length of the (A) structural outliers and (B) a set of structural inliers with the lowest outlier scores equivalent to the number of 
outliers. Shape-mer diversity is defined as the number of unique shape-mers by the length of the protein. (C) AlphaFold models 
of different variations of the  β-flower, with positively charged residues in red and phenylalanine in green for A0A494VZL1, and 
PDB structures of Arabidopsis thaliana putative phospholipid scramblase (1zxu) and the human Tubby C-terminal domain (2fim). 
Black arrows indicate the circularly permuted loop in A0A0S7BXY3 and 1zxu (D) A structure outlier annotated as “TonB-
dependent receptor-like” proteins that is a fragment of a β-barrel domain. (E) Two long repetitive outliers, one belonging to the 
Tetratricopeptide-like helical domain superfamily (A0A015IZK3) and one to the PE-PGRS superfamily (G0TGH8). (F) AlphaFold 
model of an outlier annotated as containing “Putative type VI secretion system, Rhs element associated Vgr domain” 
(A0A377W562), a trimeric PDB structure (6sk0) also containing this domain, and an AlphaFold-Multimer model of the 
A0A377W562 trimer. 

 
4.1. The β-flower fold 
 
UniRef50_A0A494VZL1 is an example of a structural outlier without homologs in the PDB and whose 
AFDBv4 homologs are found only at the structure level. A0A494VZL1 folds as a shallow, symmetric β-
barrel domain with 96 residues. This barrel is formed by 10 short antiparallel β-strands that form a 
hydrophobic channel. On one side of the β-barrel, the loops connecting each strand are much longer 
(9 residues) than those on the other side (4 residues), which make it look like a flower (Fig. 7C). For 
this reason, we named it “β-flower”. Some of these loops are enriched with positively charged arginine 
and lysine residues, and at the tip contain phenylalanines whose side-chains point towards the exterior 
of the β-barrel.  

While UniRef50_A0A494VZL1 is a singleton in our network (i.e., it does not belong to any 
connected component with at least 2 nodes), a Foldseek search on structural representatives of 
AFDB90 (the AFDB90Communities set, defined in the Material and Methods section) found hits with a 
TM-score better than 0.6 to 43 UniRef50 clusters in AFDB90. 39 of these are from bacteria, and map 
into 13 different sequence-based connected components with 1 to 6 nodes, 39 are structural outliers 
and 13 are bright because they are annotated almost full-length as “Cell wall-binding protein” or “MORN 
repeat variant”. Within these 43 UniRef50 clusters, there are at least three globally different folds, which 
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are variations of that of UniRef50_A0A494VZL1 (Fig. 7C). These differ particularly on the number of 
strands (8, 10, or 12) and, consequently, the number of long loops (4, 5 or 6), which makes these 
domains look like square, pentagonal or hexagonal “flowers”. The “petals” of these flowers comprise 
beta-hairpins that are arranged in four-, five- or six-fold symmetry. However, within the structural 
homologs there are also some that resemble half of a flower, perhaps corresponding to fragments of 
longer domains.  

Many of the proteins in this family possess N-terminal lipoprotein attachment motifs (Hayashi 
and Wu, 1990; Klein et al., 1988), suggesting they are associated with the bacterial inner membrane or 
transferred to the inner leaflet of the outer membrane. Although no structural similarity to the PDB was 
highlighted by Foldseek and HMM-HMM searches with HHpred also returned no results, the β-flower 
folds with six-fold symmetry are reminiscent of the Tubby C-terminal domain (Bateman et al., 2009), 
that adopts a twelve-stranded β-barrel fold enclosing a central hydrophobic helix (Fig. 7C). Besides the 
global structural similarity, these proteins share a common network of aromatic hydrophobic residues 
that flank the edges of the β-strands and point toward the interior of the β-barrel, thus engaging in tight 
contacts with the central hydrophobic helix. Interestingly, this feature is also preserved in the proteins 
lacking the central helix in the barrel interior, e.g. A0A494VZL1.  

There are, however, some topological differences that are more evident when comparing the 
β-flowers with 6-fold symmetry to the Tubby-like domains (Fig. 7C). The N-terminal strand of Tubby 
domains is circularly permuted in the β-flowers, where its position is occupied by the C-terminal strand. 
The presence/absence of the C-terminal strand in the β-barrel leads to a different entry point of the C-
terminal hydrophobic helix into the channel formed by the β-barrel, which defines the difference in its 
directionality. Other differences pertain to the length of the β-strands and the connecting loops on one 
side of the β-barrel, which in the β-flower proteins are significantly shorter. Tubby-like proteins either 
bind to phosphoinositides or function as phospholipid scramblases (Bateman et al., 2009) and this 
provides a functional hypothesis to test for these proteins. The diversity of these proteins has been 
added to Pfam as the new entries PF21784, PF21785 and PF21786, which together with the Tubby C-
terminal domain now form the CL0396 clan. 
 
4.2. Fragments, repeats and obligate complexes 
 
Structural outliers can also represent fragments of existing families (Fig. 7D), highly repetitive proteins 
that are rare in the PDB (Fig. 7E), and proteins which require conditions to fold, such as binding 
partners, not modelled by AlphaFold2 (Fig. 7F).   

9’519 AFDB90 structural outliers, across 1’258 components mapping to 16’524 AFDBv4 
proteins, are annotated by InterPro as containing the 'TonB-dependent receptor-like' (TBDT) domain, 
of which 86% are fully bright. TBDTs have 22-stranded β-barrel C-terminal domain (Noinaj et al., 2010) 
but most of these outliers have incomplete β-barrel domains (e.g. Fig. 7D), with 82% having less than 
the required number of β-sheet shape-mers found in the 45 PDB structures from (Noinaj et al., 2010), 
despite 55% not being explicitly annotated as fragments in UniProtKB. These could be due to frameshift 
errors introduced in whole-genome sequencing runs. Many of these have significant Foldseek hits to 
the PDB with TM-score > 0.7, indicating that relying only on automated similarity scores from sequence 
and structure alignment may still lead us astray for functional annotation. 

Long repetitive proteins are also marked as outliers, as they are rare or absent in the PDB (FIG. 
7E). 6’791 outliers have over 500 residues and a shape-mer diversity fraction < 0.1 of which 4’948 are 
fully bright. Many of these belong to the ‘Tetratricopeptide-like helical domain superfamily’ where the 
median PDB structure length of structures with resolution < 3Å is only 370. Another example of repetitive 
structural outliers which are thought to be novel folds include the unusual “PGRS domains”, found 
widely in mycobacteria (Berisio and Delogu, 2022). 

Thirty-six AFDB90 structural outliers across 2 components, mapping to 103 AFDB proteins, are 
labelled as having the “Putative type VI secretion system, Rhs element associated Vgr domain”, for 
which only 3 Cryo-EM PDB structures are known. The models do not resemble the PDB structures (Fig. 
7F) because these proteins are obligate complexes that form trimeric β-solenoids and thus the predicted 
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fold of the monomeric chains, which is what AFDB provides, is not functionally meaningful, while the 
AlphaFold-Multimer model of the trimer (Fig 7F) has 1.1Å RMSD to the PDB structure. 

Although structural information in AFDB is highly informative and novelties in terms of protein 
families can be detected, our results highlight that the protein structure space as predicted by AlphaFold 
needs to be put into evolutionary, functional, and structural context before any model is used as a 
reference structure, even if they have high predicted accuracy. 

 
Conclusions: Towards large-scale protein function annotation 

In this work, we carried out a large-scale analysis of the catalogued protein sequence space covered 
by predicted high quality structural information, as made available through AlphaFold database version 
4. Our results indicate that 19% of this space is composed of protein families and superfamilies that are 
functionally dark and can not, solely on the basis of sequence similarity, be annotated to a known protein 
family. We also highlight that a large fraction of these can not be named consistently using the most 
recent deep-learning-based approaches and demonstrate that functional annotation of proteins, even 
from a purely computational perspective, requires a combination of data sources and approaches.  

Our findings highlight the power of large-scale similarity networks to accurately annotate protein 
function. In cases where simple homology transfer methods are not effective, pooling information from 
across the network can enhance remote homology detection. When combined with traditional protein 
evolution approaches, genomic context information, structural outlier measures, structure-based 
function prediction and predicted name diversity, we can gain valuable insights into putative protein 
function, annotate undescribed protein families that can be prioritised for experimental characterization, 
and identify false annotations or incorrect protein sequences. However, it is crucial to combine individual 
predictions from these tools with statistics of predictions across similar proteins to increase the 
confidence of the annotation. 

It is important to mention, however, that our study has some caveats and limitations. Firstly, all 
the analyses presented, including the sequence-based clustering and outlier analysis, depend on 
thresholds and parameters that were chosen based on prior experience and not optimised for any 
particular downstream application. All alignment similarity techniques used considered coverage across 
the full protein sequence, in order to enable detection of novel full-length protein families. This indicates 
that some remote homologies may have been missed, with a domain-based exploration providing a 
possible complementary solution. In addition, our highly particular definition of functional brightness 
excluded predicted intrinsically disordered and coiled-coil proteins, and misclassifies some functionally 
uncharacterised proteins as “bright” because of the presence of ambiguous annotations such as 
“transmembrane” or “repeat” domains or some characterised ones as “dark” because their annotations 
are “Putative” or they were not assigned a family. Thus, the examples we discuss are the low-hanging 
fruit of uncharacterised or unannotated protein families, but they are only the tip of the iceberg. Still, we 
have found that these clusters are a rich source of new Pfam families, and have begun to add a selection 
of them to the upcoming release 36.0. 

Recently, several complementary approaches have been developed to categorise the diversity 
of the protein universe and uncover novelties (Akdel et al., 2022; Barrio-Hernandez et al., 2023; Bordin 
et al., 2023), again highlighting the importance of incorporating multiple perspectives and methods in 
protein function annotation. These approaches showcase the significance of using a diverse set of 
information to gain a more complete understanding of protein function and its role in cellular processes. 
We expect that further advances in deep-learning-based methods for function prediction (Gligorijević et 
al., 2021), remote homology detection (Kaminski et al., n.d.; Pantolini et al., 2022) and large-scale 
protein structure prediction (Lin et al., n.d.) will allow in the near future to take these analyses to a much 
larger scale and at a much finer resolution. 
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Materials and Methods 
 

1. Data collection 
 
We started from the 53’625’855 UniRef50 (Suzek et al., 2015) clusters as of August 2022 (UniRef 
version 2022_03) and the 214’683’829 structural models for most UniProtKB entries available via the 
AlphaFold database (version 4, AFDBv4). For each Swiss-Prot (Boutet et al., 2016), TrEMBL (UniProt 
Consortium, 2023) and UniParc (Leinonen et al., 2004) entry in each UniRef50 cluster we collected 
their sequence, taxonomy and functional and structural annotations from UniProt and InterPro (Paysan-
Lafosse et al., 2023). This includes domains, protein families, predicted transmembrane segments, 
predicted signal peptides, and predicted disorder and coiled coil regions. Redundant, overlapping 
domain, families, coiled coil and disorder annotations were continuously merged (Fig. 1A), selecting as 
the preferential name the first occurrence that did not include “Putative”, “Hypothetical”, 
“Uncharacterised” and “DUF”. In parallel, we also mapped each entry in AFDBv4 to their corresponding 
UniRef50 cluster, selecting as the structural representative of that cluster the longest protein with an 
average pLDDT better than 70. 
 

2. Darkness estimation 
 
We define functional brightness of a given protein as the full-length coverage with annotations of its 
close homologs, with 0% meaning “dark” and 100% meaning “bright”. For that, we first computed the 
full-length coverage with annotations for all entries in all UniRef50 clusters, and then considered a 
UniRef50 cluster as “bright” as the “brightest” sequence it encompasses (Fig. 1A). Annotations 
considered were: domains as annotated in InterPro, and families, predicted disorder and predicted 
coiled coil regions as annotated in UniProtKB and UniParc. For any domains and families, all those with 
“Putative”, “Hypothetical”, “Uncharacterised” and “DUF” in their name were given a coverage of zero 
and, thus, considered “dark”. 
 

3. Large-scale sequence similarity network 
 
To model the sequence landscape covered by all UniRef50 clusters with a high-confidence structural 
model, we built a large-scale sequence similarity network of 6’136’321 UniRef50 clusters with a 
structural representative with a pLDDT (Jumper et al., 2021) better than 90 (AFDB90 dataset). For that, 
all-against-all MMseqs2 (Steinegger and Söding, 2017) comparisons were carried out with the 
sequence representatives of all selected UniRef50 clusters, linking two sequences if they find a match 
that covers at least 50% of their full length sequences with an E-value better than 10-4. Each edge was 
given a weight proportional to the E-value of the match and, to facilitate the handling of the resulting 
network, a maximum of 4 outbound edges were considered per node. For that, nodes were sorted 
based on their label (the UniProtID of the corresponding protein) so that edges always adopt a 
downward direction in the list (e.g., A→B and B→A always correspond to A→B) and for each node only 
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the 4 outbound higher weight edges considered (Fig. 1B). The direction of the edges was not considered 
for further analysis.  

To further visualise the graph, each connected component in the graph was simplified to a set 
of connected communities. For that, per connected component, communities of highly connected nodes 
were detected using the asynchronous label propagation algorithm, as implemented in the 
asyn_lpa_communities method in networkx (Hagberg et al., 2008). This reduced the graph to a total of 
688’852 communities (hereafter referred to as the AFDB90Communities set) connected by a total of 
1’488’764 edges, whose layout could then be computed with Cosmograph (https://cosmograph.app/). 
For the simulation with Cosmograph, the maximum space allowed (8192), a gravity of 0.5, a repulsion 
of 1.4, a repulsion theta of 1.71, a link strength of 2, a minimum link distance of 1 and friction of 1 were 
used. For each community, we then collected the longest and median-length representatives, whose 
structures were later used in section 5. For visualisation, individual connected components were 
extracted from the layouted graph and drawn with Datashader (https://datashader.org/index.html). The 
interactive web version of this network was created using the Cosmograph library for network 
visualisation and the Mol* toolkit for 3D macromolecular visualisation of individual structure 
representatives. 
 

4. Sequence-based prioritisation of dark connected components and their semantic name 
diversity 

 
Each node in a connected component in our non-simplified network was attributed a functional 
brightness value, and for each connected component the average brightness was computed. 
Connected components were sorted by their average brightness and their overall size (i.e., number of 
nodes), so that the top ranking were the largest, darkest connected components. We selected all 
connected components with more than 1 node and a median brightness below 5%.  

As during the time this work was being carried out UniProt implemented a deep learning-based 
approach for naming all those proteins from TrEMBL titled as “Uncharacterised protein” (ProtNLM) 
(Gane et al., 2022), we analysed the consistency of the names predicted for the proteins included in 
each of the selected dark connected components. For this, we did not consider only the individual 
UniRef50 representatives, but all unique sequences included in all those clusters that make the 
connected component, and considered only those connected components that account for more than 
50 unique protein sequences. For each fully dark (functional brightness ≤ 5%) and fully bright (functional 
brightness ≥ 95%) component, we collected the name of the representative of each UniRef100 cluster 
included as of UniProt version 2022_04 (December 2022), and computed the proportion of unique 
names (i.e., name diversity) as well as the proportion of unique words (i.e., word diversity), in order to 
account for small variation of the same name. By comparing the distribution of name and word 
diversities between bright and dark components, this allowed the identification of dark proteins that are 
similar at the sequence level but not named consistently, likely representing protein families that 
ProtNLM has never seen before and thus unable to name. 
 

5. Structural and substructural features of dark proteins and novel protein families 
 
To represent and analyse 3D substructure composition, we build upon Geometricus (Durairaj et al., 
n.d.), and use 16 rotation invariant moments from (Flusser et al., 2016, 2003; Mamistvalov, 1998) and 
the chiral invariant moment from (Hattne and Lamzin, 2011). These moments were calculated for 4 
different fragmentation types on ɑ-carbon coordinates: k-mers of size 8 and 16, and spheres of radii 5Å 
and 10Å; for a total of 68 moments for each central residue in a protein. We then trained a neural 
network using PyTorch (Paszke et al., 2019) with these 68 moments as input, 2 linear hidden layers of 
size 32 and a sigmoid output layer of size 10, and with contrastive loss to reduce the output distance 
between equivalent pairs of central residues and increase the distance between non-equivalent pairs 
in a training set. As the output of the network is 10 floating point numbers between 0 and 1, this could 
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be discretized into 10 bits based on whether the value was greater than or less than 0.5, resulting in 
1024 shape-mers. 

The training set is created from structures from the CATH database having less than 40% 
sequence identity (CATH40) that could be assigned to a CATH functional family (FunFam) with an E-
value < 1x10-6. From these 8’333 structures, US-align (Zhang et al., 2022) was used to align and 
superpose all pairs within each FunFam cluster and 3x8’333 randomly chosen pairs across clusters. 
Aligned pairs of residues from two proteins belonging to the same FunFam with an alignment TM-score 
> 0.8 were considered as positive pairs. Aligned or random pairs of residues from two proteins belonging 
to different CATH superfamilies, with an alignment TM-score <0.6 were considered as negative pairs. 
In addition, using all 31,883 CATH40 proteins, we sampled up to 50 pairs of central residues from each 
protein, where positive pairs had <2 sequence distance and negative pairs had 5-20 sequence distance. 
In total, this resulted in 6 million residue pairs for training, of which 42% were positive pairs. This dataset 
could be used for training and/or refining any kind of residue-level contrastive learning task. Training 
took 30 mins on 1 RTX-3080TI with the ADAM optimizer, a batch size of 1024, and a learning rate of 
10−3 over 5 epochs. 

Shape-mers were calculated for all AFDB90 proteins, and all ProteinNet CASP12 proteins in 
the 100% sequence identity set (AlQuraishi, 2019). For AlphaFold models, we followed the approach 
described in the analysis of AFDBv1 (Akdel et al., 2022) to split each protein into segments with 
Gaussian smoothed plDDT > 70, after first splitting into domains based on a combination of pLDDT and 
the predicted aligned error (PAE) matrix. Shape-mers were then calculated for each segment in each 
domain and concatenated. Proteins with less than 20 amino acids were ignored. A shape-mer diversity 
fraction was defined for each protein as the number of unique shape-mers divided by the total number 
of shape-mers (which is equal to the protein length if all residues have high pLDDT). Fig. S4 shows an 
example AlphaFold protein with its 6 most common shape-mers highlighted.   

We trained a FastText model (Bojanowski et al., 2017) on the shape-mer bit representations 
from the ProteinNet CASP12 dataset using Gensim (Rehurek and Sojka, n.d.)(v4.2.0) with a window 
size of 16 and embedding size of 1024. Fig. S5A shows the sensitivity of SCOPe family retrieval on the 
SCOPe40 dataset of 11’211 structures for all-vs-all Smith-Waterman alignment with FastText shape-
mer similarities used as the score matrix (runtime: 12 mins on 10 threads). Shape-mer FastText 
alignment scores are compared to three structure aligners, DALI (Holm, 2020), Foldseek (van Kempen 
et al., n.d.), and TM-align (Zhang and Skolnick, 2005); one sequence aligner, MMseqs2 (Steinegger 
and Söding, 2017); and 2 other structure alphabet-based structural sequence aligners, 3D-BLAST 
(Mavridis and Ritchie, 2010) and CLE-SW (Wang and Zheng, 2008), using the scripts and benchmark 
data provided in (van Kempen et al., n.d.). The benchmark results demonstrate that the learned 
structural alphabet and FastText similarities still have discriminative power in distinguishing protein 
families, despite being much less “local” than approaches such as Foldseek and TM-align which work 
on individual coordinates of up to 2 residues. We don’t explore further alignment optimization, such as 
compositional bias correction or penalty optimization to increase sensitivity, as more local structural 
aligners will still have the advantage of higher resolution alignment. However, for the task at hand, our 
substructure representations give us a good compromise - a discriminative structural alphabet for 
representing a protein structure as a structural sequence; and substructure decomposition at the level 
of whole secondary-structural elements, allowing for a broader exploration of substructure composition 
across the AlphaFold database.  

To compare substructure compositions, we obtained protein-level embeddings by averaging 
across normalised FastText embeddings using the get_sentence_vector function. Fig. S5B shows the 
distributions of cosine distances of these embeddings within the same SCOPe family and across 
SCOPe folds, demonstrating that they have discriminative power in representing substructure 
compositions. We trained the Isolation Forest algorithm (Liu et al., 2008) as implemented in scikit-learn 
v1.1.1 (Pedregosa et al., 2011) on the ProteinNet CASP12 FastText sentence embeddings with 1% 
contamination rate, and used this trained model to predict structural outlier scores for proteins in the 
AFDB90 dataset. Proteins with a negative score are labelled as outliers.  
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6. Computational investigation of selected examples 

We further investigated 4 different types of examples of dark proteins and connected components we 
encountered in our dataset: (1) a dark connected component whose models are structural inliers and 
are named consistently, but have no matches in the PDB (component 159), (2) a dark component 
whose models are structural inliers, are named consistently and have structural homologs in the PDB 
(component 27), (3) a dark connected component that is named inconsistently (component 3314), and 
(4) examples of different kinds of structural outliers, including a novel fold (β-flower fold). In all cases, 
we combined data from the sequence-based network and its functional brightness annotations, as well 
as from structural searches with Foldseek and the outlier scores. Structural homologs for selected 
representatives (those with a length close to the median length in the component) in the PDB or the 
AFDB90Communities set were searched with Foldseek using the TM-align mode (van Kempen et al., 
n.d.). Remote sequence homologs were detected for selected representatives by HHPred searches 
over the PDB, ECOD and Pfam databases through the MPI Bioinformatics toolkit using default settings 
(Gabler et al., 2020; Pereira and Alva, 2021). Further case-by-case analyses were also carried out as 
described below.  

6.1. Connected component 159 
 
Ninety-four randomly selected sequences from component 159 were aligned with MUSCLE (Edgar, 
2004). The resulting alignment was used for three independent PSI-BLAST (Altschul et al., 1997) 
searches over the eukaryotic, archaea and bacterial sequences in nr (nr_euk, nr_arc, nr_bac) with 8 
rounds through the MPI-Bioinformatics toolkit as of October 2022 (Gabler et al., 2020; Pereira and Alva, 
2021). All collected sequences were filtered to a maximum sequence identity of 95% with MMseqs2 
(Steinegger and Söding, 2017) and clustered based on BLASTp all-against-all pairwise searches with 
CLANS until equilibrium at an E-value of 1x10-10. 

The resulting sequence similarity network was used as input for GCsnap (v1.0.17) (Pereira, 
2021) for the analysis of the conservation of the genomic contexts encoding for each of the proteins in 
the individual clusters. A window of four flanking genes was used, MMseqs2 was employed for protein 
family clustering at an E-value better than 1x10-4 and clusters of similar genomic contexts were detected 
using the operon_cluster_advanced method, which employs PaCMAP (Wang et al., 2020) to project 
genomic contexts in 2D based on their family composition and DBSCAN (Ester et al., 1996) (as 
implemented in scikit-learn) to identify clusters of similar genomic contexts. For this, only families that 
were found in at least 30% of all genomic contexts were considered. For each cluster in the sequence 
similarity network and each identified neighbour family, up to 100 structure representatives were 
selected from AFDB and used as input for DeepFRI with default settings (Gligorijević et al., 2021). The 
top 10 most common predictions per cluster/context family were retrieved. The highest average scoring 
and most frequent predicted for each case were considered the most likely molecular functions for each 
case.  

We further predicted the 3D structure of the complex between a representative of the main 
cluster in the network (subcluster 1a), which we selected for further experimental validation and 
characterisation as described below. For that, AlphaFold-Multimer (Evans et al., 2021) version 3 was 
used to generate 3D models of a tetramer consisting of two chains of the Allochromatium tepidum TumE 
toxin (EntrezID: WP_213381069.1) and two of its putative, cognate TumA antitoxin (EntrezID: 
WP_213381068.1) with default settings and relaxation. The model with the best predicted TM score 
(pTM) and interface pTM score was selected (Evans et al., 2021). 
 

6.2. Connected component 27 
 
All non-redundant protein sequences represented by the nodes of connected component 27 (i.e., all 
UniRef100 representatives) were collected and filtered to a maximum sequence identity of 50% with 
MMseqs2. The reduced set of sequences was aligned with MUSCLE and the resulting MSA was used 
as input for three independent BLAST searches over the eukaryotic, archaea and bacterial sequences 
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in nr filtered to 70% sequence identity (nr_euk70, nr_arc70, nr_bac70) through the MPI-Bioinformatics 
toolkit as of January 2023. The same BLAST searches were carried out for SWISS-PROT 
representatives of the PglB, STT3 and YfhO families (UniProtIDs PGLB_CAMJR, STT3_YEAST and 
YFHO_BACSU). The full-length sequences matched in all searches were then combined with those 
representatives of connected component 27 and filtered to a maximum sequence identity of 30% with 
MMseqs2. The resulting set of 7’004 sequences was clustered based on BLASTp all-against-all 
searches with CLANS at an E-value of 1x10-20 until equilibrium. 
 

6.3. Connected component 3314 
 
All non-redundant protein sequences represented by the nodes of connected component 27 (i.e., all 
UniRef100 representatives) were collected and filtered to a maximum sequence identity of 50% with 
MMseqs2. The reduced set of sequences was aligned with MUSCLE and the resulting MSA was used 
as input for four independent BLAST searches over the eukaryotic, archaea, bacterial and viral 
sequences in nr filtered to 70% sequence identity (nr_euk90, nr_arc90, nr_bac90, nr_vir90) through the 
MPI-Bioinformatics toolkit as of January 2023. The same BLAST searches were carried out for the 
tubulin-binding domain of Chlamydomonas reinhardtii TRAF3-interacting protein 1 (UniProtID 
A8JBY2_CHLRE, residues 1-131). The full-length sequences matched to component 3314 homologs 
and the local sequence matched to TRAF3-interacting protein 1 tubulin binding domain were then 
combined with those representatives of component 3314 and filtered to a maximum sequence identity 
of 90% with MMseqs2. The resulting set of 890 sequences was clustered based on BLASTp all-against-
all searches with CLANS at an E-value of 1x10-5 until equilibrium. The 141 sequences making 
subcluster 1 in the resulting network, which included the component 3314-like proteins, were extracted 
from the network, filtered to a maximum sequence identity of 50% with MMseqs2 and used as input for 
GCsnap (v1.0.17), where a window of four flanking genes was used and MMseqs2 employed for protein 
family clustering at an E-value better than 1x10-4. 
 

6.4. β-flower fold 
 

We constructed three new Pfam families to cover the sequence space of β-flower proteins. To do this 
we selected example proteins with 4,5 and 6-fold rotational symmetry and iteratively searched for 
homologs using the hmmsearch software of the HMMER package (version 3.3) (Eddy, 2011). In 
general, we used an inclusion threshold of 27 bits, but manually lowered the threshold to identify more 
homologs or raised it to exclude false matches as identified by AlphaFold2 models. These three families 
were added to Pfam with accession numbers: PF21784, PF21785 and PF21786 and these families 
were added to Pfam clan CL0396, which includes the Tubby C-terminal domain. The families were 
included in the Tubby C-terminal clan considering their significant structural similarity to known 
structures of Tubby-like proteins, in particular the structure of plant Tubby-like At5g01750 protein 
(PDBID 1zxu).   

 
7. Experimental validation and characterisation of a predicted toxin-antitoxin family 

(component 159) 
 

Six Proteobacteria TumE examples from subcluster 1a in the CLANS sequence similarity network 
produced in 6.1. and their cognate TumA antitoxins were selected for experimental characterization 
(Supplementary file 2). The plasmids were constructed using the Circular Polymerase Extension 
Cloning (CPEC) (Quan and Tian, 2011) approach with synthetic DNA procured from Integrated DNA 
Technologies. ORFs were synthesised with added strong Shine-Dalgarno sequence 
(AGGAGGAATTAA) and flanking sequences overlapping with multicloning sites of pBAD33 (toxin 
genes) or pMG25 (antitoxin genes). The DNA fragments were amplified with Phusion polymerase 
(Thermo Scientific™) using pBAD_SD_TOX_fwd and pBAD_TOX_MCS_rev or pMG25_insert_fwd and 
pMG25_insert_rev primer pairs. pBAD33 was linearized using primers pBAD_lin_1 and pBAD_lin_2 
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and pMG25 was linearized using pMG25_lin_from_BlpI and pMG25_lin_from_HindIII. CPEC with 
Phusion polymerase (Thermo Scientific™) was performed to clone the genes into the vector backbone 
(25 cycles with 5 min 30 s extension). The CPEC reaction mixture was transformed into DH5α E. coli 
cells and colony PCR with HOT FIREPol® Blend Master Mix (Solis Biodyne) was used to identify 
colonies with correctly sized inserts. Plasmids were extracted from the overnight cultures using 
FavorPrepTM Plasmid Extraction Mini Kit (Favorgen) and sequenced. The cognate antitoxin plasmid or 
empty pMG25 was co-transformed with the toxin plasmids into BW25113 E. coli cells. DNA fragments 
and DNA oligonucleotides used for plasmid construction are provided in Supplementary file 2.  

Validation of toxicity and metabolic labelling experiments with 35S methionine, 3H uridine and 
3H thymidine were performed as described earlier (Kurata et al., 2022). Briefly, E. coli BW25113 strains 
were transformed with a plasmid pair that allowed for controllable co-expression of putative TumE toxins 
(pBAD33 derivatives, the toxin is expressed under the control of L-arabinose-inducible PBAD promotor) 
and TumA antitoxins (pMG25 derivatives (Jaskólska and Gerdes, 2015), IPTG-inducible expression of 
the antitoxin is driven by PTac promotor) and pregrown in liquid Lysogeny broth (LB) medium (Lennox) 
supplemented with 100 µg/mL carbenicillin (AppliChem) and 25 µg/mL chloramphenicol (AppliChem) 
as well as 0.2% glucose (for repression of toxin expression). Serial 10-fold 5 µL dilutions were spotted 
on LB plates supplemented with antibiotics (carbenicillin and chloramphenicol) as well as either 0.2% 
glucose (repressive conditions) or 0.2% arabinose and 1 mM IPTG (induction conditions). Plates were 
scored after an overnight incubation at 37 °C. 

For metabolic labelling experiments with TumE toxins, E. coli BW25113 strains co-transformed 
with pBAD33 derivatives (for L-arabinose-inducible expression of toxins) as well as the empty pMG25 
vector were first plated out on LB plates supplemented with 100 µg/ml carbenicillin, 25 µg/ml 
chloramphenicol and 0.2% glucose (to suppress the leaky expression of the toxin). Using fresh, 
individual E. coli colonies for inoculation, 2 mL liquid cultures were prepared in defined Neidhardt MOPS 
minimal media (Neidhardt et al., 1974) supplemented with 100 µg/ml carbenicillin, 25 µg/ml 
chloramphenicol, 0.1% of casamino acids, and 0.2% glucose, and grown overnight at 37 °C with 
shaking. Next, experimental 15-mL cultures were prepared in 125 mL conical flasks in MOPS medium 
supplemented with 0.5% glycerol, 100 µg/ml carbenicillin, 25 µg/ml chloramphenicol as well as a set of 
19 amino acids (lacking methionine), each at final concentration of 25 µg/mL. These cultures were 
inoculated overnight to final OD600 of 0.05, and grown at 37 °C with shaking up to of OD600 0.2. At this 
point, one 1-mL aliquot (the pre-induction zero time-point) was transferred to 1.5 mL Eppendorf tubes 
containing 10 µL of radioisotope – either 35S methionine (4.35 µCi, Perkin Elmer), or 3H uridine (0.65 
µCi, Perkin Elmer) or 3H thymidine (2 µCi, Perkin Elmer) – and transferred to the heat block at 37 °C. 
Immediately after, the expression of toxins in the remaining 14 mL culture was induced by addition of 
L-arabinose (final concentration of 0.2%). Throughout the toxin induction time course, 1-mL aliquots 
were taken from the 15 mL culture and transferred to 1.5 mL Eppendorf tubes containing 10 µl of 
radioisotope (35S methionine / 3H uridine / 3H thymidine). The incorporation of radioisotopes was 
stopped after 8 minutes of incubation at 37 °C by adding 200 µL of ice-cold 50% trichloroacetic acid 
(TCA) to 1 mL cultures. In parallel with taking the time-points for labelling, 1 mL aliquots were taken for 
OD600 measurements. Isotope incorporation was quantified by normalising radioactivity counts (CPM) 
to OD600, with the pre-induction zero time-point set as 100%. All experiments were performed in three 
biological replicates (i.e. using three independent cultures inoculated from three different colonies). 
 
Data and code availability 
All the code to collect and process the annotation data in UniProtKB, UniParc and InterPro, and the 
pLDDT data from AFDB is available at https://github.com/ProteinUniverseAtlas/dbuilder. All analysis 
code, data and metadata generated for the current submission is available at 
https://github.com/ProteinUniverseAtlas/AFDB90v4. In addition, an interactive version of the sequence 
similarity network, queriable by UniProt ID, protein title, connected component and community ID, is 
available at https://uniprot3d.org/atlas/AFDB90v4. 
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SUPPLEMENTARY FIGURES 
 

 
Figure S1. Structural conservation and structure-based function prediction of TumE. Structural superposition of five 
randomly selected members of component 159 (UniProtIDs A0A0E3S9F7, A0A3R7AQ40, A0A520JWH3, A0A1W9UY89, 
A0A7J4P9B0) with secondary structure elements labelled.  
 
 

 
Figure S2. Testing the toxicity of putative TumA antitoxins. Antitoxin expression plasmids were cotransformed with empty 
toxin expression vectors (pBAD33) into E. coli BW25113 cells. The bacteria were grown for five hours in liquid LB media 
supplemented with appropriate antibiotics. The cultures were normalized to OD600 = 1.0, serially diluted and spotted on LB agar 
plates containing appropriate antibiotics and 500 µM IPTG for antitoxin induction and 0.2% arabinose to mimic the conditions in 
toxin neutralisation assay. The experiment was made in three biological replicates. 
 
 
 
 

 
Figure S3. The highly semantically diverse prophage-associated connected component 3314. (A) Sequence similarity 
network of homologs of members of connected component 3314 and the tubulin-binding domain of TRAF3-interacting protein 1, 
as computed with CLANS at an E-value threshold of 1x10-5. Points represent individual proteins and grey lines BLASTp matches 
at an E-value better than 1x10-4. Individual subclusters are labelled 1-2 and structural representatives are shown. For subcluster 
1, 5 randomly selected structural representatives of component 3314 are superposed (UniProtIDs A0A0F9A5W1, A0A0P9GTS8, 
AOA418VYX3, A0A2S5M855, A0A2K2VML8). For subcluster 2, the tubulin-binding domain of Chlamydomonas reinhardtii 
TRAF3-interacting protein 1 (PDBID 5fmt, chain B) is shown. (B) Genomic context conservation of 30 sequences from subcluster 
1 with a maximum sequence identity of 30%, as computed with GCsnap. 
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Figure S4. An example of substructure decomposition. (A) An example AlphaFold protein model with its 6 most common 
shape-mers highlighted in different colours. Spheres mark the shape-mer central residue and backbone atoms within 4Å are 
coloured. (B-G) Four random representatives of each selected shape-mer, obtained from CATH proteins with <20% sequence 
identity. Spheres depict positions within 8 residues in sequence and 10Å spatially from the central residue.  
 
 

 
Figure S5. Shape-mer representations combined with FastText can discriminate between protein families. (A) Cumulative 
distributions of sensitivity for homology detection on the SCOPe40 database of single-domain structures. True positives (TPs) 
are matches within the same SCOPe family, false positives (FPs) are matches between different folds. Sensitivity is the area 
under the ROC curve up to the first FP. Results based on shape-mer FastText Smith-Waterman alignment are shown in black. 
(B)  Protein-level embedding distance measured as the cosine distance of FastText sentence vectors for proteins within the same 
SCOPe family (top) and from different SCOPe folds (bottom). 
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SUPPLEMENTARY TABLES 
 
Table S1. List of 22 Pfams built from our data and incorporated into Pfam 36.0.  
 

Pfam ACC Pfam ID Description 

PF21619 DUF6855        Family of unknown function (DUF6855)                   

PF21651 DUF6858        Family of unknown function (DUF6858)                   

PF21738 DJR_capsid     Double jelly roll capsid-like protein                  

PF21739 DUF6866_N      Family of unknown function (DUF6866) N-terminal domain 

PF21740 DUF6866_C      Family of unknown function (DUF6866) C-terminal domain 

PF21741 DUF6867        Domain of unknown function (DUF6867)                   

PF21742 DUF6868        Family of unknown function (DUF6868)                   

PF21746 DUF6869        Family of unknown function (DUF6869)                   

PF21747 YpoC           YpoC-like protein                                      

PF21757 DUF6870        Family of unknown function (DUF6870)                   

PF21758 PAC_bac        Bacterial proteasome assembling chaperone-like protein 

PF21777 SDR-like       Short chain dehydrogenase-like protein                 

PF21778 DUF6873        Family of unknown function (DUF6873)                   

PF21779 DUF6874        Family of unknown function (DUF6874)                   

PF21780 DUF6875        Domain of unknown function (DUF6875)                   

PF21781 DUF6876        Family of unknown function (DUF6876)                   

PF21790 OGG            Putative 8-oxoguanine DNA glycosylase OGG-like protein 

PF21793 DUF6877        Family of unknown function (DUF6877)                   

PF21798 DUF6878        Family of unknown function (DUF6878)                   

PF21804 Transposase_29 Transposase protein                                    

PF21805 Imm5_like      Imm-5 like putative immunity protein                   

PF21806 DUF6879        Family of unknown function (DUF6879)     

 
Supplementary File 1. Top 10 GO term predictions for the members of the clusters in the high-resolution sequence 
similarity network of component 159 (TumE) in figure 5A and their cognate antitoxin families, as predicted with DeepFRI. 
 
Supplementary File 2. DNA fragments and DNA oligonucleotides used for plasmid construction during the experimental 
validation and characterisation of TumE and TumA. 
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