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COMPRESSION OF BOUNDARY INTEGRAL OPERATORS

DISCRETIZED BY ANISOTROPIC WAVELET BASES

HELMUT HARBRECHT AND REMO VON RICKENBACH

Abstract. The present article is devoted to wavelet matrix compression for
boundary integral equations when using anisotropic wavelet bases for the dis-
cretization. We provide a compression scheme which amounts to only O(N)
relevant matrix coefficients in the system matrix without deteriorating the ac-
curacy offered by the underlying Galerkin scheme. Here, N denotes the degrees
of freedom in the related trial spaces. By numerical results we validate our

theoretical findings.

1. Introduction

Many problems from engineering result in partial differential equations, which
can often be solved efficiently by using the finite element method [3, 4]. However, if
the loading of the equation is zero, under some circumstances, one may transform
the partial differential equation in a domain into an integral equation on its bound-
ary. Such an integral equation can then be solved using the boundary element
method [23, 26]. There are many practical problems which can be treated with the
boundary element method, such as for example the Laplacian or linear elasticity
problems [22, 26], scattering problems [6], and homogenization problems [1, 5, 19].

A huge advantage of the boundary element method is that the integral do-
main under consideration is reduced from an n-dimensional surface to a (n − 1)-
dimensional hypersurface. This brings us a significant reduction in the number of
the degrees of freedom, but since the integral kernels are, in general, nonlocal, also
densely populated matrices.

To overcome the dense matrices, fast boundary element methods have been de-
veloped, such as adaptive cross adaptation [2], the fast multipole method [12], or
the wavelet matrix compression [8, 24]. A comparison of these methods with re-
spect to their advantages and disadvantages can be found in [14] for example. The
computational cost of all these methods scale linearly or loglinearly in the number
of degrees of freedom. Indeed, the wavelet matrix compression has been shown to
have linear cost complexity, compare [8]. Moreover, the boundary integral operator
is s?-compressible [27], with the consequence of a quasi-optimal convergence for the
adaptive wavelet boundary element method [9, 11, 17, 28].

However, all these works consider isotropic wavelets, meaning that the mesh
of the underlying multiscale hierarchy consists of isotropic elements. Therefore,
only anisotropic singularities cannot be resolved properly. This leads to a loss
in the convergence rate if the solution of the boundary integral equation exhibits
such singularites. Anisotropic singularities, however, appear if the boundary under
under consideration contains edges as this is the case, for example, for Fichera’s
corner [17]. This gives rise to considering anisotropic tensor product wavelets,
which are allowed to refine in one coordinate direction whilst staying coarse in the
other coordinate direction. With such wavelet functions, the disadvantage of the
isotropic wavelets might be overcome.
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Anisotropic tensor wavelets for boundary integral equations have been considered
first in [13] in the context of sparse tensor product approximations. In [20], for both
isotropic and nonisotropic boundary integral operators which are discretized with
respect to sparse tensor product spaces, a compression scheme has been developed.
This scheme which leads to an essentially linear number of the degrees of freedom
therein, provided the underlying integro-differential operator is of the order 2q >
1
2 (
√
5 − 1) > 0. We, on the other hand, will construct in the present article a

linearly scaling compression scheme for integral operators of arbitrary order which
are discretized with respect to the full tensor product space. In particular, our
compression estimates can be used to improve the results from [20]. Note, however,
that the computation of the matrix entries of the compressed system matrix is not
a topic of the present article. This can be done by using the techniques and results
of [15, 29].

The rest of the article is structured as follows. In Section 2, we introduce the
boundary integral equation to be solved. Then, in Section 3, we define the aniso-
tropic wavelet basis we shall use for the discretization on the unit square. Estimates
on the size of the entries of the respective Galerkin matrix with respect to the unit
square are derived in Section 4. The wavelet matrix compression is proposed in Sec-
tion 5. The number of the remaining nonzero matrix entries is counted in Section 6.
In Section 7, we generalize the wavelet matrix compression to the boundary of a
Lipschitz domain. Consistency and convergence of the wavelet matrix compression
is proven in Section 8. In Section 9, we provide numerical experiments to validate
the results derived. Finally, in Section 10, we state concluding remarks.

Throughout the article, let us replace generic constants by the notation A . B,
which means that A is bounded by a constant multiple of B, and, similarly we
define A & B if and only if B . A. If A . B and B . A, we write A ∼ B.
Moreover, if j, j′ ∈ N

2
0 are given multiindices, the inequality j ≤ j′ is understood

componentwise. Especially, the notion j < j′ means that j ≤ j′ and j 6= j′. Finally,
we set 1 := (1, 1).

2. Problem Formulation

2.1. Parametrization. Throughout this article, we consider a bounded, piecewise
smooth domain Ω ⊆ R

3 with Lipschitz boundary Γ := ∂Ω. We us assume that Γ
can be decomposed into r four-sided, smooth patches Γi, i = 1, . . . , r, such that

Γ =

r⋃

i=1

Γi.

This decomposition needs to be admissible, meaning that the intersection Γi ∩ Γj

is for i 6= j either empty, a common vertex, or a common edge of both Γi and Γj ,
cf. Figure 1. We next choose smooth diffeomorphisms γi : � := [0, 1]2 → Γi such
that there exist constants ci and Ci with

0 < ci ≤
√

det
(
Dγi(s)

ᵀDγi(s)
)
≤ Ci <∞, s ∈ �. (1)

This parametrization should fulfill the matching condition that γi and γj coincide
up to orientation at a common edge of two neighbouring patches Γi and Γj .

2.2. Boundary integral equation. In the following, we intend to calculate the
solution u of the boundary integral equation

Au(x) :=
∫

Γ

K(x,y)u(y) dSy = g(x), x ∈ Γ, (2)

where A : Hq(Γ) → H−q(Γ) is a given boundary integral operator. Typically, the
kernel k is asymptotically smooth of the order 2q, that is, K is singular only on the
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Figure 1. A parametrization of Fichera’s vertex. The different
shadings represent the different r = 24 patches Γj .

diagonal {x = y} and smooth apart from it in terms of

∣∣∂α
x
∂β
y
K(x,y)

∣∣ ≤ Cα,β‖x− y‖−(2+2q+|α|+|β|), (3)

provided that 2 + 2q + |α| + |β| > 0. We assume that A is bounded and strongly
elliptic on Hq(Γ), meaning that there exists a uniform constant c > 0, such that
for any u ∈ Hq(Γ), we have

〈
u, (A+A?)u

〉
Γ
≥ c‖u‖2Hq(Γ). (4)

Furthermore, for the sake of convenience the operator A is assumed to be injective.
If this is not the case, but if its kernel is finite-dimensional and known in advance,
then one can consider A as on operator

A : Hq(Γ)/ kerA →
(
Hq(Γ)/ kerA)′,

and the presented approach is still valid, which is the case for example for any
interior Neumann problem, where the kernel consists of all constant functions.

A practical example, which can be written as a boundary integral equation, is
the Laplace problem with homogeneous Dirichlet boundary data in three spatial
dimensions for given boundary data g ∈ H

1
2 (Γ), i.e.,

∆v = 0 in Ω, v = g on Γ.

It is well known that this problem is uniquely solvable. As described in detail in
[23, 26], for example, we may write v ∈ H1(Ω) as a layer potential of an unknown
density u ∈ Hq(Γ), that is v = Pu, where P is a linear and continuous boundary
potential operator from Hq(Γ) to H1(Ω). By taking the trace of the equation
v = Pu, we arrive at a boundary integral equation

Au := tr
(
Pu
)
= g. (5)

Especially, in the case of the single layer and the double layer potential, the kernels
are given by

Ks(x,y) =
1

4π‖x− y‖ , Kd(x,y) =
〈x− y,ny〉
4π‖x− y‖3 .

It can easily be seen that ks and kd are asymptotically smooth kernels of the orders
2q = −1 and 2q = 0, respectively.
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2.3. Galerkin scheme. By multiplying (2) with a test function φ ∈ Hq(Γ), we
derive the variational formulation of the boundary integral equation under consid-
eration:

find u ∈ Hq(Γ) such that 〈Au, φ〉Γ = 〈g, φ〉Γ for any φ ∈ Hq(Γ). (6)

Similar to [8], we are considering a sequence of nested trial spaces VJ ⊆ VJ+1 ⊆
. . . ⊆ Hq(Γ), which is asymptotically dense in Hq(Γ). For any fixed level J (re-
flecting a mesh width of size ∼ 2−J), we restrict the variational formulation (6) to
VJ to obtain the Galerkin problem

find uJ ∈ VJ such that 〈AuJ , φ〉Γ = 〈g, φ〉Γ for any φ ∈ VJ . (7)

If VJ = span{ψ1, . . . , ψNJ
} ⊆ Hq(Γ), the Galerkin problem (7) is equivalent to

the linear system of equations

AJuJ = gJ , AJ =
[〈
Aψj , ψi

〉
Γ

]NJ

i,j=1
, gJ =

[〈
g, ψj

〉
Γ

]NJ

j=1
, uJ =

[
uj
]NJ

j=1
,

where uJ(x) =
∑NJ

j=1 ujψj(x). Especially, by means of Cea’s Lemma, the solution
uJ ∈ VJ satisfies an estimate of the form

‖u− uJ‖Hq(Γ) . inf
vJ∈VJ

‖u− vJ‖Hq(Γ).

Herein, the right-hand side can estimated further by imposing more knowledge on
the trial spaces VJ .

3. Discretization

3.1. Single-scale bases. A natural choice of trial functions are piecewise polyno-
mial functions, defined on the unit interval, tensorized, and then transported onto
a surface patch Γi. We postpone this transportation to Section 7 and consider the
unit square first. To this end, we first have to consider the unit interval I = [0, 1].
Given a level j, we want to construct a space Vj , with dimVj ∼ 2j , which con-
sists of piecewise polynomial functions on the dyadic intervals [k2−j , (k + 1)2−j ],
k = 0, 1, . . . , 2j − 1. This is possible by choosing a suitable function φ and then
rescaling it according to

φj,k(x) := 2
j
2φ
(
2jx− k

)
, k ∈ ∆j ,

where ∆j is a suitable index set. We remark that this scaling implies ‖φj,k‖L2([0,1]) ∼
1.

Outgoing from this construction, we can define any ansiotropic tensor product
function and the corresponding tensor product spaces. In particular, for j =
(j1, j2) ∈ N

2
0, and k = (k1, k2) ∈ ∆j := ∆j1 × ∆j2 , we define the tensor product

function
φj,k(x) :=

(
φj1,k1

⊗ φj2,k2

)
(x) = φj1,k1

(x1)φj2,k2
(x2).

With these functions, we define the trial space

Vj := span
{
φj,k : j = (j, j), k ∈ ∆j

}
.

The spaces Vj are said to have the approximation order d ∈ N given by

d = sup

{
s ∈ R : inf

vj∈Vj

∥∥v − vj
∥∥
L2(�)

. 2−js‖v‖Hs(�) for any v ∈ Hs(�)

}
(8)

and the regularity γ given by

γ = sup {s ∈ R : Vj ⊆ Hs(�)} .
In the simplest case, we take piecewise constant scaling functions which are

defined by φ := 1[0,1]. Then, for any fixed j ∈ N, we define the local trial functions

φj,k = 2
j
21[k2−j ,(k+1)2−j ] = 2

j
2φ(2j · −k), k ∈ ∆j := {0, 1, . . . , 2j − 1}.
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This yields the well-known approximation spaces Vj := span{φj,k : k ∈ ∆j}, having
the parameters γ = 1

2 and d = 1.
In general, piecewise polynomial functions of the order r result in an approxim-

ation order d = r. The regularity γ is, however, limited by the global smoothness
of the trial functions. There holds γ = 1

2 if they are discontinuous while there is

γ = 3
2 if they are continuous.

3.2. Wavelet bases. Although the above method is very intuitive, we have a lot
of difficulties to deal with. As the boundary integral operators under considera-
tion are not local, the Galerkin problem results in fully populated matrices. This
drawback can, up to logarithmic terms, be overcome with fast boundary element
methods like the fast multipole method [12]. An alternative approach is to con-
sider specific, linear combinations of piecewise polynomial trial functions, which are
called wavelets. For a full introduction into this topic, see for example [10, 16, 24].

The general idea is to discretize the complement of Vj−1 in Vj . Roughly speaking,
given a function uj in Vj , the projection Pj−1uj ∈ Vj−1 is a good estimation on uj ,
and the difference uj − Pj−1uj can be expressed in terms of complementary basis
functions. To this end, we fix a minimal level j0 and introduce complement spaces
Wj for all j > j0, satisfying

Vj = Vj−1 ⊕Wj .

Similar as before, Wj is spanned by basis functions of the form

ψj,k := 2
j−1
2 ψ

(
2j−1 · −k), k ∈ ∇j := {0, . . . , 2j−1 − 1}, j > j0. (9)

The function ψ is the so-called mother wavelet. Also here, we note that ‖ψj,k‖L2(Γ) ∼
1. However, it can be shown that

{
ψj,k}j,k is a Riesz basis of multiple Sobolev spaces

if properly scaled, compare e.g. [24]. We remark that the identity Vj = Vj−1 ⊕Wj

implies that

VJ = Vj0 ⊕Wj0+1 ⊕Wj0+2 ⊕ · · · ⊕WJ . (10)

For the sake of notational convenience, we set Wj0 := Vj0 and denote ψj0,k := φj0,k
for all k ∈ ∇j0 := ∆j0 .

By tensorising (10) with itself, we arrive at

VJ ⊗ VJ =
⊕

|j|∞≤J

Wj1 ⊗Wj2 .

Hence, in view of (9), we can write

VJ ⊗ VJ = spanΨ := span {ψj,k : |j|∞ ≤ J, k ∈ ∇j} (11)

with the tensor product wavelets ψj,k = ψj1,k1
⊗ ψj2,k2

and

∇j := ∇j1 ×∇j2 , ∇j :=
{
0, . . . ,max{0, 2j−1 − 1}

}
. (12)

3.3. Notation. Let us define some notation which we will use throughout the
remainder of this article. First, we define the support of a wavelet as

Ωj,k := suppψj,k

and, accordingly,

Ωj,k := suppψj,k.

Similarly, we define the singular support, i.e., the points at which a wavelet is not
smooth, as

Ωσ
j,k := singsuppψj,k, Ωσ

j,k := singsuppψj,k.

For a pair of wavelets ψj,k and ψj′,k′ , we let

δxi
:= dist

(
Ωji,ki

,Ωj′i,k
′
i

)
, δtot := dist

(
Ωj,k,Ωj′,k′

)
.
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Moreover, we also define

σxi
:=

{
dist

(
Ωji,ki

,Ωσ
j′i,k

′
i

)
, ji ≥ j′i,

dist
(
Ωσ

ji,ki
,Ωj′i,k

′
i

)
, otherwise.

Finally, given a wavelet ψj,k, we say that ψj′,k′ is located in the far-field of ψj,k

if there holds dist(Ωj,k,Ωj′,k′) & 2−min{j,j′}, otherwise, we say that ψj′,k′ is located
in the near-field of ψj,k. For the tensorized wavelets, this threshold is the maximal

support length, which amounts to 2−min{j1,j2,j
′
1,j

′
2}.

3.4. Some important wavelet properties. Wavelet functions have some very
nice properties, see e.g. [7, 10, 24] for the full range of expressions. In this section,
we will restrict ourselves on the most important ones, which are needed in the
remainder of this article.

First, it is well-known (see e.g. [7, 10]) that a one-dimensional wavelet basis on
the interval possesses a unique, biorthogonal dual basis. By tensorising this dual

basis with itself, we get a biorthogonal dual basis on �, which we denote by ψ̃.

This dual basis then provides the approximation order d̃ and the regularity γ̃ > 0.
As already stated in [13, 24], the set Ψ := {ψj,k : j ≥ j0, k ∈ ∇j} forms a Riesz

basis of L2(�), meaning that
∥∥∥∥∥∥

∑

j,k

cj,kψj,k

∥∥∥∥∥∥

2

L2(�)

∼
∑

j,k

∣∣cj,k
∣∣2.

Moreover, in accordance with [7, 13], they satisfy the norm equivalences,

‖u‖2Hs
◦(�) ∼

∑

j,k

22s|j|∞
∣∣∣〈ψ̃j,k, u〉�

∣∣∣
2

, −γ̃ < s < γ, (13)

where Hs
◦ := Hs if s ≥ 0 and Hs

◦ := H̃s if s < 0.
For a multiindex j, let us define the (non-orthogonal) projection onto Vj as

Qju :=
∑

k∈∇j

〈
ψ̃j,k, u

〉
Γ
ψj,k,

whereas for J ∈ N, we define the projection onto VJ as

QJu :=
∑

|j|∞≤J

Qju =
∑

|j|∞≤J

∑

k∈∇j

〈
ψ̃j,k, u

〉
Γ
ψj,k. (14)

By using the a tensor argument, the duality and the biorthogonality, the one-
dimensional approximation property, which is derived e.g. in [24], generalizes to

‖u−QJu‖Hs
◦(�) . 2J(s−t)‖u‖Ht

◦(�), s ≤ t, −d̃ < s < γ, −γ̃ < t ≤ d. (15)

Moreover, there holds Bernstein’s inequality

‖Qju‖Hs
◦(�) . 2|j|∞(s−t)‖Qju‖Ht

◦(�), t ≤ s < γ,

and, regarding QJu ∈ VJ , also

‖QJu‖Hs
◦(�) . 2J(s−t)‖QJu‖Ht

◦(�), t ≤ s < γ. (16)

Perhaps the most important property of wavelets for the present article is that
they have vanishing moments, also called cancellation property, which is induced
from the approximation order of the dual basis. Namely, in accordance with [7],
there holds ∣∣〈ψj,k, u

〉
[0,1]

∣∣ . 2−(d̃+ 1
2 )j |u|

W d̃,∞(Ωj,k)
.
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By explicitly enrolling the tensor product structure of the wavelet ψj,k, we can
immediately deduce that

∣∣〈ψj,k, u
〉
�

∣∣ . 2−(d̃+ 1
2 )|j|1 |u|

W 2d̃,∞(Ωj,k)
. (17)

Remark 3.1. Due to the tensor product structure of the wavelets, we must tensorize
scaling functions on the coarsest level with wavelets on a finer level. This means

that we cannot use d̃ vanishing moments in both directions. However, if I ⊆ {j1, j2}
denotes the subset of indices corresponding to univariate wavelets with d̃ vanishing
moments, we have the estimate

∣∣〈ψj,k, u
〉
�

∣∣ . 2−
1
2 |j|1−d̃

∑
j∈I j |u|

W |I|d̃,∞(Ωj,k)
.

4. Matrix entry estimates

In order to develop a compression scheme for the operator A with respect to the
wavelet basis Ψ, we need to estimate the matrix entries in the Galerkin matrix

AJ =
[〈
ψi′,j′,k′ ,Aψi,j,k

〉
Γ

]
, where





1 ≤ i, i′ ≤ r,
j, j′ ≥ j0,

k ∈ ∇j, k
′ ∈ ∇j′ ,

where the wavelet function ψi,j,k is the lifting of the function ψj,k onto the patch
Γi, i.e.,

ψi,j,k(x) := ψj,k

(
γ
−1
i (x)

)
.

For now, let us consider the situation r = 1, where the only patch present is the
unit square �, in which case we can assume that γi = id. The discussion of the
situation on a Lipschitz manifold is postponed to Section 7.

4.1. Far-field estimates. For the remainder of Section 4.1, we assume that δtot >
0, which means that the first compression [8, 16, 24] applies. There exist estimations
for the entries by Reich [20, 21], which make use of the vanishing moments in the
one dimensional wavelets with the smallest corresponding support length. This is
especially useful when considering thin, long wavelets with a small distance. We
quote the following result.

Theorem 4.1 ([20, Theorem 2.1.9]). For j, j′ ≥ j0 + 1, there holds

∣∣〈ψj′,k′ ,Aψj,k

〉
�

∣∣ . 2−
1
2 (|j|1+|j′|1)2−d̃(j(1)+j(2)) dist

(
Ωj,k,Ωj′,k′

)−(2+2q+2d̃)
.

Here,
{
j(1), j(2)

}
⊆ {j1, j′1, j2, j′2} ∩ [j0 + 1, ∞) can be any two distinct indices, the

best behaviour is obtained by choosing the two largest indices.

Let us next derive an estimate which makes use of the vanishing moments in
every one-dimensional wavelet, which is beneficial if the supports of the wavelets
ψj,k and ψj′,k′ are small.

Theorem 4.2. For j, j′ ≥ j0 + 1, there holds

∣∣〈ψj′,k′ ,Aψj,k

〉
�

∣∣ . 2−(d̃+ 1
2 )(|j|1+|j′|1)δ

−(2+2q+4d̃)
tot . (18)

Proof. By explicitly enrolling the tensor product structure of the wavelets, we can
write

∣∣〈ψj′,k′ ,Aψj,k

〉
�

∣∣ ∼
∫ 1

0

∫ 1

0

∫

�
K(x,x′)ψj,k(x) dx ψj′1,k

′
1
(x′1) dx

′
1 ψj′2,k

′
2
(x′2) dx

′
2.
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We can use the vanishing moments of ψj′2,k
′
2
to deduce that

∣∣〈ψj′,k′ ,Aψj,k

〉
�

∣∣

. 2−(d̃+ 1
2 )j

′
2

∥∥∥∥
∫ 1

0

∫

�
∂d̃x′

2
K
(
x,
[
x′
1
·

])
ψj,k(x) dxψj′1,k

′
1
(x′1) dx

′
1

∥∥∥∥
L∞(Ωj2,k2

)

.

Note that we can differentiate under the integral because the kernel k is smooth and
bounded on Ωj,k × Ωj′,k′ . The vanishing moments of ψj′1,k

′
1
then allow us proceed

with the estimate to
∣∣〈ψj′,k′ ,Aψj,k

〉
�

∣∣

. 2−(d̃+ 1
2 )|j

′|1

∥∥∥∥
∫ 1

0

∫ 1

0

∂d̃x′
1
∂d̃x′

2
K ([ x1

x2
] , ·)ψj1,k1

(x1) dx1ψj2,k2
(x2) dx2

∥∥∥∥
L∞(Ωj′,k′ )

.

By subsequently using the vanishing moments of ψj2,k2 , and ψj1,k1 as well, we finally
arrive at
∣∣〈ψj′,k′ ,Aψj,k

〉
�

∣∣ . 2−(d̃+ 1
2 )(|j|1+|j′|1)

∥∥∂d̃x1
∂d̃x2

∂d̃x′
1
∂d̃x′

2
K
(
x,x′

)∥∥
L∞
(
Ωj,k×Ωj′,k′

).

If we remember the fact that the kernel k is asymptotically smooth of order 2q,
compare (3), we can deduce (18). �

4.2. Near-field estimates. As we will see in Section 5, we may use the previous
estimates only if a wavelet pair is in the far-field, meaning that the supports are
sufficiently far away. For the near field, we need to derive different estimates. In
this case, we explicitly enroll the tensor product structure of the wavelets again.
We will use an approach which is similar to the one created in [20].

To this end, we define the dimensionally reduced kernel

K1(x, x
′) :=

∫ 1

0

∫ 1

0

K
(
[ xy ] ,

[
x′

y′

])
ψj2,k2

(y)ψj′2,k
′
2
(y′) dy dy′ (19)

and the operator A1 as the integral operator with the kernel K1. By definition, the
kernel K1 depends on the wavelets ψj2,k2 and ψj′2,k

′
2
, but the context will always

clarify this relation.
Due to the tensor product structure, the dimensionally reduced operator obvi-

ously satisfies 〈ψj′,k′ ,Aψj,k〉� = 〈ψj′1,k
′
1
,A1ψj1,k1

〉[0,1]. Moreover, similar as shown
in [20, Lemma 2.1.5], the estimate

∣∣∣∂αx ∂α
′

x′K1(x, x
′)
∣∣∣ . 2−

1
2 (j2+j′2)|x− x′|−(2+2q+α+α′) (20)

holds. However, there are also vanishing moments of the wavelets hidden in the
kernel K1, which can be used to improve the estimate (20) and hence also Theorem
2.1.7 in [20]:

Theorem 4.3. Assume that 0 < σx1
. 2−min{j1,j

′
1}, and max{j1, j′1},max{j2, j′2} >

j0. Then, we have
∣∣〈ψj′1,k

′
1
,A1ψj1,k1

〉
[0,1]

∣∣
∣∣〈ψj1,k1

,A1ψj′1,k
′
1

〉
[0,1]

∣∣

}

. 2−
1
2 (j2+j′2)2−d̃max{j2,j

′
2}2−

1
2 |j1−j′1|2−d̃max{j1,j

′
1}σ−(1+2q+2d̃)

x1
.

Proof. We will simply derive the appropriate estimate for the kernel k1 similar
to (20). Then, the rest of the proof may be completed by simply following the
arguments of [20].
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If x 6= x′, then the function under the integral in (19) is bounded, so we may dir-
ectly differentiate under the integral. Moreover, let us without loss of the generality
assume that j2 > j′2. Then,

∣∣∂αx ∂α
′

x′K1(x, x
′)
∣∣ =

∣∣∣∣∣

∫

Ωj2,k2

ψj2,k2
(y)

∫

Ωj′2,k′
2

ψj′2,k
′
2
(y′) ∂αx ∂

α′

x′ K
(
[ xy ] ,

[
x′

y′

])
dy dy′

∣∣∣∣∣

. 2−(d̃+ 1
2 )j2 sup

y∈Ωj2,k2

∣∣∣∣∣

∫

Ωj′2,k′
2

ψj′2,k
′
2
(y′)∂d̃y∂

α
x ∂

α′

x′ K
(
[ xy ] ,

[
x′

y′

])
dy′

∣∣∣∣∣

. 2−(d̃+ 1
2 )j2

∫

Ωj′2,k′
2

∣∣ψj′2,k
′
2
(y′2)

∣∣
︸ ︷︷ ︸

.2j2/2

∥∥∥[ xy ]−
[
x′

y′

]∥∥∥
︸ ︷︷ ︸

≥|x−x′|

−(2+2q+d̃+α+α′)

dy′2

. 2−
1
2 (j2+j′2)2−d̃j2 |x− x′|−(2+2q+d̃+α+α′),

since |Ωj2,k2 | . 2−j2 .
As the remainder of the proof is based on the ideas of [8, Section 6], we just

sketch it. Without loss of the generality, we may assume that j′1 ≤ j1. In this
case, ψj1,k1

is located on a smooth part of the wavelet ψj′1,k
′
1
, so we may decompose

ψj′1,k
′
1
= f̃ + f̄ such that f̃ is a smooth function satisfying

f̃
∣∣
Ωj1,k1

= ψj′1,k
′
1

∣∣
Ωj1,k1

.

This can be realized by Calderón’s extension theorem [25] with ‖f̃‖Hs([0,1]) . 2sj
′
1 .

Hence, we have
∣∣〈ψj1,k1

,A1ψj′1,k
′
1

〉
[0,1]

∣∣ ≤
∣∣〈ψj1,k1

,A1f̃
〉
[0,1]

∣∣+
∣∣〈ψj1,k1

,A1f̄
〉
[0,1]

∣∣.

The estimate for f̄ follows directly from [20, Lemma 2.1.1].

For the function f̃ , we define the operator

A]
1f̃(x) :=

∫

R

χ(x)χ(x′)K1(x, x
′)f̃(x′) dx′

by employing a smooth cutoff function χ satisfying χ|[0,1] = 1. Then, A]
1 is a

pseudo-differential operator of the order m = 1 + 2q + d̃, cf. [18]. Remarking that

in our case, we have c(j2, j
′
2) = 2−

1
2 (j2+j′2)2−d̃j2 , we may apply [20, Lemma 2.1.4]

and the fact that σx1
. 2−j′1 to conclude. �

Remark 4.4. Up to now, we have just considered a reduction to the first coordinate
direction. Nevertheless, as also done in [20], a reduction to the second coordinate is
possible by using a similar definition for the operator A2, and the same estimates
hold with exchanged indices.

5. Matrix compression scheme

To keep the number of the degrees of freedom small, we need to introduce a
compression scheme, according to which many matrix entries do not have to be cal-
culated, whilst obtaining convergence with the full rate offered by the underlying
Galerkin scheme. We differ between the first compression and the second compres-
sion, but for either case, we require a matrix block error which is controlled by a
level dependent parameter σj,j′ given by

σj,j′ := 2J(d′ − q)− d′(|j|∞ + |j′|∞) + κ(2|j|∞ + 2|j′|∞ − |j|1 − |j′|1). (21)

Here, d′ > d and κ > 0 are sufficiently small, but fixed real numbers, which are
introduced in order to avoid logarithmic terms in the consistency estimates.
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5.1. Far-field: First compression. In the case of the first compression, we con-
sider a pair of wavelets ψj,k and ψj′,k′ , whose supports are located sufficiently
far away from each other. As we will see, we need to estimate a sum of matrix
coefficients by an integral, which requires that the minimal distance between the
respective wavelets’ supports is large enough. In two dimensions, we must have a
minimal distance, which is at least as wide the largest face of the included supports,
namely 2−min{j1,j2,j

′
1,j

′
2}.

If this is not the case, however, we can make use of the tensor product structure
and estimate the sum only in the coordinate direction of xi, which results in a min-
imal distance of 2−min{ji,j

′
i}. This procedure basically follows [20], but is adapted

here to the setting on the full tensor product space.

5.1.1. Compression in the x- and y-coordinate. For a fixed maximal level J , we
define the compressed matrix for the first compression A

c1,1
J as

[
A

c1,1
J

]
(j,k),(j′,k′)

:=

{
0, j, j′ ≥ j0 + 1, δtot > Bj,j′ ,[

AJ

]
(j,k),(j′,k′)

, otherwise,
(22)

for k ∈ ∇j, k
′ ∈ ∇j′ , and |j|∞, |j′|∞ ≤ J . Herein, the cutoff parameter Bj,j′ is given

as

Bj,j′ := amax

{
2−min{j1,j2,j

′
1,j

′
2}, 2

σ
j,j′

−d̃(|j|1+|j′|1)

2q+4d̃

}
, (23)

where a > 0 is a fixed real number.

Theorem 5.1. Let RJ := AJ −A
c1,1
J . Then, for the matrix block Rj,j′ , we have

the estimate

‖Rj,j′‖2 . a−(2q+4d̃)2−σj,j′

with a generic constant that is independent of the refinement level J .

Proof. We advance similar as in [8]. First, we define the set

∇B
j := {k ∈ ∇j : δtot > Bj,j′}.

Then, we estimate the column sum of the block Rj,j′ by
∑

k∈∇j

∣∣r(j,k),(j′,k′)

∣∣ =
∑

k∈∇B
j

∣∣〈ψj′,k′ , Aψj,k

〉
�

∣∣ . 2−(d̃+ 1
2 )(|j|1+|j′|1)

∑

k∈∇B
j

δ
−(2+2q+4d̃)
tot ,

where the last inequality is due to Theorem 4.2. By the compression rule (22), we
have the relation δtot ≥ Bj,j′ , and, since also Bj,j′ & 2−j1 , 2−j2 , we can estimate the
sum by an integral, yielding

∑

k∈∇j

∣∣r(j,k),(j′,k′)

∣∣ . 2−(d̃+ 1
2 )(|j|1+|j′|1)2|j|1

∫

‖x‖≥Bj,j′

‖x‖−(2+2q+4d̃) dx

. 2−(d̃+ 1
2 )(|j|1+|j′|1)2|j|1B−(2q+4d̃)

j,j′ .

As we also have Bj,j′ ≥ a2
σ
j,j′

−d̃(|j|1+|j′|1)

2q+4d̃ , we obtain
∑

k∈∇j

∣∣r(j,k),(j′,k′)

∣∣ . a−(2q+4d̃)2
1
2 (|j|1−|j′|1)2−σj,j′ . (24)

Using exactly the same arguments, we can likewise derive the estimate for the
row sums ∑

k′∈∇j′

∣∣r(j,k),(j′,k′)

∣∣ . a−(2q+4d̃)2
1
2 (|j

′|1−|j|1)2−σj,j′ . (25)
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Similar to [8], we now use the estimate for the operator norm of a matrix

‖Rj,j′‖22 ≤ ‖Rj,j′‖1‖Rj,j′‖∞ = ‖cRj,j′‖1‖c−1Rj,j′‖∞, c > 0, (26)

which gives us, together with (24), (25), the desired result

∥∥Rj,j′
∥∥2
2
≤


 max

k′∈∇j′

∑

k∈∇j

2
|j′|1−|j|1

2

∣∣r(j,k),(j′,k′)

∣∣



max

k∈∇j

∑

k′∈∇j′

2
|j|1−|j′|1

2

∣∣r(j,k),(j′,k′)

∣∣



. a−2(2q+4d̃)2−2σj,j′ . �

Remark 5.2. Similar to [20], using Theorem 4.1 and the cutoff parameter

B̃j,j′ := amax

{
2−min{j1,j2,j

′
1,j

′
2}, 2

σ
j,j′

−d̃(j(1)+j(2))

2q+2d̃

}
,

where
{
j(1), j(2)

}
⊆ {j1, j2, j′1, j′2}, we have a compression scheme

[
A

c1,2
J

]
(j,k),(j′,k′)

:=

{
0, j(1), j(2) > j0, δtot > B̃j,j′ ,[
AJ

]
(j,k),(j′,k′)

, otherwise.
(27)

The requirement j(1), j(2) > 0 is necessary to ensure the validity of Theorem 4.1.
By modifying the appropriate calculations, we get that the corresponding differ-

ence matrix R = A−A
c1,2
J satisfies

‖Rj,j′‖ . a−(2q+2d̃)2−σj,j′ .

This will be important when we consider the complexity since we can also com-
press matrix blocks where scaling functions are involved in at most two coordinate
directions.

5.1.2. Compression in only one coordinate direction. As remarked earlier, we need
at least that δtot & 2−min{j1,j2,j

′
1,j

′
2} in the proof of Theorem 5.1 to estimate the

row and column sums of the matrix blocks by an integral. If this is not the case,
we may estimate the sum by an integral in just one coordinate direction xi. This
leads to restrictions on the distance in only this coordinate direction. Especially
when the term 2−min{j1,j2,j

′
1,j

′
2} in (23) is too large, this approach is beneficial. As

all the derivations can be found in [20], we just quote the results. We also remark
that we have exchanged the | · |1-norms from [20] with | · |∞-norms in (21), since
we are not working on a sparse tensor product space but on the full tensor product
space.

Let us define the parameters

Dx1

j,j′
:= amax

{
2−min{j1,j

′
1}, 2

σ
j,j′

−d̃(j(1)+j(2))−min{j2,j′2}

1+2q+2d̃

}
,

Dx2

j,j′
:= amax

{
2−min{j2,j

′
2}, 2

σ
j,j′

−d̃(j(1)+j(2))−min{j1,j′1}

1+2q+2d̃

}
.

We can then define the compressed value

v(j,k),(j′,k′) :=





0, if

{
δx1 > Dx1

j,j′ ,

δx2
≤ a2−min{j2,j

′
2},

0, if

{
δx2

> Dx2

j,j′ ,

δx1 ≤ a2−min{j1,j
′
1},

[
AJ

]
(j,k),(j′,k′)

, otherwise,
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and then the compressed matrix by the rule

[
A

c1,3
J

]
(j,k),(j′,k′)

:=

{
v(j,k),(k′,k′), if j(1), j(2) > j0,[
AJ

]
(j,k),(j′,k′)

, otherwise.
(28)

The latter definition is just a restriction of the compression to the matrix blocks
Aj,j′ , for which j(1), j(2) > 0, meaning that we can use Theorem 4.1 to estimate
the corresponding matrix entries.

With these definitions, out of the proof of Theorem 2.3.1 in [20], one immediately
obtains the following result:

Theorem 5.3. Let RJ := AJ −A
c1,3
J . Then, the compressed matrix blocks satisfy

the estimate
∥∥Rj,j′

∥∥
2
. a−(1+2q+2d̃)2−σj,j′

with a generic constant that is independent of the refinement level J .

By combining (22), (27), and (28), we can define the first compression of the
matrix by

[
Ac1

J

]
(j,k),(j′,k′)

:=

{
0, [Ac1,`

J ](j,k),(j′,k′) = 0 for some ` ∈ {1, 2, 3},
[AJ ](j,k),(j′,k′), otherwise.

(29)
This compression affects the far-field of the system matrix in wavelet coordinates.

5.2. Near-field: Second compression. Up to now, we have considered wavelets
with disjoint and distant supports. As we will see, we can also discard many entries
if the supports of the wavelet pairs are close or even if they overlap, where a strict
requirement is that the distance of the support of the smaller wavelet to the singular
support of the larger wavelet is sufficiently big.

We will only use one direction for the second compression as done by Reich in
[20, 21], but with improved parameters. We define

Ej,j′ := a2
σ
j,j′

−d̃(max{j1,j′1}+max{j2,j′2})−min{j1,j′1,j2,j′2}

1+2q+2d̃ ,

Fx1

j,j′
:= a2

σ
j,j′

−d̃(max{j1,j′1}+max{j2,j′2})−min{j2,j′2}

1+2q+2d̃ ,

Fx2

j,j′
:= a2

σ
j,j′

−d̃(max{j1,j′1}+max{j2,j′2})−min{j1,j′1}

1+2q+2d̃ .

Then, the compressed values are given by

w
(1)
(j,k),(j′,k′)

:=





0, if





σx1
> Ej,j′ ,

δx1
≤ a2−min{j1,j

′
1},

a2−min{j1,j2,j
′
1,j

′
2} > δx2

> a2−min{j2,j
′
2},

0, if





σx2
> Ej,j′ ,

δx2 ≤ a2−min{j2,j
′
2},

a2−min{j1,j2,j
′
1,j

′
2} > δx1 > a2−min{j1,j

′
1},

[
AJ

]
(j,k),(j′,k′)

, otherwise,
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w
(2)
(j,k),(j′,k′)

:=





0, if





σx1
> Fx1

j,j′ ,

δx1 ≤ a2−min{j1,j
′
1},

δx2 ≤ a2−min{j2,j
′
2},

0, if





σx2
> Fx2

j,j′ ,

δx2
≤ a2−min{j2,j

′
2},

δx1 ≤ a2−min{j1,j
′
1},

[
AJ

]
(j,k),(j′,k′)

, otherwise.

Similar as in the first compression, we define the corresponding compressed matrices
as

[
A

c2,1
J

]
(j,k),(j′,k′)

:=

{
w

(1)
(j,k),(j′,k′), if max{j1, j′1},max{j2, j′2} > j0,[
AJ

]
(j,k),(j′,k′)

, otherwise,
(30)

[
A

c2,2
J

]
(j,k),(j′,k′)

:=

{
w

(2)
(j,k),(j′,k′), if max{j1, j′1},max{j2, j′2} > j0,[
AJ

]
(j,k),(j′,k′)

, otherwise.
(31)

Combining these two compression schemes leads to the second compressed matrix

[
Ac2

J

]
(j,k),(j′,k′)

:=

{
0,

[
A

c2,`
J

]
(j,k),(j′,k′)

= 0 for some ` ∈ {1, 2},
[
AJ

]
(j,k),(j′,k′)

, otherwise.

(32)

Remark 5.4. It suffices to compress only the entries with a2−min{j1,j2,j
′
1,j

′
2} ≥

δx1
, δx2

. Otherwise, we have

δtot ≥ max{δx1 , δx2} > a2−min{j1,j2,j
′
1,j

′
2}

and the first compression applies, meaning that either the entries are zero, or that,
as we will see, there are only O(4J) such entries.

For the remainder of this section, let us without loss of the generality assume
that j′1 ≤ j1. The following estimate holds:

Theorem 5.5. The matrix blocks of the perturbed matrix RJ := AJ −Ac2
J satisfy

the estimate ∥∥Rj,j′
∥∥ . a−(1+2q+2d̃)2−σj,j′

with a generic constant that is independent of the refinement level J .

Proof. It suffices to consider the two coordinate directions separately. For A
c2,1
J ,

we first consider the case where δx1
≤ a2−min{j1,j

′
1} and δx2

> a2−min{j2,j
′
2}.

First, assume that j′1 6= min{j1, j2, j′1, j′2}. Since we assumed that j′1 ≤ j1, this
means that either j2 < j′1, or j

′
2 < j′1, so we have min{j2, j′2} = min{j1, j2, j′1, j′2},

resulting in

δx2
> a2−min{j2,j

′
2} = a2−min{j1,j2,j

′
1,j

′
2}.

Hence, according to (30), we do not compress such entries here and therefore, they
do not contribute to the block error.

Let us therefore consider the case where j′1 = min{j1, j2, j′1, j′2}. For the sake of
comfortability, let us define the index sets

Ij,k :=

{
k′ ∈ ∇j′ :

σx1
>Ej,j′

δx1
≤a2−j′1

a2−j′1≥δx2
≥a2−min{j2,j′2}

}
,

and likewise,

Ij′,k′ :=

{
k ∈ ∇j :

σx1
>Ej,j′

δx1
≤a2−j′1

a2−j′1≥δx2≥a2−min{j2,j′2}

}
.
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As one readily verifies, the cardinality of these sets is bounded by
∣∣Ij,k

∣∣ . 2j
′
2−j′1 ,

∣∣Ij′,k′

∣∣ . 2j1−j′12j2−j′1 .

Next, we recall that, according to Theorem 4.3, we have the estimate
∣∣r(j,k),(j′,k′)

∣∣ . 2
1
2 (j

′
1−j1)2−

1
2 (j2+j′2)2−d̃(j1+max{j2,j

′
2})σ−(1+2q+2d̃)

x1
.

This allows us to estimate the column sums by
∑

k∈∇j

∣∣r(j,k),(j′,k′)

∣∣ .
∑

k∈Ij′,k′

2
1
2 (j

′
1−j1)2−

1
2 (j2+j′2)2−d̃(j1+max{j2,j

′
2})σ−(1+2q+2d̃)

x1

. 2j1−j′12j2−j′12
1
2 (j

′
1−j1)2−

1
2 (j2+j′2)2−d̃(j1+max{j2,j

′
2})E−(1+2q+2d̃)

j,j′

. a−(1+2q+2d̃)2
1
2 (|j|1−|j′|1)2−σj,j′ .

Similarly, we may estimate the row sums by
∑

k′∈∇j′

∣∣r(j,k),(j′,k′)

∣∣ .
∑

k′∈Ij,k

2
1
2 (j

′
1−j1)2−

1
2 (j2+j′2)2−d̃(j1+max{j2,j

′
2})σ−(1+2q+2d̃)

x1

. 2j
′
2−j′12

1
2 (j

′
1−j1)2−

1
2 (j2+j′2)2−d̃(j1+max{j2,j

′
2})E−(1+2q+2d̃)

j,j′

. a−(1+2q+2d̃)2
1
2 (|j

′|1−|j|1)2−σj,j′ .

Hence, we can argue in complete analogy to the proof of Theorem 5.1.
By using exactly the same arguments, but with interchanging the coordinate

directions, we may also control the compression error of the entries, for which
δx1

> a2−min{j1,j
′
1} and δx2

≤ a2−min{j2,j
′
2}. This implies the control of the error

for the whole matrix A
c2,1
J .

For the matrix A
c2,2
J , we may use exactly the same arguments as in the proof of

Theorem 2.3.2 in [20], with the only adaptation being that we have to use Theorem
4.3 to estimate the matrix entries instead of Theorem 2.1.7 in [20]. �

Finally, by using an additive argument, we can pose the main theorem of this
section.

Theorem 5.6. Consider the compressed matrix

[
Ac

J

]
(j,k),(j′,k′)

:=

{
0, [Ac`

J ](j,k),(j′,k′) = 0 for some ` ∈ {1, 2},
[AJ ](j,k),(j′,k′), otherwise.

(33)

Then, the block error is controlled by
∥∥AJ −Ac

J

∥∥
2
. ε 2−σj,j′ ,

with

ε := max
{
a−(2q+4d̃), a−(2q+2d̃), a−(1+2q+2d̃)

}
.

Remark 5.7. We have improved both the parameters Ej,j′ and Fxi

j,j′ in contrast to

[20]: For both Ej,j′ and Fxi

j,j′ , we gain an additional factor

2−d̃max{j`,j
′
`}, ` 6= i,

in the above error estimates, but we have to pay another d̃ in the denominator. This
is not mandatory to ensure linear complexity, but it reduces the number of required
vanishing moments, for example in the case of piecewise constant wavelets for the
single layer operator to as few as three, as it is the case if an isotropic wavelet basis
is used.

Much more important, we win the additional factor

2
−

min{j1,j2,j′1,j′2}

1+2q+2d̃
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for Ej,j′ in the above error estimates. This is strictly necessary to ensure a linear
complexity.

6. Complexity

We are now going to count the number of nonzero matrix coefficients of the
compression matrix Ac

J and show that this number is asymptotically bounded by
NJ = 4J . In the arguments below, it is crucial that the exponents are positive to
estimate the sum asymptotically by the largest term. To this end, for the sake of
simplicity, we will for the remainder of this section assume that κ > 0 is sufficiently
small. This is not problematic since we only have a bounded number of restrictions

on κ, depending only on the uniform constants d′, d̃, and the order of the operator
2q. Moreover, as we will see, we need to require the inequalities

d < d′ < min

{
d̃+ q, d̃+ 2q, 2 + 4q + 3d̃,

1

2
+ 3q + 2d̃,

1

2
+ 4q + 2d̃,

1

2
+ q + d̃,

1

2
+ 2q + d̃

}
.

(34)

Since this inequality is strict, there will especially always be space for a small κ > 0,
which can be inserted between d′ and the minimum over all these terms.

First of all, we note that the restriction of the compression to the appropriate
matrix blocks in (27), (30), and (31) never causes a problem. Indeed, if we can
not compress a matrix block, then at least two indexes in the set {j1, j2, j′1, j′2} are
equal to j0. In particular, as dimVj0 ∼ 2j0 , there are only O(22j0) = O(1) rows
and columns corresponding to such situation. As every row and column contains
at O(NJ) entries, these are at most O(NJ) entries in total.

For the compressed blocks, we organize the proof in the following steps. First, we
split up the unit square in at most nine regions, compare Figure 2, corresponding
to the distance in each coordinate direction being either big or small. These nine
regions correspond to the four possible cases

(I)

{
δx1 > a2−min{j1,j

′
1},

δx2
> a2−min{j2,j

′
2},

(II)

{
δx1 ≤ a2−min{j1,j

′
1},

δx2
> a2−min{j2,j

′
2},

(III)

{
δx1

> a2−min{j1,j
′
1},

δx2
≤ a2−min{j2,j

′
2},

(IV)

{
δx1

≤ a2−min{j1,j
′
1},

δx2
≤ a2−min{j2,j

′
2}.

(35)

In Section 6.1, we will show that already the first compression gives a linear com-
plexity when there holds

δtot > a2−min{j1,j2,j
′
1,j

′
2}.

Then, in Section 6.2, we consider the wavelet pairs whose supports are closer to-
gether than a2−min{j1,j2,j

′
1,j

′
2} and we will show the linear complexity for those

regions as well.

6.1. Complexity of the first compression. We advance by the type of the
compression which is performed on the matrix entries. First, we count all the
nontrivial entries remaining from the compression scheme (22) in the case when

Bj,j′ ∼ 2
σ
j,j′

−d̃(|j|1+|j′|1)

2q+4d̃ . (36)

Theorem 6.1. Assume that we set all matrix entries to zero where the underlying
wavelets satisfy δtot > Bj,j′ with Bj,j′ given by (36). Then, only O(4J) nontrivial
entries remain.
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Ωj′,k′

Ωj,k

(II) δx1
. 2−j′1 , δx2

& 2−j2

(II) δx1
. 2−j′1 , δx2

& 2−j2

(IV) δx1
. 2−j′1 , δx2

. 2−j2

(I)

δx1
& 2−j′1

δx2
& 2−j2

(III)

δx1 & 2−j′1

δx2 . 2−j2

(I)

δx1
& 2−j′1

δx2 & 2−j2

Figure 2. Graphical illustration of the regions described in (35).
Note that there are at most nine different regions.

Proof. In any column of a block Aj,j′ , we find O(2|j
′|1B2

j,j′) entries, for which the

distance of the supports is bounded by Bj,j′ . Since there are O(2|j|1) columns in

such a block, there are at most O(2|j|1+|j′|1B2
j,j′) nonzero entries per block. Hence,

the total complexity for the whole matrix is given by

C .
∑

|j|∞≤J

|j′|∞≤J

2|j|1+|j′|12
σ
j,j′

−d̃(|j|1+|j′|1)

q+2d̃

.
∑

|j|∞≤J

|j′|∞≤J

2
2J(d′−q)−(d′−2κ)(|j|∞+|j′|∞)+(d̃+q−κ)(|j|1+|j′|1)

q+2d̃

= 2
2J d′−q

q+2d̃



∑

|j|∞≤J

2
−(d′−2κ)|j|∞+(d̃+q−κ)|j|1

q+2d̃




2

. (37)

To calculate the sum, we explicitly enrol the indices j1 and j2. Then, after calcu-
lating the two sums over j2, and shifting the index in the second sum, we obtain

J∑

j1=0




j1−1∑

j2=0

2
−(d′−2κ)j1+(d̃+q−κ)(j1+j2)

q+2d̃ +

J∑

j2=j1

2
−(d′−2κ)j2+(d̃+q−κ)(j1+j2)

q+2d̃


 (38)

.

J∑

j1=0


2

d̃+q+κ−d′

q+2d̃
j12

d̃+q−κ

q+2d̃
j1 + 2

d̃+q−κ

q+2d̃
j12

d̃+q+κ−d′

q+2d̃
j1

J−j1∑

j2=0

2
d̃+q+κ−d′

q+2d̃
j2




.

J∑

j1=0

(
2

2d̃+2q−d′

q+2d̃
j1 + 2

d̃+q+κ−d′

q+2d̃
J
2

d̃+q−κ

q+2d̃
j1

)

. 2
J 2d̃+2q−d′

q+2d̃ .
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Inserting this result back into (37), we obtain

C . 2
2J q+2d̃

q+2d̃ = O(4J),

which is what we wanted to show. �

Remark 6.2. Theorem 6.1 implies that there are only O(4J) entries in the region

(I). Indeed, in view of (23), if Bj,j′ ∼ a2−min{j1,j2,j
′
1,j

′
2}, then the entries in the

region (I) are all set to zero. Otherwise, if (36) holds, then there are at most O(4J)
nontrivial entries by Theorem 6.1.

Remark 6.3. If we tensorize scaling functions on the coarsest level with wavelets,
we must use the cutoff parameter from Remark 5.2. However, by using very similar
arguments as in the proof above, one concludes that there are only O(4J) nontrivial
entries in this case. If we enrol the expression explicitly, we may assume that
j(1) = |j|∞ and j(2) = |j′|∞. Since q < d < d′, the exponent in the second sum in
(38) will then be negative, but thus the sum can be estimated by the lower limit in
the exponent, which is j1.

6.2. Complexity of the second compression. In the next step, we want to
cover the regions (II) and (III) in (35). Due to the symmetry in the problem, these
two regions yield the same complexity, so we may only consider the region (II),

that is, δx1
≤ 2−min{j1,j

′
1} and δx2

> 2−min{j2,j
′
2}. For the sake of simplicity, let us

for the remainder of this section assume that j′1 ≤ j1, as the case j′1 > j1 follows
directly by exchanging j and j′.

Lemma 6.4. Consider all matrix entries in Ac
J such that the underlying wavelet

pairs ψj,k and ψj′,k′ satisfy

δx1
≤ a2−j′1 , δx2

> a2−min{j2,j
′
2}. (39)

Then, after the combination of the compression schemes (29) and (30), these are
at most O(4J) nontrivial entries.

Proof. We may without loss of the generality assume that j′1 = min{j1, j2, j′1, j′2}.
If not, then we must have either j′1 > j2 or j′1 > j′2 since we assumed j′1 ≤ j1.
Therefore, we would have

δtot ≥ δx2 > 2−min{j2,j
′
2} = 2−min{j1,j2,j

′
1,j

′
2}.

Hence, these entries are either trivial or there are only O(4J) of them due to The-
orem 6.1. As a consequence, we may especially assume in the following j′1 ≤
min{j2, j′2}.

We remark that we only have to consider the situation

Dx2

j,j′Ej,j′ ∼ 2
2σ

j,j′
−d̃(j(1)+j(2)+j1+max{j2,j′2})−2j′1

1+2q+2d̃ ,

since if Dx2

j,j′ = a2−min{j2,j
′
2}, in view of (39), all entries are compressed.

In order to estimate the entries, we need to consider four different cases: First,
if j2 ≤ j′2 and |j|∞ = j1, we have j′1 ≤ j2 ≤ j1, j

′
2. Hence, by using j(1) := j1 and
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j(2) := j′2, we conclude

C .
∑

j′1≤j1
j2≤j′2

2|j|1+|j′|12
2σ

j,j′
−d̃(j1+j′2+j1+j′2)−2j′1

1+2q+2d̃

. 2
J 4d′−4q

1+2q+2d̃

∑

j′1≤j1
j2≤j′2

2
j1

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)
2
j2

(
1− 2κ

1+2q+2d̃

)
2
j′1

(
1− 2+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j1,j
′
2≤J

2
j1

(
2− 2+2d′+2d̃

1+2q+2d̃

)
2
j′2

(
2− 2d′+2d̃

1+2q+2d̃

)

. 2
J
(

4d′−4q

1+2q+2d̃
+4− 2+4d′+4d̃

1+2q+2d̃

)

= 4J .

Second, if j2 ≤ j′2 and |j|∞ = j2, then we have the order j′1 ≤ j1 ≤ j2 ≤ j′2, so
with j(1) := j′2, j

(2) := j2, we may directly sum up

C . 2
J 4d′−4q

1+2q+2d̃

∑

j′1≤j1≤j2≤j′2

2
j1

(
1− d̃+2κ

1+2q+2d̃

)
2
j2

(
1− 2d′+d̃−2κ

1+2q+2d̃

)
2
j′1

(
1− 2+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j1≤j2≤j′2

2
j1

(
2− 2+d̃+4κ

1+2q+2d̃

)
2
j2

(
1− 2d′+d̃−2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j2≤j′2

2
j2

(
3− 2+2d′+2d̃+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j′2≤J

2
j′2

(
4− 2+4d′+4d̃

1+2q+2d̃

)

. 4J .

Third, if j′2 ≤ j2 and |j|∞ = j1, we have j′1 ≤ j′2 ≤ j2 ≤ j1, therefore the choice
j(1) := j1, j

(2) := j2 yields

C . 2
J 4d′−4q

1+2q+2d̃

∑

j′1≤j′2≤j2≤j1

2
j1

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)
2
j2

(
1− 2d̃+2κ

1+2q+2d̃

)
2
j′1

(
1− 2+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′−2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j′2≤j2≤j1

2
j1

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)
2
j2

(
1− 2d̃+2κ

1+2q+2d̃

)
2
j′2

(
2− 2+2d′

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j2≤j1

2
j1

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)
2
j2

(
3− 2+2d′+2d̃+2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j1≤J

2
j1

(
4− 2+4d′+4d̃

1+2q+2d̃

)

. 4J .
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Finally, if j′2 ≤ j2 and |j|∞ = j2, we also have j′1 ≤ j1 ≤ j2. If we choose
j(1) := j2 and j(2) := j1, then the complexity reads as

C . 2
J 4d′−4q

1+2q+2d̃

∑

j′2≤j2
j′1≤j1≤j2

2
j1

(
1− 2d̃+2κ

1+2q+2d̃

)
2
j2

(
1− 2d′+2d̃−2κ

1+2q+2d̃

)
2
j′1

(
1− 2+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′−2κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j1≤j2

2
j1

(
2− 2+2d̃+4κ

1+2q+2d̃

)
2
j2

(
2− 4d′+2d̃−4κ

1+2q+2d̃

)

. 2
J 4d′−4q

1+2q+2d̃

∑

j2≤J

2
j2

(
4− 2+4d′+4d̃

1+2q+2d̃

)

. 4J . �

Let us now consider the last possible situation, that is, we suppose that

δx1
≤ 2−min{j1,j

′
1}, δx2

≤ 2−min{j2,j
′
2},

which describes the region (IV) in (35), or, the near-field region in Figure 2. In this
case, the compression scheme (31) applies. Remember that we still assume that
j′1 ≤ j1.

Lemma 6.5. Consider all matrix entries in Ac
J such that the underlying wavelet

pairs ψj,k and ψj′,k′ satisfy

δx1
≤ a2−j′1 , δx2

≤ a2−min{j2,j
′
2}.

Then, after the compression scheme (31), these are at most O(4J) nontrivial entries.

Proof. It suffices to count the respective matrix entries of Ac2,2
J . Suppose first that

j′2 ≥ j2. In this case, the number of nontrivial entries in the matrix block [Ac2,2
J ]j,j′

can be estimated by

Nj,j′ . 2|j|1+|j′|1Fx1

j,j′Fx2

j,j′ ∼ 2|j|1+|j′|12
2σ

j,j′
−2d̃(j1+j′2)−(j′1+j2)

1+2q+2d̃ . (40)

Remarking that for κ > 0 sufficiently small, we have d′ − 2κ > 0, so the properties
|j|∞ ≥ j1 and |j′|∞ ≥ j′2 imply that the number of entries can be estimated by

C(1) .
∑

0≤j1≤J

0≤j′1≤j1

∑

0≤j′2≤J

0≤j2≤j′2

Nj,j′ . 2
J 4d′−4q

1+2q+2d̃




∑

0≤j1≤J

0≤j′1≤j1

2
j1

(
1− 2d′−2κ+2d̃

1+2q+2d̃

)
2
j′1

(
1− 1+2κ

1+2q+2d̃

)






∑

0≤j′2≤J

0≤j2≤j′2

2
j2

(
1− 1+2κ

1+2q+2d̃
)
2
j′2(1−

2d′−2κ+2d̃

1+2q+2d̃

)

 .

As the indices can be exchanged, the two sums are equal and can be estimated by

J∑

j1=0

2
j1

(
1− 2d′−2κ+2d̃

1+2q+2d̃

) j1∑

j′1=0

2
j′1

(
1− 1+2κ

1+2q+2d̃

)
.

J∑

j1=0

2
j1(2−

1+2d′+2d̃

1+2q+2d̃

)
. 2

J
(
2− 1+2d′+2d̃

1+2q+2d̃

)
.

Putting everything together, we obtain that

C(1) . 2
J
(

4d′−4q

1+2q+2d̃
+4− 2+4d′+4d̃

1+2q+2d̃

)
= 4J .

In the case where j2 ≥ j′2, we need to argue in a slightly different way. By

the assumption j′1 ≤ j1, we have at least O(2|j
′|1) nontrivial entries in the matrix

block [Ac2,2
J ]j,j′ , as at every point at which the singular supports Ωσ

j′1,k
′
1
and Ωσ

j′2,k
′
2
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intersect, there is at least one smaller wavelet ψj,k touching it. On the other
hand, every nontrivial entry satisfies σx1

≤ Fx1

j,j′ and σx2
≤ Fx2

j,j′ , so the number of

nontrivial entries in a block [Ac2,2
J ]j,j′ can be estimated by

Nj,j′ . 2|j
′|1 max

{
1, 2|j|1Fx1

j,j′Fx2

j,j′

}
. (41)

If the maximum in (41) is equal to 1, then it is easy to see that

∑

j′≤j≤J

Nj,j′ .
∑

j′1≤j1≤J

∑

j′2≤j2≤J

2j
′
1+j′2 .

∑

j1≤J

∑

j2≤J

2j1+j2 . 4J .

If, however, the maximum in (41) is not equal to 1, we have

Nj,j′ . 2|j|1+|j′|12
2σ

j,j′
−2d̃(j1+j2)−(j′1+j′2)

1+2q+2d̃ .

Using again that d′ − 2κ > 0, |j|∞ ≥ j1, |j′|∞ ≥ j′2, one obtaines

C(2) . 2
J 4d′−4q

1+2q+2d̃




∑

0≤j1≤J

0≤j′1≤j1

2
j1

(
1− 2d′−2κ+2d̃

1+2q+2d̃

)
2
j′1

(
1− 1+2κ

1+2q+2d̃

)






∑

0≤j2≤J

0≤j′2≤j2

2
j2

(
1− 2d̃+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′−2κ+1

1+2q+2d̃

)

 .

The first sum can be treated as in the previous case, whereas for the second sum,
there holds

∑

0≤j2≤J

0≤j′2≤j2

2
j2

(
1− 2d̃+2κ

1+2q+2d̃

)
2
j′2

(
1− 2d′−2κ+1

1+2q+2d̃

)
.

∑

0≤j2≤J

2
j2

(
2− 1+2d′+2d̃

1+2q+2d̃

)
. 2

J
(
2− 1+2d′+2d̃

1+2q+2d̃

)
.

Hence, we can conclude that also C(2) . 4J . �

With the preceeding three lemmata and Theorem 6.1 at hand, we conclude the
main result of this section.

Theorem 6.6. Assume that −q < d ≤ d̃ and that (34) holds. Then, compressed
matrix Ac

J arising from (33) contains at most O(4J) nontrivial entries.

Remark 6.7. For the piecewise constant (d = 1) and piecewise bilinear (d = 2)
wavelets, used most often in practice, one needs at least the following number of
vanishing moments:

d = 1 d = 2

2q = −1 3 4
2q = 0 2 3
2q = 1 – 2

If 2q = 1, using piecewise constant wavelets is mathematically not meaningful be-
cause the energy space H

1
2 (Γ) cannot be discretized by discontinuous trial functions.

Note that these are the same values as in the setting of isotropic wavelet bases, com-
pare [8].
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7. The situation on a Lipschitz manifold

Up to now, we have only considered the situation on the unit square. As stated in
Section 2, we are however interested in the solution of a boundary integral equation
posed on the boundary Γ of a Lipschitz domain D ⊆ R

3. Recall that the boundary
Γ is given as the union of the patches Γi, which can be smoothly parametrized by
γi : � → Γi.

7.1. Sobolev spaces on manifolds. To properly define the Sobolev space Hs(Γ),

we choose for each patch Γi an extension Γ̃i such that Γi b Γ̃i b Γ. Then, the

family {Γ̃i}i is an overlapping decomposition of Γ and, by the Lipschitz continuity
of Γ, every parametrization γi can be used to construct a piecewise smooth, globally

Lipschitz continuous parametrization γ̃i : �̃ → Γ̃i, where �̃ is a suitable superset
of �.

Next, we choose a partition of the unity {χi}ri=1, consisting of nonnegative,
smooth functions χi ∈ C∞

0 (R3) such that

r∑

i=0

χi(x) = 1 for all x ∈ Γ, χi(x) = 0 for all x ∈ Γ \ Γ̃i.

We then define the Sobolev space Hs(Γ) for s ≤ 1 as the space of functions u : Γ →
R, for which the norm

‖u‖Hs(Γ) :=

(
r∑

i=1

∥∥(u ◦ γ̃i) · (χi ◦ γ̃i)
∥∥2
Hs(�̃)

) 1
2

is finite. Obviously, this norm is induced by the inner product

〈u, v〉Hs(Γ) :=
r∑

i=1

〈
(u ◦ γ̃i)(χi ◦ γ̃i), (v ◦ γ̃i)(χi ◦ γ̃i)

〉
Hs(�̃)

.

For −1 ≤ s < 0, we define Hs(Γ) as usual as the dual of H−s(Γ) with respect to
the L2(Γ)-inner product.

Remark 7.1. The above definition depends on the parametrizations γi and the
chosen partition of the unity. However, it can be shown that the space Hs(Γ) con-
sists of the same functions, regardless which parametrizations and which partition
of the unity is chosen [30]. Moreover, the requirement |s| ≤ 1 amounts from the
Lipschitz continuity of γ̃i. For a Ck,α-surface, it is possible to define these spaces
up to |s| ≤ k + α.

7.2. Patchwise smooth wavelets. Similar to the existing literature, see e.g. [8,
24], we discretize the energy space Hq(Γ) with q ≤ 1 by transporting the wavelet
functions from the unit square onto Γ. Precisely, we define a basis function as

ψi,j,k := ψj,k ◦ γ−1
i ,

and then consider the basis set

Ψ :=
{
ψi,j,k : 1 ≤ i ≤ r, j ∈ N

2
0, k ∈ ∇j

}
.

To construct a trial space on the level J , we proceed as on the unit square,
meaning that we cut the basis off at the level J , obtaining

VJ := spanΨJ , ΨJ :=
{
ψi,j,k : 1 ≤ i ≤ r, |j|∞ ≤ J, k ∈ ∇j

}
.

Note that the above wavelets are supported on a single patch Γi only. In general,
they are not continuous over the patch boundaries, so they only attain a regularity
of γ = 1

2 , regardless how smooth the wavelets are piecewise. It is possible to



22 HELMUT HARBRECHT AND REMO VON RICKENBACH

construct wavelets which are continuous over the patch boundaries, see e.g. [24],
but γ = 1

2 is sufficient if we want to discretize an operator of nonpositive order.
Because the wavelets are supported on a single patch, and each parametrization

and cutoff function is smooth, one can generalize all the wavelet properties stated
in Section 3.4. For the same reason, the Lipschitz continuity of the surface is no

restriction in using d̃ > 1 vanishing moments for the cancellation property (17),
since we do not have to consider the behaviour of the test function over the patch
boundaries, and the expressions | · |

W d̃,∞(Ωi,j,k)
are well-defined.

Finally, as the spaces VJ coincide with the space spanned by all lifted dyadic
indicator functions on the level J , we can directly quote the following lemma,
compare [18].

Lemma 7.2. For a continuous, strongly elliptic and injective operator A : Hq(Γ) →
H−q(Γ), the Galerkin discretization is stable, meaning that

〈
vJ , (A+A?)vJ

〉
Γ
& ‖vJ‖2Hq(Γ), vJ ∈ VJ ,

for any sufficiently large J , and
∣∣〈vJ ,AwJ

〉
Γ

∣∣ . ‖vJ‖Hq(Γ)‖wJ‖Hq(Γ), vJ , wJ ∈ VJ .

Furthermore, let u be the solution of (5) and uJ the solution of (7). Then, we have
the convergence

‖u− uJ‖Ht(Γ) . 2−J(s−t)‖u‖Hs(Γ), 2q − d ≤ t ≤ q, q ≤ s ≤ d,

provided that Γ is sufficiently regular.

Remark 7.3. The condition that A is injective is, as already stated, not strictly
necessary. It suffices if the kernel is finite-dimensional and known in advance.

7.3. Matrix estimates. As we will see, all the matrix estimates on a given surface
can be concluded from the matrix estimates on the unit square. Depending on the
situation of the two patches on which the wavelets are supported, we need to differ
between several cases. To this end, let

K̂i,i′(x̂, x̂
′) := K

(
γi(x̂),γi′(x̂

′)
)√

det
(
Dγ

ᵀ
i Dγi

)
(x̂)
√
det
(
Dγ

ᵀ
i′Dγi′

)
(x̂′) (42)

with 1 ≤ i, i′ ≤ r denote the transported kernel function. With the transported
kernel function at hand, we find that

〈
ψi,j′,k′ ,Aψi′,j,k

〉
Γ
=

∫

Γ

∫

Γ

K(x,x′)ψj,k

(
γ
−1
i (x)

)
ψj′,k′

(
γ
−1
i′ (x′)

)
dSx′ dSx

=

∫

�

∫

�
K̂i,i′(x̂, x̂

′)ψj,k(x̂)ψj′,k′(x̂′) dx̂′ dx̂

=
〈
ψj′,k′ , Âi,i′ψj,k

〉
�
,

(43)

where we define Âi,i′ as the integral operator with the transported kernel K̂i,i′ .
Since that local parametrizations γi and γi′ are smooth, the transported kernel
functions also satisfy the decay property

∣∣∂α
x̂
∂α

′

x̂
′ K̂i,i′(x̂, x̂

′)
∣∣ ≤ Cα,α′,K,i,i′‖γi(x̂)− γi′(x̂

′)‖−(2+2q+|α|+|α′|) (44)

provided that 2 + 2q + |α|+ |α′| > 0. Therefore, in view of (43) and (44), the far-
field estimates of Section 4.1 hold true also in case of piecewise smooth Lipschitz
manifolds.
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7.3.1. Wavelets supported on the same patch. Let us look at the easiest situation
first. If we consider the interaction between ψi,j,k and ψi,j′,k′ , we can use the
relations (43) and (44) together with

‖γi(x̂)− γi(x̂
′)‖ ∼ ‖x̂− x̂

′‖
to conclude that the situation on a single patch is equivalent to that of the unit
square. Therefore, also the near-field estimates are valid one-to-one and we find at
mostO(4J) nontrivial entries in the matrix block associated with Γi×Γi. Especially,
the compression error in each matrix block satisfies the same estimates as in Section
5.

7.3.2. Wavelets supported on patches with a common edge. Let us now assume that
Γi and Γi′ share a common edge. For the sake of simplicity, we assume that the
common edge Σ satisfies

γi

(
{1} × [0, 1]

)
= Σ = γi′

(
{0} × [0, 1]

)
,

especially that there holds γi(1, x2) = γi′(0, x2) for all x2 ∈ [0, 1]. Otherwise, we
can apply suitable rotations such that this assumption holds.

γ(0, 0)

γ(0, 1)

γ (1, 0)

γ (1, 1)

γ(2, 0)

γ(2, 1)

ΣΓi

Γi′

Figure 3. Graphical illustration of the parametrization γ in case
of a common edge.

By gluing the two parametrizations together, we obtain a Lipschitz continuous
parametrization γ : [0, 2]× [0, 1] → Γi ∪ Γi′ such that

γ(x) =

{
γi(x), x ∈ [0, 1]× [0, 1],

γi′(x1 − 1, x2), x ∈ [1, 2]× [0, 1],

compare Figure 3 for a graphical illustration. For the near field estimates, we need
to interpret the coordinate directions in a meaningful way. This is quite intuitive
in Figure 3, since we can simply define the x-direction as the direction across the
edge, while the y-direction can be interpreted as the direction parallel to the edge.
Especially, we find

‖γi(x̂)− γi′(x̂
′)‖ ∼

∥∥x̂− x̂
′ −
[
1
0

]∥∥
For Theorem 4.3, we followed the arguments in [20], where the smooth part of

the bigger wavelet ψj′1,k
′
1
is extended to a smooth, compactly supported function.

Then, also the operator A1 is extended to a classical, pseudo-differential operator

A]
1, compare [18]. This is not so easy to do in the current situation, as the kernel

K̂i,i′ is no longer asymptotically smooth of the order 2q, since it is only continuous
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over the edge Σ. Nevertheless, this difficulty can be overcome. For the sake of
simplicity, let us define

Ω̂j1,k1
× Ω̂j2,k2

:= supp
(
ψi,j,k ◦ γ

)
, Ω̂j′1,k

′
1
× Ω̂j′2,k

′
2
:= supp

(
ψi′,j′,k′ ◦ γ

)
.

Then, there holds Ω̂j1,k1
⊆ [0, 1] and Ω̂j′1,k

′
1
⊆ [1, 2] in (43). Hence, we either have

σx1
= 0, in which case we cannot compress in the direction of x1 at all, or that

the smooth extension function f̃ from the proof of Theorem 4.3 is equal to 0, since
the two wavelets are located on different patches. Hence, we can ignore everything
about the pseudo-differential operator and only consider the complement function.

In the second coordinate direction, the situation looks more complicated, as

Ω̂j2,k2
and Ω̂j′2,k

′
2
may not be disjoint. In this case, we still need to argue with Â]

2,
which corredponds to the kernel

K̂
(2)
i,i′ (x̂2, x̂

′
2) :=

∫ 1

0

∫ 1

0

K̂i,i′(x̂, x̂
′)ψj1,k1

(x̂1)ψj′1,k
′
1
(x̂′1) dx̂

′
1 dx̂1.

Although γ is overall only Lipschitz continuous, it is indeed smooth in the second
coordinate direction, as both γi and γi′ are smooth and coincide on the common
edge Σ. Thus, the arguments of [20] work in this case as well.

In the proof of Theorem 4.3, we have also made use of vanishing moments hidden
in the kernel. This is possible to do here as well. Indeed, if e.g. j′1 ≥ j1, then only
have to consider a term of the form

ess sup
x̂′
1∈Ω̂j′1,k′

1

∣∣∣∣∣

∫

Ω̂j1,k1

ψj1,k1
(x̂1) ∂

d̃
x̂′
1
K̂i,i′(x̂, x̂

′) dx̂1

∣∣∣∣∣ ,

where the asymptotic estimate for K̂i,i′ holds since, γi′ is smooth on Ωj′1,k
′
1
× [0, 1]

in view of (42). Hence, the same arguments as in the proof of Theorem 4.3 apply.

7.3.3. Patches with a common vertex. If the patches Γi and Γi′ have a common
vertex, we can use a similar argument as before. We assume that the common
vertex v satisfies – possibly after application of suitable rotations and translations
–

γi

([
1
1

])
= v = γi′

([
0
0

])
.

Hence, we may find a Lipschitz continuous parametrization γ : [0, 2]2 → Γ such
that

γ

∣∣
[0,1]2

= γi, γ

∣∣
[1,2]2

= γi′ .

0
0

2

2 2
2

Γi

Γi′
γ

Figure 4. A possible Lipschitz continuous extension of the maps
γi and γi′ in case of a common vertex.

Concerning the first compression, in view of (43), (44), and

‖γi(x̂)− γi′(x̂
′)‖ ∼

∥∥x̂− x̂
′ −
[
1
1

]∥∥ (45)
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we can obviously use the estimates of Section 4.1 here, too.
To proceed with the second compression, we need an estimate like the one in

Theorem 4.3, for which we define

K̂
(1)
i,i′ (x̂1, x̂

′
1) :=

∫ 1

0

∫ 1

0

K̂i,i′(x̂, x̂
′)ψj2,k2

(x̂2)ψj′2,k
′
2
(x̂′2) dx

′
2 dx2.

In view of (45) and the fact that the restrictions of γ to [0, 1]2 and [1, 2]2 are
smooth, we deduce for x = γi(x̂) and x

′ = γi(x̂
′) that

∣∣∣∂αx ∂α
′

x′ K̂
(1)
i,i′ (x̂1, x̂

′
1)
∣∣∣ . 2−

1
2 (j2+j′2)2−d̃max{j2,j

′
2}‖x− x

′‖−(2+2q+d̃+α+α′)

. 2−
1
2 (j2+j′2)2−d̃max{j2,j

′
2}
∥∥x̂− x̂

′ −
[
1
1

]∥∥−(2+2q+d̃+α+α′)

. 2−
1
2 (j2+j′2)2−d̃max{j2,j

′
2}|x̂1 − x̂′1 − 1|−(2+2q+d̃+α+α′).

This is exactly the estimate needed for Theorem 4.3 when considered on the interval
[0, 2] with x̂1 ∈ [0, 1] and x̃1 := x̂′1 + 1 ∈ [1, 2]. Similarly, we can derive such an
estimate for the second coordinate direction. As it holds

〈
ψi′,j′,k′ ,Aψi,j,k

〉
Γ
=

∫ 1

0

∫ 1

0

K̂
(1)
i,i′ (x1, x

′
1)ψj1,k1

(x1)ψj′1,k
′
1
(x′1) dx

′
1 dx1

=

∫ 1

0

∫ 1

0

K̂
(2)
i,i′ (x2, x

′
2)ψj2,k2

(x2)ψj′2,k
′
2
(x′2) dx

′
2 dx2,

it is enough if one realization of the entry can be compressed.
Moreover, on the parameter domain [0, 2]2, cf. Figure 4, the preimages of Ωi,j,k

and Ωi′,j′,k′ either touch each other, in which case we cannot compress, or they are
well-seperated in at least one coordinate direction. Hence, in this direction, the
smooth extension f̃ of the larger wavelet is 0 as well, so we do only have to consider
the complement function. This estimate depends only on the distance between the
supports, which is, at least in this coordinate direction, equivalent to the distance
in R

3, since

‖γi(x̂)− γi′(x̂
′)‖2 ∼

∥∥x̂− x̂
′ −
[
1
1

]∥∥
2
∼
∥∥x̂− x̂

′ −
[
1
1

]∥∥
∞

= |x̂` − x̂′` − 1|
for an ` ∈ {1, 2}.

7.3.4. Well-separated patches. If Γi and Γi′ do neither share a common vertex nor
a common edge, then, since the domain under consideration has at least a Lipschitz
boundary, it holds dist(Γi,Γi′) & 1 ≥ 2−min{j1,j2,j

′
1,j

′
2}. Therefore, the first com-

pression is possible for all such entries. We also note that in this case, we only
need the spatial distance, so we do not have to think about appropriate coordinate
directions here.

In the first compression, there are two different possibilities: First, if

Bj,j′ ∼ 2−min{j1,j2,j
′
1,j

′
2},

and h := min{1, dist(Γi,Γj)} > 0, then we can compress all entries, for which the
maximal support size is smaller than h, meaning if

min{j1, j2, j′1, j′2} > dlog2 he =: C,

leaving us at ∑

j1,j2≤J

j′1,j
′
2≤J

2|j|1+|j′|1−min{j1,j2,j
′
1,j

′
2} . C23C = O(1)

entries. Note that this is entirely theoretical – it is clear that this constant deterior-
ates if h > 0 is small. If not, then there are only O(4J) entries on each patch-patch
interaction, which is implied by the proof of Theorem 6.1.
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8. Consistency and convergence

In this section, we are going to show that the Galerkin scheme for the compressed
operator converges as well as the Galerkin scheme for the uncompressed operator.
This means that the wavelet matrix compression under consideration realizes the
discretization error accuracy offered by the underlying Galerkin scheme.

Similar to [8], we define the compressed boundary integral operator Aε
J in ac-

cordance with

Aε
Ju :=

∑

|j|∞≤J

|j′|∞≤J

∑

k∈∇j

k′∈∇j′

[
Aε

J

]
(j,k),(j′,k′)

〈
ψ̃j′,k′ , u

〉
Γ
ψ̃j,k,

which defines a continuous operator Hs(Γ) → Hs−2q(Γ) for all −γ̃ < s < γ̃ + 2q.
Especially, this operator represents the compressed matrix Aε

J in terms of
〈
ψj′,k′ ,Aε

Jψj,k

〉
Γ
=
[
Aε

J

]
(j,k),(j′,k′)

, |j|∞, |j′|∞ ≤ J, k ∈ ∇j,k
′ ∈ ∇j′ .

Theorem 8.1 (Consistency). Let Aε
J denote the compressed matrix of the level J

with a parameter a, such that

max
{
a−(2q+4d̃), a−(2q+2d̃), a−(1+2q+2d̃)

}
≤ ε.

Then, for q ≤ s, t ≤ d, the associated compressed operator Aε
J satisfies the estimate

∣∣〈(A−Aε
J)QJu, QJv

〉
Γ

∣∣ . ε 2J(2q−s−t)‖u‖Hs(Γ)‖v‖Ht(Γ) (46)

holds uniformly in J .

Proof. By the definition of the operators A, Aε
J , the biorthogonality and the rep-

resentation formula

u =
∑

j,k

〈
ψ̃j,k, u

〉
Γ
ψj,k,

together with all the block error estimations and the definition of σj,j′ in (21), we
obtain that
〈
(A−Aε

J)QJu, QJv
〉
Γ
=

∑

|j|∞≤J

|j′|∞≤J

∑

k∈∇j

k′∈∇j′

〈
ψ̃j,k, u

〉
Γ

[
A−Aε

J

]
(j,k),(j′,k′)

〈
ψ̃j′,k′ , v

〉
Γ

=
∑

|j|∞≤J

|j′|∞≤J

[
uj,k

]ᵀ
k

[
A−Aε

J

]
j,j′

[
vj′,k′

]
k′

≤
∑

|j|∞≤J

|j′|∞≤J

∥∥[uj,k
]
k

∥∥
2

∥∥[A−Aε
J

]
j,j′

∥∥
2

∥∥[vj′,k′

]
k′

∥∥
2

. ε 22J(q−d′)
J∑

n,n′=0

2(d
′−2κ)(n+n′)



∑

|j|∞=n

2κ|j|1
∥∥[uj,k

]
k

∥∥
2




·




∑

|j′|∞=n′

2κ|j
′|1
∥∥[vj′,k′

]
k′

∥∥
2


 .

For each the two sums, we may apply the inequality of Cauchy-Schwarz to obtain
that

∑

|j|∞=n

2κ|j|1
∥∥[uj,k

]
k

∥∥
2
≤



∑

|j|∞=n

22κ|j|1




1
2


∑

|j|∞=n

∥∥[uj,k
]
k

∥∥2
2




1
2

.
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Herein, the first sum can be estimated by

∑

|j|∞=n

22κ|j|1 = 24κn + 2

n−1∑

m=0

22κ(m+n) . 24κn.

Moreover, if s ≥ 0, the second sum can be treated by the approximation property
(15) of the spaces Vn, and we obtain that



∑

|j|∞=n

∥∥[uj,k
]
k

∥∥2
2




1
2

∼ ‖(Qn −Qn−1)u‖L2(Γ)

≤ ‖Qnu− u‖L2(Γ) + ‖u−Qn−1u‖L2(Γ)

. 2−sn‖u‖Hs(Γ).

Whereas, if s < 0, we can use the Bernstein inequality (16) to get


∑

|j|∞=n

‖
[
uj,k

]
k
‖22




1
2

∼ ‖(Qn −Qn−1)u‖L2(Γ) . 2−sn‖(Qn −Qn−1)u‖Hs(Γ) . 2−sn‖u‖Hs(Γ).

After applying the same procedure to v, we finally arrive at

〈
(A−Aε

J)PJu,PJv
〉
Γ
. ε 22J(q−d′)

J∑

n,n′=0

2n(d
′−s)2n

′(d′−t)‖u‖Hs(Γ)‖v‖Ht(Γ)

. ε 22J(q−d′)‖u‖Hs(Γ)‖v‖Ht(Γ)

J∑

n=0

2n(d
′−s)

J∑

n′=0

2n
′(d′−t)

. ε 2J(2q−s−t)‖u‖Hs(Γ)‖v‖Ht(Γ)

since q ≤ s, t ≤ d < d′. �

Our next goal is to show that the compressed wavelet scheme converges to the
original solution. First, similar to [8], we keep in mind that Theorem 8.1 implies
that ∣∣〈(A−Aε

J)uJ , vJ
〉
Γ

∣∣ . ε ‖uJ‖Hq(Γ)‖vJ‖Hq(Γ), uJ , vJ ∈ VJ .

In view of the strong ellipticity (4), we can conclude that
〈
u,
(
Aε

J + (Aε
J)

?
)
u
〉
Γ
≥ (c− 2ε)‖u‖2Hq(Γ),

so the operator Aε
J is strongly elliptic for ε sufficiently small, too. These two

properties then imply that the operator Aε
J is stable in the sense that

∥∥Aε
JuJ

∥∥
H−q(Γ)

∼
∥∥uJ

∥∥
Hq(Γ)

.

With these two results at hand, we may deduce the following two theorems using
the arguments of [8].

Theorem 8.2 (Convergence). Let ε be sufficiently small such that Aε
J is strongly

elliptic. Then, the solution of the compressed matrix equation

uJ =
∑

|j|∞≤J

∑

k∈∇j

uj,kψj,k,

where the coefficient vector uJ satisfies

Aε
JuJ = gJ , where

[
gJ

]
j,k

=
〈
g, ψj,k

〉
Γ
,

converges to the solution u of (5) in Hq(Γ) and the estimate

‖u− uJ‖Hq(Γ) . 2J(q−d)‖u‖Hd(Γ)

holds.
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Theorem 8.3 (Aubin-Nitsche). Let all the assumptions of Theorem 8.2 hold and
moreover assume that A? : Ht+q(Γ) → Ht−q(Γ) is an isomorphism for any 0 ≤ t ≤
d− q. Then, we have the error estimate

‖u− uJ‖Hq−t(Γ) . 2J(q−d−t)‖u‖Hd(Γ).

These two theorems can be shown by using only the consistency, the ellipticity,
the stability, and the approximation property, cf. [8].

9. Numerical Computations

In this section, we present numerical experiments to validate the theoretical
findings. We use piecewise constant wavelets with three vanishing moments and
consider the single layer operator on the unit square. We compute first the full
wavelet Galerkin matrix

AJ =
[〈
ψj′,k′ ,Aψj,k

〉
�

]
(j,k),(j′,k′)

, |j|∞, |j′|∞ ≤ J, k ∈ ∇j, k
′ ∈ ∇j′ .

with A being the single layer operator. Then, the obsolete entries are removed
according to the compression scheme from Section 5. The number of nonzero entries
are calculated and plotted (blue line) in on the left-hand side of Figure 6. To

this end, we have chosen the parameters d̃ = 3, d′ = 1.1, and κ = 10−3, while
for the bandwidth parameter a the different values a = 0.5, 1.0, 2.0 have been
considered. The system matrix for the anisotropic tensor product wavelet basis
and its compressed counterpart with 47 = 16 384 rows and columns and a = 1.0
can be found in Figure 5.

Figure 5. The wavelet Galerkin matrix (left) and its compressed
version (right) for J = 7. We have used the parameters a = 1.0,

d̃ = 3, d′ = 1.1, and κ = 10−3. The colour indicates the absolute
values of the matrix entries in a logarithmic scale.

From a theoretical point of view, the number of nontrivial entries in each block
can be bounded by

Nj,j′ . 2|j|1+|j′|1
(
B2
j,j′ +min{2−min{j1,j2,j

′
1,j

′
2}, Ej,j′}+ Fx1

j,j′Fx2

j,j′

)
. (47)

Moreover, in accordance with (40) and (41), an additional summand 2min{|j|1+j′|1}

is added if j ≤ j′ or j′ ≤ j. The number of nontrivial entries in the whole compressed
matrix can therefore be also bounded by

C .
∑

|j|∞≤J

∑

|j′|∞≤J

Nj,j′ . (48)

This estimate is also found (red line) in the plot on the left-hand side of Figure 6.
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On the right-hand side of Figure 6, we have computed the consistency errors
arising from the compression scheme. Therein, we have generated random vectors
u,v and scaled them such that they correspond to coefficient vectors of functions
u, v ∈ H1(Γ) with respect to the anisotropic tensor product wavelet basis. We
have used 100 random samples to calculate the quantity

∣∣vᵀ(AJ − Ac
J)u

∣∣ which
is the discrete version of (46). We see that the calculations match the expected
behaviour.
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Figure 6. Left: Calculation (blue) and estimation (red) of the
number of nonzero entries according to (47) and (48). Right: Con-
sistency error according to (46).

10. Conclusion

We have developed a matrix compression scheme for the boundary element
method using anisotropic tensor product wavelets. In the end, we get a quasi-sparse
matrix containing only O(N) nontrivial entries whilst the approximate solution
converges to the exact solution at the rate of the discretisation error. This applies
for every integral operator of arbitrary order on the unit square. On a Lipschitz
geometry, however, the order of the integral operator is bounded by 2q < 1 for a
conforming method since the underlying wavelet construction yields ansatz func-
tions which are discontinuous across patch boundaries.

Likewise to [20, 21], our compression scheme may be generalized to an arbitrary
spatial dimension on the unit cube. One would have to choose the compression para-
meters according to the location of the two tensor product wavelets with respect
to each other. Then, one should combine the first compression in all directions, in
which the two wavelets are in the far-field with a second compression for all direc-
tions, in which the wavelets are in the near-field. Especially, optimal compression
estimates in sparse tensor product spaces are possible.

On the contrary, it is not known yet whether the anisotropic tensor product
wavelet basis is s?-compressible, which was established for the isotropic wavelet
basis in [27]. With the s?-compressibility at hand, it was shown in [9, 11] that
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adaptive wavelet compression schemes can approximate the solution at the rate of
the best N -term approximation at a linear complexity.

Acknowledgement. This research has been supported by the Swiss National Sci-
ence Foundation (SNSF) through the project “Adaptive Boundary Element Meth-
ods Using Anisotropic Wavelets” under grant agreement no. 200021 192041.

References

[1] Alex Barnett and Leslie Greengard. A new integral representation for quasi-periodic fields
and its application to two-dimensional band structure calculations. Journal of Computational

Physics, 229(19):6898–6914, 2010.
[2] Mario Bebendorf and Sergej Rjasanow. Adaptive low-rank approximation of collocation

matrices. Computing, 70(1):1–24, 2003.
[3] Dietrich Braess. Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics.

Cambridge University Press, Cambridge, second edition, 2001.
[4] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element

Methods. Springer, Berlin, third edition, 2008.

[5] Paul Cazeaux and Olivier Zahm. A fast boundary element method for the solution of peri-
odic many-inclusion problems via hierarchical matrix techniques. ESAIM: Proceedings and

Surveys, 48:156–168, January 2015.
[6] David Colton and Rainer Kress. Inverse Acoustic and Electromagnetic Scattering Theory.

Springer, Berlin-Heidelberg, second edition, 1998.
[7] Wolfgang Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica,

6:55–228, 1997.
[8] Wolfgang Dahmen, Helmut Harbrecht, and Reinhold Schneider. Compression techniques for

boundary integral equations: Asymptotically optimal complexity estimates. SIAM Journal

on Numerical Analysis, 43(6):2251–2271, 2006.
[9] Wolfgang Dahmen, Helmut Harbrecht, and Reinhold Schneider. Adaptive methods for bound-

ary integral equations: Complexity and convergence estimates. Mathematics of Computation,
76(259):1243–1274, 2007.

[10] Ingrid Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series
in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania, 1992.

[11] Tsogtgerel Gantumur and Rob Stevenson. Computation of singular integral operators in

wavelet coordinates. Computing, 76:77–107, 2006.
[12] Leslie Greengard and Vladimir Rokhlin. A new version of the fast multipole method for the

Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.
[13] Michael Griebel, Peter Oswald, and Thomas Schiekofer. Sparse grids for boundary integral

equations. Numerische Mathematik, 83(2):279–312, 1999.
[14] Helmut Harbrecht and Michael Peters. Comparison of fast boundary element methods on

parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 261–262:39–
55, 2013.

[15] Helmut Harbrecht and Reinhold Schneider. Wavelet Galerkin schemes for boundary integ-
ral equations. implementation and quadrature. SIAM Journal on Scientific Computing,
27(4):1347–1370, 2006.

[16] Helmut Harbrecht and Reinhold Schneider. Rapid solution of boundary integral equations
by wavelet galerkin schemes. In Ronald DeVore and Angela Kunoth, editors, Multiscale,

Nonlinear and Adaptive Approximation, pages 249–294, Berlin-Heidelberg, 2009. Springer.
[17] Helmut Harbrecht and Manuela Utzinger. On adaptive wavelet boundary element methods.

Journal of Computational Mathematics, 36(1):90–109, 2018.
[18] George Hsiao and Wolfgang L. Wendland. Boundary Integral Equations, volume 164 of Ap-

plied Mathematical Sciences. Springer, Berlin, 2008.
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