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Abstract In this article, we analyze tensor approximation schemes for continuous
functions. We assume that the function to be approximated lies in an isotropic
Sobolev space and discuss the cost when approximating this function in the con-
tinuous analogue of the Tucker tensor format or of the tensor train format. We
especially show that the cost of both approximations are dimension-robust when
the Sobolev space under consideration provides appropriate dimension weights.
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1 Introduction

The efficient approximate representation of multivariate functions is an impor-
tant task in numerical analysis and scientific computing. In this article, we hence
consider the approximation of functions which live on the product of m bounded
domains Ω1 × · · · × Ωm, each of which satisfies Ωj ⊂ Rnj . Besides a sparse grid
approximation of the function under consideration, being discussed in, e.g., [8,17,
18,50], one can also apply a low-rank approximation by means of a tensor approx-
imation scheme, see, e.g., [15,21,22,34,35] and the references therein.

The low-rank approximation in the situation of the product of m = 2 domains
is well understood. It is related to the singular value decomposition and has been
studied for arbitrary product domains in, e.g., [19,20], see also [46–48] for the
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periodic case. However, the situation is not that clear for the product of m > 2
domains, where one ends up with tensor decompositions. Such tensor decomposi-
tions are generalizations of the well known singular value decomposition and the
corresponding low-rank matrix approximation methods of two dimensions to the
higher-dimensional setting. There, besides the curse of dimension, we encounter –
due to the non-existence of an Eckart-Young-Mirsky theorem – that the concepts
of singular value decomposition and low-rank approximation can be generalized
to higher dimensions in more than one way. Consequently, there exist many gen-
eralizations of the singular value decomposition of a function and of low-rank
approximations to tensors. To this end, various schemes have been developed over
the years in different areas of the sciences and have successfully been applied to
various high-dimensional problems ranging from quantum mechanics and physics
via biology and econometrics, computer graphics and signal processing to nu-
merical analysis. Recently, tensor methods have even been recognized as special
deep neural networks in machine learning and big data analysis [11,28]. As ten-
sor approximation schemes, we have, for example, matrix product states, DMRG,
MERA, PEPS, CP, CANDECOMP, PARAFAC, Tucker, tensor train, tree tensor
networks and hierarchical Tucker, to name a few. A mathematical introduction
into tensor methods is given in the seminal book [21], while a survey on existing
methods and their literature can be found in [16]. Also various software packages
have been developed for an algebra of operators dealing with tensors.

Tensor methods are usually analyzed as low-rank approximations to a full
discrete tensor of data with respect to the `2-norm or Frobenius-norm. In this re-
spective, they can be seen as compression methods which may avoid the curse of
dimensionality, which is inherent in the full tensor representation. The main tool
for studying tensor compression schemes is the so-called tensor-rank , compare [12,
13,21]. Thus, instead of O(Nn) storage, as less as O(nNr3) or even only O(nNr2)
storage is needed, where N denotes the number of data points in one coordinate
direction, n denotes the dimension of the tensor under consideration and r denotes
the respective tensor rank of the data. The cost complexity of the various algo-
rithms working with sparse tensor representations is correspondingly reduced and
working in a sparse tensor format allows to alleviate or to completely break the
curse of dimension for suitable tensor data classes, i.e., for sufficiently small r.

However, the question where the tensor data stem from and the issue of the
accuracy of the full tensor approximation, i.e., the discretization error of the full
tensor itself and its relation to the error of a subsequent low-rank tensor approx-
imation, is usually not adequately addressed.1 Instead, only the approximation
property of a low-rank tensor scheme with respect to the full tensor data is con-
sidered. But the former question is important since it clearly makes no sense to
derive a tensor approximation with an error that is substantially smaller than the
error which is already inherent in the full tensor data due to some discretization
process for a continuous high-dimensional function which stems from some certain
function class.

The approximation rates to continuous functions can be determined by a re-
cursive use of the singular value decomposition, which is successively applied to
convert the function into a specific continuous tensor format. We studied the sin-
gular value decomposition for arbitrary domains in [19,20] and we now can apply

1 We are only aware of [2,3,5,39], where this question has been considered so far.



Analysis of tensor approximation schemes for continuous functions 3

these results to discuss approximation rates of continuous tensor formats. In the
present article, given a function f ∈ Hk(Ω1 × · · · ×Ωm), we study the continuous
analogues of the Tucker tensor decomposition and of the tensor train decompo-
sition. We give bounds on the ranks required to ensure that the tensor decom-
position admits a prescribed target accuracy. Especially, our analysis takes into
account the influence of errors induced by truncating infinite expansions to finite
ones. We therefore study an algorithm that computes the desired tensor expansion
which is in contrast to the question of the smallest tensor-rank. We finally show
that (isotropic) Sobolev spaces with dimension weights help to beat the curse of
dimension when the number m of product domains tends to infinity.

Besides the simple situation of Ω1 = · · · = Ωm = [0, 1], which is usually con-
sidered in case of tensor decompositions, there are many more applications of
our general setting. For example, non-Newtonian flow can be modeled by a cou-
pled system which consists of the Navier Stokes equation for the flow in a three-
dimensional geometry described by Ω1 and of the Fokker-Planck equation in a
3(`− 1)-dimensional configuration space Ω2 × · · · ×Ω`, consisting of `− 1 spheres.
Here, ` denotes the number of atoms in a chain-like molecule which constitutes the
non-Newtonian behavior of the flow, for details see [4,29,31,37]. Another exam-
ple is homogenization. After unfolding [10], a two-scale homogenization problem
gives raise to the product of the macroscopic physical domain and the periodic
microscopic domain of the cell problem, see [32]. For multiple scales, several peri-
odic microscopic domains appear which reflect the different separable scales, see
e.g. [27]. Also the m-th moment of linear elliptic boundary value problems with
random source terms, i.e. Au(ω) = f(ω) in Ω, are known to satisfy a deterministic
partial differential equation on the m-fold product domain Ω× · · · ×Ω. There, the
solution’s m-th moment Mu is given by the equation

(A⊗ · · · ⊗A)Mu =Mf in Ω × · · · ×Ω,

see [40,41]. This approach extends to boundary value problems with random dif-
fusion and to random domains as well [9,25]. Moreover, we find the product of
several domains in quantum mechanics for e.g. the Schrödinger equation or the
Langevin equation, where each domain is three-dimensional and corresponds to a
single particle. Finally, we encounter it in uncertainty quantification, where one
has the product of the physical domain Ω1 and of in general infinitely many in-
tervals Ω2 = Ω3 = Ω4 = . . . for the random input parameter, which reflects
its series expansion by the Karhunen-Lòeve decomposition or the Lévy-Ciesielski
decomposition.

The remainder of this article is organized as follows: In Section 2, we give a
short introduction to our results on the singular value decomposition, which are
needed to derive the estimates for the continuous tensor decompositions. Then,
in Section 3, we study the continuous Tucker tensor format, computed by means
of the higher-oder singular value decomposition. Next, we study the continuous
tensor train decomposition in Section 4, computed by means of a repeated use
of a vector-valued singular value decomposition. Finally, Section 5 concludes with
some final remarks.

Throughout this article, to avoid the repeated use of generic but unspecified
constants, we denote by C . D that C is bounded by a multiple of D independently
of parameters which C and D may depend on. Obviously, C & D is defined as
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D . C, and C ∼ D as C . D and C & D. Moreover, given a Lipschitz-smooth
domain Ω ⊂ Rn, L2(Ω) means the space of square integrable functions on Ω. For
real numbers k ≥ 0, the associated Sobolev space is denoted by Hk(Ω), where its
norm ‖ · ‖Hk(Ω) is defined in the standard way, compare [33,45]. As usual, we have

H0(Ω) = L2(Ω). The seminorm in Hk(Ω) is denoted by | · |Hk(Ω1)
. Although not

explicitly written, our subsequent analysis covers also the situation of Ω being not
a domain but a (smooth) manifold.

2 Singular value decomposition

2.1 Definition and calculation

Let Ω1 ⊂ Rn1 and Ω2 be Lipschitz-smooth domains. To represent functions f ∈
L2(Ω1 × Ω2) on the tensor product domain Ω1 × Ω2 in an efficient way, we will
consider low-rank approximations which separate the variables x ∈ Ω1 and y ∈ Ω2

in accordance with

f(x,y) ≈ fr(x,y) :=
r∑

α=1

√
λ(α)ϕ(x, α)ψ(α,y). (2.1)

It is well known (see e.g. [30,38,42]) that the best possible representation (2.1) in
the L2-sense is given by the singular value decomposition, also called Karhunen-
Lòeve expansion.2 Then, the coefficients

√
λ(α) ∈ R are the singular values and

the ϕ(α) ∈ L2(Ω1) and ψ(α) ∈ L2(Ω2) are the left and right (L2-normalized)
eigenfunctions of the integral operator

Sf : L2(Ω1)→ L2(Ω2), u 7→ (Sfu)(y) :=

∫
Ω1

f(x,y)u(x) dx.

This means that√
λ(α)ψ(α,y) =

(
Sfϕ(α)

)
(y) and

√
λ(α)ϕ(x, α) =

(
S?fψ(α)

)
(x), (2.2)

where

S?f : L2(Ω2)→ L2(Ω1), v 7→ (S?f v)(x) :=

∫
Ω2

f(x,y)v(y) dy.

is the adjoint of Sf . Especially, the left and right eigenfunctions {ϕ(α)}∞α=1 and
{ψ(α)}∞α=1 form orthonormal bases in L2(Ω1) and L2(Ω2), respectively.

In order to compute the singular value decomposition, we need to solve the
eigenvalue problem

Kfϕ(α) = λ(α)ϕ(α)

for the integral operator

Kf = S?fSf : L2(Ω1)→ L2(Ω1), u 7→ (Kfu)(x) :=

∫
Ω1

kf (x,x′)u(x′) dx′. (2.3)

2 We refer the reader to [44] for a comprehensive historical overview on the singular value
decomposition.
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Since f ∈ L2(Ω1 ×Ω2), the kernel

kf (x,x′) =

∫
Ω2

f(x,y)f(x′,y) dy ∈ L2(Ω1 ×Ω1) (2.4)

is a symmetric Hilbert-Schmidt kernel. Hence, there exist countably many eigen-
values

λ(1) ≥ λ(2) ≥ · · · ≥ λ(m)
m→∞−→ 0

and the associated eigenfunctions {ϕ(α)}α∈N constitute an orthonormal basis in
L2(Ω1).

Likewise, to obtain an orthonormal basis of L2(Ω2), we can solve the eigenvalue
problem

K̃fψ(α) = λ̃(α)ψ(α)

for the integral operator

K̃f = SfS?f : L2(Ω2)→ L2(Ω2), u 7→ (K̃fu)(y) :=

∫
Ω2

k̃f (y,y′)u(y′) dy′

with symmetric Hilbert-Schmidt kernel

k̃f (y,y′) =

∫
Ω1

f(x,y)f(x,y′) dx ∈ L2(Ω2 ×Ω2). (2.5)

It holds λ(α) = λ̃(α) and the sequences {ϕ(α)} and {ψ(α)} are related by (2.2).

2.2 Regularity of the eigenfunctions

Now, we consider functions f ∈ Hk(Ω1 × Ω2). In the following, we collect results
from [19,20] concerning the singular value decomposition of such functions. We
repeat the proof whenever needed for having explicit constants. To this end, we
define the mixed Sobolev space Hk,`

mix(Ω1 × Ω2) as a tensor product of Hilbert
spaces

Hk,`
mix(Ω1 ×Ω2) := Hk(Ω1)⊗H`(Ω2),

which we equip with the usual cross norm

‖f‖
Hk,`mix(Ω1×Ω2)

:=

√√√√ ∑
|α|≤k

∑
|β|≤`

∥∥∥∥ ∂|α|∂|β|∂xα∂yβ
f

∥∥∥∥2
L2(Ω1×Ω2)

.

Note that

Hk(Ω1 ×Ω2) ⊂ Hk,0
mix(Ω1 ×Ω2), Hk(Ω1 ×Ω2) ⊂ H0,k

mix(Ω1 ×Ω2).

Lemma 1 Assume that f ∈ Hk(Ω1 ×Ω2) for some fixed k ≥ 0. Then, the operators

Sf : L2(Ω1)→ Hk(Ω2), S?f : L2(Ω2)→ Hk(Ω1)

are continuous with∥∥Sf∥∥L2(Ω1)→Hk(Ω2)
≤ ‖f‖

H0,k
mix(Ω1×Ω2)

,
∥∥S?f∥∥L2(Ω2)→Hk(Ω1)

≤ ‖f‖
Hk,0mix(Ω1×Ω2)

.



6 Michael Griebel, Helmut Harbrecht

Proof From Hk(Ω1 × Ω2) ⊂ H0,k
mix(Ω1 × Ω2) it follows for f ∈ Hk(Ω1 × Ω2) that

f ∈ H0,k
mix(Ω1 × Ω2). Therefore, the operator Sf : L2(Ω1) → Hk(Ω2) is continuous

since ∥∥Sfu∥∥Hk(Ω2)
= sup
‖v‖

H−k(Ω2)
=1

(Sfu, v)L2(Ω2)

= sup
‖v‖

H−k(Ω2)
=1

(f, u⊗ v)L2(Ω1×Ω2)

≤ sup
‖v‖

H−k(Ω2)
=1

‖f‖
H0,k

mix(Ω1×Ω2)
‖u⊗ v‖

H0,−k
mix (Ω1×Ω2)

≤ ‖f‖
H0,k

mix(Ω1×Ω2)
‖u‖L2(Ω1).

Note that we have used here H0,−k
mix (Ω1 × Ω2) = L2(Ω1) ⊗ H−k(Ω2). Proceeding

likewise for S?f : L2(Ω2)→ Hk(Ω1) completes the proof.

Lemma 2 Assume that f ∈ Hk(Ω1 × Ω2) for some fixed k ≥ 0. Then, it holds

Sfϕ(α) ∈ Hk(Ω2) and S?fψ(α) ∈ Hk(Ω1) for all α ∈ N with

‖ϕ(α)‖Hk(Ω1)
≤ 1√

λ(α)
‖f‖

Hk,0mix(Ω1×Ω2)
,

‖ψ(α)‖Hk(Ω2)
≤ 1√

λ(α)
‖f‖

H0,k
mix(Ω1×Ω2)

.

Proof According to (2.2) and Lemma 1, we have

‖ϕ(α)‖Hk(Ω1)
=

1√
λ(α)

∥∥S?fψ(α)
∥∥
Hk(Ω1)

≤ 1√
λ(α)

‖f‖
Hk,0mix(Ω1×Ω2)

‖ψ(α)‖L2(Ω2).

This proves the first assertion. The second assertion follows by duality.

As an immediate consequence of Lemma 2, we obtain

r∑
α=1

λ(α)‖ϕ(α)‖2Hk(Ω1)
≤ r‖f‖2

Hk,0mix(Ω1×Ω2)

and
r∑

α=1

λ(α)‖ψ(α)‖2Hk(Ω2)
≤ r‖f‖2

H0,k
mix(Ω1×Ω2)

.

We will show later in Lemma 4 how to improve this estimate by sacrificing some
regularity.

2.3 Truncation error

We next give estimates on the decay rate of the eigenvalues of the integral oper-
ator Kf = S?fSf with kernel (2.4). To this end, we exploit the smoothness in the

function’s first variable and assume hence f ∈ Hk,0
mix(Ω1×Ω2). We introduce finite

element spaces Ur ⊂ L2(Ω1), which consist of r discontinuous, piecewise polyno-
mial functions of total degree dke on a quasi-uniform triangulation of Ω1 with
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mesh width hr ∼ r−1/n1 . Then, given a function w ∈ Hk(Ω1), the L2-orthogonal
projection Pr : L2(Ω1)→ Ur satisfies

‖(I − Pr)w‖L2(Ω1) ≤ ckr
−k/n1 |w|Hk(Ω1)

(2.6)

uniformly in r due to the Bramble-Hilbert lemma, see e.g., [6,7].
For the approximation of f(x,y) in the first variable, i.e.

(
(Pr ⊗ I)f

)
(x,y), we

obtain the following approximation result for the present choice of Ur, see [20] for
the proof.

Lemma 3 Assume that f ∈ Hk(Ω1 × Ω2) for some fixed k ≥ 0. Let λ(1) ≥ λ(2) ≥
. . . ≥ 0 be the eigenvalues of the operator Kf = S?fSf and λr(1) ≥ λr(2) ≥ . . . ≥
λr(r) ≥ 0 those of K rf := PrKfPr. Then, it holds

‖f − (Pr⊗ I)f‖2L2(Ω1×Ω2) = traceKf − traceK rf =
r∑

α=1

(
λ(α)−λr(α)

)
+

∞∑
α=r+1

λ(α).

By combining this lemma with the approximation estimate (2.6) and in view
of λ(α) − λr(α) ≥ 0 for all α ∈ {1, 2, . . . , r} according to the min-max theorem of
Courant-Fischer, see [1] for example, we conclude that the truncation error of the
singular value decomposition can be bounded by∥∥∥∥∥f −

r∑
α=1

√
λ(α)

(
ϕ(α)⊗ ψ(α)

)∥∥∥∥∥
L2(Ω1×Ω2)

=

√√√√ ∞∑
α=r+1

λ(α) ≤ ckr
− k
n1 |f |

Hk,0mix(Ω1×Ω2)
.

Since the eigenvalues of the integral operator Kf and its adjoint K̃f are the
same, we can also exploit the smoothness of f in the second coordinate by inter-
changing the roles of Ω1 and Ω2 in the above considerations. We thus obtain the
following theorem:

Theorem 1 Let f ∈ Hk(Ω1 ×Ω2) for some fixed k ≥ 0 and let

fSVD
r =

r∑
α=1

√
λ(α)

(
ϕ(α)⊗ ψ(α)

)
.

Then, it holds

‖f − fSVD
r ‖L2(Ω1×Ω2) =

√√√√ ∞∑
α=r+1

λ(α) ≤ ckr
− k

min{n1,n2} |f |Hk(Ω1×Ω2)
. (2.7)

Remark 1 Theorem 1 implies that the eigenvalues {λ(α)}α∈N in case of a function
f ∈ Hk(Ω1 ×Ω2) decay like

λ(α) . α
− 2k

min{n1,n2}
−1

as α→∞. (2.8)

Having the decay rate of the eigenvalues at hand, we are able to improve the
result of Lemma 2 by sacrificing some regularity. Note that the proof of this result
is based upon an argument from [43].
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Lemma 4 Assume that f ∈ Hk+min{n1,n2}(Ω1 ×Ω2) for some fixed k ≥ 0. Then, it

holds
∞∑
α=1

λ(α)‖ϕ(α)‖2Hk(Ω1)
= ‖f‖2

Hk,0mix(Ω1×Ω2)

and
∞∑
α=1

λ(α)‖ψ(α)‖2Hk(Ω2)
= ‖f‖2

H0,k
mix(Ω1×Ω2)

.

Proof Without loss of generality, we assume n1 ≤ n2. Then, since f ∈ Hk+n1(Ω1×
Ω2), we conclude from (2.8) that

λ(α) . α
− 2(k+n1)

n1
−1 as α→∞,

where we used that n1 = min{n1, n2}. Moreover, by interpolating between L2(Ω1)
and Hk+n1(Ω1), compare [33,45] for example, we find

‖ϕ(α)‖2Hk(Ω1)
. λ(α)−

k
k+n1 ,

that is

λ(α)‖ϕ(α)‖2Hk(Ω1)
. λ(α)

n1
k+n1 .

As a consequence, we infer that

λ(α)‖ϕ(α)‖2Hk(Ω1)
. α
−(

2(k+n1)

n1
+1)· n1

k+n1 = α−(2+δ)

with δ = n1

k+n1
> 0. Therefore, it holds

∞∑
α=1

α(1+δ′)λ(α)‖ϕ(α)‖2Hk(Ω1)
<∞

for any δ′ ∈ (0, δ). Hence, the series

A(x) :=
∞∑
α=1

α(1+δ′)λ(α)|∂βxϕ(α,x)|2

converges for almost all x ∈ Ω1, provided that |β| ≤ k. Likewise, the series

B(y) :=
∞∑
α=1

α−(1+δ′)|ψ(α,y)|2

converges for almost all y ∈ Ω2. Thus, the series

∞∑
α=1

√
λ(α)|∂βxϕ(α,x)||ψ(α,y)| ≤

√
A(x)

√
B(y)
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converges for almost all x ∈ Ω1 and y ∈ Ω2, provided that |β| ≤ k. Because of
Egorov’s theorem, the pointwise absolute convergence almost everywhere implies
uniform convergence. Hence, we can switch differentiation and summation to get

‖f‖2
Hk,0mix(Ω1×Ω2)

=
∑
|β|≤k

∥∥∥∥∥∂βx
∞∑
α=1

√
λ(α)

(
ϕ(α)⊗ ψ(α)

)∥∥∥∥∥
2

L2(Ω1×Ω2)

=
∑
|β|≤k

∥∥∥∥∥
∞∑
α=1

√
λ(α)

(
∂βxϕ(α)⊗ ψ(α)

)∥∥∥∥∥
2

L2(Ω1×Ω2)

.

Finally, we exploit the product structure of L2(Ω1 × Ω2) and the orthonormality
of {ψ(α)}α∈N to derive the first assertion, i.e.,

‖f‖2
Hk,0mix(Ω1×Ω2)

=
∞∑
α=1

λ(α)
∑
|β|≤k

∥∥∂βxϕ(α)
∥∥2
L2(Ω1)

‖ψ(α)‖2L2(Ω2)

=
∞∑
α=1

λ(α)‖ϕ(α)‖2Hk(Ω1)
.

The second assertion follows in complete analogy.

2.4 Vector-valued functions

In addition to the aforementioned results, we will also need the following result
which concerns the approximation of vector-valued functions. Here and in the
sequel, the vector-valued function w = [w(α)]mα=1 is an element of [L2(Ω)]m and
[Hk(Ω)]m for some domain Ω ⊂ Rn, respectively, if the norms

‖w‖[L2(Ω)]m =

√√√√ m∑
α=1

‖w(α)‖2L2(Ω)
, ‖w‖[Hk(Ω)]m =

√√√√ m∑
α=1

‖w(α)‖2
Hk(Ω)

are finite. Likewise, the seminorm is defined in [Hk(Ω)]m.
Consider now a vector-valued function w ∈ [Hk(Ω1)]m of dimension m. Then,

instead of (2.6), we find

‖(I − Pr)w‖[L2(Ω1)]m ≤ ck
(
r

m

)−k/n1

|w|[Hk(Ω1)]m
,

since w consists of m components and we thus need m-times as many ansatz
functions for our approximation argument. Hence, in case of a vector-valued func-
tion f ∈ [Hk,0

mix(Ω1 ×Ω2)]m ' [Hk(Ω1)]m ⊗ L2(Ω2), we conclude by exploiting the
smoothness in the first variable3 that the truncation error of the singular value
decomposition can be estimated by∥∥∥∥f− r∑

α=1

√
λ(α)

(
ϕ(α)⊗ψ(α)

)∥∥∥∥∥
[L2(Ω1×Ω2)]m

≤ ck
(
r

m

)−k/n1

|f |
[Hk,0mix(Ω1×Ω2)]m

. (2.9)

3 Note that the kernel function of S?
fSf is matrix-valued while the kernel function of SfS?

f

is scalar-valued.
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Hence, the decay rate of the singular values is considerably reduced. Finally, we
like to remark that Lemma 4 holds also in the vector case, i.e.,

∞∑
α=1

λ(α)‖ϕ(α)‖2[Hk(Ω1)]m
= ‖f‖2

[Hk,0mix(Ω1×Ω2)]m

and
∞∑
α=1

λ(α)‖ψ(α)‖2Hk(Ω2)
= ‖f‖2

[H0,k
mix(Ω1×Ω2)]m

, (2.10)

provided that f has extra regularity in terms of f ∈ [Hk+n1(Ω1 × Ω2)]m. Here,

analogously to above, [H0,k
mix(Ω1 ×Ω2)]m ' [L2(Ω1)]m ⊗Hk(Ω2).

After these preparations, we now introduce and analyze two types of continuous
analogues of tensor formats, namely of the Tucker format [26,49] and of the tensor
train format [36,34], and discuss their approximation properties for functions f ∈
Hk(Ω1 × · · · ×Ωm).

3 Tucker tensor format

3.1 Tucker decompostion

We shall consider from now on a product domain which consists of m different
domains Ωj ⊂ Rnj , j = 1, . . . ,m. For given f ∈ L2(Ω1 × · · · × Ωm) and j ∈
{1, 2, . . . ,m}, we apply the singular value decomposition to separate the variables
xj ∈ Ωj and (x1, . . . ,xj−1,xj+1, . . . ,xm) ∈ Ω1× · · · ×Ωj−1×Ωj+1× · · · ×Ωm. We
hence get

f(x1, . . . ,xj−1,xj ,xj+1, . . . ,xm)

=
∞∑

αj=1

√
λj(αj)ϕj(xj , αj)ψj(αj ,x1, . . . ,xj−1,xj+1, . . . ,xm),

(3.11)

where the left eigenfunctions {ϕj(αj)}αj∈N form an orthonormal basis in L2(Ωj).
Consequently, if we iterate over all j ∈ {1, 2, . . . ,m}, this yields an orthonormal
basis {ϕ1(α1) ⊗ · · · ⊗ ϕm(αm)}α∈Nm of L2(Ω1 × · · · × Ωm), and we arrive at the
representation

f(x1, . . . ,xm) =
∞∑
|α|=1

ω(α)ϕ1(α1,x1) · · ·ϕm(αm,xm). (3.12)

Herein, the tensor
[
ω(α)

]
α∈Nm is the core tensor, where a single coefficient is given

by

ω(α1, . . . , αm) =

∫
Ω1×···×Ωm

f(x1, . . . ,xm)ϕ1(α1,x1) · · ·ϕm(αm,xm) d(x1, . . . ,xm).
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3.2 Truncation error

If we intend to truncate the singular value decomposition (3.11) after rj terms
such that the truncation error is bounded by ε, we have to choose√√√√ ∞∑

αj=rj+1

λj(αj) . r
−k/nj
j |f |Hk(Ω1×···×Ωm)

!

. ε =⇒ rj = ε−nj/k (3.13)

according to Theorem 1. Doing so for all j ∈ {1, 2, . . . ,m}, we obtain the approxi-
mation

fTF
r1,...,rm(x1, . . . ,xm) =

r1∑
α1=1

· · ·
rm∑

αm=1

ω(α1, . . . , αm)ϕ1(α1,x1) · · ·ϕm(αm,xm).

We have the following result on the Tucker decomposition:

Theorem 2 Let f ∈ Hk(Ω1 × · · · × Ωm) for some fixed k > 0 and 0 < ε < 1. If the

ranks are chosen according to rj = ε−nj/k for all j = 1, . . . ,m. Then, the truncation

error of the truncated Tucker decomposition is

∥∥f − fTF
r1,...,rm

∥∥
L2(Ω1×···×Ωm)

≤

√√√√ m∑
j=1

∞∑
αj=rj+1

λj(αj) .
√
mε,

while the storage cost for the core tensor of fTF
r1,...,rm are

∏m
j=1 rj = ε−(n1+···+nm)/k.

Proof For the approximation of the core tensor, the sets of the univariate eigenfunc-
tions {ϕj(αj)}

rj
αj=1 are used for all j = 1, . . . ,m, cf. (3.12). Due to orthonormality,

we find∥∥f − fTF
r1,...,rm

∥∥2
L2(Ω1×···×Ωm)

=
m∑
j=1

∥∥fTF
r1,...,rj−1,∞,...,∞ − f

TF
r1,...,rj ,∞,...,∞

∥∥2
L2(Ω1×···×Ωm)

,

where we obtain fTF
∞,...,∞ = f in case of j = 1. Since

∥∥fTF
r1,...,rj−1,∞,...,∞ − f

TF
r1,...,rj ,∞,...,∞

∥∥2
L2(Ω1×···×Ωm)

≤
∥∥fTF
∞,...,∞ − fTF

∞,...,∞,rj ,∞,...,∞
∥∥2
L2(Ω1×···×Ωm)

=
∞∑

αj=rj+1

λj(αj)

for all j ∈ {1, 2, . . . ,m}, we arrive with (3.13) and the summation over j = 1, . . . ,m
at the desired error estimate. This completes the proof, since the estimate on the
number of coefficients in the core tensor is obvious.
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3.3 Sobolev spaces with dimension weights

The cost of the core tensor of the Tucker decomposition exhibit the curse of di-
mension as the number m of subdomains increases. This can be seen most simply
for the example nj = n. Then, the cost are ε−nm/k, which expresses the curse of
dimension as long as k is not proportional to m. Nonetheless, in case of Sobolev
spaces with dimension weights, the curse of dimension can be beaten.

For f ∈ Hk+n(Ωm), we shall discuss the situation m → ∞ in more detail. To
this end, we assume that all subdomains are identical to a single domain Ω ⊂ Rn
of dimension n and note that the limit m→∞ only makes sense when weights are
included in the underlying Sobolev spaces which ensure that higher dimensions
become less important. For our proofs we choose as usual m arbitrary but fixed
and show the existence of m-independent constants in the convergence and cost
estimates.

The Sobolev spaces Hk
γ(Ωm) with dimension weights γ ∈ Rm which we consider

are given by all functions f ∈ Hk(Ωm) such that∥∥∥∥ ∂kf
∂xβj

∥∥∥∥
L2(Ωm)

. γkj ‖f‖Hk(Ωm) for all |β| = k and j = 1, 2, . . . ,m. (3.14)

The definition in (3.14) means that, given a function f with norm ‖f‖Hk(Ωm) <∞,
the partial derivatives with respect to xj become less important as the dimension
j increases. Such functions appear for example in uncertainty quantification. Let
be given a Karhunen-Loève expansion

u(x,y) =
m∑
j=1

σjϕj(x)yj , yj ∈ [−1/2, 1/2],

and insert it into a function b : R → R of finite smoothness W k,∞(R). Then,
the function b

(
u(x,y)

)
satisfies (3.14) with respect to the y-variable, where γj =

σj . Hence, the solution of a given partial differential equation would satisfy a
decay estimate similar to (3.14) whenever the stochastic field enters the partial
differential equation through a non-smooth coefficient function b, compare [14,23,
24] for example.

It turns out that algebraically decaying weights (3.15) are sufficient to beat
the curse of dimension in case of the Tucker tensor decomposition.4

Theorem 3 Given δ > 0, let f ∈ Hk
γ(Ωm) for some fixed k > 0 with weights (3.14)

that decay like

γj . j−(1+δ′)/k for some δ′ > δ +
k

n
. (3.15)

Then, for all 0 < ε < 1, the error of the continuous Tucker decomposition with ranks

rj =
⌈
γnj j

(1+δ)n/kε−n/k
⌉

(3.16)

is of order ε while the storage cost for the core tensor of fTF
r1,...,rm are bounded by ε−n/k

independent of the dimension m.

4 In Theorem 3, no truncation of the dimension is applied, as it would be required in practice
if the number m of domains tends to infinity. Note that the dimension truncation is indeed
here the same as for the tensor train decomposition later on, see also Theorem 5.
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Proof In view of Theorem 1 and (3.14), we deduce by choosing the ranks as in
(3.13) that √√√√ ∞∑

αj=rj+1

λj(αj) . r
−k/n
j γkj ‖f‖Hk(Ωm) .

ε

j1+δ
.

Therefore, we reach the desired over-all truncation error

m∑
j=1

ε

j1+δ
. ε as m→∞. (3.17)

When the weights γj decay as in (3.16), then the cost of the core tensor are

C :=
m∏
j=1

rj ≤
m∏
j=1

(
1 + γnj j

(1+δ)n/kε−n/k
)
.

m∏
j=1

(
1 + j−θε−n/k

)
with θ = (δ′− δ)n/k > 1. Hence, the cost of the core tensor stay bounded indepen-
dently of m since

logC .
m∑
j=1

log
(
1 + j−θε−n/k

)
≤ ε−n/k

m∑
j=1

j−θ . ε−n/k as m→∞.

4 Tensor train format

4.1 Tensor train decomposition

For the discussion of the continuous tensor train decomposition, we should assume
that the domains Ωj ⊂ Rnj , j = 1, . . . ,m, are arranged in such a way that it holds
n1 ≤ · · · ≤ nm.5

Now, consider f ∈ Hk(Ω1 × · · · ×Ωm) and separate the variables x1 ∈ Ω1 and
(x2, . . . ,xm) ∈ Ω2 × · · · ×Ωm by the singular value decomposition

f(x1,x2, . . . ,xn) =
∞∑

α1=1

√
λ1(α1)ϕ1(x1, α1)ψ1(α1,x2, . . . ,xm).

Since [√
λ1(α1)ψ1(α1)

]∞
α1=1

∈ `2(N)⊗ L2(Ω2 × · · · ×Ωm),

we can separate (α1,x2) ∈ N×Ω2 from (x3, . . . ,xm) ∈ Ω3 × · · · ×Ωm by means of
a second singular value decomposition and arrive at[√

λ1(α1)ψ1(α1,x2, . . . ,xm)

]∞
α1=1

=
∞∑

α2=1

√
λ2(α2)

[
ϕ2(α1,x2, α2)

]∞
α1=1

ψ2(α2,x3, . . . ,xm).

(4.18)

5 The considerations in this section are based upon [5]. Nonetheless, the results derived there
are not correct. The authors did not consider the impact of the vector-valued singular value
decomposition in a proper way, which indeed does result in the curse of dimension.
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By repeating the last step and successively separating (αj−1,xj) ∈ N × Ωj from
(xj+1, . . . ,xm) ∈ Ωj+1 × · · · × Ωm for j = 3, . . . ,m − 1 we finally arrive at the
representation

f(x1, . . . ,xm) =
∞∑

α1=1

· · ·
∞∑

αm−1=1

ϕ1(α1,x1)ϕ2(α1,x2, α2)

· · ·ϕm−1(αm−2,xm−1, αm−1)ϕm(αm−1,xm),

where

ϕm(αm−1,xm) =
√
λm−1(αm−1)ψm−1(αm−1,xm).

In contrast to the Tucker format, we do not obtain a huge core tensor since each of
the m−1 singular value decompositions of the tensor train decomposition removes
the actual first spatial domain from the approximant. We just obtain a product of
matrix -valued functions (except for the first and last factor which are vector-valued
functions), each of which is related with a specific domain Ωj . This especially
results in only m− 1 sums in contrast to the m sums for the Tucker format.

4.2 Truncation error

In practice, we truncate the singular value decomposition in step j after rj terms,
thus arriving at the representation

fTT
r1,...,rm−1

(x1, . . . ,xm) =

r1∑
α1=1

· · ·
rm−1∑

αm−1=1

ϕ1(α1,x1)ϕ2(α1,x2, α2)

· · ·ϕm−1(αm−2,xm−1, αm−1)ϕm(αm−1,xm).

One readily infers by using Pythogoras’ theorem that the truncation error is
bounded by

‖f − fTT
r1,...,rm−1

‖L2(Ω1×···×Ωm) ≤

√√√√m−1∑
j=1

∞∑
αj=rj+1

λj(αj),

see also [35]. Note that, for j ≥ 2, the singular values {λj(α)}α∈N in this estimate
do not coincide with the singular values from the original continuous tensor train
decomposition due to the truncation.

We next shall give bounds on the truncation error. In the j-th step of the
algorithm, j = 2, 3, . . . ,m−1, one needs to approximate the vector-valued function

gj(xj , . . . ,xm) :=

[√
λj−1(αj−1)ψj−1(αj−1,xj , . . . ,xm)

]rj−1

αj−1=1

by a vector-valued singular value decomposition. This means that we consider
the singular value decomposition (2.9) for a vector-valued function in case of the
domains Ωj and Ωj+1 × · · · ×Ωm.
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For f ∈ Hk+nm−1(Ω1 × · · · × Ωm), it holds g2 ∈ [Hk+nm−1(Ω2 × · · · × Ωm)]r1

and

|g2|[Hk(Ω2×···×Ωm)]r1 ≤

√√√√ ∞∑
α1=1

λ1(α1)|ψ1(α1)|2
Hk(Ω2×···×Ωm)

≤ |f |Hk(Ω1×···×Ωm)

according to Lemma 4, precisely in its vectorized version (2.10). It follows g3 ∈
[Hk+nm−1(Ω3 × · · · ×Ωm)]r2 and, again by (2.10),

|g3|[Hk(Ω3×···×Ωm)]r2 ≤

√√√√ ∞∑
α2=1

λ2(α2)|ψ2(α2)|2
Hk(Ω3×···×Ωm)

≤ |g2|[Hk(Ω2×···×Ωm)]r1 .

We hence conclude recursively gj ∈ [Hk+nm−1(Ωj × · · · ×Ωm)]rj−1 and

|gj |[Hk(Ωj×···×Ωm)]
rj−1 ≤ |f |Hk(Ω1×···×Ωm) for all j = 2, 3, . . . ,m− 1. (4.19)

Estimate (4.19) shows that the Hk-seminorm of the vector-valued functions gj
stays bounded by |f |Hk(Ω1×···×Ωm). But according to (2.9), we have in the j-th
step only the truncation error estimate∥∥∥∥∥gj −

rj∑
αj=1

√
λj(αj)

(
ϕj(αj)⊗ ψj(αj)

)∥∥∥∥∥
[L2(Ωj×···×Ωm)]

rj−1

.

(
rj
rj−1

)−k/nj
|gj |[Hk(Ωj×···×Ωm)]

rj−1 .

Hence, in view of (4.19), to achieve the target accuracy ε per truncation, the
truncation ranks need to be increased in accordance with

r1 = ε−n1/k, r2 = ε−(n1+n2)/k, . . . , rm−1 = ε−(n1+···+nm−1)/k. (4.20)

We summarize our findings in the following theorem, which holds in this form
also if the subdomains Ωj ⊂ Rnj are not ordered in such a way that n1 ≤ · · · ≤ nm.

Theorem 4 Let f ∈ Hk+max{n1,...,nm}(Ω1 × · · · × Ωm) for some fixed k > 0 and

0 < ε < 1. Then, the over-all truncation error of the tensor train decomposition with

truncation ranks (4.20) is

‖f − fTT
r1,...,rm−1

‖L2(Ω1×···×Ωm) .
√
mε.

The storage cost for fTT
r1,...,rm−1

are given by

r1 +
m−1∑
j=2

rj−1rj = ε−n1/k + ε−(2n1+n2)/k + · · ·+ ε−(2n1+···+2nm−2+nm−1)/k (4.21)

and hence are bounded by O(ε−(2m−1)max{n1,...,nm−1}/k).



16 Michael Griebel, Helmut Harbrecht

Remark 2 If n := n1 = · · · = nm, then the cost of the tensor train decompo-
sition are O(ε−(2m−1)n/k). Thus, the cost are quadratic compared to the cost
of the Tucker decomposition. However, in practice, one performs m/2 forward
steps and m/2 backward steps. This means one computes m/2 steps as described
above to successively separate x1,x2, . . . ,xm/2 from the other variables. Then, one
performs the algorithm in the opposite direction, i.e., one successively separates
xm,xm−1, . . . ,xm/2+1 from the other variables. This way, the over-all cost are

reduced to the order O(ε−mn/k).6

4.3 Sobolev spaces with dimension weights

Like for the Tucker decomposition, the cost of the tensor train decomposition
suffer from the curse of dimension as the number m of subdomains increases.
We therefore discuss again appropriately Sobelev spaces with dimension weights,
where we assume for reasons of simplicity that all subdomains are identical to a
single domain Ω ⊂ Rn of dimension n.

Theorem 5 Given δ > 0, let f ∈ Hk+n
γ (Ωm) for some fixed k > 0 with weights (3.14)

that decay like (3.15). For 0 < ε < 1, choose the ranks successively in accordance with

rj =
⌈
rj−1γ

n
j j

(1+δ)n/kε−n/k
⌉

(4.22)

if j ≤M and rj = 0 if j > M . Here, M is given by

M = ε−1/(1+δ′). (4.23)

Then, the error of the continuous tensor train decomposition is of order ε while the

storage cost of fTT
r1,...,rm stay bounded by M exp(ε−n/k)2 independent of the dimension

m.

Proof The combination of Theorem 1, (3.14) and (4.22) implies√√√√ ∞∑
αj=rj+1

λj(αj) .

(
rj
rj−1

)−k/n
γkj ‖f‖Hk(Ωm) .

ε

j1+δ
, j = 1, 2, . . . ,M,

and √√√√ ∞∑
αM+1=1

λM+1(αM+1) . γkM+1‖f‖Hk(Ωm) . ε‖f‖Hk(Ωm).

Hence, as in the proof of Theorem 3, the approximation error of the continuous
tensor train decomposition is bounded by a multiple of ε independent of m.

Next, we observe for all j ≤M that

rj .
⌈
rj−1γ

n
j j

(1+δ)n/kε−n/k
⌉
. rj−1γ

n
j j

(1+δ)n/kε−n/k + 1.

6 If the spatial dimensions nj , j = 1, . . . ,m, of the subdomains are different, one can balance
the number of forward and backward steps in a better way to reduce the cost further.
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This recursively yields

rj − 1 .
j∑

p=1

j∏
q=p

γnq q
(1+δ)n/kε−n/k

.
j∑

p=1

ε(p−j−1)n/k
j∏
q=p

q−θ

=

j∑
p=1

ε(p−j−1)n/k

(
(p− 1)!

j!

)θ

=

j∑
p=1

ε−pn/k
(

(j − p)!
j!

)θ
.

Hence, by using that θ = (δ′ − δ)n/k > 1, we obtain

rj .
j∑

p=0

ε−pn/k
(j − p)!
j!

≤
j∑

p=0

ε−pn/k

p!
≤ exp(ε−n/k).

Therefore, the cost (4.21) are

r1 +
M∑
j=2

rj−1rj ≤
M∑
j=1

r2j .M exp(ε−n/k)2

and are hence bounded independently of m in view of (4.23).

5 Discussion and conclusion

In the present article, we considered the continuous versions of the Tucker tensor
format and of the tensor train format for the approximation of functions which live
on an m-fold product of arbitrary subdomains. By considering (isotropic) Sobolev
smoothness, we derived estimates on the ranks to be chosen in order to realize a
prescribed target accuracy. These estimates exhibit the curse of dimension.

Both tensor formats have in common that always only the variable with respect
to a single domain is separated from the other variables by means of the singular
value decomposition. This enables cheaper storage schemes, while the influence of
the over-all dimension of the product domain is reduced to a minimum.

We also examined the situation of Sobolev spaces with dimension weights.
Having sufficiently fast decaying weights helps to beat the curse of dimension as the
number of subdomains tends to infinity. It turned out that algebraically decaying
weights are appropriate for both, the Tucker tensor format and the tensor train
format.

We finally remark that we considered here only the ranks of the tensor decom-
position in the continuous case, i.e., for functions and not for tensors of discrete
data. Of course, an additional projection step onto suitable finite dimensional trial
spaces on the individual domains would be necessary to arrive at a fully discrete
approximation scheme that can really be used in computer simulations. This would
impose a further error of discretization type which needs to be balanced with the
truncation error of the particular continuous tensor format.
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