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Abstract

There are two stages from DNA sequence of a gene to protein: transcription, i.e. the
process of making a strand of RNA molecule, and translation, that is the process by
which a protein is synthesized from the information contained in a molecule of RNA. In
the process of transcription, proteins called “transcription factors” play a central role
because they bind to a DNA sequence and help the transcription initiation complex. In
this work of thesis, we are particularly interested in modeling the nuclear factor-kappa
B (NF-kB) activity which is ubiquitous within cells and its dysfunction leads to chronic
diseases, cancers, neurodegenerative diseases and much other. However, we do not start
immediately modeling its behavior. In this stochastic context, firstly we aim to deepen
into algorithms to solve the Chemical Master Equation (CME) giving an our
alternative algorithm called “hybrid” because it combines the Gillespie’s Stochastic
Simulation Algorithm (SSA) with the tauleaping algorithm with the aim to improve
the algorithm’s speed; secondly we analyse the stochastic simulation results of three
basics genetic circuits (the simplest model of gene expression, the autorepressor and the
toggle switch); third, we faced the problem of parameters estimation of these simple
models using artificial neural networks (ANN); finally, aware of what we have learned
after all such steps, we provide a very little NF-kB model using the CME. The relevant
results are the following: the hybrid algorithm applied to the first genetic model is
faster than the SSA in configurations where the number of molecules produced tends to
be high; periodicity arises from what we defined as unpredictable (being stochastic
processes), particularly from the autorepressor using wavelet transform; ANN learn to
predict parameters given autocorrelations as input, providing also information about
the chemical species; finally, our little NF-kB model shows an oscillating behavior as
expected by experiments.
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Chapter 1

Introduction

“There’s no gene for fate”

from GATTACA film

Kevin Burrage et al. in their important paper Stochastic simulation in systems bi-
ology [12] highlight how mathematical modelling and computational simulation perform
essential roles in biology. Models are useful for many different purposes: perhaps the
most important of these are crystallising our assumptions and testing them, guiding
experiments and looking at experimentally unreachable scenarios, as well as the great
ability to make new predictions.

Ideally, there should be a virtuous cycle between experiment and theory to understand
the natural system in which we are interested.

If the model and experiments agree, then parameters for the model can be inferred
from the data and the model refined, again leading to further experiments. If they do
not agree, this implies that the hypothesis was inappropriate: the model needs revi-
sion, and theoretical tests using different models can provide a starting point for further
experiments.

As defined by Kevin Burrage et al., model is an abstract representation of the system
in which we are interested and this is usually formulated mathematically. This model
can, in simple cases, be solved analytically for a particular question, giving us an ex-
act analytical solution to the question posed to the model. This means that the full
probability distribution for the state of the biological system over time can be calculated
explicitly.

In general, however, analytical solutions for all but the most simple models do not
exist, and we need to use methods to solve the model numerically. These last methods
give rise to numerical solutions which are approximations to the analytical solution.

Numerical solution will try to mimic the behaviour of the real system over time. This
is also refered to as a simulation.
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Chapter1 – Introduction

An important point to remember when we talk about mathematical models is that,
in a sense, “all models are wrong” but this does not mean their conclusions or predictions
are false, as the famous quote continues, “but some are useful”.

Rather, we should bear in mind that all models are abstractions of reality, simplified
versions of the real systems that they represent. A model is a vehicle for gaining un-
derstanding, and we would not gain any new understanding from a model that was as
complicated as the real system.

Almost all models are phenomenological; that is, they are based on a set of simplified
assumptions that we have distilled from the real system using intuition rather than
rigorous proof from basic principles. Incorporating only the important ones allows us
to crystallise our understanding of the system (and if the model gives wrong results, we
know that our assumptions were wrong or incomplete, hence it is in any case a gain in
knowledge of our system under study).

Creating phenomenological models is not a trivial task: “sensing which assumptions
might be critical and which irrelevant to the question at hand is the art of modeling”.
The choice of what to include in the model lies with the modeller and his aims.

1.1 Heterogeneity in biology

Stochastic computational methods have become commonplace in science because they
are able to appropriately account for one key feature in biology: this is heterogeneity.

There are three different sources of heterogeneity in natural systems: genetic, envi-
ronmental (i.e. also known as extrinsic noise) and stochastics (i.e. also called intrinsic
noise).

Genetic heterogeneity occurs through the production of single or similar phenotypes
through different genetic mechanisms [42]. The general “rule” in biology is that cells and
animals with different genes should clearly be different in phenotypes. However, the so
called “convergent evolution” represents an exception to this rule where different species
evolved similar phenotypic features independently. This phenotypic similarity is thought
to usually have a different genetic basis, showing that the relationship between genotype
and phenotype is not a simple, linear one [43].

On the other hand, even isogenic (that is, genetically identical) organisms or popula-
tions of cells can be very different; the famous cloned animals are excellent illustrations of
this phenomenon, known as non-genetic or phenotypic heterogeneity. Daniel Stockholm
et al. in their work named The Origin of Phenotypic Heterogeneity in a Clonal Cell
Population In Vitro[44] show phenotypic switch in initially identical cells. This suggests
that heterogeneity is not only generated by genetic variation but it is triggered by two
other factors.

The first one is the consequence of extrinsic factors : initially identical cells may be-
come different because they encounter different local environments that induce adaptive
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Chapter1 – Introduction

responses. Examples of each of these factors could be: if we were interested in animal
populations, the weather an animal experiences in a particular year or if we were inter-
ested in levels of protein expression of a cell population, we might look at differences in
individual cells such as ribosome number and cell cycle stage.

The third source of heterogeneity is instead intrinsic to cells and may occur even in
homogeneous environments. Indeed identical genotype and environmental exposure are
not sufficient to guarantee a unique phenotype. The intrinsic heterogeneity is present in
all living (and non-living) systems but often masked by the macroscopic scale at which we
observe them. Spudich and Koshland were perhaps the first to observe this in a cell biol-
ogy context. As explained in their paper Non-genetic individuality: chance in the single
cell [45], they noticed that individual bacteria from an isogenic population maintained
different swimming patterns throughout their entire lives. This was a visible manifes-
tation of the third source of heterogeneity: chance, otherwise known as stochasticity or
intrinsic heterogeneity (often interchangeably called intrinsic noise).

This arises from random thermal fluctuations at the level of individual molecules. It
affects the DNA, RNA, protein and other chemical molecules inside cells in many ways,
most notably by ensuring that their reactions occur randomly, as does their movement
(via Brownian motion). Very clear examples could be the following: consider a single
mother cell dividing into two daughter cells of equal volume. During the division process,
all the molecules in the mother cell are in Brownian motion according to the laws of
statistical mechanics. The probability that each daughter cell inherits the same number
of molecules is infinitesimally small. Even in the event that the two daughter cells
receive exactly one copy of a particular transcription factor, each transcription factor will
perform a Brownian random walk through its cellular volume before finding its target
promoter and activating gene expression. Because Brownian motion is uncorrelated in
the two daughter cells, it is statistically impossible for both genes to become activated
at the exact same time, further amplifying the phenotypic difference between the two
daughter cells. These are just two examples of the many sources of gene expression
variability that arise in isogenic cells exposed to the same environment [46].

Intrinsic heterogeneity is inherent to the process of gene expression and cannot be
predicted (except in a statistical sense) or fully eliminated. Thus two identical genes
in an identical intracellular environment would still be expressed differently, even in the
absence of the previous two sources of heterogeneity.

Hence, the reason of terminologies is clear: we talk about extrinsic heterogeneity
because it arises from other, outside, sources and affects all genes inside a cell equally,
whereas the random fluctuations are actually inherent to the expression of a single gene.

It is important to point out that these three sources of heterogeneity are not inde-
pendent because they are all interconnected in their effects on cells and populations. For
instance, cellular decision involves both environmental and intrinsic heterogeneity, the
former in affecting which stable states are possible and the latter in switching between
them.
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Chapter1 – Introduction

Another example is that of genetic mutations, where intrinsic noise causes the mu-
tations that then contribute to genetic heterogeneity and so causing genetic mutations
that are essential for creating the heritable variation, thus allowing evolution to occur.

From this, a very interesting example of the interplay of all three types of hetero-
geneity is evolution, one of the most fundamental processes in nature: evolution acts
on phenotypes, which have a genetic basis but are also affected by both extrinsic and
intrinsic noise. Studying how evolution shapes noise is a key challenge and this is high-
lighted in the work Adaptive noise by M. Viney et al. [47]. If our DNA is much different
from the first humans appeared on Earth (and so also our phenotype), is due to all this
complex interplay among sourcies of heterogeneities.

Finally focusing on intrinsic heterogeneity, we have to point out how this can be a
double-edged sword: intrinsic noise has both positive and negative influence that have
to be accounted for cells and organisms. One positive effect is already mentioned: it
allows evolution to occur. One other related example is that some biological systems
have evolved to make use of it: for instance, in the case of persister-type bacteria, which
form a subset of some bacterial populations and can withstand antibiotic treatments
even though they do not have genetic mutations for resistance. This is an example of
cellular decision making, the ability of cells to randomly transition between different
stable, heritable states.

Some of the most well-known examples of cellular decision making are bacteria, and
yeast, which are easier to investigate experimentally than large multicellular organisms.
Yet, this phenomenon is common to cells at all levels of life and is argued to be one
of the key processes in cellular development. The main difference is that in unicellular
organisms, cellular decision making is useful for cheap, non-genetic adaptation in the
face of fluctuating environments, whereas in multicellular organisms it is used to produce
distinct cell types and functions within a constant environment.

Intrinsic noise is also an interesting object of study since it represents a “fingerprint”
with which to explore fundamental questions on mechanisms and dynamics of gene reg-
ulation by means of measurements of cell-to-cell variability in gene expression [46].

However, as said before, intrinsic noise causes mutations which can also have negative
effects. Deleterious mutations that are phenotypically expressed frequently result in loss
of important functions or even organismic death, and it has been shown that a substantial
proportion of mutations are deleterious. Mutations are also thought to cause cancer,
which has become a serious disease in modern times.
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Chapter1 – Introduction

1.2 Motivation of the work and the consequent work-

flow

Following the line of reasoning of the previous section, cancers like colonrectal can-
cers (CRC) are mainly caused by mutations that target oncogenes leading to novel or
increased functions, or alterations that drive to loss of functions of tumor-suppressor
genes. This provides neoplastic cells with a survival advantage over the surrounding
normal intestinal epithelium.

Approximately 70% of CRC cases are sporadic and, generally, develop from a point
mutation that occurs spontaneously during lifetime.

It is very likely that these mutations lead to a malfunction of NF-κB transcription
factor activity, whose behavior is modulated by its regulators, of the proteins family IκB,
but that in CRC it is constitutively expressed.

The biology of NF-κB will be explained in Chapter 8 and then a simple model of
the feedback loops which involve him will be furnished. However before arriving to this
point, we will examine simple genetic models that will serve as a “training” before diving
into more complex stochastic models.

This will let us to explore methods firstly for stochastic processes simulations, namely
we will review them in Chapter 3 and provide an our alternative algorithm called “hy-
brid” in section 3.4.3 in order to numerically solve the Chemical Master Equation with
the aim to provide an algorithm that is faster than the SSA (described in section 3.4.1)
but that preserves the accuracy in results; secondly, methods for analyzing data coming
from these stochastic simulations in Chapter 5, in particular deeping into the use of
Continous Wavelet Transform that they turn out to be an interesting “instrument” for
the analysis of stochastic processes signals (someone calls them also as “a mathematical
microscope for scanning signals”[30]); and last, but not least, a method to extrapolate
model paramaters that in this thesis is the Artificial Neural Networks (their basics prin-
cipals are explained in Chapter 6 and their application in Chapter 7). About this last
point, we thought to give the autocorrelation values as input because they are dependent
on model parameters, hence we train ANNs to recognize the model parameters (that are
in this case the constant rates of reactions, which are explained in Chapter 2). Nowa-
days neural networks are used in a lot of fields and so their use in “absolute terms” is
not a great novelty. The innovation lies in the context in which they are used because
typically the problem of parameters estimation is faced using standard methods such
as Maximum Likelihood Estimation (MLE) that have several disadvantages. Hence, we
tried an alternative method.

Finally a little NF-κB model will be provided with the use of Gillespie’s Stochastic
Simulation Algorithm to simulate its activity (Chapters 9 and 10).
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Chapter1 – Introduction

1.3 Deterministic versus stochastic models

Before the discovery of intrinsic noise, mathematical and computational methods that
have traditionally been used were typically systems of differential equations which are
both continous and deterministic, i.e. their state variables are real numbers representing
the concentrations of molecules and they do not include noise.

Such models can be considered as accurate only when we are interested in the mean
dynamics of a large number of molecules, large enough that we need not worry about
individual molecules but can approximate them as concentrations [12]. Above a molec-
ular population size of the order of Avogadro’s number, the fluctuations from intrinsic
noise are averaged out and the deterministic approximation becomes increasingly valid.

This is because intrinsic noise, as a rule of thumb, behaves as 1√
X

, where X is
the number of molecules in the system. This is confirmed by experimental studies that
find that total noise does scale roughly as the inverse square of abundance until high
abundances. At this point, extrinsic noise is thought to take over as the dominant source
of noise [48].

Therefore, it often becomes necessary to include the effects of stochasticity in biolog-
ical models, especially for small systems with low populations of some molecular species,
such as gene expression networks. Here, discrete stochastic models must be used, whose
variables represent actual molecular numbers.

In the cellular environment, the reactant numbers tend to be of the order 10-1000,
hence a reaction altering the population by one or two generates a large relative change,
and the molecule numbers no longer evolve differentiably. Furthermore, reactions no
longer occur “continuously” over an infinitely small time interval, but rather progress in
a series of steps of finite time width.

A very clear example may be to imagine the national birth rate as compared to the
chances my next-door neighbor will have a baby. One often hears statements such as:
“Every X minutes, a baby is born in the US.” That clearly cannot be true of my next-
door neighbor. Evolution of the population of an entire country can be well-described
using differential equations, but individual courtship is an essentially probabilistic affair,
requiring a more sophisticated formulation [49].

Thus, for many reactant molecules, the species concentrations evolve both contin-
uously and differentiably. When small numbers of reactants are involved, due to the
probabilistic nature of individual reaction events and the finite change in molecule num-
bers incurred, the concentration evolves step-wise.

And so, while the law of mass balance is used to construct deterministic chemical
rate equations which take the form of a system of coupled nonlinear differential equations
with the assumption that the concentration of the reactants varies both continuously and
differentiably (i.e. in case of molecule numbers of the order 1023 where a change of one
or two molecules in a population of 1023 is, for all intents and purposes, infinitesimal),
the probability balance is used as conservation law of this microscopic description. For
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Chapter1 – Introduction

such purpose we will consider the Chemical Master Equation which is used to describe
the distribution of a population of stochastic systems across states.

1.4 The importance of random numbers generation

Before starting, let us briefly make clear the importance of random numbers generations
in this context. Random number let us simulate what we have called “biological stochas-
ticity”. We will see very well this when talking about stochastic simulations in biological
systems in Chapter 3. But we will exploit them also for the needing of a particular
distribution of parameters for the same model (that is made in Chapter 6). Thus, for
simulations, it is a particular important key.
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Chapter 2

Modeling kinetics reactions in
deterministic framework

In this chapter, we describe three simple genetic circuits that are common in nature: the
simplest process of gene expression and protein synthesis, the autorepressor case and the
toggle-switch model. Hence we need to describe different chemical reactions.

Generally, we can have a chemical reaction like this:

αA+ βB ... −−⇀↽−− σS + rT (2.1)

where A and B are the reagents and S and T are the products of the reaction. This
reaction is reversible and, as such, according to the Law of Mass Action, we can define
a forward reaction rate and a backward reaction rate. The reaction rates are related to a
constant, for instance the forward reaction rate is related to k+, and to the concentration
of reagents:

rate = k+A
αBβ (2.2)

where α and β are called the stechiometric coefficients. Analogously, we can write an
equation for the backward reaction rate.

However, the specific forms of these equations rates depend on the order of reaction.
In the listed genetic circuits that we will describe, we will consider only first order reaction
rates.

When we have a chemical reaction, we are interested in describing it by using differ-
ential equations, hence in a deterministic framework.

Thus we will turn these biological processes into a deterministic mathematical de-
scription, but then the molecular noise in these systems will be taken into account and
we will study them by means of stochastic methods.
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Chapter2 – Modeling kinetics reactions in deterministic framework

2.1 Constitutive gene expression

In the simplest possible model of constitutive gene expression, a RNA molecule is pro-
duced at a constant rate k1 and destroyed in a first-order reaction with rate constant k2.
Fig. 2.1 shows a sketch of this simple biological process.

Figure 2.1: Schematic of a constitutive gene expression model with transcription rate k1
and mRNA degradation rate constant k2.

As already anticipated in the introductory part, if the total number of a particular
transcript m is large, the kinetics is conveniently represented as a deterministic dif-
ferential equation for species concentrations. This plays the role of the mass-balance
conservation law, i.e. change = flux in - flux out [46].

dm

dt
= k1 − k2m (2.3)

This approximation breaks down in cells when the copy numbers of transcripts are small
with the need of a probabilistic reformulation in which the conservation law is described
by the Chemical Master Equation explained in the next Chapter 3.

In the constitutive expression model, transcript births and deaths occur as uncorre-
lated events, such that in any short time interval, dt, the probability of one transcript
production is k1dt, and the probability of one transcript degradation is k2mdt [46].

The scheme in Fig. 2.1 shows only the transcription process in case gene is always
active.

We can look at this model also considering protein production as shown in Fig. 2.2.
Similarly to Eq. 2.3, we can write the rate of change of protein concentration p as:

dp

dt
= k3m− k4p (2.4)

2.2 Regulated gene expression

Many genes are constitutively expressed at intermediate levels, which represents a per-
manent cost but provides an immediate benefit when the protein is needed. On the other
hand, regulated genes are only expressed under certain necessary conditions in order to
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Chapter2 – Modeling kinetics reactions in deterministic framework

Figure 2.2: Schematic of a constitutive gene expression model with transcription rate k1
and mRNA degradation rate constant k2, translation rate k3 and protein degradation
rate constant k4.

save cellular energy. In other words, they are switched on only when needed and they
can be termed also as “inducible”. Gene regulation is the key ability of an organism to
respond to environmental changes [52]. Fig. 2.3 shows a sketch of gene regulated protein
synthesis model.

Figure 2.3: Schematic of a regulated gene expression model with gene activation rate ka
and gene inactivation rate ki, transcription rate k1 and mRNA degradation rate constant
k2, translation rate k3 and protein degradation rate constant k4.

In particular, we can consider a two-state model of gene expression.
This model considers two promoter states: an OFF state, in which no transcription

occurs and an ON state, which has transcription rate k1.
The constants ka and ki define the transition rates between the two states, and k2 is

a first-order rate constant for transcript degradation.
The OFF state is usually associated with a closed chromatin state in which the

binding sites for transcription factors are inaccessible, whereas the ON state is associated
with the open active chromatin state [46].

And so, a simple way to include transcription factor control in the kinetic equations
above is to modify k1 using the promoter activity function g(·). Hence, the deterministic
equation Eq.2.3 written for RNA in case of unregulated gene becomes:

dm

dt
= k1 · g(·)− k2m (2.5)

while the Eq.2.4 for proteins keeps unchanged.
g(·) can have different behaviors: in the case shown in Fig. 2.3, it makes the gene

alternating between active and inactive state.

14



Chapter2 – Modeling kinetics reactions in deterministic framework

2.3 The Autorepressor model

As shown schematically in fig. 2.4, in this case gene product represses its own transcrip-
tion.

Figure 2.4: A schematic of an auto-repressing circuit where a blunt line indicates a
repressing action while a connector ending with an arrow indicates an activating action.

Proteins produced by the gene decreases the rate of activation of the gene. Eq.2.5
and Eq.2.4 written for the first simple protein synthesis model are then modified in the
following way:

dm

dt
= k1 · gR(r)− βmm (2.6)

as regards the rate of change of RNA molecules. Analogously, for proteins we can write
the same equation as Eq. 2.4 written for constitutive expression and for the regulated
gene case but, for the sake of clarity, we denote p as r in order to highlight that protein
product is behaving as autorepressor. Hence:

dr

dt
= k3m− k4r (2.7)

2.4 The Toggle-Switch model

The genetic toggle-switch is a system of two mutually repressing genes. A simplified
sketch of this model is shown in Fig.2.5.

The repression of gene 2 is mediated by an inducer (related to gene 1) that regulates
gene expression. Similarly this happens for gene 1 repression.

We would expect the system to exhibit two mutually exclusive behaviors: either r1
is high, keeping expression of r2 low, or conversely, r2 is high, keeping expression of r1
low [49].
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Chapter2 – Modeling kinetics reactions in deterministic framework

Figure 2.5: A schematic of the toggle switch where a blunt line indicates a repressing
action while a connector ending with an arrow indicates an activating action.

For simplicity, we assume that the switch is composed of symmetric elements so that
the rate constants are identical for each half of the network. Then, as seen in the other
cases, the mathematical model takes the form:

dm1

dt
= k1 · gR(r2)− k2m

dm2

dt
= k1 · gR(r1)− k2m (2.8)

dr1
dt

= k3m1 − k4r1
dr2
dt

= k3m2 − k4r2 (2.9)
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Chapter 3

Stochastic simulation in systems
biology

3.1 Stochastic Process

In a “rough” sense, a random process is a phenomenon that varies to some degree unpre-
dictably as time goes on. If we observed an entire time-sequence of the process on several
different occasions, under presumably “indentical” conditions, the resulting observation
sequences in general, would be different [57].

This “rough” definition remembers the definition of stochasticity given for isogenic
cells in the same environment.

In the following sections, we will define more rigously what a stochastic process is
by using the Van Kampen notations written in his Stochastic Processes in Physics and
Chemistry book [7] and some possible tools to study random processes.

3.1.1 Definition

A “random number” or “stochastic variable” is an object X defined by: a set of pos-
sible values (that we can call also “set of states” or “sample space”) and a probability
distribution over this set. Once a stochastic variable X has been defined, an infinity of
other stochastic variables derives from it, namely all quantities Y that are functions of
X by some mapping f. These quantities Y may be any kind of mathematical object, in
particular also functions of an additional variable t,

YX(t) = f(X, t) (3.1)

Such a quantity Y(t) is called a “random function”, or, since in most cases t stands for
time, a stochastic process. Thus a stochastic process is simply a function of two variables,
one of which is the time t, and the other a stochastic variable X. On inserting for X one
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of its possible values x, we obtain an ordinary function of t :

Yx(t) = f(x, t) (3.2)

called a sample function or realization of the process. In physical parlance one regards
the stochastic process as an “ensemble” of these sample functions.

3.1.2 Markov Processes

There is a subclass of stochastic processes that have the Markov property. Such processes
are by far the most important in physics and chemistry. A Markov process is defined
as a stochastic process with the property that for any set of n successive times (i.e.,
t1 < t2 < ... < tn) one has

P (yn, tn|yn−1, tn−1, ..., y1, t1) = P (yn, tn|yn−1, tn−1) (3.3)

that is, the conditional probability density at tn, given the value yn−1 at tn−1, is uniquely
determined and is not affected by any knowledge of the values at earlier times. The
system loses any kind of information of its state before the present value, and so the
markovian systems are usually called memory-less.

3.2 The Chemical Master Equation (CME)

As we have understood, stochasticity is very important in our biological context. The
master equation approach is used to describe the time evolution of the probability of a
stochastic system to be in a specific configuration in the framework of Markov processes.
Indeed, the mathematical derivation of the Master equation starts from the equation
(3.3), since we can write such relation in a more formal way [5], that gives the probability
of a transition of the system of going to the state y3 from the state y2, that is at the time
t+ τ , given the observation of the state y1 at the time t. Given that Tτ is the transition
probability that does not depend on the moment in time but only on the elapsed time
and calling P (y2, t+τ |y1, t) = Tτ (y2|y1), we obtain the important Chapman-Kolmogoroff
equation for the transition propensity:

Tτ+τ ′(y3|y1) =
∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2 (3.4)

The CK equation for Tτ is a functional relation, which is not easy to handle in actual
applications. The master equation is a more convenient version of the same equation: it
is a differential equation obtained by going to the limit of vanishing time difference τ ′.
Hence, taking the first order term of the Taylor series of the Tτ ′(y3|y2) integral for small
τ ′, we can write it as:

Tτ ′(y3|y2) = (1− a0τ
′)δ(y3 − y2)− τ ′W (y3|y2) +O(τ ′2) (3.5)
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HereW (y2|y1) is the transition probability per unit time from y1 to y2 and henceW (y2|y1) ≥
0. The coefficient 1− a0τ

′ in front of the delta function is the probability that no tran-
sition takes place during τ ′, hence a0(y1) =

∫
W (y2|y1)dy2.

Now we insert this expression in the CK equation for Tτ ′

Tτ+τ ′(y3|y1) = [1− a0τ
′]Tτ (y3|y1) + τ ′

∫
W (y3|y2)Tτ (y2|y1)dy2 (3.6)

Divide by τ ′, go to the limit τ ′ → 0, and use a0(y3) =
∫
W (y3|y2)dy2:

∂

∂τ
Tτ (y3|y1) =

∫
W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)dy2 (3.7)

This is the differential form of the Chapman–Kolmogorov equation that is known as the
Master equation. It can be written in the simplified and more intuitive form

∂P (y, t)

∂t
=

∫
W (y|y′)P (y′, t)−W (y′|y)P (y, t)dy′ (3.8)

This can be recognized as an influx of probability to the state y from all the “surrounding”
(in the sense connected) states y′ and an efflux from y to every state y′ to which it can
move to [5]. This thesis is concerned with solving the master equation for chemical
systems and if the system state space is discrete, as when we work with a system with
a discrete number of individuals or molecules, we can write the probability as Pn(t) to
represent the discreteness of the state space. In this case the master equation can be
called Chemical Master Equation (referring to a chemical environment) and it will be
written with sums instead of integrals [5]:

dPn(t)

dt
=

∑
n′

[Wn,n′Pn′(t)−Wn′,nPn(t)] (3.9)

as well as W (y′|y) represents the transition probability per unit time from y to y’ in the
continuous equation, Wn,n′ is the transition probability per unit time from the state n
to the state n’ in the discrete equation. Hence, also in this form, we can recognize the
meaning of Eq 3.9 as we did for Eq 3.8 and state that the master equation is a gain–loss
equation for the probabilities of the separate states n [21]. The first term is the gain due
to transitions from n′ to n states, and the second term is the loss due to transitions from
n to n′ states.

The Eq 3.9 shows a linear relationship between transition probabilities, therefore we
can write it as a linear dynamical system gaining a more compact form of the CME:

∂tP⃗ (t) = WP⃗ (t) (3.10)
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where P⃗ is a column vector with components pn and W is called the transition matrix
because it is the matrix of the transition rates. W is defined as

W =

{
Wn,n′ for n ̸= n′

Wn,n = −
∑

n̸=n′ Wn′,n

(3.11)

In the general case, the matrix Wn,n′ should obey the following properties:

Wn,n′ ≥ 0 for n ̸= n′ (3.12)∑
n

Wn,n′ = 0 for each n′ (3.13)

The Eq 3.13 states that the matrix W has zero determinant. We can have a confirmation
of this property by writing W for N = 3, i.e. the number of possible states are n ∈ [0, 3],
that we can do as an exercise:

W =

−(W2,1 +W3,1) W1,2 W1,3

W2,1 −(W1,2 +W3,2) W2,3

W3,1 W3,2 −(W1,3 +W2,3)

 (3.14)

A zero determinant means that there is a zero eigenvalue and the eigenvector corre-
sponding to the zero eigenvalue is the stationary distribution P (n), the distribution to

which the stochastic process always converges, i.e. P⃗ (t) = 0, as long as the transition
propensities Wn,n′ are not a function of time.

On the other hand, one can solve the master equation to obtain n solutions Pn(t) that
depend on time since, in general, the master equation represents a set of n deterministic
equations, with n that is the number of states and so, in our context, the number of
molecules. In this case, bear in mind a fundamental property of the master equation: as
t→ ∞ all solutions tend to the stationary solution.

If the system is fully connected (cannot be broken into two non communicating pieces)
the stationary distribution is guaranteed to be unique [5]. The stationary distribution
will be obviously positive, i.e. all its terms are with positive sign and the sum of all
its components is 1 (being a probability distribution). All the other eigenvalues will
be with negative module, and the corresponding eigenvectors will have total sum of the
components equal to zero, as they can be interpreted as the difference between the present
distribution and the stationary one, both having total sums of the components equal to
1. A special role is played by the eigenvalue with the smallest absolute value, which it
means that its eigenvector is the longest-standing one. This eigenvector is referred as
the metastable state and its eigenvalue gives a time-scale of the time of convergence to
the stationary distribution.

We end up this section contemplating the impressive similarity between the Chemical
Master Equation and the Shrödinger’s equation: just as the solution of the Shrödinger’s
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equation is the probability distribution of finding the particle with a wave function at a
given position and so it is the fundamental equation for modeling motions of atomic and
subatomic particle systems, the solution of the CME is a probability distribution of the
number of molecules in the time for molecular reactions systems [1]. Indeed, just as the
Shrödinger’s equation reduces to the Newton’s second law assuming Planck’s constant
tends to zero, the Chemical Master Equation becomes the Law of Mass Action if the
volume of reaction tends to infinity since we tend to the deterministic context.

3.3 One-Step processes reveal a Poisson distribution

The one-step or birth-and-death (BD) processes are a special class of Markov processes.
Birth–death (BD) processes are characterized by two types of transitions: births which
increase the state by one, and deaths which decrease the state by one. Many stochastic
processes are BD processes, indeed they are suitable for modelling the dynamics of the
number of individuals in a population, and are widely used in a broad range of areas
such as biology, ecology and operations research. In particular, it can be exploited in
order to model the evolution of a population of RNA molecules, since the population can
increase (production) or decrease (degradation) by one molecule at a time [24].

More generally and rigorously defined, a BD process is a continuous time Markov
process whose range consists of integers n and whose transition matrix W permits only
jumps between adjacent sites [21]. In that case, the master equation (Eq 3.9) is written
as

dPn(t)

dt
= Wn,n+1Pn+1(t) +Wn,n−1Pn−1(t)−Wn−1,nPn(t)−Wn+1,nPn(t) (3.15)

The transition rates, Wn′,n, are written in a special notation for these processes, i.e.

Wn+1,n = gn Wn−1,n = rn (3.16)

Where gn is the gain term, that is the probability per unit time for a jump from n to
n+ 1 and rn is the recombination term, that is the probability per unit time for a jump
from state n to state n− 1. The probability to jump to one more units in a time ∆t is
not impossible but is of the order of O(∆t2).

From here the meaning of the master equation as a gain-loss equation for the proba-
bilities between states n is even more clear. It is similar to a balance of a fluid: some is
entering and some is exiting.
Thus the master equation for one-step processes can be rewritten as

dPn(t)

dt
= Ṗn = rn+1Pn+1 + gn−1Pn−1 − (rn + gn)Pn (3.17)
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Figure 3.1: The one-step process with its transition probabilities and the different states.
Image from [26].

However, we need to beware to the boundary conditions. Given that we have a number
of molecules n that is n ∈ [0, N ], if n = 0 is a boundary, the Eq 3.17 is meaningless and
has to be replaced with

Ṗ0 = r1P1 − g0P0 (3.18)

since we need to set this condition r0 = g−1 = 0 otherwise we would have a negative
number of molecules which is physically unfeasible. Similarly an upper boundary n = N
requires a special equation:

ṖN = gN−1PN−1 − rNPN (3.19)

because the condition rN+1 = gN = 0 or then with gN we would have a transition from
the state N to the state N + 1 and so to a state whose number of molecules is greater
than the maximum number present in our system; a similar reasoning is done for rN+1

that means a transition from the state N + 1 to N.
One-step processes can be subdivided based on the coefficients rn and gn into the

following categories: linear, if the coefficients are linear functions of n, nonlinear, if the
coefficients are nonlinear functions of n and random walks, if the coefficients are constant
[26, 21].
An important example of a one-step process with constant transition probabilities is the
Poisson process, defined by

rn = 0, gn = q, pn(0) = δn,0, (3.20)

where q is constant parameter. In such case, the master equation is

Ṗn = q(Pn−1 − Pn) (3.21)

The solution of this equation is a time dependent probability distribution

Pn(t) =
(qt)n

n!
e−qt (3.22)
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that is a Poisson distribution. Let us keep in mind this theoretical result for the discussion
about modeling gene expression in a stochastic framework in Chapter 4.

3.4 Resolution Methods for the CME

Solving the master equation would seem to be the ideal way of looking at stochastic
systems, as it can tell us the full distribution of possible states the system can be in over
time, but for one important disadvantage: its complexity.

In some special cases it is possible to solve it with analytical and numerical methods,
for instance in case of linearity of the process where every reaction term is constant or
proportional to the first power of only one chemical specie [5].

However, in general, what makes it difficult to solve is the mixing of a continuous
time evolution with a discrete evolution of the state variables [49]. Furthermore, this
becomes apparent when considering how many equations must be solved at each time
point, and bearing in mind that the number of possible states can increase exponentially
with time [12].

Thus we must use trajectory-based approaches, which differ from the master equation
in that they do not find the distribution of all possible states over time. Rather, they
simulate single realizations, meaning that at each step they choose one out of all the
possible outcomes.

The trajectory of each stochastic simulation is different, since each is a single reali-
sation sampled randomly from the full distribution given by the master equation. Given
many of these random single trajectories, we can build up a picture of the full distribu-
tion.

Many approximation methods for the solution of the CME have been developed
during the years and which operate by discretizing the time evolution. In this thesis, we
will exploit the two simulation algorithms that have become the workhorse stochastic
methods for many researchers today: the stochastic simulation algorithm (SSA) and
the tau-leaping procedure. In the end, we will propose an “alternative” method that
combines the two mentioned algorithms in order to speed up the stochastic simulation
of a chemically reacting system.

3.4.1 Stochastic simulation algorithm (SSA)

Most of the attempts in solving the CME have concentrated on Monte Carlo simulations
using the stochastic simulation algorithm (SSA) proposed by Gillespie in his seminal
paper. This method is statistically exact, namely a full probability distribution built up
from an infinite number of simulations will be identical to the distribution of the Markov
process, given by the master equation [12]. This algorithm is arguably the simplest SSA
variant and is based on the following steps in order to simulate one stochastic realisation:
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assuming that the system is described by the state vector Y⃗ which in general represents
the amount of molecules for each chemical species and given that the initial state of the
system is Y⃗ = Y⃗0, one has to choose which reaction happens between the possible ones
and how much time the system will spend in such state before the next reaction happens
[5]. Each reaction i is described by its transition rate (or even called propensity) ki
and by the modification of the state vector that generate. Given that we are dealing
with Markov process, the difference in time between two successive events ∆t follows an
exponential distribution, whose parameter is the propensity ki:

pi(∆t) = e−ki∆t (3.23)

given that any reaction is independent from the others, the distance in time between two
successive events is distributed as:

p(∆t) = e−
∑R

i=0 ki∆t (3.24)

This process is iterated untill the whole time of interest has been simulated or untill an
other desired condition is achieved.

Unfortunately, the direct method SSA pays the price for its simplicity in computa-
tional time, as two random numbers must be generated at each step [12] (the one for
choice of the event and the other for the choice of the time spent in the state given by
an exponential random variable). Furthermore, the SSA has an inherent limitation: it
must simulate every single reaction. This is, of course, its great strength too, but in
cases where there are many reactions or larger molecular populations, it often becomes
too slow to generate useful numbers of simulations in a practical time period.

3.4.2 Tau-leap algorithm

The tau-leap method, or also referred as explicit tau-leaping procedure, is similar to the
SSA in that each simulation is a single stochastic realisation from the full distribution at
each step [12]. However, the steps are fixed and in each one of these it counts the total
number of occurrences of each type of reaction over that step approximating the number of
firings of each reaction channel during a chosen time increment τ as a Poisson random
variable. Thus, also in this case based on the initial state of molecular populations
Y⃗ = Y⃗0, if there are M reactions, we take M Poisson random number samples. We
can call the time interval in which these reactions happen as τ . Hence, the vector of
molecules given by the M reactions Y⃗ = Y⃗M in the time interval τ is given by

Y⃗m(τ) = P (K⃗iτ) (3.25)

where P is the Poisson distribution with mean equal to K⃗iτ of which K⃗i is the vector
of propensities. Then the initial state of molecular populations is updated based on Eq
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3.25 and this is iterated untill the whole time of interest has been simulated or a desired
condition is met, similarly to SSA.

Hence, the basic idea of this procedure is to advance the system by a pre-selected time
increment τ (in contrast to the generated time increment that is in the SSA), which is
large enough that many reaction events occur in that time, but nevertheless small enough
that no propensity function value is likely to change “significantly” as a consequence of
those reaction events [13].

Summing all up, tau-leap algorithm has the key advantage that we now do not need
to spend time simulating individual reactions and as such it is much faster than the SSA.
On the other hand its main drawback is that we have lost accuracy compared to the SSA
in some ways such as we do not know when each reaction occurred within the time step.

The accuracy issue can be mitigated (at the expense of computational time) as the
error level, and so time step size, is decreased; indeed, as the time step tends to zero,
the tau-leap effectively becomes the SSA, with each step experiencing either zero or one
reaction [12].

Moreover, as anticipated in some rows above, there is another complementary issue
with the tau-leap: as many reactions are simulated at once, molecular species that are
depleted in any reaction can go negative if the time step is too large. This is obviously
unphysical, and so undesirable and makes it inappropriate to simulate reactions that
regards species which are typically lower in number such as genes.

Fig. 3.2 shows the number of RNA molecules and proteins produced during time
obtained by using the just explained stochastic simulation methods (SSA and Tau-leap)
and those given by the deterministic approach, i.e. ordinary differential equation solu-
tion, considering a model with a gene that is always expressed (see section 2.1). In this
particular case in which the RNA production rate is higher than the degradation rate
and the same is for proteins, we do not run the risk to obtain unphysical negative number
of molecules and we can compare the results given by the algorithms. In particular, we
consider the following values of rates: gene activation ka = 1, gene deactivation ki = 0,
RNA production k1 = 1, RNA degradation k2 = 0.1, protein production k3 = 1, protein
degradation k4 = 0.1.

From Fig. 3.2, we notice that trends resulting from the three methods are similar
both for the number of RNA molecules and for the number of proteins produced during
time.

However, in order to compare the two stochastic simulation methods, it is more useful
to compare the stationary distributions (i.e. the distribution of states) obtained instead
of the time dependent results.

Hence, we run the same simulation till a longer time limit to allow to obtain the
expected Poisson distributions. The results are shown in Fig. 3.3:
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Figure 3.2: Comparison of simulation methods. The typical trajectory of the number of
molecules as function of time is reported from the SSA (blue line) and tau-leap (orange
dotted line) and ODE solution (black thick line). The upper plot refers to the number
of RNAs molecules produced as a function of time starting from a gene that is always
active, while the plot below represents the number of proteins produced starting from
the RNAs of the same model.

There is a clear overlap between the two distributions, showing that the SSA sim-
ulation is providing the same results to the Tauleaping, validating also that the two
algorithms work in representing the stochastic trajectory of the chemical reacting sys-
tem we are analysing.

The time plot referred to the stationary distribution shown in Fig. 3.3 is the one
reported in Fig. 3.4:
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Figure 3.3: Comparison of simulation methods by using the stationary distributions
given by the SSA (orange bar plot) and tau-leap (blue bar plot).

Also in Fig. 3.4, the ODE solution is reported. We can notice that the deterministic
approach, even though cannot be considered representative of the true behaviour of the
system, its result represent a useful statistic of the system that in this case is the means
of our unimodal symmetric distributions of the number of RNAs and proteins produced.
The black line in Fig. 3.2 and 3.4 is in fact a rolling mean of the stochastic simulation.

Furthermore, deterministic simulations are generally much faster to run than their
statistical counterparts [12].

In order to make this simulation for a virtual time equal to 9000 with a computer of
1.10 GHz CPU, the SSA simulation has spent 55 seconds with respect to the 10 seconds
spent by the explicit tau-leaping algorithm.

However the tau-leaping algorithm can work well in this situation of constitutive gene
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Figure 3.4: Comparison of simulation methods using a higher time limit than the one
in Fig.3.2. The typical trajectory of the number of molecules as function of time is
reported from the SSA (blue line) and tau-leap (orange dotted line) and ODE solution
(black thick line).

expression. And what if our gene is regulated ? The risk of running in negative number
of molecules is much higher hence we need an algorithm that checks that this does not
occur if we want to go on using the tau-leap procedure.

In this kind of system, the typical choice is to combine the SSA and the tau-leaping
procedure because the first one can simulate the gene behavior while the second one is
suitable for simulating the changing of more numerous molecular species such as RNAs
and proteins.

In the next section, we propose and describe a combined SSA/tau-leaping algorithm.
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3.4.3 An alternative method: the “hybrid”stochastic simula-
tion algorithm

Many schemes have been developed that allow the choice of larger time steps in the
Tau-leap algorithm whilst avoiding negative populations. In this thesis work, we have
tried an approach that combines, basically, the SSA with Tau-leap algorithm in a way
that the first one updates the state of genes while the latter updates the state of other
more numerous species such as RNA molecules and proteins.

The model that we consider to develop this “hybrid” algorithm is the first simple
protein synthesis model (the one described in the first section of Chapter 2). We have
3 molecular species: one gene whose transcription leads to RNAs production that are
translated into proteins. In other words, this is what is called as the central dogma of
biology, that states that genes specify the sequence of mRNA molecules, which in turn
specify the sequence of proteins (DNA → RNA → Protein). Hence we have 6 possi-
ble reactions: gene activation, gene deactivation, RNA production, RNA degradation,
protein production and protein degradation.

Let us consider our usual state of molecular populations Y⃗ and the initial state
Y⃗ = Y⃗0. The transition rates related to such state is K⃗ = K⃗0.

The proposed hybrid algorithm is based on the following steps:

1. In state Y⃗ at time t, evaluate the transitions rates of all species and those related
to genes K⃗genes.

2. Apply the SSA algorithm by considering the sum of genes transition rates in Eq.3.24
and hence select the reactions that modify the time of residency of the gene state.

3. Eq.3.24 represents in this case the time of residency of the gene tgene state residency in
the initial state. The aim of this algorithm is to speed up the SSA by considering
such tgene state residency as the tau τ in the Tauleaping.

4. Thus, after the SSA application, consider the tgene state residency and the updated

gene state Y⃗ ′.

5. Apply the Tauleaping algorithm to the RNAs and proteins state and by considering
tgene state residency as τ , so tgene state residency = τ .

6. Consider the updated state by the tauleaping and SSA Y⃗ ′ and compute also the
difference between the transition rates K⃗0 refered to the initial state Y⃗0 and the
final value of transition rate K⃗ ′ obtained considering the updated state Y⃗ ′. In
particular compute the following difference:

∆K⃗ =

∣∣∣∣∣ K⃗ ′

K ′
TOT

− K⃗

KTOT

∣∣∣∣∣ (3.26)
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where K ′
TOT is the sum of all the transition rates calculated with the new updated

state Y⃗ ′ and the same for KTOT that is the sum of all the transition rates calculated
with the initial state Y⃗0.

Let us rember indeed that we are dealing with first order kinetics reactions, whose
transition rates are propotional to the amount of molecules of interest by a constant
k.

Y⃗ ′ and ∆K⃗ are the two quantities that must be monitored, because, as regards
the first one, of course, we need to check that there are not negative number of
molecules; for the latter, if it is too large, it can lead in very low accuracy in the
algorithm results. For instance, if there is a tauleaping step that leads to a final
state Y⃗ ′ that has a much higher number of proteins with respect to the initial state
Y⃗0, the final stationary distribution will result in an “explosion” in the number of
molecules that does not represent the true distribution.

Thus, in the following steps we describe how we monitor these two quantities.

7. If Y⃗ ′ has all positive values and ∆K⃗ is lower than a given threashold chosen by
the user, update rates and the state by considering the results of the SSA and
tauleaping algorithms already applied in points 2 and 5. If the simulation is running
untill a precise time limit (as we always do in this thesis work), update the time of
observation using the tgene state residency.

8. If instead Y⃗ ′ has a negative number of molecules or one of ∆K⃗ is higher than the
threashold, it means that we need to make smaller steps than the one proposed by
the SSA.

Hence we divide by one half τ , τ ′ → τ/2, untill the conditions on the number of

molecules and on the ∆K⃗ are satisfied.

When we obtain the right τ ′, we use it to make a tauleaping, updating the RNAs
and proteins states.

Then, we attempt a tauleaping using the remaining time τ − τ ′ that we call as τ ′′.

If the conditions are satisfied, we update the total time of observation with τ and
attempt a new tau-leaping starting from point 1 by considering a new updated
state Y⃗ ′ and the new rates K⃗ ′.

If it is not, we divide again τ ′′ by one half, τ ′′′ → τ ′′/2 untill the desired conditions
are met.

This process is iterated untill the τ (n) is higher than 3 times the characteristic time
tc given by the SSA by considering all reactions happening in our system.

9. If the new τ (n) reaches a lower value, i.e. τ (n) ≤ 3tc, it is worth to make a SSA
step without getting trapped in the previous iterating system that is certainly less
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precise than the SSA. In this case, update the total time with the characteristic
time given by the SSA applied considering all the reactions that are possible in our
system.

10. Apply steps from 1 to 9 untill the desired total time is reached or the desired
condition is met.

As in the tauleaping section, we have compared the results of the new algorithm
stationary distribution with the SSA. We consider the following model parameters: ac-
tivation rate ka = 1, deactivation rate ki = 0.5, RNA production rate k1 = 1, RNA
degradation rate k2 = 0.1, protein production rate k3 = 1, protein degradation rate
k4 = 0.1. These are the same parameters and the same model used to compare the SSA
simulation with the tauleaping simulation except for the fact that the deactivation rate
is now different from 0. Indeed now we can simulate without worrying about the fact
that the number of molecules becomes negative and so we can add gene regulation to
our model.

We consider a threashold ∆Kt = 10 and the result for our basic model is promising.
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Figure 3.5: Comparison of simulation methods using stationary distributions. The blue
bar plot is the result given by the SSA algorithm while the orange bar plot is the result
given by the hybrid algorithm.

Fig. 3.5 shows the distribution of states given by the SSA (blue bar plot) and the
hybrid algorithm (orange bar plot). They show a high degree of overlapping with hybrid
approach speed that is about 10 times lower than the SSA. More precisely, using a
computer with 1.10 GHz, the speed results are summed up in the table 3.1.
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speed
SSA 107s

Hybrid 7.5s

Table 3.1: Computational time required for the SSA and Hybrid algorithm in case of
our basic model.

We can modify the model changing the parameter value k1 (that in the end it is
also at the basis of the distribution). By considering k1 = 10, the related stationary
distribution is shown in Fig. 3.6.

Figure 3.6: Comparison of simulation methods using stationary distributions with k1 =
10. The blue bar plot is the result given by the SSA algorithm while the orange bar plot
is the result given by the hybrid algorithm.
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There is still a high degree of overlap between the two distributions even though the
protein hybrid distribution result is more scattered with respect to the SSA. In this case,
the gain in velocity is really high. Once again, the relative speeds are reported in the
table 3.2.

speed
SSA 718s

Hybrid 8s

Table 3.2: Computational time required for the SSA and Hybrid algorithm is case k1 =
10.

However, the situation changes if we decrease 10 times the rate of RNA production
and so k1 = 0.1 instead of increasing it by 10 times as in the previous case.
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Figure 3.7: Comparison of simulation methods using stationary distributions with k1 =
0.1. The blue bar plot is the result given by the SSA algorithm while the orange bar
plot is the result given by the hybrid algorithm.

The degree of overlap is still high, however we do not achieve a considerable improve-
ment in velocity:

speed
SSA 8.3s

Hybrid 7.9s

Table 3.3: Computational time required for the SSA and Hybrid algorithm is case k1 =
0.1.
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This suggests that decreasing the number of RNAs produced, the performance of our
hybrid algorithm decreases. What if we consider the opposite type of regulation ?

Let us consider ka = 0.1 and ki = 1 and let the other parameters equal to the basic
model values.

Figure 3.8: Comparison of simulation methods using stationary distributions considering
gene activation rate lower than the deactivation rate (ka = 0.1 and ki = 1). The blue
bar plot is the result given by the SSA algorithm while the orange bar plot is the result
given by the hybrid algorithm.

Fig. 3.8 shows the effects of this other kind of regulation on the distribution given by
the two algorithms. As expected, in both cases the results show that the residency time
refered to the state with the number of molecules equal to zero is the highest. However,
in this case, the hybrid algorithm shows an increase in the number of molecules state
both in the RNAs and even more in the proteins states. One can try to decrease the

36



Chapter3 – Stochastic simulation in systems biology

speed
SSA 9s

Hybrid 35s

Table 3.4: Computational time required for the SSA and Hybrid algorithm is case ka =
0.1 and ki = 1.

threashold ∆Kt but at expence of computational time that is already 3 times higher
than the SSA (see table 3.4).

Hence we can conclude that this proposed hybrid algorithm works very well from the
point of view of accuracy and computational time when the model tends to produce a
high number of molecules, whereas we still do not find an approach that is better than
Gillespie’s algorithm when the number of molecules produced is low. Anyway, in such
cases of low number of molecules, the SSA is efficient and there is not a huge needing to
be optimized.

Furthemore, we need to notice that our algorithm is a “paramater-dependent” al-
gorithm, where the parameter is ∆kt. As regards how tuning this parameter, we can
suggest to keep its value as high as possible if one wants to increase the speed but pay-
ing attention to the accuracy because with an higher ∆kt you will run the risk of “the
explosion of molecules”.

One can notice, indeed, that the logic of our hybrid algorithm is similar to the Adap-
tive Runge-Kutta methods used for the approximate solutions of simultaneous nonlinear
equations: during the integration, the step size is adapted such that the estimated error
stays below a user-defined threshold. If the error is too high, a step is repeated with a
lower step size; if the error is much smaller, the step size is increased to save time [61].

Anyway, in this thesis work we will use the Stochastic Simulation Algorithm because
our hybrid approach needs to be further tested and improved.

3.5 Statistical analysis techniques for warm-up de-

tection

Up to now we have shown the results of stationary distributions of the CME for com-
paring different algorithms. However we have omitted to explain an important analysis
step when dealing with simulations: the warm-up detection and its removal.

We can define our simulations as “infinite horizon simulations”: it has no natural
beginning point or ending point. The desired starting conditions are sometimes in the
far off future. We are interested in the long-run performance of the system and since
there is no natural ending point of interest, we consider the horizon infinite [60].
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As mentioned in section 5.1, sometimes we are interested in finding the moments of
the probability distributions, such as the mean.

It is true that if the steady state distribution exists and you run the simulation long
enough the estimators will tend to converge to the desired quantities. You can observe
it in plots reported in Fig. 3.2 and 3.3. At the beginning the number of molecules is low.
Then by increasing virtual time, they increase untill they reach a state that we can call
as “steady” state, that means that the distribution of the desired performance measure
has reached a point where it is sufficiently similar to the desired steady state distribution
[60].

We have also mentioned in section 3.2, when talking about Chemical Master Equation
solutions, that the eigenvector called also as the metastable state is the longest-standing
one and its eigenvalue gives a time-scale of the time of convergence to the stationary
distribution.

We need to clarify that “steady state” is a concept involving the performance mea-
sures generated by the system as time goes to infinity. It does not mean that the system
itself has reached steady state.

The system never reaches steady state. If the system itself reached steady state, then
by implication it would never change with respect to time. The system continues to
evolve with respect to time.

The period before the so called steady state can affect the mean calculation and so
also the distribution of states. This period is called warmup-period.

At the end of the warm up period, the system can be in any of the possible states of
the system. Some states will be more likely than others.

Thus, within the infinite horizon simulation context, you must decide on how long to
run the simulations and how to handle the effect of the initial conditions on the estimates
of performance by estimating when the warmup period ends, i.e. a time point that we
can indicate also with Tw.

The initial conditions of a simulation represent the state of the system when the
simulation is started.

If Tw is long enough, then on average across the replications, you are more likely to
start collecting data when the system in states that are more representative over long
term (rather than just states with low number of molecules).

3.5.1 The effect of initial conditions

Consider the output stochastic process Yi of the simulation and let Fi(y|I) be the con-
ditional cumulative distribution function of Yi where I represents the initial conditions
used to start the simulation at time 0. If Fi(y|I) → F (y) when i→ ∞ for all conditions
I, then F (y) is called the steady state distribution of the output process.

The distribution Fi(y|I) at the start of the simulation, however, tends to depend
more heavily upon the initial conditions. Estimators of steady state performance, such
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as the sample average, will tend to be biased.
If the expected value of the sampling distribution is equal to the parameter of interest

then the estimator is said to be unbiased, i.e. E[θ̂] = θ, with θ̂ a point estimator.
If instead the estimator is biased then the difference E[θ̂]− θ ̸= 0 and this difference

is the bias of the estimator θ̂.
This is the so called initialization bias problem in steady state simulation or warm

up problem. The warm-up period d is the period such that given Yi with i = d+1, ..., Yi
will have substantially similar distributional properties as the steady state distribution.

Unless the initial conditions of the simulation can be generated according to F (y),
which is not known, you must focus on methods that detect and/or mitigate the presence
of initialization bias.

3.5.2 “Replication-deletion” method

There are many methods that aim to determine the warmup period. In this thesis work
we have used the a strategy that we can call “replication-deletion” method because it is
based on the following steps:

1. Make R replications. Typically R ≥ 5 is recommended.

2. Since the sample points in SSA are obtained at different time intervals for each
simulation, we interpolate them at constant intervals (we choose dt = 0.01).

3. Thank to the previous step, we can make the average across the replications.

Let Yrj be the jth observation on replication r j = 1, 2, ...,m where m is the
minimum of the number of observations in the rth replication, m = min(mr).

Ŷ =
n∑

r=1

Yrj (3.27)

4. Find Tw in Ŷ by calculating the difference between Ŷ at t and at t+dt, t+dt and
t+2dt etc... when the differences start to become constant, then t is Tw that we
are looking for.

Fig. 3.9 show the concept of a warm up period for a simulation replication.

39



Chapter3 – Stochastic simulation in systems biology

Figure 3.9: Example of a simulation with warmup period detection. Image from [60].

3.6 Absorbing states

From a computational standpoint, we could decide to allow an infinite horizon simulation
become finite by considering an ending condition that is the absorbing state, that is a
state for which all transition rates are zero. This means that there are no transitions
that can lead out of that state and, as a consequence, the residency time is infinite.

In our biological context this situation can not happen because if we consider that
RNAs molecules are transcripted from a gene and then, from those, proteins and trans-
lated and produced, the gene can be in active or inactive form but a gene can not degrade.
Hence we will always have at least one molecule and this condition can not happen. In
our simulations, however, when comparing the different algorithms, we have considered
it as possibile with a rate much lower with respect to the others, for a computational
convenience. It is like an additional test that one can do in order to assess that the
algorithm works and do not tend to degrade its molecules.
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Part II

Studying genetic circuits and noise
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Chapter 4

Genetic circuits simulations in a
cellular environment

In chapter 2 we described in a deterministic framework the three simple genetic circuits at
the basis of living organisms. Now that we have deepened into stachastics simulations, we
can look at their time course behavior using the SSA algorithm in a stochastic framework
that is the one that we typically encounter in a cellular environment, as explained in the
introduction. Additionally to this, we provide information about their “place” in biology
in order to have an idea of what we are simulating and then investigating in Chapter 5.

4.1 Constitutive expression and Poisson statistics

Typically, constitutive genes are the so called “housekeeping genes” that are required for
the maintenance of basic cellular function [50], for instance genes coding for ribosomal
proteins.

For example, Zenklusen et al. in the experiments [51] found that constitutive gene ex-
pression model offers surprisingly good quantitative matches to transcriptional behaviors
for the housekeeping genes MDN1, KAP104, and DOA1 in budding yeast. The measured
numbers of mRNA transcripts per cell were well described by Poisson distributions for
all three genes.

As mentioned in section 3.3 when discussing about one-step processes, from a math-
ematical point of view, constitutive expression can be seen as a particular case of a
one-step process since such molecular reactions are random Poissonian birth-death pro-
cesses. This is represented in Fig.4.1 that reminds to Fig.3.1 of the previous chapter.
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Figure 4.1: For unregulated mRNA synthesis, the system can move into the state of
interest m in two ways, indicated by solid arrows. The system can likewise move out of
the state of interest, indicated by dashed arrows.

Thus in such case, the distribution of RNA molecules produced has a Poissonian
shape.

This is not the case of proteins distribution. The number of proteins produced yields a
scaling law since they are dependent on both mRNA birth and death as well as translation
rates [12]. Therefore proteins have non-Poisson distributions albeit their scaling is also
roughly Poissonian.

Fig. 4.2 shows the time course trend of RNA molecoles and proteins produced by
considering this model of gene expression by using the SSA.
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Figure 4.2: SSA time course simulation of the number of RNAs and proteins molecules
from a gene (of the model in Fig.2.2) that is always expressed. The first plot shows the
gene activity, the second one the number of RNA molecoles produced and the third one
shows the number of proteins produced. Transition rates values are reported in image
boxes.

We can notice the warm-up period at the beginning of the simulation discussed in
section 3.5.

Moreover, we can observe the stiffness of the process: the number of proteins reacheas
the steady state in correspondence to a higher number of molecules with respect the
RNAs in the same or very similar warmup period (if we look at the time scale). Proteins
indeed are produced faster than RNA molecules. This is reasonable if we think about
the fact that we are dealing with first order kinetics systems.

4.2 Regulated gene expression

Although the constitutive gene expression model captures the fluctuations of several
housekeeping genes, it does not perform as well when gene expression is regulated.

Deviations from Poisson behavior indicate regulation.
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Fig. 4.3 and Fig. 4.4 show the number of RNA and molecules produced, using the
SSA simulation, by considering respectively two types of regulation: one when the gene
spents more time to be in active state than inative state whereas the other is the opposite
situation.

Figure 4.3: SSA time course simulation of the number of RNAs and proteins molecules
from a gene (of the model in Fig.2.3) that is regulated with activation rate constant
ka = 1 and ki = 0.5. The first plot shows the gene activity, the second one the number
of RNA molecoles produced and the third one shows the number of proteins produced.
Transition rates values are reported in image boxes.
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Figure 4.4: SSA time course simulation of the number of RNAs and proteins molecules
from a gene (of the model in Fig.2.3) that is regulated with activation rate constant
ka = 0.1 and ki = 1. The first plot shows the gene activity, the second one the number
of RNA molecoles produced and the third one shows the number of proteins produced.
Transition rates values are reported in image boxes.

The other two cases that we are going to simulate are the autorepressor case and the
toggle-switch. We can anticipate how the pattern of molecules produced related to the
case of the gene that spents more time to be inactive (see Fig. 4.4) is similar to the
autorepressor case that we are going to explore.
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4.3 The autorepressor simulation

Fig.4.5 shows the typical pattern of the number of transcript and translated molecules
produced in a genetic autorepressor circuit.

Figure 4.5: SSA time course simulation of an autorepressor model. The first plot shows
the gene activity, the second one the number of RNA molecoles produced and the third
one shows the number of proteins produced. Transition rates values are reported in
image boxes.
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The typical “sawtooth” pattern that is repeated over time is revealed by the SSA
simulation in RNA molecules trend. As regards proteins time trend, the scaling law
mentioned in section 2.2 causes more “smooth” edges.

One interesting example of autorepressor model in humans is the case of Regulatory
Factor X1 gene (RFX1).

This gene encodes a member of the regulatory factor X (RFX) family of transcription
factors, which are characterized by a winged-helix DNA-binding domain. The encoded
transcription factor contains an N-terminal activation domain and a C-terminal repres-
sion domain, and may activate or repress target gene expression depending on cellular
context. This transcription factor has been shown to regulate a wide variety of genes
involved in immunity and cancer, including the MHC class II genes and genes that may
be involved in cancer progression. This gene exhibits altered expression in glioblastoma
and the autoimmune disease systemic lupus erythematosis (SLE) [53].

Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that
influences a wide range of cellular processes such as cell cycle, cell proliferation, differen-
tiation, and apoptosis, by regulating a number of target genes that are involved in such
processes. On a closer look, these target genes also play a key role in tumorigenesis and
associated events. Research work compile significant evidence for the tumor-suppressive
activities of RFX1 while also analyzing its oncogenic potential in some cancers [54].

One of the most understood ways of regulating RFX1’s gene expression is by its
autorepression. RFX1 auto-represses itself with the assistance of yet unidentified co-
repressor, in response to DNA replication arrest, to bring about a controlled expression
of RFX1 [54]. Such gene is functionally conserved for instance in yeast where we find a
yeast RFX1 homologue, that is Ctr1. There are evidences for a common mechanism for
Crt1 and Rfx1 expression and for the conservation of their mode of action in response
to a DNA replication block [55].

4.4 The Toggle-Switch simulation

Fig.4.6 shows the typical trend of gene expression in a toggle switch system.
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Figure 4.6: SSA time course simulation of a toggle switch model. The first plot shows the
gene activity, the second one the number of RNA molecoles produced and the third one
shows the number of proteins produced. Transition rates values are reported in image
boxes.

We can clearly see the alternation between the expression of the two genes.
One example of a genetic toggle switch is the so called MicroRNAs Toggle Switch

analysed in the work Stochastic analysis of a miRNA-protein toggle switch [56] by
Giampieri et al.

MiRNAs are small, non-coding RNAs that modulate the expression of target mRNAs.
MiRNAs are often part of toggle switches, with important examples are gene pairs built
with oncogenes and tumour suppressor genes. The miR-17-92 cluster forms a bistable
switch with Myc and the E2F proteins [56].
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Chapter 5

Pattern recognition methods for
stochastics processes

We as humans are “amazing pattern recognizer” and in fact there are many studies that
try to find the link between pattern recognition and human intelligence in order to build
artificially intelligent machines [2]. This is not the theme of this thesis but it is only to
say that despite in the time domain signals of Autorepressor model and Toggle Switch
model our powerful brain can recognize some patterns, in this context of stochasticity
and, perhaps, non-periodic signal, in order to verify that they are really present, and
maybe achieve some useful quantitive measurements, we need some particular tools to
investigate such signals. Let us discuss the ones that we have thought to use in this work
of thesis.

5.1 The Autocorrelation Function (ACF)

Summing up what said in the first part, by stochastic processes we mean, in a loose
sense, systems which evolve probabilistically in time [25]. For stochastic systems it is
not possible to exactly determine the state of the system at later times given its state
at current time. Hence, to describe a stochastic system we use the probability that the
system is in a certain state. Nevertheless, such a calculation is often difficult, and, if
we are considering a measurable quantity Y (t) which fluctuates with time, we usually
focus on finding the moments of the probability distribution, such as the mean and the
variance. These two quantities are commonly measured experimentally [1].

However, the mean and the variance do not tell a great deal about the underlying
dynamics of what is happening. What would be of interest is a measure of the influence of
a value of Y at time t on the value at time t+τ [25]. Such a quantity is the autocorrelation
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function, which was firstly introduced as

G(τ) = lim
T→∞

1

T

∫ T

0

dtY (t)Y (t+ τ) (5.1)

This is the time average of a two-time product over an arbitrary large time T, which is
then allowed to become infinite. It is interesting to compute the autocorrelation function
starting from the spectrum of the quantity Y (t) that is defined in two stages:

y(ω) =

∫ T

0

dte−iωtY (t) (5.2)

then the spectrum is defined by:

S(ω) = lim
T→∞

1

2πT
|y(ω)|2 (5.3)

The autocorrelation function and the spectrum are closely connected. By a little manip-
ulation one finds:

S(ω) = lim
T→∞

[
1

π

∫ ∞

0

cos(ωτ)dτ
1

T

∫ T−τ

0

Y (t)Y (t+ τ)dt

]
(5.4)

and taking T → ∞ one finds:

S(ω) =
1

π

∫ ∞

0

cos(ωτ)G(τ)dτ (5.5)

This is a fundamental result that relates the Fourier transform of the autocorrelation
function to the spectrum. The result may be put in an other form by considering that:

G(−τ) = lim
T→∞

1

T

∫ T−τ

−τ

dtY (t+ τ)Y (t) = G(τ) (5.6)

so we obtain:

S(ω) =
1

2π

∫ ∞

−∞
e−iωτG(τ)dτ (5.7)

hence:

G(τ) =

∫ ∞

−∞
eiωτS(ω)dω (5.8)

This result is known as the Wiener-Khinchin theorem. Its meaning is profound: it tells
us that one may either directly measure the autocorrelation function of a signal, or the
spectrum, and convert back and forth which by means of the Fast Fourier Transform is
relatively straightforward. We will discuss about the Fast Fourier Transform in Chapter
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5 as an other means to analyze our fluctuating signal Y (t) and we will understand also
from simulation results that the autocorrelation function and the fast fourier transform
are two different ways to achieve the same information. Hence, they are deeply related.

For the moment we keep discussing merely about the autocorrelation function taking
into account that, besides such definition of autocorrelation as time average of a signal,
we may also consider the ensemble average, in which we may repeat the measurement
many times, and compute averages, denoted by ⟨⟩. It can be shown that for many systems
the time average is equal to the ensemble average; such systems are termed ergotic [25].
If we have such a fluctuating quantity Y (t), then we can consider the average

⟨Y (t)Y (t+ τ)⟩ = G(τ) (5.9)

this result being the consequence of our ergodic assumption. If the system is ergodic,
we must have a constant ⟨Y (t)⟩, since the time average is clearly constant. The process
is then stationary by which we mean that the averages of functions Y (t1), Y (t2)...Y (tn)
are equal to those of Y (t1 + τ), Y (t2 + τ)...Y (tn + τ). In particular, ⟨Y ⟩ is independent
of time. It is often convenient to substract this constant from Y(t) and to deal with
the zero-mean process Ȳ (t) = Y (t) − ⟨Y ⟩ and divide by the variance of the stochastic
process. The autocorrelation function G(τ) of a stationary process depends on the lag
time |ti − ti+τ | alone and is not affected by this subtraction. We can denote the lag
time with τ and often there exists a constant tc such that G(τ) is zero or negligible for
|ti − ti+τ | > tc; one then calls tc the autocorrelation time.

We remind that strictly stationary processes do not exist in nature, let alone in the
laboratory, but they may be approximately realized when a process lasts much longer
than the phenomena one is interested in. One condition is that it lasts much longer than
the autocorrelation time. Processes without a finite tc never forget that they have been
switched on in the past and can therefore not be treated as approximately stationary.

To summarize, given the time series Y (t1)...Y (tn) of a stationary stochastic process
and its mean Ȳ = 1

n

∑n
i=1 Y (ti), we can first calculate what is called the autocovariance

function at lag τ

G(ti, ti+τ ) =
1

n

n−τ∑
i=1

(Y (ti)− Ȳ )(Y (ti+τ )− Ȳ ) (5.10)

Dividing by the variance of the stochastic process, we obtain the autocorrelation function
(ACF) at lag τ and so the correlation between series values that are τ intervals apart.
A plot of the ACF against τ is known as a correlogram.
Hence, the autocorrelation function defines how data points in a time series are related, on
average, to the preceding data points [22]. In other words, it measures the self-similarity
of the signal over different delay times.

After all this discussion, we can recognize and summerize some autocorrelation func-
tion properties:
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1. |G(τ)| ≤ G(0)

2. G(−τ) = G(τ)

3. if Y (t) has a periodic component, then G(τ) will have a periodic component with
the same period

4. if Y (t) is ergotic, zero mean, and has no periodic components, then lim|τ |→∞G(τ) =
0.

We will find these properties in our Y (t) signal analysis.

5.2 Fast Fourier Transform (FFT)

Our time domain signal, that we can name as f(t), i.e. a function of time, can hide
interesting features under the hood and some of these can be extracted through the
Fourier Transform. By considering the continous function f(t), the Fourier transform is
based on the following formula:

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt (5.11)

the Fourier transform means considering one function of time f(t) and apply a trans-
form, through an integral function, that is the complex exponential e−iωt that extracts
periodicity from the signal. It is the so called “inner product” that is a generalization of
the scalar product in which you project one vector onto an other and you see how much
of this vector is along an other one. In this case, you can calculate how much of this
function f(t) “is along this function e−iωt”, so how much of this function f(t) contains
the type of periodicity e−iωt. You can do this for different functions that depend on ω
and you will get a function which depends on ω that tells you how much is the weight
associated to each frequency, hence the frequency domain will tell which is the relative
contribution of each frequency into comprising function. We can take any function and
decompose it into sum of pure waves with different frequencies. The concept was orig-
inated by Carl Friedrich Gauss and by Jean-Baptiste Joseph Fourier in the early 19th
century.

Eq. 5.11 considers a continous function. Most of the signals you come across in
nature are continuous (electrical signals in your body, human speech, any other sound
you hear, the amount of light measured during the day, barometric pressure, etc etc),
however, whenever you want to digitize one of these analog signals in order to analyze
and visualize it on a computer, it becomes discrete. Indeed our time series of molecules
are discretized time series and so they are vectors of values. When both the function and
its Fourier transform are replaced with discretized counterparts, it is called the discrete
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Fourier transform (DFT). The DFT transforms the original N -dim data, i.e. it projects
onto the new N -dim space. Indeed, the FFT y[k] of length N of the length-N sequence
x[n] is defined as:

y[k] =
N−1∑
n=0

e−2πi kn
N x[n] (5.12)

and the inverse Fourier transform is then defined as follows:

x[n] =
N−1∑
n=0

e2πi
kn
N y[k] (5.13)

In this case, we really are multiplying a signal with a series of sine-waves with different
frequencies and so we are able to determine which frequencies are present in a signal. If
the dot-product between our signal and a sine wave of a certain frequency results in a
large amplitude this means that there is a lot of overlap between the two signals, and
our signal contains this specific frequency. This is of course because the dot product is
a measure of how much two vectors / signals overlap.

The DFT has become a mainstay of numerical computing in part because of a very
fast algorithm for computing it, called the Fast Fourier Transform (FFT). It makes use
of the symmetry of the sine and cosine functions and other math shortcuts to get the
same result much more quickly.

Thus, the Fourier analysis tells us how much of data is organized as function of
frequency and no more as function of time so it is used to transform a signal from a time
domain to a frequency domain.

Fig. 5.1 is an example of a signal that contains four different frequencies at four
different times.

Fig. 5.2 is the corresponding frequency spectrum.
The four frequencies, already clearly detectable by eye in the time domain, are all

present in the frequency domain. The peaks in the frequency spectrum indicate the most
occurring frequencies in the signal. The larger and sharper a peak is, the more prevalent
a frequency is in a signal.

However, as in the case of the autocorrelation function, if the signal is not periodic,
the Fourier spectrum would not be really informative. The sine function is the same
everywhere, no matter where you look. It stretches to infinity in a regular periodic
fashion which meakes it inconvient for time series analysis. Indeed we can say that
the autocorrelation function and the Fourier transform are two ways to obtain the same
information from the signal: the extraction of periodicity from the signal. Computing the
autocorrelation function we obtain a graph with the autocorrelation values as function of
time; with the Fourier transform we obtain the FFT amplitude as function of frequencies.
Converting the values of the autocorrelation peaks from the time-domain to the frequency
domain should result in the same peaks as the ones calculated by the FFT. The frequency
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Figure 5.1: Example of time domain oscillating signal which contains four different
frequencies at four different times (in particular the frequencies respectively are 4 Hz, 30
Hz, 60 Hz and 90 Hz).

Figure 5.2: Example of FFT applied to the signal in figure 5.1.

of a signal thus can be found with the auto-correlation as well as with the FFT and this
was already mentioned in a more “formal” way in section 5.1 as a result of the Wiener-
Khinchin theorem.

Furthermore, from these figures and from the FFT theory explained before, we can
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understand that this approach has an important drawback: the Fourier Transform has
a high resolution in the frequency-domain but zero resolution in the time-domain. This
means that it can tell us exactly which frequencies are present in a signal, but not at
which location in time these frequencies have occurred. It is fundamentally impossible
to have both: time and frequency resolution simultaneously. There is always a trade off
of information between the two. This is a manifestation of the Heisenberg uncertainty
principle. Time and frequency are two extremes of these uncertainty: you can either
know exactly what a value of a function is at every time point but at the cost of being
completely ignorant about what frequencies are fold in. On the other hand, in the
frequency domain we know exactly what frequencies are present in that signal but we
have no idea about the temporal dynamics of them. A compromise that would sacrify
a little bit of frequency resolution and a little bit of time resolution to know something
about both is the Wavelet transform.

5.3 Continous Wavelet Transform (CWT)

The Fourier transform uses sine and cosine waves with different frequencies but with
the same shape along all the time domain and they repeat periodically back and forth
in time. The Wavelet transform instead uses a series of functions called wavelets which
have a beginning and an end. The french word wavelet means “a small wave”, and this
is exactly what a wavelet is. Hence while the sine and cosine waves are infinitely long
and stretches to infinity in a regular periodic fashion, the Wavelets are localized in time
and with a different shape. This allows the wavelet transform to obtain time information
in addition to frequency information.

Indeed, since they are localized in time, this transform implies that we can multiply
our signal with the wavelet at different locations in time. The wavelet is thus translated
from the beginning to the end of the signal (i.e. the time series). This operation is
named as convolution. In this way, you are localizing along the time series the value of
this finite domain function. The process is illustrated in the fig. 5.3:

Figure 5.3: Sketch of Wavelet transform applied to the signal through convolution. Image
from [27].

The wavelet can then also be scaled by dilations and contractions. Furthermore, there
are different families of wavelets each one characterized by a specific shape. For instance,
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we can consider the so called Morlet wavelets that are frequently used for time-frequency
analysis of non-stationary time series data, such as neuroelectrical signals recorded from
the brain [29]. Fig. 5.4 shows three different pictures that show the same wavelet function
represented using different scales.

Figure 5.4: Morlet wavelet at three different scales: (a) contracted wavelet, (b) mother
wavelet, (c) dilated wavelet. Image from [28].

Using a wavelet function like this you will identify in the time series positive and
negative parts.

Mathematically, we can summerize all this with the following formula that represents
the Continous Wavelet Transform (CWT):

CWT (a, b) =
1√
a

∫ +∞

−∞
Y (t)ψ

(
t− b

a

)
dt (5.14)

In this equation, the parameter a is the scaling factor that stretches or compresses the
function. The parameter b is the translation factor that shifts the mother wavelet along
the axis. The parameter Y (t) is an integrable signal whose sum is to be multiplied by the
translated mother wavelet. And finally, the mother wavelet is denoted by ψ(t), which
is a function of the scaling and translation factors just as the result of the continuous
wavelet transform is.

Generally speaking, to be considered a proper wavelet, a function ψ(t) has to satisfy
two main constraints:

1. ∫ +∞

−∞
ψ(t)dt = 0 (5.15)

2. ∫ +∞

−∞
|ψ(t)|2dt <∞ (5.16)
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The first one is known as the “admissibility condition” and it tells that the wavelet
function should have zero mean. This means that if you take the integral, i.e. the area
under the curve, and we sum the positive and negative parts, we should get zero. We
can notice that also a sine wave passes the admissibility condition. Secondly, the wavelet
function has to have finite energy: if you square the function and compute the area under
the curve everywhere from minus infinity to plus infinity it should be a finite number
and this is exactly what makes the function localized in time. It means that the wavelet
covers a finite area. In fact think about the energy of the sine wave: it is infinite.

As said before, one very known wavelet is the Morlet wavelet that is defined taking
the cosine wave of a certain frequency and damping it by multiplying on a Gaussian bell
curve:

ψ(t) = k0 cos(ωt)e
− t2

2 (5.17)

this is the real component of a Morlet wavelet and has the shape depicted in fig. 5.4.
Wavelet itsself is a complex function and we will discuss about this in a few.

Hence, in this case, when doing the Wavelet transform we have to choose the scale
and the mother wavelet to use that will be translated and multiplied to the signal.
By varying scale and translation parameters we can “scan” our signal with analysing
wavelets of different scales to see what frequencies are most prominent around that time
point.

The Wavelet transform gives, in any case, information about local periodicities and
so how frequencies in a time series data are localized in time. However, the best choice
of the parameters just mentioned is able to give more informative results.

We can consider an example of the application of the CWT to the signal rappresented
in fig. 5.1 that changes its frequency at four different time steps. A good tool for the
CWT representation of our signal is the scaleogram. It is a 2D representation of a 1D
signal in time domain. The scaleogram, as the name suggests, reports the time on the
horizontal axis and the period, i.e. the length of the Wavelet or also called the scale,
one the vertical axis. For our convention, the color-level coded scale represents the
wavelet coefficients: dark red is associated to high values of wavelet coefficents, while
white colored regions represent low values of wavelet coefficients. To clarify, by “wavelet
coefficients” we mean the result of the convolution between the time series and the chosen
wavelet, just as the FFT amplitude values in the Fourier transform.

On the vertical axis of the scaleogram we put the scale, that is the wavelet length:
higher the length of the wavalet is, lower the frequency is; on the contrary, lower the
length of the wavelet is, higher the frequency is.

Hence, how do we interpret the scaleogram ? Roughly speaking, the convolution
measure the similarity between the wavelet function and the data. If the similarity is
high, we will have high values of wavelet coefficients (i.e. red colors); if it is low, it will
correspond to low wavelet coefficients (i.e. like white colors). But since wavelets vary
from one scale to an other, at certain scales it may or may not have the highest similarity.
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Figure 5.5: Example of Continous Wavelet Transform, using the real part of Morlet
wavelet, applied to the signal in figure 5.1.

If at low scales (low values on the vertical axis of the scaleogram) there are high values
of the coefficients, then the data have high frequencies; on the other hand, if at high
scales there are high values of coefficients, then your data have low frequencies. Thus
we can locate this low and high frequency portions by analysing these variations in the
values of the coefficients. When there is no match with the signal, the dot product, i.e.
the result of integral in Eq. 5.14 is zero; but when the signal approaches the wavelet
intrinsic frequency, the function begins like to “resonate” and you get a significant overall
contribution when they are in phase, and a significant negative contribution when they
are out of phase. When there is match of frequency there is an alternation between
positive and negative values. We can realize that Eq. 5.14 is exactly as the dot product
between vectors, indeed when vectors have the same direction, the dot product has high
value, contrary to when the angle between them is 90◦ in which case it is zero.

Fig. 5.5 shows the Morlet CWT applied to signal in fig. 5.1 that changes frequency
at four time points. Such scaleogram generally shows bands made of an alternation
between red and white stripes. In particular there are four bands of this type that are
located at lower and lower scale corresponding to the time domain signal that increases
its frequency.

However we need to notice that the product in Eq. 5.14 is zero also when the wavelet
is exactly in the middle between peaks and troughs of the oscillating signal. It does not
mean that there is zero frequency component , but it could be quite the contrary.

This is when complex wavelets come into play. If we consider again the Morlet wavelet
defined in Eq.5.17, we obtain the complex Morlet wavelet multiplying it by eiω0t and so
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we obtain:

ψ(t) = k0 cos(ωt)e
iω0te−

t2

2 (5.18)

In this way the Morlet wavelet is essentially a complex exponent which spins around the
circle in the complex plane with a certain constant frequency ω0 and whose amplitude is

modulated by the Gaussian bell curve e−
t2

2 .
The imaginary part of the Morlet wavelet is like the real part but slightly shifted

relative to the cosine. The key idea is to calculate the convolution with both real and
imaginary parts. Then our convolution function, for a fixed wavelet scale, will map one
real number to the point in the complex plane where the real component is the value of
the convolution at that time point with the real part of the wavelet and the imaginary
component is the value of convolution with the imaginary part of the wavelet. The
power of the frequency, i.e. the intensity of its contribution, at each point in time is
given by the distance from the resulting point in the complex plane to the origin which
is the absolute value of the complex number. In this way we measure the intensity of
a particular frequency component as function of time. The resulting function Eq. 5.14
is the complex function, the absolute value of which represents the contribution of a
particular frequency around a certain time point. We can again represent it with colors
obtaining the scaleogram.

Fig. 5.6 show the scaleograms corresponding to CWT applied to signal in Fig. 5.1
using the complex Morlet wavelet. At first sight, we can understand that this graph is
more intuitive than the one obtained through only the real part of Morlet wavelet that
was shown in Fig. 5.5.

Figure 5.6: Example of Continous Wavelet Transform, using Complex Morlet wavelet,
applied to the signal in figure 5.1.
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Fig. 5.6 shows four different bands located at four different time points and at four
different scales. This time, the bands are uniformly dark red colored and this agrees with
our expectations since the time domain signal changes its frequency four different times
by increasing its frequency and keeping the frequency constant for a time period at each
one of the four times.

Before concluding this overview about wavelets, we need to emphisize that the results
may change according to the choice of scale and the choice of the wavelet used. The first
one is obvious: by considering a lower range of scales in a situation like this, we would
not have detected the lowest frequency present at the beginning of the signal. However,
this is true if we use a Complex Morlet Wavelet.

Indeed, in a situation like this, if we apply the Complex Gaussian Wavelet transform
to the usual signal in Fig.5.1, we are able to detect low frequency signal by using a lower
range of scales.

Figure 5.7: Example of Continous Wavelet Transform, using Complex Gaussian wavelet
of first order, applied to the signal in figure 5.1.
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From these pictures, we can recognize the power of the CWT for dynamically changing
signals in recognizing frequencies present in the signal together with their temporal
localization. Furthemore, as pointed out previously, we can notice also the importance
of the parameters chosen which in this last example is the importance of the choice of
the wavelet.

In our genetic circuits analysis we will use an other kind of representation of the
continous wavelet transform that is analogous to this but it considers the frequencies
of the signal on the y axis instead of the scale of the wavelet. Thus, the corresponding
continous wavelet transform to Fig.5.1 is the one is Fig. 5.8.

Figure 5.8: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the signal in figure 5.1. Frequencies are reported on
the vertical axis while the horizontal axis represents the time.

As we can notice, each red band is located to the precise frequency of the signal, that
are 4 Hz, 30 Hz, 60 Hz and 90 Hz.

This representation is even more intuitive. The mechanism of conversion from scale
to frequency is not studied in this thesis. We can leave some references to the python
module that is used and the relative documentation [66],[67],[68],[69].

62



Chapter5 – Pattern recognition methods for stochastics processes

5.4 Application of ACF, FFT and CWT to genetic

circuits

Up to now, we have studied the basic principals behind the autocorrelation function,
the fast fourier transform and the continous wavelet transform but applied to “dummy
signals” in order to understand how they work and if they can help us also in the study
of our signals that are instead “real” namely they are hidden inside noise. Let us analyse
what we can achieve exploiting these tools.

5.4.1 ACF

We can start from studying the first simple protein synthesis model by playing with the
effects of regulation as we have done when building the hybrid algorithm. Do we discover
a particular autocorrelation shape in the case of “housekeeping” genes products and one
for the regulated ?

In the time domain, at first sight, the number of molecules produced and proteins
show some particular patterns: the constitutive expression model case has a steady state
period (see Fig.4.2) whose signal varies with “smaller amplitudes” with respect to the
regulated gene case when the time of residency of gene in active state is higher than the
one in inactive state (see Fig. 4.3). Furthermore, as already observed in Chapter 2, the
case in which the gene spends more time to be inactive than active (see Fig. 4.4) shows a
pattern that remembers the time course analysis for the autorepressor case (see Fig.4.5).

Fig.5.9, Fig. 5.10 and Fig. 5.11 shows the autocorrelation plots for three cases taken
into account.
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Figure 5.9: Trend of 4 RNAs autocorrelation plot (top) and proteins autocorrelation
(bottom) as function of sampling time. The model parameters and time limit are equal
to those considered in Fig. 4.2. The number of lags used to calculate the autocorrelation
is 10000 with a sampling time dt=0.1.
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Figure 5.10: Trend of 4 RNAs autocorrelation plot (top) and proteins autocorrelation
(bottom) as function of sampling time. The model parameters and time limit are equal
to those considered in Fig. 4.3. The number of lags used to calculate the autocorrelation
is 10000 with a sampling time dt=0.1.
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Figure 5.11: Trend of 4 RNAs autocorrelation plot (top) and proteins autocorrelation
(bottom) as function of sampling time. The model parameters and time limit are equal
to those considered in Fig. 4.4. The number of lags used to calculate the autocorrelation
is 10000 with a sampling time dt=0.1.

From Fig.5.9, Fig. 5.10 and Fig. 5.11 we can observe, however, small differences in
trends. In all of them we can notice deeper initial negative peaks in RNAs autocorrelation
curves with respect to the proteins curves. In case the rate of inactivation of gene is lower
than the activation one (Fig.5.11), we can notice that the initial deep is more evident
and that it is conserved also for proteins.

However if we consider the autocorrelation plots resulting from the quantiles calcu-
lation of 64 simulations shown in Fig.5.12, Fig. 5.13 and Fig.5.14, the three curves are
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always the same validating the fact that they come from the same genetic model. What
changes is only the type of regulation.

Figure 5.12: Trend of RNAs autocorrelation plot (top) and proteins autocorrelation (bot-
tom) as function of sampling time as a result of 64 simulations. The model parameters
and time limit are equal to those considered in Fig. 4.2. The number of lags used to
calculate the autocorrelation is 10000 with a sampling time dt=10. The error bars calcu-
lated by considering the 25% or 75% quantiles of the several simulations and the points
are the median that are associated to each sampling time.
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Figure 5.13: Trend of RNAs autocorrelation plot (top) and proteins autocorrelation (bot-
tom) as function of sampling time as a result of 64 simulations. The model parameters
and time limit are equal to those considered in Fig. 4.3. The number of lags used to
calculate the autocorrelation is 10000 with a sampling time dt=10. The error bars calcu-
lated by considering the 25% or 75% quantiles of the several simulations and the points
are the median that are associated to each sampling time.
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Figure 5.14: Trend of RNAs autocorrelation plot (top) and proteins autocorrelation (bot-
tom) as function of sampling time as a result of 64 simulations. The model parameters
and time limit are equal to those considered in Fig. 4.2. The number of lags used to
calculate the autocorrelation is 10000 with a sampling time dt=10. The error bars calcu-
lated by considering the 25% or 75% quantiles of the several simulations and the points
are the median that are associated to each sampling time.

Fig.5.12, Fig. 5.13 and Fig.5.14 show in fact almost the same behavior with the
autocorrelation value higher for the first sampling time steps and then it tends to be
zero.

We find a different behavior in the second genetic circuit that we have described, that
is the autorepressor model.

As we have discussed in Chapter 2, the autorepressor is a little genetic circuit with
negative feedback. The gene's proteins product decreases the activation rate of the same
gene. We have also observed a typical trend as function of time in Fig.4.5.

At first sight, there is a sawtooth pattern that is repeated over time in the number
of RNA molecules vs time trend, whereas the proteins trend is characterised by more
“smoothed” edges.
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This first impression finds, this time, a sort of confirmation by the autocorrelation
plots.

Figure 5.15: Trend of 4 RNAs autocorrelation plot (top) and proteins autocorrelation
(bottom) as function of sampling time. The model parameters and time limit are equal
to those considered in Fig. 4.5. The number of lags used to calculate the autocorrelation
is 10000 with a sampling time dt=0.1.

From Fig. 5.15 we can observe 4 autocorrelation curves calculated for temporal
series in Fig. 4.5 changing the random seed. What we can notice is that for the RNAs
autocorrelation curves all the curves show a deep at the beginning and then rise and tend
to zero values. In case of proteins, not all the 4 autocorrelation curves have this behavior
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and this is confirmed when calculating autocorrelation quantiles using 64 simulations
(see Fig.5.16).

Figure 5.16: Trend of RNAs autocorrelation plot (top) and proteins autocorrelation (bot-
tom) as function of sampling time as a result of 64 simulations. The model parameters
and time limit are equal to those considered in Fig. 4.5. The number of lags used to
calculate the autocorrelation is 10000 with a sampling time dt=10. The error bars calcu-
lated by considering the 25% or 75% quantiles of the several simulations and the points
are the median that are associated to each sampling time.

Fig. 5.16 shows RNAs and proteins autocorrelation curves with medians and error
bars calculated as result of 64 simulations.

They are both characterized by a deep at the first virtual time points and then it
tends to zero. We can clearly see this from the overlapping between the horizontal line
at zero and the autocorrelation points or the relative error bars.

We expected the negative deep because of the repressing behavior.
However, in case of proteins autocorrelation function, we find “a less profound deep”
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that maybe due to the smoothed time course behavior.
This shows how the autocorrelation function is really sensitive to the shape of the

molecular time course behavior.
The last basic genetic circuit analysed is the Toggle Switch model.
In this case we are dealing with expression of two genes and we remind that the

proteins products of one gene reduces the rate of activation of an other one.
Let us consider the time autocorrelation function of the two RNAs and proteins

products relative to Fig.4.6 for just one simulation shown in Fig.5.17.

Figure 5.17: Trend of RNAs autocorrelation products of the two genes plot (top) and
proteins autocorrelations (bottom) as function of sampling time. The model parameters
and time limit are equal to those considered in Fig. 4.6. The number of lags used to
calculate the autocorrelation is 10000 with a sampling time dt=0.1.
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Notice that the two genes have the same rate constants parameters, hence we expect
that the autocorrelation functions of the RNAs molecules for two genes are equal. This is
from a mathematical point of view but we can notice that they are not exactly the same
due to noise that, in the simulation world, is given by the random number generation
of the event and time spent in each state, as explained when presenting the Gillespie's
algorithm in section 3.4.1. This similar trends validate that our analysis is robust.

We can point out also that the autocorrelation function shape is much different from
the those we have seen in the first simple model and the autorepressor one. It has indeed
a much stronger oscillating behavior that is conserved also in proteins autocorrelation
functions.

Let us consider now multiple simulations, as we have done for the previous genetic
models. We consider the autocorrelation functions of 4 simulations of gene 1 and protein
1.
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Figure 5.18: Trend of 4 RNAs autocorrelation plot (top) and proteins autocorrelation
(bottom) as function of sampling time. The model parameters and time limit are equal
to those considered in Fig. 4.6. The number of lags used to calculate the autocorrelation
is 100000 with a sampling time dt=0.1.

We can notice that for different random seeds the trajectory has an oscillating be-
havior but it has not “a common feature” like in the case of the autorepressor where
a clear intial deep is shown at the beginning and then for all SSA simulations, all the
autocorrelation functions tend to zero. Hence if we consider the usual classical plot of
autocorrelation function resulting from the quantiles calculation of 64 simulations, we
do not notice any oscillating behavior (see Fig.5.19).
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Figure 5.19: Trend of RNAs autocorrelation plot (top) and proteins autocorrelation (bot-
tom) as function of sampling time as a result of 64 simulations. The model parameters
and time limit are equal to those considered in Fig. 4.6. The number of lags used to
calculate the autocorrelation is 10000 with a sampling time dt=100. The error bars
calculated by considering the 25% or 75% quantiles of the several simulations and the
points are the median that are associated to each sampling time.

However Fig.5.19 reflects what we see in Fig.5.18 that is without the error bars. Up
to the 3000 sampling points the error bars are large then they start to decrease due to
the increasing overlapping between simulations.

The shape of such autocorrelation functions in Fig.5.19 would resemble to the first
model case, however in the that case, the error bars where indeed much smaller indicating
a smaller variation into the autocorrelation trends for each random seed and the median
values lay exactly on the horizontal line corresponding to the zero value y-axis.

Hence, from this analysis, we can conclude that the autocorrelation curves are sensi-
tive to the model parameters but also to the type of model. Given these simple genetic
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circuits that we have analysed, it is possible to understand by looking at the autocorre-
lation functions which are the genetic models from which they have been generated.

5.4.2 FFT

The signals that we have seen in Chapter 2, that we have just analysed with the au-
tocorrelation function, are sometimes signals that contain no visually evident periodic
components as in case of first model when the gene tends to be more active than inactive
(as in Fig.4.2 and in Fig.4.3) while some patterns seem to rise in the other cases, i.e.
Fig.4.4, Fig.4.5 and Fig.4.6.

However the frequency spectrum reveals that there is much more to this signal than
meets the eye. There is not only random noise for instance in the first two cases that we
have mentioned whose frequency spectrum is given by Fig.5.20 and 5.22 for RNAs and
Fig.5.21 and 5.23.

Figure 5.20: Fast Fourier Transform of the number of RNA molecules as function of time
in Fig.4.2. The x-axis is in log scale while the y-axis is linear scale.
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Figure 5.21: Fast Fourier Transform of the number of proteins molecules as function of
time in Fig.4.2. The x-axis is in log scale while the y-axis is linear scale.

Figure 5.22: Fast Fourier Transform of the number of RNAs molecules as function of
time in Fig.4.3. The x-axis is in log scale while the y-axis is linear scale.
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Figure 5.23: Fast Fourier Transform of the number of proteins molecules as function of
time in Fig.4.3. The x-axis is in log scale while the y-axis is linear scale.

At low frequencies, Fig.5.20,5.21, 5.22 and 5.23 show sharp peaks indicating a precise
periodicity.

Neverthless, this kind of frequency spectrum is common to all the other cases, namely
sharp peaks al low frequencies. What changes sometimes is the amplitude of these peaks.

For instance, the amplitudes of the peaks reached in case of the first model when the
gene tends to be more inactive than active is comparable to those of the autorepressor
case both for what regards RNAs and proteins (i.e. Fig. 5.24,5.25, 5.26 and 5.27).

Figure 5.24: Fast Fourier Transform of the number of RNAs molecules as function of
time in Fig.4.4. The x-axis is in log scale while the y-axis is linear scale.
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Figure 5.25: Fast Fourier Transform of the number of proteins molecules as function of
time in Fig.4.4. The x-axis is in log scale while the y-axis is linear scale.

Figure 5.26: Fast Fourier Transform of the number of RNAs molecules as function of
time in Fig.4.5. The x-axis is in log scale while the y-axis is linear scale.

79



Chapter5 – Pattern recognition methods for stochastics processes

Figure 5.27: Fast Fourier Transform of the number of proteins molecules as function of
time in Fig.4.5. The x-axis is in log scale while the y-axis is linear scale.

Figure 5.28: Fast Fourier Transform of the number of RNAs molecules as function of
time in Fig.4.6. The x-axis is in log scale while the y-axis is linear scale.
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Figure 5.29: Fast Fourier Transform of the number of proteins molecules as function of
time in Fig.4.6. The x-axis is in log scale while the y-axis is linear scale.
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In general the amplitude of the peaks reached by proteins is higher than those of
RNAs frequency spectrum suggesting that those low frequency are more dominant with
respect to those of noise.

Moreover, in all cases, after the first sharp peaks, we can see lower peaks that are
spread out evenly over the spectrum that is random noise.

The two components are fortunately well separated on the frequency axis, suggesting
that low-pass filtering (i.e smoothing) will able to remove the noise without distorting
the signal [62].

Note that if the x-axis units of the signal plot had been seconds, the units of the
frequency spectrum plot would be Hz; the x-axis of these plots is logarithmic while the
y-axis is in linear scale.

Hence, a sort of periodicity arises from these simulated gene expression signals. This is
not a surprise since in nature the process of gene expression often shows a precise rythm
that maybe caused to environmental factors such as diet, temperature, oxygen levels,
humidity, light cycles, and the presence of mutagens can all impact gene expression [63]
or to the same gene regulatory code, inscribed in the DNA of each gene, specifies how the
production of each gene product will be controlled in space, time and magnitude [64].The
gene expression rythm ultimately affects the animal’s phenotype. One interesting and
much studied synchronization is that between the myocardial contractile response and
gene expression of the contractile protein. They show changes with a similar period [65].
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5.4.3 CWT

Thanks to the autocorrelation analysis and the fast fourier transform we have achieved
important information about our gentic models signals. In both cases we have inves-
tigated on the periodicity of the signal and in particular the frequencies present in it
through the FFT.

As explained in the theoretical sections about these methods, now we would like to
try to get an higher level of information thanks to the Continous Wavelet Transforms.
CWT can give information about periodicity and about the frequencies present in the
signal as function of time in which the signal is present.

Most of the time, the structure of data is hidden behind the noise so we need this
precise mathematical operation with which we can look through the noise and quantify
the structure present in the signal. Wavelets are something like could do this blurring
of vision and zoom in and out of the signal to pull out the patterns like a kind of
mathematical microscope.

As in the ACF and FFT analysis, let us look at the CWT of our genetic models
signals starting from the first simple protein synthesis model shown in Fig. 5.30 and
5.31 for the case of constituive expression and Fig. 5.32 and 5.33 in case the gene tends
to be more active than inactive.

Figure 5.30: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the RNAs molecules signal in figure 4.2. Frequencies
are reported on the vertical axis while the horizontal axis represents the time.
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Figure 5.31: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the proteins molecules signal in figure 4.2. Frequen-
cies are reported on the vertical axis while the horizontal axis represents the time.

Figure 5.32: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the RNAs molecules signal in figure 4.3. Frequencies
are reported on the vertical axis while the horizontal axis represents the time.
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Figure 5.33: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the proteins molecules signal in figure 4.3. Frequen-
cies are reported on the vertical axis while the horizontal axis represents the time.

First, note that the time does not start from zero because of the removed warmup-
period.

Then, what we can immediately notice from the CWT is that in the cases in which
the gene tends to be active, the CWT shows a more uniform horizontal colored red bar
at low frequencies suggesting the presence of a signal behind noise that has a constant
frequency. This is not the case of the gene that tends to be more inactive than active or
the autorepressor signal (see Fig. 5.34, 5.35, 5.36 and 5.37). In this case we can see red
long spots that are located at precise time points. In particular for the autorepressor
case they are more regularly located in time. Ideed, in case of autorepressor RNAs signal
(Fig.5.36) we could even estimate this regularity in time since red elongated spots are
located at approximately every 300 seconds (if we consider the unit of measure of time
in seconds). This is very interesting if one wants to study the gene expression rate and
its dependences.
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Figure 5.34: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the RNAs molecules signal in figure 4.4. Frequencies
are reported on the vertical axis while the horizontal axis represents the time.

Figure 5.35: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the proteins molecules signal in figure 4.4. Frequen-
cies are reported on the vertical axis while the horizontal axis represents the time.

Anyway, any pattern that we find is located at low frequencies, in the order of 10−1

or 10−2 and this was expected from the Fast Fourier transform analysis.
We do not have scanned also the toggle switch results by means of CWT because
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Figure 5.36: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the RNAs molecules signal in figure 4.5. Frequencies
are reported on the vertical axis while the horizontal axis represents the time.

Figure 5.37: Example of Continous Wavelet Transform, using “Generalized Morlet
Wavelet” transform, applied to the proteins molecules signal in figure 4.5. Frequen-
cies are reported on the vertical axis while the horizontal axis represents the time.

of lack of computational resources. As explained before, the wavelet transform is com-
puted by a repeated convolution of the signal with the chosen wavelet as the wavelet
is translated across the time dimension, in order to probe the time variation, and as
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the wavelet is stretched or compressed, in order to probe different frequencies. Because
two dimensions are being probed, the result is naturally a 3D surface (time-frequency-
amplitude) that can be displayed as we have done, i.e. as a time-frequency contour plot
with different colors representing the amplitudes at that time and the frequency. Of
course this calculation requires greater execution times. In this thesis work a laptop of
CPU 1.10 GHz and RAM 4,00 GB is used and this is not enough for CWT toggle switch
analysis. However, in general with modern fast processors and great memory capacity
this is unlikely to be a problem.
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Chapter 6

Artificial Neural Networks (ANN)
as data-driven modeling

The regression problem is how to model one or several dependent variables/responses,
Y, by means of a set of predictor variables, X [41].

This problem can be faced in the data-driven modeling framework that is often more
suitable to describe the real-world systems that are associated with complexities. A
data-driven model is based on the analysis of the data about a specific system. The
main concept of data-driven model is to find relationships between the system input and
output variables without explicit knowledge of the physical behavior of the system that is,
in few words, the opposite of what we did in the previous sections when modeling genetic
circuits. Unlike first principles models, data-driven models make no attempt to model
the internal features of the system. Instead, they focus on matching the input-output
behavior to observational data.

The input-output data available from a system can be used to derive different forms
of computationally efficient data-driven models for the purpose of prediction, state es-
timation, monitoring, and other process systems engineering applications. The rapid
increase in the availability of data of physical systems has stimulated the development
of many data-driven methods for modeling and prediction.

In this thesis we use Artificial Neural Networks (ANN) as a method of data-driven
modeling class. We use as input data the autocorrelation function whose shape depends
on the system parameters and the output data are, indeed, the constant rates of reactions.
Hence, it is a matter of building a multi-output regression model using a supervised deep
neural network. Then this can be exploited for the purpose of state estimation.

First we will describe the basics artificial neural networks concepts and then we will
apply them to the data just mentioned that regard the three genetic models we studied.
The results are both important for the building of a data-driven model that is applicable
to experimental data and also the building of such deep learning model reveals biological
important features of the simple genetic circuits we analysed. Even this last feature can
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be considered when dealing with data not coming from simulations.

6.1 Artificial Neural Networks: the basic principles

Artificial Neural Networks are algorithms that mathematically model the neurophysio-
logical structure of human brain.

Human brain is full of neurons and so an artificial neural network is made of many
computational units that play the role of neurons. A biological neuron receives inputs,
transforms it and relays a signal to the other at every step. In biophysical terms, this
signal is the action potential that is an electrical signal transmitted by a neural cell
across the axon.

An artificial neural network is made of a similar system. There are computational
units (or even called “nodes”) and the strengths of the interconnections are represented
by weights, in which the learned information is stored.

Figure 6.1: Sketch of biological neuron (above) and artificial neuron (below).
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Fig. 6.1 shows both the biological and artificial neuron. Hence, the model of a neuron
is composed of three basic elements:

� A set of synapses, or connecting links, characterized by weights or strength (i.e.
the efficiency of the propagation of signals from one cell to another [75]), and a
signal xi at the input of synapse i connected to a neuron k. It is multiplied by the
synaptic weight wki (k-th neuron, i-th input component).

� An adder to sum input signals weighted by synaptic strengths (linear integration).

� An activation function for limiting the amplitude of the output of a neuron.

Thus, in few words, we can model, from a mathematical point of view, a neuron as
a set of inputs which are processed with a set of weights into the computational unit of
our neuron. This is the simple Rosenblatt Perceptron model whose output is a linear
combination of the inputs xi weighted by the weights wki:

νk =
m∑
i=1

wkixi (6.1)

and then processed by an activation function:

yk = f(
m∑
i=1

wkixi) (6.2)

The widely used ANN paradigm is a multi-layered feed-forward network (MFFN)
with multi-layered perceptron, mostly comprising three sequentially arranged layers of
processing units.

The MFFN provides a mapping between an input (x) and output (y) through a
nonlinear function (the previous mentioned activation function) f as y = f(x).

The three layered MFFN has input, hidden, and output layers, and each layer com-
prises of its own nodes. All the nodes in the input layer are connected using weighted
links to the hidden layer nodes, and similar links exist between the hidden and output
layer nodes. The weights represent the state of the knowledge and are adjusted during
the learning stage to improve the network performance.

Usually, the input and hidden layers also contain a bias node with its output as unity.
The nodes in the input layer do not perform any numerical processing. All numerical

processing is done by the hidden and output layer nodes. Fig.6.2 shows the structure of
a typical multinput-multioutput neural network.

The interconnections between the layers of the network and the transfer functions of
the neuron processing functions represent the distributed relationships between input and
output data. This unique arrangement can acquire some of the neurological processing
ability of the biological brain, such as learning and drawing conclusions from experience.
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Figure 6.2: Sketch of a typical neural network structure. Image from [41]

6.2 Regressor ANN and its components

There are many categories of neural networks models. They map input patterns to their
associated output patterns by learning from examples. The learning paradigm that we
will exploit is the supervised learning.

This type of learning is acquired by training the network with a sequence of input
and output data and comparing the network predictions with the expected responses.

Network interconnection weights are adjusted according to the learning algorithm
and training is continued until the network provides desired responses. NN learning
finds a function f that matches the example data.

However, we have to consider that neural network is a “black box” in the sense
that while it can approximate any function, studying its structure will not give you any
insights on the structure of the function being approximated.

This makes the analysis very hard, at least from the point of view of choosing right
neural network architecture.

There is no “a standard and accepted method” for choosing network configuration.
Typically, as said previously, all neural networks have an input layer that do not

perform any numerical processing and whose number of neurons is determined by the
context since it is given by the number of features. For example, in this case it is the
length of the arrays of autocorrelation values that we give in input.

Then the output layer has a number of nodes equal to the output variables that the
neural network has to predict. In our case, since we aim to obtain the model paramaters
starting from the autocorrelation function, if the parameters are 4 (for instance the
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constants rate of the numeber of RNAs molecules increase and degradation and the
same analogously for proteins in the simple first model analysed in chapter 2), the the
output layer will have 4 nodes.

As regards the number of hidden layers and the relative number of nodes, as said
before, there is no standard rule. We tried with a classical one that is the number of
nodes decreases layer per layer.

Then we need to choose other main ingredients:

� one is the activation function. As the name suggests, it “activates” the output
that the weighted sum of the inputs is transformed so that the output is limited
into a determined range of values. In this case we use the ReLU function for each
hidden layer and output layer. The rectified linear activation function (or ReLU)
for short is a piecewise linear function that will output the input directly if it is
positive, otherwise, it will output zero (see Fig.6.3).

Figure 6.3: Sketch of ReLU activation function. Image from [76]

Indeed we are going to predict values that are posive numbers (i.e. the model
parameters) hence this is suitable for our context.

� One other ingredient is the optimization algorithm. The learning strategy of our
neural network is based on backpropagation algorithm that updates all the weights
(i.e. connections between neurons) in order to minimize an error function which
characterizes the comparison between the network output and the ground truth in
supervised models. The variation in time of the weights is given by:

ẇi =
dE

dw
(6.3)

where E is the error function that is also refered to as energy function in analogy
to a physical system in which forces act to minimize the energy. There are dif-
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ferent optimizers to make the network evolve, i.e. algorithms used to change the
attributes of a neural network such as weights and learning rate in order to reach
the optimal solution and minimize the loss. In this study we use the Adam as op-
timization algorithm that deals with the challenge of choosing the proper learning
rate (in a classic gradient descent method, if it is too small leads to painfully slow
convergence, if too large can hinder convergence) and of avoiding getting trapped
in the suboptimal local minima. Its strategy is to accelarate the learning rate but
it dampens oscillations towards local minimum. It combines the heuristics of two
methods called Momentum and RMSProp.

� As regards the error function instead, since we are building a regressor model, we
use the Mean Absolute Error. The mean absolute error of a model with respect to
a test set is the mean of the absolute values of the individual prediction errors on
over all instances in the test set. Each prediction error is the difference between
the true value and the predicted value for the instance [77].

mae =

∑n
n=1 abs(yi − λ(xi)

n
(6.4)

where yi is the true target value for test instance xi, λ(xi) is the predicted target
value for test instance xi, and n is the number of test instances.

6.3 ANN hyperparameters

We must manually tune the following hyperparameters:

� the batch size: computing the gradient on the whole dataset is computationally very
complex so nowadays the choice is to devide the dataset into batches, that is the
number of samples to work through before updating the internal model paramaters
(i.e. weights). If we set a batch size equal to 128, the model weigths will be updated
after each batch of 128 samples.

� number of epochs : it defines the number of times that the learning algorithm will
work through the entire training dataset. One epoch means that each sample in the
training dataset has had an opportunity to update the internal model parameters.

� dropout : since there can be problems of overfitting so that the network learns the
input data without being able to generalize or also the problem to get stuck in local
minima of the energy function that implies a not optimal learning of the network,
there are some regularization procedures to overcome these problems, one of which
is perturbing the architecture of the network (dropout). This method consists in
removing a subset of nodes during training, randomly choosing the removed units
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at each training epoch. The reason is that it was observed that while training a
network, after overfitting, the weights for some of neurons increases and cause the
network to be dependant on them. By exploiting dropout, we are not dependant
on any node anymore due to it is possible to drop it while training.

For example, if you set dropout rate to 0.1, then for each iteration within each
epoch, each node in that layer has a 10% probability of being dropped from the
neural network. This makes the network more robust and allows weights to explore
a wider parameter space.

6.4 Coefficient of determination

Finally, we decide to judge the goodness of our model in predicting the true values using
a score called coefficient of determination denoted as R2 pronounced “R squared”.

A data set has n values marked y1,...,yn each associated with a fitted (or modeled,
or predicted) value f1,...,fn. Define residuals as ei = yi − fi. If ȳ is the mean of the
observed data:

ȳ =
1

n

n∑
i=1

yi (6.5)

then the variability of the data set can be measured with two sums of squares for-
mulas: the sum of squares of residuals SSres =

∑
i(yi − fi)

2 =
∑

i e
2
i and the total sum

of squares (proportional to the variance of the data) SStot =
∑

i(yi − ȳ)2.
The most general definition of the coefficient of determination is:

R2 = 1− SSres

SStot

(6.6)

In the best case, the modeled values exactly match the observed values, which results
in SSres = 0 and R2 = 1. A baseline model, which always predicts ȳ, will have R2 = 0.
Models that have worse predictions than this baseline will have a negative R2.

We are going to use this to evaluate the true vs predicted data. The better the linear
regression fits such data, the closer is the value of R2 is to 1.
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Regressor ANN at work

We generate the k parameters values that are distributed according to a Gamma distri-
bution. This choice is due to the fact that we recognize these values as the most probable
to be for the constant rates of reactions.

The probability density function for gamma is [78]:

f(x, a) =
xa−1e−x

Γ(a)
(7.1)

for x ≥ 0, a ≥ 0. Here, Γ(a) refers to the Gamma function. a is the shape parameter.
Gamma distributions are sometimes parameterized with two variables, with a prob-

ability density function of:

f(x, α, β) =
βαxα−1e−βx

Γ(α)
(7.2)

Note that this parameterization is equivalent to the above, with scale = 1
β
.

We choose to generate gamma distribution parameters with a = 3 and scale = 0.5
using scipy.stats function.

Finally, before starting, let us keep in mind that we generate 1000 autocorrelation
data calculated with 5000 lags (relative to the SSA simulations time series results).
Each set is refered to particular molecular species. Hence we consider three cases: the
RNAS+Proteins autocorrelation case, the RNAs and proteins autocorrelations consid-
ered separately.

We decide to keep the model hyperparameters and the structure of the neural network
the same from one genetic model to an other. Even though, the most important reason
to choose this approach is to understand if neural networks can be an alternative method
to the Bayesian Approximate Computation, keeping all fixed makes easier to compare
which are the molecular species that carry more information about the model parameters.

In particular we decide to use a batch size equal to 128. This is a trade off between
a low batch size that would make the simulation much slower and high batch size that
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would require more memory storage and, finally, because it is the most suggested value
to use in websites discussions. This last reason may seem a bit “superficial” but in this
field experience from others help in the study. And we trained untill 50 epochs.

7.1 ANN applied to the first model

Let us consider the first genetic model described in section 2.2 with regulation that tends
to keep the gene more active than inactive, i.e. ka = 1 and ki = 0.5.

In order to judge the performance of our regressor ANN, we plot we true parame-
ters vs the predicted one, before evaluating the values of the R2. We start from the
autocorrelation of both RNAs and proteins given as input.

What we can notice is that test data (never seen by the neural network) are sparse
but most of these are close or lie on the diagonal (Fig.7.1).

In this case R2
test = 0.5 and R2

train = 0.9. The score for the train is much higher than
the one for the test. This maybe due to overfitting as suggested by the shape of the
learning curve in Fig.7.3.

Since the test set is 5%, one attempt to get better performance was to increase the
test set to 10%. This produces infact learning curves with a smaller gap between the
training loss curve and the test loss curve (see Fig.7.4). The the scores in this case are
R2

test = 0.4 and R2
train = 0.7.

Figure 7.1: True data vs predicted data for the test set. RNAs and proteins autocorre-
lation are considered.
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Figure 7.2: True data vs predicted data for the train set. RNAs and proteins autocorre-
lation are considered.

Figure 7.3: Learning curve of the ANN refered to RNA and proteins autocorrelations as
input.

However the very interesting thing about this plots is that the neural network is
learning. This gives hopes for its use in the model parameters estimation. Moreover,
as regards the situation in which we consider only proteins autocorrelation given as
input, the score for the test data is lower than the previous case, i.e. R2

test = 0.09
and R2

test = 0.7 suggesting that in this first genetic model, the RNAs and proteins
autocorrelations contain a greater amount of information about the model parameters
under investigation and this is as expected.
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Figure 7.4: Learning curve of the ANN refered to RNA and proteins autocorrelations as
input. The test set is 10%.

7.2 ANN applied to the autorepressor model

In the autoreprepressor model case, we start considering the values of the scores summer-
ized in table 7.1 without annoying the reader with all the predicted vs true paramaters
plots and learning curves that, anyway, are reported in Appendix.

R2
test R2

train

RNAs+Proteins 0.5 0.9
RNAs 0.2 0.6
Proteins -0.06 0.4

Table 7.1: Autorepressor R2 values for test data.

The surprise of this case is that proteins autocorrelation are less suitable for pa-
rameter estimation while RNAs carries more information. Finally as expected, the
RNA+Proteins autocorrelation given as input to the regressor neural network helps
most for parameter estimation.

7.3 ANN applied to the toggle-switch model

Even in this case we report the table 7.2 of the R2 values. Since this system is made of
two genes, each one producing their number of RNA and protein molecules, we decided
to consider the autocorrelation relative to the RNAs molecules of both genes and the
same is for proteins.

In this case, RNAs + proteins autocorrelation values given as input is not reported
because of lack of computational memory in order to do the simulation. However, as in
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R2
test R2

train

RNAs 0.1 0.2
Proteins 0.1 0.2

Table 7.2: Toggle switch R2 values for test and train data.

the first model and autorepressor case, we should expect that they carry more information
about the distribution of model parameters.

Here, the interesting aspect that arises is that R2 values of RNAs molecules are equal
to the proteins molecules hence in a system like this using RNAs autocorrelation or
proteins autocorrelation as input to the neural network would give the same amount
of information about the model parameters (at least using the neural network with the
hyperparameters chosen by us).

Anyway, leaving the biological discoveries apart, in all these genetic models, we can
notice that the network is learning, specially from the relative loss curves (all reported
in Appendix C) and R2 values. This opens the way to an alternative method for the
paramters distribution estimation.
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NF-κB, a stochastic active player in
human cancer
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Chapter 8

The NF-κB family of transcription
factors

Nuclear factor kappa-light-chain-enhancer of activated B cells (abbreviated as NF-κB)
was originally identified as a family of transcription factors that bind the enhancer of
the immunoglobulin κ light-chain gene, whose function is to ensure the expression and
secretion of functional antibodies and contribute to antigen binding by increasing the
variability of the antibodies [32]. This was discovered by Ranjan Sen and his collegues in
their experiments that identified a protein binding to a specific, conserved DNA sequence
in nuclei of activated B lymphocytes. They named it for the cell type in which they
identified it and the gene it affected: Nuclear Factor binding near the κ light chain gene
in B cells [58]. Although its function in the regulation of immunoglobulin light-chain
gene remains unclear, NF-κB plays critical roles in development, survival, and activation
of B lymphocytes [31]. So it has been considered key regulator of antibodies production.

However, NF-κB has been found in all cell types implicated in the transcriptional
events controlling multiple cellular outputs. It comprises a family of structurally-related
eukaryotic transcription factors, which bind to consensus DNA sequences at promoter
regions of responsive genes regulating a large number of normal cellular and organismal
processes such as immune and inflammatory responses, developmental processes, cellular
growth and apoptosis and, for such reason, its name contains information not completely
correct since it is neither a fundamental regulator of κ light-chain gene nor B-cell specific.

Nowadays, NF-κB is actually considered as a pleiotropic mediator of gene expression
control.

There are five proteins in the mammalian NF-κB family including NF-κB1 (also
named p50), NF-κB2 (also named p52), RelA (also named p65), RelB and c-Rel. All pro-
teins of the NF-κB family share a Rel homology domain (RHD). The RHD is composed
of two structural domains: the N-terminal DNA binding domain and the C-terminal do-
main that has an immunoglobulin-like fold that functions as a dimerisation domain [10].
Hence, RHD is required for binding to spiecific DNA binding sites in the promoters of
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target genes and serves as a dimerization interface to other NF-κB transcription factors
since these members combine to form different dimers that regulate the transcription of
target genes.

To date, the NF-κB signaling system consists of about a dozen different dimers com-
posed by a different combinations of five homologous protein.

Only p65, c-Rel and RelB have a C-terminal transactivation domain (TADs), which
is responsible for the initiation of gene expression, while p50 and p52, lacking TADs,
can positively regulate transcription (i.e. increases the expression of a gene) through
heterodimerization with TAD-containing NF-κB family members or other protein that
have a trans-activating capability.

Alternatively, p50-p52 homodimers can act as negative regulators of gene transcrip-
tion ( i.e. they bind to silencers, thus inhibiting the expression of the gene) by competi-
tion with TAD-containing dimers for DNA binding.

Thus, homodimers constitutive binding to κB sites may require a replacement by
transcriptionally competent dimers, enforcing an activation threshold for certain target
genes.

8.1 The IκBs proteins: master regulator of NF-κB

signaling

In unstimulated cells, NF-κB proteins are sequestered in the cytoplasm through binding
to molecules that are the IκBs family. There are height known IκBs members: IκBα,
IκBβ, IκBϵ, IκBζ (NFKBZ), BCL-3 (B-cell lymphoma 3) and the precursors p100 (NF-
κB2) and p105(NF-κB1).

All IκBs members share an ankyrin domain which is crucial for specific interaction
with the Rel-homology domain. Ankyrin repeat, one of the most widely existing protein
motifs in nature, they are found in all three kingdoms of life and consist of 30-34 amino
acid residues and exclusively functions to mediate protein-protein interactions in order
to activate or suppress biological processes [33]. Some of these interactions are directly
involved in the development of human cancer and other diseases [34].

Below we sum up the most important characteristics of each one of these members:

� the most known member of the family is IκBα. p50/p65, that is one of the major
dimers involved in the canonical pathway (NF-κB pathways will be described in
the next section 8.2), is mainly bound to IκBα.

Upon signal stimulation, IκBα is phosphorylated in the N-terminal domain and
degraded thus allowing dimers to translocate into the nucleus to activate gene
transcription.

The activation of NF-κB causes the transcriptional upregulation of IκBα which in

104



Chapter8 – The NF-κB family of transcription factors

turn represents an autoregulatory negative feedback loop, responsible for the shut
off the signal.

Thus, IκBα is the primary product of a rapid and transient induction of NF-κB
activity. However, in presence of a persistent stimulus, NF-κB is maintained in
the nucleus despite the upregulation of IκBα mRNA synthesis, and this persistent
activation is regulated by IκBβ.

� Like IκBα, also IκBβ is phosphorylated but it undergoes a slower degradation
followed by a re-synthesis and accumulation in the nucleus as hypophosphorylated
form, which can bind the NF-κB dimers.

DNA-bound NF-κB:IκBβ complexes are resistant to newly synthesized IκBα sug-
gesting that hypophosphorylated, nuclear IκBβ may prolong the expression of cer-
tain genes.

� The most recent member to be described is IκBϵ that is degraded after phosphory-
lation similarly to IκBα, but its degradation and resynthesis are delayed compared
to those of IκBα.

These differences in the kinetics of degradation have relevant effects on the nature
of the transcriptional response to stimuli.

IκBϵ is primarly expressed in hematopoietic cells (i.e. immature cells that can
develop into all types of blood cells, including white blood cells, red blood cells,
and platelets and are found in the peripheral blood and the bone marrow [35]) and
its loss results in selective defects in hematopoietic lineages, although it appears
that IκBϵ loss is largely compensated by IκBα.

Moreover, IκBϵ is differentially expressed during B-cell development and has been
proposed to regulate both p65- and c-Rel-containing NF-κB complexes in B cells.

� On the contrary, IκBζ and BCL-3 (B-cell lymphoma 3) are different regulators
of NF-κB signaling.

BCL-3 is the unique member of IκB family that contains a TAD; it is found in the
nucleus associated with p50- and p52-containing homo- and heterodimers.

BCL-3 may mediate the release of transcriptional repression by removing p50 ho-
modimers from κB sites, thus mediating activation by acting on repressive NF-κB
dimers and allowing p65:p50 or other TAD-containing dimers access to DNA.

Alternatively, BCL-3 may also stabilize repressive p50 homodimers and thus inhibit
NF-κB activation or, in the case of p52 homodimers, it can confer transcriptional
potential in an inducible manner.
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IκBζ is an other unusual member of IκB family which is more similar to BCL-3 than
the rest of the family. It is not expressed constitutively but rather is upregulated in
response to particular stimuli.

Following NF-κB activation, IκBζ is expressed and then it associates primarily
with p50 homodimers.

Furthermore, IκBζ is found associated with p50 on the promoter of IL-6, which is
not expressed in IκBζ knockout cells, and it is, therefore, hypotized that IκBζ acts
as a coactivator for p50 homodimers.

IκBζ is also been reported to negatively regulate p65-containing NF-κB- com-
plexes, as demonstrated by the slight elevation of NF-κB activity observed in IκBζ
knockouts.

� Finally the less known family member is IκBγ, a 70 kDa molecule detected only
in lymphoid cells.

Its sequence is identical to the IκB like C-terminal region of p105; indeed IκBγ is
the product of an alternative promoter usage that produces an mRNA encoding
the C-terminal portion of p105.

Although, initially, it was thought that IκBγ functioned as a trans-inhibitor of
Rel-proteins, similar to the other IκB proteins, subsequent studies have suggested
that IκBγ probably inhibits only p50 or p52 homodimers.

8.2 NF-κB signaling pathways

The release of NF-κB dimers from its inhibitors is mediated by IKK complex. Upon
stimulus, IKK is transformed from its neutral form (IKKn) into its active form (IKKa),
a form capable of phosphorylating IκBα, leading to IκBα degradation.

The two mains components are IKKα and IKKβ, serine/threonine kinases which
are characterised by the presence of an N-terminal kinase domain, a C-terminal helix-
loop-helix (HLH) domain and a leucine zipper domain.

The IKK complex phosphorylates IkBα on N-terminal serines, and this triggers its
degradative polyubiquitination through the proteasome (a simple sketch of this process
is shown in figure 8.1).

Although both IKKα and IKKβ are capable of phosphorylating IκBα and IκBβ,
they are less efficient kinase for IκBβ than for IκBα, and this difference may explain the
delayed degradation kinetics of IκBβ following stimulation with Tumour Necrosis Factor
(TNF)α. This difference in degradation rate is in fact one of the characteristics of this
IκB member that was already mentioned in the previous section 8.1.

IKKα and IKKβ dimerization are dependent on the leucine zipper domain, which is
therefore required for kinase activity.
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Figure 8.1: The binding of pro-inflammatory cytokines to its receptors triggers the ac-
tivation of IKK which will phosphorylate IkBα releasing the sequestered NF-κB Tran-
scription Factor. The IkBα will then undergo proteasome degradation to synthesize new
proteins. Image from [14].

Together with these two catalytic subunits, there is the regulatory subunit NF-kB
essential modifier (NEMO-also known as IKKγ) which is not related to IKKα and
IKKβ and is characterized by a C-terminal zinc-finger like domain, a leucine zipper,
N-terminal and C-terminal coiled-coil domains.

Both IKKα and IKKβ interact with NEMO through a C-terminal hexapeptide se-
quence termed the NEMO binding domain (NBD).

Although in vitro assembly of the complex indicates that only IKKβ assembles with
NEMO, data from IKKα knockout mice indicate instead that also IKKα/NEMO com-
plexes are readily formed.

From here, the NF-κB signaling pathways have been classified into two distinct and
evolutionary conserved types, according to the two multiprotein IKK complexes which
regulate the stimulus-responsive phosphorylation and consequent degradation of IκB
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proteins: the classical or so-called “canonical” NF-κB signaling pathway where IKKβ is
sufficient for IκBα and IκBβ phosphorylation and degradation, while IKKα may regulate
gene expression in the nucleus by modifying the phosphorylation status of the histones.

On the contrary, in the alternative or “non-canonical” pathway IKK complex consists
exclusively of an IKKα homodimer, which leads to the phosphorylation of p100 and its
consequent processing to p52.

Even though both classic and alternative pathways are principally activated during
the functioning of the immune system, the first is mainly involved in inflammation re-
sponse as in the regulation of proliferation and apoptosis of lymphoid cells throughout
the immune reaction; the latter regulates the lymphoid organogenesis and so its engange-
ment occurs mainly after non-inflammatory stimuli.

Figure 8.2: Activation of canonical pathway during inflammation related to obesity.
NF-κB will induce transcription expression of pro-inflammatory cytokines when bound
to DNA. Pro-inflammatory cytokines will recruit immune cells to the site. Presence
of immune cells further produces pro-inflammatory cytokines which could bind to the
cytokine receptors that are responsible for activating NF-κB. Image from [14].
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In the canonical pathway, after pathogen-derived lipopolysaccharide (LPS) mediates
inflammatory stimulus and cytokines such as TNF and interleukin (IL)-1, , the IκB
proteins IκBα, IκBβ and IκBϵ are phosphorylated by the “canonical” IKK complex on
two specific N-terminal serines.

The subsequent ubiquitination mediated by the ubiquitin ligase β-TRCP makes IκB
available for proteasomal degradation, so the NF-κB dimers are capable to translocate in
the nucleus and activate gene transcription. This triggers transcription of the inhibitors
and numerous other genes. Among the synthesized inhibitors, there are IκBα and A20.
The newly synthesized IκBα again inhibits NF-κB, while A20 inhibits IKK by catalysing
its transformation into another inactive form (IKKi), in which it is no longer capable of
phosphorylating IκBα.

Usually, NF-κB activity can be detected within ten minutes after stimulation and
some NF-κB responsive promoters are induced almost immediately. As already men-
tioned, the activation of NF-κB causes the transcriptional upregulation of IκBα which
causes a powerful negative feedback mechanism that is responsible for the NF-κB re-
pression, whose activity can be restored after an other stimulus and may result in an
oscillatory pattern of NF-κB activity during chronic stimulation.

Conversely, multiple non-inflammatory stimuli are responsible for the engagement of
the “non-canonical” pathway in a variety of cell types.

In B cells, the survival factor B-cell-activating factor belonging to the TNF family
(BAFF) and, in splenic stromal cells, lymphotoxin β signaling are able to activate NF-kB
for many hours or days.

Although the activation mechanism remains partly unclear, it is thought that the
precursor protein p100, which dimerizes with RelB, is partially processed to p52 upon
IKKα activation by NF-κB inducing kinase (NIK).

However, p100 processing was shown to be a co-translational mechanism, related to
continuing p100 synthesis. Thus, p52 DNA-binding activity seems delayed in comparison
with p50/p65 complexes.

It is interesting to note that the non-canonical activation of NF-κB is slower than
canonical one, and it lacks a negative feedback control because the RelB-containing
dimers are not subject to the high dynamic regulation of the IκB proteins.
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Figure 8.3: Sketch of canonical vs non-canonical NF-κB signaling pathway (Patel et
al.,2018)

8.3 Models of NF-κB activity oscillations

Many mathematical models of such key regulator NF-κB activity oscillation have already
been studied during years, highilighting the fact that it is strongly regulated by the
inhibitor protein IκBα. Here we list some studies results:

� For the first time, a mathematical model was presented by Hoffman et al. Their
research showed that the resulting negative feedback produces a propensity for
oscillation in NF-κB activity.

They analysed the IκB-NF-κB signaling module using knockout cell lines for the
three IκB isoforms (IκBα,IκBβ and IκBϵ) in order to evaluate the contribution of
each one on the temporal control of NF-κB oscillation.
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It was shown that the coordinated degradation, synthesis and localization of all
three IκB isoforms is required to generate the characteristic NF-κB activation
profile.

The model displayed that IκBα is responsible for strong negative feedback and a
rapid switch-off of the NF-κB response, while IκBβ and −ϵ explained their ac-
tion dampening the system’s oscillatory potential and making stable the NF-κB
responses during longer stimulations.

Figure 8.4: Schematic of oscillatory time course of NF-κB in response to persistent TNFα
in IκBβ and IκBϵ knockout cells. Image from [40].

Moreover, the researchers identified a bimodal temporal IκB-NF-κB signaling be-
haviour depending on stimulus duration that is shown to generate also specificity
in gene expression.
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Figure 8.5: Characteristic biphasic time course of NF-κB signaling in response to TNFα
in various wild-type cells. NF-κB activity peaks around 30 min, drops to basal levels
around 1 h, and rises to an intermediate level thereafter [40].

� Based on this model, Kearns et al. explained better IκBϵ role, whose NF-κB-
induced transcription is delayed relative to that of IκBα.

IκBϵ delayed synthesis provided an antiphase negative feedback that effectively
dampened IκBα mediated oscillations.

Furthermore, they demonstrated that both these negative feedback regulators are
necessary for the termination of NF-κB activity and NF-κB mediated gene expres-
sion in response to transient stimuli.

� According to Mothes et al. and Wang et al., the oscillation was explained in detail
through a bifurcation analysis; the models had two steady states, stable focus and
unstable focus, with a stable limit cycle, depending on such bifurcation parameters
which represented the intensity of the TNFα stimulation, total NF-κB and IκBα
transcription rate.

� Inoue et al. mathematically analysed the NF-κB oscillation by using the core model
based on three components, IKKβ, IκBα and NF-κB. According to their stability
analysis, the NF-κB activity showed two characteristic behaviours, oscillation and
switch-like activation, regulated by positive and negative feedback, respectively.

Switch-like activation was fundamental to compensate for the upstream IKK tran-
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sient activity and to induce accumulation of nuclear NF-κB, which in turn was
responsible for subsequent oscillation in target gene expression.

Thus, the NF-κB oscillation was merely a damped oscillation.

However, the NF-κB activity is neither a damped nor sustained oscillator phenomenon
but is a stable transient event, in which different players are involved, such as RelA.

The transcription of the NF-κB target genes depends on the phosphorylation of
both IκBα and RelA subunit of NF-κB, but no mathematical model considering RelA
phosphorylation have been previously proposed.

So Hatanaka et.al constructed a model in which the focus was the influence of phos-
phorylation of IκBα and RelA on the nuclear-cytoplasmic oscillation.

They confirmed that NF-κB signaling module transiently responded to the concen-
tration of active IKKβ in a dependent manner. However, when the IKKβ concentration
was fixed, the amplitude of the oscillation became larger as the value of total NF-κB
increased, suggesting that the oscillation period was regulated also by RelA phosphory-
lation.

Therefore, controlling the phosphorylation process, it may be possible to govern the
NF-κB oscillation driving the NF-κB dependent expression gene.

8.4 NF-κB and colorectal cancer

As said at the beginning, NF-κB proteins are involved in the control of a large number
of normal cellular and organismal processes. However, on the other hand, these tran-
scription factors are persistently active in a number of disease states, including cancer,
arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease
[9]. NF-κB activation supports tumorigenesis by enhancing cell proliferation and angio-
genesis, inhibiting apoptosis, and promoting cell invasion and metastasis.

No triggering mutations of NF-κB in CRC have been described; however, constitu-
tive activation of NF-κB has been reported and is associated with higher tumor stages,
treatment resistance and poor survival outcomes.

The role of NF-κB in adenoma formation and development of colitis-associated cancer
has been studied for the first time in a mouse model, where deletion of IKKβ in intestinal
epithelial cell (IEC) and myeloid cells had distinct outcomes; deletion of IKKβ in IECs
showed reduced adenoma incidence, which had a direct effect in tumor progression, as
demonstrated by reduction in antiapoptotic B-cell lymphoma 2 (Bcl-2) protein, Bcl-xL .
On the contrary, deletion of IKKβ in myeloid cells was associated with a less reduction in
adenoma but showed reduced expression of genes encoding proinflammatory cytokines.
So, the IKKβ-mediated NF-βB activity has a cell-type specific role in the early-stage of
carcinoma formation demostrating that the NF-κB functions are cell-type and tumor-
type specific.
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However, no known studies have mapped NF-κB expression in different human tissue
concerning adenoma-carcinoma transformation. Furthers evidence demonstrate crosstalk
between NF-κB pathways and various other signaling networks implicated in CRC pro-
gression.

For example, growth factors can trigger the activation of the IKK complex through
signaling pathways described in figure 8.6.

Figure 8.6: Molecular mechanisms by which EGFR activates NF-kB. Image from [15].

Growth factor is a substance made by the body that functions to regulate cell divi-
sion and cell survival [19]. Epidermal growth factor (EGF) is a protein that stimulates
epidermal and epithelial cell growth and differentiation by binding to its receptor called
Epidermal Growth Factor Receptor (EGFR) [20]. The epidermal growth factor receptor
is a transmembrane protein that is involved in cell signaling pathways that control cell
division and survival [18]. Although it is now well established that EGF activates NF-κB
through the IKK complex, signaling molecules that link EGFR activation to the IKK
complex have only been recently characterized.

In particular, constitutive epidermal growth factor receptor and nuclear factor κb
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activities are seen in multiple solid tumors and combine to provide oncogenic signals to
cancer cells. Recent studies have also defined mechanisms by which resistance occurs
through crosstalk between EGFR- and NF-κB-dependent pathways in colon cancer cells.
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NF-κB model formulation

Let us consider the very common heterodimer p50-p65 in the canonical pathway. This
NF-κB dimer as well as the IKK complex will be considered as single proteins and so the
dynamics leading to the formation of these complexes will be disregarded. Hence we do
not consider second order reactions. The regulatory system considered has two activators
IKK and NF-κB and two inhibitors A20 and IκBα. Indeed, the nuclear activity of NF-κB
is terminated by the newly synthesized IκBα, which enters the nucleus, binds to NF-κB
and takes it out into cytoplasm; A20 instead acts as IκBα activator and so an NF-κB
inhibitor.

In the presence of an extracellular signal such as TNF or IL-1, IKK is transformed
into its active (phosphorylated) form.

In this form it is capable of phophorylating IκBα which in turn leads to its degrada-
tion. As a result, degradation of IκBα releases the second activator, NF-κB.

The free NF-κB enters the nucleus and upregulates transcription of the two inhibitors
IκBα and A20 and of a large number of other genes, in particular the target gene whose
gene expression has to be regulated by NF-κB.

The newly synthesized IκBα again inhibits NF-κB, while A20 inhibits IKK by catalysing
its transformation into another inactive form, in which it is no longer capable of phos-
phorylating IκBα. We ignore this and we consider that the protein A20 inhibits IKK
making it neutral and so we do not consider the step of its transformation into IKKi
(that is a catalytic reaction because A20 catalyses its transformation into its inactive
form) and the kinetics of its resynthesis to its neutral form IKKn.

And this is the logic of our first model: we consider that the four players IKK, NF-κB,
IκBα and A20 can be either active or inactive. In other words, they can be either ON
or OFF.

Whereas, the RNA produced starting from the target gene of the NF-κB transcription
factor can be modeled using ordinary differential equation in deterministic framework.
Using the notation of the Chapter 2, given m the number of RNA molecules produced
by the target gene and k4 the rate of RNA production, k5 the rate of degradation, we
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can write an analogous equation to Eq.2.5:

dm

dt
= k4 · g(·)− k5m (9.1)

where the promoter activity function g(·) is determined by the NF-κB state.
Then a simple sketch of the model is shown in Fig.9.1:

Figure 9.1: Sketch of our first model NF-κB feedback loop regulatory module with
relative parameters.

There are two repressing actions caused by the inhibitors and from the schemes we
can see this very well: one caused by IκBα directly on NF-κB and one mediated by A20
on IKK in its active form.

In this simple model there are already 10 rates constant:

� ki, the constant of activation rate of IKK.

� ka, the constant of inactivation rate of IKK.

� k1, the constant of activation rate of NF-κB.

� k1i, the constant of inactivation rate of NF-κB (this process is shown in Fig.9.1 as
the NF-κB attached to its inhibitor IκBα).
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� k2, the constant of activation rate of Ikα.

� k2i, the constant of degradation rate of Ikα.

� k3, the constant of activation rate of A20.

� k3i, the constant of degradation rate of A20.

� k4, the constant of RNA production of target gene that, in experimental terms,
is the firefly luciferase as reporter gene in the experiment made in University of
Bologna where Cignal Lenti Reporter System (QUIAGEN) was used.

� k4, the constant rate of RNA degradation.

Hence the rates of activation and inactivation of the four ON/OFF mentioned players
are the following. Starting from the ones that are “repressed”, i.e. IKK and NF-κB:

� IKKactivation = ka(IKKn)( 1
1+A20active

)

� IKKdeactivation = ki(IKKa)(A20active)

� NFkBactivation = k1(NFkB : IkBα)(IKKa)( 1
1+IkBα

)

� NFkBdeactivation = k1i(NFkB)(IkBα)

Whereas for the inhibitors:

� IkBαactivation = k2(NFkB)(IkBαinactive)

� IkBαdeactivation = k2i(IKKa)(A20active)

� A20activation = k3(A20inactive)(NFkB)

� A20deactivation = k3i(A20active)(NFkB)

Where IKKn, IKKa, A20active, A20inactive, NFkB, IκBα can be either 0 or 1. NFkB :
IkBα is the NF-κB bound to its inhibitor and also this can be either 0 or 1 denoting
the fact that in this model NF-κB can be in its active or inactive form.

These are the rates to consider when simulating this model using Gillespie’s algorithm.
This model is very simple is just a “first order kinetic reactions model” of the NF-α

feedback loops. However notice that the approximation of the ON/OFF behavior for
what regards the NF-κB is not so “abstractive” if we think at the dynamics of a ligand
binding to a macromolecule such as protein that is described by the Hill function [74].
Protein-ligand binding typically changes the structure of the target protein, thereby
changing its function in a cell. In this case the binding of IκBα to the NF-κB “changes
the NF-κB from an ON state to a OFF state”.
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Results and discussion
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Results and discussion about the
NF-kB model simulation

The expectation from the simple NF-κB model described in the last section 9 in the
model formulation is to obtain an oscillating RNA molecules temporal series as in the
model predicted by Hoffman et al. where they experimentally measured the NF-κB
activity in the IκBα and IκBϵ knock-out cells, whose trend was reported in section 8.3
in Fig.8.4. As said, the model displayed that IκBα is responsible for strong negative
feedback and a rapid switch-off of the NF-κB response.

Fig.10.1 shows the trend of the SSA simulation of the number of RNA molecules
produced from the target gene considering the simple NF-κB model (whose scheme was
reported in Fig.9.1). The parameters used are chosen with the logic to keep the NF-κB
more active than inactive and are: ka = 1, ki = 0.1, k1 = 1, k1i = 0.1, k4 = 1, k5 = 0.1,
k2 = 0.1, k2i = 1, k3 = 0.1, k3i = 1. Moreover we start from a configuration where
everything is inactive: IKKa = 0, IKKn = 1, NF-κB is inactive so NF − κB = 0,
IκBα is inactive so IκBα = 0 and finally A20 = 0.
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Figure 10.1: Number of RNA molecules produced through the NF-κB activation and
inhibition simulated by using the Stochastic Simulation Algorithm and considering model
in Fig.9.1

At first sight, we find an oscillatory profile whose “degree” of oscillation can be verified
calculating the autocorrelation as we did for our first genetic models.

It has an oscillatory behavior as well as the 4 autocorrelation curves reported in
Fig.10.3 for 4 SSA simulations of the same model.
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Figure 10.2: Autocorrelation curve regarding the temporal series in Fig.10.1. Number of
lags equal to 100000 and sampling period dt=0.01. The y-axis reports the autocorrelation
values and on the x-axis is the sampling period.

What we can notice is that they remind us to the toggle switch behavior where each
simulation has a particular oscillatory behavior. It is not like the autorepressor case where
there is a common initial deep characterizing all simulations (refering to the same model
with same parameters but using a different random seed). Hence the autocorrelation
calculated using quantiles (Fig.10.4) shows large error bars from the second point (the
first one has zero error since the autocorrelation is 1 for all the simulations) and then
from a sampling point equal to around 600 it decreases as confirmed from Fig.10.3 where
we see a common behavior.
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Figure 10.3: Autocorrelation curves regarding 4 SSA simulations of the same model 9.1
with the same parameters. Number of lags equal to 10000 and sampling period dt=10.
The y-axis reports the autocorrelation values and on the x-axis is the sampling period.

We can start to “put our model under test” by switching off one of the most studied
inhibitor, namely IκBα. Hence we consider the model constant rates previously describe
but with k2 = 0, k2i = 0 when simulating the IκBα knock-out. We report the plot of
only the autocorrelation calculated with quantiles using 64 simulations in Fig.10.5.

We can notice that the medians points lie much more on the zero horizontal line and
this is a sign of a lower oscillating signal and thus a more constituive expression behavior.
In Appendix D the time trend of a SSA simulation made using this parameter is shown
together with the case in which we put also k3 = 0, k3i = 0 (see respectively Fig.D.1
and Fig.D.2). A brief comment about them: one can notice an oscillating behavior at
the beginning and then there is a dampening. This is what we see by eye looking at the
time series but the autocorrelation computed with quantiles for the case in which only
k2 and k2i are equal to zero shows a general less oscillating behavior, as just said.
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Figure 10.4: Autocorrelation curve plotted calculating quantiles of 64 simulations at
each time step. Number of lags equal to 10000 and sampling period dt=10. The y-axis
reports the autocorrelation values and on the x-axis is the sampling period.

Now coming back to the original model with all constant rates paramters different
from zero, as in the case of the “standard” genetic models analysed, from the Fourier
Transform analysis (Fig.10.6) we can notice relevant peaks at low frequencies and the
noise is evenly sparse towards higher frequencies suggesting the presence of a periodicity
also in this case.
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Figure 10.5: Autocorrelation curve plotted calculating quantiles of 64 simulations at
each time step. Number of lags equal to 10000 and sampling period dt=10. The y-axis
reports the autocorrelation values and on the x-axis is the sampling period. In this case
k2 = 0, k2i = 0.

Figure 10.6: Fast Fourier Transform of the temporal signal in Fig.10.1. y-axis is in linear
scale while the the x-axis is in log scale.

For concluding the pattern recognition analysis of our simple NF-kB model activity,
the continous wavelet transform is shown in Fig.10.7.

The first impression is that it is similar to the CWT of the constituive expression
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Figure 10.7: Continous Wavelet Transform of the temporal signal in Fig.10.1 using Gen-
eralized Morlet Wavelt. Frequencies are reported on the vertical axis while the horizontal
axis represents the time.

model (Fig.5.32 and Fig.5.30).
However if we observe it, we can notice two dark red spots at about 600 and 1000

arbitrary units of time and other regular patterns for example some “lighter openings”
between them. All located at low frequencies as exprected from the FFT analysis.

It would be interesting to apply the CWT to a longer time of simulation but as
explained in the section 5.4.3 of CWT application, it goes beyond the computational
resources available.
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Conclusions

All this thesis work is triggered by the desire to give a mathematical modeling of the
NF-κB activity, that has a fundamental role in the regulation of many genes but also its
disfunction leads to a long list of illnesses such as the colonrectal cancer.

In this voyage towards the a first mathematical model, we developed a “hybrid”
algorithm (SSA combined with tauleaping) that is much faster than the SSA when the
number of molecules produced tends to be higher, but on the other side it looses its speed
performance when we have for example a simple system made by a gene that tends to be
more inactive than active and so producing a low number of RNA molecules. If we think
about it, it is the same behavior of a simple tauleaping algorithm except the important
difference that the hybrid one controls that the number of molecules do not become
negative, which is unphysical. Moreover this is an “adaptive” algorithm namely SSA or
tauleaping are applied on the basis of what the dynamics of the system under study are
(that for instance maybe the case of the NF-κB). However, we did not feel to use it in
this work of thesis because it needs to be tested on many other models together with
other unit testings. Finally about this, one other improvement that should be done is
the automatation of the choice about the threashold of differences between the old rates
and the updated rates. By experience, fixing a ∆Kt = 10 we achieve the performance
just explained but we admit that in any case the choice of a parameter is not confortable.

Playing with the gene regulation of the first protein synthesis model has helped us in
the building of the algorithm. Hence we exploited biology to build the hybrid algorithm.

Then we passed to the inverse procedure: by means of algorithms built for the study
of stochastic processes we exploited the behavior of four simple standard genetic circuits
models: the constituive expression, the regulated gene, the autorepressor and the toggle
switch.

In particular, we exploited the autocorrelation, the fast fourier transform analysis
and the continous wavelet transform.

What we are able to conclude about these simple models using these means of inves-
tigation is that all models analysed have inner periodicity (confirmed by the fast fourier
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transforms results) but the autorepressor model is the “most periodic” one. First its
autocorrelation curve is the only one that with computing quantiles of 64 simulations
preserves the characteristic initial negative deep; then from the CWT analysis, we found
patterns located at regular time intervals.

The periodicity in time of the signal in this context is very important. It could
be responsible of phenotypic processes such as the example of synchronization between
the myocardial contractile response and gene expression of contractile protein. Or even
one can find the cause of this periodicity and discover important relationships that if
broken could lead to cellular disfunctions. And one can act in order to repristinate this
periodicity. Indeed, for each model we have searched also “their place in biology” and we
found that one gene that uses this type of regulation is the Regulatoy factor X1. Many
studies show that RFX1’s gene expression regulation is based on its autorepression in
response to DNA replication arrest. Also its oncogenic potential is analysed in some
cancers.

However, the subject of this thesis if the NF-κB and also this is an other transcrip-
tional factor and these reasonings can be done also in this context.

We ended this journey leaving a simple model of the NF-κB activity based on the only
actions of two inhibitors, the IκBα and the A20. The results of this very simple model
based only on first order reaction rate and ON/OFF behavior show a temporal series
that has an oscillating behavior very similar to the one found by Hoffman et al. in their
experiments. The autocorrelation function is indeed oscillating whereas the fast fourier
tranform shows periodicity at low frequencies such as the first simple models analysed.
From the continous wavelet transform some patterns arise but with the computational
resources at hand it is difficult to draw conclusions.

The model lacks of many features such as catalytical reactions and so second order
reactions. However, just in the introduction of this thesis we mentioned the famous
phrase “all models are wrong but some are usefull”. Our model is wrong but it is usefull
as a starting point and also to predict what happens if one of the few players involved
lacks. For instance the important role played by the inhibitor IκBα whose lacking leads
to a constituive expression of NF-κB, that is what happens in colon cancer cells.

And, also in this case as mentioned in the introduction, once the model agrees with
the experimental data all that remains is finding the model parametrs, an hope for finding
the cure for illness.

The neural networks analysis has shown to work, given the autocorrelation functions
as input, in the three simple genetic models considered at the begging and not only this.
It reveals also the amount of information stored in each chemical species. For instance in
the autorepressor case, our neural network works better when the autocorrelations given
as input are those of RNA molecules and less for proteins.
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Appendix A

Software used in this thesis

All simulation methods and statistical data analysis have been performed using Python
3.9 and the programs are available in the following GitHub page https://github.com/
ManuelaCarriero/PyExTra where you can find a detailed explanation of all the Python
codes and how to reproduce the results reported in this work.
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Appendix B

Glossary of biology

� Oncogenes are genes that have the potential to cause cancer. In tumor cells, these
genes are often mutated, or expressed at high levels [59].

� Lymphoid cells are a family of immune effector cells that have important roles
in host defense, metabolic homeostasis and tissue repair but can also contribute to
inflammatory diseases such as asthma and colitis [37].

� Lymphocyte is a type of cell produced by lymphoid tissue that passes into the
blood. It is one of the three elements of the white blood series and mediates the
immune response by recognizing foreign molecules (antigens) with its membrane
receptors; two main groups of lymphocytes are distinguished: the l. B which
are responsible for the production of antibodies and the l. T which govern the
destruction of cells infected by viruses and bacteria, foreign cells and tumor cells.

� B lymphocyte is type of white blood cell that makes antibodies. Also known as
B cells, they are part of the immune system and develop from stem cells in the
bone marrow [39].

� A knockout, as related to genomics, refers to the use of genetic engineering to
inactivate or remove one or more specific genes from an organism. Scientists create
knockout organisms to study the impact of removing a gene from an organism,
which often allows them to then learn something about that gene’s function [36].

� Interleukins (IL) are a type of cytokine (i.e. are a broad and loose category of
small proteins∼ 5−20kDa important in cell signaling) first thought to be expressed
by leukocytes alone but have later been found to be produced by many other body
cells. They play essential roles in the activation and differentiation of immune
cells, as well as proliferation, maturation, migration, and adhesion. They also
have pro-inflammatory and anti-inflammatory properties. The primary function
of interleukins is, therefore, to modulate growth, differentiation, and activation
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during inflammatory and immune responses. Interleukins consist of a large group
of proteins that can elicit many reactions in cells and tissues by binding to high-
affinity receptors in cell surfaces. Interleukin 6 (IL-6) is an interleukin that acts as
both a pro-inflammatory cytokine and an anti-inflammatory myokine (i.e. one of
several hundred cytokines or other small proteins ∼ 5− 20kDa that are produced
and released by muscle fibers in response to muscular contractions). In humans, it
is encoded by the IL6 gene.

� Trans-inhibitor is the catalytic inactivation of a homodimer, each of which sub-
units is catalytically active [38].

� Tumor Necrosis Factor is a protein made by white blood cells in response to
an antigen (substance that causes the immune system to make a specific immune
response) or infection. Tumor necrosis factor can also be made in the laboratory.
It may boost a person’s immune response, and also may cause necrosis (cell death)
of some types of tumor cells. It is a type of cytokine. Also called TNF [70].

� Phosphorylation is a process in which a phosphate group is added to a molecule,
such as a sugar or a protein [71]. Because phosphate groups are highly negatively
charged, phosphorylation of a protein alters its charge, which can then alter the
conformation of the protein and ultimately its functional activity [72].
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Artificial Neural Networks plots

Figure C.1: First model true data vs predicted data for the test set. Only proteins
autocorrelation are considered as input.
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Figure C.2: First model true data vs predicted data for the train set. Only proteins
autocorrelation are considered as input.

Figure C.3: First model learning curve of the ANN refered to only proteins autocorrela-
tions as input.
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Figure C.4: True data vs predicted data for the test set in case of autorepressor model.
RNA+PROTEINS autocorrelations are considered as input.

Figure C.5: True data vs predicted data for the train set in case of autorepressor model.
RNA+PROTEINS autocorrelations are considered as input.
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Figure C.6: Learning curve of the ANN refered to only proteins autocorrelations as input
for the autorepressor model.

Figure C.7: True data vs predicted data for the test set in case of autorepressor model.
RNA+PROTEINS autocorrelations are considered as input. Dropout is added in the
Neural Network model.
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Figure C.8: True data vs predicted data for the train set in case of autorepressor model.
RNA+PROTEINS autocorrelations are considered as input. Dropout is added in the
Neural Network model.

Figure C.9: Learning curve of the ANN refered to only RNAS+PROTEINS autocorre-
lations as input for the autorepressor model. Dropout is added in the Neural Network
model.
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AppendixC – Artificial Neural Networks plots

Figure C.10: True data vs predicted data for the test set in case of autorepressor model.
RNA autocorrelations are considered as input. Dropout is added in the Neural Network
model.

Figure C.11: True data vs predicted data for the train set in case of autorepressor model.
RNA autocorrelations are considered as input. Dropout is added in the Neural Network
model.
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AppendixC – Artificial Neural Networks plots

Figure C.12: Learning curve of the ANN refered to only RNA autocorrelations as input
for the autorepressor model. Dropout is added in the Neural Network model.

Figure C.13: True data vs predicted data for the test set in case of autorepressor model.
PROTEINS autocorrelations are considered as input. Dropout is added in the Neural
Network model.
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AppendixC – Artificial Neural Networks plots

Figure C.14: True data vs predicted data for the train set in case of autorepressor model.
PROTEINS autocorrelations are considered as input. Dropout is added in the Neural
Network model.

Figure C.15: Learning curve of the ANN refered to only proteins autocorrelations as
input for the autorepressor model. Dropout is added in the Neural Network model.
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AppendixC – Artificial Neural Networks plots

Figure C.16: True data vs predicted data for the test set in case of toggle switch model.
RNA autocorrelations are considered as input. Dropout is added in the Neural Network
model.

Figure C.17: True data vs predicted data for the train set in case of toggle switch model.
RNA autocorrelations are considered as input. Dropout is added in the Neural Network
model.
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AppendixC – Artificial Neural Networks plots

Figure C.18: Learning curve of the ANN refered to only RNA autocorrelations as input
for the toggle switch model. Dropout is added in the Neural Network model.

Figure C.19: True data vs predicted data for the test set in case of toggle switch model.
PROTEINS autocorrelations are considered as input. Dropout is added in the Neural
Network model.
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AppendixC – Artificial Neural Networks plots

Figure C.20: True data vs predicted data for the train set in case of toggle switch model.
PROTEINS autocorrelations are considered as input. Dropout is added in the Neural
Network model.

Figure C.21: Learning curve of the ANN refered to only PROTEINS autocorrelations as
input for the toggle switch model. Dropout is added in the Neural Network model.
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Appendix D

NF-kB activity time series

Figure D.1: Number of RNA molecules produced through the NF-κB activation and
inhibition simulated by using the Stochastic Simulation Algorithm and considering the
model in Fig.9.1 with parameters ka = 1,ki = 0.1,k1 = 1,k1i = 0.1,k4 = 1,k5 =
0.1,k3 = 0.1,k3i = 1 but considering k2 = 0 and k2i = 0 starting from a configuration
where everything is inactive.
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AppendixD – NF-kB activity time series

Figure D.2: Number of RNA molecules produced through the NF-κB activation and
inhibition simulated by using the Stochastic Simulation Algorithm and considering the
model in Fig.9.1 with parameters ka = 1,ki = 0.1,k1 = 1,k1i = 0.1,k4 = 1,k5 = 0.1,
but considering k2 = 0, k2i = 0, k3 = 0, k3i = 0 starting from a configuration where
everything is inactive.
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[12] Tamás Székely Jr., Kevin Burrage, Stochastic simulation in systems bi-
ology, Computational and Structural Biotechnology Journal, Volume 12,
Issues 20–21, November 2014, Pages 14-25.

146

https://www.bu.edu/nf-kb/
https://www.ebi.ac.uk/interpro/entry/InterPro/IPR011539/
https://www.ebi.ac.uk/interpro/entry/InterPro/IPR011539/
https://en.wikipedia.org/wiki/NF-%CE%BAB


BIBLIOGRAPHY

[13] Yang Cao, Daniel T. Gillespie and Linda Petzold, Avoiding Negative Pop-
ulations in Explicit Poisson Tau-Leaping, Article in The Journal of Chem-
ical Physics, September 2005.

[14] INFLAMMATION’S ROLE IN OBESITY. URL https://sites.tufts.

edu/hkerstjaaalislai/?page_id=541.

[15] Kateryna Shostak and Alain Chariot, EGFR and NF-kB: partners in can-
cer, Trends in Molecular Medicine June 2015, Vol. 21, No. 6.

[16] NF-κB pathways, Part 1: The canonical pathway of NF-κB activation.
URL https://www.youtube.com/watch?v=7F_HPRfHdDk.

[17] Genetic Heterogeneity. URL https://www.sciencedirect.com/

[18] epidermal growth factor receptor. URL https://www.cancer.gov

[19] growth factor. URL https://www.cancer.gov

[20] Epidermal growth factor. URL https://en.wikipedia.org

[21] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North
Holland, third ed., May 2007.

[22] Autocorrelation Function. URL https://www.sciencedirect.com

[23] G. Cowan, Statistical Data Analysis, Oxford University Press Inc., New
York, 1998.

[24] Mathisca de Gunst, Michel Mandjes and Birgit Sollie, Statistical inference
for a quasi birth–death model of RNA transcription, BMC Bioinformatics
23, 105 (2022).

[25] C.W.Gardiner, Handbook of Stochastic Methods for Physics, Chemistry
and the Natural Sciences, Printed in Germany, Springer-Verlag Berlin
Heidelberg 1983,1985.

[26] Luciana Renata De Oliveira, Master Equation: Biological Applications
and Thermodynamic Description, University of Bologna (2013/2014).

[27] A guide for using the Wavelet Transform in Machine Learning. URL
https://ataspinar.com

[28] Morlet Wavelet. URL https://www.sciencedirect.com

147

https://sites.tufts.edu/hkerstjaaalislai/?page_id=541
https://sites.tufts.edu/hkerstjaaalislai/?page_id=541
https://www.youtube.com/watch?v=7F_HPRfHdDk
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genetic-heterogeneity
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/epidermal-growth-factor-receptor
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/growth-factor
https://en.wikipedia.org/wiki/Epidermal_growth_factor
https://www.sciencedirect.com/topics/chemistry/autocorrelation-function#:~:text=1%20Autocorrelation-,The%20autocorrelation%20function%20(ACF)%20defines%20how%20data%20points%20in%20a,signal%20over%20different%20delay%20times.
https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/
https://www.sciencedirect.com/topics/mathematics/morlet-wavelet


BIBLIOGRAPHY

[29] Michael X Cohen, A better way to define and describe Morlet wavelets
for time-frequency analysis,Radboud University and Radboud University
Medical Center; Donders Institute for Neuroscience.

[30] Wavelets: a mathematical microscope. URL https://www.youtube.com

[31] Yoshiteru Sasaki, Kazuhiro Iwai, Roles of the NF-κB Pathway in B-
Lymphocyte Biology, Curr Top Microbiol Immunol. 2016;393:177-209.

[32] Immunoglobulin Light Chain. URL https://www.sciencedirect.com

[33] Kumar A, Balbach J., Folding and Stability of Ankyrin Repeats Con-
trol Biological Protein Function. Biomolecules. 2021 Jun 5;11(6):840. doi:
10.3390/biom11060840. PMID: 34198779; PMCID: PMC8229355.

[34] Li J, Mahajan A, Tsai MD., Ankyrin repeat: a unique motif mediating
protein-protein interactions. Biochemistry. 2006 Dec 26;45(51):15168-78.
doi: 10.1021/bi062188q. PMID: 17176038.

[35] hematopoietic stem cell. URL https://www.cancer.gov

[36] Knockout. URL https://www.genome.gov

[37] Zook EC, Kee BL., Development of innate lymphoid cells. Nat Immunol.
2016 Jun 21;17(7):775-82. doi: 10.1038/ni.3481. PMID: 27328007.

[38] transinhibition. URL https://en.wiktionary.org

[39] B cell. URL https://www.cancer.gov

[40] Cheong R, Hoffmann A, Levchenko A., Understanding NF-kappaB signal-
ing via mathematical modeling. Mol Syst Biol. 2008;4:192.

[41] Ch. Venkateswarlu, Rama Rao Karri, Optimal State Estimation for Pro-
cess Monitoring, Fault Diagnosis and Control, Chapter 5 - Data-driven
modeling techniques for state estimation, Elsevier, 2022, Pages 91-111.

[42] Genetic Heterogeneity. https://en.wikipedia.org

[43] M. Manceau, V.S. Domingues, C.R. Linnen, E.B. Rosenblum, H.E. Hoek-
stra, Convergence in pigmentation at multiple levels: mutations, genes
and function. Phil Trans R Soc B, 365 (2010), pp. 2439-2450.

[44] D. Stockholm, R. Benchaouir, J. Picot, P. Rameau, T.M.A. Neildez, G.
Landini, et al., The origin of phenotypic heterogeneity in a clonal cell
population in vitro. PLoS One, 2 (2007), p. e394.

148

https://www.youtube.com/watch?v=jnxqHcObNK4&t=1320s
https://www.sciencedirect.com/topics/immunology-and-microbiology/immunoglobulin-light-chain
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/hematopoietic-stem-cell
https://www.genome.gov/genetics-glossary/Knockout
https://en.wiktionary.org/wiki/transinhibition
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/b-cell
https://en.wikipedia.org/wiki/Genetic_heterogeneity


BIBLIOGRAPHY

[45] Close J.L. Spudich, D.E. Koshland Jr., Non-genetic individuality: chance
in the single cell. Nature, 262 (1976), pp. 467-471.

[46] Munsky B, Neuert G, van Oudenaarden A.,Using gene expression noise
to understand gene regulation. Science. 2012 Apr 13;336(6078):183-7.

[47] M. Viney, S.E. Reece, Adaptive noise. Proc R Soc B, 280 (2013), p.
20131104.

[48] A. Bar-Even, J. Paulsson, N. Maheshri, M. Carmi, E. O’Shea, Y. Pilpel,
et al., Noise in protein expression scales with natural protein abundance.
Nat Genet, 38 (2006), pp. 636-643.

[49] Matt Scott, Tutorial: Genetic circuits and noise. Quantitative Ap-
proaches to Gene Regulatory Systems. Summer School, July 2006. Uni-
versity of California, San Diego.

[50] Housekeeping gene https://en.wikipedia.org

[51] Zenklusen D, Larson DR, Singer RH. Single-RNA counting reveals al-
ternative modes of gene expression in yeast. Nat Struct Mol Biol. 2008
Dec;15(12):1263-71.

[52] Gene regulation. https://www.genome.gov

[53] RFX1 Gene - Regulatory Factor X1 https://www.genecards.org

[54] Issac, J., Raveendran, P.S. Das, A.V., RFX1: a promising therapeutic
arsenal against cancer. Cancer Cell Int 21, 253 (2021).

[55] Lubelsky Y, Reuven N, Shaul Y.,Autorepression of rfx1 gene expression:
functional conservation from yeast to humans in response to DNA repli-
cation arrest. Mol Cell Biol. 2005 Dec;25(23):10665-73.

[56] Giampieri E, Remondini D, de Oliveira L, Castellani G, Lió P.,
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