
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Generative Deep Models

COMPARISON OF LATENT-SPACE
GENERATIVE MODELS THROUGH

STATISTICS AND MAPPING

CANDIDATE SUPERVISOR

Valerio Tonelli Prof. Andrea Asperti

Academic year 2021-2022

Session 3rd

Abstract

Although data generation is a task with broad and exciting applications, sam-

ples created by generative models often fall victim to reduced variability and

biases which, when coupled with the lack of explainability common to all neu-

ral networks, makes the evaluation of issues and limitations of these systems

challenging. Much effort has been devoted to the exploration of the latent

spaces of generative models in order to find more controllable editing direc-

tions and to the idea that better models would produce more disentangled rep-

resentations. In this thesis we present a detailed and comparative analysis of

latent-space generative models, beginning from their theoretical foundation

and up to a number of statistical and empirical findings. We show that the

original data is the sole factor truly impacting how different generative mod-

els learn, more than one may imagine: under the same dataset, even very dif-

ferent architectures distribute their latent spaces in essentially the same way.

These results suggest new directions of research for representation learning,

with the potential to transfer acquired knowledge between models and to un-

derstand the common mechanisms behind learning as a whole.

Parts of the topics discussed in this thesis are a joint work, particularly

those related to the mappings between models; they have already seen publi-

cation as a paper [9].

To my mom, who never stops believing in me,

To my dad, who I know would be proud of me,

To my sister and her son, who constantly warm my heart,

To my grandma, who in her pain always finds a smile for me.

To Sara, may our relationship blossom like our friendship has,

To Zanna, Eric, Alice, Samu, for the wonderful times together,

Last but not least, Michele and Caterina, here once again.

i

Contents

1 Introduction 1

2 Background 5

2.1 Generative Modelling . 5

2.1.1 Variational AutoEncoders 8

2.1.2 Generative Adversarial Networks 9

2.2 Semantic Interpretation of Latent Spaces 13

2.2.1 Exploration Research 14

2.2.2 Disentanglement Research 15

3 Development 17

3.1 Models . 17

3.1.1 Vanilla GAN . 18

3.1.2 Vanilla VAE . 19

3.1.3 StyleGAN . 20

3.1.4 SplitVAE . 22

3.2 Datasets . 23

4 Experiments 25

4.1 Experimental Setup . 25

4.2 Statistical Analyses . 26

4.2.1 Normality Tests . 27

4.2.2 Distance Analysis . 28

ii

4.3 Mapping Experiments . 30

4.3.1 Mapping Results . 33

5 Conclusions 37

Bibliography 41

Acknowledgements 54

iii

List of Figures

1.1 Concept of Linear Map between latent spaces 2

1.2 Examples of Mappings (I) 4

2.1 VAE Structure . 8

2.2 GAN Structure . 10

2.3 Examples of GAN Inversions 12

3.1 StyleGAN Structure . 21

3.2 SplitVAE Structure . 23

4.1 Henze-Zirkler Normality Test 28

4.2 Encoding-Decoding Reconstructions 29

4.3 CelebA Nearest Neighbors 32

4.4 Types of Relocation Errors 33

4.5 Examples of Mappings (II) 36

iv

List of Tables

4.1 Models Info . 26

4.2 Latent Distances . 31

4.3 Mapping Results . 34

v

Chapter 1

Introduction

The prospect of algorithmically generating new data is one that has always ex-

erted a strong fascination, as it carries the potential to attain an endless stream

of information, to streamline complex creative tasks and to reach new bound-

aries in our understanding of inductive processes. Recent advances in the

field have made names for themselves: neural architectures like Dall-E [72]

and ChatGPT [45] have achieved stunning results, to the point that some are

questioning the morality behind the usage of these systems [75] as the dis-

tinction line between user-generated and AI-generated content becomes ever

more blurry.

It is clear that the effectiveness of generative techniques crucially depends

on the quality of the training data, which should be prototypical of the under-

lying population manifold; in addition, it is key to have a well-behaved rep-

resentation of this information within the generative model, where an internal

encoding havingmore or less entangled combinations of the different explana-

tory factors of variation behind the data is produced [12, 50]. Unfortunately,

and in spite of the huge amount of work devoted to the engineering, explo-

ration and analysis of generative models, it is not obvious in which directions

these models should be systematically pushed to attain a better representation

of the data manifold and of its characteristics. Furthermore, the link between

factors of variations and the semantics of expected features in generated data

Introduction 2

is not entirely clear, and issues have been raised on the concept of disentangle-

ment as a whole [63]. Other approaches have focused on finding trajectories in

the encoded space of a model in order to produce desired alterations in output,

but these methods only work locally, and thus do not provide a comprehensive

understanding of the knowledge acquired by a generative system.

Figure 1.1: A latent-space generative model uses an encoder E1 to compress
information about data I , such as a dataset of faces, into points with lower
dimensionality than that of the original data, which we name latent vectors
(even GANs can have an encoder, see Section 2.1.2). From arbitrary points of
the corresponding latent space L1 we can generate new data samples through
a decoder D1. This latent space is semantically obfuscated but can be inves-
tigated for many properties, among which adherence to a certain shape and
distances between meaningful vectors (see Section 4.2). Furthermore, given
a second generative model trained on the same data and its latent space L2,
we can attempt to correlate the two spaces through a mapping M ; this works
surprisingly well in preserving information, as it can be seen in Figure 1.2.

One style of analysis which, in our opinion, has seen relatively little atten-

tion is the comparative study of generative architectures, especially when it

comes to the spaces of learned encodings. This thesis provides such an inves-

tigation: we will look at the most popular latent-space generative models, their

Introduction 3

strengths, their limitations and, most importantly, their differences and simi-

larities. We have confined the investigation to the familiar and well-explored

data manifold of human faces, and the questions we have sought to answer are

the following:

• Do different generative architectures share a common understanding of

data, and therefore are their latent spaces substantially equivalent up to,

say, linear transformations?

• How is the latent space shaped by the neural structure and learning ob-

jectives of the model?

• How do regularization, conditioning and other secondary mechanisms

influence the latent spaces?

We find that different models share a strong empirical baseline under sta-

tistical measures and that the relationships between data points, such as neigh-

bors, can be used to predict some key characteristics of the latent spaces, in-

cluding the presence or lack of semantic features. Even more surprisingly,

it seems to be possible to pass from the latent space of one model to that of

another by means of a simple linear mapping M which preserves most of the

information, so long as an encoding-decoding pair is available for both gen-

erative models; the schema in use for this experimentation is shown in Figure

1.1. While details may slightly differ, Figure 1.2 markedly shows that the

overall appearance of data is mostly preserved, even when mapping between

dummy and state-of-the-art architectures. Considering the complexity of any

generative process, this result is quite marvelous: pairs of points related by a

simple linear mapping from two different generative models are decoded by

the corresponding decoders into strongly correlated—in some cases almost

identical—images!

Introduction 4

(a) Mapping between two instances of the same generative model SplitVAE [6].

(b) Mapping between two architectural variants, from VAE [53] to SplitVAE.

(c) Mapping between two entirely different models, from GAN [35] to SplitVAE.

Figure 1.2: Examples of mappings between pairs (A, B) of generativemodels.
For all three mappings, the first row contains original samples from CelebA
[62], and the second row their reconstructions from A through an encoding-
decoding cycle; the third row shows the decoding from B after a linear map-
ping from A, as defined in Section 4.3. Results are strongly correlated for
all mappings and in some cases even identifiable as the same person, espe-
cially in (a). It is also noteworthy that details are sometimes guessed or even
reconstructed, particularly when going towards a higher-quality model as in
(b). Unsurprisingly, the further away the two models are, the more the face
structure and the details tend to be distorted, which is clearly the case in (c);
nonetheless, images still remarkably similar to the originals.

Chapter 2

Background

This chapter presents the foundational knowledge upon which the thesis is

then developed. In particular, it explains the ideas and current techniques be-

hind generative modelling, as well as an overview on representation learning.

2.1 Generative Modelling

Generative modelling describes a data manifold as a probabilistic distribution,

such that by sampling from this distribution we can generate new data which

believably belongs to the manifold. This task implies a synthesis of infor-

mation, from that of the discrete data points to a smooth probability curve,

hence a generative model must gain an understanding, whether implicit or

explicit, of the higher-level features that generalize a dataset. Unfortunately,

this understanding cannot be trivially extracted, explored and tagged with a

human-meaningful semantic under all models.

This is especially the case for the very successful field [67, 78] of Deep

Generative Modelling, where part or all of the components used for the task

are Deep Neural Networks (DNNs) [33, 77]. The main techniques by which

DNNs have been applied to generation tasks, and particularly image genera-

tion, are as follows:

• Auto-Regressive modelling [85, 21] factorizes the distribution of the

2.1 Generative Modelling 6

dataset over its dimensions through chain-rule and then approximates

each factor with some parametric function;

• Flow modelling [55, 88, 56] such as RealNVP [28] decomposes a com-

plex data distribution through a sequence of small, invertible functions,

ultimately reshaping it into a known parametric distribution;

• Energy-based modelling [40, 82, 41] such as diffusion modelling [29]

interprets the entropy in information as the energy of a physical sys-

tem, and applies energy distribution laws to express the likelihood of its

possible states;

• Latent-Variable modelling such as Generative Adversarial Networks

(GANs) [16, 46, 70] and Variational AutoEncoders (VAEs) [54, 74, 17]

learns to compress and decompress information through a latent space

with lower dimensionality than that of the data and with a known dis-

tribution for its points.

Some hybrid composition of these architectures have also been attempted,

with varying degrees of success [60, 68, 43].

The previous decade has seen a surge in popularity and effectiveness [8,

44] for latent-variable models—unsurprisingly, they were the dominant topic

of studies in the field. This thesis will follow suit, but it is nonetheless worth

mentioning that the other techniques have shown the potential to achieve simi-

lar, if not equivalent, performances [13]; diffusion models have even arguably

surpassed them [27, 83], reaching peak popularity for text-to-image applica-

tions [71].

Considering latent-variable architectures allows for a variety of approaches

to their analysis. Indeed, these models expose an explicit space representing

their summary of the input features, for a given data element, and their under-

standing of general characteristics over the entire dataset; by analyzing this

space we may therefore be able to decode what the model has learned about

2.1 Generative Modelling 7

the dataset and how it summarizes its information content. This analysis can

be done, as with any vector space, through a variety of tools and techniques,

for instance density analysis, dimensionality reduction, or by performing com-

parisons among different spaces.

More in-detail, latent-variable models assume that a given dataset D can

be represented as a distribution of points p(x) from which we can sample in-

puts x ∼ p(x), and that this distribution is dependant on a vector z of latent

variables. We can then reconstruct p(x) via marginalization:

p(x) =
∫

z
p(x|z)p(z)dz = Ep(z)[p(x|z)] (2.1)

where z we call the latent encoding of x, which we assume is distributed with

a known and parametrizable distribution p(z), named the prior distribution.

The distribution p(x|z) is the likelihood, which can be approximated through a

Deep Neural Network. Once learned, it can be used to generate new, original

samples by approximating the expected value in Equation 2.1 with a single

point, that is, we first sample from the parametric, prior distribution z ∼ p(z)

and we then sample x̂ ∼ p(x|z).

It should be noted that with this setting, while it is simple enough to gener-

ate new samples, learning the posterior p(z|x), in other words the distribution

of the encodings of data points, usually becomes intractable. Indeed, from

Bayes’ Theorem:

p(z|x) = p(x|z)p(z)
p(x)

(2.2)

But the denominator p(x) is non-trivial to compute, as it is obtained through

marginalization over all latent vectors, as per Equation 2.1.

2.1 Generative Modelling 8

E
ncoder

q(z|x) ~ p(z|x)

D
ec
od
er

p(x|z)

σ

μ
x xz ^N(μ, σ)

D
ec
od
er

p(x|z)

xz ^N(0, 1)

(a) Training (b) Generation

Figure 2.1: (a) A Variational AutoEncoder is composed of an encoder and a
decoder. The encoder takes in a data element x and outputs the parameters
of a known distribution q(z|x) such as a Gaussian, while the decoder is fed a
sample taken from this distribution z and tries to reconstruct the original data
x̂. The loss is a (weighted) sum of the mean squared error between the original
sample x and the reconstructed output x̂, and of the Kullback-Leibler diver-
gence between the distribution outputted by the encoder q(z|x) and a known
prior distribution for the encodings p(z), usually chosen to be a standard Gaus-
sian. (b) During generation, we directly sample from the prior p(z) and pass
this sample z to the decoder, skipping the encoder altogether.

2.1.1 Variational AutoEncoders

An autoencoder [33, 92] is a neural network which learns to efficiently com-

press inputs by learning to regenerate them from their encoding, where the

rate of compression is statically chosen by fixing the dimensionality of the

encodings with respect to that of the inputs. It is composed of an encoder pro-

ducing a latent vector z from an input x and of a decoder which reconstructs

the input x̂ from a latent code; the resulting network is trained to regenerate

inputs through a reconstruction loss | x − x̂ |2.

AVariational AutoEncoder (VAE) [53] is amodification of an autoencoder

to support generative tasks. To do so, we require the additional condition that

the distribution of the encodings p(z|x) is tractable. This constraint allows

for meaningful generation of new samples from previously unseen encodings;

however, since the likelihood p(x|z) must also be learned for proper decod-

ing, at least one of these two distributions cannot be tractable due to Equation

2.2. With some degree of approximation, the posterior p(z|x) can become

tractable using techniques such as Variational Inference [31]: we choose a

2.1 Generative Modelling 9

tractable distribution q(z|x), typically a Gaussian, which is then pushed to-

wards the true posterior p(z|x) via Kullback-Leibler divergence minimization

(a measure of distance between distributions). The mathematical derivation

of this optimization problem results in the addition of a Kullback-Leibler di-

vergence term KL(q(z|x) ∥ p(z)) to the reconstruction loss for the learning

process, where the true prior is the desired distribution for the latent codes,

usually a standard Gaussian N (0, 1).

This KL term can also be seen as a regularization of the latent space of a

classical autoencoder towards a chosen prior: it ensures that the data points are

well dispersed over the latent space; in other words, it allows for valid sam-

pling not only close to the encodings of the original data, but also in-between

them.

While VAEs have pioneered the field of latent-space generativemodelling,

they tend to produce blurry results [5] as a consequence of the Gaussian as-

sumptions [8]. A partial mitigation of this problem is possible by quantization

of the latent codes (VQ-VAE [86]), and further improvements can be achieved

by a careful balancing of the two loss components during learning, typically

done via dynamic or learned weighting [10, 39, 19].

Layering and compounding of these models, potentially with different ar-

chitectures, can also improve results [25, 36, 55], albeit at the expense of

longer training and execution times. A naive yet functional approach in this

direction is known as SplitVAE (or SVAE) [6]: two VAEs are run in parallel

and their outputs are averaged through a learned weight map σ. This proce-

dure serves well to reduce correlation for nearby pixels by taking information

from two different sources, hence producing a more crisp image.

2.1.2 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [35, 34, 70] tackles the generative

task through a generator which, as the name suggests, directly learns how to

2.1 Generative Modelling 10

D
is
cr
im

in
at
or

G
en

er
at
or

p(x|z)

xz ^N(0, 1)

d(t|x)

t
x

Figure 2.2: A GAN is composed of a generator and a discriminator. The gen-
erator takes in a random seed z and learns to directly create a new data sample
x̂. At the same time, the discriminator is trained to distinguish real samples x
from generated ones x̂ by outputting a classification t. The generator is trained
to fool the discriminator, therefore it is encouraged to produce believable data.

produce outputs following the desired likelihood distribution p(x|z). Once

trained, this model can produce new data samples by taking in input a seed z

sampled from a known distribution, usually a standard Gaussian N (0, 1).

The adjective “adversarial” comes from the presence of an opponent to

the generator, called the discriminator, whose role is to distinguish real data

samples from generated ones, generally as a classification task in a continu-

ous range [0; 1]. With a parallel to game theory, the loss function is seen as the

game payoff: the two components are jointly trained and they each try to push

it towards opposing values. This loss function is defined as the sum between

the expected value for the discriminator over true data samplesEx[log(D(x))],

and the expected value of one minus the discriminator prediction over gener-

ated samples Ez[log(1 − D(G(z))]; the discriminator attempts to maximize

both terms, which corresponds to the correct labeling of samples, while the

generator opposes this process by minimizing the latter term.

The reasoning behind this game setting is to interpret the characteristics of

the data manifold as strategies that the generator can use against the discrimi-

nator, so long as it learns them. Ideally, the game ends in the generator’s win:

once all useful strategies are found, the generator has effectively learned the

2.1 Generative Modelling 11

data manifold and the discriminator cannot distinguish samples anymore.

GANs have become widespread since they are simple to implement and

understand [44], produce quite believable results and do not produce blurry

samples, unlike VAEs [13]. Nonetheless, their training is delicate and unsta-

ble: rather than optimizing against a static solution space, the generator must

find a point of equilibrium in a dynamic, ever-changing system (the one that

the discriminator sets). This leads to issues of non-convergence, oscillatory

patterns and early divergence in the level of game play between the two com-

ponents [91, 73]. Another known issue comes in the form of mode collapse

[91, 34], where the generator simplifies its strategy to a very small set of sam-

ples which work to fool the discriminator. Finally, since the loss function is

not relative to the dataset but to the difference in play between the two com-

ponents, it is not a good metric for the model’s performance [14].

Multiple proposals have attempted to replace the standard loss [64] , since

the objective function has a critical role in determining training effectiveness.

These include theWasserstein loss [4], the least squares loss [65], the unrolling

of the discriminator loss over k steps [66] and the introduction of a penalty

term for the discriminator [57]. As for modifications on the components and

their interaction, some notable examples include GANs with attention layers

[93], techniques to improve large GAN generation [16] and the cyclic condi-

tioning of pairs of GANs on each other [96].

The flexibility in modelling and expressive power of these architectures

has become especially clear with the generation of state-of-the-art, high-quality

results from the application of style transfer concepts to GANs (StyleGAN and

its successors [48, 49, 47]).

As a final remark for this overview, do note that GANs only learn the like-

lihood p(x|z), therefore they do not need to tackle an intractable distribution,

as VAEs must. However, this also implies that GANs cannot natively encode

data points. Therefore, if, as is the case for our study, both generative and en-

coding processes are needed, further structure must be added to a GAN. This

2.1 Generative Modelling 12

(a) Example ofGAN inversion using an image generated by theGAN from a randomly
sampled z ∼ p(z). The learning-based technique achieves a quite good reconstruc-
tion of the original image, albeit it struggles with some of the finer details (e.g. lips,
hair). On the other hand, the optimization-based reconstruction is virtually identical
to the original image, at the cost of being much slower to compute.

(b) Example of GAN inversion using an image taken from CelebA, the same dataset
on which the model was trained. Even the optimization-based method shows signifi-
cant difficulty in reconstruction, demonstrating that general inversion is a non-trivial
problem: the way that the GAN has incorporated the characteristics of the training
dataset into its latent space is a key factor in determining the reconstruction quality.

Figure 2.3: Examples of GAN Inversions using both a Learning-based
approach (a simple neural network as defined in Section 3.1.1) and an
Optimization-based approach (using the BFGS algorithm [32]).

is a problem known as GAN Inversion.

GAN Inversion

The generator of a GAN typically uses random inputs z ∼ N (0, 1), which can

be interpreted as latent vectors being fed to a decoder-like structure. However,

GANs lack an explicit encoding process for the original input sample, which

is instead only seen by the discriminator. To allow encoding, an additional

component has to be added to a GAN, either embedded within the architecture

and jointly trained, or as an a-posteriori wrapper.

We can identify two main classes of techniques for GAN inversion. One is

optimization-based approaches, where the latent code is retrieved per-image

and the process is therefore targeted, but slow. Any function minimization

2.2 Semantic Interpretation of Latent Spaces 13

technique can be applied here (e.g. stochastic gradient descent [23], BFGS

[32], ADAM [52]), where the objective function is the distance between an

original image I and its reconstruction G(ẑ). On the other end of the spec-

trum we have learning-based approaches, where we attempt to generalize the

inversion process on a per-model basis. For instance, a neural network could

be trained on images generated by a GAN G(z) by tasking it to reconstruct

codes ẑ using a mean squared error loss | z − ẑ |2, with the advantage that

over-fitting is never an issue since the training set is a continuous distribution

z ∼ p(z).

Broadly speaking, there is a quality-time trade off between these twomodal-

ities: learning-based methods are faster to compute, but may lack the finesse

obtained through an image-specific optimization process. Hybrid inversion

techniques can be employed to play to the strengths of both, by using the

learning-based output as the initialization vector for the optimization algo-

rithm [95, 94]. A visual comparison of typical inversion results on a vanilla

GAN model can be seen in Figure 2.3a.

The quality of inversion also crucially depends on two factors: biases in

the training dataset and the characteristics of the latent space. Indeed, images

which are completely outside of the generative range or poorly approximated

by a model will hardly be invertible. This is exemplified in Figure 2.3b.

While in principle these techniques are model-agnostic, recent works have

greatly focused on the inversion of the popular StyleGAN [1, 22, 2, 69, 3], due

to the potential that inversion has for editing applications.

2.2 Semantic Interpretation of Latent Spaces

During training, a generative latent-space model learns to encode data into

codes, which it can then read to revert the process back to the original sam-

ples. Since different codes can produce outputs with varying characteristics,

and since the decoding process is deterministic, there must be some amount of

2.2 Semantic Interpretation of Latent Spaces 14

sample information hidden within the code vector. However, this data is gen-

erally obfuscated due to the nature of neural networks [33], as in, we cannot

link it to a human-meaningful semantic such as symbols, attributes or labels.

At the same time, knowledge of this mapping could be applied to rigorously

improve the generation quality of models, for instance by modifying their loss

function towards a more statistically regular encoding of their latent spaces,

as well as provide a foundation to neural network explainability.

The semantic interpretation of latent spaces is therefore a problem of great

interest in the field of generative modelling. Several directions of research

have already been investigated, of which we present the main findings.

2.2.1 Exploration Research

One possibility to explore the space of a model is to introduce small nudges

to latent vectors, based on the principle that they should correspond to small

changes in the corresponding generated data and, thus, be somewhat control-

lable. Albeit empirical, this line of work is supported by claims of regularity

(by construction for VAEs) and quasi-linearity of the latent space manifold

over a single feature in GANs [61]. As we iterate this shifting process several

times and we classify differences in the outputs, directions corresponding to

semantically meaningful features may be found (e.g. color, pose, shape). This

can be especially useful for image editing, as once such a direction is found,

it can be further traveled to tweak an image, such as to add, remove or mod-

ify the degree to which a feature is present in a sample without the need to

condition the generative model on labels or attributes.

InterFaceGAN [79], for instance, supposes that for any given feature tak-

ing values in (−∞; ∞) there exists an hyperplane in the latent space which is

invariant for that feature. Therefore, the corresponding normal vector—which

can be found e.g. via an SVM [15]—allows for a gradual modification of the

2.2 Semantic Interpretation of Latent Spaces 15

feature, and further tweaking to the direction can be made to ensure it is or-

thogonal to other features we desire to be left untouched as much as possible.

Similarly, the APCR measure [61] can find these directions with the guidance

of a semantic classifier by performing an average of the direction over many

different samples, either as an iterative or an optimization problem.

A different, more systemic approach to the problem is to construct these

directions progressively: if a single layer i of a neural network is considered,

a closed-form equation [80] can be derived to systematically find an editing

direction ni. Through their composition, the overall feature direction n can

then be obtained. Other approaches of the same “arithmetic” flavor tends to

be limited to smaller datasets. For instance, a non-linear variant of PCA [81]

could be used to determine the most important hidden features of a latent space

[89], however the semantic of these features would still be heavily reliant on

human interpretation.

2.2.2 Disentanglement Research

The broad topic of disentanglement in latent-vector models is based on the

concept that a more effective representation of real-world data should be sum-

marized by a few, well-separated factors of variations [51, 87, 84, 18]. At the

same time, it is argued that such a representation would also be more explain-

able, with roots in psychology [59] and empirical analogies with commonly

seen real-world data characteristics [11], such as function smoothness, natural

manifolds, sparsity of data and analytical dependencies between factors which

appear in many laws of physics, biology and other fields.

Several quantitative measures for disentanglement have been proposed

over the last few years [20, 30, 58], and several architectural modifications

and strategies based on the idea of disentanglement have been attempted [87,

26, 90], generally producing improved results with respect to their base archi-

tectures and better downstream performances [87].

2.2 Semantic Interpretation of Latent Spaces 16

However, there is currently no commonly agreed definition of disentan-

glement, nor an objective measure for it. There is also research suggesting

that the topic should be re-evaluated at its core: a large-scale analysis on more

than ten thousand generative models [63] reported that, while different dis-

entanglement strategies do push some level of improved generation quality

when they are applied during training, visual inspection is still imperative to

discern results, and typical disentanglement metrics exhibit systematic dif-

ferences and inconsistencies in evaluation. The authors further challenge the

idea that a more disentangled representation truly leads to better performances

in downstream tasks and, most crucially, they argue that biases in data play

a fundamental role in disentangled representations, rather than being simply

issues to be fixed.

Chapter 3

Development

This chapter discusses the main engineering steps that have been implemented

to define the generative models and prepare the data for our experiments.

3.1 Models

For our generativemodels, we have chosen a small set of latent-space architec-

tures among the two most common models of this variety: VAEs and GANs.

Two of themodels are simply their vanilla implementations [35, 53]. Their

structures have beenmade as similar as possible, an intentional choice made in

order to evaluate the impact of the objective function independently from the

network architecture. Multiple instances of these models were trained using

Adam optimization [52] on the CelebA dataset [62], after a pre-processing

phase detailed in Section 3.2. The Frechét Inception Distance (FID) was used

on a validation split of the dataset to determine when model improvements

saturated; since this metric is typically computed on a high number of samples

(> 50k) and the validation set was much smaller than this quantity (∼ 2000),

a generous delta threshold and epochs patience number were yielded to the

setup.

The other two model under our consideration are state-of-the-art, pre-

trained architectures of a VAE and aGAN, named SplitVAE [6] and StyleGAN

3.1 Models 18

[48] respectively. These models have been chosen due to the interesting chal-

lenges in understanding the behavior of a more complex architecture. The

surprising results, reported all over Section 4, demonstrate that their under-

standing of the original dataset is closer to that of the vanilla models than we

may imagine.

3.1.1 Vanilla GAN

Our vanilla GANs [35, 24] use the standard mini-max loss function with joint

training of the discriminator and generator.

The structure of the Discriminator is as follows:

1. A Convolutional layer going from an input of size (64, 64, 3)with stride

s = 2, ”same” padding, ReLU activation, kernel size k = 4 and 128

channels, followed by a Leaky ReLU layer with α = 0.2 for regulariza-

tion;

2. A Convolutional layer as in 1. but with 256 channels, followed by an-

other leaky ReLU;

3. A Convolutional layer as in 1. but with 512 channels, followed by an-

other leaky ReLU;

4. A Dropout layer with α = 0.2 for regularization;

5. A Dense layer outputting a single value, which is the confidence the

discriminator has that its input image is real.

The structure of the Generator is instead the following:

1. A Dense layer going from L to size (8, 8, 16);

2. A Transposed Convolutional layer with stride s = 2, ”same” padding,

ReLU activation, kernel size k = 4 and 128 channels, followed by a

Leaky ReLU layer with α = 0.2 for regularization;

3. A Transposed Convolutional layer as in 1. but with 256 channels, fol-

lowed by another leaky ReLU;

3.1 Models 19

4. A Transposed Convolutional layer as in 1. but with 512 channels, fol-

lowed by another leaky ReLU;

5. A Convolutional layer with 3 channels, kernel size k = 5, sigmoid

activation and same padding, thus producing a (64, 64, 3) output.

We have also implemented a Recoder for GAN inversion using a neural

network to reconstruct latent codes from images, which is what we detail in

Section 2.1.2 as the learning-based approach to reconstruction. The network is

built using the same structure as that of the generator, simply swapping inputs

and outputs in order to reverse the image generation process.

3.1.2 Vanilla VAE

Our vanilla VAEs [54] use a monotonically decreasing γ factor to balance

the two loss components (the KL divergence and the reconstruction error), in

order to reduce blurriness and improve variability [10]. This coefficient is

computed as the minimum between the current and previous estimation of the

reconstruction error at each minibatch.

The structure of the Encoder is as follows:

1. A Convolutional layer going from an input of size (64, 64, 3)with stride

s = 2, ”same” padding, ReLU activation, kernel size k = 4 and 128

channels, followed by a Leaky ReLU layer with α = 0.2 for regulariza-

tion;

2. A Convolutional layer as in 1. but with 256 channels, followed by an-

other leaky ReLU;

3. A Convolutional layer as in 1. but with 512 channels, followed by an-

other leaky ReLU;

4. A Dropout layer with α = 0.2 for GAN regularization;

3.1 Models 20

5. Two separate Dense layers corresponding to the mean and variance vec-

tors of the inference distribution q(z | x) with size L, plus a third non-

trainable layer which performs the sampling.

The structure of the Decoder, instead, is the same as the structure of the

GAN generator from Section 3.1.1.

3.1.3 StyleGAN

StyleGAN [48] is a variant of a classical GAN for enabling high-quality, high-

dimensional image generation. The key idea is to attempt to separate the in-

formation of an image at the large scale (e.g. pose, facial features) from the

smaller, pixel-wise details (e.g. freckles, hair). To achieve this, StyleGAN

first computes a style vector w ∈ W from a seed z ∈ Z, where p(z) is the

classical prior and the distribution of p(w) is learned by a fully connected neu-

ral network called theMapping network. This first step supposedly brings the

prior distribution closer to the distribution of the original data.

We therefore have two latent spaces: the prior space Z of arbitrary distri-

bution, typically a standard Gaussian N(0, 1), and the style space W . As it is

customary for many inversion studies on this architecture [1, 2], we will work

with the W space; among the reasons for this choice is that we presume, by

construction, that it would be hopeless to map the denseMapping network to

a convolutional architecture.

This style vector w is then passed through several learned affine transfor-

mations (Blocks A), each of which is used to perform style transfer through

Adaptive Instance Normalization (AdaIN) [42] onto a layer of the convolu-

tional Synthesis network, which is the generator proper. As the initial input to

this network, a simple learned constant is passed. Figure 3.1 shows the overall

generative architecture of StyleGAN; the discriminator is not included in this

picture since it is unvaried with respect to that of a classical GAN.

3.1 Models 21

Figure 3.1: Structure of the StyleGAN generative network (picture taken from
[48]). A latent vector z ∈ Z is first passed through a denseMapping network
f to produce a style vector w/inW ; this vector is then passed through learned
affine transformations (Blocks A) to extract style information, which are fed
via a style-transfer operator (Adaptive Instance Normalization, or AdaIN [42])
to each progressive convolution level of the Synthesis network g. Do also
notice the introduction of Noise as an additional source of randomness, which
is added to the convolutions through learned scaling layers (Blocks B).

In order to enable high-quality results, training of the convolutional lay-

ers is done progressively [46]: the architecture is trained starting from down-

sampled images at very low resolution, and at each progression step the input

size is increased while additional layers are introduced to both StyleGAN and

the discriminator. This method allows the model to focus on different levels

of detail at each stage of training, similarly to an attention mechanism. Due to

this multi-stage process, training of StyleGAN is unfeasible unless high-end

resources are available, therefore we will use the pre-trained model available

from the original work [48].

As for the recoder component that we will use for StyleGAN inversion,

3.1 Models 22

it will have no differences with that of the vanilla GAN recoder described

in 3.1.1, except for working with a higher number of dimensions and going

towards the W space, rather than the Z space.

3.1.4 SplitVAE

SplitVAE (SVAE) [6] is a simple extension of a traditional VAE where the

output x̂ is computed as a weighted sum

x̂ = σ ⊙ x̂1 + (1 − σ) ⊙ x̂2

of two generated images x̂1, x̂2 coming from the same decoder, and a learned

compositional map σ. This split, at no additional training cost, produces

sharper images, with a better FID in comparison to analogous architectures

and in contrast with the low-pass tendency of classical VAEs [5]. The authors

attribute this improvement to the discrete nature that the split forces, causing

the model to “make choices” and, hence, reduce correlation. A diverging phe-

nomena in learning is also typically observed, where the model seems to split

either the syntactical or (the more interesting case) semantical features in the

data.

To improve results even further and obtain state-of-the-art performances, it

is suggested to use a ResNet-like architecture derived from [25] for the imple-

mentation of both encoder and decoder components. This structure alternates

the typical convolutional layers with Scale-blocks, which in turn are composed

of Batch Normalization layers, non-linear units and convolutions.

The model in all of its components can be seen in Figure 4.1. For our ex-

periments, we will use pre-trained models on CelebA provided by the original

authors of SplitVAE [6].

3.2 Datasets 23

ResBlockResBlock

ScaleBlock

bn + relu

conv / fc

bn + relu

conv / fc

+ +

bn + relu

conv / fc

bn + relu

conv / fc

x xσ 21

(a) Scale-block (b) Encoder (c) Decoder

Figure 3.2: SplitVAE structure. (a) A Scale-block is a sequence of Residual-
blocks intertwined with residual connections. Each Residual-block alter-
nates Batch Normalization layers, non-linear units and convolutions. (b)
The ResNet-like structure of the Encoder is similar to a typical convolu-
tional network, with a series of down-sampling convolutional layers and a
global average pooling layer at the end extracting features that are further pro-
cessed via dense layers to compute mean and variance for latent variables;
the only difference is the introduction of Scale-blocks between convolutions.
(c) The Decoder is essentially symmetric with the encoder up to the final
layer (circled in the picture) where, instead of directly producing x̂, a Split-
VAE produces two images x̂1 and x̂2 and a compositional map σ, defining
x̂ = σ ⊙ x̂1 + (1 − σ) ⊙ x̂2. Pictures taken from [6].

3.2 Datasets

We confined our work to the largely investigated and well-known data mani-

fold of human faces. CelebA [62] is the dataset used in all of our experiments,

including its higher-quality version CelebA-HQ [46].

In order to provide optimal training data for ourmodels, the CelebA dataset

has been pre-processed as follows: images have been aligned as per their paper

[62] and then cropped to size 128 × 128 with a y offset of 45 and an x offset

of 25 so that as much background as possible was removed while preserving

face information. This crop is then downsampled to size 64×64 (with bilinear

3.2 Datasets 24

interpolation), producing the final images. The vanilla VAE and GANmodels

have been trained on this pre-processed dataset using a typical train/val/test

split, and the SplitVAE pre-trained weights also came from this dataset.

CelebA-HQ is, on the other hand, a dataset of 30K images at resolution

1024 × 1024. These were obtained from a subset of CelebA with a complex

methodology explained in Appendix C of Karras & Al. [46], comprising a

sophisticated preprocessing phase, super-resolution techniques, and selection

of best quality samples. This dataset was used as a reference for the StyleGAN

pre-trained model.

Chapter 4

Experiments

This chapter presents the final experimental setup and its main results.

4.1 Experimental Setup

For our experiments we took into considerations 4 different types of models,

two GANs and two VAEs; in each class, we investigated a basic, average

quality ”vanilla” version and a more sophisticated, state-of-the-art model. To

be precise, we have investigated the following architectures:

1. Vanilla VAE [53] using γ balancing [10] with a latent dimension Z =

64 trained on the cropped CelebA;

2. Vanilla GAN [35] with a latent dimensionZ = 64 trained on the cropped

CelebA;

3. SplitVAE [6] pre-trained 1 with a latent dimension Z = 150 trained on

the cropped CelebA;

4. StyleGAN [48] pre-trained2 on CelebA-HQ, which has a latent dimen-

sion Z of size 512 and a style-vector latent dimension W of the same
1The code for loading these models is in the repo of the paper derived from this thesis at

”We Love Latent Space” GitHub
2We have used the original model weights at StyleGAN-Repo and the Tensorflow 2.0

conversion repository StyleGAN-TF2-Repo.

https://github.com/asperti/We_love_latent_space
https://github.com/NVlabs/stylegan
https://github.com/ialhashim/StyleGAN-Tensorflow2

4.2 Statistical Analyses 26

Model Instances Latent dim Resolution FID I-MSE
GAN 5 64 64 × 64 56.86 0.1971
VAE 5 64 64 × 64 60.78 0.0

SplitVAE 3 150 64 × 64 35.12 0.0
StyleGAN 1 512 1024 × 1024 5.06 0.0183

Table 4.1: Characteristics of the different models, including Dimension of
the Latent Space, Image Resolution, Fréchet Inception Distance (FID) [38]
and the Inverter Mean Squared Error (I-MSE), which is the error between
the original and recoded latent vectors. The FID for StyleGAN is measured
w.r.t. CelebA-HQ and it is not directly comparable with the others. The I-
MSE for GAN architectures is that of their recoder component, while for VAE
models it is technically zero since their encoding is native; in all cases, it can
be disregarded, since it is a quite low value.

size.

For each one of the previous models, apart StyleGAN where we only had at

our disposal a single set of pre-trained parameters, we trained and tested mul-

tiple instances. When reporting statistics for a model type, if not differently

stated, they are to be understood as the average over the different trainings, or

instances, of that type.

A summarizing Table 4.1 of the model types and their characteristics is

provided. We note, besides the different latent dimensionality and image res-

olution of the models, the clear difference in Fréchet Inception Distance (FID)

[38] between the vanilla and state-of-the-art models. Also, do note that the re-

encoding loss (I-MSE) is not always zero, particularly for GAN architectures

(see Section 2.1.2). Nonetheless, the actual values are quite low in all cases

and we disregard them; this is a necessary supposition for some of our analy-

ses, particularly those related to mappings.

4.2 Statistical Analyses

We begin our investigations by attempting to shed some light on properties of

the latent spaces, such as whether they respect a Gaussian prior, the distances

4.2 Statistical Analyses 27

between pairs of significant codes and the properties of the corresponding im-

ages.

4.2.1 Normality Tests

Given that all prior distributions are typically assumed to be standard Gaus-

sians N(0, 1), it is interesting to see the degree to which the latent spaces of

our models follow this distribution in practice. We can test our latent spaces

for this property through the Henze-Zirkler statistic (HZ) [37], a multivariate

normality test which measures the distance between the points of any distribu-

tion with respect to those of a normal distribution. The resulting test statistic

should be log-normally distributed if and only if the given distribution is also

normal.

We will simplify our analysis to the HZ values we obtain by considering

a single set of discrete points for each test. If we attempt to sample points

from the prior distribution p(z) and cycle them through a decoding-encoding

iteration, the resulting distribution scores a HZ close to 1.0, regardless of the

underlying model. This demonstrates the efficacy of the GAN recoder and of

the auto-encoding behavior of VAEs when working within the prior sampling

regime.

Figure 4.1 shows the application of the statistic to the set of latent codes ob-

tained by encoding test samples with different generative models; histograms

of the first dimension for these same codes show how these values visually

reflect in the density of the latent space. The latent space of the vanilla VAE is

effectively a Gaussian, which is precisely the behavior enforced through the

Kullback-Leibler loss. Similarly, we expect the vanilla GAN to have no such

shape due to the lack of such a regularization term. However, it is surpris-

ing to note that the SplitVAE has almost the same distribution distance as the

GAN, even if the SplitVAE is trained using the same loss as the VAE. A sug-

gestive theory is that the two may be conforming to common characteristics

4.2 Statistical Analyses 28

of the dataset, hence why they can both produce sharp samples (although with

different levels of quality). As for StyleGAN, it is the furthest away from a

Gaussian. This also comes as a confirmation of proper training, given that the

W space should be conforming to a distribution with lower dimensionality but

of similar shape of the original data.

VAE GAN SplitVAE StyleGAN

HZ = 1.00 HZ = 18.8 HZ = 18.9 HZ = Large

Figure 4.1: Henze-Zirkler (HZ) statistic applied to our models on a set of
∼5000 points encoded from the test set. Accompanying plots are histogram
bins of the first latent dimension. Lower values of the statistic imply a more
Gaussian-shaped distribution of points, which is also reflected in each latent
dimension: notice how the vanilla VAE is essentially a Gaussian, due to the
KL regularization term. Interestingly, it seems that both the vanilla GAN and
SplitVAE reach a similar HZ distance for the encodings of test images, sug-
gesting a possible common property of their latent spaces. StyleGAN, on the
other hand, is much less predictable, since the W space is pushed towards the
original data distribution, rather than towards a chosen prior.

4.2.2 Distance Analysis

Our next step of analysis consists in comparing distant and close points of the

various high-dimensional spaces we are working with and finding parallels

between data and latent properties.

It is well-known that CelebA suffers from a variety of biases, such as its

uneven distribution of features [76], the sampling from only a small subset in

the population of human faces—indeed, those of celebrities—and the fact that

the mean image of the dataset is, in itself, a face. These biases are reflected in

generative models, as they learn the underlying statistics of the distribution,

but are also dependant on which statistics the model is more reliant on.

4.2 Statistical Analyses 29

Figure 4.2: Reconstruction of images taken from CelebA, as they are encoded
through a GAN or VAE into codes and then transformed back into images.
The images are all clearly correlated, but while the VAE maintains all kinds
of details (e.g. glasses) so long as they are macroscopic, the GAN loses such
features and even invents new ones when it receives unexpected shapes, cre-
ating its characteristic aberrations.

To better see this, we can encode CelebA faces through our generative

models and see how they get reconstructed. Looking at Figure 4.2, it is clear

that GANs and VAEs are generally able to correlate faces with the inner un-

derstanding they have of them. For instance, VAEs focus mostly on an av-

erage and can therefore reproduce most features (but not all!), provided their

scale are sufficiently large; on the other hand, GANs are strongly inclined to

see only learned biased traits, to the point of replacing unknown features and

traits with new data consonant to their knowledge, creating quite typical aber-

rations. From this point of view, these two models can be seen as opposites in

a bias-variance trade-off.

Nonetheless, both models struggle significantly more on certain “hard”

features which are under-represented in the population, such as hair details,

glasses and hats. We ask ourselves if there is some natural, intuitive way to

relate this to the characteristics of the training data. A preliminary study on

the CelebA dataset reveals that, if we attempt to find the nearest neighbor of

any given sample, some surprising behaviors emerge, similar to those of gen-

erative models: smaller variability than that of the original data and lack or

sparsity of certain features (see Figure 4.3). If we treat the nearest neighbor

algorithm akin to an encoding-decoding cycle of a generative model, it be-

comes suggestive to think of deeper, model-agnostic generative properties at

4.3 Mapping Experiments 30

play here. It also explains the training efficacy of data augmentation tech-

niques, as they fill-in more of the missing distribution and allows for a better

“fit” (less duplicates) by the nearest neighbors method.

To conclude this section, some numerical analyses of all spaces under con-

sideration are provided in Table 4.2. There, we consider the average distances

between random sample points and compare them with those induced by a

small quantity of noise (∼ 10%), and those between neighbors. We show that

all generative models can well distinguish between correlated and uncorre-

lated points, producing the highest distance between random images and the

lowest for noisy variations.

However, vanilla models do struggle significantly with noise, which can

account for up to 60% of the distance between points. State-of-the-art models

are shown to be much more resistant to this effect; StyleGAN, especially, is

an order of magnitude more resistant than even SplitVAE, regardless of its

higher latent dimensionality. Inadvertently, the model may be trained to have

a low-pass behavior through the presence of noise blocks in the architecture,

which are injected at each convolution step, but only at a scale smaller than

the human perception of details.

Finally, we notice that none of the model performs particularly well on

neighbors, if we compare these distances to those between random points.

This may be a property of the data, as the Image space behaves similarly.

4.3 Mapping Experiments

Ourwork so far has highlighted the possibility of fundamental, commonmech-

anisms in how models learn and encode data. One of the most interesting en-

deavours we propose in this work is to reach a greater level of comparison by

searching for a mapping between the latent spaces of different models. Defin-

ing a map is, in itself, actually quite simple: given twomodelsA andB trained

on the same dataset, a mapper between them can be defined as a single-layer

4.3 Mapping Experiments 31

Random +Noise Near
64 150 512 64 150 512 64 150 512

Image (PCA) 34.34 35.65 38.11 3.70 6.00 6.15 27.59 28.72 29.91
VAE 11.12 6.52 9.61
GAN 8.33 3.29 7.12

SplitVAE 16.97 0.74 14.47
StyleGAN 2.98 0.073 2.34

Table 4.2: Average Euclidean norms between pairs of points in the CelebA
Image space and the latent spaces of our models. Distances are computed
for a number of dimensions L (either 64, 150, or 512), in accordance to our
models latent dimensions; the Image space is first reduced through PCA to L
dimensions and distances are then computed, to obtain comparable measure-
ments. Given a point randomly sampled from the dataset, the second point
is either: also sampled from the same dataset (Random), the same as the first
point with additive uniform noise in range [−0.05; 0.05] (+Noise), or its ap-
proximate nearest neighbor in the dataset (Near).

neural network with linear activation function and no bias. This mapper can

be trained, given images x from the common dataset, by passing as inputs the

encodings from the first model zA(x) and by teaching it to minimize the mean

squared error between the encodings from the secondmodel zB(x) and its own

output ẑB(x).

Since we are working with a single-layer network, we may only require

a small set of samples from the common dataset to work with, so long as it

provides enough data variability. We name it our Support Set. There exists

several possibilities to define this set, from variance analysis to a model-based

selection of outliers [9]; we will work with the latter. If we cannot use a sup-

port set, we may of course directly work with the entire visible domain (or

the subset of the image domain common to the two datasets), sampling mini-

batches in it. Yet another option is to disregard data entirely and work with

generated samples: sampling z from the prior distribution of the first model,

the corresponding generated image xA(z) can be fed to the encoder of the sec-

ond model to obtain the expected output zB(xa(z)) that the mapper should get

close to.

Albeit conceptually simple, mapping between different models can have

4.3 Mapping Experiments 32

Figure 4.3: Approximate nearest neighbors between points in the CelebA
dataset. First rows are random samples from the dataset, following rows are
their nearest neighbors. Notice how, even on this small selection of points,
some neighbors tend to be repeated multiple times, suggesting the dataset has
somewhat innate clustering centroids. Notice also the distinctive lack of cer-
tain hard-to-generate features (e.g. hats) on neighbors: it seems that these
features are easily lost as we move within the data space.

a lot of additional issues. Firstly, the two latent spaces may have sensibly

different dimensions, e.g. 512 for StyleGAN, 150 for the SplitVAE and 64

for the vanilla models; secondly, they may work at different resolutions, for

instance 1024 × 1024 for StyleGAN versus 64 × 64 for the other models.

Furthermore, given our setup, the two generative models may have been

trained on the two different datasets CelebA and CelebA-HQ which, albeit

similar, have different distributions of data and, most importantly, different

crops. For our experiments, this is the case when considering StyleGAN as

one of the models. To ensure we can still properly train the mapper in such

cases, fromCelebA-HQwe take a simplified crop of dimension 880×880with

4.3 Mapping Experiments 33

an height offset of 20 and a width offset of 60, which is then downsampled to

size 64 × 64 with bilinear interpolation, so as to make it compatible with the

corresponding (and expected) CelebA image size.

4.3.1 Mapping Results

Let us come to the resulting transformations between our latent spaces. We

consider mappings between all pairs of model types; for all of them we build

a set of input-output pairs by encoding from generated samples (for mappings

involving StyleGAN) or from the support set [9] (for all other mappings) into

the two latent spaces. Then, we directly build a linear map by linear regres-

sion, minimizing the mean squared error between target and predicted latent

vectors.

M

V

Z Z

E
1

o

z

z

1

2
1

2

1

R−MSE

L−MSE

M−MSE

2
E

D D
2

Figure 4.4: Visual explanation of the types of errors computed in Table 4.3.
An image o is encoded through the source model, obtaining z1 = E1(o). If
we decode this vector back into the image space we get an approximation
ô = D1(E1(o)); the error between o and ô is the Reconstruction MSE (R-
MSE). The encoded source latent vector can also be mapped through a learned
M to obtain a predicted target vector ẑ2: the error w.r.t. the actual target latent
vector z2 = E2(o) is the Loss MSE (L-MSE), since it is effectively the loss
of the mapping M . Finally, the error between the (ideal) decoding of these
two vectors is the Mapping MSE (M-MSE). Note that the I-MSE provided in
Table 4.1, which would be the difference between any source latent vector z′

1
and ẑ′

1 = E1(D1(z′
1)), is not taken into consideration here.

To our surprise, as we pass from one latent space into another we can pro-

duce results with quite the fidelity: our mappings effectively work! Figure 1.2

4.3 Mapping Experiments 34

shows the comparison between an original image, its re-generation within a

model (encoding-decoding loop) and themapping onto anothermodel, whether

it is another instance of the same model (e.g. GAN to GAN), a variant archi-

tecture of the same type (e.g. VAE to SplitVAE) or two entirely different

architectures (e.g. GAN to SplitVAE). Although results are not perfect, es-

pecially as we map between a state-of-the-art architecture and a vanilla one,

samples are always strongly correlated and visually alike, in some cases even

identifiable as the same face. Figure 4.5 shows the same process applied be-

tween the StyleGAN and SplitVAE architectures, proving that these concepts

are also applicable to state-of-the-art, complex architectures.

From To L-MSE R-MSE M-MSE
VAE VAE 0.03 0.0073 0.0103
VAE SplitVAE 0.72 0.0105
VAE GAN 0.49 0.0339
GAN GAN 0.43 0.0284 0.0335
GAN VAE 0.50 0.0254
GAN SplitVAE 0.86 0.0275

SplitVAE SplitVAE 0.20 0.0035 0.0067
SplitVAE VAE 0.20 0.0125
SplitVAE GAN 0.63 0.0388
SplitVAE StyleGAN 0.029 0.076
StyleGAN SplitVAE 0.45 0.014

Table 4.3: Different types of errors (MSE) for all consideredmapping between
a source and target model. R-MSE is the error between an image from CelebA
and its reconstruction for the source model; L-MSE is the error between the
source and mapped latent vectors, while M-MSE is the error of their corre-
sponding decoded images. Do refer to Figure 4.4 for a visual comparison of
the three type of errors. Mappings involving StyleGAN are not directly com-
parable with the others, since they involve a different dataset (CelebA-HQ)
and are trained on generated samples.

We provide more precise measurements in Table 4.3. As we may expect,

the Mapping Mean Squared Error (M-MSE) tends to be higher the more the

two models differ from each other, however there is no otherwise predictable

pattern: two GANs have a mapping error very close to that from a VAE to a

GAN, and swapping places between any two models can produce significant

4.3 Mapping Experiments 35

deviations in M-MSE; these findings may be partially explained by training

instability for GANs. Nonetheless, all mappings are shown to be successful:

for all mappings the error is always below 0.039, whereas the mean squared

error between CelebA images is 0.116.

These results demonstrate a few important and general properties about

learned latent embeddings. First, that all models trained on the same dataset

(or arguably even similarly-natured datasets) are well-suited for comparisons

among each other, even if the architectures wildly differ; in other words, there

is a fundamental mechanism of learning common to all generative models.

Secondly, since these mappings are linear functions, the latent spaces at their

two ends must be (almost) equivalent, as one can be transformed into the other

through linear operations such as rotations and scaling.

4.3 Mapping Experiments 36

(a) Mappings from StyleGAN to SplitVAE. In the first row we have faces generated
from StyleGAN by sampling vectors from a standard Gaussian N(0, 1) and passing
them through the dense network to obtain style vectorsw, while in the second row we
have the reconstruction of these images from SplitVAE after cropping and scaling and
through an encoding-decoding cycle. The third row shows the mapping proper, that
is, the SplitVAE decoding of the StyleGANw vector after mapping onto the SplitVAE
space.

(b) Mappings from SplitVAE to StyleGAN. Similarly to (a), the first row shows origi-
nal images from StyleGAN and the second the SplitVAE reconstructions. The images
from the first row are encoded onto the SplitVAE space after cropping and scaling;
these z vectors are then mapped to w vectors for StyleGAN, and their decodings are
shown in the third row.

Figure 4.5: Mappings between StyleGAN (W space) and SplitVAE. Original
images are generated in both cases from StyleGAN since they are the training
set for both mappers.

Chapter 5

Conclusions

This thesis has delved into the fascinating world of generative latent spaces,

which may be described as the conceptual manifold that a generative model

has of the differences and similarities of the objects it is capable of under-

standing, and therefore creating.

We began our discussion on the topic by providing an overview of the

field of generative modelling as a whole: its opportunities for a deeper un-

derstanding of data, its exploration and disentanglement challenges, as well

as the main known approaches to the problem. We further inquired about

the most popular latent-space techniques by which the task can be tackled,

namely Variational AutoEncoders (VAEs) and Generative Adversarial Net-

works (GANs). For each, we presented the base architecture and a state-

of-the-art variant—SplitVAE and StyleGAN, respectively. We highlighted

strengths and weaknesses for each model, both theoretically and experimen-

tally. We formulated and implemented these four model types for generation

via training on CelebA, a dataset of human faces.

We then conducted a series of experiments to test hypotheses on both the

dataset and the latent spaces learned by the models. We have found that while

assumptions regarding the normality of latent spaces depend on the regular-

ization of a model, they may depend even more strongly on the data itself.

These findings challenge whether a Gaussian may be the best choice for the

Conclusions 38

prior distribution: StyleGAN, with its initial 8 dense layers, is explicitly engi-

neered [48] to overcome this limitation, which may be one of the contributing

factors to its high-quality results.

Further analyses were done to understand why certain features are easily

lost by generative architectures, as it can be seen e.g. by passing an image

through an encoding-decoding cycle, and why generated samples show less

variety than the original data, even in the case of StyleGAN [9]. A key point

we have raised is that if we apply a nearest neighbor algorithm to faces in

the data, we find that neighbors tend to be somewhat repeated, and they are

also less likely to display the same features that generative models miss. We

can therefore argue that the correlation between nearby pairs of points in the

dataset is what models truly learn, besides—and, possibly, even more than—

the specifics of each sample. Indeed, themain difference among all tested gen-

erative models seems to lie in how they handle noise added to an image, with

state-of-the-art architecture keeping the encoding of these modified samples

much closer to their encodings of the originals, whereas the latent distances

of random points or nearby points are approximately proportional among all

models. This explanation would also provide support to the usage of data

augmentation techniques, as they fill-in the neighboring space of the original

points and therefore reduce this phenomenon.

These preliminary experiments are suggestive of a common, foundational

mechanism by which all generative models understand their (narrow) world.

One way to test for this claim is to attempt a direct map between one latent

space and another via a linear transformationM , which works remarkably and

surprisingly well. Since we were able to successfully find such transforma-

tions, we proved it possible to pass between two latent spaces while preserving

most of the information, or in some cases even regaining it. Even more so, we

showed that latent spaces of different models are essentially all the same and

all seem to naturally organize themselves in a way that is merely dependent

Conclusions 39

from the data manifold, so long as they are not artificially constrained to be-

have differently. Hence, it also follows that the organization of a latent space

is largely independent from the network architecture, the training processes

or the loss function. Of course, we expect this “natural” structure to be par-

tially lost when employing strong regularization factors or when artificially

reshaping the latent space (as in conditioning).

Albeit largely unexpected, our observations do agree with the recent ob-

servations [79, 61] that variations over a single semantical feature is a quasi-

linear manifold in the latent space of generative models, and that biases may

be an essential property of data, rather than an issue [63].

Our results are full of exciting implications for the fields of disentangle-

ment and latent space explainability. Indeed, the fact that the latent space has

a sort of inherent shape raises promising expectations about the possibility

to “port” disentangled features between different spaces, and may even bring

closer the comprehension of a general, shared intelligence model through an

understanding of the data in a network-agnostic framework.

As for future works, they may space into many different directions and

are really up to one’s imagination. For instance, similar findings to ours are to

be confirmed when training models on different datasets, and it may be inter-

esting to extend this line of work into correlating the latent spaces of similar

datasets (e.g. other datasets on faces). We might go even further in this direc-

tion by applying modifications to a dataset in order to understand how they

affect the corresponding latent space. Another direction of research would be

to attempt to empower the linear mapping with a residual layer, to “fix” devi-

ations from the natural organization that specific models have, and based on

this information to try to define a “standard” latent space for a given dataset.

We also plan to extend our findings to more types of generative models: a

recent work has focused on finding embeddings for the latent space of diffu-

sion models [7], providing a foundation from which it is theoretically possible

to apply a deterministic encoding-decoding process to this class of models

Conclusions 40

and, thus, study them under experiments like ours.

Data Availability

The training datasets can be found at CelebA-dataset and CelebAHQ-dataset.

The code relative to this work is available on Github in the following reposi-

tory: https://github.com/asperti/We_love_latent_space. We also provide pre-

trained weights for the models we have tested there.

Publication Disclaimer

Parts of the contents and results of this thesis have been published as a paper

[9] in the journal Neural Computing and Applications with doi

10.1007/s00521-022-07890-2. Credits go to the corresponding authors.

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.kaggle.com/datasets/lamsimon/celebahq
https://github.com/asperti/We_love_latent_space

Bibliography

[1] R. Abdal, Y. Qin, and P.Wonka. Image2stylegan: how to embed images

into the stylegan latent space? In 2019 IEEE/CVF International Confer-

ence on Computer Vision, ICCV 2019, Seoul, Korea (South), October

27 - November 2, 2019, pages 4431–4440. IEEE, 2019. URL: https:

//doi.org/10.1109/ICCV.2019.00453.

[2] R. Abdal, Y. Qin, and P.Wonka. Image2stylegan++: how to edit the em-

bedded images? In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 8296–8305, 2020.

[3] Y. Alaluf, O. Tov, R. Mokady, R. Gal, and A. Bermano. Hyperstyle:

stylegan inversion with hypernetworks for real image editing. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 18511–18521, 2022.

[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adver-

sarial networks. In Proceedings of the 34th International Conference

on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 Au-

gust 2017, volume 70 of Proceedings of Machine Learning Research,

pages 214–223. PMLR, 2017. URL: http : / / proceedings . mlr .

press/v70/arjovsky17a.html.

[5] A.Asperti. Variance loss in variational autoencoders. InMachine Learn-

ing, Optimization, andData Science: 6th International Conference, LOD

2020, Siena, Italy, July 19–23, 2020, Revised Selected Papers, Part I

6, pages 297–308. Springer, 2020.

https://doi.org/10.1109/ICCV.2019.00453
https://doi.org/10.1109/ICCV.2019.00453
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html

BIBLIOGRAPHY 42

[6] A. Asperti, L. Bugo, and D. Filippini. Enhancing variational genera-

tion through self-decomposition. IEEE Access, 10:67510–67520, 2022.

DOI: 10.1109/ACCESS.2022.3185654. URL: https://doi.org/

10.1109/ACCESS.2022.3185654.

[7] A. Asperti, D. Evangelista, S. Marro, and F. Merizzi. Image embedding

for denoising generativemodels. arXiv preprint arXiv:2301.07485, 2022.

[8] A. Asperti, D. Evangelista, and E. L. Piccolomini. A survey on vari-

ational autoencoders from a green AI perspective. SN Comput. Sci.,

2(4):301, 2021. DOI: 10.1007/s42979-021-00702-9. URL: https:

//doi.org/10.1007/s42979-021-00702-9.

[9] A. Asperti and V. Tonelli. Comparing the latent space of generative

models. Neural Computing and Applications:1–18, 2022.

[10] A. Asperti andM. Trentin. Balancing reconstruction error and kullback-

leibler divergence in variational autoencoders. IEEEAccess, 8:199440–

199448, 2020. DOI: 10.1109/ACCESS.2020.3034828.

[11] Y. Bengio, A. Courville, and P. Vincent. Representation learning: a re-

view and new perspectives. IEEE transactions on pattern analysis and

machine intelligence, 35(8):1798–1828, 2013.

[12] Y. Bengio, A. C. Courville, and P. Vincent. Representation learning:

A review and new perspectives. IEEE Trans. Pattern Anal. Mach. In-

tell., 35(8):1798–1828, 2013. DOI: 10.1109/TPAMI.2013.50. URL:

https://doi.org/10.1109/TPAMI.2013.50.

[13] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks. Deep gener-

ativemodelling: a comparative review of vaes, gans, normalizing flows,

energy-based and autoregressivemodels. arXiv preprint arXiv:2103.04922,

2021.

[14] A. Borji. Pros and cons of gan evaluation measures. Computer Vision

and Image Understanding, 179:41–65, 2019.

https://doi.org/10.1109/ACCESS.2022.3185654
https://doi.org/10.1109/ACCESS.2022.3185654
https://doi.org/10.1109/ACCESS.2022.3185654
https://doi.org/10.1007/s42979-021-00702-9
https://doi.org/10.1007/s42979-021-00702-9
https://doi.org/10.1007/s42979-021-00702-9
https://doi.org/10.1109/ACCESS.2020.3034828
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50

BIBLIOGRAPHY 43

[15] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop

on Computational learning theory, pages 144–152, 1992.

[16] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for

high fidelity natural image synthesis, arXiv, 2018. DOI: 10.48550/

ARXIV.1809.11096.

[17] Y. Burda, R. B. Grosse, and R. Salakhutdinov. Importance weighted

autoencoders. In 4th International Conference on Learning Represen-

tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference

Track Proceedings, 2016. URL: http://arxiv.org/abs/1509.

00519.

[18] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,

and A. Lerchner. Understanding disentangling in β-vae. arXiv preprint

arXiv:1804.03599, 2018.

[19] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,

andA. Lerchner. Understanding disentangling inβ-vae.CoRR, abs/1804.03599,

2018. arXiv: 1804.03599. URL: http://arxiv.org/abs/1804.

03599.

[20] R. T. Chen, X. Li, R. Grosse, and D. Duvenaud. Isolating sources of

disentanglement in vaes. In Proceedings of the 32nd International Con-

ference on Neural Information Processing Systems, pages 2615–2625.

[21] X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel. Pixelsnail: an im-

proved autoregressive generative model. In International Conference

on Machine Learning, pages 864–872. PMLR, 2018.

[22] E. Collins, R. Bala, B. Price, and S. Susstrunk. Editing in style: un-

covering the local semantics of gans. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 5771–

5780, 2020.

https://doi.org/10.48550/ARXIV.1809.11096
https://doi.org/10.48550/ARXIV.1809.11096
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599

BIBLIOGRAPHY 44

[23] A. Creswell and A. A. Bharath. Inverting the generator of a genera-

tive adversarial network. IEEE Trans. Neural Networks Learn. Syst.,

30(7):1967–1974, 2019. URL: https://doi.org/10.1109/TNNLS.

2018.2875194.

[24] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,

and A. A. Bharath. Generative adversarial networks: an overview. IEEE

Signal Processing Magazine. IEEE, 35(1):53–65, 2018.

[25] B. Dai and D. P. Wipf. Diagnosing and enhancing vae models. In Sev-

enth International Conference on Learning Representations (ICLR 2019),

May 6-9, New Orleans, 2019.

[26] E. L. Denton et al. Unsupervised learning of disentangled representa-

tions from video. Advances in neural information processing systems,

30, 2017.

[27] P. Dhariwal and A. Nichol. Diffusion models beat gans on image syn-

thesis. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.

Vaughan, editors, Advances in Neural Information Processing Systems,

volume 34, pages 8780–8794. Curran Associates, Inc., 2021.

[28] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real

NVP. arXiv preprint arXiv:1605.08803, 2016.

[29] Y.Du and I.Mordatch. Implicit generation and generalization in energy-

based models. arXiv preprint arXiv:1903.08689, 2019.

[30] C. Eastwood andC.K.Williams. A framework for the quantitative eval-

uation of disentangled representations. In International Conference on

Learning Representations, 2018.

[31] A. Ganguly and S. W. Earp. An introduction to variational inference.

arXiv preprint arXiv:2108.13083, 2021.

[32] P. E. Gill, W.Murray, andM. H.Wright. Practical optimization. SIAM,

2019, pages 116–127.

https://doi.org/10.1109/TNNLS.2018.2875194
https://doi.org/10.1109/TNNLS.2018.2875194

BIBLIOGRAPHY 45

[33] I. Goodfellow,Y. Bengio, andA. Courville.Deep Learning. 2016. http:

//www.deeplearningbook.org.

[34] I. J. Goodfellow. NIPS 2016 tutorial: generative adversarial networks.

CoRR, abs/1701.00160, 2017. arXiv: 1701.00160. URL: http://

arxiv.org/abs/1701.00160.

[35] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In

Advances in Neural Information Processing Systems 27: Annual Con-

ference on Neural Information Processing Systems 2014, December 8-

13 2014, Montreal, Quebec, Canada, pages 2672–2680, 2014.

[36] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra.

DRAW: A recurrent neural network for image generation. In Proceed-

ings of the 32nd International Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, volume 37 of JMLRWorkshop and

Conference Proceedings, pages 1462–1471. JMLR.org, 2015.

[37] N. Henze and B. Zirkler. A class of invariant consistent tests for mul-

tivariate normality. Communications in statistics-Theory and Methods,

19(10):3595–3617, 1990.

[38] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-

iter. Gans trained by a two time-scale update rule converge to a local

nash equilibrium, 2017. DOI: 10.48550/ARXIV.1706.08500. URL:

https://arxiv.org/abs/1706.08500.

[39] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S.

Mohamed, and A. Lerchner. Beta-vae: learning basic visual concepts

with a constrained variational framework. In 5th International Confer-

ence on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

URL: https://openreview.net/forum?id=Sy2fzU9gl.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
https://doi.org/10.48550/ARXIV.1706.08500
https://arxiv.org/abs/1706.08500
https://openreview.net/forum?id=Sy2fzU9gl

BIBLIOGRAPHY 46

[40] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851,

2020.

[41] E. Hoogeboom, J. Heek, and T. Salimans. Simple diffusion: end-to-end

diffusion for high resolution images. arXiv preprint arXiv:2301.11093,

2023.

[42] X. Huang and S. Belongie. Arbitrary style transfer in real-time with

adaptive instance normalization. In Proceedings of the IEEE interna-

tional conference on computer vision, pages 1501–1510, 2017.

[43] S. M. Iranmanesh and N. M. Nasrabadi. Hgan: hybrid generative ad-

versarial network. Journal of Intelligent & Fuzzy Systems, 40(5):8927–

8938, 2021.

[44] A. Jabbar, X. Li, and B. Omar. A survey on generative adversarial

networks: variants, applications, and training, arXiv, 2020. DOI: 10.

48550/ARXIV.2006.05132. URL: https://arxiv.org/abs/2006.

05132.

[45] S. John, B. Zoph, C. Kim, J. Hilton, et al. Chatgpt: optimizing lan-

guage models for dialogue. 2022. URL: https://openai.com/blog/

chatgpt/ (visited on 02/20/2023).

[46] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track Proceedings. Open-

Review.net, 2018. URL: https://openreview.net/forum?id=

Hk99zCeAb.

[47] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen,

and T. Aila. Alias-free generative adversarial networks. Advances in

Neural Information Processing Systems, 34:852–863, 2021.

https://doi.org/10.48550/ARXIV.2006.05132
https://doi.org/10.48550/ARXIV.2006.05132
https://arxiv.org/abs/2006.05132
https://arxiv.org/abs/2006.05132
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb

BIBLIOGRAPHY 47

[48] T. Karras, S. Laine, and T. Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 4401–

4410, 2019.

[49] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. An-

alyzing and improving the image quality of stylegan. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,

pages 8110–8119, 2020.

[50] H. Kim and A. Mnih. Disentangling by factorising. In Proceedings of

the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80

ofProceedings ofMachine Learning Research, pages 2654–2663, 2018.

URL: http://proceedings.mlr.press/v80/kim18b.html.

[51] H. Kim and A. Mnih. Disentangling by factorising. In International

Conference on Machine Learning, pages 2649–2658. PMLR, 2018.

[52] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[53] D. P. Kingma and M. Welling. An introduction to variational autoen-

coders. Found. Trends Mach. Learn., 12(4):307–392, 2019. DOI: 10.

1561/2200000056. URL: https://doi.org/10.1561/2200000056.

[54] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd

International Conference on Learning Representations, ICLR 2014, Banff,

AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[55] D. P. Kingma and P. Dhariwal. Glow: generative flow with invertible

1x1 convolutions. Advances in neural information processing systems,

31, 2018.

http://proceedings.mlr.press/v80/kim18b.html
https://doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056

BIBLIOGRAPHY 48

[56] I. Kobyzev, S. J. Prince, and M. A. Brubaker. Normalizing flows: an

introduction and review of current methods. IEEE Transactions on Pat-

tern Analysis andMachine Intelligence, 43(11):3964–3979, 2021. DOI:

10.1109/tpami.2020.2992934.

[57] N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On convergence and sta-

bility of gans. arXiv preprint arXiv:1705.07215, 2017. URL: https:

//arxiv.org/abs/1705.07215.

[58] A. Kumar, P. Sattigeri, and A. Balakrishnan. Variational inference of

disentangled latent concepts from unlabeled observations. arXiv preprint

arXiv:1711.00848, 2017.

[59] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Build-

ing machines that learn and think like people. Behavioral and brain

sciences, 40, 2017.

[60] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Au-

toencoding beyond pixels using a learned similarity metric. In Inter-

national conference on machine learning, pages 1558–1566. PMLR,

2016.

[61] Z. Li, R. Tao, J. Wang, F. Li, H. Niu, M. Yue, and B. Li. Interpreting

the latent space of gans via measuring decoupling. IEEE transactions

on artificial intelligence, 2(1):58–70, 2021.

[62] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes

in the wild. In Proceedings of International Conference on Computer

Vision (ICCV), pages 3730–3738, 2015.

[63] F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, and

O. Bachem. A sober look at the unsupervised learning of disentangled

representations and their evaluation. arXiv preprint arXiv:2010.14766,

2020.

https://doi.org/10.1109/tpami.2020.2992934
https://arxiv.org/abs/1705.07215
https://arxiv.org/abs/1705.07215

BIBLIOGRAPHY 49

[64] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are

gans created equal? A large-scale study. In Advances in Neural Infor-

mation Processing Systems 31: Annual Conference on Neural Infor-

mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,

Montréal, Canada, pages 698–707, 2018.

[65] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least

squares generative adversarial networks. In IEEE International Con-

ference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,

2017, pages 2813–2821. IEEE Computer Society, 2017. URL: https:

//doi.org/10.1109/ICCV.2017.304.

[66] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative

adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[67] A. Oussidi andA. Elhassouny. Deep generativemodels: survey. In 2018

International Conference on Intelligent Systems and Computer Vision

(ISCV), pages 1–8, 2018. DOI: 10.1109/ISACV.2018.8354080.

[68] K. Pandey, A. Mukherjee, P. Rai, and A. Kumar. Diffusevae: efficient,

controllable and high-fidelity generation from low-dimensional latents.

arXiv preprint arXiv:2201.00308, 2022.

[69] Y. Poirier-Ginter, A. Lessard, R. Smith, and J.-F. Lalonde. Overparame-

terization improves stylegan inversion. arXiv preprint arXiv:2205.06304,

2022. URL: https://arxiv.org/abs/2205.06304.

[70] A. Radford, L.Metz, and S. Chintala. Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. In 4th In-

ternational Conference on Learning Representations, ICLR 2016, San

Juan, Puerto Rico,May 2-4, 2016, Conference Track Proceedings, 2016.

URL: http://arxiv.org/abs/1511.06434.

[71] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchi-

cal text-conditional image generation with clip latents. arXiv preprint

arXiv:2204.06125, 2022.

https://doi.org/10.1109/ICCV.2017.304
https://doi.org/10.1109/ICCV.2017.304
https://doi.org/10.1109/ISACV.2018.8354080
https://arxiv.org/abs/2205.06304
http://arxiv.org/abs/1511.06434

BIBLIOGRAPHY 50

[72] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,

and I. Sutskever. Zero-shot text-to-image generation. In International

Conference on Machine Learning, pages 8821–8831. PMLR, 2021.

[73] L. J. Ratliff, S. A. Burden, and S. S. Sastry. Characterization and com-

putation of local nash equilibria in continuous games. In 2013 51st An-

nual Allerton Conference on Communication, Control, and Computing

(Allerton), pages 917–924. IEEE, 2013.

[74] A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse high-

fidelity images with VQ-VAE-2. Advances in neural information pro-

cessing systems, 32, 2019.

[75] E. Ruane, A. Birhane, and A. Ventresque. Conversational ai: social and

ethical considerations. In AICS, pages 104–115, 2019.

[76] E. M. Rudd, M. Günther, and T. E. Boult. Moon: a mixed objective

optimization network for the recognition of facial attributes. In Com-

puter Vision–ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11-14, 2016, Proceedings, Part V 14, pages 19–

35. Springer, 2016.

[77] S. J. Russell. Artificial intelligence a modern approach. Pearson Edu-

cation, Inc., 2010, pages 727–737.

[78] T. J. Sejnowski. The unreasonable effectiveness of deep learning in ar-

tificial intelligence. Proceedings of the National Academy of Sciences,

117(48):30033–30038, 2020.

[79] Y. Shen, C. Yang, X. Tang, and B. Zhou. Interfacegan: interpreting the

disentangled face representation learned by gans. IEEE Trans. Pattern

Anal. Mach. Intell., 44(4):2004–2018, 2022. DOI: 10.1109/TPAMI.

2020.3034267. URL: https://doi.org/10.1109/TPAMI.2020.

3034267.

https://doi.org/10.1109/TPAMI.2020.3034267
https://doi.org/10.1109/TPAMI.2020.3034267
https://doi.org/10.1109/TPAMI.2020.3034267
https://doi.org/10.1109/TPAMI.2020.3034267

BIBLIOGRAPHY 51

[80] Y. Shen and B. Zhou. Closed-form factorization of latent semantics in

gans. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2021, virtual, June 19-25, 2021, pages 1532–1540, 2021.

URL: https://openaccess.thecvf.com/content/CVPR2021/

html/Shen%5C_Closed-Form%5C_Factorization%5C_of%5C_

Latent%5C_Semantics%5C_in%5C_GANs%5C_CVPR%5C_2021%5C_

paper.html.

[81] J. Shlens. A tutorial on principal component analysis. arXiv preprint

arXiv:1404.1100, 2014.

[82] Y. Song and D. P. Kingma. How to train your energy-based models.

CoRR, abs/2101.03288, 2021. arXiv: 2101.03288. URL: https://

arxiv.org/abs/2101.03288.

[83] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B.

Poole. Score-based generative modeling through stochastic differential

equations. arXiv preprint arXiv:2011.13456, 2020.

[84] R. Suter, D. Miladinovic, B. Schölkopf, and S. Bauer. Robustly disen-

tangled causal mechanisms: validating deep representations for inter-

ventional robustness. In International Conference on Machine Learn-

ing, pages 6056–6065. PMLR, 2019.

[85] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recur-

rent neural networks. In Proceedings of the 33nd International Confer-

ence on Machine Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, volume 48 of JMLR Workshop and Conference Proceed-

ings, pages 1747–1756. JMLR.org, 2016. URL: http://proceedings.

mlr.press/v48/oord16.html.

[86] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete

representation learning. In Advances in Neural Information Processing

https://openaccess.thecvf.com/content/CVPR2021/html/Shen%5C_Closed-Form%5C_Factorization%5C_of%5C_Latent%5C_Semantics%5C_in%5C_GANs%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Shen%5C_Closed-Form%5C_Factorization%5C_of%5C_Latent%5C_Semantics%5C_in%5C_GANs%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Shen%5C_Closed-Form%5C_Factorization%5C_of%5C_Latent%5C_Semantics%5C_in%5C_GANs%5C_CVPR%5C_2021%5C_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Shen%5C_Closed-Form%5C_Factorization%5C_of%5C_Latent%5C_Semantics%5C_in%5C_GANs%5C_CVPR%5C_2021%5C_paper.html
https://arxiv.org/abs/2101.03288
https://arxiv.org/abs/2101.03288
https://arxiv.org/abs/2101.03288
http://proceedings.mlr.press/v48/oord16.html
http://proceedings.mlr.press/v48/oord16.html

BIBLIOGRAPHY 52

Systems 30: Annual Conference on Neural Information Processing Sys-

tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6306–

6315, 2017.

[87] S. Van Steenkiste, F. Locatello, J. Schmidhuber, and O. Bachem. Are

disentangled representations helpful for abstract visual reasoning? Ad-

vances in Neural Information Processing Systems, 32, 2019.

[88] V. Voleti, C. Finlay, A. Oberman, and C. Pal. Multi-resolution contin-

uous normalizing flows. arXiv preprint arXiv:2106.08462, 2021.

[89] D. Winant, J. Schreurs, and J. A. K. Suykens. Latent space exploration

using generative kernel PCA.CoRR, abs/2105.13949, 2021. arXiv: 2105.

13949. URL: https://arxiv.org/abs/2105.13949.

[90] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disen-

tanglingwith recurrent transformations for 3d view synthesis.Advances

in neural information processing systems, 28, 2015.

[91] J. Yoo, J. Park, A. Wang, D. Mohaisen, and J. Kim. On the performance

of generative adversarial network (gan) variants: a clinical data study.

In 2020 International Conference on Information and Communication

Technology Convergence (ICTC), pages 100–104. IEEE, 2020.

[92] J. Zhai, S. Zhang, J. Chen, and Q. He. Autoencoder and its various

variants. In 2018 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pages 415–419, 2018. DOI: 10.1109/SMC.2018.

00080.

[93] H. Zhang, I. J. Goodfellow, D. N.Metaxas, andA. Odena. Self-attention

generative adversarial networks. In Proceedings of the 36th Interna-

tional Conference on Machine Learning, ICML 2019, 9-15 June 2019,

Long Beach, California, USA, volume 97 of Proceedings of Machine

Learning Research, pages 7354–7363. PMLR, 2019. URL: http://

proceedings.mlr.press/v97/zhang19d.html.

https://arxiv.org/abs/2105.13949
https://arxiv.org/abs/2105.13949
https://arxiv.org/abs/2105.13949
https://doi.org/10.1109/SMC.2018.00080
https://doi.org/10.1109/SMC.2018.00080
http://proceedings.mlr.press/v97/zhang19d.html
http://proceedings.mlr.press/v97/zhang19d.html

BIBLIOGRAPHY 53

[94] J. Zhu, Y. Shen, D. Zhao, and B. Zhou. In-domain GAN inversion

for real image editing. In Computer Vision - ECCV 2020 - 16th Eu-

ropean Conference, Glasgow, UK, August 23-28, 2020, Proceedings,

Part XVII, volume 12362 ofLecture Notes in Computer Science, pages 592–

608. Springer, 2020. URL: https://doi.org/10.1007/978-3-

030-58520-4%5C_35.

[95] J. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative vi-

sual manipulation on the natural image manifold. In Computer Vision

- ECCV 2016 - 14th European Conference, Amsterdam, The Nether-

lands, October 11-14, 2016, Proceedings, Part V, volume 9909 of Lec-

ture Notes in Computer Science, pages 597–613. Springer, 2016. URL:

https://doi.org/10.1007/978-3-319-46454-1%5C_36.

[96] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proceedings

of the IEEE international conference on computer vision, pages 2223–

2232, 2017.

https://doi.org/10.1007/978-3-030-58520-4%5C_35
https://doi.org/10.1007/978-3-030-58520-4%5C_35
https://doi.org/10.1007/978-3-319-46454-1%5C_36

Acknowledgements

I would like to thank prof. Andrea Asperti for his collaboration: this thesis

would not have been possible without his knowledge, contribution, expertise

and guidance. I would also like to thank Fabio Merizzi for many interesting

discussions on the subject of this thesis.

	Introduction
	Background
	Generative Modelling
	Variational AutoEncoders
	Generative Adversarial Networks

	Semantic Interpretation of Latent Spaces
	Exploration Research
	Disentanglement Research

	Development
	Models
	Vanilla GAN
	Vanilla VAE
	StyleGAN
	SplitVAE

	Datasets

	Experiments
	Experimental Setup
	Statistical Analyses
	Normality Tests
	Distance Analysis

	Mapping Experiments
	Mapping Results

	Conclusions
	Bibliography
	Acknowledgements

