
Alma Mater Studiorum · Bologna
University

Cesena Campus
School of Engineering and Architecture

Department of Electrical Energy and Information Engineering
- Guglielmo Marconi -

Master’s Degree Course in

Electronic Engineering and Telecommunications for Energy

STUDY OF
DISTRIBUTED

LAGRANGIAN HEURISTIC
FOR SELF-ADAPTIVE
PUBLISH-SUBSCRIBE

NETWORK DESIGN PROBLEMS

Optimization Methods for Networks and Energy

Relator: Edited by:
Marco Antonio Boschetti Leonardo Urbinati

————————————————————–

Academic Year 2021-2022





Contents
1 Introduction 10

1.1 IoT Decentralized Architecture . . . . . . . . . . . . . . . . . 10
1.2 Publish/Subscribe Model & MQTT . . . . . . . . . . . . . . . 11
1.3 Peer to Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Mathematical Explanation . . . . . . . . . . . . . . . . 14
1.4.2 Subgradient Method . . . . . . . . . . . . . . . . . . . 15

1.5 Continuous Relaxation . . . . . . . . . . . . . . . . . . . . . . 18

2 Problem Description 19
2.1 Problem Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 First Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Second Formulation . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . 23

3 Algorithm Implementation 25
3.1 Centralized Version with Formulation 1 . . . . . . . . . . . . . 25
3.2 Continuous Relaxation of Formulation 1 . . . . . . . . . . . . 28
3.3 Centralized Version with Formulation 2 . . . . . . . . . . . . . 28
3.4 Continuous Relaxation of Formulation 2 . . . . . . . . . . . . 30
3.5 Heuristic Algorithm for Network Design Problems . . . . . . 31

3.5.1 Overview of the Implemented Heuristic Algorithm . . . 31
3.5.2 Technical details of the code implementation . . . . . . 36

3.6 Lagrangian Relaxation of Formulation 2 . . . . . . . . . . . . 40
3.6.1 Knapsack Problem and Function Implementation . . . 44

3.7 Distributed Lagrangian Heuristic . . . . . . . . . . . . . . . . 47
3.7.1 Distributed Lagrangian Heuristic - First Approach . . . 56
3.7.2 Distributed Lagrangian Heuristic - Second Method . . 59

3.8 Alternative Distributed Heuristic . . . . . . . . . . . . . . . . 63
3.9 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Results Analysis 71
4.1 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Simulations with Formulation 1 . . . . . . . . . . . . . . . . . 79
4.3 Simulations with Formulation 2 . . . . . . . . . . . . . . . . . 88

4.3.1 Analysis of Heuristic Algorithm Results . . . . . . . . . 88
4.3.2 Analysis of the Lagrangian Relaxation for Formulation 2 89

4.4 Simulation with Distributed Algorithm . . . . . . . . . . . . . 102

2



4.4.1 Results of Distributed Heuristic Algorithm - First Ap-
porach . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Results of Distributed Heuristic Algorithm - Second
Apporach . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.3 Dynamic Adaptability of the Distributed Algorithm . . 109
4.4.4 Comparison of results obtained by all algorithms with

Formulation 2 . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusions 121

3



List of Figures
1 Difference Between Client-server and Publish/Subscribe . . . . 11
2 Example of Lagrangian Function . . . . . . . . . . . . . . . . 15
3 Step 1 - Sub-gradient Method . . . . . . . . . . . . . . . . . . 16
4 Step 2 - Sub-gradient Method . . . . . . . . . . . . . . . . . . 17
5 Example of sensor network . . . . . . . . . . . . . . . . . . . . 19
6 Heuristic Algorithm Structure . . . . . . . . . . . . . . . . . . 32
7 Network Example for Dijkstra’s Algorithm - step 1 . . . . . . 33
8 Network Example for Dijkstra’s Algorithm - step 2 . . . . . . 34
9 Network Example for Dijkstra’s Algorithm - step 3 . . . . . . 35
10 Description of First Approach of the Distributed Lagrangian

Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 58
11 Description of Second Approach of the Distributed Lagrangian

Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 62
12 Example for Heuristic Distributed Algorithm - step 1 . . . . . 63
13 Example for Heuristic Distributed Algorithm - step 2 . . . . . 63
14 Example for Heuristic Distributed Algorithm - step 3 . . . . . 63
15 Example for Heuristic Distributed Algorithm - step 4 . . . . . 64
16 Example for Heuristic Distributed Algorithm - step 5 . . . . . 64
17 Tiny Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
18 case2 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
19 case3 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
20 case4 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
21 case5 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
22 case6 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
23 case7 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
24 case Tiny solved with Formulation 1 using CPLEX . . . . . . 80
25 case2 solved with Formulation 1 using CPLEX . . . . . . . . . 81
26 case3 solved with Formulation 1 using CPLEX . . . . . . . . . 82
27 case4 solved with Formulation 1 using CPLEX . . . . . . . . . 83
28 case5 solved with Formulation 1 using CPLEX . . . . . . . . . 84
29 case6 solved with Formulation 1 using CPLEX . . . . . . . . . 85
30 case7 solved with Formulation 1 using CPLEX . . . . . . . . . 86
31 case8 solved with Formulation 1 using CPLEX . . . . . . . . . 87
32 Percentage deviation from the optimal value of heuristic algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
33 Lower Bound trend for instance ’case2’ with α=0.1 on 1000

iteratinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4



34 Upper Bound influnece on Lower Bound values, simulated
with instance ’case2’, α=0.1 for 2000 iterations . . . . . . . . . 91

35 Parameter α influnece on Lower Bound values, simulated with
instance ’case2’, for 2000 iterations . . . . . . . . . . . . . . . 92

36 case Timy solved with Formulation 2 using CPLEX . . . . . . 94
37 case2 solved with Formulation 2 using CPLEX . . . . . . . . . 95
38 case3 solved with Formulation 2 using CPLEX . . . . . . . . . 96
39 case4 solved with Formulation 2 using CPLEX . . . . . . . . . 97
40 case5 solved with Formulation 2 using CPLEX . . . . . . . . . 98
41 case6 solved with Formulation 2 using CPLEX . . . . . . . . . 99
42 case7 solved with Formulation 2 using CPLEX . . . . . . . . . 100
43 case8 solved with Formulation 2 using CPLEX . . . . . . . . . 101
44 Example of bad decisions and good decisions made by brokers

of the network . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
45 Comparison of approaches 1 and 2 on the average cost of so-

lutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
46 C Comparison of approaches 1 and 2 on the average times to

obtain solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 108
47 Optimal Solution Instance ’case5’ before node 8 failure . . . . 110
48 Situation on Instance ’case5’ immediately after node 8 failure . 111
49 New Solution found for Instance ’case5’ after node 8 failure . . 111
50 case Timy solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
51 case2 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
52 case3 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
53 case4 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
54 case5 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
55 case6 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
56 case7 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
57 case8 solved with second approach of Distribute Lagrangian

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5



List of Tables
1 Example of Realization of Dijkstra’s Table - step 1 . . . . . . 33
2 Example of Realization of Dijkstra’s Table - step 2 . . . . . . 34
3 Example of Realization of Dijkstra’s Table - step 3 . . . . . . 34
4 Example of Realization of Dijkstra’s Table - step 4 . . . . . . 35
5 Example of Knapsack table . . . . . . . . . . . . . . . . . . . 45
6 Results Obtained with Formulation 1 with integrality con-

straints, and Continous Relaxation . . . . . . . . . . . . . . . 79
7 Analysis of centralized heuristic algorithm . . . . . . . . . . . 89
8 Results obtained from different algorithms . . . . . . . . . . . 93
9 Results of costs and mean cost of solutions obtained with first

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10 Results of number of reset and mean number of reset with first

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11 Time estimation and mean time for obtaining solutions with

first approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12 Results of costs and mean cost of solutions obtained with sec-

ond approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13 Results of number of reset and mean number of reset with

second approach . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14 Time estimation and mean time for obtaining solutions with

first approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
15 Percentage of optimal solutions found . . . . . . . . . . . . . . 109

6





Abstract

The Internet of Things (IoT) is an emerging technology that has
revolutionized the collection and processing of information through
the interconnection of smart objects. “Thing” or “object” in the con-
text of IoT refers to a wide range of device categories, equipment,
installations and systems, physical materials and products, works and
goods, as well as machines and equipment. In other words, it is any
type of object that can be connected to the internet and transmit data
for the collection and processing of information. Usually, IoT devices
send data to cloud servers, but this can cause connectivity and data
transfer problems, especially in areas with limited resources. To over-
come these obstacles, researchers are studying edge computing-based
solutions, which involve processing data directly at the source, rather
than on remote servers. This approach could enable more efficient
and effective services, but requires a transition to a decentralized and
interconnected IoT framework. However, current IoT infrastructures
are not yet ready for this type of transition. The main challenge
is to integrate edge computing capabilities into these infrastructures,
while ensuring their usability and high availability. The Publish/-
Subscribe communication method allows for data exchange between
network components without the need for direct connections between
them. The use of the MQTT protocol, one of the main protocols
used for message exchange between IoT devices, offers numerous ad-
vantages such as lightweight and scalability. However, this communi-
cation model also has some limitations, such as the vulnerability of
the broker, the system’s weak point, and the difficulty of managing
numerous IoT devices. To overcome these challenges, new solutions
based on a peer-to-peer approach are being developed.

This thesis examines the possibility of using multiple distributed
MQTT brokers on different interconnected machines as a promising
solution to improve system reliability and scalability. However, since
this configuration requires careful and coordinated management of the
various brokers, so that they act as a single entity, it is necessary to
explore the use of a fully-distributed optimization solution based on
a Lagrangian relaxation approach. This approach allows finding an
optimal solution for a complex optimization problem by breaking it
down into simpler sub-problems. In particular, the potential of us-
ing Lagrangian relaxation to optimize data distribution between the
various MQTT brokers is evaluated, thus ensuring optimal load bal-
ancing and reliability for the entire system. The main objective of
the project is to evaluate the effectiveness of distributed Lagrangian

8



heuristic algorithms in the field of communication network manage-
ment. These algorithms allow network nodes to act autonomously,
based only on information about themselves and neighboring nodes
they can communicate with, without the need for centralized manage-
ment. In particular, each node must execute an algorithm that uses
Lagrangian penalty calculation and message exchange to make heuris-
tic choices in order to establish effective connections in the network.
The goal is therefore to propose algorithms that improve network ef-
ficiency and reliability without the need for centralized management.
The thesis is divided into five chapters, each of which focuses on spe-
cific aspects of the research.

Chapter 1 introduces the IoT field and the publish/subscribe ap-
proach, which form the basis of the research work. In addition, La-
grangian relaxation and the subgradient method are presented, which
will be used later for the implementation of the algorithms.

Chapter 2 focuses on the problem scenario and the mathemati-
cal formulation of the optimization problems that need to be solved.
In particular, two optimization models and their relaxations are ana-
lyzed.

Chapter 3 presents the algorithms implemented in the research
work, which are based on the distributed Lagrangian heuristic ap-
proach. The proposed algorithms aim to optimize the distribution of
data between MQTT brokers, achieving load balance and optimal re-
liability for the entire system.

Chapter 4 presents the experimental results obtained by imple-
menting the proposed algorithms in a simulated environment. The
results show that the proposed algorithms can effectively improve the
efficiency and reliability of the network.

Finally, Chapter 5 summarizes the research work carried out and
presents possible applications of the developed algorithms in a real-
world context, as well as potential future improvements.

In conclusion, the research work presented in this thesis provides
a promising solution to the challenges posed by the increasing com-
plexity and scale of IoT networks. The proposed approach based on
distributed Lagrangian heuristic algorithms can effectively improve
the efficiency and reliability of the network, without the need for cen-
tralized management.

9



1 Introduction

1.1 IoT Decentralized Architecture

The Internet of Things (IoT) has revolutionized the way in which we collect
and process informations. At its core, the IoT is built on the concept of
“intelligent” objects that are interconnected and able to exchange the in-
formation they possess. The aim is to enable the collection and processing
of data from diverse sources with the ultimate goal of providing enhanced
services and products to end-users.

Typically, data from IoT devices are transmitted to servers located in
the cloud. However, these servers can often be situated far from the devices
themselves, resulting in transfer time issues and connection failures. More-
over, connectivity in rural and remote areas can be poor, resulting in poor
performance and limited functionality. As a result, researchers are now look-
ing at edge-computing solutions. These solutions enable the deployment of
artificial intelligence in areas where connectivity is poor and resources are
limited, such as rural areas. Such an approach can potentially provide more
efficient and responsive services by processing data at its source, i.e., at the
edge. Moving towards a decentralized and interconnected Internet of Things
(IoT) framework could be a promising solution. However, the current IoT
infrastructures are not yet ready for this transition to decentralization. The
primary challenge lies in effectively incorporating edge computing features
into existing IoT infrastructures, while maintaining the usability and high
availability of the current systems. In addition to this, it is important to
understand what additional benefits this new paradigm can offer to the IoT.
Decentralization could potentially enhance security, reduce costs, and enable
more efficient sharing of resources. As such, the research focus should be on
developing a framework that can seamlessly integrate edge computing into
the IoT architecture without compromising the usability and high availability
of the system. In summary, the Internet of Things (IoT) is a rapidly evolv-
ing field that has the potential to revolutionize the way in which we interact
with our environment. By shifting to a decentralized and interconnected
IoT framework, it is possible to enhance the efficiency and responsiveness of
services by processing data at the edge, which is the source of the data. How-
ever, achieving this goal would require significant research and development
efforts, and a concerted effort to integrate edge computing features into the
existing IoT infrastructure.

10



1.2 Publish/Subscribe Model & MQTT

The Publish/Subscribe (also Pub/Sub) communication pattern has become a
fundamental pillar of IoT applications, enabling the exchange of data between
different components of a network without direct connections between them.
By distinguishing the client into publishers and subscribers, Pub/Sub has
revolutionized the traditional client-server model. The broker, responsible for
routing and distributing information, is the backbone of this model. Pub/Sub
offers greater flexibility and scalability, as it does not require clients to have
knowledge of each other’s existence (Figure 1).

Figure 1: Difference Between Client-server and Publish/Subscribe

One of the main protocols used for exchanging messages between IoT
devices is MQTT, which was specifically designed to be lightweight and scal-
able. MQTT makes it possible to exchange information between publishers
and subscribers without direct communication between them, thus making
it ideal for IoT devices with limited resources, such as those with long bat-
tery life. Despite the advantages of Pub/Sub and MQTT, they have some
limitations. The broker represents the weak point of the system, and if it be-
comes inaccessible, all communications are interrupted. Furthermore, these
systems struggle to handle the considerable number of IoT devices expected
in the future. These challenges have led to the development of new solutions
based on a peer-to-peer approach, where participants are connected through
publishers and subscribers that are linked to specific topics.

When choosing a message broker infrastructure, it is crucial to consider
various design considerations such as latency, bandwidth, message handling,
service availability, service reliability, and security. To overcome these chal-
lenges, it is possible to use multiple distributed MQTT brokers on different
machines connected via a network, which act as a single entity. This ap-
proach ensures high scalability, replication, elasticity, and resiliency to fail-

11



ures. However, it may increase latency and communication overhead between
brokers, which can be problematic in an IoT scenario where deployments are
often in constrained or frugal environments with brokers located at the net-
work’s edge. Hence, the optimal network configuration that can transmit
the maximum number of messages to subscribers or minimize the number
of unfulfilled network requests should be discovered to tackle this network
design challenge.

1.3 Peer to Peer

The P2P (peer-to-peer) protocol is a communication model in which partic-
ipants communicate directly with each other, without a central server. In a
P2P system, each participant is both a client and a server, and each partic-
ipant can provide and request resources or services from other participants.
The P2P protocol was originally used for file sharing, where participants
can share and download files directly from other participants without going
through a central server. However, the P2P protocol can be used in many
other applications, such as sharing computing resources, distributing real-
time content, social networks, gaming networks, and more. There are differ-
ent types of P2P architectures, including structured and unstructured ones.
In structured P2P networks, participants are organized in a well-defined net-
work structure, such as a tree or a distributed hash table, which allows for ef-
ficient resource localization. In unstructured P2P networks, participants are
organized randomly, making it more difficult to find desired resources. There
are also several challenges associated with implementing P2P systems, such
as scalability, security, availability, and bandwidth management. However,
the P2P protocol remains an important and increasingly used communication
model, especially in the era of the Internet of Things and edge computing.

The idea is to create distributed algorithms in which each node works au-
tonomously to create connections with neighboring nodes, in order to create a
direct link between the requester and the data sender. To solve this problem,
Lagrangian relaxations will be used, which allow the problem to be divided
into simpler sub-problems for each node. In the next pages, the concept of
Lagrangian relaxation and the subgradient technique will be introduced to
provide practical context to the development of the algorithm.

12



1.4 Lagrangian Relaxation

Given the use of Lagrangian relaxations in the problems that will be pre-
sented, a brief and preliminary introduction to these techniques is deemed
necessary to establish a sufficient conceptual foundation for their application.

The approach of Lagrangian relaxations is a very useful technique in
many fields of optimization, as it allows for the efficient handling of opti-
mization problems with constraints. A common example where it is used is
the linear optimization problem with constraints, where the goal is to max-
imize or minimize a linear function (called objective function) subject to
linear constraints. The key concept is to convert the constrained optimiza-
tion problem into an unconstrained optimization problem by relaxing only
certain constraints, particularly those that make the problem challenging to
solve, by introducing the constraints as part of the objective function to be
minimized or maximized. In this way, standard optimization techniques can
be used to solve the problem without directly considering all the constraints.
In practice, this is done by associating to each relaxed objective function
constraint a Lagrange multiplier. In this way, the constraints become part
of the objective function to be minimized or maximized, and the problem
becomes a simpler optimization problem. The result of this operation is a
new objective function, called the Lagrangian function, which depends on
both the original variables of the problem and the Lagrange multipliers. By
solving the optimization problem related to the Lagrangian function, one ob-
tains the optimal values of the original variables, together with the optimal
values of the Lagrange multipliers. An important aspect to note is that the
Lagrange multipliers can be interpreted as the ”penalties” associated with
the constraints that have been introduced. In other words, the higher the
value of the Lagrange multiplier associated with a constraint, the greater the
penalty associated with that constraint in the optimization problem. In gen-
eral, the approach of Lagrangian relaxations is a very powerful and flexible
technique that allows for the efficient solution of a wide range of optimiza-
tion problems with constraints. It is widely used in fields such as engineering,
economics, social sciences, and many others, and is an essential tool for any
optimization expert.

13



1.4.1 Mathematical Explanation

Consider an integer linear programming problem P

z(P ) = min cTx (1)

s.t.
Ax ≥ b (2)

Bx ≥ d (3)

x ∈ {0, 1} (4)

Let c be the cost vector, x be the variable vector of the problem, A and
B be the matrix of coefficients of the constraints, b and d be the vector of
the right-hand sides of the constraints.

Lagrangian relaxation involves relaxing the difficult constraints and intro-
ducing them into the objective function by adding a non-negative penalty
vector. For example the constraint (2) is satisfied if:

Ax− b ≥ 0 (5)

Then we can reformulate the relaxed problem as:

L(λ) = min cTx− λ(Ax− b) (6)

s.t.
Bx ≥ d (7)

x ∈ {0, 1} (8)

The minus sign is due to the fact that the constraint is satisfied when it
assumes a value greater than or equal to zero, and the penalties are assumed
non-negative. Since this is a minimization problem, we want to penalize the
constraint when it is not satisfied (i.e., when it assumes a negative value). By
subtracting the constraint, we are in fact adding a quantity to the original
problem, thereby opposing its minimization.

The optimal value of z(P) for the original problem will be greater than
or at most equal to the optimal value of L(λ) for the relaxed problem.

z(P ) ≥ L(λ), ∀λ ≥ 0 (9)

Therefore, the relaxed problem provides us with a lower bound for the opti-
mal value of the original problem.

14



The Lagrangian penalities that maximize the Lagrangian function L(λ) can
be found by solving the following problem, called Lagrangian Dual:

z(DL) = max
λ≥0

[L(λ)] (10)

Since the Lagrangian relaxed problem provides a lower bound, maximiz-
ing the estimated Lagrangian provides the best lower bound for the problem.
The subgradient method is one of the techniques that can be used to search
the optimal (or near-optimal) solution of the Lagrangian Dual.

1.4.2 Subgradient Method

The subgradient method is an iterative method used to maximize or mini-
mize a convex or concave nondifferentiable function, such as the Lagrangian
function. Specifically, the subgradient method can be used to compute the
Lagrange multipliers associated with the relaxed constraints of an optimiza-
tion problem. The best bound can be obtained by maximizing the value
of the Lagrangian function (Lagrangian Dual). The Lagrangian function is
concave, as can be observed by sampling some values of the function. More
specifically, the Lagrangian function is piecewise linear, and the envelope of
these segments results in a concave function (as shown in Figure 2). The
segments that compose this function are associated with specific vectors x̄
that characterize the optimal solution.

Figure 2: Example of Lagrangian Function

Given lambda, let x̄ be the solution of the Lagrangian relaxation L(λ̄),
which identifies a point in the function:

15



L(λ̄) = cx̄− λ̄(Ax̄− b) (11)

Figure 3: Step 1 - Sub-gradient Method

For a generic lambda, we have:

L(λ) = min (cTx− λ(Ax− b)) ≤ cx̄− λ(Ax̄− b) (12)

By subtracting equation (11) from equation (12), we obtain:

L(λ)− L(λ̄) ≤ −(λ− λ̄)(Ax̄− b) (13)

that is:
L(λ) ≤ L(λ̄)− (Ax̄− b)(λ− λ̄) (14)

It follows that: s = −(Ax̄− b) is a subgradient of L(λ) at λ̄.

For L(λ) to be greater than L(λ̄), it is necessary that:

−(Ax̄− b)(λ− λ̄) > 0 (15)

So it is necessary to move in the direction of subgradient:

λ = λ̄+ θs θ > 0 (16)

16



Figure 4: Step 2 - Sub-gradient Method

The choice of the parameter θ is crucial, as a step that is too large may
cause the divergence of the method (low values of lower bound far from
optimal solution of Lagrangian Dual), while a step that is too short may
result in too many steps being required.

17



1.5 Continuous Relaxation

To understand the concept of continuous relaxation, it’s important to first
have a basic understanding of optimization problems.
An optimization problem is a mathematical problem where the goal is to
find the best solution from a set of possible solutions. This can involve max-
imizing or minimizing an objective function subject to certain constraints.
In some cases, the variables in the optimization problem are restricted to be
integers, which are called integer variables. However, solving optimization
problems with integer variables can be computationally complex and time-
consuming. This is where continuous relaxation comes in. In some cases, it is
possible to transform an optimization problem with integer variables into an
equivalent optimization problem with continuous variables. This is done by
relaxing the integrality constraint on the variables, allowing them to take on
any value in a continuous range. This approach is called “continuous relax-
ation”. Continuous relaxation is a common technique used in optimization
to deal with the computational complexity associated with solving problems
with discrete variables. By allowing the variables to take on fractional values,
the relaxed problem can be solved using standard optimization techniques,
providing a lower bound on the optimal solution of the original problem.
The difference between the optimal solutions of the relaxed problem and the
original problem is known as the integrality gap.
Compared to Lagrangian relaxations, which introduce penalties associated
with some constraints, continuous relaxations eliminate the integrality con-
straint by allowing variables to take on fractional values. In some cases, it
is possible to derive valid bounds on the integrality gap, which can be used
to evaluate the quality of the solution obtained from the relaxed problem. If
the continuous relaxation is equivalent to the Lagrangian relaxation, we say
that there is an integrality property. It is important to underline that the
Lagrangian relaxation could dominate the continuous relaxation and not vice
versa. Continuous relaxations are widely used in fields such as operations re-
search, computer science, and engineering, and are an essential tool for any
optimization expert. Overall, continuous relaxation is a powerful technique
that allows for the efficient optimization of complex problems with integer
variables.

18



2 Problem Description

2.1 Problem Scenario

The scenario presented in this thesis concerns a network of distributed nodes
that exchange data (commodities) between information generators (Publishers)
and network elements interested in receiving them (Subscribers). In this
context, intermediary nodes (Brokers) play the role of information distrib-
utors, routing them to Subscribers or other Brokers. To ensure efficient
exchange of information, various factors are considered, such as:

· Capacity of connections (e.g., available bandwidth);

· Cost of connection usage (e.g., energy consumption);

· Weight of each commodity (e.g., bandwidth occupation).

In the network, not all nodes are visible to each other, but there are subgroups
of nodes that have limited access to information from others. This can affect
the network’s ability to exchange information.

Figure 5: Example of sensor network

Figure 5 presents a simple network model for the Pub/Sub problem, where
there are two sensors (humidity and temperature) acting as publishers and
two data storage systems acting as subscribers. The network consists of 7
brokers that communicate with each other and with the commodity genera-
tors/requesters.
Brokers in the network do not store data themselves, but only the tags re-
quested by clients or other brokers with which they are connected. Their

19



role is to forward data that is compatible with the stored requests. Brokers
are also able to request data from other nodes in order to forward the data
over the network and create dynamic paths between data producers and ex-
ternally connected nodes. It is also assumed that commodity flows cannot
be split and recombined at the destination. In summary, the problem can
be seen as a network designing problem. This particular version of the prob-
lem is Known as Publish/Subscribe network design problem (described at
subsection 1.2). The main objective of the project is to minimize the over-
all cost of the network in terms of connections made, while maximizing the
number of commodities provided to requesting Subscribers. To achieve this
goal, two main approaches are considered, which will be explored in detail
in the following chapters of the paper.

To better introduce the objective functions analyzed in this thesis, it
is necessary to provide a brief explanation of the terminology used for the
variables involved:

· K, set of commodities

· S, set of source nodes

· sk, node that produce the commodity k (sk ⊆ S)

· T, set of destination nodes

· Tk, set of destination that requires commodity k (Tk ⊆ T)

· B, set of brokers

· N, set of nodes (B ∪ S ∪ T)

· A, set of directed arcs between nodes

· Γi, set of end-nodes of arcs outgoing from node i

· Γ−1
i , set of end-nodes of arcs incoming to node i

· x k
ij, integer variable indicating how many subscribers requesting com-

modity k are served through the arc (i, j).

· ξki,j, binary variable equal to 1 if commodity k is transmitted along the
arc i,j, 0 otherwise.

· ui,j, the total capacity of the arc (i, j).

20



· ci,j, the cost for using the arc (i, j).

· ak, bandwidth occupation of the commodity k.

· bki , which is bki ≥ 0 for nodes that produce or emit the commodity k,
bki = −1 for nodes that require the commodity k, 0 otherwise.

2.2 First Formulation

The first formulation of the problem is aimed at maximizing the number
of satisfied requests. This is formalized through a standard minimum-cost
maximum flow structure, where the feasible flow distributions that achieve
the maximum satisfaction goal are compared and the one with the lowest
cost is chosen. The problem of maximizing can be easily transformed into
the problem of minimizing the number of unsatisfied requests by adding
dummy arcs with high cost that enter the sink nodes, which will be used
only when no other feasible options are available to satisfy their request.

Objective Function:

minimize
∑
k∈K

∑
i∈N

∑
j∈Γ−1

i

cjix
k
ji (17)

Subject to: ∑
j∈Γ−1

i

xk
jt = 1 ∀t ∈ T k, k ∈ K (18)

∑
j∈Γ−1

i

xk
ji =

∑
j∈Γi

xk
ij ∀i ∈ B, k ∈ K (19)

Mξkij ≥ xk
ij (i, j) ∈ A, k ∈ K (20)

∑
k∈K

ak(ξkij + ξkji) ≤ uij ∀i ∈ N, j ∈ Γi (21)

xk
ij ≥ 0 ∀(i, j) ∈ A, k ∈ K (22)

ξkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (23)

The objective function of the problem is represented by Equation (17).
To optimize the problem, we assign non-negative costs to the arcs between

21



nodes in the network. The goal is to minimize the cost of flow within the
network and discourage direct flow between source and destination nodes
using dummy arcs. Equation (18) ensures that every destination node for a
commodity k receives that commodity. Equation (19) enforces the constraint
that every commodity entering a broker node i must also exit the node, thus
ensuring the conservation and continuity of flow within the network. Con-
straints (20) links the variables xk

ij and ξkij, ensuring that each xk
ij is 1 when

the corresponding arc has a nonzero flow for commodity k. Finally, Con-
straints (21) imposes the capacity constraint on the arcs, while constraints
(22) and (23) enforce the integrality constraints on the decision variables.

2.3 Second Formulation

In the second formulation, the minimization of the number of activated chan-
nels for node connections (variable ξ) is considered, unlike in the first formu-
lation where the number of commodities served via the arc (i, j) (variable x )
was considered.

Objective Function:

minimize
∑
k∈K

∑
i,j∈A

cijξ
k
ij (24)

Subject to: ∑
j∈Γi

xk
ij −

∑
j∈Γ−1

i

xk
ji = bik ∀i ∈ N \ {sk}, k ∈ K (25)

∑
k∈K

akξkij ≤ uij ∀(i, j) ∈ A (26)

ξkij ≤ xk
ij ≤ ξkij|Tk| ∀(i, j) ∈ A, k ∈ K (27)

xk
ij ≥ 0 ∀(i, j) ∈ A, k ∈ K (28)

ξkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (29)

The main goal of this formulation of the problem is to minimize the over-
all cost of the utilized connections, as expressed in the objective function
(24,). The flow conservation constraints (25) guarantee that the amount of
commodity entering a broker node is equal to the amount exiting it, ensuring

22



the continuity of the flow. The capacity constraints (26) impose a limit on the
amount of commodities that can be transmitted through a connection with-
out exceeding its maximum capacity. Additionally, the linking constraints
(27) relate the two sets of variables and ensure that there is a nonzero flow
of commodity k only if the connection is ”open” (i.e., ξkij = 1).

2.3.1 Lagrangian Relaxation

We can relax problem (24) -(29) using Lagrangian approach, dualizing the
constraints (25) in the objective function by adding Lagrangian penalties
λk
i . These penalties correspond to the cost of violating the constraints, and

they allow the objective function to be optimized subject to the remaining
constraints. By dualizing the constraints, we obtain a new objective function
that is easier to solve, as it involves fewer constraints. However, this new
objective function may not necessarily have the same optimal solution as the
original problem, but it guarantees that it is a valid lower bound.
Lagrangian Relaxation:

(LR) zLR(λ) = min
∑
k∈K

∑
i,j∈A

ckijξ
k
ij + (λk

i − λk
j )x

k
ij −

∑
k∈K

∑
i∈N

λk
i b

k
i (30)

s.t. ∑
k∈K

akξ
k
ij ≤ uij (i, j) ∈ A (31)

ξkij ≤ xk
ij ≤ |Tk|ξkij (i, j) ∈ A, k ∈ K (32)

xk
ij ≥ 0 (i, j) ∈ A, k ∈ K (33)

ξkij ∈ [0, 1] (i, j) ∈ A, k ∈ K (34)

The problem LR (30) - (34) can be decomposed into |A| sub-problems,
denoted as LRij, with one sub-problem corresponding to each arc in the
graph. Each sub-problem is defined as follows:

(LRij) zLR(λ) = min
∑
k∈K

ckijξ
k
ij + (λk

i − λk
j )x

k
ij (35)

s.t. ∑
k∈K

akξ
k
ij ≤ uij (i, j) ∈ A (36)

23



ξkij ≤ xk
ij ≤ |Tk|ξkij (i, j) ∈ A (37)

xk
ij ≥ 0 (i, j) ∈ A (38)

ξkij ∈ {0, 1} (i, j) ∈ A (39)

So, the Lagrangian Relaxation at (30) can be written as:

zLR(λ) =
∑
i,j∈A

zkLRij
(λ)−

∑
k∈K

∑
i∈N

λk
i b

k
i (40)

To obtain the solution of each sub-problem zLRij(λ) (35), the following
knapsack problem needs to be solved:

(LRij) zLRij(λ) = min
∑
k∈K̄

c̄kijξ
k
ij (41)

s.t. ∑
k∈K̄

akξ
k
ij ≤ uij (42)

ξkij ∈ {0, 1} (i, j) ∈ A (43)

where K̄ and c̄kij and the solution are defined as follows:

• if c̄kij + λk
i − λk

j ≥ 0, then k is not included in K̄ and ξkij = xk
ij = 0

• if c̄kij + λk
i − λk

j < 0 but λk
i − λk

j > 0, then k is included in K̄, c̄kij =
ckij + λk

i − λk
j and the solution is xk

ij = ξkij = 1

• if c̄kij + λk
i − λk

j < 0 but λk
i − λk

j < 0, then k is included in K̄, c̄kij =
ckij + |Tk|(λk

i − λk
j ) and the solution is xk

ij = ξkij|Tk|

By solving this knapsack problem, we are selecting the commodities to
send along the arc (i, j), minimizing the cost of utilizing that arc.

A valid lower bound zLB for the flow problem (24) - (29) can be obtained
solving with a subgradient algorithm the following Lagrangian Dual:

zLB = max
λ≥0

[zLR(λ)] (44)

24



3 Algorithm Implementation
In this chapter, we will present the different types of simulations performed,
describing the reasons behind the code implemented in Python with the aid
of solvers such as CPLEX.

The first approach to the problem described in this thesis was carried out
using formulation 1, as described in Section 2.2, in a centralized manner. It
is assumed that an abstract entity, aware of all the informations about the
nodes and commodities involved, manages the sending of messages by pub-
lishers, the sending of requests by subscribers, and the routing by brokers in
order to minimize the objective function (17). To do this, the CPLEX solver
was used.

Subsequently, the problem was managed with formulation 2, described in Sec-
tion 2.3, first with a centralized approach using the CPLEX solver. Then, the
problem was relaxed in a Lagrangian way, using the subgradient approach
(as described in Section 1.4.2). To do this, a function that solves knapsack
problems and a heuristic that provides an upper bound for the subgradient
algorithm were implemented.

Finally, the work focused on implementing the problem in a distributed man-
ner. This means that each node makes decisions autonomously, calculating
its penalties and requesting the others from neighboring nodes. Based on the
availability of communicating nodes, commodities or requests are sent to the
most cost-effective nodes in terms of the penalized edges.

For comparison purposes, an additional heuristic version was also developed
for the distributed management of communications between nodes. This is
based on an exchange of messages of requests and availability between nodes,
in order to establish the most convenient communication for each node.

3.1 Centralized Version with Formulation 1

First of all, it is necessary to import the ’docplex’ package in order to use
the CPLEX solver in Jupiter.

from docplex.mp.model import Model

25



The instance data of the problem is available in .json files, so it is neces-
sary to import them using the following command:

data = json.load(codecs.open(file , ’r’, ’utf -8-sig’))

After the extraction and management of the data, the following are avail-
able (in parentheses are the names of the corresponding Python variables):
the number of nodes (n) and commodities (nk) that make up the problem, the
set of nodes (N), publishers (S), subscribers (T), and subscribers requesting
the k-th commodity (Tk), the set of brokers (B) and the set of commodities
(K), the cost matrices (Ck) and capacity matrices (Cap). The weight of the
transmission of each commodity (a) and the coordinates of each node (co-
ordinates). The lists of nodes to which each node can send (Lt) and from
which it can receive (Lr), and the set of existing arcs (A).

The next step is to create an optimization model using the imported
’docplex’ module and to define the decision variables x and ξ as initially
empty.

opt_mod = Model("PubSub")

x = opt_mod.integer_var_cube(nk, n, n)

xi = opt_mod.binary_var_cube(nk , n, n, name =’xi’)

Then, the various constraints described in Section 2.2 are defined.

Constraint (18):

for k in K:

for t in Tk[k]:

opt_mod.add_constraint(opt_mod.sum(x[k,j,t]

for j in Lr[t])==1)

Constraint (19):

for k in K:

for i in B:

opt_mod.add_constraint(opt_mod.sum(x[k,j,i]

for j in Lr[i]) == opt_mod.sum(x[k,i,j]

for j in Lt[i]))

Constraint (20):

for k in K:

for endp in A:

opt_mod.add_constraint(len(Tk[k])*

xi[k,endp[0],endp [1]] >= x[k,endp[0],

endp [1]])

26



Constraint (21):

for i in N:

for j in Lt[i]:

opt_mod.add_constraint(opt_mod.sum(a[k] *

(xi[k,i,j] + xi[k,j,i]) for k in K) <=

Cap[i,j])

Constraint (22):

for k in K:

for endp in A:

opt_mod.add_constraint(x[k,endp[0],endp [1]]

>= 0)

The constraint (23), which enforce the binary values of ξkij, do not need
to be implemented as these variables have already been defined as binary in
the previous step.

We define the objective function (17) as follows:

z = opt_mod.sum(opt_mod.sum(opt_mod.sum((Ck[k][j,i] *

x[k,j,i]) for j in Lr[i]) for i in N)for k in K)

It is communicated to the solver the intention of minimizing the objective
function ’z’ and the command is used to start its resolution:

opt_mod.set_objective(’min’,z)

opt_mod.print_information ()

Sol = opt_mod.solve()

By specifying the objective function ’z’ and the corresponding constraints,
the solver to search for the optimal solution. Upon completion of the op-
timization process, the solver will return the value of the decision variables
that correspond to the solution, satisfying the problem requirements and
constraints. To extract the obtained decision variable values and bring them
into matrix form, the following functions have been implemented:

def binExtract(n,nk ,binary_vars ):

Xi = np.zeros((nk ,n,n))

for b in binary_vars:

pos = re.findall(r’\d+’,str(b))

l = [int(j) for j in pos]

Xi[l[0],l[1],l[2]] = b.solution_value

return Xi

27



def intExtract(n,nk ,integer_vars ):

X = np.zeros ((nk,n,n))

for v in opt_mod.iter_integer_vars ():

pos = re.findall(r’\d+’,str(v))

l = [int(s) for s in pos]

X[l[0],l[1],l[2]] = v.solution_value

return X

The implemented functions allow to obtain tensors (matrices of matrices),
where the index k identifies the solution matrix for the k-th commodity, the
index i indicates the starting node, and the index j indicates the arrival node
of the edges.

By implementing the optimization problem in this way, the solver has all the
information of the given instance available. Therefore, a centralized approach
is being used.

3.2 Continuous Relaxation of Formulation 1

To obtain the continuous relaxation of the optimization problem with integer
variables described in Chapter 2.2, it is possible to define the decision vari-
ables as continuous instead of integer or binary. In this way, the integrality
constraints can be relaxed, and the problem can be solved using standard
optimization techniques, providing a lower bound on the optimal solution of
the original problem. This technique is called “continuous relaxation” and is
commonly used to deal with the computational complexity associated with
solving problems with discrete variables.

x = opt_mod.continuous_var_cube(nk, n, n)

xi = opt_mod.continuous_var_cube(nk , n, n,name =’xi’)

3.3 Centralized Version with Formulation 2

Formulation 2 represents a centralized optimization approach that aims to
minimize the total cost of the necessary links to satisfy the demand of all sub-
scribers. Unlike Formulation 1, Formulation 2 considers each link only once,
regardless of the number of branches required to meet the demand of dif-
ferent subscribers. To implement Formulation 2, the programming language
Python is still used, with the help of Jupyter as the development environ-
ment. The solver used to find the optimal solution is CPLEX, which is inte-
grated into the implementation of the optimization model. After extracting

28



the relevant data from the instances in .json format, the optimization model
is created, which includes capacity constraints, cost constraints, and the ob-
jective function that aims to minimize the total cost of the links. Then, the
solver is launched to find the optimal solution to the optimization problem.
The implementation of Formulation 2 requires a specific set of steps, such as
identifying nodes and links, defining commodities, and specifying capacity
and cost constraints.

Once the ’docplex ’ package is imported into Python, the decision variables
are defined and used to create the optimization model.

opt_mod = Model("PubSub")

x = opt_mod.integer_var_cube(nk, n, n)

xi = opt_mod.binary_var_cube(nk , n, n, name =’xi’)

Then, the various constraints described at Section 2.3 are defined.

Constraint (25):

for k in K:

for i in N:

if i in S:

opt_mod.add_constraint ((

opt_mod.sum(x[k,i,j] for j in Lt[i])

- opt_mod.sum(x[k,j,i] for j in Lr[i]))

>= b[k,i])

else:

opt_mod.add_constraint ((

opt_mod.sum(x[k,i,j] for j in Lt[i])

- opt_mod.sum(x[k,j,i] for j in Lr[i]))

== b[k,i])

Constraint (26):

for endp in A:

opt_mod.add_constraint(opt_mod.sum(a[k]*

xi[k,endp[0],endp [1]] for k in K) <=

Cap[endp[0],endp [1]])

Constraint (27):

for k in K:

for endp in A:

opt_mod.add_constraint(xi[k,endp[0],endp [1]]

<= x[k,endp[0], endp [1]])

opt_mod.add_constraint(x[k,endp[0], endp [1]]

<= len(Tk[k])*xi[k,endp[0],endp [1]])

29



The constraints (28) and (29) ensure that xk
ij are integers and ξkij are bi-

naries. As the variables ξkij and xk
ij have already been defined as binary and

integer in the previous step, there is no need to implement these constraints.

The objective function (24) is defined as follows:

z = opt_mod.sum(opt_mod.sum((Ck[k][endp[0],endp [1]]*

xi[k,endp[0],endp [1]]) for endp in A) for k in K)

It is communicated to the solver the intention of minimizing the objective
function ’z’ and the command is used to start its resolution.

opt_mod.set_objective(’min’,z)

opt_mod.print_information ()

Sol = opt_mod.solve()

opt_mod.print_solution ()

The decision variable values are extracted and reformatted in a matrix form
using the ’binExtract’ and ’intExtract’ functions defined at Section 3.1.

3.4 Continuous Relaxation of Formulation 2

The continuous relaxation of Formulation 2 is obtained by relaxing the in-
tegrality constraints on the decision variables xk

ij and ξkij. As a result, the
solver is now able to consider continuous values for these variables instead of
being constrained to integer or binary values as in the original formulation.
To achieve this relaxation, we modified the constraints in Formulation 2 by
replacing the binary constraints on ’xi’ with linear constraints that permit
non-integer values of ’xi’. Similarly, we replaced the integer constraints on ’x’
with linear constraints that permit non-integer values of ’x’. The process of
continuous relaxation applied to Formulation 2 can offer several advantages.
For instance, it enables us to obtain a lower bound on the optimal solution
value of the original problem, which can be useful in validating the quality
of any integer solutions obtained.

opt_mod = Model("PubSub")

x = opt_mod.continuous_var_cube(nk, n, n)

xi = opt_mod.continuous_var_cube(nk , n, n,name =’xi’)

The implementation of the model, the definition of the constraints, and
the definition of the objective function remain the same as in Section (3.3).

30



3.5 Heuristic Algorithm for Network Design

Problems

A heuristic algorithm is a search and optimization technique used to solve
complex computational problems based on empirical rules, experience, and
learning ability. Unlike exact methods that guarantee optimal solutions but
require high execution time, heuristic algorithms can provide an acceptable
solution in relatively short time, although not necessarily optimal. A heuris-
tic algorithm is based on a set of heuristic strategies, which are empirical or
heuristic rules that allow efficient exploration of solution space. The effec-
tiveness of a heuristic algorithm depends on the choice of heuristic strategies,
the way these strategies are integrated into the algorithm, and their ability to
efficiently explore solution space. Therefore, a heuristic algorithm has been
developed to find acceptable solutions to the network design problems at
hand. This allows us to find an Upper Bound for the optimization problem
described by Formulation 2.

The implemented heuristic is based on finding the least cost path from pub-
lisher to subscriber for each commodity in the problem. This is implemented
using Dijkstra’s algorithm for defining the best path. To take into account
the bandwidth occupation of the channels, an occupation matrix (O) is de-
fined where the rows indicate the starting nodes and the columns the arrival
node (therefore an arc) and each element defines the bandwidth occupied for
via transmissions in that arc.

3.5.1 Overview of the Implemented Heuristic Algorithm

The points of reasoning underlying the heuristic are as follows:

1. Randomly Shuffling the List of Publishers.
This guarantees that Dijkstra’s algorithm finds paths starting from
publishers in a different order each iteration, thus giving different pri-
orities to the commodities in the bandwidth occupation of the edges

2. For each Pub (in the order given) and related commodity, Dijkstra’s
algorithm is performed.
In doing so, a matrix is provided in which the path with the minimum
cost from the publisher to the subscriber of the commodity concerned
is obtained.

31



3. For each subscriber that requests the commodities generated by a give
publisher, a starting and finishing point is defined.

Initially the starting point is the broker who serves the subscriber re-
questing of the commodity and the arrival point is the subscriber him-
self. The bandwidth occupation for sending data in this arc is counted
and if its capacity allows it, the arc is put into solution (ξkij=1) and the
occupation matrix (Oij) is updated with the weight of the commodity
(ak).

After that, the end point is replaced with the previous starting point,
and the new starting point will be the node serving the current end
node according to the Dijkstra matrix. If the occupation of arc (i, j)
allows it, this arc is put into solution.

This process is repeated until the starting point is the publisher of the
commodity we are considering.

4. The cost of the solution obtained is calculated and if this is lower than
the minimum cost among the solutions previously formulated (out of
50 repetitions of the algorithm) it is saved in memory.

Figure 6: Heuristic Algorithm Structure

32



In order to understand the heuristic algorithm described in the previous
paragraph, it is essential to provide an introduction to Dijkstra’s algorithm
and its implementation, since the heuristic algorithm is based on it.

Dijkstra’s Algorithm

The objective of this algorithm is to find the shortest path between any two
vertexes in a graph. As an illustration, consider the following example.
Consider a problem consisting of 5 nodes, comprising a publisher (P), three
brokers (B1, B2, B3), and a subscriber (S). The Figure 7 displays the corre-
sponding network topology, where the costs of the existing arcs are indicated.

Figure 7: Network Example for Dijkstra’s Algorithm - step 1

To begin with, let us assume that the distance from publisher A to itself is
zero, while the distances to all other nodes are unknown. Next, we initialize
the Dijkstra table by assigning high costs to reach all the other nodes, such
as infinity (as shown in the Table 1).

Vertex Shortest distance from A Previous vertex

P 0
B1 ∞
B2 ∞
B3 ∞
S ∞

Table 1: Example of Realization of Dijkstra’s Table - step 1

After initializing the table with vertex P and setting all other vertices
as unvisited with infinite distance from P, we proceed to visit the unvisited
nodes with the lowest distance from P. For each visited node, we update the

33



shortest distance in the table if it is lower than the current distance stored in
the table. We also update the previous vertex field in the table to the current
vertex if the new distance is shorter. After processing all the adjacent vertices
of the current vertex, we remove it from the list of unvisited nodes and insert
it into the list of visited nodes.

Figure 8: Network Example for Dijkstra’s Algorithm - step 2

Vertex Shortest distance from A Previous vertex

P 0
B1 8 P
B2 1 P
B3 ∞
S ∞

Table 2: Example of Realization of Dijkstra’s Table - step 2

Subsequently, the algorithm repeats starting from the node with the low-
est distance among those not yet visited, in this case B2. Next, we visit
the unvisited neighbors of B2, calculate their distance from the initial vertex
(S), and save the data in the table if the new distances are lower than the
previously written distances in the table.

Vertex Shortest distance from A Previous vertex

P 0
B1 3 B2
B2 1 P
B3 2 B2
S ∞

Table 3: Example of Realization of Dijkstra’s Table - step 3

34



Figure 9: Network Example for Dijkstra’s Algorithm - step 3

Proceeding in the same way, we obtain a table that indicates the smallest
known distance from the starting vertex (S) for each node, along with the
previous node from which one passes to reach it.

Vertex Shortest distance from A Previous vertex

P 0
B1 3 B2
B2 7 B3
B3 1 S
S 2 B2

Table 4: Example of Realization of Dijkstra’s Table - step 4

At this point, we have a table available that allows us to reconstruct the
path up to the “S” vertex by tracing back through the “previous vertex”
column.

35



3.5.2 Technical details of the code implementation

Dijkstra’s Algorithm Implementation

The following Python function implements the previously described method
for obtaining the Dijkstra matrix. In parentheses are the names of the cor-
responding Python variables. Its inputs include the number of nodes (n),
the distances between nodes (distances), the starting node (start node), the
weight of each commodity (a), the occupation matrix (O), and the edge
capacity (cap).

def dijkstra(n,distances ,start_node ,a,O,cap):

# dijkstra table initialization

mi = 1e10

Dijkstra = mi* np.ones((n,3),dtype=int)

Dijkstra [:,0] = [i for i in range(n)]

# unvisited nodes list initialization

unvisited = [i for i in range(n) if i !=

start_node]

# define the neighbors of the node using the

# ’find_neighbors ’ function

unv_neig =

find_neighbors(n,distances ,unvisited ,start_node)

# update Dijkstra table with info of start_node

# unvisited neighbors

Dijkstra[start_node ,1:] = 0

for i in unv_neig:

Dijkstra[i,1] = distances[start_node ][i]

Dijkstra[i,2] = start_node

# recursively execute these instructions until

# all nodes are visited

while len(unvisited) >0:

# least distant unvisted node

min_d = np.min(Dijkstra[unvisited ,1])

# select the index of this node

temp_D = Dijkstra[unvisited ,:]

pos = list(temp_D [: ,1]). index(min_d)

sel_node = int(temp_D[pos ,0])

# find the neighbors of the selected node

unv_neig =

find_neighbors(n,distances ,unvisited ,

sel_node)

# for each of these , calculate the distance

36



# from the starting node and save it in the

# Dijkstra table if it is less than those

# found

for i in unv_neig:

d = distances[sel_node ][i] +

Dijkstra[sel_node ,1]

if d < Dijkstra[i,1]

and a + O[sel_node ,i] <= Cap[sel_node ,i]:

Dijkstra[i,1] = d

Dijkstra[i,2] = sel_node

# remove the selected node from the list of

# unseen nodes

unvisited.remove(sel_node)

return Dijkstra

The function ’find neighbors’, used within the ’dijkstra’ function, takes
the number of nodes, the distances, the list of unvisited nodes, and the
starting node as inputs. Its output is the list of neighbors of the starting
node given as input.

def find_neighbors(n,distances ,unvisited ,s_node ):

mi = 1e10

unv_neig = [i for i in range(n)

if distances[s_node ][i] < mi

if i in unvisited if i != s_node]

return unv_neig

37



Heuristic Algorithm Implementation

The heuristic algorithm was developed following the steps described in the
following:
It initializes a matrix with commodity indices in the first row and corre-
sponding values in the second row.

s_c = np.zeros((2,len(S)),dtype = int)

s_c[0,:] = S

s_c[1,:] = K

ls = len(S)

# vectors that go from 0 to numer of sensors

rl = list(range(ls))

Then, it initializes the minimum cost and the number of iteration of external
cycle.

min_cost = 1e10

num_iter = 50

For each of the ’num iter ’ iterations, the algorithm shuffles the order of
sensors, reinitialize the solution variables and the occupancy matrix, and
resets the indicator for unfeasible solutions and the commodity index to 0.

for i in range(num_iter ):

# shuffle the order of the sensors

random.shuffle(rl)

s_c = s_c[:,rl]

sensor = s_c[0,:]

com = s_c[1,:]

# initializzation of solution variables and

# occupation matrix

Xi = np.zeros((nk ,n,n))

X = np.zeros ((nk,n,n))

O = np.zeros ((n,n))

# indicator that signals the possible

# unfeasibility of the proposed solution

unfeas = 0

# commodity index

c = 0

The algorithm executes Dijkstra’s algorithm for each sensor in the order
established in the previous line.

for s in sensor:

k = com[c]

D = dijkstra(n,Ck[k],s,a[k],O,Cap)

38



For each commodity associated with the considered sensor, it defines a start-
ing point and an ending point by retracing the Dijkstra’s table as described
in Section 3.5.1, until the start point is the sensor corresponding to the com-
modity being considered. If the arc occupancy permits it, it includes the arc
in the solution.

for t in Tk[k]:

# define start node and end node

strt = int(D[t,2])

end = t

while True:

if O[strt ,end] == 0:

O[strt ,end] += a[k]

if O[strt ,end] <= Cap[strt ,end]:

Xi[k,strt ,end] = 1

X[k,strt ,end] += 1

if strt == s:

break

else:

end = strt

strt = int(D[end ,2])

It checks the unfeasibility of the solutions.

if sum(Xi[k,:,t])==0 :

unfeas = 1

break

Then, the algorithm computes the cost of the obtained solution and save it
if it is the minimum cost found so far.

if unfeas == 0:

costo = cost2(K,A,Ck ,Xi)

if costo <= min_cost:

min_cost = costo

X_best = X

Xi_best = Xi

39



3.6 Lagrangian Relaxation of Formulation 2

This chapter aims to analyze the Lagrangian relaxation approach adopted
to solve the complex optimization problem described in Formulation 2. In
particular, to obtain a valid lower bound, we use a Lagrangian relaxation
technique that simplified the original problem by imposing a flow constraint
on commodities, as described in Section 2.3.1. To implement this technique,
we use the subgradient method to optimize the Lagrangian function and up-
date penalties. This section provides a detailed description of the developed
Lagrangian relaxation algorithm, giving a complete explanation of how each
component works.

The following text describes the implementation of an algorithm that solves
an optimization problem by combining heuristic linear programming tech-
niques and integer linear programming. In the first step, the problem vari-
ables are initialized, and an upper bound is calculated using a heuristic algo-
rithm. Subsequently, the integer linear programming problem is solved using
the Lagrangian technique, and the obtained result is used to update the lower
bound. The subgradient is then calculated, and the penalties are updated,
to repeat the problem-solving process until an optimal solution is reached.
During the algorithm, a knapsack problem is also solved to determine which
commodities to transport along each network arc.

Step 1 - Variable initialization

We initialize the following values (in parentheses are the names of the
corresponding Python variables): penalties λk

i to zero, the maximum number
of iterations for the algorithm’s execution (it max), a counter required for
updating the alpha parameter (it count), a lower bound set to an extremely
low value, the α parameter (used to update the penalties values as shown
in equation 46), and solution variables x (X) and ξ (Xi). Additionally, we
define the value of the UpperBound using the heuristic algorithm described
in Section (3.5).

pnlty = np.zeros ((nk,n))

it_max = 100

it_count = 0

LB = -1e20

# heuristic algorithm to define an upper -bound

UB ...

alfa = 0.1

X = np.zeros ((nk,n,n))

Xi = np.zeros((nk ,n,n))

40



Step 2 - Solve the Lagrangian problem and update the lower bound
The value zLR(λ) of the Lagrangian problem LR(λ) is given by equation (45),
described in Section 2.3.1, solving the problems zkLRij

(λ). If the resulting
value exceeds the lower bound, it is updated.

zLR(λ) =
∑

(i,j)∈A

zkLRij
(λ)−

∑
k∈K

∑
i∈N

λk
i b

k
i (45)

For each iteration of the algorithm, a new variable is initialized to store
the solution obtained in that specific iteration, as well as the first (zLRij sum)
and second terms (term2 ) of equation (45) and the subgradient.

for it in range(it_max ):

x = np.zeros ((nk,n,n))

xi = np.zeros((nk ,n,n))

subgrad = np.zeros((nk ,n))

zLRij_sum = 0

term2 = 0

The objective function is calculated as described in Section (2.3.1). For
each arc of the graph, the cost is updated (as illustrated on the last page of
Section 2.3.1).

for endp in A:

c = []

K_ = []

a_ = []

zLRij = 0

nk_ = 0

updt = 0

for k in K:

ci = Ck[k][endp[0],endp [1]]

dif_pnlty = pnlty[k,endp [0]]- pnlty[k,endp [1]]

if (ci + dif_pnlty) < 0:

K_.append(k)

a_.append(a[k])

nk_ += 1

if dif_pnlty > 0:

c_new = ci + dif_pnlty

c.append(c_new)

updt = 1

else:

c_new = ci + len(Tk[k])* dif_pnlty

c.append(c_new)

updt = 2

At this stage, a knapsack problem needs to be solved for each arc to
determine which commodities to transport along it. To accomplish this,

41



the knapsack objective function is implemented. It is important to note
that, for the knapsack algorithm, costs are initially negated so that they are
interpreted as benefits. This is necessary because the algorithm is designed to
maximize the total value of benefits, i.e. the sum of benefits of the selected
items, while taking into account the maximum capacity constraint of the
knapsack. The knapsack function is described later in Section (3.6.1).

W = int(Cap[endp[0],endp [1]])

c_meno = [ -x for x in c]

out = KnapSack(nk_ ,W,c_meno ,a_)

The values of Xi and X are assigned according to the solution proposed
by the knapsack problem.

for i in range(nk_):

if out[i] == 1:

xi[K_[i],endp[0],endp [1]] = 1

if updt == 1:

x[K_[i],endp[0],endp [1]] = 1

elif updt ==2:

x[K_[i],endp[0],endp [1]] = len(Tk[K_[i]])

Now that we have the necessary values, we can compute the first term
by summing the ZLRij terms (refer to formula 45). The costs, which were
initially negated to be interpreted as benefits by the knapsack algorithm, are
now negated again to return to being considered as costs.

j = 0

for k in K_:

zLRij -= c_meno[j]*xi[k,endp[0],endp [1]]

j +=1

zLRij_sum += zLRij

Next, we evaluate the second term and the objective function using the
following code:

for k in K:

for i in N:

term2 += pnlty[k,i]*b[k,i]

zLR = zLRij_sum - term2

Once we have computed the objective function, we update the lower
bound as follows:

if zLR > LB:

LB = zLR

else:

it_count += 1

42



Step 3 - Subgradient calculation and penalty update

The subradient is calculated as follows:

sum1 = 0

sum2 = 0

for k in K:

for i in N:

for j in Lt[i]:

sum1 += x[k,i,j]

for j in Lr[i]:

sum2 += x[k,j,i]

subgrad[k,i] = sum1 - sum2 - b[k,i]

Once the norm of the subgradient is computed, we can update the penalty
using a step defined by the parameter α, the objective function value ob-
tained, and the norm of the subgradient (see equation 46).

step = α
UB − ZLR

||s||2
(46)

λi
k = λi

k + step · sik (47)

for k in K:

norm_s = np.linalg.norm(subgrad[k,:])

step = alfa * (UB - zLR)/ norm_s **2

for i in N:

pnlty[k,i] = pnlty[k,i] + step*subgrad[k,i]

If no better solutions are found for a certain number of iterations (e.g.,
20), the algorithm reduces the value of the α parameter by halving it.

check_alfa = 0

if it_count == 20:

alfa = alfa/2

it_count = 0

check_alfa = 1

43



3.6.1 Knapsack Problem and Function Implementation

The knapsack problem is a combinatorial optimization problem that involves
finding the combination of objects with the highest total value that can fit
into a knapsack with a predefined maximum capacity. The problem is de-
fined by a set of objects, each with an associated value and weight and the
knapsack’s capacity limit. The objective is to select the objects in a way
that maximizes the total value of the selected objects without exceeding the
knapsack’s capacity limit. As a result of its complexity, the knapsack prob-
lem is classified as NP-hard, meaning that no polynomial algorithm can solve
it efficiently for all instances of the problem.

To solve to optimality the kanpsack problem we can use the dynamic
programming. Dynamic programming is a problem-solving technique that
involves breaking a problem down into smaller subproblems, solving each
subproblem only once, and then using the solutions of the subproblems to
solve the original problem. In the case of the knapsack problem, dynamic
programming is used to construct a table, called the knapsack table, that
represents the optimal solution for each subproblem. The knapsack table
has rows representing the objects that can be selected and columns repre-
senting the weight capacity of the knapsack. The values in the table rep-
resent the maximum value that can be obtained using the objects up to a
certain weight capacity. By solving each subproblem only once, dynamic
programming avoids redundant computations and greatly reduces the time
complexity of the problem.

Suppose we have n = 4 objects and a bag capacity of W = 8. Each
object has a weight (e.g., w = [2, 3, 4, 5]) and a priority (e.g. p = [1, 2, 5, 6]).
Our goal is to fill the bag while ensuring that the total maximum profit is
maximized, as shown in equation (48).

max
n∑

i=1

pixi (48)

We also need to ensure that we do not exceed the bag’s capacity:

n∑
i=1

wixi ≤ W (49)

To solve this problem, we can use a dynamic programming approach. We
create a table with rows from 0 to the number of objects (e.g., 4) and columns
from 0 to the bag’s capacity (e.g., 8). In the first row, which represents the

44



case where no object is included in the solution, the profit in each column is
zero. The same is true for the first column, which represents the case where
the bag’s capacity is zero. Moving on to the second row, which represents
the case where only one object is included in the solution, we fill in the profit
value for that object (e.g., p1 = 1) when the capacity is equal to or greater
than its weight (e.g., 2). The profit for all other columns in this row remains
zero, as only one object is included. Next, we consider the third row, which
represents the case where two objects are included in the solution. We fill
in the profit value for the second object (e.g., p2 = 2) when the capacity
is equal to or grater then its weight (e.g. 3). For columns before this one,
the profit values are the same as those in the row above. When the bag’s
capacity is 5, we can include both the first and second objects, resulting in
a total profit of 3. The profit values for all other columns in this row remain
3, as no additional objects can be included. We continue this process to fill
in the entire table, using the following formulas:

if w ≥ wi : Vi,w = max[Vi−1,w, Vi−1,w−wi
+ pi] (50)

else if w < wi : Vi,w = Vi−1,w (51)

Here, Vi,w represents the element in the table at row i and column w, wi

represents the weight of the ith object, and pi represents its priority. We use
this formula to determine the maximum profit we can achieve by either ex-
cluding the ith object (which is represented by Vi−1,w) or including it (which
is represented by Vi−1,w−wi

+ pi).

By filling in the entire table using this approach, we can determine the
maximum profit we can achieve while ensuring that we do not exceed the
bag’s capacity.

0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1
2 0 0 1 2 2 3 3 3 3
3 0 0 1 2 5 5 6 7 8
4 0 0 1 2 5 6 6 7 8

Table 5: Example of Knapsack table

Using the knapsack problem table, we can identify the maximum possible
profit, which is located in the last cell of the table and is equal to 8. This

45



value can only be generated in the fifth row of the table (i.e., by including
4 objects in the bag). Therefore, in the solution vector, we set x4 = 1 to
indicate that the last object is included in the knapsack. Then, we subtract
the value of the fourth object (i.e., 6) from the total profit and obtain the
new profit value of 2. To identify the objects that contribute to the profit of
2, we need to go back in the table to the row where this value appears. The
row in question is the third one, which depends on the insertion of object
2. Therefore, we can set x2 = 1 in the solution vector. In conclusion, the
optimal solution is represented by the vector x = [0 1 0 1], which indicates
that the second and fourth objects are included in the knapsack, while the
other objects are excluded.

The Knapsack problem can be solved using a function called ’KnapSack’,
which is implemented as follows: The function takes in several inputs, in-
cluding the number of commodities, the bag capacity (W), the profit of each
commodity (c), and the weight of each commodity (a).

def KnapSack(nk_ ,W,c,a_):

# build knapscak table

c = [0,*c]

a_ = [0,*a_]

M = np.zeros ((nk_+1,W+1))

for n_com in range(nk_ +1):

for cap in range(W+1):

if n_com == 0:

M[n_com ,cap] = 0

elif a_[n_com] <= cap:

M[n_com ,cap] = max(c[n_com ]+M[n_com - 1,

cap - a_[n_com]],

M[n_com - 1,cap])

else:

M[n_com ,cap] = M[n_com - 1,cap]

# build solution

cout = np.zeros(nk_+1,dtype=int)

s = M[nk_ ,-1]

for i in range(nk_ ,-1,-1):

if s not in M[i-1,:]:

cout[i] = 1

s = s - c[i]

cout = cout [1:]

return cout

46



3.7 Distributed Lagrangian Heuristic

The distributed version of the algorithm is based on the Lagrangian relax-
ation with the subgradient method, as described in the Section 3.6. In this
approach, each node only has information about itself, namely its penalties
and the commodities it possesses or needs, and exchanges this information
with neighboring nodes. The principle behind the method is as follows:

• Each node calculates its own penalties and keeps track of the penalties
of other nodes.

• Subscribers send requests for commodities to brokers based on the
penalized weight.

• Publishers that own commodities send them to the most convenient
brokers based on the penalized weight of the various connections.

• Regarding brokers, two alternative options have been proposed and
implemented:

1. In the first case, if brokers receive requests from subscribers or
other brokers and do not have the requested commodity, they act
as requesters until they can make a request to nodes with avail-
ability, creating a link between requesting subscribers and emit-
ting publishers. Otherwise, if they have the requested commodity,
they send it.

2. In the second case, brokers that receive requests act as requesters
themselves, sending requests to the most convenient nodes. If
they have availability, they still try to push the commodity into
the network to the most convenient nodes, hoping to find a link
between the publisher and subscriber of the commodity.

• The nodes exchange the penalty calculated between neighbors.

Before fully explaining the functioning of the algorithms created to man-
age requests and the transmission of commodities, it is important to define
the communication methods used by nodes and the functions developed to
facilitate them. To ensure efficient communication among nodes, several
methods of information exchange have been implemented, including trans-
mission of request and response messages, signaling the occupancy status of
connections, and updating the availability of commodities. Additionally, to
simplify communication and information management, several functions such
as ”r connect”, ”s connect”, ”b connect”, and ”b push” have been created

47



to manage requests and transmission of commodities and to identify the best
connection options among nodes.

Lagrangian Penalty Update

For the penalty update by the nodes, the function ’pnlty update’ is used.
This function requires several inputs, including the node to consider (node),
the penalties already known by the node (pnlty node), the alpha parameter
for the penalty update, the Lagrangian solutions x and xi, the set of edges
(A), the set of commodities (K), the set of nodes (N), the set of requesters
(Tk), the set of nodes to which the considered node can send (Lt) and the
set of nodes from which it can receive (Lr), the original cost matrix (Ck),
the weight of the commodities (a), the parameter b, and the edge capacities
(Cap). Then, the function uses the solution formula by relaxing the sub-
problem related to the considered node, as indicated in the Section 2.3.

def pnlty_update(node , pnlty_node , alfa , x, xi , A, K, N,

Tk , Lt , Lr , Ck , a, b, Cap):

zLRij_sum = 0

term2 = 0

for endp in A:

if endp [0] == node:

c = []

K_ = []

a_ = []

zLRij = 0

nk_ = 0

updt = 0

for k in K:

ci = Ck[k][endp[0],endp [1]]

dif_pnlty = pnlty_node[k][endp [0]] -

pnlty_node[k][endp [1]]

if (ci + dif_pnlty) < 0:

K_.append(k)

a_.append(a[k])

nk_ += 1

if dif_pnlty > 0:

c_new = ci + dif_pnlty

c.append(c_new)

updt = 1

else:

c_new = ci + len(Tk[k])* dif_pnlty

c.append(c_new)

updt = 2

# knapsack for edge ij

W = int(Cap[endp[0],endp [1]])

48



c_meno = [ -x for x in c]

out = KnapSack(nk_ ,W,c_meno ,a_)

# build xi with knapsack

for i in range(nk_):

if out[i] == 1:

xi[K_[i],endp[0],endp [1]] = 1

if updt == 1:

x[K_[i],endp[0],endp [1]] = 1

elif updt == 2:

x[K_[i],endp[0],endp [1]] =

len(Tk[K_[i]])

j = 0

for k in K_:

zLRij -= c_meno[j]*xi[k,endp[0],endp [1]]

j +=1

zLRij_sum += zLRij

for k in K:

for i in N:

term2 += pnlty_node[k][i]*b[k,i]

# objective function

zLR = zLRij_sum - term2

# subgradient

sum1 = 0

sum2 = 0

for k in K:

for j in Lt[node]:

sum1 += x[k,node ,j]

for j in Lr[node]:

sum2 += x[k,j,node]

subgrad = sum1 - sum2 - b[k,node]

step = alfa*subgrad

# penalty update

pnlty_node[k][node] = pnlty_node[k][node] + step

return pnlty_node , x, xi , zLR

Each node iteratively calculates its own penalties and generates solutions
for the Lagrangian sub-problem of the connected edges through knapsack
problem solving. As it is a distributed algorithm, subgradient norm cannot be
calculated, and thus, penalties are updated using a constant step approach,
determined by multiplying the alpha parameter with the component of the

49



subgradient relative to node i.

step = α · ski (52)

The penalty update can be improved by using the “quasi-constant” step
rule. The principle is simple, if the solution improves α increases, if it doesn’t
improve for a certain number of iterations α decreases.

Request of Commodities by Subscribers

Thanks to the available penalties, each node can determine the most con-
venient connection to make a request or send commodities. Subscribers can
request commodities using the ’r connect’ function, which requires as input
the interested node (node), the commodity to request (k), the cost matrix
(Ck), the set of nodes from which the considered node can receive (Lr), the
weight of the commodities (a), the connection capacities (Cap), the set of
sub-requesters Tk, the penalties known by the node (pnlty), the requests
(req), and the availabilities (disp) of the nodes, as well as the solution Xi.

Firstly, the function collects information about the neighbors, such as the
original cost of the connection, their availabilities, and their requests. Then,
the cost is penalized using the penalties known by the node.

neighborhood = {}

cost = Ck[k][:,node]

for neig in Lr[node]:

diff_pnlty = pnlty[k][neig]- pnlty[k][node]

info = {neig: [(cost[neig]+ diff_pnlty), req[k,neig],

disp[k,neig ]]}

neighborhood.update(info)

Next, the function considers all connections of the node for the commod-
ity of interest, initially setting them to zero and taking into account the
occupation of nearby channels, which considers any other commodities sent
over the same channels.

precedent = []

for i in N:

if Xi[k][i,node] == 1:

precedent.append(i)

if precedent != []:

for pre in precedent:

Xi[k][precedent ,node] = 0

50



req[k,precedent] = 0

# occupation of edges

O = np.zeros ((n,n))

for key in neighborhood.keys ():

for com in K:

O[key ,node] += Xi[com][key ,node]*a[com]

+ Xi[com][node ,key]*a[com]

O[node ,key] = O[key ,node]

The function prioritizes nodes with negative penalized weight for the
connection since they are advantageous and which have availability of the
requested commodity. Next in priority are nodes with negative penalized
weight but no availability, followed by nodes with positive penalized weight
and commodity availability. Lastly, nodes with positive penalized weight and
no availability are considered. Once the function identifies the most suitable
node for the request, it updates the solutions by activating the relevant con-
nection.

n_check = 0; nd_check = 0; pd_check = 0; p_check = 0;

n_id = {’id’:[],’w’:[]}; nd_id = {’id’:[],’w’:[]}

pd_id = {’id’:[],’w’:[]}; p_id = {’id’:[], ’w’:[]}

for key ,val in neighborhood.items ():

# positive weight with disponibility

if val [0] <= 0 and val [2] == 1

and O[key ,node] + a[k] <= Cap[key ,node]:

nd_check = 1

nd_id[’id’]. append(key)

nd_id[’w’]. append(val [0])

# negative weight without disponibility

elif val [0] <= 0

and O[key ,node] + a[k] <= Cap[key ,node]:

n_check = 1

n_id[’id’]. append(key)

n_id[’w’]. append(val [0])

# positive weight with disponibility

elif val [2] == 1

and O[key ,node] + a[k] <= Cap[key ,node]:

pd_check = 1

pd_id[’id’]. append(key)

pd_id[’w’]. append(val [0])

# positive weight without disponibility

elif O[key ,node] + a[k] <= Cap[key ,node]:

p_check = 1

p_id[’id’]. append(key)

p_id[’w’]. append(val [0])

51



if nd_check == 1:

connect_to = mindict(nd_id)

connect_to = random.choice(connect_to)

elif n_check == 1:

connect_to = mindict(n_id)

connect_to = random.choice(connect_to)

elif pd_check == 1:

connect_to = mindict(pd_id)

connect_to = random.choice(connect_to)

else:

if p_id[’id’] != []:

connect_to = mindict(p_id)

connect_to = random.choice(connect_to)

else:

no_choice = 1

connect_to = None

# update solution

if no_choice == 0:

Xi[k][ connect_to ,node] = 1

req[k,connect_to] = 1

The outputs of the r connect function include the updated Xi solution,
the updated requests and availabilities of the nodes, the index of the node
to which the request was made, and the dictionary of neighbors with their
respective availabilities, requests and weights.

Commodity Sending by Publisher

The function ’s connect’ is used to handle the sending of commodities by
publishers. It takes in several parameters (name of the variables indicated
in brackets), such as the interested node (node), the requested commodity
(k), the cost matrix (Ck), the set of nodes to which the node can send (Lt),
the weight of the commodity (a), the capacity of the connections (Cap),
the set of sub-requesters (Tk), the penalties known by the node (pnlty),
the requests (req) and availabilities (disp) of the nodes and the solution Xi.
After generating a dictionary containing information about the neighbors as
it follows:

neighborhood = {}

cost = Ck[k][node ,:]

for neig in Lt[node]:

diff_pnlty = pnlty[k][node]- pnlty[k][neig]

info = {neig: [(cost[neig]+ diff_pnlty), req[k,neig],

disp[k,neig ]]}

neighborhood.update(info)

52



To find new connections, the algorithm cancels previous connections and
searches for new ones, while taking into account the current occupancy of
the arcs. To choose which nodes to connect, the algorithm maintains a pri-
ority hierarchy. First, nodes with negative penalized weight and commodity
request are selected. Next, nodes with negative penalized weight but no
request are chosen. After that, nodes with positive penalized weight and
commodity request are considered. Finally, nodes with positive penalized
weight but no requests are chosen. Since the ’s connect’ function has a sim-
ilar structure to the ’r connect’ function, we won’t include the specific code
text for ’s connect’.

Request of Commodities by Brokers

To handle requests from brokers, the algorithm uses the ”b connect” func-
tion, which is similar to ”r connect” and ”s connect”. This function requires
several inputs, including the node of interest (node), the requested commod-
ity (k), the cost matrix (Ck), the set of nodes from which the considered node
can receive the commodity (Lr), the commodity weights (a), the connection
capacities (Cap), the set of sub-requesters (Tk), the node penalties (pnlty),
the requests (req), the availabilities (disp) of nodes, as well as the solution Xi.

To fulfill the requests, the broker first evaluates the neighborhood informa-
tion, then the penalized weight of the connections and the availabilities and
requests of adjacent nodes. Next, it evaluates the best connection option
based on the penalized weight and availability, following a priority hierarchy:
it starts with nodes that have negative penalized weight and availability of
the requested commodity. If there are none, it moves to those with negative
penalized weight but no availability, then to those with positive penalized
weight and availability, and finally to those with positive penalized weight
but no availability.

Commodity Sending by Brokers

As mentioned earlier, we also considered the case where brokers with
available commodities but no requests try to push them into the network by
sending them to the node with the most convenient penalized weight. The
functioning principle is similar to that of the other described functions: after
an initial phase of collecting information from neighboring nodes, the most
convenient node to send the commodity to is selected, prioritizing nodes with
negative penalized weights and requests for the commodity in possession of
the sending broker. This has been implemented through function ’b push’.

53



Penalty Exchange between Nodes

Each node calculates its own Lagrangian penalties and updates the pe-
nalized costs based on its own penalties and those of neighboring nodes. This
information is obtained periodically by requesting neighboring nodes to send
their penalties through the ’pnlty exchange’ function. It should be noted
that each node maintains a record of penalties for adjacent nodes, calculat-
ing its own penalties and requesting penalty information from neighboring
nodes to update its records.

def pnlty_exchange(N,Lt ,pnlty_register ):

old_register = deepcopy(pnlty_register)

for node in N:

for key ,val in pnlty_register[node]. items ():

for v in Lt[node]:

pnlty_register[node][key][v] =

old_register[v][key][v]

return pnlty_register

Other useful Function

The function ’satisub’ is used to verify that every subscriber has received
the requested commodities. It takes as input a set of subscribers ’K’, a dic-
tionary of requested commodities for each subscriber ’Tk’ and a matrix ’disp’
that indicates which commodities have been dispatched to each subscriber.
The function iterates over all subscribers and their requested commodities,
checking if each requested commodity has been dispatched to the correspond-
ing subscriber. If any requested commodity is missing, the function returns
0 indicating that at least one subscriber is unsatisfied. Otherwise, it returns
1 indicating that all subscribers are satisfied.

def satisub(K,Tk ,disp):

sub_satisfaction = 1

for k in K:

for t in Tk[k]:

if disp[k,t] == 0:

sub_satisfaction = 0

return sub_satisfaction

54



The function ’mindict’ is used to find the node with the minimum pe-
nalized cost for connection in a dictionary that has the format {’id node’:
[], ’weigh’: []}. It takes as input a dictionary and returns a list of node IDs
with the minimum weight. The function first extracts the list of weights and
finds the minimum weight. It then finds the indices of all weights equal to
the minimum weight and returns the corresponding node IDs.

def mindict(dictionary ):

id_min = []

w = list(dictionary[’w’])

min_w = min(w)

indice_minimo = [i for i, x in enumerate(w)

if x == min_w]

list_id = list(dictionary[’id’])

for i in indice_minimo:

id_min.append(list_id[i])

return id_min

55



3.7.1 Distributed Lagrangian Heuristic - First Approach

In this version of the distributed Lagrangian heuristic algorithm, brokers
only act as requesters of commodities. Subscribers request commodities from
brokers, who send them if available, otherwise they become requesters them-
selves and send requests to other brokers. Publishers send their commodities
to nodes with the most advantageous penalized weight of links. Brokers that
have received commodities wait for them to be requested and do nothing
until then. A loop (while True) is therefore imposed that iteratively searches
for solutions until interruption.

The process of node analysis occurs iteratively:
For a certain number of iterations, each node updates its Lagrangian penalties
using the ”pnlty update” function.

for it in range(it_max_pnlty ):

pnlty_node ,x,xi,zLR = pnlty_update(node , pnlty_node ,

alfa , x, xi, A, K, N, Tk, Lt , Lr , Ck , a, b, Cap)

In particular:

• Subscribers send their requests trying to find the best possible connec-
tion based on known penalized costs thanks to Lagrangian penalties,
through the ”r connect” function.

• The publisher pushes commodities into the network towards the most
convenient node from the Lagrangian penalties point of view, through
the ”s connect” function.

• If the node is an intermediary with commodities requests, it becomes
a requester and sends requests to other intermediaries through the
”b connect” function until it contacts a node with availability.

The brokers’ activity is put in a loop of some iterations to prioritize their
work. This allows the network to find connections without being continuously
interrupted by the choices of publishers or subscribers.

56



# first the subscribers send request

for node in T:

... calculate penalty with "pnlty_update"

for k in K:

if node in Tk[k]:

Xi , req , disp , connect_to , neighborhood =

r_connect(node , k, Ck, Lr, a, Cap , Tk,

pnlty_node , req , disp , Xi)

# publishers send commodities

k = 0

for node in S:

... calculate penalty with "pnlty_update"

Xi, req , disp , connect_to , neighborhood =

s_connect(node , k, Ck, Lt, a, Cap , Tk,

pnlty_node , req , disp , Xi)

k+=1

# brokers send request

for it_b in range (5):

for node in B:

... calculate penalty with "pnlty_update"

for k in K:

if req[k,node] == 1 and disp[k,node] == 0

and (all(xu==0 for xu in Xi[k][:,node])

or it_updt%n==0):

Xi, req , disp , connect_to , neighborhood =

b_connect(node , k, Ck, Lr, a, Cap , Tk,

pnlty_node , req , disp , Xi)

Subsequently, penalties are exchanged between nodes and the memories of
the nodes that keep track of penalty for the calculation of weights are up-
dated.

pnlty_register = pnlty_exchange(N,Lt ,pnlty_register)

It is checked if subscribers have availability of the requested commodities.

sub_satisfaction = satisub(K,Tk ,disp)

57



The image below summarizes some of the main steps of the reasoning behind
the algorithm.

Figure 10: Description of First Approach of the Distributed Lagrangian
Heuristic Algorithm

58



3.7.2 Distributed Lagrangian Heuristic - Second Method

The second approach was implemented as an improvement over the first to
address issues that arise in large-scale instances, as illustrated in Section 4.4.
The main difference from the first approach is that brokers, even if they pos-
sess a commodity for which there is no request, still insert it into the network
using the “b push” function. This function selects the most convenient node
based on Lagrangian penalties, allowing for efficient and optimal distribu-
tion of commodities within the network. Another difference in this approach
is that not all nodes are sequentially processed at each iteration, but only
those with requests or availability of commodities are considered. Only in
case of difficulty in the network’s ability to adapt to the problem at hand,
the network is reset. The threshold of iterations that determines this reset
is set based on the capacity of the fundamental arcs of the network, which
can reach a saturation condition, making it difficult to obtain acceptable so-
lutions.

The “pnlty update” function is used by each node to update its Lagrangian
penalties for a certain number of iterations.

for it in range(it_max_pnlty ):

pnlty_node ,x,xi ,zLR = pnlty_update(node , pnlty_node ,

alfa , x, xi , A, K, N, Tk , Lt , Lr , Ck , a, b, Cap)

Subsequently, nodes are iteratively analyzed:

• The subscribers attempt to establish the best possible connection using
known penalized costs and Lagrangian penalties through the “r connect”
function.

• The publishers utilize the “s connect” function to push commodities
into the network towards the most favorable node based on Lagrangian
penalties.

• If the node is a broker with commodity requests, it sends available
commodities, and if not, it becomes a requester and sends requests to
other brokers using the “b connect” function.

• If a node is a broker with available commodities and no request, it uti-
lizes the “b push” function to send commodities to neighboring nodes.

The priority of brokers in creating connections within a network is a cru-
cial aspect for the proper functioning of the system. In order for the network
to find the most relevant and useful connections, it is necessary for brokers

59



to be able to perform their activity without being constantly interrupted by
the choices of publishers or subscribers. To reduce the execution time for
large instances, an approach is adopted to select the nodes involved in the
transmission of commodities. In this way, not all nodes are considered at
each iteration, simplifying the execution process.

# for every node and every commodities

for node in N:

for k in K:

# if it has requests , no availability

# and there are no connection already made

if req[k,node] == 1 and disp[k,node ]== 0

and all(xu==0 for xu in Xi[k][:,node ]):

# if it has availability , no request

# and there are no connection already made

node_list.append(node)

elif req[k,node] == 0 and disp[k,node ]== 1

and all(xu==0 for xu in Xi[k][node ,:]):

node_list.append(node)

In the process of managing commodities, nodes with availability or re-
quests for such resources are considered. Initially, the process starts from
the subscribers, who send their requests. Subsequently, the publishers push
the commodities to brokers considered most convenient in terms of the pe-
nalized cost of connections. Then, if brokers have received requests, they
proceed with requesting commodities from other nearby nodes. However, if
they have commodities available but have not yet received requests, they still
try to distribute them in the network, hoping that requesting brokers and
sending brokers will intersect and conclude the exchange of commodities.

for node in node_list:

for k in K:

# if the node is a subsribers , it sends requests

if node in Tk[k]:

Xi , req , disp , connect_to , neighborhood =

r_connect(node , k, Ck, Lr, a, Cap , Tk,

pnlty_node , req , disp , Xi)

# if the node considered is a subscriber ,

# it sends his commodities

if node == S[k]:

Xi , req , disp , connect_to , neighborhood =

s_connect(node , k, Ck, Lt, a, Cap , Tk, pnlty_node ,

req , disp , Xi)

60



# if the node considered is a broker

if node in B:

# if it has request and no availability send

# requests

if req[k,node] == 1 and disp[k,node] == 0:

Xi, req , disp , connect_to , neighborhood =

b_connect(node , k, Ck, Lr, a, Cap , Tk,

pnlty_node , req , disp , Xi)

# if it has availability but no requests ,

# it pushes commodities

if req[k,node] == 0 and disp[k,node] == 1:

Xi, req , disp , connect_to , neighborhood =

b_push(node , k, Ck , Lt , a, Cap , Tk ,

pnlty_node , req , disp , Xi)

Afterward, penalties are exchanged between nodes, and the nodes’ memory
that tracks the penalties for weight calculation is updated.

pnlty_register = pnlty_exchange(pnlty_register ,Lt)

In case the number of iterations of the outermost loop exceeds a certain
threshold defined based on the instance, unsatisfied subscribers will signal
the need for a reset, and a new search for solutions will be initiated.
The image below summarizes some of the main steps of the reasoning behind
the algorithm.

61



Figure 11: Description of Second Approach of the Distributed Lagrangian
Heuristic Algorithm

62



3.8 Alternative Distributed Heuristic

This version of the distributed algorithm is based on the diffusion of informa-
tion through a message exchange between nodes, rather than on Lagrangian
penalties. The idea is to make information on the availability of commodi-
ties in the network, so that each node can select the best partner for data
exchange.
Initially, nodes communicate their requests and availability to adjacent units,
keeping track of the information in a local memory. Subscribers signal their
requests to neighbors with less costly channels, which save the IDs of request-
ing subs in the “request” memory. Publishers instead signal their availability
to nearby nodes with less expensive connections, which save the IDs of nodes
with availability in the “availability” memory.

Figure 12: Example for Heuristic Distributed Algorithm - step 1

Figure 13: Example for Heuristic Distributed Algorithm - step 2

Figure 14: Example for Heuristic Distributed Algorithm - step 3

63



Subsequently, brokers follow a simple algorithm to satisfy requests. If they
have availability of the requested commodities, they signal their availability
to the ID saved in the “request” memory; otherwise, they request from more
advantageous communicating nodes.

Figure 15: Example for Heuristic Distributed Algorithm - step 4

At this point, each node has a list of nodes with availability for the re-
quested commodity. Subscribers connect to the first node in the “availability”
list for that commodity. The node to which the subs connect will also con-
nect to the first node whose ID appears in the “availability” list (under the
relevant commodity). To avoid congestion, the node checks the bandwidth of
the channel in which it intends to exchange data. If the channel is saturated,
it moves on to the next node in the “availability” memory list.

Figure 16: Example for Heuristic Distributed Algorithm - step 5

In summary, this distributed algorithm uses message exchange and in-
formation diffusion to select the best partners for data exchange, avoiding
congestion and ensuring efficient management of commodities in the network.

64



The code implemented for managing requests for commodities by sub-
scribers.

for node in T:

for k in K:

if node in Tk[k]:

info = scanNeighbors(node ,k,N,K,Lr[node],

Ck[k][:,node])

id_node = req_send(info ,Cap ,a[k],node)

for i in id_node:

status[’request ’][i][k]. append(node)

The code implemented for managing the signaling of availability of com-
modities by publishers.

k = 0

for node in S:

info = scanNeighbors(node ,k,N,K,Lt[node],

Ck[k][node ,:])

id_node = req_send(info ,Cap ,a[k],node)

for i in id_node:

status[’disponibility ’][i][k]. append(node)

k += 1

If a broker has a request for a commodity and has it in stock, they will
signal its availability. However, if they don’t have the commodity in stock,
they will send a request to the most cost-effective node for fulfillment. This
process is repeated in a loop until the subscribers receive the information on
the availability of the commodity they require.

for node in B:

for k in K:

# if there are requests

if len(status[’request ’][node][k]) >0:

# but there is not disponibility

if len(status[’disponibility ’][node][k]) == 0:

# send request to most convenient node

lr = Lr_register[k][node]

info = scanNeighbors(node ,k,N,K,lr ,

Ck[k][:,node])

if info == {}:

break

else:

id_node = req_send(info ,Cap ,a[k],node)

for i in id_node:

if node not in

status[’request ’][i][k]

65



and i not in S:

status[’request ’][i][k]. append(node)

# eliminate the already

# visited node

Lr_register[k][node]. remove(i)

# else if there is disponibility

if len(status[’disponibility ’][node][k]) > 0:

# the commodity is sent to node in request

for r in status[’request ’][node][k]:

if node not in

status[’disponibility ’][r][k]:

status[’disponibility ’][r][k]. append(node)

The ’scanNeighbors’ function has been implemented to store information
on neighboring nodes, including their node IDs and associated costs.

def scanNeighbors(node ,k,N,K,L,cost):

info_neighbors = {}

for neig in L:

info = {neig: cost[neig]}

info_neighbors.update(info)

return info_neighbors

The ’req send’ function has been implemented to manage the selection of
the most cost-effective node for sending ’request’ or ’availability’ messages.
This function returns the ID of the node identified as the most convenient to
communicate with, in terms of connection costs. The rationale behind this
function is that if all connections have a positive weight, the function contacts
the node with the lowest-weight connection. However, if there are negative
weights, the function contacts all nodes with negative-weight connections, as
this is advantageous.

def req_send(info ,Cap ,a,node):

filt_pesi = list(info.values ())

if all(x > 0 for x in filt_pesi ):

min_p = min(filt_pesi)

send_req = [key for key , v in info.items ()

if v == min_p]

else:

send_req = [key for key , v in info.items () if v <= 0]

return send_req

After the preliminary phase in which nodes exchange information on re-
quests and availability of commodities, a solution to the problem can be
reconstructed using the ’disponibility’ memory in the following way:

66



for node in N:

for k in K:

if node in Tk[k]:

# select an ending point (the sub)

endp = node

disp = status[’disponibility ’][node][k]

i = 0

while True:

if i < len(disp):

# select a starting point

# (the first id in ’disponibility ’)

startp = disp[i]

# if the capacity of the link allows it

# built the solution

if a[k] + O[startp ,endp] <=

Cap[startp ,endp]:

Xi[k][startp ,endp] = 1

X[k][startp ,endp] += 1

O[startp ,endp] = a[k]

# else , select the next id in

# ’disponibility ’

else:

i +=1

else:

print(’ERROR ’)

break

Within the loop started with the above code, another loop is executed
to complete the solutions using the information available to the brokers. An
arc’s start point and end point are defined based on the IDs in the ’disponi-
bility’ memory, thus retracing the entire path of the commodity back to the
source publisher.

# for brokers

while True:

# if the start point is the pub. break

if startp == S[k]:

break

# else retrace the disponibility memory of each broker

else:

endp = startp

disp = status[’disponibility ’][endp][k]

i = 0

while True:

if i < len(disp):

67



startp = disp[i]

if Xi[k][startp ,endp ]==1:

X[k][startp ,endp] += 1

break

elif a[k] + O[startp ,endp] <=

Cap[startp ,endp]:

Xi[k][startp ,endp] = 1

X[k][startp ,endp] = 1

O[startp ,endp] = a[k]

else:

i +=1

else:

print(’ERROR ’)

break

3.9 Auxiliary Functions

Function to graph the network

The function ’myGraph’ creates a graphical representation of the nodes
in a graph. It takes as input several parameters, such as K (the set of
commodities), N (the set of nodes), S (the set of source nodes), B (the set
of broker nodes), coordinates (the coordinates of each node), and Xi (the
decision variables). The nodes are assigned colors based on whether they
belong to the set of source nodes, broker nodes, or destination nodes. The
function generates a series of unique colors for the arcs and assigns each
commodity k a different color. The resulting graph is displayed using the
matplotlib library, with a legend to identify the different commodities.

def myGraph2(K, N, S, B, T, coordinates , Xi):

G = nx.DiGraph ()

# colors

node_colors = []

for i in N:

if i in B:

if any(Xi[k][i,j]==1 for k in K for j in N) or

any(Xi[k][j,i]==1 for k in K for j in N):

clr = "yellow"

else:

clr = "white"

if i in S:

clr = "green"

elif i in T:

68



clr = "red"

node_colors.append(clr)

# coordinate

cord = [coordinates [0,i],coordinates [1,i]]

G.add_node(i, pos= cord , node_color = clr)

# unique colors for edges

edge_colors = sns.color_palette("husl", len(K))

edge_color_map = {k: edge_colors[idx] for idx , k

in enumerate(K)}

for k in K:

for i in N:

for j in N:

if Xi[k][i,j] == 1:

G.add_edge(i, j, color=edge_color_map[k])

nx.draw_networkx_nodes(G, pos=nx.get_node_attributes(G,

’pos’), node_color= node_colors)

nx.draw_networkx_labels(G, pos=nx.get_node_attributes(G,

’pos’))

nx.draw_networkx_edges(G, pos=nx.get_node_attributes(G,

’pos’), edgelist = G.edges , edge_color =[e[2][’color’]

for e in G.edges(data=True)],

connectionstyle="arc3 ,rad =0.1")

# Legend

handles = [Patch(color= edge_color_map[k],

label=f’k␣=␣{k}’) for k in K]

plt.legend(handles=handles , loc=’lower␣left’,

bbox_to_anchor =(0.95 , 0.76))

plt.draw()

Function to calculate the cost of the solution with Formulation 1

This function takes as input the sets of commodities, nodes, links, and
the costs of links for each commodity. It also takes the decision variables
X that indicate whether a link is used or not for each commodity. The
function then calculates the total cost of the solution using Formulation 1. It
does this by iterating through all commodities, nodes, and their neighbors,
checking whether each link is used, and multiplying the cost of that link by
the decision variable for that commodity and link. The total cost is returned

69



as the output of the function.

def cost(K,N,Lr ,Ck ,X):

Zv1 = 0

for k in K:

for i in N:

for j in Lr[i]:

Zv1 += Ck[k][j,i]*X[k][j,i]

return Zv1

Function to calculate the cost of the solution with Formulation 2

This function takes as input the sets of commodities, arcs, and the costs
of arcs for each commodity. It also takes the decision variables Xi that
indicate whether an arc is used or not for each commodity. The function
then calculates the total cost of the solution using Formulation 2. It does
this by iterating through all commodities and their paths (represented as
arcs), checking whether each arc is used, and multiplying the cost of that
arc by the decision variable for that commodity and arc. The total cost is
returned as the output of the function.

def cost2(K,A,Ck ,Xi):

Zv2 = 0

for k in K:

for endp in A:

Zv2 += Ck[k][endp[0],endp [1]]*

Xi[k][endp[0],endp [1]]

return Zv2

70



4 Results Analysis
In this chapter, we delve into the practical application of the algorithms
discussed in the previous chapter. The primary objective is to assess the
effectiveness of these algorithms under different simulation scenarios. The
algorithms were specifically designed to facilitate message exchange between
nodes within a publish-subscriber model, where central nodes act as brokers
that route information.

To comprehensively evaluate the performance of these algorithms, we
utilized eight different case studies. Each case study was carefully crafted
to include problems of different sizes, including varying numbers of nodes,
edges, capacity, and the cost of node utilization. Through simulating these
instances, we were able to gather valuable data for the evaluation and mod-
ification of the algorithms.

The primary goal of conducting these simulations was to identify the
strengths and weaknesses of each algorithm under different circumstances.
By analyzing the results obtained, we were able to identify the specific scenar-
ios in which each algorithm performs better or worse. This chapter presents
the details of the simulations and performance analyses of the algorithms
used. We also provide a critical evaluation of the results obtained from each
simulation, discussing the implications of these results and providing sugges-
tions for future algorithm improvements.

4.1 Simulation Scenarios

In the subsequent section, we describe the different simulation scenarios con-
sidered in detail. Each scenario was carefully crafted to provide a compre-
hensive evaluation of the algorithms under different circumstances. These
scenarios were designed to vary in size and complexity, allowing us to obtain
a comprehensive understanding of the performance of the algorithms under
different conditions.

71



Tiny case

The instance named “Tiny” represents the smallest dimension solution among
the available alternatives. It involves the use of six nodes, of which two act
as publishers and one as a subscriber, each requiring both commodities in
question. The configuration of this instance is clearly represented in Figure
17, where nodes corresponding to brokers, publishers, and the subscriber are
distinguished by the colors blue, green, and red, respectively. Additionally,
the edges present between nodes are highlighted in gray.

Figure 17: Tiny Instance

72



Case2

This instance has 2 subscribers, 3 publishers, and 6 brokers, for a total of 11
nodes. Figure 18 shows the topology of this scenario. Subscriber ’6’ requests
commodities 0 and 1 generated by publishers ’8’ and ’9’, while subscriber
’7’ requests commodities 0 and 2 generated by publishers ’8’ and ’10’. The
subcriber 6 requests the commodities: [0, 1]. The subscriber 7 requests the
commodities: [0, 2].

Figure 18: case2 Instance

73



Case3

This instance has 20 nodes, including 6 publishers, 3 subscribers, and 11
brokers. There are 57 links that allow communication between the nodes
in this problem. Figure 19 shows the topology of this scenario. The sub-
scriber 11 requests the commodities: [0, 2, 5]. The subscriber 12 requests
the commodities: [1, 2, 3]. The subscriber 13 requests the commodities: [3,
4, 5].

Figure 19: case3 Instance

74



Case4

This instance has 29 nodes, including 6 publishers, 3 subscribers, and 20
brokers. There are 69 links that allow communication between the nodes
in this problem. Figure 20 shows the topology of this scenario. The sub-
scriber 26 requests the commodities: [0, 2]. The subscriber 27 requests the
commodities: [1, 4]. The subscriber 28 requests the commodities: [3, 5].

Figure 20: case4 Instance

75



Case5

This instance has 14 nodes, including 3 publishers and 3 subscribers. There
are 21 links that allow communication between the nodes in this problem.
Figure 21 shows the topology of this scenario. This instance was created
to recreate a more realistic situation by generating random positions of the
nodes. The subscriber 2 requests the commodities: [1]. The subscriber 3 re-
quests the commodities: [0, 2]. The subscriber 11 requests the commodities:
[1, 2].

Figure 21: case5 Instance

76



Case6

This instance has 17 nodes and 30 links (Figure 22), aiming to represent a
realistic situation similar to Case 5, but with more nodes. The subscriber 0
requests the commodities: [1, 2]. The subscriber 1 requests the commodities:
[0, 2, 3]. The subscriber 14 requests the commodities: [0, 3].

Figure 22: case6 Instance

77



Case7

This instance involves a high number of nodes and links, specifically 76 nodes
and 126 links (Figure 23). The subscriber 72 requests the commodities: [2, 5].
The subscriber 73 requests the commodities: [0]. The subscriber 74 requests
the commodities: [1, 4]. The subscriber 75 requests the commodities: [3].

Figure 23: case7 Instance

Case8

This instance is a reproduction of the ’case7’ instance that has been modified
by updating the weights and capacities of the connections, in order to confer
greater complexity to the problem resolution.

78



4.2 Simulations with Formulation 1

In this section, we present the results obtained with Formulation 1 described
in Section 2.2. Formulation 1 was implemented in Python using the solver
CPLEX, as described in Section 3.1. The main objective of Formulation 1
is to find the minimum cost of the problem, which is the sum of the prod-
ucts of the cost of each link by the variable xk

ij, indicating the number of
sub-networks served through the arc (i, j) (equation 53). This formulation
assumes a centralized approach where the solver has knowledge of all infor-
mation about the nodes, links, and commodities. The results of the problem
solved with Formulation 1 are presented together with the values obtained
from the continuous relaxation. Table 6 shows the results obtained for each
instance of the problem, along with the objective function and corresponding
continuous relaxation values.

It is important to note that the objective function values found using
Formulation 1 correspond or closely approximate the values of continuous
relaxation, providing a clear indication of the optimality of the solutions
found. This demonstrates the effectiveness of Formulation 1 and the accuracy
of its implementation in Python using CPLEX.

minimize
∑
k∈K

∑
i∈N

∑
j∈Γ−

i 1

cjix
k
ji (53)

The results obtained are shown in the Table 6:

Instance Integer Solution Continous Relaxation

Tiny 16 16
case2 88 88
case3 198 196
case4 114 112.33
case5 38 38
case6 120 120
case7 345 345
case8 365 353

Table 6: Results Obtained with Formulation 1 with integrality constraints,
and Continous Relaxation

79



Integer Optimal Solution with Formulation 1

Figure 24: case Tiny solved with Formulation 1 using CPLEX

80



Case2 Instance Integer Optimal Solution with Formulation 1

Figure 25: case2 solved with Formulation 1 using CPLEX

81



Case3 Instance Integer Optimal Solution with Formulation 1

Figure 26: case3 solved with Formulation 1 using CPLEX

82



Case4 Instance Integer Optimal Solution with Formulation 1

Figure 27: case4 solved with Formulation 1 using CPLEX

83



Case5 Instance Integer Optimal Solution with Formulation 1

Figure 28: case5 solved with Formulation 1 using CPLEX

84



Case6 Instance Integer Optimal Solution with Formulation 1

Figure 29: case6 solved with Formulation 1 using CPLEX

85



Case7 Instance Integer Optimal Solution with Formulation 1

Figure 30: case7 solved with Formulation 1 using CPLEX

86



Case8 Instance Integer Optimal Solution with Formulation 1

Figure 31: case8 solved with Formulation 1 using CPLEX

87



4.3 Simulations with Formulation 2

This section describes the results obtained from the application of formula-
tion 2, which was previously described in Section 2.3, implemented using the
Python programming language with CPLEX as the solver, as described in
Section 3.3. It is important to note that, like Formulation 1, this formula-
tion adopts a centralized approach, assuming that the solver has access to
all information about the network, including nodes, edges, and commodities.
The optimization model developed in this formulation aims to minimize the
sum of the costs of each link for the variable ξkij, which is a binary variable
indicating whether information exchange occurs along arc (ij) or not. Unlike
Formulation 1, this model does not consider the subsequent branching that
may occur to serve different subs.

The objective function of this model is expressed as follows:

minimize
∑
k∈K

∑
i,j∈A

cjiξ
k
ji (54)

In the following pages, the results obtained from the heuristic algorithm
developed to find an upper bound will be analyzed and compared, and analy-
ses of the formulation with Lagrangian relaxation will be carried out. Finally,
the graphical results obtained from the simulation of the model for the vari-
ous defined instances will be reported at the end of Section 4.3.

4.3.1 Analysis of Heuristic Algorithm Results

The centralized heuristic algorithm has been designed to provide upper bound
values for the original problem by generating a set of feasible solutions and
selecting the best one. As evidenced by the analysis of the results reported in
Table 7, the number of algorithm iterations is a crucial factor that affects the
algorithm’s ability to find the optimal solution. In particular, increasing the
size of the proposed solution set allows for exploration of a greater number
of solutions, thereby increasing the probability of finding a better solution.
In fact, in the search for the best solutions, the algorithm is executed five
times for each set of solutions (1, 2, 5, and 10), ultimately selecting the best
solution found. The results clearly indicate that the probability of finding
optimal solutions increases with the number of solutions examined. However,
it is important to note that the use of heuristic algorithms for optimization
problems always entails some degree of uncertainty in the solution. Therefore,
it is necessary to carefully evaluate the results obtained from the centralized
heuristic algorithm, even though the produced upper bounds may provide an
approximate estimate of the optimal solution.

88



Instance 1 solution 2 solutions 5 solutions 10 solutions

Tiny 16 16 16 16
case2 68.2 67.4 67 67
case3 174 140.2 137 135.2
case4 112.8 112.4 112 112
case5 34 34 34 34
case6 95 95 95 95
case7 345 345 345 345
case8 374.2 373.4 371.8 368.6

Table 7: Analysis of centralized heuristic algorithm

Figure 32: Percentage deviation from the optimal value of heuristic algorithm

From the bar chart shown in Figure 32, it is possible to observe the percentage
deviation of the solutions produced by the heuristic algorithm compared to
the optimal solutions provided by the optimizer. This deviation depends on
the number of solutions considered for selecting the best solution.

4.3.2 Analysis of the Lagrangian Relaxation for Formulation 2

Below are presented the results of the Lagrangian relaxation proposed in
Section 3.6, where the flow constraints of commodities are relaxed. The
algorithm uses the subgradient method to update the Lagrangian penalties
and return the best lower bound obtained in all iterations. As can be seen
from the trend in Figure 33, the maximum value of the lower bound tends
to increase, albeit with some oscillations, until it reaches values close to the

89



optimal solution of the problem.

Figure 33: Lower Bound trend for instance ’case2’ with α=0.1 on 1000 iter-
atinos

For analysis purposes, simulations were carried out to evaluate the effect
of parameters such as the value of the upper bound and the alpha parameter
on the value of the Lower Bound obtained by the algorithm.

90



Analysis of the Influence of Upper Bound

To evaluate the effect of the upper bound value on the results of the
algorithm with Lagrangian relaxation and, therefore, on the achieved lower
bound, an analysis was conducted. Various upper bound values were used,
starting from the optimal solution obtained with the heuristic algorithm (UB)
and deviating by 7%, 15%, 22%, 30%, 37%, 60%. The obtained values were
then extracted and graphically represented as shown in the example in Figure
34.

Figure 34: Upper Bound influnece on Lower Bound values, simulated with
instance ’case2’, α=0.1 for 2000 iterations

The results obtained show how the value of the upper bound affects the
trend of the obtained lower bound. In particular, it can be observed that for
moderate increments of the upper bound value, the lower bound increases,
while for higher increments, the lower bound tends to decrease. The reason
for this can be traced back to the fact that the upper bound is a fundamen-
tal parameter for updating the Lagrangian penalties in the algorithm. The
update of the penalties is explicitly shown in formulas 55 and 56 for clarity.

step = α
UB − ZLR

||s||2
(55)

91



λi
k = λi

k + step · sik (56)

Analysis of the Influence of parameter alpha

The choice of the value of the parameter alpha can have a strong impact
on the results obtained from the Lagrangian relaxation. To explore this
effect, a set of alpha values were selected, including 0.005, 0.01, 0.02, 0.05,
0.1, 0.2, and 0.5. For each alpha value, the algorithm was executed, and
the results were collected for further analysis. As shown in Figure 35, the
obtained results vary considerably depending on the selected alpha value.

It should be noted that the alpha parameter is dynamically updated
within the algorithm and is halved if no better lower bound is found af-
ter a certain number of iterations. The selected set of alpha values only
defines the initial values of the alpha parameter used during the algorithm’s
execution.

Figure 35: Parameter α influnece on Lower Bound values, simulated with
instance ’case2’, for 2000 iterations

From the results obtained, it can be observed that the optimal value for
the parameter α in this case is between 0.05 and 0.1. It is important to note
that this parameter affects the step size of the Lagrangian penalty update

92



(as indicated in equation 55). If the value of α is too small, the number of
iterations required to reach the desired lower bound values becomes excessive.
Conversely, if the value of α is too high, the search for the maximum in the
Lagrangian function becomes less precise, as the step size becomes too large.
In practice, this will result in overshooting the maximum and compromising
the solution found.

Comparison of Results

The results obtained using the model implemented with Formulation 2
and the aid of CPLEX, together with the results obtained using the contin-
uous relaxation and the Lagrangian relaxation formulations, are reported in
Table 8. The relaxation was solved with a parameter α equal to 0.1 for a to-
tal of 2000 iterations. It is noteworthy that the results presented in the table
represent a comparison between different methodologies employed to solve
the problem under consideration. In particular, the continuous relaxation
and the Lagrangian relaxation are techniques used to simplify the problem
resolution process. It is emphasized that careful consideration of the results
obtained is important, since the use of different resolution techniques can
significantly affect the model performance and the final results.

Instance CPLEX Continous Rel. Lagrangian Rel.
Tiny 16 16 16
case2 67 66 64.49
case3 135 130.5 125.52
case4 112 112 98.87
case5 34 22 18.84
case6 95 70 65.79
case7 345 345 236.68
case8 365 353 262.62

Table 8: Results obtained from different algorithms

The results obtained from the Lagrangian relaxation provide a lower
bound for the original problem. However, they could be improved as they
could theoretically dominate continuous relaxation. Future developments
could include the implementation of the “quasi-constant” step rule mentioned
in Section 4.3.2 for the penalties update.

93



Results obtained from Formulation 2 implemented with CPLEX
Tiny Instance Optimal Solution with Formulation 2

Figure 36: case Timy solved with Formulation 2 using CPLEX

94



Case2 Instance Optimal Solution with Formulation 2

Figure 37: case2 solved with Formulation 2 using CPLEX

95



Case3 Instance Optimal Solution with Formulation 2

Figure 38: case3 solved with Formulation 2 using CPLEX

96



Case4 Instance Optimal Solution with Formulation 2

Figure 39: case4 solved with Formulation 2 using CPLEX

97



Case5 Instance Optimal Solution with Formulation 2

Figure 40: case5 solved with Formulation 2 using CPLEX

98



Case6 Optimal Solution with Formulation 2

Figure 41: case6 solved with Formulation 2 using CPLEX

99



Case7 Optimal Solution with Formulation 2

Figure 42: case7 solved with Formulation 2 using CPLEX

100



Case8 Optimal Solution with Formulation 2

Figure 43: case8 solved with Formulation 2 using CPLEX

101



4.4 Simulation with Distributed Algorithm

In this section, we describe the results obtained through the use of the dis-
tributed Lagrangian heuristic algorithm presented in Section 3.7. The per-
formance of the system is analyzed and compared with that of the previ-
ously described algorithms, along with the rationale behind the development
choices made. In Section 3.7, two different approaches were described for
addressing the problem. The first approach is primarily based on the request
of commodities by brokers, while the second approach focuses on a combi-
nation of requests and the sending of commodities by brokers. In this study,
these approaches are compared to determine the most promising one.

It should be noted that if subscribers are not satisfied after a certain
number of iterations (which can be translated into time limits in realistic
applications), for example, due to channel saturation caused by non-optimal
choices, they will signal the need for a network reset to formulate new solu-
tions.

The possible admissible solutions for the considered instances are numer-
ous, especially with the increase of nodes and connections between them. In
order to make a fair comparison, average parameters were extracted from
the algorithm’s execution five times and the obtained average values were
evaluated. The considered parameters include:

• Average cost of the found solution

• Average number of resets performed to obtain solutions

• Average time required to find a solution

The cost of a solution can be understood as the latency for streaming data
between publisher and subscriber. This means that high solution costs result
in a delay between the generation of data by subscribers and the reception
by subscribers. However, once the connection is established, the continuous
flow of data between source and destination is guaranteed. It should also be
noted that the simulations performed require nodes to perform their functions
serially. In a real-world setting, nodes would work concurrently, thus reducing
the time required to obtain solutions. It would therefore be interesting for
future developments to evaluate multithreaded simulations, in which node
work is parallelized.

102



4.4.1 Results of Distributed Heuristic Algorithm - First Apporach

In summary, the algorithm involves the initial sending of commodities by
publishers and requests by subscribers to the network brokers that are con-
sidered most convenient based on the penalized weight of the connections.
Brokers that receive requests from subscribers (or other brokers) work to
establish a connection with brokers that have received from publishers, by
sending requests to neighboring brokers that are considered most convenient
in the network (for more information, see Section 3.7.1).

The algorithm finds feasible solutions for the given cases. It should be
noted that case 2 presents high-cost connections (1000) compared to the av-
erage, between subscriber 6 and broker 0 and subscriber 7 and broker 1 (see
Figure 18). These connections are used when the available bandwidth of the
most convenient channels is saturated. In such situations, the cost of the
solutions is particularly disadvantageous compared to the optimal case.

To estimate the computing time, we compute the average time required to
execute the algorithm on 50 tests. Then, the number of times all nodes need
to be active at least once to find a feasible solution was extracted. Finally,
these two values were multiplied to obtain an approximate estimate of the
time required to reach a feasible solution.

Table 9 shows the costs obtained from the simulations performed for the
different instances and their average value, using the first approach. Table
10 shows the number of network resets required to obtain feasible solutions
for the different instances and the average value calculated using the first
approach. Finally, Table 11 provides an estimate of the average computing
time for obtaining solutions using the first approach.

Instance cost cost cost cost cost Mean

Tiny 16 20 16 16 16 16.8
case2 68 1045 68 67 68 263.2
case3 219 336 218 317 240 266
case4 121 126 127 143 132 129.8
case5 34 34 34 34 34 34
case6 130 115 100 110 100 111
case7 385 380 370 395 400 386
case8 400 525 485 510 505 485

Table 9: Results of costs and mean cost of solutions obtained with first
approach

103



Instance n.reset n.reset n.reset n.reset n.reset Mean

Tiny 0 0 0 0 0 0
case2 0 0 0 0 0 0
case3 0 0 0 0 0 0
case4 0 0 0 0 0 0
case5 0 0 0 0 0 0
case6 0 0 0 0 0 0
case7 1 1 3 2 1 1.6
case8 2 1 2 3 3 2.2

Table 10: Results of number of reset and mean number of reset with first
approach

Instance time [ms] time [ms] time time [ms] time [ms] Mean

Tiny 2.22 3.33 2.22 2.22 2.22 2.44
case2 32.12 32.12 12.85 12.85 25.69 23.12
case3 57.49 114.98 34.49 57.49 34.49 59.79
case4 44.39 73.98 73.98 73.98 44.39 62.14
case5 5.64 5.64 5.64 5.64 5.64 5.64
case6 14.97 14.97 49.90 14.97 29.94 24.95
case7 6896 7688 14358 5540 7236 8343
case8 9142 5877 8209 13993 14366 10317

Table 11: Time estimation and mean time for obtaining solutions with first
approach

As evident from the results, while this approach provides mostly feasible
and high-quality solutions for the instances provided, it struggles to find solu-
tions for large-scale problems with a high number of nodes and connections.
This results in suboptimal response times for subscribers’ requests. It is im-
portant to note, however, that these are simulations where nodes perform
their tasks in a serial and not parallelized manner.

It is intuitive to understand that for large-scale problems, brokers face sig-
nificant difficulties in finding the right path to reach nodes with the required
commodity availability. Moreover, brokers may make suboptimal choices,
saturating channels and making it impossible to satisfy all requesting nodes.
Consider the example shown in Figure 44, where on the left, there is a sit-
uation where it is not possible to send all commodities to the requesting
subscriber due to channel saturation, while the optimal situation is shown
on the right.

104



Figure 44: Example of bad decisions and good decisions made by brokers of
the network

One of the reasons that led to the development of a new approach is re-
lated to the difficulty encountered in the previous approach, where brokers
had to rely solely on subscriber requests to send commodities into the net-
work. In the subsequent approach, however, efforts were made to improve
the situation by also leveraging the resources of brokers with available com-
modities but without requests from subscribers. In this new approach, these
brokers actively try to push commodities into the network, hoping to facil-
itate connections with requesters and increase the chances of satisfying all
requests.

4.4.2 Results of Distributed Heuristic Algorithm - Second Appo-
rach

This new approach involves brokers sending requests, but unlike the previ-
ous approach, it also involves those brokers who have commodities available
sending them into the network, even if they haven’t received any requests
(as described in Section 3.7.2). The goal of this strategy is to simplify the
task of brokers in providing a connection between subscribers and publish-
ers, especially in medium-sized networks that require a significant number of
hops.

105



As with the previous approach, average parameters were extracted to
evaluate the effectiveness of the algorithm and its performance, such as av-
erage cost, average number of resets, and average computing time to reach
solutions for different instances.

We estimate the average computing time required to execute the algo-
rithm on 50 tests. Then, the mean number of times the algorithm was exe-
cuted to find a solution to the problem was extracted from 5 tests. Finally,
these two values were multiplied to obtain an approximate estimate of the
time required to reach a feasible solution. Unlike the previous algorithm,
this algorithm does not examine all nodes at each iteration, but only works
on nodes that have commodity requests or availability, making the execution
more efficient.

Table 12 shows the costs obtained from simulations performed for different
instances and their mean value using the second approach. Table 13 shows
the number of network resets needed to obtain feasible solutions for different
instances and their mean value calculated over 5 tests, using the second
approach. Finally, Table 14 provides an estimate of the average time required
to obtain feasible solutions using the second approach.

Instance cost cost cost cost cost Mean

Tiny 16 16 20 16 16 16.8
case2 1045 68 67 67 68 263
case3 141 160 139 334 140 182.8
case4 128 126 132 126 141 130.6
case5 34 34 34 34 34 34
case6 125 110 110 95 100 108
case7 410 385 370 375 365 381
case8 505 529 434 461 435 472.8

Table 12: Results of costs and mean cost of solutions obtained with second
approach

106



Instance n.reset n.reset n.reset n.reset n.reset Mean

Tiny 0 0 0 0 0 0
case2 0 0 0 0 0 0
case3 0 0 0 0 0 0
case4 0 0 0 0 0 0
case5 0 0 0 0 0 0
case6 1 0 0 0 0 0.2
case7 0 0 0 0 0 0
case8 1 0 1 0 0 0.4

Table 13: Results of number of reset and mean number of reset with second
approach

Instance time[ms] time[ms] time[ms] time[ms] time[ms] Mean

Tiny 5.47 10.64 8.82 6.08 6.08 7.42
case2 18.76 18.76 12.10 12.10 17.55 15.85
case3 307.40 198.32 208.24 198.32 287.56 239.97
case4 117.83 63.23 112.09 74.72 175.31 108.64
case5 13.32 13.32 13.32 13.32 13.32 13.32
case6 87.52 150.90 150.90 108.65 69.41 113.48
case7 1812 2271 849 1583 1354 1574
case8 1384 8759 2402 1243 1045 2967

Table 14: Time estimation and mean time for obtaining solutions with first
approach

The results obtained show that, although the solution costs are compara-
ble (with slight average improvements for approach 2), there is a significant
increase in the probability of finding feasible solutions, reducing the time
required to solve the given problems. Furthermore, it is highlighted that the
need for reset actions in this new approach is almost non-existent. Addition-
ally, these results can be evaluated through the graphs represented in images
45 and 46 below, which demonstrate a significant improvement in terms of
time required to obtain the solutions.

107



Figure 45: Comparison of approaches 1 and 2 on the average cost of solutions

Figure 46: C Comparison of approaches 1 and 2 on the average times to
obtain solutions

108



As a further comparison between the two different approaches described
for the problem, the average number of times in which these heuristic algo-
rithms were able to find optimal solutions in the different instances was also
extracted, averaging over 5 simulations (Table 15).

Instance Approach 1 Approach 2

Tiny 80.0% 80.0%
case2 20.0% 40.0%
case3 0.0% 0.0%
case4 0.0% 0.0%
case5 100.0% 100.0%
case6 0.0% 20.0%
case7 0.0% 0.0%
case8 0.0% 0.0%

Table 15: Percentage of optimal solutions found

4.4.3 Dynamic Adaptability of the Distributed Algorithm

This ability to adapt to changes is crucial for the efficient and reliable opera-
tion of distributed systems. In traditional centralized systems, a single point
of failure can bring the entire system down, resulting in data loss and service
disruption. However, in distributed systems, the workload is spread across
multiple nodes, reducing the impact of any single node failure. Furthermore,
the dynamic adaptation of nodes in a distributed system can improve its
fault tolerance, scalability, and performance. When a new node is added to
the network, it can join the system without disrupting the existing nodes.
Similarly, when a node fails, the remaining nodes can quickly reconfigure
their connections and redistribute the workload to maintain the system’s
overall functionality. In addition to its adaptability, distributed systems also
offer increased privacy and security. By decentralizing the control of data
and resources, distributed systems can reduce the risk of data breaches and
unauthorized access to sensitive information.

109



As an example, suppose node 8 of instance 5 has failed, causing it and
all its connections to become unavailable. Initially, this node was crucial for
subscriber 11, which required commodities k1 and k2, as shown in Figure 47.

Figure 47: Optimal Solution Instance ’case5’ before node 8 failure

As a result, subscriber 11 is left without the requested commodities, while
nodes 6 and 9 respectively have commodities k1 and k2. However, these
nodes reconsider the cost of their available connections and establish new
connections that are more cost-effective. Eventually, they connect to node
10, which was initially inactive due to its less advantageous connections with
nearby nodes, thus allowing subscriber 11 to receive the data.

110



Figure 48: Situation on Instance ’case5’ immediately after node 8 failure

Figure 49: New Solution found for Instance ’case5’ after node 8 failure

The cost of the solution increases from 34 initially to 43 after recon-
figuration, which results in slightly higher latency for reestablishing data

111



streaming from publisher to subscriber after the failure. However, the net-
work still ensures the ability to meet all subscriber requests. This depends
on the availability of brokers for connection and/or alternative paths to con-
nect subscribers and publishers. It is therefore important to anticipate these
situations in the network design phase to ensure the ability to maintain a
stable connection in any situation. Otherwise, temporary suspensions of data
streaming and a slight increase in latency for data reception may occur.

4.4.4 Comparison of results obtained by all algorithms with For-
mulation 2

In this section, the results obtained from different techniques used to solve
the optimization problem will be presented for comparison. In particular, the
cost results of the centralized algorithm based on Formulation 2 and utilizing
CPLEX as the solver will be analyzed and compared with the average results
obtained through the use of continuous and Lagrangian relaxation techniques
for the optimization problem. Additionally, the average results obtained from
the two distributed approaches will be examined to evaluate the performance
differences between the different methodologies adopted.

Instance Optimal Cont. Rel. Lag. Rel. App. 1 App. 2
Tiny 16 16 16 16.8 16.8
case2 67 66 64.49 263.2 263
case3 135 130.5 125.52 266 182.8
case4 112 112 98.87 129.8 130.6
case5 34 22 18.84 34 34
case6 95 70 65.79 111 108
case7 345 345 236.68 386 381
case8 365 353 262.62 485 472.8

112



Results obtained from Distributed Heuristic Algorithm implemented
with approach 2

Tiny Instance Solution with approach 2

Figure 50: case Timy solved with second approach of Distribute Lagrangian
Heuristic

113



Case2 Instance Solution with approach 2

Figure 51: case2 solved with second approach of Distribute Lagrangian
Heuristic

114



Case3 Instance Solution with approach 2

Figure 52: case3 solved with second approach of Distribute Lagrangian
Heuristic

115



Case4 Instance Solution with approach 2

Figure 53: case4 solved with second approach of Distribute Lagrangian
Heuristic

116



Case5 Instance Solution with approach 2

Figure 54: case5 solved with second approach of Distribute Lagrangian
Heuristic

117



Case6 Instance Solution approach with 2

Figure 55: case6 solved with second approach of Distribute Lagrangian
Heuristic

118



Case7 Instance Solution with approach 2

Figure 56: case7 solved with second approach of Distribute Lagrangian
Heuristic

119



Case8 Instance Solution with approach 2

Figure 57: case8 solved with second approach of Distribute Lagrangian
Heuristic

120



5 Conclusions
This thesis highlights how the IoT field is constantly evolving to meet the
growing needs for information exchange and acquisition. In particular, the
thesis explores the opportunity to develop distributed algorithms based on
MQTT protocols using multiple brokers acting as a single entity, leveraging
the concept of peer-to-peer.

The decentralized heuristic algorithms described in this thesis are mainly
based on Lagrangian relaxations, which allow each node in the network to
compute its own penalties and receive those of neighboring nodes, facilitat-
ing the selection of effective heuristic solutions for data transmission between
network senders and receivers. Thus, the thesis demonstrates the feasibility
of developing high-performance distributed algorithms in the IoT environ-
ment using relaxation techniques.

The thesis examines various aspects of the optimization problem and
demonstrates the effectiveness of relaxation techniques in breaking down the
problem into simpler subproblems, simplifying the search for solutions. The
proposed implementation also guarantees dynamic adaptability of connec-
tions to network variations, allowing for connection in case of link or node
failures or the addition of new nodes.

The implemented scripts were developed using the Python programming
language in Jupiter Notebook (Anaconda), while the linear programming
solver used is CPLEX for the centralized version that seeks optimal solu-
tions to problems.

These distributed algorithms based on relaxation techniques have multi-
ple areas of use, both in indoor and outdoor environments. They are par-
ticularly useful in situations with low computing power and limited network
resources, as they guarantee a light code footprint and reduced memory us-
age, since each node only needs to know its own information and that of its
neighbors. For example, they can be used for monitoring environmental con-
ditions in rural areas, such as for forest fire prevention. Thanks to the sensors
that establish a stable connection with requesting machines, it is possible to
process the collected data and analyze it, providing continuous control of
the monitoring site thanks to dynamic connection adaptability, allowing for
timely intervention in case of need and preventively.

121



Possible future developments of this work may include improving the
efficiency of the implemented algorithms through the use of multithreaded
simulations. This would allow network nodes to perform their operations in
parallel, rather than serially. Additionally, it would be interesting to create
simple hardware structures (such as using physical devices like Raspberry
Pi) to test the functioning of these algorithms in a real-world environment.

The research in this field is increasingly moving towards edge comput-
ing, which involves the use of machine learning in solutions called TinyML,
i.e., machine learning technologies capable of performing data analysis on
low-power devices. Additionally, AI-based IoT solutions, called edge or fog
computing, are being considered for areas with limited connectivity and re-
sources. However, it must be acknowledged that current IoT infrastructures
are not yet ready for this decentralization, and further research is needed to
integrate fog computing functionalities while maintaining the ease of use and
high availability of existing infrastructures.

In summary, the design of distributed networks represents a topic of great
interest for many applications, such as sensor networks for environmental
monitoring or smart city management. The solution proposed in this thesis
could represent a starting point for the development of similar solutions in
other application contexts. Research in this field is still evolving, and there
will certainly be further developments in the future.

122



References
[1] Marco Antonio Boschetti, Vittorio Maniezzo, Some Notes on Pub/Sub

Brokers Readjustment. A Multi-Commodity Flow Approach

[2] Marco Antonio Boschetti, Vittorio Maniezzo, A Fully Distributed La-
grangean Solution for a Peer-to-Peer Overlay Network Design Problem,
INFORMS Journal on Computing 2011.

[3] Pietro Manzoni, Marco Antonio Boschetti, Vittorio Maniezzo, Model-
ing Distributed MQTT Systems Using Multicommodity Flow Analysis,
Electronics 2022.

[4] Hua Wei, Hong Luo, Yan Sun, A New Cache Placement Strategy for
Wireless Internet of Things, Journal of Internet Technology Volume 20
(2019) No.3.

[5] Marco A. Boschetti, Vittorio Maniezzo, Matteo Roffilli, A Fully Dis-
tributed Lagrangean Solution for a Peer-to-Peer Overlay Network Design
Problem, INFORMS Journal on Computing 23(1), 90-104, 2011.

[6] Khalil Chebil, Mahdi A. Khemakhem, A dynamic programming algo-
rithm for the Knapsack Problem with Setup, December 2015 Computers
& Operations Research.

[7] Adeel Javaid, Understanding Dijkstra Algorithm, January 2013 SSRN
Electronic Journal.

123





Desidero esprimere la mia profonda gratitudine al mio relatore, il Pro-
fessor Marco Antonio Boschetti, per la sua preziosa guida e il suo costante
supporto durante lo svolgimento di questo lavoro. Grazie alla sua competenza
e al suo sostegno, ho potuto sviluppare le mie capacità e raggiungere questo
traguardo accademico. Inoltre, desidero esprimere la mia gratitudine a tutti
gli amici che mi hanno accompagnato in questo percorso di studi e che mi
hanno sostenuto nei momenti più difficili. In particolare, vorrei ringraziare
Giacomo per aver condiviso con me ogni sfida e per il suo sostegno costante,
e Federico, amico di lunga data e compagno di studi, per i suoi preziosi con-
sigli e il suo incondizionato supporto. Un ringraziamento speciale va alla
mia famiglia, Marco, Paola e Lisa, per il loro costante incoraggiamento e
supporto. Grazie alla vostra generosità, ho avuto l’opportunità di coltivare
la mia passione per l’apprendimento e la crescita personale. Senza il vostro
sostegno, non avrei mai potuto raggiungere questo traguardo. Vi sarò sem-
pre grato per tutto ciò che avete fatto per me. Infine, desidero ringraziare
tutti coloro che in modo diretto o indiretto hanno contribuito al successo di
questo percorso formativo. Grazie di cuore.

125


