
ALMA MATER STUDIORUM · UNIVERSITÀ DI
BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

AUTOMATIZATION
OF

ATTACK TREES

Relatore:
Chiar.mo Prof.
Stefano Ferretti

Correlatore:
Nicola Dragoni

Presentata da:
Beatrice Spiga

Sessione III
Anno Accademico 2021/22

I would like to thank my parents for the support that they always gave me during

these two important years of my life, especially during my months abroad. They

never had doubts about the fact that I would accomplish this goal.

I wish to extend my special thanks to my grandparents and my uncles because

they have always believed in my journey, since I was a child in primary school

until the end my master degree.

I would like to say a special thank you to Fabrizio. He has always been my first

supporter, even when I had no motivation to continue he always gave me reasons

to keep pushing because he believed in me from the very beginning.

A big thank you also to my university mates for the complicity and for the

moments that we spent together. Without them all of the group projects would

have been very boring.

Finally, I would like to express my gratitude to my thesis supervisors Stefano F.

and Nicola D. for making my thesis abroad possible and for helping me work on

the topics I like the most. I will bring this experience with me for a lifetime.

4

5

Abstract

Oggigiorno la cybersecurity è più critica che mai. L’uso estensivo di

dispositivi elettronici espone i nostri dati sensibili a sempre più minacce

e vulnerabilità, e tutto ciò può portare a dei cyber-attacchi. Il problema

della protezione dei dati e dei sistemi dalle minacce informatiche non ha

una risoluzione banale a causa dell’eterogeneità dei sistemi e dei dispos-

itivi esistenti, che possono richiedere mezzi protettivi molto diversi fra

loro. Pertanto, giocano un ruolo centrale la prevenzione ed il rilevamento

di potenziali minacce nei vari tipi di sistema esistenti. Lo scopo di questa

tesi è quello di sviluppare un tool di analisi automatica dei cosiddetti event

log dei sistemi che sono stati attaccati o hackerati. L’obiettivo è quello di

ottenere un process tree che rappresenti le azioni dell’attaccante partendo

dai log, e di usare successivamente alcune regole di traduzione per ot-

tenere un attack tree del sistema in questione. Quest’ultimo può essere

visto come una rappresentazione grafica di tutti i potenziali attacchi. Il la-

voro proposto può essere utile come mezzo per identificare quali possano

essere le possibili debolezze e vulnerabilità che un attaccante potrebbe

sfruttare all’interno di un sistema.

6

Contents

Abstract . 5

1 Introduction 9

1.1 The problem . 9

1.2 Contribution of the thesis . 12

1.3 Thesis structure . 14

1.4 Related works . 15

2 Process mining 21

2.1 XES event logs . 21

2.2 Introduction to process mining 23

2.3 Process trees . 26

2.3.1 Inductive Miner . 30

3 Attack trees 33

3.1 The definition . 33

3.2 Quantitative security framework 36

3.2.1 RisQFLan . 36

3.3 Attack-defense trees . 39

4 The tool: from event logs to attack tree 43

4.1 Design . 43

4.1.1 Labeled logs . 44

4.1.2 Dummy logs generation 45

4.1.3 Opensource Fixedpoint Model Checker tool 46

4.1.4 From labeled event logs to process tree 48

7

8 CONTENTS

4.1.5 From process tree to attack tree 49

4.1.6 Conversion of the attack tree for RisQFLan 53

4.2 A dummy example . 54

5 Case studies 61

5.1 First example: attack trace concerning a single attack 61

5.1.1 Attack trace generation 61

5.1.2 Translation from attack trace to event log 65

5.1.3 From event log to Process Tree and Attack Tree 69

5.1.4 Generation of RisQFLan’s code 72

5.2 Second example: attack trace concerning multiple attacks . . 73

5.2.1 Translation from attack trace to event log 75

5.2.2 From event log to Process Tree and Attack Tree 76

5.2.3 Generation of RisQFLan’s code 78

5.3 Third example: another attack trace of multiple attacks . . . 79

5.3.1 Translation from attack trace to event log 81

5.3.2 From event log to process tree and attack tree 82

5.3.3 Generation of RisQFLan’s code 83

5.4 A ’bad’ example: malware infection logs 83

5.4.1 From real traffic logs to activity logs 84

5.4.2 From activity log to Process Tree 87

5.4.3 The problem: Attack Tree generation 90

5.5 Contribution w.r.t. related works 90

6 Validation 93

6.1 Validation from event logs to process tree 93

6.2 Validation from process tree to attack tree 94

7 Conclusion and Future Works 97

8 Appendix 109

Chapter 1

Introduction

1.1 The problem

Nowadays the digital and the physical universes are becoming more

and more aligned and today’s information systems log store enormous

amounts of events. Companies, hospitals and a lot of other information

systems provide detailed information about the activities that have been

executed. We refer to such data as event logs. To be more precise, an event

log can be seen as a chronological record of activities of a system that are

saved to a file on the system [3]. This type of file is useful for adminis-

trators because they can monitor how users and processes behave within

the system. Moreover, the ability to reconstruct previous operations makes

these logs interesting. Indeed, what makes them such a valuable and pow-

erful resource is not only that they give us a lot of information, but they

also provide additional data recorded automatically and independently of

the person who made the action. To give a more precise idea, Figure 1.1

depicts an example of event log.

Figure 1.1: Example of event log.

9

10 CHAPTER 1. INTRODUCTION

In this context, monitoring the system for security reasons is a crucial

part for its maintenance, and the generated logs are the basis for discover-

ing security breaches and other issues. All the systems can produce log

entries, and identifying malicious behaviors can be very difficult. The

larger the number of incoming logs, the more difficult and expensive it

becomes to perform manual analysis. Moreover, such data stored is usu-

ally stored by information systems in an unstructured form or needs to be

labeled with annotations which indicate whether a log corresponds to ma-

licious activity or not. However, the process can be both challenging and

costly. This has given rise to a demand for more automated techniques to

identify potential system threats. The notion of an Attack Tree is crucial

in this situation. For the sake of clarity, an example is depicted below in

Figure 1.2.

Figure 1.2: Example of Attack Tree.

Attack Trees [1] provide a systematic way of describing the vulnera-

bility of a system, taking into account various types of attacks. Two main

aspects make them strong: they combine intuitive representations of pos-

sible attacks with formal mathematical methods of analyzing them quali-

tatively and quantitatively. ([4], [31]). Up to now, analysts and technicians

usually constructed Attack Trees manually, based on their knowledge and

experience. A large number of tools for editing and analyzing Attack Trees

1.1. THE PROBLEM 11

exist but, unfortunately, their manual design is time-consuming and error-

prone. Thus, the resulting trees may be incomplete, i.e., may miss some

relevant attack vectors. This can happen especially if their become sub-

stantial and security experts may also run into trouble as soon as the mate-

rial they work on gets fairly big (lengthy log files, for example). Moreover,

the manual construction is very subjective and depends on the modeler’s

expertise. This means that trees designed by two different experts for the

same system might differ in their size, their structure, and even in the at-

tack vectors that they capture. In addition, a manual design is likely to

be incomplete and unsound w.r.t. the security issues of a system under

consideration. Supported by automation, practitioners can obtain large

Attack Trees that are correct by construction and in line with the proper-

ties of the system. The generation process can also be reiterated in case

new kinds of attacks emerge or if the system evolves. Even though start-

ing from existing attack patterns may provide valuable help in the design

process, it may result in very generic trees that do not properly reflect the

subtleties of the analyzed system, which may impact possible attack vec-

tors. Due to the above-mentioned weaknesses of the manual construction,

approaches for (semi-) automated Attack Tree generation recently attract

the attention of researchers ([35], [36]).

In this thesis we introduce a tool that allows one to use various transforma-

tions to achieve a final goal, which is the automatic generation of an Attack

Tree, taking into account the system’s event logs. As a result of this oper-

ation, it is possible to extract knowledge from violated logs and discover

the hacker’s steps. In the first step, a process discovery algorithm is used

to derive a Process Tree representing the data and operations collected by

the system from its log files. To be clearer, an instance of Process Tree is de-

picted in Figure 1.3. The Process Tree is then translated into an Attack Tree

according to specific rules. The aim is to automate the entire Attack Tree

generation process, starting from the logs. Due to this work, vulnerabili-

ties that were not considered during the design phase can now be easily

identified and mitigated. Moreover, we can have the same perspective of

the attacker: this allow one to anticipate and prevent the potential attacks.

12 CHAPTER 1. INTRODUCTION

Furthermore, this tool can also be used as a forensic tool for investigation,

since investigators can analyze the logs of an attacked system a posteriori,

extracting information and drawing conclusions based on them.

Figure 1.3: Example of Process Tree.

1.2 Contribution of the thesis

In this thesis, we introduce a method to automatically generate At-

tack Trees by processing event logs, giving the first step towards building

an adequate tool for the complete automatization of Attack Trees. Fig-

ure 1.4 depicts all the atomic steps. As a starting point, we have three

different possibilities. We may immediately start processing some system-

provided labeled event logs. Alternately, we can proceed with the gen-

eration of some ’dummy’ event logs. As a final option, we can employ

a model checking tool called Open Fixed Model Checker (OFMC), which

accepts protocol specifications as input and outputs attack traces. These

attack traces can be finally translated into labeled event logs. As a next

step, the Process Tree of the system represented by the logs can be obtained

through the use of a Process Mining algorithm. Finally, the system’s final

Attack Tree can be generated using some translation rules. This will be

provided in two formats, one of which is suitable with the security frame-

work RisQFLan that we will examine later..

1.2. CONTRIBUTION OF THE THESIS 13

Figure 1.4: Transformations overview.

In particular, the contributions of the thesis are:

• Automatic conversion of OFMC’s attack traces, to obtain labeled event

logs that can represent the protocol specified as input to the model

checking tool. The procedure is introduced in the design part in Sec-

tion 4.

• Generation of ’synthetic logs’, which can serve as a good example to

understand the general functioning of the tool. Also this process is

outlined in Section 4

• Use of a Process Mining algorithm to build a Process Tree from la-

beled event logs, which can provide a graphical representation of

the system’s history. The Inductive Miner algorithm is presented in

Section 2

• Use of translation rules on the obtained Process Tree to automatically

generate the final Attack Tree of the system. The conversion rules are

deeply analyzed in Section 4

• Conversion of the Attack Tree into the format suitable for the graph-

based security framework RisQFLan. This enables one to have a dif-

ferent perspective of the same tree, to better understand the overall

situation. Also this process is introduced in Section 4.

14 CHAPTER 1. INTRODUCTION

• Validation of the translation steps through the generation of traces

starting from Process Trees, to ensure the validity of the work. This

allows one to determine whether the traces are correctly convertible

to the translated model and vice-versa. The validation steps are ex-

plained in Section 6.

As a result, this framework may enhance the security of many sys-

tems, allowing security analysts to protect their assets by choosing proper

countermeasures.

1.3 Thesis structure

The thesis is structured as follows. In the next Section the Process Min-

ing technique is described so that we can understand how to obtain the

Process Tree of the anaylzed system. Afterwards, Section 3 introduces At-

tack Trees which are the final result that we want to obtain. In Section 4

the design and the functionalities of our tool are described using a sim-

ple example, to better understand the operations involved. Moreover, the

OFMC model checking tool is introduced. Subsequently, Section 5 pro-

vides analysis of some case studies. In Section 6 the soundness of the

obtained model is proven, so that the tool can be considered as validated.

Finally, Section 7 draws some conclusions about the presented thesis and

considers future work that could improve the tool. Figure 1.5 depicts an

overview of the thesis’s structure.

1.4. RELATED WORKS 15

Figure 1.5: Overview of the thesis structure.

1.4 Related works

Attack Trees are broadly used to depict threat scenarios in a succinct

and intuitive manner. They are also useful for providing security informa-

tion to non-experts. Nevertheless, errors can happen because their man-

ual construction relies on the experience and creativity of specialists. This

means that manual creation of Attack Trees is impracticable for large sys-

tem. However, their automated generation has not been fully investigated

yet. More specific and detailed related works about Attack Trees, Process

Trees, and other analyzed tools, like OFMC and RisQFLan, are mentioned

in the related chapters of this thesis. We want to emphasize that, in ad-

dition to working on the thesis, we performed research to produce a sur-

16 CHAPTER 1. INTRODUCTION

vey and illustrate the current the status of automatic generation of two

different types of graphical security models, i.e. Attack Trees and Attack

Graphs. The paper’s purpose is to outline the existing approaches being

used in the field, compare them, and discuss the challenges and possible

directions for the research community’s future. The work is included in

this thesis’ appendix. We also point out that the survey is still under sub-

mission and should be published forthcoming. Hereinafter some existing

related works about automatic generation of Attack Trees are proposed.

Phillips et. al. [22] presents a system that generates the graph through

the attack profile, the input templates, and the system setup. The tech-

nique is built backwards, beginning from the goal node. Next, looking through

the templates, it is possible to identify an edge whose head corresponds to

the goal node. The routes that do not fit the profile of the attacker are cut

out. The procedure continues until an initial state that is not the head of

an edge is reached. The authors assert that by changing the network de-

sign, their method may model dynamic characteristics. In addition to the

network setting and the attacker’s profile, a database of typical attacks is

also necessary as a precondition. Moreover, code, experiments, proofs, or

references to scalability are not available. Because of this, the tool devel-

oped in this thesis could contribute and complement the existing works,

overcoming these obstacles.

Lallie et al. [23] proposes an analysis of effectiveness in terms of graph-

ical representation of Attack Trees. The quantitative analysis of the visual

syntax of Attack Trees is the main contribution of this study. This work

examines how these visual structures represent actual cyber-attacks on a

system. As a conclusion, it is stated that there is no standard methodol-

ogy for representing Attack Trees, and that this issue should be fixed by

researchers. Although there are many advantages to representing cyber-

attacks as Attack Trees, the paper demonstrates that there are inconsisten-

cies regarding the way cyber-attacks are represented in the tree, and by

doing so, outlines the need to standardise their visual syntax. This article

is the first to provide a thorough critique of attack modeling approaches’

visual grammar. Despite this work constitute a good contribution, the au-

1.4. RELATED WORKS 17

tomatic creation of Attack Trees is still not really taken into account. For

this reason we decided to create a tool that allows their automatic genera-

tion.

Wojciech et al. [24] reviews recent developments in graphical security

modeling, with a particular emphasis on the use of formal methods for

the interpretation, (semi-)automated generation, quantitative analysis of

Attack Trees and their expansions. A comprehensive explanation of ex-

isting frameworks is provided in the work, along with a comparison of

their features and a list of interesting open questions. Essentially, the work

provides formal descriptions of Attack Trees and introduces formal meth-

ods to generate them (semi-) automatically. This survey’s goal is to pro-

vide an overview of current methods that combine formal methods and

attack tree-based modeling in the three different dimensions, i.e. seman-

tical, generation and quantitative approaches. However, the suggested

semi-automatic generation methodologies rely on complex and sophisti-

cated formal engines ignoring system’s event logs, which can represent a

rich source of information for the automatic construction of Attack Trees.

For these reasons we decided to move on with our tool’s design

Kordy et al. [26] examines DAG-based graphical models in the field of

security. Direct Acyclic Graphs (DAGs) enable the hierarchical decompo-

sition of complex scenarios into straightforward, intelligible, and quan-

tifiable actions. Two well-known techniques for security modeling are

those based on threat trees and Bayesian networks. However, there are

more than 30 DAG-based techniques available, each with unique features

and objectives. This work aims at providing an overview of DAG-based

graphical attack and defense modeling tools. This entails outlining the

techniques that are now in use, contrasting their features, and propos-

ing a taxonomy for the formalisms that have been presented. The article

also encourages choosing a suitable modeling approach based on user’s

needs. Essentially, it sums up the current state of available methodologies,

to make comparisons and classify them on the basis of formalism. Also

in this work there is not a strong focus on the automatic generation of At-

tack Trees. Indeed, the focus is only on the existing DAG-based graphical

18 CHAPTER 1. INTRODUCTION

models. Because of this, we needed a tool that produces Attack Trees au-

tomatically.

Sheyner et al. [27] uses Model Checking for the automatic construction

of Attack Trees or Graphs. The authors here depicts the network as a fi-

nite state machine. To automatically produce the tree, the model checker

NuSVM has been changed, creating a security property first. The prop-

erty and the model M (the network) are the inputs for the Model Checker,

which returns true if the property is satisfied; otherwise, it gives a coun-

terexample. This counterexample shows a route an attacker could take

to go against the security property. The aim is creating Attack Trees for

a broader range of features in the future, apart from security properties.

In this study, the network settings and the attacker’s actions are repre-

sented as a set of booleans that express the model’s state as state transi-

tions. As a result, the state-space generated is exponential in proportion to

the system’s variable count. Attack Graphs with an emphasis on network-

defined attacks are employed in this work. Although the authors provide

experiments and results, they exclude the code and the scalability of their

system.

Pinchinat et al. [32] introduced ATSyRA, which is a user-friendly Eclipse-

based framework that can help in designing Attack Trees. To secure mili-

tary buildings, the security expert must first define the system, including

the description of the building, the strength of the attacker, and the goal of

their attack. The generation of the assault scenarios must be run as the sec-

ond phase. The input specification is assembled into an attack graph in the

current step. The security expert describes a set of high level actions as the

third phase (HLA). How it can be divided into smaller activities is implied

by the HLA. The run of the Attack Tree synthesis is the last step. The tree

in this phase is constructed using the data from Step 3 and the graph cre-

ated in Step 2. A model checking algorithm is the fundamental interface

for achieving this. However, a negative aspect is that the work omits dis-

cussing experiments, proofs, and scaling. Additionally, they claim that a

fully automated process can produce results that are not sound. We point

out that the solution is not entirely automated. Indeed, the security analyst

1.4. RELATED WORKS 19

is actively participating in the process. Consequently, a fully autonomous

tool that produces sound results is becoming more and more necessary.

Ibrahim et. al. [33] presents a method that comprises Hybrid Attack

Graphs (HAG), which show how an attacked system’s logical and actual

parameter values can change, as well as possible remedial measures. Au-

tomatically created HAGs can be seen using a Java-based tools. In order

to complete this operation, the model of the system and the security at-

tribute must be formally described in the AADL language and verified

by the JKind model checker. This work provides evidence for how Auto-

matic HAGs can influence the parameters of the particular system being

attacked. In order to create this graph starting from some given informa-

tion about an investigated system and a network, the authors essentially

propose a binary classification problem and a multi-output learning tech-

nique. However, the work focuses on Hybrid Attack Graphs which have

different characteristics from Attack Trees.

David et. al. [34] describes a way for handling socio-technical systems

and attacks using timed automata and automated model checking. This

type of systems is interrelated with human behaviour. Also simulations

and analysis are possible. Model checking is incorporated into this pro-

cess so that we can identify assaults on the system under analysis. Finally,

a detailed example illustrating the use of this approach is given. Neverthe-

less, the approach is only limited to attacks and system that handle human

actions, while we are interested in a more generic and inclusive approach.

We take these surveys as a starting point and, keeping them into ac-

count, we introduce the work done in this thesis, which aims to contribute

to the existing methods for the automatic generation of Attack Trees. Fig-

ure 1.6 summarizes the related papers and their main weaknesses, to bet-

ter understand the motivation behind our work.

20 CHAPTER 1. INTRODUCTION

Figure 1.6: Related papers and weaknesses.

Chapter 2

Process mining

In this section, two concepts related to process mining are introduced,

i.e. Process Trees and event logs. Basically, they are needed to feed the in-

volved process mining algorithm. These elements make up the first trans-

formation carried out by our tool. Understanding the ideas presented in

this section will enable one to fully comprehend chapters 4 and 5, which

discuss design and case studies taken under consideration for the thesis.

2.1 XES event logs

Defining the kind of event log required as input for this process is nec-

essary before defining what Process Mining is. For this work we focused

on logs in XES format. XES is the successor of MXML (Mining eXtensi-

ble Markup Language), the former standard for storing and exchanging

event logs [3]. Based on many practical experiences with MXML, the XES

format has been made less restrictive and truly extendible. In 2010 the for-

mat was adopted by the IEEE Task Force on Process Mining and became

the de facto exchange format for process mining.

A XES document contains one log consisting of any number of traces. Each

trace describes a sequential list of events corresponding to a particular

case. The log, its traces, and its events may have any number of attributes.

Moreover, they may be nested. There are five core types: String, Date, Int,

Float, and Boolean. XES does not prescribe a fixed set of mandatory at-

21

22 CHAPTER 2. PROCESS MINING

tributes for each element: an event can have any number of attributes.

However, to provide semantics to such attributes, the log refers to so-

called extensions. An extension gives semantics to particular attributes.

For example, the Time extension can define a timestamp attribute of type

xs:dateTime. A log declares the set of extensions to be used. Each ex-

tension may define attributes that are considered to be standard when the

extension is used.

XES may declare particular attributes to be mandatory. For example, it

can be specified that any trace should have a name or each event should

include a timestamp. For these reasons, a log holds two lists of global

attributes: one for the traces and one for the events. The example log in

Figure 2.1 specifies two lists of global attributes. Traces have one global at-

tribute: attribute concept:name is mandatory for all traces. Events have

three global attributes: attributes time:timestamp, concept:name and

org:resource are mandatory for all events.

Figure 2.1: Example of a log in XES format.

A subset of the standard attributes defined by the aforementioned ex-

2.2. INTRODUCTION TO PROCESS MINING 23

tensions is provided in the list below:

• The concept extension defines the name attribute for traces and events.

Note that the example XES file in Figure 2.1 uses concept:name

attributes for traces and events. For traces, the attribute typically

represents some identifier for the case, while for events the attribute

typically represents the activity name.

• The time extension defines the timestamp attribute for events. Since

such a timestamp is of type xs:dateTime, both date and time are

recorded.

• The life-cycle extension defines the transition attribute for events.

• The organizational extension defines three standard attributes for

events: resource (resource that triggered or executed the event), role

and group (they characterize the required capabilities of the resource

and its position in the organization).

Moreover, XES logs are supported by a large variety of tools. There-

fore, this type of file serves as a view of the event data. The availability

of high-quality event logs is essential for process mining. Furthermore,

good quality event logs can serve many other purposes. High-quality logs

that cannot be tampered with make sure that ’history cannot be rewrit-

ten or obscured’, and serve as a solid basis for process improvement and

auditing.

2.2 Introduction to process mining

The variety of notations available today for process modeling illus-

trates its relevance. Some organizations may use only informal process

models to structure discussions and to document procedures. At the same

time, others operating at a higher maturity level may use models that can

be analyzed and used to enact operational processes. Today, most pro-

cess models are made by hand and are not based on a rigorous analysis

24 CHAPTER 2. PROCESS MINING

of existing process data. There exists a multitude of problems that com-

panies face when making models by hand. Only experienced designers

and analysts can create models that have good predictive value and can

be used as a starting point for implementation or redesign. An inadequate

model can lead to wrong conclusions. Therefore, it’s more appropriate to

use the event data. Process mining enables the extraction of models based

on facts. Moreover, it does not aim to create a single model of the process.

Instead, it provides several views of the same reality at various abstrac-

tion levels. This is useful also because information systems are becoming

more and more intertwined with the operational processes they support.

In addition, nowadays multitudes of events are recorded by today’s in-

formation systems and stored as log files. A log can be seen on various

levels, ranging from the meta-level of stored information of the informa-

tion system itself, to a less abstract level of stored information about what

occured in the analyzed device. Regardless of the level we are looking

at, the log keeps track of everything that happened in a system and, most

importantly, it contains contextual data that is beyond the control of the

person who performed the operations. Nevertheless, organizations have

problems extracting value from this data. The goal of Process Mining is to

use event logs to extract process-related information, e.g., to automatically

discover a process model by observing events recorded by an enterprise

system. Process mining can be considered as the missing link between

data science and process science. The procedure starts from event data

and then a process model (representing the process collected in the log) is

used in various ways. This is a relative young research discipline that sits

between machine learning and data mining on the one hand, and process

modeling and analysis on the other hand [3]. The idea is to discover, mon-

itor and improve real processes, i.e. not assumed processes, by extracting

knowledge from event logs available in today’s systems.The data recorded

by the information systems can be used to provide a better overview on

the actual processes, e.g. deviations can be analyzed and the quality of

the models can be improved. Until recently, the information in these event

logs was rarely used to analyze the underlying processes. Process Mining

2.2. INTRODUCTION TO PROCESS MINING 25

aims to improve this, by providing tools and techniques for discovering

process, control, information, organizational, and social structures from

event logs. In general, system logs can be used to conduct three types of

process mining: process discovery, conformance checking and process en-

hancement.

For the first type, a discovery technique takes an event log and produces

a model without using a-priori information. If the log contains informa-

tion about resources, it can also be possible to discover resource-related

models, e.g., a social network showing how people work together in a

company.

The second type is conformance: in this case an existing process model is

compared with an event log of the same process. The conformance check-

ing can be useful to check if the reality, as recorded in the logs, is con-

form to the model and viceversa. This examination will show us whether

this rule is followed or not. Moreover, the conformance checking can be

helpful to find, locate and clarify deviations, and to measure their level of

gravity.

The third type of Process Mining is enhancement. In this case we try to

improve or extend an existing process model, using information about

the actual process recorded in some logs. Whereas conformance check-

ing measures the alignment between model and reality, the latter tries to

extend or change the a-priori model.

Figure 2.2 depicts how Process Mining states connections between the ac-

tual processes and their data on the one hand, and process models on the

other hand. The Figure refers to the amount of events recorded by infor-

mation systems as event log.

26 CHAPTER 2. PROCESS MINING

Figure 2.2: Positioning of the three main types of process mining: discovery, con-
formance, and enhancement.

Focusing on the first process discovery type, i.e. discovery, we aim at

mapping the data collected in a XES event log into a so-called Process Tree

that explains the behaviors seen in the event log. Several process discovery

algorithm exist, such as the Heuristic Miner [38] and the Inductive Miner

[40]. Based on the need and the characteristics of the evaluated process,

the discovery algorithm is selected and each produces different types of

process models.

2.3 Process trees

The vast majority of the most common graph-based process notations,

e.g. UML activity diagrams or WF-nets, can be affected by livelocks, dead-

locks, and other anomalies. Models having undesirable properties inde-

pendent of the event log are called unsound. One does not need to look

at the event log to see that an unsound model cannot well describe the

observed behavior. Process discovery approaches using any of the most

common graph-based process notations may produce unsound models.

Indeed, the majority of models in the search space are likely to be un-

sound and this complicates the discovery. It is also possible to use block-

2.3. PROCESS TREES 27

structured models, which are sound by construction. Hereafter, Process

Trees (PTs) are introduced as a notation to represent such block-structured

models. A Process Tree is a hierarchical process model where the inner

nodes are operators such as sequence and choice, and the leaves are activ-

ities [3].

Process Trees are tailored towards process discovery. A range of induc-

tive process discovery techniques exists for Process Trees [40], [41]. These

approaches benefit from the fact that the representation ensures sound-

ness. A key ingredient of this extremely flexible genetic process mining

technique is that the search space is restricted only to sound models.

Figure 2.3: Process tree → (a, (→ (∧(×(b, c), d), e), f),×(g, h)) showing the differ-
ent process tree operators.

Figure 2.3 shows a Process Tree modeling the handling of a request

for compensation within an airline. Inner nodes of the tree are operators,

while leaves represent activities. There is one root node. The image also

shows the four types of operators that are admitted in process trees: × (ex-

clusive choice), → (sequential composition), ∧ (parallel composition), and

(redo loop).

28 CHAPTER 2. PROCESS MINING

The sequence operator executes the children sequentially. The activity a is

the first child node of the root in Figure 2.3. Since this is a sequence node,

every process instance starts with activity a followed by the subtree start-

ing with the redo loop (). After this subtree in the middle, the execution

goes on with the rightmost subtree. The latter subtree models the exclu-

sive choice (×) between g and h. The Process Tree in Figure 2.3 can also be

represented in a textual way:

→ (a, (→ (∧(×(b, c), d), e), f),×(g, h)) (2.1)

The rightmost subtree modeling the choice between the two activies g

and h is represented as ×(g,h). The redo loop (→ (∧(×(b, c), d), e), f) starts

with the leftmost child and can loop back to whichever of its other chil-

dren. In this PT, the loop back operation is possible through the ’redo’

activity f. The leftmowst child ’do part’ is → (∧(×(b, c), d), e), namely

a sequence that ends with activity e which is preceded by the subtree

∧(×(b, c), d where d is executed in parallel with a choice between the two

activities b and c. Finally, subtree ∧(×(b, c), d) has four possible behaviors:

⟨b, d⟩, ⟨c, d⟩, ⟨d, b⟩, ⟨d, c⟩.
It can happen to find the same activity multiple times in a Process Tree,

e.g. the tree → (b, b, b) handles a sequence of three identical activities. If

we analyze ∧(b, b, b) and → (b, b, b), the behaviors are indistinguishable:

they have both one only trace that is possible, namely ⟨b, b, b⟩.
τ is the so-called silent activity and is not observable, e.g. the Process

Tree ×(a, τ) can model an activity a that is skippable. Another example is

(τ, a), which can model a process that executes a any number of times. The

’do’ part is silent, and a is in the ’redo’ part. Moreover, it is possible not

to execute a. Process tree (a, τ) can model a process which executes a at

least once. The part of ’redo’ is silent: the process can loop back withouth

executing activities. The smallest Process Tree is composed by just one ac-

tivity. If that is the case, the root is also a leaf and there are no operator

nodes.

2.3. PROCESS TREES 29

Figure 2.4: Mapping process trees onto WF-nets

In addition, Process Trees allow the conversion in WF-nets (Petri nets)

as shown in Figure 2.4. The silent activity τ can be mapped into the tran-

sition having the τ as label. The sequential composition →, the exclusive

choice × and the parallel composition ∧ can be converted in a straight way.

In the parallel composition, the τ is used to model the start and the end,

to preserve the WF-net structure. The (redo loop) has one ’do’ part (ac-

tivity a in Figure 2.4) and one or more ’redo’ parts (activities b until z). In

the Petri net, the direction of the arcs indicates the difference in semantics

between ’do’ and ’redo’ parts. The τ is useful to model the entry and exit

of a redo loop. This mapping (Figure 2.4) can be used in a recursive way

to turn any kind of process tree into a sound WF network. Moreover, the

mapping can also be tailored for other types of representation as YAWL,

BPML, UML diagrams, and so on. Due to the structured nature of Process

Trees, the conversion to other notations is fairly linear.

30 CHAPTER 2. PROCESS MINING

2.3.1 Inductive Miner

The discovery algorithm that we chose to use in this work is called In-

ductive Miner (IM) [21]. The IM ensures the rediscoverability of the pro-

cesses and uses a divide-and-conquer approach. The basic idea is about

detecting a ’cut’ in the log, e.g. sequential cut, parallel cut, concurrent cut

or loop cut, and then recur on sublogs, which were found applying the cut,

until a base case is found. Basically, the algorithm decomposes the event

log in smaller sublogs, in order to construct a Process Tree. The Inductive

Miner ensures that it can re-discover the process model from an event log,

since it relies on the directly follows relation between all pair of activities

in the event log [3]. The Directly-Follows variant avoids the recursion on

the sublogs but uses the Directly Follows graph. Inductive Miner models

usually make extensive use of hidden transitions, especially for skipping

or looping on a portion on the model. Furthermore, each visible transi-

tion has a unique label: there are no transitions in the model that share

the same label. The IM algorithm returns a Process Tree, and for this rea-

son we decided to consider it as a valid solution to derive the final Attack

Tree at the end of the whole process. The results returned by these tech-

niques can easily be converted to other notations, ranging from Petri nets

and BPMN models to process calculi and statecharts. Inductive mining is

currently one of the leading process discovery approaches due to its flexi-

bility, formal guarantees and scalability.

Figure 2.5: WF-net (Petri net) N1 (left) and process tree Q1 (right) discovered for
L1 =

[
⟨a, b, c, d⟩3, ⟨a, b, c, d⟩2, ⟨a, e, d⟩

]

To be clearer, we take as an example the event log L ∈ B(A*). This

2.3. PROCESS TREES 31

represents a multi-set of traces over some set of activities A. Our aim is

the discovery of a Process Tree Q ∈ lA. Consider the following event log

L1 = [⟨a, b, c, d⟩3, ⟨a, b, c, d⟩2, ⟨a, e, d⟩] consisting of 6 cases and 23 events.

The α-algorithm creates the WF-net N1 = α(L1) shown in Figure 2.5 (left-

hand side). The basic Inductive Miner (IM) will produce the equivalent

Process Tree Q1 = IM(L1) → (a, x(∧(b, c), e), d) also shown in Figure 2.5

(right-hand side). The Process Tree can be automatically converted into the

WF-net produced by the α-algorithm using the conversion shown in Fig-

ure 2.4, followed by a reduction removing superfluous silent transitions.

Any Process Tree can be converted into an equivalent WF-net, BPMN

model, etc. Moreover, the basic Inductive Miner (IM) can discover a much

wider class of processes and learn “correct” process models in situations

where the α-algorithm and many others fail. For clarity we assume that

there are no duplicate or silent activities, i.e., in the Process Trees used to

generate the example log we will not find two leaves with the same activ-

ity label and leaves with a τ label (silent activity).

Given that we just described what a Process Tree is, we can see below in

what Attack Trees consist. By doing so, the translation process between

these two types of graphs can be better understood.

32 CHAPTER 2. PROCESS MINING

Chapter 3

Attack trees

This chapter introduces the concept of Attack Tree, compares it with

Attack-Defense Tree, and describes the RisQFLan security framework em-

ployed in the last part of the thesis. By understanding these concepts, one

can understand the final transformations that our tool performs. Chapters

4 and 5, which are about design and analyzed case studies, will make use

of the notions introduced in this Section.

3.1 The definition

The term Attack Tree was first introduced by Schneier in [1]. ATs form

a convenient mean to systematically categorize the different ways in which

a system can be attacked. An Attack Tree is a graphical tree-structured rep-

resentation of the system’s security showing possible attacks. The main

idea is to decompose a given task into smaller ones, making easier to de-

scribe and quantify different metrics. Since Schneier introduced Attack

Trees, multiple approaches and formal semantics have been proposed in

the literature. This thesis will focus primarily on [4], since it presents

the structure and foundations of this tree in a formalized form, based on

Schneier’s model.

The purpose of an Attack Tree is to determine and examine all the possible

attacks against a system in a structured way. This specific structure is ex-

pressed in the hierarchy of the nodes that compose the tree, allowing the

33

34 CHAPTER 3. ATTACK TREES

decomposition of an attack goal into a certain number of concrete attacks

or sub-goals. This structure brings us information about the interpretation

and grouping of attacks. Attack trees provide us with an easy way to de-

fine a collection of possible attacks. They can also be called attack suite.

These attacks consist in components required to perform the attack. A cer-

tain component may occur more than once, so an attack can be seen as a

multi-set of attack components. As a result, an attack is considered to be at

the lowest level of abstraction, and it does not have an internal structure.

A simple example of Attack Tree is shown in Figure 3.1.

Figure 3.1: An attack tree representing stealing money from someone’s bank ac-
count.

In Attack Trees the nodes represent attacks, while the root is the global

goal of the attacker. Children of a node are refinements of this goal, and

therefore leafs represent attacks that can no longer be refined. The struc-

ture of the tree highlights the vulnerabilities of the system and helps de-

velopers and analysts to focus on weak spots, so that countermeasures

may be implemented. With Attack Trees one can form multiple attacks

derived from physical, technical or human vulnerabilities. A refinement

in the tree can be conjunctive (aggregation) or disjunctive (choice). If the

arc connection of two components is a conjuntive refinement, then all sub-

goals have to be fullfilled, and the node is called an AND node. On the

other hand, disjuntive ones express that satisfying one sub-goal is enough

to achieve the parent goal, and these nodes are called OR nodes [4]. In ad-

dition, another considered refinement is SEQUENTIAL-AND (SAND), in

3.1. THE DEFINITION 35

which all the subgoals must be fulfilled to reach the parent goal, but with

the additional constraint that the sub-goals must be carried out in a given

order [37].

As an example, we can observe in Figure 3.1 that the root node repre-

sents the main goal of the attack, i.e. to steal money from a bank account.

The attacker’s aim is disjunctively refined into two alternative sub-attacks,

namely the attacker may try to get money from an automated teller ma-

chine (ATM), or he might attempt to hack the online bank account system.

The sub-goal that explores getting money at an ATM is further conjunc-

tively refined into two complementary activities: the attacker must steal

the credit card of the victim and he also needs to obtain the PIN code by

shoulder-surfing. Note that a conjunctive refinement is denoted graphi-

cally with an arc spanning the child nodes.

Once the possible attacks on a system have been modeled in the Attack

Tree, this graph can be used to analyze attributes about system’s security.

Schneier [1] suggests several such attributes, assigning values on the leaf

nodes in order to make calculations about the security of a goal. Some

examples could be about the (im)possibility, the cost, and whether special

tools are needed. As soon as all the leaf nodes have a value, these amounts

are propagated to the root of the tree. The OR value of a node is Possible

if one of the sub-goals is Possible. On the other hand, an AND value of a

node is Possible if all its sub-nodes are also Possible. In addition, Attack

Trees offer the opportunity to calculate different metrics associated with

a specific attack. To accomplish this, some attributes can be added to the

tree. These attributes could also be used for quantitative analysis on the

tree [5].

For the scope of this thesis, the introduction of the concepts formally in-

troduced by Schneier was necessary. Understanding these definitions is a

prerequisite for introducing our tool.

36 CHAPTER 3. ATTACK TREES

3.2 Quantitative security framework

Quantitative modeling and analysis approaches are essential to sup-

port software and system engineering in scenarios where qualitative ap-

proaches are inappropriate or unfeasible, for example due to complexity

or uncertainty. Automated approaches to support quantitative modeling

and analysis have been widely developed during the last years, including

both generic and domain-specific approaches (cf., e.g., [25]). QFLan [2] is

an example of successful domain-specific approach to support quantita-

tive modeling and analysis of configurable systems, like software product

lines. It combines various well-known rigorous notions and methods in

an Eclipse-based domain-specific tool framework. It consists of a domain-

specific language (DSL) tailored for configurable systems, and an analysis

engine based on statistical model checking (SMC) [28] [29]. In the next

subsection, we will introduce a new framework that can support quan-

titative security risk modeling and analysis based on attack-defense dia-

grams, which originates from QFLan.

3.2.1 RisQFLan

In the present thesis, we used a novel tool, called RisQFLan [30], which

is a framework that can support graph-based quantitative security risk

modeling and analysis. To be precise, by combining distinctive character-

istics of existing formalisms, this tool allows one to build rich models for

risk modeling and analysis. The DSL of RisQFLan was designed to in-

clude the most significant features of existing formalisms based on Attack

Trees. In this way it is possible to combine them in the same model. More-

over, this framework allows one to fine tune security scenarios by defin-

ing explicit attack behavior, implicitly constrained by an attack-defense

diagram. Explicit attack behavior enables the analyses of specific attacker

types, like script kiddies, insiders, and hackers. The benefit of this is that

we are able to identify vulnerabilities for attacker types that are most ap-

propriate for the security situation at hand. Furthermore, this enables

3.2. QUANTITATIVE SECURITY FRAMEWORK 37

novel types of analysis that complement the classic best- and worst-case

evaluations of attack graphs. The attack behavior is modeled as rated tran-

sition systems, whose transitions are labeled with the action being exe-

cuted and a rate (used to compute the probability of executing the action),

and possibly with effects (updates of variables) and guards (conditions on

the action’s executability).

Figure 3.2: The RisQFLan tool.

The tool’s architecture is organized in two layers: the Graphical User

Interface (GUI), devoted to modeling, and the CORE layer, used for the

analysis. Both layers are wrapped in an Eclipse-based tool embedding the

third-party statistical analyzer, as we can see in Figure 3.2.

38 CHAPTER 3. ATTACK TREES

Figure 3.3: The RisQFLan architecture [30].

In Figure 3.3 the RisQFLan architecture is shown [30]. Here the var-

ious elements of the framework are depicted. Circles in red represent

the probabilistic simulator and SMC: they interact to estimate the mod-

els’ properties in a statistical way. RisQFLan also enables one to specify a

probabilistic attacker behavior. This allows one to make specific analyses

on certain typologies of attacker. The option that permits the specification

of different attacker types can help to evaluate the vulnerabilities of a sys-

tem and allocate the right assets needed to protect it. In this framework,

transitions are labeled with the executed actions, and the rates represent

the probability computation of completing one action. Besides, RisQFLan

supports quantitative constraints to permit the imposition of limitations

on the attacker’s behavior by setting a total cost that he can spend during

the offense. All the attack attempts will cost the attacker even if he fails.

Until the total cost is not reached, he can keep trying to perform the attack.

If the attacker run out of resources, he cannot start any further attacks on

the system. These quantitative constraints allow the testing of a system

against different types of attackers with various kind of assets. The next

subsection will introduce a straightforward visual language to describe an

attack scenario that RisQFLan employs, i.e. Attack-Defense Trees.

3.3. ATTACK-DEFENSE TREES 39

3.3 Attack-defense trees

We already introduced in Section 3.1 the notion of Attack Trees (AT).

They have been introduced by Schneier in 1999 and have been used for

many years to analyze potential attack scenarios. A limitation derived

from the Attack Trees is that they cannot depict possible countermeasures

that someone could take in order to contrast attacks. Taking this limita-

tion into account, Kordy et al. [?] proposed a variation of Attack Trees, i.e.

Attack Defense Trees (ADT), which also take into account defense mecha-

nisms in the attack context. Indeed, Kordy extended the Attack Tree pro-

posed in [4]. Similar to ATs, Attack-Defense Trees include refinements and

countermeasures. Each node can be refined into various sub-goals, and

they can also have one child of the opposite type. Child nodes are con-

ditions that must be fulfilled to achieve the goal of the parent. Leaves

represent atomic steps that the attacker must take, that cannot be refined.

What is different from the Attack Tree model is that the goals of the ac-

tors involved can be countered by goals of the adversary, which them-

selves can be countered again, and so on. Attack–Defense Trees [?] are

one of the most well-studied extensions of Attack Trees, and every year

many new methods are developed for their analysis. They can enhance

ATs with nodes labeled with the goals of the defender, enabling the mod-

eling of interactions between two competing actors. Attack-Defense Trees

have been used to evaluate the security of real-life systems, like ATMs,

cyber-physical systems and RFID managed warehouses. The theoretical

developments as well as the practical studies showed that Attack–Defense

Trees give us a good method for the security evaluation, but they also

highlighted room for improvements.

Both types of tree constitute a popular family of graph-based security

models, for which several approaches have been developed over the last

years, e.g., [5].Their goal is to provide scalable and usable methods for

specifying vulnerabilities and countermeasures, their interplay and their

key attributes such as cost and effectiveness. Thus, Attack Trees (and

Attack-Defense Trees) provide a basis for quantitative risk assessment. In

40 CHAPTER 3. ATTACK TREES

this way, it can be determined whether the defensive assets are sufficient

to protect a system or whether they must be allocated differently. In Fig-

ure 3.4 a refined version for Attack Defense Trees is depicted. This type of

ADT includes different nodes that dictate various relations between par-

ent and child nodes. The tree includes AND nodes, in which all the sub-

nodes or leaves need to be activated, i.e., the attacker has completed all

the sub-attacks. It also includes OR nodes that can be activated when at

least one sub-attack needs to be completed by the attacker. This version

of tree also includes defense nodes, such as countermeasure and defense

nodes. The former are reactive defenses so that, whenever an attack is de-

tected, the countermeasure is activated. On the other hand, defense nodes

are always active on the vulnerability that the attacker wants to exploit.

RisQFLan offers also the possibility to model Attack-Defense Trees, and

it can handle both defense and countermeasure nodes. Furthermore, the

refined version of ADT employed in RisQFLan includes other two types

of nodes, namely Ordered-AND and K-Out-of-N nodes. For the former,

the attack on the sub-goals should be completed in a particular order to

achieve the parent node. On the other hand, for the latter, it is enough for

the attacker to complete K out of N sub-goals to activate the parent node.

Figure 3.4: Refined Attack Defense Tree.

For the sake of clarity, we take as starting point the Attack Tree about

the bank theft of money, previously introduced in Figure 3.1, turning it

into the Attack Defense Tree depicted in Figure 3.5. Note that now also de-

fense nodes appear in the graph. In this tree, the proponent is the attacker

and the opponent is the defender. According to the Attack–Defense Trees

convention that we just introduced, nodes that represent goals of an at-

3.3. ATTACK-DEFENSE TREES 41

tacker are depicted using red circles, while those about the defender using

green rectangles. Every countermeasure is attached to nodes they should

counter via dotted edges. One way to protect against a PIN shouldersurf

could be to memorize it, while hacking an online bank account could be

prevented by using a second authentication factor. This defense node is

refined into two distinct sub-nodes that represent two concrete defenses,

i.e., key fobs or PIN pad.

Figure 3.5: An Attack Defense tree representing stealing money from someone’s
bank account.

The growing variety of methods for quantitative analysis of Attack–Defense

Trees provides security experts with various tools for determining the most

dangerous attacks and the best ways of securing the system against those

threats. Indeed, AD diagrams are a useful tool for modeling and reasoning

on contexts about security risks. Standard analyses conducted on Attack-

Defense diagrams are usually about the feasibility of attacks, their likeli-

hood or their cost. Techniques of analysis are often based on constraint

solving, optimization and statistical techniques. Attack Trees (and Attack-

Defense Trees) are broadly used in various domains like, e.g., defense or

aerospace.

For the scope of this thesis we will focus only on Attack Trees, also with re-

spect to the use of the RisQFLan tool, but future works could also include

Attack-Defense Trees or any other kind of attack diagram that includes

countermeasures.

42 CHAPTER 3. ATTACK TREES

Chapter 4

The tool: from event logs to attack

tree

4.1 Design

The main goal of this section is to explain the design of the created tool,

which is composed by several transformations, starting with an event log

and leading to an Attack Tree. All the translations were depicted also in

the introduction section in Figure 1.4, and each will be explained more in

depth hereinafter. Subsequently, an example concerning a ’dummy’ log

generation is provided.

43

44 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

4.1.1 Labeled logs

Figure 4.1: Transformations overview: system’s event logs.

To begin with, we need an event log related to a specific system as

initial input to the tool. An event log is a time-stamped record of a sys-

tem’s actions, recorded into a file on the system itself [3]. The admin can

use this file to monitor how users and programs behave within the sys-

tem. The capacity to reconstruct previous processes makes these records

very noteworthy. They supply us with wealth information, but they also

provide additional data that is recorded automatically and independently

from the individual who performed the action. This is what makes them

such a valuable and powerful resource. In our tool, the Process Mining

algorithm is fed with these logs, to obtain a Process Tree related to the an-

alyzed system, as we will see later in this chapter. It is also possible to

generate some ’dummy’ event logs as an alternative input for the tool. To

make the Process Mining technique work properly, the system’s log must

include the following information:

• A case ID that identifies a sequence of simulated attacks.

• An activity name that indicates which action has been executed in

each event. To be more precise, we need labeled event logs in order

to fill this field.

• A timestamp that identifies the time and date of the performed ac-

tivities.

4.1. DESIGN 45

• (Optional) Information/content: includes a label about the specific

atomic activity.

If real system’s event logs are available, the preliminary part about

the creation of ’dummy’ logs can be skipped. The generation can be done

using a Python library, as further introduced in the next section.

4.1.2 Dummy logs generation

In case we do not have real event logs, we can generate some fake ones

by creating a Pandas Dataframe containing the following information: ID,

activity name (i.e. the label), and timestamp. These are the most essential

details that must be present in any event log, regardless of whether they

are generated or not, as we previously stated. An in-depth description of

the code for the generation can be found in the ’dummy’ example at the

end of this chapter.

Figure 4.2: Transformations overview: dummy log generation.

Afterwards, we need to convert the obtained Dataframe, exporting it

as event log object in XES format. To do this, the Python package PM4PY

comes in handy. It uses the most recent, effective, and thoroughly exam-

ined Process Mining techniques. The PM4PY function format dataframe

can be used to accomplish this. Then, the converter can transform the

Dataframe by default into an Event Log object. The ’dummy’ example sec-

tion that follows will provide a thorough explanation of the code. Now,

46 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

as a finishing part, the write xes function can be used to convert the log

into a XES file. In this approach, the event log is exported to an external

file with the right format, so that the Process Mining algorithm can use it

as input data.

4.1.3 Opensource Fixedpoint Model Checker tool

The automated analysis of security protocols is a field that stands be-

tween formal methods and IT security, and it has been intensively studied

during the last two decades. We introduce now the Open-source Fixed-

point Model Checker OFMC [18] for symbolic security protocol analysis.

OFMC performs both falsification of protocols, namely detection of at-

tacks, and session verification by exploring the transition system resulting

from an IF specification. OFMC’s effectiveness is due to the integration of

a various symbolic, constraint-based techniques that are proper and ter-

minating. This tool also permits the analysis of security protocols with

respect to an algebraic theory of the employed cryptographic operators,

which can be specified as part of the input [39].

The native input language of this tool is the AVISPA Intermediate Format

IF [19], [20]. It describes a security protocol as an infinite-state transition

system using set-rewriting. However, for the purpose of this thesis we will

use AnB, another language that is supported by OFMC. AnB specifications

are automatically translated to IF and this translation defines a formal se-

mantics for AnB in terms of IF. This language consists in an Alice-and-

Bob-style language that describes how messages are exchanged between

honest agents acting in the different protocol roles. Its purpose is to ex-

tend previous similar languages supporting algebraic properties of cryp-

tographic operators, with a simple notation for different kinds of channels

that can be used as assumptions and as protocol goals. With AnB, channels

can be specified as assumptions (when the protocol is based on channels

with specific properties for the transmission of some of its messages) and

as goals (when a protocol should establish some kind of channel). This

novel language can provide support for protocols that require algebraic

4.1. DESIGN 47

properties for the protocol execution, and it can also provide a notion of

the different communication channels that can be used to achieve a proto-

col’s goals and assumptions [39].

Figure 4.3: Transformations overview: OFMC attack trace conversion into logs.

Proceeding with the description of the design, we can obtain an attack

trace involving one or more attacks against a specific protocol after pass-

ing that protocol as an input to the OFMC tool. Then, using the Pandas

package from Python, we can translate the acquired trace and produce

a Dataframe of logs from it. Afterwards, the Dataframe can be exported

as a XES log file for Process Mining. As we outlined before, the specific

columns of data required in the log are:

• IDs: an identification number of a single activity in the logs, to dis-

tinguish it from other events.

• Timestamps of activities: all events have a date and time associated.

This is useful when analyzing performance related properties, e.g.,

the waiting time between two activities. If an event log contains

timestamps, then the ordering in a trace should respect these times-

tamps, i.e. they should be nondescending in the event log.

• Activity description: this field includes the label that describes what

this line of log is about, together with the content of the message

exchanged between the two parties. The content of the message is

48 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

useful to understand why the weak authentication attack is happen-

ing and what the intruder is doing. In this specific case, the intruder

is faking his real identity: he claims to be x29 with the server, but to

the receiver x401 he declarates to be x27. Here the authentication is

broken.

• Information/content: this column contains the label to describe the

single atomic activity.

To isolate these information, a translation script was written so that

the Pandas Dataframe could be generated. The specific script is depicted

and analyzed in the next section concerning the ’dummy’ log generation

example. This is suitable to convert any kind of attack trace generated by

the OFMC tool, even the most complex ones.

4.1.4 From labeled event logs to process tree

Continuing, now the Process Mining technique can be applied on our

event logs. It is not important if the logs come from an actual system, an

OFCM attack trace, or they are generated. We already discussed process

mining and process trees in chapter 2, to provide some background infor-

mation for this portion of the design. Process mining tools can be used

to refine the analysis, e.g., by applying filters that help focus on specific

properties. This can help identify undesirable behavior in the discovered

process model. The Process Tree of the examined system is obtained from

the event log as a consequence of Process Mining. This conversion allows

process discovery using the Inductive Miner algorithm. Indeed, the Induc-

tive Miner aims at deriving a Process Tree which represent the behaviour

listed in the event log.

4.1. DESIGN 49

Figure 4.4: Transformations overview: from event logs to Process Tree through
Process Mining.

Using the same Python library mentioned before, i.e. PM4PY, we can

apply Process Mining to our event logs. An implementation of the Induc-

tive Miner algorithm is provided in this package. Petri Net and Process

Tree are the two process models that can be derived utilizing the IM. To

do this, a log is read, the Inductive Miner is applied, and a Process Tree

(or a Petri Net) along with the initial and final marking are found. The

’dummy’ log generation example in the following section will go more

into detail about this process.

4.1.5 From process tree to attack tree

The next goal is the conversion of the obtained Process Tree into the

related Attack Tree. Also the vice-versa is possible, but for the scope of

this thesis we are interested just in the translation process from PT to AT.

In chapter 3 we introduced the notions of Attack Tree and Attack-Defense

Tree, to better understand the part of the tool that performs this trans-

lation. Now we introduce the characteristics of the Process Tree that is

mapped into an Attack Tree. Next in this section we also describe the

translation rules for the two languages involved in this process [16].

As already mentioned, Process Trees belong to the family of process mod-

els. A process model describes the flow of executed activities to accom-

plish a certain goal. The goal of a process model is to describe activities

50 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

and relationships, and their execution order [3]. In a Process Tree, internal

vertices are relations, and leaves represent activities. On the other hand

Attack Trees, by definition, are composed by a main goal (the root node),

subgoals (intermediate nodes), and actions (leaves). The main goal is de-

composed into subgoals. Each attack consists of components required to

perform the attack itself. The main difference between these languages is

that a Process Tree does not directly model the goal, since it is the objec-

tive of the model representation itself, while an Attack Tree directly mod-

els activities and goals. For the purpose of the translation, we consider

the last activity to be executed in the Process tree as the root node of the

Attack Tree, i.e. the goal. This is done in order to achieve the attack goal.

Firstly, we need to execute the list of activities required and, at the end,

we reach the final node. Therefore, the root node in the Attack Tree is

replaced with the sequence operator in the Process Tree. Note that the no-

tion of observable and non-observable actions is presented in [16]. This

definition is needed since the concept of goal is not embedded in the Pro-

cess Tree. This diversification is useful because ATs have a goal-oriented

and self-explainable structure, while PTs require that each activity node is

observable in the event log. For this reason, we distinguish between:

• Observable action: individual action collected by an information sys-

tem that can contribute to the achievement of the goal. It can be per-

ceived as an atomic event.

• Non-observable action: goal which cannot be directly mapped to an

execution of an activity. It can be viewed as a concept.

A non-observable action will be skipped in the Process Tree. As intro-

duced in chapter 3, Attack Trees also involve the conjunction (AND) and

disjunction (OR) operators, while Process Trees define four sequential op-

erators (sequential, exclusive choice, parallel composition and redo loop),

as described in chapter 2. In order to translate a Process Tree into an At-

tack Tree, the latter must be able to represent the operators of the former.

While the conjunction operator (AND) already finds a definition in the

4.1. DESIGN 51

Process Tree, that is the parallel operator, the disjunction (OR) must be de-

fined. In a Process Tree, the OR operator is a node whose child-nodes can

all be executed, or only partially, and the execution order does not matter.

Eventually, some operators from the Process Tree are discarded because a

correspondence in the Attack Tree is not found, e.g. the redo loop, because

for definition Attack Trees are directed acyclic graphs.

Once the translation rules are applied on the Process Tree, the related At-

tack Tree is generated. The resulting tree is in XML format, but for the

scope of this thesis another translation is performed as the last step of the

overall process.

Figure 4.5: Transformations overview: Process Tree to Attack Tree.

Hereinafter, the translation rules from Process Tree to Attack Tree are

presented. Note that in this thesis we are interested only in the transfor-

mation of a Process Tree into an Attack Tree, and not vice-versa, although

the reversed process is also possible [16]. We start analyzing each operator

concerning Process Trees.

Figure 4.6 involves the sequence operator that is used to define the parent-

child relationship and the rightmost child in a PT: this will become the root

node in the AT. Indeed, activities in the Process Tree are executed to reach

a final goal, namely the last action, which is the root note in the Attack

Tree. The procedure for 4.6 consists in the copy of T1 to all the leaves of

T2.

52 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

Figure 4.6: From Process Tree to Attack Tree: sequence operator.

For what concerns the AND operator, the translation is done by keep-

ing the same child nodes involved in the process but the relation becomes

a conjunction, and the root turns into a non-observable action. The pro-

cedure is similar for the OR operator, because it is translated into the dis-

junction between the same children. These two processes can be viewed

in Figure 4.7 and Figure 4.8.

Figure 4.7: From Process Tree to Attack Tree: AND operator.

Figure 4.8: From Process Tree to Attack Tree: OR operator.

To further explain the rules of translation, now we provide an example.

In Figure 4.9 the Process Tree contains the sequence operator as root, and

the exclusive choice (OR) in the rightmost child. Following the rules, the

rightmost child of the sequence operator is translated in root (in this case

there are two nodes), and both of them have as child the left part of the

sequential composition in the Process Tree. The same case occurs when

the Process Tree is composed by the sequence operator and the inclusive

4.1. DESIGN 53

choice (AND), but the latter is translated into a conjunction in the Attack

Tree.

Figure 4.9: Complete example of translation from PT to AT.

4.1.6 Conversion of the attack tree for RisQFLan

To better understand the last part of the tool, an introduction to the

RisQFLan tool was provided in chapter 3. This portion of work entails

converting the obtained XML Attack Tree into a format compatible with

the RisQFLan framework, while maintaining the same version of the tree.

This operation allows one to exploit a programming-like environment that

is attractive to software developers, and that integrates at the same time a

graphical component which make it more appealing for security experts.

In RisQFLan’s Domain Specific Language (DSL), nodes are defined in spe-

cific blocks as we can see in Figure 4.10. Moreover, it is also possible

to define defense and countermeasures nodes. This is feasible since the

framework also considers Attack-Defense Trees, but for the scope of this

thesis we will focus only on Attack Trees. The operators OR, AND and

OAND (ordered AND) are offered. AND and OR refinements originate

from the seminal works on Attack Trees [1]. OAND refinements stem from

enhanced and improved Attack Trees [15] and are used to model ordered

attacks: sub-nodes can be activated in any order but only the correct one

activates the parent node. Essentially, square brackets of OAND in Fig-

ure 4.11 indicate that order matters: Node1 requires Node2 and Node3 in

that order.

54 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

Figure 4.10: Example of attack nodes in the RisQFLan framework.

Figure 4.11: Example of attack diagram in the RisQFLan framework.

With the completed procedure, we are able to fully automate the pro-

cess and produce the examined system’s Attack Tree in two different for-

mats, based on the analyzed event logs.

4.2 A dummy example

In this section a straightforward example is provided, to better explain

the general procedure. Although we could have used some real event

logs, in this instance we decided to show the dummy log generation for

the sake of simplicity. We start by creating a Pandas Dataframe containing

ID, activity name and timestamp. An example of dummy log generation

procedure is shown in Figure 4.12. On the other hand, Figure 4.13 refers

to the resulting Dataframe of logs.

4.2. A DUMMY EXAMPLE 55

Figure 4.12: Creation of a Pandas Dataframe for the generation of a dummy event
log.

Figure 4.13: Example of generated Pandas Dataframe containing log instances.

As stated before in the design section, the next step is the conversion

of the Pandas Dataframe into an event log object. Our goal is to convert

56 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

the DataFrame into a XES file. To do this, we can use PM4PY [17], which

is a Process Mining package for Python. It implements the latest, most

useful, and extensively tested methods of Process Mining. The code in

Figure 4.14 shows how to convert the obtained Pandas Dataframe into

the PM4PY internal event data object type. To do this, we refer to the

format dataframe function available in PM4PY. By default, the con-

verter transform the Dataframe into an Event Log object. In this example,

we observe three columns: case:concept:name for the ID, concept:name

for the name of the current activity, and time:timestamp for the times-

tamp. The event log is then exported into an external XES file, so that it

can be used as input data for the Process Mining algorithm. Exporting an

Event Log object to a XES file is fairly straightforward with PM4PY. The

last line of code in Figure 4.14 depicts this functionality. The event log

is assumed to be an Event Log object. The exporter also accepts an Event

Stream or DataFrame object as input. As a final step, the log can be ex-

ported as XES file using the write xes PM4PY function.

Figure 4.14: Conversion of a Dataframe in an Event Log and exportation in XES
format.

In addition, PM4PY uses the Pandas library to enable the conversion

of an event log into a CSV file. Hence, a XES event log may be first trans-

formed into a Pandas DataFrame with the function convert to dataframe,

and then the translation into CSV can be done with the to csv function

from Pandas. Also the vice-versa is possible: CSV event logs can be easily

read through Pandas functions, and then a XES log can be obtained using

convert to event log from PM4PY.

Now we can apply the Process Mining algorithm on the dummy logs

that we just generated. We run the experiments to test our methodology

using PM4PY. In this library an implementation of the Inductive Miner is

4.2. A DUMMY EXAMPLE 57

offered. Two process models can be derived using the IM: Petri Net and

Process Tree. To mine a Process Tree, as shown below in Figure 4.15, a log

is read, the Inductive Miner is applied and the PT along with the initial and

the final marking are found. The same reasoning may be applied to find a

Petri Net as an alternative. In this case the ’dummy’ log xesTest.xes is

taken as input. Firstly, the log is read and then the IM algorithm is applied.

As we said, besides the Process Tree, the provided code can also be used

to obtain a Petri Net. The last two lines of code are responsible for the PT

visualization. The resulting tree is shown in Figure 4.16. If necessary, it is

also possible to convert a Process Tree into a Petri Net.

Figure 4.15: Use of Inductive Miner on the dummy event logs to generate a Pro-
cess Tree.

Figure 4.16: Process Tree generated by using the implementation of the Inductive
Miner on dummy event logs.

Now it is possible to follow the procedure presented before, to trans-

form the obtained Process Tree into an Attack Tree. In the previous section

we outlined the main characteristics and translation rules about the PT

that is mapped into the final AT. As a result from the application of the

translation rules, we get an Attack Tree generated from the ’dummy’ logs.

Figure 4.17 depicts the result of the translation process. Note that the se-

quence operator is used to transform the relationship into a parent-child

58 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

one. Finally, the AND operator becomes the conjunction one, while the

root is now the silent activity τ .

Figure 4.17: Resulting AT starting from generated dummy logs and passing
through the PT shown in section 4.2

The tool’s last component is a translation script designed to convert

the obtained XML Attack Tree into the same one but in bbt format, which

is suitable for the RisQFLan security framework described in chapter 3.

This is accomplished by using the rules of semantics that were just dis-

cussed. The attack nodes are defined, together with the relationships be-

tween them. What we obtain is a txt file containing the RisQFLan code.

As a final step, the conversion into a bbt file can be done. The code de-

picted in Figure 4.18 can be passed to RisQFLan as input, so that the Attack

Tree can be viewed in this framework as well.

4.2. A DUMMY EXAMPLE 59

Figure 4.18: Code referring to the XML attack tree in section 3.1 and suitable for
the RisQFLan tool.

After giving an overview of the tool proposed in this thesis, in the next

chapter we will provide some actual case studies. The last example uses

real logs, as opposed to the prior three that use the external tool OFMC,

which allows one to obtain event logs starting from attack traces.

60 CHAPTER 4. THE TOOL: FROM EVENT LOGS TO ATTACK TREE

Chapter 5

Case studies

In the prior chapter, an introduction to the design was necessary before

the case studies were given. The Opensource Fixedpoint Model Checker

(OFMC) tool was also introduced in order to obtain an event log starting

with an attack trace generated by this tool. OFMC is used in our first three

examples. On the other hand, the last case study starts directly from a

real system’s event log and it also serves as a ’bad example’. Indeed, the

selected log prevents one from constructing the system’s final Attack Tree

from the discovered Process Tree. The reasons will be addressed at the end

of this chapter.

5.1 First example: attack trace concerning a sin-

gle attack

5.1.1 Attack trace generation

To be clearer, now we make an example regarding the functioning of

the tool. For the sake of simplicity, in this first case study we generated an

OFMC attack trace that takes into account only one attack to the protocol.

However, later we will analyze cases involving attack traces with multiple

attacks, so that the final Attack Tree can be as complete as possible. To be-

gin with, we introduce a simple key-exchange protocol that establishes a

61

62 CHAPTER 5. CASE STUDIES

shared symmetric key between two parties, i.e. Alice and Bob, that do not

have a security relationship so far. We want to protect the transmission

of a secret key KAB shared between A and B. The problem in this exam-

ple is that between the transmission there is an intruder called I. With this

aim, we assume that all the agents (including the intruder) initially have

a shared key with the server S. We may think that S provides wireless ac-

cess, but everyone who wants to use it has to first register, for example

with an offline operation that involes the installation of username and se-

cret shared key between the agent and the server. Therefore, we assume

that S has a strong shared key sk(A, S) with every user A, i.e., chosen by

a cryptographic random-number generator. Figure 5.1 shows the exam-

ple using the KeyEx protocol. Note that AnB language uses the notation

{|Mes|}K for the symmetric encryption of a given message Mes with the

key K.

Figure 5.1: Example in AnB language about key exchange protocol.

Let’s start introducing the types section. Here A, B and KAB, to-

gether with other identifiers that starts with upper case letters, are vari-

ables. They are placeholders for a concrete value, e.g. the name of the

agent. Identifiers that start with lower case letters, like s, are called con-

stants. Variables and constants that are declared to be of type Agent are

called roles. It is important to use variables and constants: variables of

type Agent cannot be instantiated arbitrarily with agent names. This in-

cludes the special agent i, that is the intruder.

5.1. FIRST EXAMPLE: ATTACK TRACE CONCERNING A SINGLE ATTACK63

Moreover, for each role of the protocol, its initial knowledge must be spec-

ified. This is done in the knowledge section. Note that the elements in

the knowledge part must contain only variables of type agent.

Finally, let’s analyze the action section: here the parties’ message ex-

changes are described. First of all, A tells to the server S that he would

like to communicate with B. Then, S creates a new symmetric key and it

also generates two encryptions: the first using the shared key with A, and

the other one exploiting the shared key with B. The two messages are then

encrypted and sent to A, which can only decrypt the first of the two. A

is supposed to forward this second message to B, who has the necessary

knowledge to decrypt it. Therefore, all agents have sufficient knowledge

to produce all necessary messages and end up with a copy of the shared

key KAB at least in a run, when the intruder does not interfere. Note that

A cannot decrypt the second part of the message received from S.

Usually, cryptographers associate with ’symmetric encryption’ only the

pure encryption, without any protection of integrity such like the MAC

(Message Authentication Code). This pure encryption sometimes can be

vulnerable to the intruder that manipulates the ciphertext and changes the

encrypted text. By doing so, the recipient cannot detect that a change was

done. Therefore, AnB models {|Mes|}K as a primitive which includes

integrity. When A receives the two encrypted messages from S, he will

decrypt the first one. Indeed, the integrity mechanism of the primitive

allows to check that the received message is encrypted correctly with the

right symmetric key sk(A, s). If I sends other messages that are not of the

form {|Mes|}sk(A, s), A will detect a problem and will refuse them.

If we run this OFMC example, we otbain the attack trace depicted in

Figure 5.2. The attack in question is a violation against weak authentica-

tion. In the attack trace, looking at the comments that OFMC provides

as part of the Reached State comment, we can note three facts. They are

often helpful in understanding an authentication attack, because they re-

flect what the honest agents ’think’. Here, the intruder chose two random

agent names x29,x401 and sent them to S, who created a new shared key

KAB(1) for these two. Then, I sent this message to x401, but claiming to be

64 CHAPTER 5. CASE STUDIES

x27, namely a different person than who the server generated the key for.

To x401 this message looks like a correct step 3 of the protocol, so it will be-

lieve that KAB(1) is a shared key with x27. The intruder did not discover

any secrets in this case. However, he violated the authentication: S and

recipient x401 disagree on who is playing role A in this session, namely

with who the key is shared with. Therefore, this is a violation of the goal

B authenticates s on A,KAB.

To be clearer, we say that we have a violation of weak authentication if

there is a request fact without a matching witness fact. If we consider a

goal with the form B authenticates A on M, the witness fact reflects

the point of view of A. On the other hand, the request fact reflects the

point of view of B. Thus, this goal should be used if the protocol ensures

the authentic communication of a message Mes from A to B. Therefore, if

B finishes believing that A has sent message Mes for him, this is indeed

an attack. This also includes a case in which A has meant the message for

somebody else, as the one we just analyzed.

Figure 5.2: Attack trace generated from the key exchange protocol example.

We have now generated an attack trace regarding a specific protocol.

However, for the purpose of this thesis we need some event logs to per-

form Process Mining and obtain the Attack Tree of the system. To do this,

we implemented some slight modifications to the AnB example previously

introduced in Figure 5.1. The aim is to produce some significant labels for

the conversion of the attack trace into an event log. To achieve this, a new

Type offered by OFMC, called Number, was used. This type allows one

to define some ’labels’ that can be added in the list of Knowledge of the

5.1. FIRST EXAMPLE: ATTACK TRACE CONCERNING A SINGLE ATTACK65

agents. Keep in mind that for the labeling process to be effective, each

agent participating must know all of the labels. The updated code about

the Key-exchange protocol is shown in Figure 5.3, while the resulting la-

beled attack trace can be seen in Figure 5.4.

Figure 5.3: Example in AnB language about key exchange protocol with labeling.

Figure 5.4: Labeled attack trace generated from the key exchange protocol exam-
ple.

We point out that, even though we reached the same attack trace as

before, now there are labels that describe what is happening in each line,

which can be helpful for the creation of a labeled event log.

5.1.2 Translation from attack trace to event log

Proceeding with the work, given as input the obtained attack trace, we

can convert it and generate a Dataframe of logs using the Pandas library

from Python. Afterwards, it is possible to export the Dataframe as XES

log file for the Process Mining. The specific columns of data required in

66 CHAPTER 5. CASE STUDIES

the log are the same as those in the subsection 5.4.1 about the ’dummy

example’ that we introduced previously. To be precise, we need:

• IDs: an identification number of a single activity in the logs, to dis-

tinguish it from other events.

• Timestamps of activities: all events have a date and time associated.

This is useful when analyzing performance related properties, e.g.,

the waiting time between two activities. If an event log contains

timestamps, then the ordering in a trace should respect these times-

tamps, i.e. they should be nondescending in the event log.

• Activity description: this field includes the label that describes what

this line of log is about, together with the content of the message

exchanged between the two parties. The content of the message is

useful to understand why the weak authentication attack is happen-

ing and what the intruder is doing. In this specific case, the intruder

is faking his real identity: he claims to be x29 with the server, but to

the receiver x401 he declarates to be x27. Here the authentication is

broken.

• Information/content: this column contains the label to describe the

single atomic activity.

To isolate all the information, a translation script was written so that

the Pandas Dataframe could be generated. The script can be seen in Fig-

ure 5.5. This is suitable to convert any kind of attack trace generated by

the OFMC tool, even the most complex ones.

5.1. FIRST EXAMPLE: ATTACK TRACE CONCERNING A SINGLE ATTACK67

Figure 5.5: Translation script: from attack trace to event log.

To be precise, a conversion from log to csv is needed. Afterwards, the

trace can be read by the Pandas library as a Dataframe, and subsequently

converted into a List of List using the tolist() function. We can now

loop the list and isolate only the strings of data that we need, to create

a proper event log containing the following information: timestamp,

activity, index, info. In this case, the ’info’ is the description of

the atomic activity, i.e. the content of the exchanged message. On the

other hand, the ”activity” column can contain different elements, because

we chose to split and analyze three distinct cases. Indeed, the ’activity’

field can contain:

• Case 1: the sender, the receiver and the content of the message;

68 CHAPTER 5. CASE STUDIES

• Case 2: the sender and the receiver of the message;

• Case 3: the sender and the content of the message.

The three different scenarios are outlined in lines 24, 26 and 27 of Fig-

ure 5.5. Then, we can put all the final information together in a Dataframe,

e.g. updatedPD, that will become the final event log when we export it to

XES.

In Figure 5.6 the single components of the attack trace are summarized,

while Figure 5.7 shows the obtained Dataframe containing the proper columns

of data generated from the key-exchange attack trace.

Figure 5.6: Translation summary from attack trace to event log.

Figure 5.7: Resulting Dataframe of logs starting from the key exchange attack
trace.

Exporting a XES event log starting from the generated Pandas Dataframe

is the last step of this phase. As we can see in Figure 5.8, it is possible to

carry out the conversion by employing the PM4PY library.

Figure 5.8: Conversion from Pandas Dataframe to XES event log.

5.1. FIRST EXAMPLE: ATTACK TRACE CONCERNING A SINGLE ATTACK69

5.1.3 From event log to Process Tree and Attack Tree

The next step is Process Mining: our aim is to obtain a Process Tree

starting from the event logs. To do this, we can follow the rules outlined

in Section 2.2. The code that depicts this step can be seen in Figure 5.9.

Figure 5.9: Read of the log and generation of the Process Tree.

Basically, we can employ the PM4PY functions read xes and discover process tree i

nductive to respectively read the analyzed log as input and discover the

related Process Tree. Afterwards it is also possible to visualize it through

view process tree. In addition to Process Trees, another type of graph

that is possible to discover is the Petri Net. This is possible with the

discover petri net inductive function.

The resulting Process Tree is showed in Figure 5.10. The depicted tree

refers to Case 1 in which we take into account sender, receiver and content

of the message. To make the tree more readable, hereinafter we explain

the meaning of each node:

• To begin the message exchange, A sends the participants to the server

S. The content of the message is x29, x401, i.e., the first term is

claimed to be A, while the second is B.

• The server now generates a key KAB for the message exchange and

sends it to A. The content of the message is {|KAB(1)|}(sk(x29,s)),
{|KAB(1)|}(sk(x401,s)), namely S creates two encryptions: one

using the shared key with A, and another one using the shared key

with B.

• A sends to B his encrypted part of the key, but claiming to be x27 and

not x29 as he told to the server. We can spot this problem looking at

70 CHAPTER 5. CASE STUDIES

the content of the exchanged message: x27, {|KAB(1)|}(sk(x401,s)).

Indeed, the first term in the message describes who A is, and in this

case we can read x27 and not x29. The attack takes place in this pre-

cise step: the intruder did not find out any secret, but he managed to

break the authentication.

Figure 5.10: Process Tree Tree about single authentication attack starting from
OFMC attack traces (Case 1).

Instead, Figure 5.11 depicts the Process Tree that refers to Case 2, i.e.

the activity nodes contain only sender and receiver. Finally, Figure 5.12

shows Case 3 where the Process Tree’s nodes take into account only sender

and content of the message.

Figure 5.11: Process Tree Tree about single authentication attack starting from
OFMC attack traces (Case 2).

Figure 5.12: Process Tree Tree about single authentication attack starting from
OFMC attack traces (Case 3).

The Process Tree nodes can now be translated into Attack Tree nodes,

to generate the final Attack Tree of the system. To do this, we follow the

translation rules introduced in Section 4.2. As we said before, to be able

to see different granularity levels, we decided to consider three different

cases for the ’activity’ field in the event log. Because of this, we generated

5.1. FIRST EXAMPLE: ATTACK TRACE CONCERNING A SINGLE ATTACK71

three distinct Attack Trees, each concerning the Process Trees that we just

showed. The one containing sender, receiver and content of the message

can be seen in Figure 5.13 (Case 1), while the one only about sender and

receiver is shown in Figure 5.14 (Case 2). Finally, the AT containing only

sender and content of the message is depicted in Figure 5.15 (Case 3). The

trees are all about the same event log, but they allow us to see different

data from multiple perspectives.

Figure 5.13: Resulting Attack Tree about single authentication attack containing
sender, receiver and message content (Case 1).

Figure 5.14: Resulting Attack Tree about single authentication attack containing
sender and receiver (Case 2).

72 CHAPTER 5. CASE STUDIES

Figure 5.15: Resulting Attack Tree about single authentication attack containing
sender and message content (Case 3).

5.1.4 Generation of RisQFLan’s code

Lastly, to translate the three obtained Attack Trees from XML into bbt,

a final translation script was written. This extension is supported by the

RisQFLan tool, previously introduced in Section 3.2. First of all, the at-

tack model was created and subsequently the attack nodes were detected.

To identify them, we iterated on all the nodes involved in the XML tree,

both parents and children. Finally, the types of relationship between them

were specified so that the code could be generated and could be given

as input to the security framework, to generate the tree for RisQFLan.

To be able to obtain the relationships, another iteration was done. If the

parentRelationship of a given node is disjunction, it is translated

into an ’OR’ relationship, otherwhise if we have a conjunction, we ob-

tain an ’AND’. The obtained code of the Attack Tree about Case 1, i.e. the

one that includes content, sender and receiver, can be seen below in Fig-

ure 5.16. The generation of RisQFLan code for the other two cases follows

the same steps and reasoning.

5.2. SECOND EXAMPLE: ATTACK TRACE CONCERNING MULTIPLE ATTACKS73

Figure 5.16: RisQFLan code for the Attack Tree containing sender, receiver and
content of the message.

We emphasize the resulting trees’ simplicity as a way to wrap up this

initial case study. This is the result of a trace that considers one single

attack at the authentication protocol. However, the same logic and reason-

ing can also be applied for case studies that are trickier. For this reason,

hereinafter we include other examples of attack traces involving multiple

attacks to the same OFMC input protocol.

5.2 Second example: attack trace concerning mul-

tiple attacks

For the sake of simplicity, we used the previous case study to generate

a trivial Attack Tree with sequential shape. To make this tool more realis-

tic, we introduce now an example in which another attack trace generated

from OFMC is transformed into an event log and then the previous pro-

cedure is followed. The distinction in this case study is that, unlike the

prior one, this trace considers various attacks against the same protocol,

and not only one. For this example we produced an OFMC trace concern-

74 CHAPTER 5. CASE STUDIES

ing the Needham–Schroeder Protocol (NSPK Protocol). The AnB code that

allowed the generation of the trace is depicted in Figure 5.17, while the ob-

tained trace can be seen in Figure 5.18. The Needham–Schroeder Public-

Key Protocol is based on public-key cryptography. It aims to establish a

session key between two parties on a network, typically to protect further

communication, but in its proposed form is considered insecure.

Figure 5.17: Code for OFMC for the generation of the attack trace about protocol
NSPK.

As we can see in Figure 5.17, in this case we take into account two

agents, i.e. A and B, and an encryption function called pk. Indeed, the

communication happens only between A and B without the presence of a

third party. The key pk(A) is symmetric and known only by A, while pk(B)

only by B. Moreover, in this case study there are two new elements called

nonces: they are a way to ensure recentness in protocols of challenge-

response. To be precise, nonces are random numbers chosen by one or

more parties. They abbreviate ’number once’, i.e. they should be used

only once. The point is that, if another party has to include the nonce in a

response, the creator of the nonce can be sure that the response is no older

than the nonce it contains. The value of these guarantees depends on the

cryptographic operations in which the nonce is used.

First of all, in the code depicted in Figure 5.17, A begins creating his nonce

NA and sends it together with A, encrypting it with the encryption func-

5.2. SECOND EXAMPLE: ATTACK TRACE CONCERNING MULTIPLE ATTACKS75

tion of B, i.e. pk(B). Subsequently, B does the same creating his nonce

NB and sending it together with NA, encrypting everything with pk(A).

Finally, A can decrypt what he just received and can send NB encrypted

with pk(B). Basically, A re-encrypts it and sends it back to verify if that he

is still alive and that he holds the key.

Figure 5.18: Attack trace containing multiple attacks to NSPK protocol.

As confirmed by the obtained attack trace, the protocol is vulnerable

to a replay attack. If an attacker uses an older, compromised key, he could

replay his message to B who will accept it, being unable to tell that the key

is not fresh. A part of the obtained attack trace can be seen in Figure 5.18.

5.2.1 Translation from attack trace to event log

Similarly to the former example, the attack trace was first converted

into a Pandas Dataframe using the same translation script that was de-

picted in Figure 5.5. Figure 5.19 shows the obtained Dataframe. For sim-

plicity, in this case study we took into account the first 4 attacks that ap-

pear in the trace, but it is possible to consider any preferred number. We

chose to limit the selected attacks from the trace because, for the sake of

76 CHAPTER 5. CASE STUDIES

our explanation, a larger number would result in a wider and more chaotic

Attack Tree.

Figure 5.19: Dataframe containing log entries concerning attacks agains NSPK.

Afterwards, the Dataframe was exported into a XES event log using

the PM4PY Python library, as previously shown in Figure 5.8. Also in this

case study, the relevant data from the log concern the following informa-

tion: ID, timestamp, activity label and information. Now, the obtained

XES file can be given in input to the next step, i.e. the Process Mining

algorithm.

5.2.2 From event log to Process Tree and Attack Tree

Continuing our process, we can use the functions discover process tree inductive

and view process tree from PM4PY, like we did before in Figure 5.9.

By performing this and using the event log as input, we can discover and

visualize the related Process Tree of the system. In addition, we differ-

entiated three different scenarios for the ’activity’ field displayed in the

tree’s nodes: first, the activity could include include the sender, the recip-

ient and the message’s content; second, it could include only the sender

and receiver; and third, it could only include the message’s sender and

5.2. SECOND EXAMPLE: ATTACK TRACE CONCERNING MULTIPLE ATTACKS77

content. As a result, we were able to create three alternative Process Trees.

Figures 5.20 and 5.21 show the first two Process Trees, as we decided to

omit the third one for space reasons.

Figure 5.20: Process Trees about case 1 (activity nodes containing content of the
message, sender and receiver).

Figure 5.21: Process Trees about case 2 (activity nodes containing sender and re-
ceiver).

The Process Tree nodes can now be transformed into Attack Tree nodes

to construct the system’s final Attack Tree. To do this, we followed the

translation rules previously outlined in Section 4.2. We attempted to de-

velop three related Attack Trees, one for each scenario, based on the three

Process Trees we just introduced. Figure 5.22 displays the scenario about

message’s sender, receiver, and content (case 1), while Figure 5.23 depicts

the one only about message’s sender and content (Case 3). Even though

the trees are all about the same event log, they allow us to view different

pieces of information from different perspectives. Regarding the second

scenario, be aware that the Attack Tree is missing. This happened because

the second Process Tree contained several ’xor loops’ that could not be

changed into other appropriate operators for the Attack Tree. As a result,

the transformation in this second case was not feasible. The final chapter of

this thesis, which discusses the results and potential future improvements,

tries to address issue. We will highlight that one alternative approach may

be to consider the adoption of a different kind of graph that can take loops

into account, rather than an Attack Tree.

78 CHAPTER 5. CASE STUDIES

Figure 5.22: Attack Tree about NSPK attack (case 1: content, sender and receiver).

Figure 5.23: Attack Tree about NSPK attack (case 3: content and receiver).

5.2.3 Generation of RisQFLan’s code

As a final part, also in this second case study, the equivalent code about

the Attack Trees for the RisFQLan tool was generated. The results are

comparable to the first example in Figure 5.16, with the exception that the

tree in this study’s scenario is bigger and slightly more complicated. In

order to get a better understanding of the system and any potential threats

to it, it is also possible to depict the final trees in this example using the

graph-based security framework.

5.3. THIRD EXAMPLE: ANOTHER ATTACK TRACE OF MULTIPLE ATTACKS79

5.3 Third example: another attack trace of multi-

ple attacks

To provide more truthfulness and reliability about our work with the

OFMC tool, we chose a third case study that is similar to the previous

one. This time OFMC was used to generate an attack trace concerning

the Selfi protocol, i.e., an authentication protocol that allows two parts A

and B to authenticate themselves on their two nonces N1 and N2 respec-

tively. Figure 5.24 displays the code used as the model checker tool’s input

with reference to this protocol. As we outlined in the previous case study,

nonces are useful because the creator can be sure that the response is not

older than the nonce contained in it, in case a third party is required to

include the nonce in his response. In the code for the attack trace creation

we can note that the message exchange begins with A transmitting to B the

following information: A together with B and his generated nonce N1. Af-

terwards, B answers by transmitting the encrypted secret keys (both keys

about A and B) together with A, B and his created nonce N2. The nonces

are then excluded from the final exchange because they have already com-

pleted their task of ensuring the freshness of the messages sent between

the parties. For this reason, in the last message exchange A sends to B the

encrypted keys along with A and B. By executing these steps, B can verify

the identity of A by using N1, and A can authenticate B as well but using

N2.

80 CHAPTER 5. CASE STUDIES

Figure 5.24: OFMC code for the generation of the attack trace about protocol
SELFI.

After running the code that was just described and shown in Figure 5.24,

we reached an attack trace that outlines multiple attacks to the Selfi proto-

col. The initial part of the obtained trace is depicted below in Figure 5.25.

Figure 5.25: Attack trace containing multiple attacks to Selfi protocol.

The obtained attack trace confirms that the protocol is vulnerable to

multiple attacks against the same protocol. The potential threats con-

cern an outsider who might compromise the parties’ message-exchange

authentication. We go on to the next step, in order to obtain the Attack

Tree and overcoming the identified threats. As we observed with the prior

5.3. THIRD EXAMPLE: ANOTHER ATTACK TRACE OF MULTIPLE ATTACKS81

case studies, to perform process mining, the attack trace must be turned

into a suitable event log.

5.3.1 Translation from attack trace to event log

The attack trace was first transformed into a Pandas Dataframe us-

ing the same translation script that was shown in Figure 5.5, just like in

the previous example. The resulting Dataframe is displayed below in Fig-

ure 5.26. Again, we only included the first four attacks that appear in the

trace in order to keep things simple, but it is possible to keep any chosen

number. As we said before, we opted to minimize the attacks picked from

the trace for the sake of our explanation, because a greater number would

result in a wider and more chaotic Attack Tree.

Figure 5.26: Dataframe containing log entries about attacks against Selfi protocol.

In this instance as well, the PM4PY library was used to convert the

Dataframe into a XES event log. The code is equivalent to the one we illus-

trated and described in Figure 5.8. Again, the relevant data required from

the log is: ID, timestamp, activity label and information. The generated

XES file can now be used as input for the Process Mining technique in the

following phase.

82 CHAPTER 5. CASE STUDIES

5.3.2 From event log to process tree and attack tree

As we stated before in Figure 5.9, we can go on with the process by uti-

lizing the PM4PY functions view process tree and discover process tree inductive.

By carrying out this, using the event log as input, we may learn about and

see the system’s linked Process Tree. Again , we distinguished three differ-

ent possibilities for the ’activity’ field shown in the nodes of the tree: first,

the activity could include the sender, the recipient, and the content of the

message; second, it could include include only the sender and receiver;

and third, it could include only the sender and content. We were able to

produce three different Process Trees as a result. Due to space limitations,

we opted to omit the first and third Process Trees, leaving only the second

one, depicted in Figures 5.27 , which focuses only on sender and receiver.

Figure 5.27: Process Tree about Selfi attack (case 2: content and sender).

Also in this example, Figure 5.27 shows that the Process Tree about

case 2 contains some ’xor loops’ operators that cannot be converted into

Attack Tree operators for the same reasons stated in the previous subsec-

tion. Because of this, in order to generate only two Attack Trees, namely

the one with nodes containing content, sender, and receiver, and the one

about content and sender, we only applied our translation rules to the

first and third Process Trees. The obtained ATs are shown in Figures 5.28

and 5.29 respectively.

5.4. A ’BAD’ EXAMPLE: MALWARE INFECTION LOGS 83

Figure 5.28: Attack Tree about Selfi attack (case 1: content, sender and receiver).

Figure 5.29: Attack Tree about Selfi attack (case 3: content and receiver).

5.3.3 Generation of RisQFLan’s code

Concluding this third case study, also here the RisFQLan codes were

generated, starting from the obtained XML Attack Trees. What we achieved

looks like the previous examples (Figure 5.16), and also this case study

generated wider and slightly more complicated trees with respect to the

first case. Essentially, also in this instance it is possible to convert the final

Attack Tree. This allows one to use the RisQFLan graph-based security

framework, to achieve a better overview of the analyzed system and to

identify possible threats that could show up.

5.4 A ’bad’ example: malware infection logs

For the scope of our work we provide also another example in which

real event logs are used without the need of OFMC. To be precise, these

logs are about malware infection traffic and they are provided by Strato-

84 CHAPTER 5. CASE STUDIES

sphere IPS [6].The Stratosphere IPS feeds itself with models created from

real malware traffic captures. Their aim is to continuously monitor the

threat landscape for new emerging threats, retrieving malicious samples

to capture the traffic. The selected project is named ’Malware Capture

Facility Project’ and it is responsible for making the long-term malware

captures. This dataset of traffic logs provide a real scenario in which a

machine is not infected, then infected with a malware and after some time

this is cleaned up. Specially in network computer security it is really im-

portant to have good datasets, because the data in the networks is infinite,

changing, varied and with a high concept drift. For this reason, this data

traffic is about malware but also about normal activities. The specific cap-

ture taken into account is about a normal computer working with a real

user for some time, then a malware infection happens, finally it is cleaned

and the user continues working normally for some time.

5.4.1 From real traffic logs to activity logs

Our initial aim is to translate this traffic log dataset into a proper activ-

ity log suitable for the process mining algorithm. Note that in this case we

do not use the OFMC tool because we already have some traffic logs and

therefore we do not need to start from an attack trace generation. Firstly,

the algorithm requires some logs in XES format and secondly we have to

pass the right columns of data needed in the process mining procedure. As

previously introduced, the specific columns of information that we want

in the final XES log are the following:

• ID: progressive numbers so that the different activities can be distin-

guished between each others.

• Timestamp: date and time of the single line of log. For this specific

traffic log a translation of the timestamps is needed: in the original

file they are stored as total amount of seconds, while we need a real

date and time for the purpose of the process mining.

• Activity: it illustrates the typical information present in the original

5.4. A ’BAD’ EXAMPLE: MALWARE INFECTION LOGS 85

traffic log. In this column the IP of the source, the IP of the destina-

tion, the used protocol and the length are listed.

• Information: brief description of a specific atomic activity shown in

a single line of the logs.

The first step is accomplished through Pandas Python’s library. It

allows the translation of the original traffic logs depicted in Figure 5.32

into activity logs suitable for the Process Mining. This transformation is

shown in our translation script below in Figure 5.31. To begin with, the

initial traffic log in CSV format provided by the repository is imported

and converted into a Dataframe using the read csv function from Pan-

das. The first problem is that in the obtained Dataframe we do not have

the proper columns of data that Process Mining requires from an event

log. As we saw before, the right structure that we choose for our columns

is the following: timestamp, activity, index, info. To achieve

this, the conversion of the Dataframe into a List of Lists was done using

the tolist() function. This operation is helpful because now we can

loop the List so that we can obtain the strings of data needed and put

them in the rows of a new Dataframe, i.e. updatedPD, that is the final

one. Note that, for what concerns the time, in the initial traffic logs we

have amount of seconds, while in the final log we need a proper date and

time. To overcome this, we imported datetime to set the starting date

and timedelta to add the seconds to an actual date, and convert ev-

erything into a proper date-time format. These translation steps are also

summarized in Figure 5.30.

Figure 5.30: From real traffic logs to activity logs.

86 CHAPTER 5. CASE STUDIES

Figure 5.31: Translation from real traffic logs to activity logs suitable for Process
Mining.

As we can see in Figure 5.33, with the translation script the informa-

tion needed for Process Mining are now together in specific columns and,

as a result, a final DataFrame is obtained. This data will be used by the

Inductive Miner algorithm provided by the PM4PY library.

5.4. A ’BAD’ EXAMPLE: MALWARE INFECTION LOGS 87

Figure 5.32: Initial table format of real traffic logs.

Figure 5.33: Final table of activity logs suitable for Process Mining obtained from
the translation script.

5.4.2 From activity log to Process Tree

After obtaining the event log DataFrame about the whole system, it is

necessary to export the data in the XES format. For this specific case it was

considered appropriate to split the obtained event log into two parts: one

about the system’s behaviour before the infection and another one con-

cerning the post-malware. In this case this step is allowed because the

analyzed log repository provides the exact time and date in which the in-

88 CHAPTER 5. CASE STUDIES

fection takes place. This preliminary operation could help us notice which

are the differences between a system that is infected and another one that

is not.

The next step is to apply the usual Process Mining procedure outlined in

Section 2.2 using PM4PY library from Python, both for the data before and

after the infection. The two obtained Process Trees are depicted in Fig-

ure 5.34.

5.4. A ’BAD’ EXAMPLE: MALWARE INFECTION LOGS 89

Figure 5.34: Process Trees respectively about before and after malware infection.

90 CHAPTER 5. CASE STUDIES

5.4.3 The problem: Attack Tree generation

At this point we reach a problem concerning this specific case study.

As we can see in the two obtained Process Trees in Figure 5.34, a differ-

ence in the behaviour of the system cannot be noticed just looking at what

is happening into the Process Trees or into the event logs. To be precise,

in this example it is not possible to spot which are the steps of the attacker

that lead him to the goal of the attack, i.e. the malware infection. To make

this tool work properly, some activities or atomic steps about the attacker

must be detected starting from the analyzed event log, so that they can be

depicted in the generated Process Tree. For these reasons we tried our tool

on other examples, i.e. the previous case studies, and for the scope of this

thesis we decided to use also an automated protocol verification tool, i.e.

OFMC, that allows one to generate attack traces from a given protocol in

input. From the attack traces we showed how it can be possible to obtain

event logs as input for our tool. However, many additional case stud-

ies may focus on conventional activity logs produced by normal systems

similar to the one just examined. Indeed, many others event logs can be

examined and can generate Attack Trees with the help of our tool, without

the usage of OFMC.

5.5 Contribution w.r.t. related works

The purpose of this section is to discuss the reasons behind the design

of the tool that was introduced in this thesis. To do this, we updated the

initial scheme (Figure 1.6) about the related papers and associated weak-

nesses that was discussed in the ’related work’ part (Section 1.4). Basically

we added one new column on the right, namely the one that refers to our

tool. The updated version is now represented below in Figure 5.35. To

be more precise, we point out that our tool does not require complicated

formal engines or huge databases of typical attacks to work. In fact, what

we require is either a protocol to be provided as input to the OFMC tool in

order to build a log from the trace, or an event log from a real system that

5.5. CONTRIBUTION W.R.T. RELATED WORKS 91

can represents some of the attacker’s actions. Additionally, the emphasis

is solely on Attack Trees and not on other kinds of graphs. By concentrat-

ing on a single type of graph, we can better understand its advantages and

drawbacks, as well as propose alternatives based on the disadvantages of

the Attack Tree. Finally, we can say that we developed a fully automated

tool that includes the code and does not just analyze socio-technical sys-

tems; rather, we take a broader variety of possibilities into account in our

case studies.

Figure 5.35: Related papers and weaknesses + the presented tool.

However, even though the tool has many advantages, while develop-

ing and analyzing our case studies it revealed some considerable draw-

backs related to some instances. These issues will be also discussed and

addressed in the final chapter of the thesis. Just before we made clear that

for the tool to function effectively and produce a meaningful Attack Tree,

some visible attacker’s steps must be documented in the log. This pre-

requisite is not trivial, because it is unlikely that the attacker will not take

all the reasonable precautions to hide his activities. Another important

precondition is that we require a labeled log in order to have some tags

for the nodes shown in the final Attack Tree. Unfortunately, the fact that

various systems do not automatically label the logs makes this situation

complicated. Finally, we highlighted that the Attack Tree does not natu-

92 CHAPTER 5. CASE STUDIES

rally support loops. Thus, if we find this operator in the obtained Process

Tree, we will not be able to convert it into an Attack Tree. However, as we

said before, chapter 7 will discuss and address the discussed challenges

related to our tool.

Chapter 6

Validation

As a way of proving the soundness and validity of this tool, we exam-

ined the two main translation processes separately. Figure 6.1 shows the

overall idea of this approach. Our validation consists in two steps: the first

phase (in blue) in which the event logs are converted into a Process Tree,

and verified; and the second phase (in pink) in which the Process Tree is

transformed into an Attack Tree and then validated.

Figure 6.1: Overview of the stages for the validation.

6.1 Validation from event logs to process tree

We used the PM4PY Python module to generate the Process Tree start-

ing from the system’s event log. It provides the most famous algorithm im-

plementations in addition to helpful functions connected to process min-

ing. To get the Process Tree associated with the input log, we utilized the

discover process tree inductive function. As introduced in Sec-

tion 2.3.1, The Inductive Miner algorithm that we employed has under-

93

94 CHAPTER 6. VALIDATION

gone extensive testing and consolidation, as described in Section 2, and a

sizable body of literature is already available. [3] represents a good contri-

bution to the truthfulness and reliability of the Inductive Miner procedure,

moreover all the steps are soundly illustrated and verified.

The same applies to the aforementioned Python library: in [17] the official

documentation of PM4PY is provided. As a result, one can gain a better

understanding of all the available features and functions that have been

extensively demonstrated and tested in the existing literature.

6.2 Validation from process tree to attack tree

Now that the PM4PY Python library has been used, we have a Process

Tree. As an XML file, the PT constitute the input for the translation rules

that generate the final Attack Tree. Then, as a final step in the verification

process, a collection of traces was created for each example taken into con-

sideration, starting with one model. The aim was to see if the translated

model could make use of the traces as well. Hence, starting from the Pro-

cess Tree, it was possible to generate traces and save them as event log. A

replay algorithm was then used to determine whether the traces were cor-

rectly convertible to the translated model. This was done translating the

initial model into the other, and finally the traces were obtained from the

initial one. This will authenticate the final stage of the whole process by

demonstrating that the latter replicate the identical actions as the former.

As a result, the Process Trees were translated into Attack trees, and both

the models managed to execute the same traces. Figure 6.2 depicts the

translation from Process Tree to Attack Tree: on the left the PT is shown,

while on the right we have the related AT.

6.2. VALIDATION FROM PROCESS TREE TO ATTACK TREE 95

Figure 6.2: From Process Tree to Attack Tree.

Throughout this thesis, we generated traces for each considered ex-

ample to ensure the validity of our work. Hereinafter we summarize the

obtained results for each case study:

• Dummy log generation: from the PT we obtained 4999 traces, which

are all successfully replayed by the derived Attack Tree.

• OFMC attack trace about single attack: the Process Tree in this case

generated 2999 traces that have been effectively reproduced by the

AT.

• First OFMC attack trace about multiple attacks: for this example 9611

traces were obtained and subsequently replicated by the Attack Tree.

• Second OFMC attack trace about multiple attacks: also in this case

study the derived Attack Tree successfully replayed all 7637 traces

obtained from the Process Tree.

• Malware infection logs: in this last example we have 45410 and 180274

traces related to the before and after malware respectively.

To sum up, the validation process entailed examining the soundness of

each stage of translation, from the event logs to the final Attack Tree. This

could guarantee the reliability of each transformation. To do this, we di-

vided the validation process into two stages, and after that, we verified

our tool.

96 CHAPTER 6. VALIDATION

Chapter 7

Conclusion and Future Works

In conclusion, the aim of this thesis was to introduce an automatic tool

for generating Attack Trees. They can be seen as graphical representations

of all the potential attacks to a system. The generation can be done starting

from dummy, i.e. artificially generated, or real event logs. We also showed

in our case studies that it is possible to use the model checker tool OFMC

to obtain an attack trace regarding a specific protocol, and then translate

it into an event log. Using the Inductive Miner algorithm and a Python

library we can then generate a Process Tree of the system starting from the

logs, both from original or translated ones. Using Process Trees, it is pos-

sible to depict all the information collected by a particular system and un-

derstand what is happened in the past. Following some translation rules,

the Process Tree is transformed into the related XML Attack Tree. The tree

was then converted into a format suitable for a graph-based quantitative

security risk framework called RisQFLan, using a translation script that

was written as a last step. The decision to include also RisQFLan stems

from the fact that it combines various well known rigorous notions and

methods in an Eclipse-based domain specific framework. This can help to

visualize and better understand the overall situation of the system.

As a future implementation, also Attack-Defense Trees, which consider

both attacks and countermeasures, could be taken into account starting

from a selected event log. This would be an interesting extension of the

tool. It would make it more complete and informative for the security an-

97

98 CHAPTER 7. CONCLUSION AND FUTURE WORKS

alyst that want to protect the security of a system, providing also specific

protection assets. Future integrations may also focus on finding a solution

to the issue of constructing the Attack Tree in the presence of xor loops

in the Process Tree, e.g. by producing a different type of graph that han-

dles loops. Another future improvement could be to overcome the issue

regarding the last use case. In this way, the tool could automatically gen-

erate Attack Trees starting from a more generic and less precise event log,

without the need for the attacker’s steps to be reported in the starting log.

One last interesting extension could be the use of Machine Learning for

log labeling. By doing this, the tool would not be limited solely to labeled

logs, but it could also include those that are not.

To conclude, in the present work a way for the automatic generation of

Attack Trees has been introduced, starting from labeled event logs or also

from attack traces generated by the model checker OFMC. The tool has in-

teresting opportunities to be extended and improved. This would further

increase its features and would make it useful for many more different

cases. In this way, the tool might become even more frequently usable in

the real world and might support companies by helping them strengthen

their defenses against cyber threats.

Bibliography

[1] B. Schneier (1999), Attack Trees, Dr. Dobb’s journal.

[2] Maurice ter Beek, A. Lluch Lafuente, A. Legay (2021), Quantitative

Security Risk Modeling and Analysis with RisQFLan, Computers Secu-

rity 109.

[3] Wil van der Aalst (2016) Process Mining, Springer, Data Science in

Action.

[4] S. Mauw AND M. Oostdijk (2005), Foundations of Attack Trees, Inter-

national Conference on Information Security and Cryptology.

[5] B. Kordy, L. Piètre-Cambacédès, P. Schweitzer (2014), Dag-based at-

tack and defense modeling: Don’t miss the forest for the attack trees, Com-

puter Science Review, vol. 13-14.

[6] Stratosphere IPS Malware Capture Facility Project, https://www.

stratosphereips.org/datasets-overview/.

[7] L. Zhang (2012), The Research of Log-Based Network Monitoring System,

Springer, Advances in Intelligent Systems.

[8] T. Sipola, A. Juvonen, J. Lehtonen (2011), Anomaly Detection from Net-

work Logs Using Diffusion Maps, Springer, Engineering Applications

of Neur.

[9] Jakub Breier and Jana Branišová (2015), Anomaly detection from log

files using data mining techniques, Springer, Information Science and

Applications.

99

100 BIBLIOGRAPHY

[10] Min Du, Feifei Li, Guineng Zheng (2017), Deeplog: Anomaly detec-

tion and diagnosis from system logs through deep learning, Springer, Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security.

[11] Xiaoyun Li, Pengfei Chen, Linxiao Jing (2020), SwissLog: Robust and

Unified Deep Learning Based Log Anomaly Detection for Diverse Faults,

IEEE, Information Science and Applications.

[12] Xiaoyun Li, Pengfei Chen, Linxiao Jing (2020), Unsupervised log mes-

sage anomaly detection, IEEE, Amir Farzad and T Aaron Gulliver.

[13] J. Zhu, S. He, J. Liu (2019), Tools and Benchmarks for Automated Log

Parsing, ICSE-SEIP, International Conference on Software Engineer-

ing: Software Engineering in Practice.

[14] Mell P., Hu V., Lippmann R. (2003), An overview of issues in testing

intrusion detection systems, National Insititute of Standards and Tech-

nology, Technical Report NIST IR 7007.

[15] A. C¸ amtepe and B. Yener (2007), Modeling and detection of complex

attacks, IEEE, Proceedings of the 3rd International Conference on Se-

curity and Privacy in Communication Networks (SecureComm’07).

[16] G. D. Federico, A. M. Konsta (2022), Process Trees to Attack Trees: Do

Not Miss the Trees.

[17] PM4PY Python package documentation, https://pm4py.fit.

fraunhofer.de/docs.

[18] OFMC download page, www.avantssar.eu

[19] AVISPA Deliverable, www.avispa-project.org

[20] AVISPA Library of Protocols, ls.http://www.avispa-project.

org/library

BIBLIOGRAPHY 101

[21] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst (2013), Discov-

ering block-structured process models from event logs-a constructive ap-

proach, Springer, International conference on applications and the-

ory of Petri nets and concurrency, pp. 311–32.

[22] L. Painton Swiler, C. Phillips (1998), A graph-based system for network-

vulnerability analysis, Proceedings of the 1998 Workshop on New Se-

curity Paradigms

[23] J. Bal H., S. Lallie, K. Debattista (2020), A review of attack graph and

attack tree visual syntax in cyber security, Computer Science Review

[24] B Fila, W. Wideł, M. Audinot (2014), Beyond 2014: Formal methods for

attack tree–based security modeling, ACM Comput. Surv., 52(4)

[25] M. Bozga, A. David, A. Hartmanns (2012), State-of-the-Art Tools and

Techniques for Quantitative Modeling and Analysis of Embedded Systems,

EDAA, Proceedings of the Conference on Design, Automation and

Test in Europe (DATE’12).

[26] P. Schweitzer, B. Kordy, L. Pietre-Cambac (2014), Dag-based attack and

defense modeling: Don’t miss the forest for the attack trees, Computer

Science Review, 13-14:1–38

[27] S. Jha, O. Sheyner, J. Haines (2002), Automated generation and analysis

of attack graphs, Symposium on Security and Privacy

[28] G. Agha and K. Palmskog (2018), A survey of statistical model checking,

ACM Trans. Model. Comp. Simul., vol. 28, no. 1.

[29] A. Legay, A. Lukina, L. Traonouez (2019), Statistical Model Checking,

Springer, Computing and Software Science: State of the Art and Per-

spectives, vol. 10000.

[30] Maurice ter Beek, A. Lluch Lafuente, A. Legay (2020), A framework

for quantitative modeling and analysis of highly (re)configurable systems,

IEEE, Trans. Softw. Eng., vol. 46, no. 3.

102 BIBLIOGRAPHY

[31] Kordy B., Mauw S., Radomirovic (2014), Attack–Defense Trees, Jour-

nal of Logic and Computation.

[32] D Vojtisek, S. Pinchinat, M. Acher (2016), Atsyra: An integrated envi-

ronment for synthesizing attack trees, Graphical Models for Security

[33] A. Alsheikh, M Ibrahim (2019), Automatic hybrid attack graph (AHAG)

generation for complex engineering systems

[34] R. Rydhof, N. David, A. David (2015), Modelling social-technical at-

tacks with timed automata, International Workshop on Managing In-

sider Security Threats

[35] Vigo R., Nielson F., Nielson (2014), Automated Generation of Attack

Trees, IEEE, Computer Security Foundations Symposium (CSF).

[36] Kordy B., Mauw S., Pieters W. (2014), Towards Automating the Con-

struction Maintenance of Attack Trees: a Feasibility Study, GraMSec.

EPTCS.

[37] W. Wideł, M. Audinot, B. Fila (2019), Beyond 2014: Formal methods for

attack tree–based security modeling, ACM Comput. Surv., vol. 52.

[38] A. Weijters, W. M. van Der Aalst, A. A. De Medeiros (2017), Pro-

cess mining with the heuristics miner-algorithm, Technische Universiteit

Eindhoven, Tech. Rep. WP, vol. 166.

[39] Sebastian Modersheim and Luca Viganò (2009), The Open-source

Fixed-point Model Checker for Symbolic Analysis of Security Protocols,

Springer, Foundations of Security Analysis and Design.

[40] S. J. Leemans, D. Fahland, W. M. Van Der Aalst (2013), Discover-

ing block-structured process models from event logs-a constructive ap-

proach, Springer, International conference on applications and the-

ory of Petri nets and concurrency.

[41] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst (2013), Discovering

Block-Structured Process Models from Event Logs Containing Infrequent

BIBLIOGRAPHY 103

Behaviour, Springer, International Workshop on Business Process In-

telligence.

[42] M. G. Ivanova, C. W. Probst, R.Hansen (2015), Attack Tree Genera-

tion by Policy Invalidation, Springer, IFIP International Conference on

Information Security Theory and Practice.

104 BIBLIOGRAPHY

List of Figures

1.1 Example of event log. 9

1.2 Example of Attack Tree. 10

1.3 Example of Process Tree. 12

1.4 Transformations overview. 13

1.5 Overview of the thesis structure. 15

1.6 Related papers and weaknesses. 20

2.1 Example of a log in XES format. 22

2.2 Positioning of the three main types of process mining: dis-

covery, conformance, and enhancement. 26

2.3 Process tree → (a, (→ (∧(×(b, c), d), e), f),×(g, h)) showing

the different process tree operators. 27

2.4 Mapping process trees onto WF-nets 29

2.5 WF-net (Petri net) N1 (left) and process tree Q1 (right) dis-

covered for L1 = [⟨a, b, c, d⟩3, ⟨a, b, c, d⟩2, ⟨a, e, d⟩] 30

3.1 An attack tree representing stealing money from someone’s

bank account. 34

3.2 The RisQFLan tool. 37

3.3 The RisQFLan architecture [30]. 38

3.4 Refined Attack Defense Tree. 40

3.5 An Attack Defense tree representing stealing money from

someone’s bank account. 41

4.1 Transformations overview: system’s event logs. 44

4.2 Transformations overview: dummy log generation. 45

105

106 LIST OF FIGURES

4.3 Transformations overview: OFMC attack trace conversion

into logs. 47

4.4 Transformations overview: from event logs to Process Tree

through Process Mining. 49

4.5 Transformations overview: Process Tree to Attack Tree. . . . 51

4.6 From Process Tree to Attack Tree: sequence operator. 52

4.7 From Process Tree to Attack Tree: AND operator. 52

4.8 From Process Tree to Attack Tree: OR operator. 52

4.9 Complete example of translation from PT to AT. 53

4.10 Example of attack nodes in the RisQFLan framework. 54

4.11 Example of attack diagram in the RisQFLan framework. . . 54

4.12 Creation of a Pandas Dataframe for the generation of a dummy

event log. 55

4.13 Example of generated Pandas Dataframe containing log in-

stances. 55

4.14 Conversion of a Dataframe in an Event Log and exportation

in XES format. 56

4.15 Use of Inductive Miner on the dummy event logs to gener-

ate a Process Tree. 57

4.16 Process Tree generated by using the implementation of the

Inductive Miner on dummy event logs. 57

4.17 Resulting AT starting from generated dummy logs and pass-

ing through the PT shown in section 4.2 58

4.18 Code referring to the XML attack tree in section 3.1 and suit-

able for the RisQFLan tool. 59

5.1 Example in AnB language about key exchange protocol. . . 62

5.2 Attack trace generated from the key exchange protocol ex-

ample. 64

5.3 Example in AnB language about key exchange protocol with

labeling. 65

5.4 Labeled attack trace generated from the key exchange pro-

tocol example. 65

LIST OF FIGURES 107

5.5 Translation script: from attack trace to event log. 67

5.6 Translation summary from attack trace to event log. 68

5.7 Resulting Dataframe of logs starting from the key exchange

attack trace. 68

5.8 Conversion from Pandas Dataframe to XES event log. 68

5.9 Read of the log and generation of the Process Tree. 69

5.10 Process Tree Tree about single authentication attack starting

from OFMC attack traces (Case 1). 70

5.11 Process Tree Tree about single authentication attack starting

from OFMC attack traces (Case 2). 70

5.12 Process Tree Tree about single authentication attack starting

from OFMC attack traces (Case 3). 70

5.13 Resulting Attack Tree about single authentication attack con-

taining sender, receiver and message content (Case 1). 71

5.14 Resulting Attack Tree about single authentication attack con-

taining sender and receiver (Case 2). 71

5.15 Resulting Attack Tree about single authentication attack con-

taining sender and message content (Case 3). 72

5.16 RisQFLan code for the Attack Tree containing sender, re-

ceiver and content of the message. 73

5.17 Code for OFMC for the generation of the attack trace about

protocol NSPK. 74

5.18 Attack trace containing multiple attacks to NSPK protocol. . 75

5.19 Dataframe containing log entries concerning attacks agains

NSPK. 76

5.20 Process Trees about case 1 (activity nodes containing con-

tent of the message, sender and receiver). 77

5.21 Process Trees about case 2 (activity nodes containing sender

and receiver). 77

5.22 Attack Tree about NSPK attack (case 1: content, sender and

receiver). 78

5.23 Attack Tree about NSPK attack (case 3: content and receiver). 78

108 LIST OF FIGURES

5.24 OFMC code for the generation of the attack trace about pro-

tocol SELFI. 80

5.25 Attack trace containing multiple attacks to Selfi protocol. . . 80

5.26 Dataframe containing log entries about attacks against Selfi

protocol. 81

5.27 Process Tree about Selfi attack (case 2: content and sender). . 82

5.28 Attack Tree about Selfi attack (case 1: content, sender and

receiver). 83

5.29 Attack Tree about Selfi attack (case 3: content and receiver). . 83

5.30 From real traffic logs to activity logs. 85

5.31 Translation from real traffic logs to activity logs suitable for

Process Mining. 86

5.32 Initial table format of real traffic logs. 87

5.33 Final table of activity logs suitable for Process Mining ob-

tained from the translation script. 87

5.34 Process Trees respectively about before and after malware

infection. 89

5.35 Related papers and weaknesses + the presented tool. 91

6.1 Overview of the stages for the validation. 93

6.2 From Process Tree to Attack Tree. 95

Survey: Automatic Generation of
Attack Trees and Attack Graphs

Alyzia-Maria Konsta
DTU Compute

Kongens Lyngby, Denmark
akon@dtu.dk

Beatrice Spiga
DTU Compute

Kongens Lyngby, Denmark
s225953@student.dtu.dk

Alberto Lluch Lafuente
DTU Compute

Kongens Lyngby, Denmark
albl@dtu.dk

Nicola Dragoni
DTU Compute

Kongens Lyngby, Denmark
ndra@dtu.dk

Abstract—Graphical security models constitute a well-known,
user-friendly way to represent the security of a system. These
kinds of models are used by security experts to identify vul-
nerabilities and assess the security of a system. The manual
construction of these models can be tedious, especially for large
enterprises. Consequently, the research community is trying
to address this issue by proposing methods for the automatic
generation of such systems. In this work, we present a survey
illustrating the current status of the automatic generation of two
kinds of graphical security models -Attack Trees and Attack
Graphs. The goal of this survey is to present the current
methodologies used in the field, compare them and present the
challenges and future directions for the research community.

Index Terms—Automatic Generation, Attack Trees, Attack
Graphs, Survey

I. INTRODUCTION

During the last few decades, the use of electronic devices
has spread significantly. Companies and individuals are using
technology for both personal and work-related reasons. As a
consequence, a huge amount of personal and sensitive data
is stored or processed on computer networks. The research
community has focused on finding ways to protect this data
from malicious actors.

One well-known solution for assessing the security of a sys-
tem is the graphical security models. These models represent
security scenarios and help security experts identify the sys-
tem’s weaknesses. Their graphical representation constitutes a
user-friendly way to analyze the security of the system. In the
scope of this paper, we are going to examine only two kinds
of these graphical representations -Attack Trees and Attack
Graphs. For a comprehensive overview of all the available
formalism, we suggest the reader refer to [15].

Security experts manually produce the graphical security
models. This procedure, especially for large systems, can
be tedious, error-prone, and non-exhaustive. Consequently,
the need for automatic procedures arose and the research
community has focused on addressing this issue.

In this work, we present an exhaustive survey on the
automatic generation of Attack Trees and Attack Graphs. The
main goal of this work is to provide an overview of the
field and to identify current challenges and future research
opportunities. The survey presents:

• state of the art on the automatic generation of Attack
Trees and Attack Graphs.

Fig. 1. Attack Tree [12]

• a quantitative study of the works included in these survey
and some important features to offer an overview of the
field.

• a classification of the works included in this survey based
on the methodologies used in every work to automatically
generate the Attack Trees/Graphs.

• a comparative study based on the main characteristics of
every work.

• limitations and future directions for the research commu-
nity.

The paper is structured as follows: Section II presents the
main concepts of Attack Trees and Attack Graphs, as well
as an overview to the categories used to classify the papers
under study, Section III presents the research method used to
structure our research, Section IV presents the related work,
Section V presents the quantitative study and the overview of
the categories, Section VI presents the classification of the
papers, Section VII discusses the challenges and proposes
future research directions and Section VIII concludes the
paper.

II. BACKGROUND

In this section, we are going to present the basic concepts
used in this survey.

A. Attack Trees

An Attack Tree is a graphical representation of potential
attacks to the system’s security in the form of a tree. Initially
introduced by Schneiner [25], this type of representation
enables developers to identify the vulnerabilities of the system

Fig. 2. Attack Graph [ALB: from] [17] [ALB: Resolution is bad. Use a PDF.]

and facilitates the implementation of countermeasures. They
are modeled attack scenarios presented in a hierarchical way
with each labeled node corresponding to a sub-goal of the
attacker and the root being the main one - the global goal of
the attack. The rest of the labeled nodes can be either children
of a node, a refinement of the the parent’s goal into subsidiary
goals, or leaf nodes, representing attacks that cannot be
further refined in order to be implemented, also called basic
actions. The basic formal model of Attack Trees incorporate
two types of refinements: OR and AND. OR nodes represent
disjunction (choice) where the parent node’s goal is achieved
when at least one the children’s sub-goals is achieved, AND
nodes represent conjunction (aggregation) thus requiring for all
children’s sub-goals to be fulfilled. An additional refinement,
relating to the latter, is the SAND node, that pose the additional
condition for sequential realization [18], [31]. One example of
an Attack Tree is illustrated in Figure 1. In summary, there
are two separate ways for the attacker to accomplish his goal,
namely becoming a root: with or without authentication. The
two refined authentication options are ssh and rsa, and both
must be used because an AND arc is shown. On the other hand,
if no authentication is carried out, the user must first be granted
access using ftp and then rsh. Following the acquisition of
privileges, lobf comes next. It is readily apparent that the
tree notation is very appealing and convenient for a threat
analysis process since it can include multiple attacks derived
from physical, technical and even human vulnerabilities [31].
In view of this, an Attack Tree can be defined as exhaustive,
if it encompass all possible attacks, or succinct, if it covers
only network-related exploitation of the system by the attacker
[20].

B. Attack Graphs

Attack graphs are graphical representations of all the paths
through a system that end in a condition in which an attacker
has successfully achieved his malicious goal. They outline

all potential vulnerabilities and all possible attack paths in
a given network and they are frequently used to represent
complex attacks which have multiple paths and goals [17].
Attack Graphs play an important role in network security, as
they directly show the existence of vulnerabilities in network
and how attackers use these vulnerabilities to implement an
effective attack [33].

An Attack Graph or AG is a tuple G = (S, τ, S0, Ss), where
S is a set of states, τ ⊆ S×S is a transition relation, S0 ⊆ S
is a set of initial states, and Ss ⊆ S is a set of success states
[26]. Intuitively, Ss denotes the set of states where the intruder
has achieved his goals. Unless stated otherwise, we assume
that the transition relation τ is total. We define an execution
fragment as a finite sequence of states s0, s1, ..., sn such that
(si, si + 1) ∈ τ for all 0 ≤ i ≤ n. An execution fragment
with s0 ∈ S0 is an execution, and an execution whose final
state is in Ss is an attack, i.e., the execution corresponds to a
sequence of atomic attacks leading to the intruder’s goal [26].
One example of an Attack Graph can be seen in Figure 2.

C. Attack Trees vs Attack Graphs

Attack graphs and attack trees suffer from a distinct lack of
standards, prescriptive methodologies and common approaches
in terms of their visual syntax. Attack trees are limited because
they only represent a single attack, whereas an attack graph
can represent multiple attacks. A full attack graph underlines
all potential weaknesses and all possible attack paths in a
certain network, while attack trees represent singular attacks,
and attack forest, i.e. set of ATs is a way to solve this problem.
[17]. Both attack graphs and attack trees are a graph-based
representation of a cyber-attack
Another important difference between the two models regards
their visual representation. First of all, in attack graphs the
event flow is represented top-down, while in the majority of
the attack trees this is depicted in a bottom-up way. [17].
Moreover, in the same sense, Attack Trees generally use
vertices to represent exploits and not preconditions, while
preconditions are assumed to have been met in the transition
from one exploit to the next. Attack graphs represent both.
Essentially, both Attack Trees and Attack Graphs have a graph
based structure. The main differences are: how the event flow
is depicted, the representation of full and partial attacks and
the representation of preconditions.

D. Network Security vs General case

During our research we identified two categories regarding
the attacks represented by the Attack Graphs/Trees: the Net-
work Defined attacks and the General case.

The first category is the Network Defined attacks. In this
case, the works under study are focused on dealing with
the Network Security, meaning that they engage only with
network related attacks. We classify in this category only the
papers that explicitly state that their work exclusively focus
on representing Netphwork related attacks.

The second category denoted the General case, where the
papers are also taking into account physical attacks or human

interactions. In many cases, the security of the system is com-
promised by human errors. Especially in large organizations
where many people interact with extensive networks it is very
common for the attackers to use social engineering or take
advantage of human errors.

During our research we also discovered two papers [6], [7]
referring to the term Socio-technical system. This term refers
to a system involving: humans , machines and interaction with
the environment [3]. The Socio-technical systems have five
key characteristics as stated by Baxter et al. [3] and form
their own category. In terms of attacks types covered by the
Socio-technical systems, we found during our research that
they represent also physical attacks, like social engineering and
so we include them in the general case, but we state explicitly
that the papers are referring to Socio-technical systems.

E. Categories

One motivation for this work was to contribute to the
research community by identifying the tools and methods
commonly used in order to automatically produce Attack
Trees/Graphs. In view of this, we examined every paper and
identified the main underling technology or method used.
During this procedure we managed to identify 7 categories
among the papers included in this survey. Following, we
present a list of the categories:

• Logical Formulas: A paper falls into this category when
the main components used to represent the system are
logical formulas.

• Templates: The authors are generating the Attack
Trees/Graphs using templates.

• Library based: The Attack Tree/Graph is generated given
a library.

• Model Checking: A model checker is used to formally
describe the system and check some properties.

• Transformation Rules: A representation of the system
is already available and some transformation rules are
applied in order to obtain the Attack Tree/Graph.

• Artificial Intelligence: Artificial intelligence techniques
and algorithms are used in order to obtain the desired
result.

• Reachability: The Attack Tree/Graph is based on the
reachability of the nodes of the network.

We are going to examine 7 dimensions in each category:
• Proofs: If a paper includes formal proofs for the algo-

rithms applied.
• Code: If a paper includes a reference to the implementa-

tion of the proposed solution and if the code is available
online.

• Prerequisites: The prerequisites one should acquire in
order to be able to apply the proposed solution.

• Network Defined attacks, Sociotechnical or General: If
a paper proposed a Network Defined, Sociotechnical or
General solution.

• Graph or Tree: If the proposed solution results to a Tree
or a Graph.

• Experiments: If the authors conducted experiments.
• Scalability: If the authors present the scalability of their

solution.

III. RESEARCH METHOD

In this section we are presenting the research method
adopted in order to identify our final pool of papers we used
in this survey. Following, we describe the research method,
the study selection and the research questions.

A. Research Questions

Our work is aiming to examine and discuss the current
literature for automatic generation of Attack Trees and Attack
Graphs. Underlined below are the research questions that
motivated us to conduct this survey.

• RQ1:Which techniques are currently used in the field?
• RQ2:What kind of attacks are taken into account (Gen-

eral or Network Defined) and what kind of evidence are
presented to support the proposed solution (Experiments,
code, mathematical proofs, scalability)?

• RQ3:Which are the challenges/limitations we identified
in the field?

B. Research Method

We decided to conduct our research using the snowballing
technique [32]. The snowballing technique refers to the pro-
cedure of identifying relevant papers from the reference list
or the citations of a selected paper. Our final pool includes 21
papers. The steps of the procedure we followed in order to
identify our final pool of papers are the following:

1) Start Set: The first step is forming the start set of
papers. Firstly we had to identify relevant keywords to form
a query to the selected database. The keywords we selected
to use are: “Automatic Generation”, “Automated Generation”,
“Attack Trees” and “Attack Graphs”. We performed our re-
search in DTU Findit https://findit.dtu.dk, which is an open
(guest access) database and includes publications from well
known journals and databases. We used the following query:
title:(“Automatic generation” OR “Automated generation”)
AND title:(“Attack trees” OR “Attack graphs”). Our search
return 13 papers, from which 3 where not available online.
So based on relevance we formed our start set including five
papers [1], [19], [26], [30], [33].

2) Iterations: After finding the start set, we have to decide
which papers we are going to include in our final pool. For
this purpose we applied Backward and Forward Snowballing.
Backward snowballing refers to the examination of the refer-
ence list of the papers. In order to identify if a paper will be
included we extract some information regarding the title, the
author and the publication venue. Naturally, we should also
take into account the context in which the paper is referenced.
At this point, if a paper was still into consideration, we read the
abstract and other parts of the paper in order to decide if the
paper will be included. The forward snowballing is conducted
in order to identify papers from the citation list of the paper
being examined. Again, for each paper in the citation list, we

extracted some basic information, we took into consideration
in which context the citation is taking place and for the final
decision we read parts of the paper [32].

IV. RELATED WORK

In this section we present other surveys focusing on the Au-
tomatic Generation of Attack Trees/Graphs. We also include a
table to graphically represent some main characteristics of the
paper included at the Related Work section. On Table I four
different characteristics are presented. We denote the symbol
✓when the referred paper fulfills the corresponding character-
istic. The first column includes the reference to the paper under
examination, the second column “After 2020” refers to the
papers that have been published after 2020, the third column
“Automatic Generation” refers to the papers that take examine
the Automatic Generation of Attack Trees/Graphs, the fourth
column refers to whether the paper present classification for
the papers included in their survey, based on the techniques
used in each paper and the last one if the paper indicates the
challenges identified in the field.

Kordy et al. [15] are presenting a survey focusing on DAG
based graphical models for security. Their work summarize the
state of the art of the existing methodologies, they compare
them and classify them based on their formalism. Although
this is a very extensive survey, they do not focus on the
Automated generation of these models.

Lallie et al. [17] are examining the effectiveness of the
visual representation of Attack Trees and Attack Graphs. They
analyse how these structures are representing the cyber-attacks.
They conclude that there is not a standard method to represent
the Attack Trees/Graphs and that the research community
should turn their attention on standardizing the representation.
Although this paper is a great contribution, it does not examine
the issue of the Automatic generation of these structures.

Wojciech et al. [31] are focusing on a survey regarding the
application of formal methods on Attack trees, their semi-
automated or automated generation and quantitative analysis
of Attack Trees. Although they are referring to the Automatic
generation, their research in not only focused in this part. Also
they are not referring to the automatic Generation of Attack
Graphs and their survey was conducted before 2020.

Taking everything into consideration, in our work we are
trying to provide a wider overview for the Automatic Gener-
ation of Attack Trees/Graphs.

V. OVERVIEW - QUANTITATIVE STUDY

In this section we are giving an overview of the field through
a quantitative study. The reader can find information regarding
the quantity of the papers taking into account specific char-
acteristics. The quantitative study allows us to have a better
view of the field and the lack of specific information.

A. Publisher and Publication Year

In this part we provide statistics regarding the publishers
and the publication year of the papers. Our goal is to identify
the most popular venues and how the interest of the scientific

Fig. 3. Percentage of papers published by each publisher

Fig. 4. Percentage of papers published each year

community regarding the Automatic lower case, check in other
places of the paper, please :) generation of Attack Trees and
Attack Graphs altered during the years.

We can observe in Figure 3 that the papers included in
this survey have been published by 4 different publishers -
IEEE, Springer, ACM, MDPI. The publishers with the most
publications on the filed is IEEE and Springer. Also in Figure
4 we can see the distribution of the papers through the years.
The research community turned their interest to the field on
1998 and, at intervals, it has been active since. The interest has
decreased between 2007 to 2012, but since then the research
community seems to be more active on the specific field. For
better visualisation the years with zero publications are not
presented in the diagram.

B. Percentage of papers in each category

In this work we classify the papers into 7 different cate-
gories. Here we provide information about how many papers
are in each category.

We can observe in Figure 5 that most of the papers fall
into the Model checking category. Signifying that he research
community preferred to use Model checking techniques for
the Automatic Generation of Attack Trees/Graphs.

Later, on the paper we examine each category separately
and provide the reader with proper information, in order to
establish a better understanding on each one.

TABLE I
OVERVIEW OF THE PAPERS INCLUDED IN THE RELATED WORK

Paper After 2020 Automatic Generation Techniques’ Classification Challenges

[15] ✓ ✓
[17] ✓ ✓
[31] ✓ ✓

Our Work ✓ ✓ ✓ ✓

Fig. 5. Percentage of papers on each category

Fig. 6. Percentage of papers on each category

C. Experiments, Proofs, Code, Scalability

In this section we are going to present how many papers
provide experiments, proofs, code or the scalability of their
solution. In our perspective, these four characteristics are key
information for the reader and a very supportive evidence
for the quality of the proposed solution. We also present
information about how many papers are referring to auto-
matic generation of Attack Graphs and how many papers are
referring to the Automatic Generation of Attack Trees. We
concluded that almost half of the papers are presenting Attack
Graphs and the other half Attack Trees. We can see the results
on Figure 6.

We can observe on Figure 6 that less than half of the papers
are presenting experiments or proofs and even less refers to
the scalability, in terms of complexity of their solution.

VI. CLASSIFICATION BASED ON THE CATEGORIES

In this section, we present out findings for each category. At
the beginning of each category we present a brief overview of

our findings, following with a detailed presentation of each
paper. We also include tables to graphically represent the
key characteristics of every paper. On Tables II-VIII eleven
different characteristics have been identified. We denote the
symbol ✓when the referred paper fulfills the corresponding
characteristic. The first column includes the reference to
the paper under examination, the second column “Network
Defined” refers to the papers only including network related
attacks, the third column “General Attacks” refers to the
papers that take into account multiple attacks at the automatic
generation procedure, the fourth column refers to whether the
paper presents Attack Trees and the fifth whether the paper
presents Attack Graphs, the sixth whether the paper presents
experiments, the seventh whether the code of the proposed
solution is available, the eighth whether the paper presents
proofs, the ninth if there is a reference to the scalability in
terms of complexity, the tenth if the proposed solution requires
any prerequisites and finally the eleventh indicates the year that
the paper was published. The later is the only one filled with
a number and not a ✓.

A. Logical Formulas

All of the papers falling in this category are using Logic as
the basic technique to generate the Attack Tree/Graph.

It may be a bit of an overkill to present this detailed statistics
when the category just consists of 2 papers. Let’s discuss
this. One way to go could be to provide a shorter summary,
focusing on what really is worth remarking. In this category
9.52% of the papers are included. We can see that the range of
publication years are from 2006 to 2014. All of the papers are
referring to the scalability of their solution. We also can see
that 1 out of 2 (50%) papers are generating Attack Trees and
1 out of 2 (50%) is generating an Attack Graph. Additionally,
it is worth pointing out that 1 out of 2 (50%) papers are
presenting solution only related to the network security and
only 1 out of 2 (50%) is presenting a general approach
regarding to attacks taken into account. Furthermore, 1 out
of 2 (50%) papers have the code available online and 1 out
of 2 (50%) papers present experiments. All of the papers are
providing formal proofs for their solution. Finally, 1 out of 2
(50%) papers present solutions that require some prerequisites.
Below we are presenting the papers included in this category.

Vigo et al. [30] propose a static-analysis approach. The
authors use the Quality Calculus as specification language. The
processes are translated to proposition formulae, demonstrat-
ing the connection between channel knowledge and program
point accessibility. Then, the authors propose a backward

TABLE II
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY LOGIC

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[30] ✓ ✓ ✓ ✓ ✓ 2014
[21] ✓ ✓ ✓ ✓ ✓ ✓ 2006

chaining search to the formulae from a program point l in order
to generate the attack tree. The backward chaining exposes all
the paths leading to point l, thus unveiling all the information
needed to reach that point. The proposed way, defines the sys-
tem in a formal manner and the threat scenarios are derived au-
tomatically by the definition of the system. Moreover, process
calculi has been used broadly for defining software systems
and organizations in a coherent way. It is worth pointing out
that the authors are studying Attack Trees, but their approach
can be also applied to produce Attack Graphs. They also refer
to the scalability saying that the worst case is exponential,
but this case does not occurs systematically as in the model
checking approaches. The authors also share their code on
http : //www.imm.dtu.dk/ ∼ rvig/quality − trees.html.
As a future work they state that they want to compare their
approach with existing ones. The limitation of this approach is
that they can only check if something has been received in the
channel, but not the content. Finally, their is not a reference
to the soundness of the result and the generated Attack Trees
are mostly used for quantitative analysis.

Ou et al. [21] present a work based on MulVAL. MulVAL
is a system for automatically identifying security vulnera-
bilities in networks. The central notion of MulVAL is that
the configurations can be represented as Datalog tuples and
security semantics and most attacks can be represented as
Datalog rules. Every rule can be viewed as a logical formula.
It evaluates the Datalog rules using XSB, a prolog system. The
authors modified the MulVAL system to record the trace of the
evaluations and send it to the graph builder. In every successful
query a function notes the successful deviation to the trace file.
The paper also introduces an algorithm to transform the traces
into an attack graph. The transformation takes every trace step
and transforms it to a part of a graph. This work is focused
on the Network Security, meaning that the Generated Attack
Graph do not include General Attacks. The proposed solution
is supported with related formal proofs and experiments, but
the code of the proposed solution is not available. Also, the
generation of the Attack Graph is taking place in quadratic
time. It is worth pointing out that the size of the generated
logical graph is polynomial to the size of the network. In
order to generate an Attack Graph using the proposed solution
the are three prerequisites: Network configuration, machine
configuration and security advisories.

B. Model Checking

All the papers in this category are using Model Checking
to automatically generate the Attack Tree/Graph.

In this category 28.57% of the total papers. We can observe
from the Table III that the chronological range of the pub-

lications is from 2002 to 2020. All of the papers have some
prerequisites. Only 1 out of 6 (16.67%) papers has a reference
to the scalability of the solution. Also, only 1 out of 6 (16.67%)
papers present proofs and provides the code of the proposed
solution. Furthermore, 4 out of 6 (66.67%) are presenting
experiments, but none of them provides the code. This is a
drawback since the reader cannot reproduce the experiments.
Concerning the attacks included, 4 out of 6 (66.67%) papers
are focused on the network security and the rest 2 out of 6
(33.34%) are presenting Attack Trees with general attacks.
On this note the papers presenting General Attacks are only
using Attack Trees as a graphical representation model and
the rest of the papers present Attack Graphs and are focused
on Network Defined attacks.

Sheyner et al. [27] in an earlier work presented a method
to generate attack graphs automatically, with the use of model
checking [26]. The authors choose six network components
in order to construct network attack models: a set of host,
a connectivity relation, a trust relation among the hosts,
an intruder model, a set of individual actions the intruder
can exploit to design an attack and an intrusion detection
system. In order to construct the set of actions the intruder
can exploit, the authors use real world vulnerabilities from
the Common Vulnerabilities and Exposures (CVE) database.
In order to construct the attack graph, the toolkit checks a
security property with model checking, in order to ensure
that the property is satisfied. An overview of the toolkit is
also presented, along with the main components and the user
interface. The authors focus on Network Defined attacks.
They do not present proofs, the scalability of the solution or
the code. However, they present experiments. The required
prerequisites are: the network topology, configuration data for
each networked host and a library of attack rules. As a future
work the authors want to specify a library of actions based
on a vulnerability database provided to us by SEI/CERT. The
current paper outlines a toolkit.

Sheyner et al. [26] their work present the network as a finite
state machine. They have modified the model checker NuSVM
in order to automatically generate the attack graph. First they
form a security property. The model checker takes as input
the property and the model M (the network). If the property is
satisfied the model checker returns true, otherwise it provides
a counterexample. The counterexample depicts a path that
the attacker can follow to violate the security property. As a
future work, they aim to generate attack graphs for a more
general class of properties, apart from security properties.
In this work the state of the model is depicted as a set of
booleans representing the configuration of the network and

TABLE III
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY MODEL CHECKING

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[27] ✓ ✓ ✓ ✓ 2004
[26] ✓ ✓ ✓ ✓ ✓ 2002
[23] ✓ ✓ ✓ ✓ 2016
[2] ✓ ✓ ✓ ✓ ✓ 2020
[9] ✓ ✓ ✓ 2019
[6] ✓ ✓ ✓ ✓ 2015

the attacker’s actions as state transitions. As a consequence,
the state-space created is exponential to the number of the
system’s variables. This work involves Attack Graphs focused
on Network Defined attacks. The authors present proofs and
experiments, but do not present the code and the scalability
of their solution.

Pinchinat et al. [23] present ATSyRA. ATSyRA is a tool
implemented on top of Eclipse to help the security experts
interact with a user friendly environment when designing
Attack Trees. The main motivation of the implementation of
the tool was the security of military buildings. As a first
step, the security expert has to define the system: the building
description, the attacker’s strength and their attack objective.
The second step is to run the generation of the attack scenarios.
The current step compiles the input specification into an attack
graph. As a third step, the security expert is specifying a set
of high level actions (HLA). The HLA imply how it can be
refined into sub actions. The final step is to run the Attack
Tree synthesis. This step uses the information given in step 3
and the graph produced in step 2, to construct the Attack Tree.
The underlying interface for achieving this is a model checking
algorithm. As a future work the authors want to examine other
inputs from other fields. The paper presents General Attacks
and create Attack Trees. The authors also provide the code
in the form of a tool (https://atsyra2.irisa.fr/). The scalability,
proofs and experiments are not provided in the paper. The
description of the system is set as a prerequisite. They also
state that a fully automated procedure may result in unsound
results. We can observe that the solution is not fully automated
since the security expert is also taking an active part in the
procedure.

Ghazo et al. [2] introduce an algorithm for automatic graph
construction and visualization that exploits an existing tool
of model checking. In this work a tool for the description
of architecture is taken into account. Its aim is creating the
attack graph list of existing sequences in which atomic-level
vulnerabilities could be used as a way to threaten the security
of the system under consideration. The present tool can
generate a representation of the system, i.e. network level, but
also atomic vulnerabilities, post conditions and properties re-
garding security that can be valuable for our security purposes.
Moreover, a model checker is used to identify in an automated
way, the sequence of the attack as a counterexample. Then the
counterexamples are parsed and iterated until attack sequences
are found. Finally, a tool for visualization is used, to generate

the graph. Essentially, this work introduces the development of
a tool in the form of a graphical model to capture the vulner-
abilities of an analyzed system by automatically constructing
a graph exploiting features of an existing model checker.

Ibrahim et al. [9] present a solution including Hybrid Attack
Graphs (HAG). Generally, HAGs illustrate the alteration of
logical and real parameter values of an attacked system, as
well as some recovery actions. Automated HAGs are generated
automatically and can be visualized with a Java based tool.
This procedure requires a formal description of the system’s
model and the security property (AADL language), validated
by a model checker named JKind. This work offers a proof
on how AHAGs can obtain logical changes in the parameters
of the specific system under attack. In essence, the authors
present a binary classification problem and a multi-output
learning algorithm in order to generate an attack graph starting
from some given information on an analyzed system and a
network.

David et al. [6] present a methodology for the modeling
of socio-technical attacks and systems, namely those that are
related to human behaviour. With the use of timed automata
and automated model checking, it is possible to obtain in an
automatic manner the possible attacks regarding the considered
model. You may also do simulations and analyze the obtained
attacks or the model itself. Finally, state-of-the-art tools can
be exploited to analyze models by employing timed automata
in this methodology. In this methodology, model checking
is included so that we can spot attacks against the analyzed
system. In the end, a complex example is provided, describing
an application of this procedure.

C. Templates

In this category belong the papers using templates to gen-
erate the Attack Trees/Graphs.

This category includes 23.80% of the total papers. We can
see that the year of publication vary from 1998 to 2020.
We can observe on Table IV that all of the papers require
prerequisites. Also, 3 out of 5 (60%) papers are limited to
Network Defined attacks, the rest of them (40%) are dealing
with General attacks. Furthermore, 2 out of 5 papers are
constructing an Attack Tree, while 3 out of 5 are constructing
an Attack Graph. Only 1 out of 5 (20%) of the papers is
presenting experiments, the same percentage includes proofs.
Additionally, 1 out of 5 (20%) papers are sharing the code
of their solution. It is important to point out that none of

TABLE IV
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY TEMPLATES

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[5] ✓ ✓ ✓ ✓ ✓ 2020
[28] ✓ ✓ ✓ 2002
[29] ✓ ✓ ✓ ✓ 2014
[16] ✓ ✓ ✓ 2020
[22] ✓ ✓ ✓ 1998

TABLE V
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY LIBRARY-BASED

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[24] ✓ ✓ ✓ ✓ ✓ ✓ 2020
[13] ✓ ✓ ✓ ✓ ✓ 2018

the papers are referring to the scalability of their proposed
solution.

Bryans et al. [5] introduce a method to generate attack trees
automatically from the description of the network and a set
of templates. Each template represents an attack step. The
templates are using variables that have to be replaced by the
components of the system under investigation. The proposed
algorithm is recursive, at each step a leaf of the template trees
is investigated and expanded if the leaf contains an unbounded
variable. If the name of the child matches the name of the root
of one of the templates, it is replaced. When, the unbounded
variable matches multiple templates an OR node is introduced.
The authors are constructing an Attack Tree and the code
is available online at https://tinyurl.com/uoptgfb. They also
present the experiments conducted, but they do not refer to
the scalability and the proofs. As a future work they aim to
expand the method to support more networks, since right now
they are focused on automotive communication networks.

Swiler et al. [28] proposed a method to generate an attack
graph, in which each node represents a state of the network.
The tool has as an input the configuration of the network, the
attacker’s profile and the attack templates. The attack templates
represent steps of known attacks or strategies of moving from
one state to another. The tool combines the input information
and customizes the generic template attacks according to the
attacker profile and the network configuration. Every graph
includes some variables that represent the state of the network.
When a node in a graph matches the requirements of the
template a new edge is added to the network and new nodes are
created. This paper is dealing with Network Defined attacks.
The authors are not providing experiments, proofs, code or
refer to the scalability of their solution.

Tippenhauer et al. [29] are presenting a Goal System
Attacker graph. There is a 3-step procedure to generate it. At
first the security goal and the workflow of the system are used
to produce the G-graph. The result is used in combination with
the system description to generate the GS-graph, which is then
combined with the attacker model to generate the GSA graph.
The authors used the framework described above and noticed
that there is a series of patterns. These patterns were used

to implement some templates. Afterwards, they defined local
extensions to progressively generate these graphs using the
predefined templates. If there is a matching node, the template
is being integrated to the main graph. The authors are taking
into account General attacks and they present proofs for their
work. They do not give an input for the scalability, the code
or any experiments conducted.

Kumar et al. [16] introduce the use of an AT template
as a feature diagram, i.e. formal and graphical notations, to
solve the non-standardization problem of Attack Trees. This
problem states that, in general, a standard template for Attack
Trees design does not exist. The template considered in this
work is structured in layers each refining the previous ones,
in order to construct tree semi-automatically. This Attack Tree
template can be seen as an abstraction that can capture crucial
scenarios about attacks by refining hierarchical relationship
rules. Moreover, the template is constructed by going through
the literature on Attack Trees so that common characteristics in
their design can be found. Summing up, the authors present a
way for identifying proper meta-categories suitable for Attack
Trees by means of feature diagrams, in order to construct the
trees in a semi-automated manner.

Phillips et al. [22] present a system where the graph is
generated using the attack profile, the input templates and
the configuration of the system. The procedure starts from
the goal node and is built backwards. Then, we search the
templates to find an edge that the head matches the goal
node. The paths that do not satisfy the attacker profile are
eliminated. The procedure is being repeated until we reach an
initial state that is not the head of an edge. The authors claim
that their approach can model dynamic aspects by overwriting
the configuration of the network. As a prerequisite, besides
the configuration of the network and the attacker’s profile, a
database with common attacks is also required. They do not
present the code, proofs, experiments or a reference to the
scalability.

D. Library Based

All the papers included to this category are constructing the
Attack Trees/Graphs given a Library.

TABLE VI
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY Artificial Intelligence

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[14] ✓ ✓ ✓ ✓ 2022
[4] ✓ ✓ 2019

TABLE VII
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY REACHABILITY

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[10] ✓ ✓ ✓ ✓ ✓ 2006
[8] ✓ ✓ ✓ ✓ ✓ 2013

In this category of the papers are included 9.52% . We can
see that the year of publication range from 2018 to 2020.
All of the papers are taking into account General Attacks
and are constructing Attack Trees. Also, all of the papers are
presenting the code and proofs supporting their solution and
require some prerequisites. Finally 1 out of 2 (50%) of the
papers are referring ti the scalability.

Pinchinat et al. [24] are constructing an Attack Tree. The
main goal of this work is to construct the attack tree that
explains a trace given a library L (a set of refinement rules).
This approach is also good for forensics, but one should
have the logs. The attack tree is being build according to
the refinements provided by the library. The algorithm that
handles the procedure is based on the CYK algorithm, which
answers whether some input context free grammar can gen-
erate some input world. The code is also available for the
readers on http://attacktreesynthesis.irisa.fr/. The procedure is
Semi-automatic to avoid unsound results. Also the Attack Tree
consists of AND, OR and SAND refinements. The authors
are also presenting proofs for their solution. The mentioned
scalability is that the algorithm is polynomial at the size of
the trace. The attacks taken into account are General. Finally,
the authors are not presenting experiments.

Jhawar et al. [13] presented a work focused on an semi-
automatic procedure for creating attack trees. The construction
of the Attack trees can be summed up in four steps: First
step: A group of experts define an initial version of the tree.
Second step: Some automatic mechanisms are used to enhance
the tree. Third step: The experts curate the new version of
the tree. Fourth step: Repeat step two and three. The paper is
focusing on implementing the second step. The authors express
a predicate based annotation of the tree, that to determine if
an attack tree can be attached to another attack tree as a sub-
tree. The authors construct a library of annotated attack trees
using the National Vulnerability Database. After that, they use
this library to extend attack trees manually constructed, using
the Common Attack Pattern Enumeration and Classification.
As a future work, they want to implement a dynamic library
and expand the idea in other fields like counterexamples. The
code is available online at https://github.com/yramirezc/lib-
annotated-attack-trees. The authors are also providing the
reader with proofs for their solution. Finally, they do not

present experiments or the Scalability of their solution.

E. Artificial Intelligence

All the papers assigned in this category are using Artificial
Intelligence in order to construct the corresponding Attack
Trees/Graphs.

In this category are included 9.52% of the papers included
in this survey. The range of the publication years varies
from 2019 to 2022. We can observe that all the papers are
dealing with Network Defined attacks and are constructing the
corresponding Attack Graph. Also none of the papers share the
code of their solution. Furthermore, 1 out of 2 (50%) papers
are presenting experiments and have prerequisites. None of the
papers in this category are presenting proofs or the scalability
of their approach.

Koo et al. [14] introduces a method to support the generation
of an attack path given a set of attack graphs by using Deep
Learning and Machine Learning. The attack graph is obtained
by training the model. It is important to note that, in order
to achieve our goal, the topology of the network and system
information are needed. We then apply feature extraction to
acquire an attack graph generation model by exploiting the
input data. Finally, the authors are using an evaluation metric
to evaluate the predicted path. To sum up, the authors present
a binary classification problem together with a multi-output
learning algorithm, in order to generate an attack graph starting
from information of the system and the network.

Bezawanda et al. [4] presented a tool that automatically
generates the PDDL representation of an Attack Graph from
descriptions found in the CVE or the NVD system. The
authors are using natural language processing to produce
the PDDL from the textual description. Also the tool offers
the transformation of the PDDL to the corresponding Attack
Graph for visualization purposes. The procedure can be ex-
plained in 4 steps. First step: Extract information from the
Vulnerability database and form the PDDL domain. Second
step: Form the PDDL problems using the PDDL domain and
event logs of the system. Third step: An Artificial Intelligence
algorithm is generating a PDDL plan for each PDDL problem.
Fourth step: The tool updates the content of the PDDL domain
in every modification of the input data. It is also worthy to
point out what is a PDDL domain and a PDDL problem. The

TABLE VIII
OVERVIEW OF THE PAPERS INCLUDED IN THE CATEGORY TRANSFORMATION RULES

Paper Network Defined General Attacks Attack Tree Attack Graph Experiments Code Proof Scalability Prerequisites Year

[7] ✓ ✓ ✓ 2016
[11] ✓ ✓ ✓ 2016

PPDL domain is some problem descriptions with the corre-
sponding actions and constraints. The PPDL domain includes
abstract variables. When these variables take a specific value,
an instance of the PDDL domain is created which is called
PDDL problem. The PDDL problem is solved with the help
of the PDDL planner, that is trying to find a plan to satisfy
the PDDL problem (sequnce of action one must perform to
achive the end goal). The authors do not present experiments,
code, proofs or the scalability of their solution. Finally, we
should point out that there are no required prerequisites.

F. Reachability

All the papers included in this category are using the
Reachability of the nodes in the network in order to construct
the corresponding Attack Tree/Graph.

This category includes 9.52% of the papers. The years of
publication ranges from 2006 to 2013. All of the papers in this
category are presenting experiments and show the scalability.
Also, all of the papers require some prerequisites and deal
with Network defined attacks. Furthermore, 1 out of 2 (50%)
papers is constructing an Attack Tree and the other one an
Attack Graph. None of the papers are providing the reader
with their code or formal proofs of their solution.

Ingols et al. [10] proposed a system based on multiple
prerequisite graphs. They argue that this type of graphs are
better that the full graphs or the predictive graphs due to the
lack of dependencies. The system processes the input data
(Map of the network) and computes the reachability matrix.
The computation of the reachability matrix is equipped with
some improvements crucial to saving memory and time. Some
sections of the matrix are collapsed into reachability groups.
The filtering rules are replaced by Binary decision diagrams,
resulting to filtering rules in linear time. The graph is con-
structed using a breadth first technique. Multiple prerequisite
graphs consist of three different kinds of nodes; state nodes,
prerequisite nodes and vulnerability instance nodes. During
the construction, every type of node is being added differently
to the graph. Also, this work presents a graph simplification
for visual presentation. The proposed solution import data
from: Nessus, Sidewinder and Checkpoint firewalls, the CVE
dictionary and NVD. The generation of the Attack Graph
depends on data that can be obtained quickly. The data are
evaluated and reported as early sa possible. This work assumes
that the paths are monotonic, meaning that the attacker will
never go back. Also, the authors are not modelling Client
side attacks. The authors refer to the scalability in terms of
complexity as almost linear to the size of the network. Also,
they present experiments for their solution. Finally, it is also

worth mentioning that they do not present the code or proofs
for their work.

Hong et al. [8] identify all the paths in the network of
the system to construct the full AT, which consists of AND
and OR gates. After the construction of the full AT there
are two proposed methods: 1. Simplified Attack Tree with
Full Path Calculations 2. SATwIPC simplified Attack Tree
with Increental Path calculation. The first method requires a
logical expression of the attack tree and removes the sequence
information from the expression but it groups similar nodes.
The second method is maintaining attack path information
and is constructed by exploiting network configurations and
sequences of vulnerabilities. The authors present Attack Trees
that depict attacks concerning only the Network Security. The
authors do not present formal proofs or the code of their solu-
tion, but they present the scalability and experiments. Finally,
the proposed solution has one prerequisite the description of
the network.

G. Transformation Rules

In this category the papers that are using Transformation
Rules to obtain the corresponding Attack Tree are included.

This category include 9.52% of the papers included in this
survey. Also, the publication year for all the papers is 2016. All
of the papers included in this category are taking into account
General Attacks and construct the corresponding Attack Tree.
Furthermore none of the papers in this category are presenting
experiments, the code, proofs or scalability of the proposed
solution.

Gadyatskaya et al. [7] presents an Attack-Defense tree
generation for socio-technical models. These trees represent
both the attacker’s options and the available countermeasures.
This work presents the creation of a group of Attack-Defense
bundles given a so io-technical model. These bundles can
be used for generating Attack-Defense Trees. In this context,
socio-technical models are important because they can capture
General attacks, also in large organizations. Basically, the aim
of this work is the automation of Attack Tree construction,
exploiting socio-technical models.

Ivanova et al. [11] are aiming to transform a graphical
system model to a graphical attack model. The graphical
system model includes: locations, actors, processes, items. The
actors and the processes can be decorated with policies and
credentials. For every component the authors introduce some
guidelines for transforming the graphical representation to the
corresponding Attack Tree. As a future work the authors would
like to extend their model to include attacks aiming to disturb
the environment of the system, where current solution deal
with confidentiality and integrity.

VII. CHALLENGES AND FUTURE DIRECTIONS

After classifying and examining different characteristics of
every paper we identified some challenges in the field. In this
section we present the challenges identified that can serve as
future direction for the research community.

• Use of SAND: In the automatic generation of Attack Trees
only a few papers are including the SAND operator.
The SAND operator can represent multiple situations
that occur in different kind of attacks [12]. So we believe
that it is important to also include this operator at the
automatic generation.

• Use of XOR: There is no reference is the literature of
the exclusive choice operator. There are cases in some
attacks that an attacker will end up with an exclusive
choice. For example to break one out of two doors, due
to the equipment available - i.e. one bomb available. In
our opinion it is necessary for the research community
to include such an operator on the Attack Trees. With
the addition of the XOR operator the security experts or
the programs analysing the potential attacks can exclude
some paths or traces.

• Dynamic Solutions: The systems are being upgraded
constantly. New variables or configurations can make an
Attack Tree/Graph useless. The need for more dynamic
solutions are crucial. There are a few papers in the
literature dealing with this issue.

• Poor Semantics / Proofs: The use of semantics and
proofs is really important. There are some works that
do not use proofs or semantics to support their solution.
Neglecting the semantics can lead to poor or unsound
results. The use of proofs can help the reader better
understand the concepts used and help the researchers
expand the field. Semantics can help the community
develop the same language concerning the generation of
Attack Trees/Graphs.

• Forensics: Another field important to the security experts
are forensics. Forensics can help the security experts
identify vulnerabilities that did not previously taken into
account and secure better their systems. Using forensics
one can generate Attack Trees/Graphs to depict what
when wrong in a system.

• Sound Results: The automatic generation of Attack
Trees/Graphs provide a very good tool for the security
experts. But it might produce unsound results that are not
usable. There are not many works providing proper means
to prevent the generation of unsound results. Mostly semi-
automated procedures have been proposed to avoid the
generation of unsound results.

• Prerequisites: Most of the papers require some prerequi-
sites in order to generate the Attack Tree/Graph. This
might be tedious for the security experts (since they
might follow a semi-automated procedure, that requires
their involvement), but a fully automated procedure might
produce unsound results. Some prerequisites can be the
configuration of the system, which is a very important file

that an attacker can exploit to take control of the system.
So the prerequisites can themselves be a vulnerability.
It is important to find the right balance between the
amount of the prerequisites and the sound results. It is
also important to examine the nature of the prerequisite
and how crucial they can be for the security of the system.

• Scalability: The Scalability is one of the main character-
istics of a tool. Nowadays we use very large networks
to cover our needs. The automatic generation of Attack
Trees should be adapted to be able to perform under these
circumstances. So, it is important to study the scalability
and try to optimize the proposed algorithms.

• Attack Defence Trees: A few papers are investigating
the Automatic generation of Attack Defence Trees. After
the automatic generation of Attack Trees/Graphs, is it
natural to investigate the generation f the corresponding
defences/countermeasures.

VIII. CONCLUSION

Graphical Representation Models are widely used in the
security field to depict all possible attacks of a system. Two of
the most common Graphical representation models are Attack
Trees and Attack Graphs. These structures provide a user
friendly representation for the security experts and in parallel
they constitute a useful tool for analyzing the systems under in-
vestigation. Designing these kind of graphical representations
by hand can be error-prone and tedious for the security experts.
Consequently, the research community turned their interest in
finding ways to automatically generate these structures. In this
work we present the state of the art of the automatic generation
of Attack Trees/Graphs. We structured our survey to answer
3 research questions: RQ1, Which techniques are currently
used in the field, RQ2, what kind of attacks are taken into
account and the evidence the authors present to support their
solution (experiment, scalability, code, mathematical proofs),
RQ3, what kind of limitations we identified in the field. We
answered RQ1, by classifying the papers into 7 different
categories in Section VI and presenting the categories with
the percentage of their population in Section V. Following
that, we answered RQ2 in Section V, giving an overview of
how many papers included the corresponding parameters and
in Section VI we also present tables that show in detail which
paper include which parameters. Finally, taken everything
into consideration we answer RQ3 in Section VII, where we
present the limitations/challenges we identified in the field that
also constitute future directions for the research community.

ACKNOWLEDGMENT

This work has been supported by Innovation Fund Denmark
and the Digital Research Centre Denmark, through bridge
project “SIOT – Secure Internet of Things – Risk analysis
in design and operation”.

REFERENCES

[1] M. Ugur Aksu, Kemal Bicakci, M. Hadi Dilek, A. Murat Ozbayoglu,
and E. ıslam Tatli. Automated generation of attack graphs using nvd.
In Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, CODASPY ’18, page 135–142, New York, NY,
USA, 2018. Association for Computing Machinery.

[2] Alaa T. Al Ghazo, Mariam Ibrahim, Hao Ren, and Ratnesh Kumar.
A2g2v: Automatic attack graph generation and visualization and its
applications to computer and scada networks. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 50(10):3488–3498, 2020.

[3] Gordon Baxter and Ian Sommerville. Socio-technical systems: From
design methods to systems engineering. Interacting with Computers,
23(1):4–17, 2011.

[4] Bruhadeshwar Bezawada, Indrajit Ray, and Kushagra Tiwary. Agbuilder:
an ai tool for automated attack graph building, analysis, and refinement.
In IFIP Annual Conference on Data and Applications Security and
Privacy, pages 23–42. Springer, 2019.

[5] Jeremy Bryans, Lin Shen Liew, Hoang Nga Nguyen, Giedre Sabali-
auskaite, Siraj Shaikh, and Fengjun Zhou. A template-based method
for the generation of attack trees. In Maryline Laurent and Thanassis
Giannetsos, editors, Information Security Theory and Practice, pages
155–165, Cham, 2020. Springer International Publishing.

[6] Nicolas David, Alexandre David, Rene Rydhof Hansen, Kim G. Larsen,
Axel Legay, Mads Chr. Olesen, and Christian W. Probst. Modelling
social-technical attacks with timed automata. In Proceedings of the
7th ACM CCS International Workshop on Managing Insider Security
Threats, MIST ’15, page 21–28, New York, NY, USA, 2015. Association
for Computing Machinery.

[7] Olga Gadyatskaya. How to generate security cameras: Towards defence
generation for socio-technical systems. In Sjouke Mauw, Barbara Kordy,
and Sushil Jajodia, editors, Graphical Models for Security, pages 50–65,
Cham, 2016. Springer International Publishing.

[8] Jin Bum Hong, Dong Seong Kim, and Tadao Takaoka. Scalable
attack representation model using logic reduction techniques. In 2013
12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, pages 404–411, 2013.

[9] Mariam Ibrahim and Ahmad Alsheikh. Automatic hybrid attack
graph (ahag) generation for complex engineering systems. Processes,
7(11):787, 2019.

[10] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack
graph generation for network defense. In 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), pages 121–130, 2006.

[11] Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof Hansen,
and Florian Kammüller. Transforming graphical system models to
graphical attack models. In Sjouke Mauw, Barbara Kordy, and Sushil
Jajodia, editors, Graphical Models for Security, pages 82–96, Cham,
2016. Springer International Publishing.

[12] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and
Rolando Trujillo-Rasua. Attack trees with sequential conjunction. In
Hannes Federrath and Dieter Gollmann, editors, ICT Systems Security
and Privacy Protection, pages 339–353, Cham, 2015. Springer Interna-
tional Publishing.

[13] Ravi Jhawar, Karim Lounis, Sjouke Mauw, and Yunior Ramı́rez-Cruz.
Semi-automatically augmenting attack trees using an annotated attack
tree library. In International Workshop on Security and Trust Manage-
ment, pages 85–101. Springer, 2018.

[14] Kijong Koo, Daesung Moon, Jun-Ho Huh, Se-Hoon Jung, and Hansung
Lee. Attack graph generation with machine learning for network
security. Electronics, 11(9):1332, 2022.

[15] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer.
Dag-based attack and defense modeling: Don’t miss the forest for the
attack trees. Computer Science Review, 13-14:1–38, 2014.

[16] Rajesh Kumar. An attack tree template based on feature diagram
hierarchy. In 2020 IEEE 6th International Conference on Dependability
in Sensor, Cloud and Big Data Systems and Application (DependSys),
pages 92–97, 2020.

[17] Harjinder Singh Lallie, Kurt Debattista, and Jay Bal. A review of attack
graph and attack tree visual syntax in cyber security. Computer Science
Review, 35:100219, 2020.

[18] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In
Dong Ho Won and Seungjoo Kim, editors, Information Security and
Cryptology - ICISC 2005, pages 186–198, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[19] K. Muthumanickam and E. Ilavarasan. Automatic generation of p2p
botnet network attack graph. In Vinu V. Das, editor, Proceedings of the
Third International Conference on Trends in Information, Telecommuni-
cation and Computing, pages 367–373, New York, NY, 2013. Springer
New York.

[20] Vidhyashree Nagaraju, Lance Fiondella, and Thierry Wandji. A survey
of fault and attack tree modeling and analysis for cyber risk management.
In 2017 IEEE International Symposium on Technologies for Homeland
Security (HST), pages 1–6, 2017.

[21] Xinming Ou, Wayne F Boyer, and Miles A McQueen. A scalable
approach to attack graph generation. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 336–345,
2006.

[22] Cynthia Phillips and Laura Painton Swiler. A graph-based system for
network-vulnerability analysis. In Proceedings of the 1998 Workshop
on New Security Paradigms, NSPW ’98, page 71–79, New York, NY,
USA, 1998. Association for Computing Machinery.

[23] Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. Atsyra: An
integrated environment for synthesizing attack trees. In Sjouke Mauw,
Barbara Kordy, and Sushil Jajodia, editors, Graphical Models for Secu-
rity, pages 97–101, Cham, 2016. Springer International Publishing.

[24] Sophie Pinchinat, François Schwarzentruber, and Sébastien Lê Cong.
Library-based attack tree synthesis. In Harley Eades III and Olga
Gadyatskaya, editors, Graphical Models for Security, pages 24–44,
Cham, 2020. Springer International Publishing.

[25] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.
[26] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated

generation and analysis of attack graphs. In Proceedings 2002 IEEE
Symposium on Security and Privacy, pages 273–284, 2002.

[27] Oleg Sheyner and Jeannette Wing. Tools for generating and analyzing
attack graphs. In International symposium on formal methods for
components and objects, pages 344–371. Springer, 2003.

[28] L.P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack
graph generation tool. In Proceedings DARPA Information Survivability
Conference and Exposition II. DISCEX’01, volume 2, pages 307–321
vol.2, 2001.

[29] Nils Ole Tippenhauer, William G. Temple, An Hoa Vu, Binbin Chen,
David M. Nicol, Zbigniew Kalbarczyk, and William H. Sanders. Au-
tomatic generation of security argument graphs. In 2014 IEEE 20th
Pacific Rim International Symposium on Dependable Computing, pages
33–42, 2014.

[30] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Automated
generation of attack trees. In 2014 IEEE 27th Computer Security
Foundations Symposium, pages 337–350, 2014.

[31] Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat.
Beyond 2014: Formal methods for attack tree–based security modeling.
ACM Comput. Surv., 52(4), aug 2019.

[32] Claes Wohlin. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, New York, NY, USA, 2014. Association for
Computing Machinery.

[33] Shangqin Zhong, Danfeng Yan, and Chen Liu. Automatic generation
of host-based network attack graph. In 2009 WRI World Congress on
Computer Science and Information Engineering, volume 1, pages 93–98,
2009.

	Introduction
	Background
	Attack Trees
	Attack Graphs
	Attack Trees vs Attack Graphs
	Network Security vs General case
	Categories

	Research Method
	Research Questions
	Research Method
	Start Set
	Iterations

	Related Work
	Overview - Quantitative Study
	Publisher and Publication Year
	Percentage of papers in each category
	Experiments, Proofs, Code, Scalability

	Classification based on the categories
	Logical Formulas
	Model Checking
	Templates
	Library Based
	Artificial Intelligence
	Reachability
	Transformation Rules

	Challenges and Future Directions
	Conclusion
	References

