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ABSTRACT

In multicellular organisms, different types of cells use intercellular signals to com-
municate and regulate population dynamics, and further coordinate complex behav-
iors. This presents a rarely tapped into potential for mammalian synthetic biology,
which was largely restricted to engineering a single cell type in the past to mimic
and use similar multicellular designs to achieve more functionalities. However, with
current synthetic biology tools and designs, there are several major challenges to
achieve a multicellular circuit. Challenges include precise and tunable control over
cell type switching, having an orthogonal cell-cell communication signal, and robust
control of cell populations.

To address these challenges, this thesis presents a system for tunable regulating of
gene expressionwithDNAmethylation, an auxin-basedmodule formammalian cell-
cell communication, and a robust circuit for population control in mammalian cells.
I further applied these work to engineering immune cells to show the potential of
multicellular circuits in immunotherapies. Together, these works demonstrated the
possibility of constructing multicellular circuits in mammalian systems, and that
multicellular circuit can further extend the scope of synthetic biology to achieve
more complex functions.
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NOMENCLATURE

AAV. Adeno-associated virus.

AID. Auxin inducible degron.

CAR. Chimeric antigen receptor.

CHO cells. Chinese hamster ovary cells, see CCL-61 at ATCC.

DNMT. DNA methyl-transferase, responsible for the transfer of a methyl group
from methyl donor, to the 5-position of cytosine residues in DNA (Jin and
Robertson, 2013).

FACS. Fluorescence assisted cell sorting.

GPCR. G-protein coupled receptor.

IAA. Indole-3-acetic acid, CAS87-51-4.

IAM. indole-3-acetamide, CAS879-37-8.

IL-2. Interleukin 2.

IRES. Internal ribosome entry site.

NAA. 1-napthalenatic acid, CAS86-87-3.

NAM. 1-naphthaleneacetamide, CAS86-86-2.

NGS. Next-generation sequencing, in this thesis we use the ”sequencing by synthe-
sis platform” by Illumina Inc..

PBMC. Peripheral blood mononuclear cells.

SCF complex. Skp, Cullin, F-box containing complex.

scFv. Single-chain variable fragments. An artificial constructs composed of the
immunoglobulin heavy and light chain variable regions connected by a pep-
tide linker.

TF. Transcription factor.

TSS. Transcription start site.
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C h a p t e r 1

INTRODUCTION: SYNTHETIC BIOLOGY FROM SINGLE
CELLULAR TO MULTICELLULAR

Synthetic biology originally aims to understand fundamental biological design prin-
ciples, such as gene expression dynamics (Elowitz, Levine, et al., 2002; Cai, Fried-
man, and Xie, 2006), oscillatory behaviors (Elowitz and Leibler, 2000; Potvin-
Trottier et al., 2016), and ligand-receptor interactions (Sprinzak et al., 2010; Antebi
et al., 2017), by building circuits from well-characterized components in a well-
controlled context (often called the bottom-up approach). More recently, various
studies started to apply synthetic biology to fields like cancer biology (reviewed
by Ruder, Lu, and Collins, 2011), immunotherapies (Choe et al., 2021; J. H. Cho,
Collins, and Wong, 2018; also reviewed by Noll and Fraietta, 2022) and tissue en-
gineering (Guye et al., 2016; Skylar-Scott et al., 2022) for clinical potentials.

Though some of the examples above yield brilliant results with circuits that are sim-
ple but elegant, it is likely that future application will require synthetic circuits with
more and more complexity. For example, a hypothetical engineered cell for im-
munotherapies will need multiple receptors for antigen or environment detection,
logic circuit to process inputs from the receptors, ”payload” genes for the desired
outputs, as well as gene editing for resistance to the hostile tumormicro-environment
(Shih and Y. Y. Chen, 2022). However, adding more components, especially into
mammalian cells, faces a massive challenge in terms of gene delivery. Currently
most reliable delivery methods, mostly including viral delivery via adeno-associated
virus (AAV) or lentivirus, have very limited capacity per construct (Tornabene et
al., 2019; Counsell et al., 2017). This can be further complicated due to promoter
interference (Chtarto et al., 2003; Curtin et al., 2008; Amendola et al., 2005), if
different components need to be driven by different promoters for responses to sep-
arate inputs. In contrast, delivery methods that can accommodate larger ”cargo” like
lipofection or electroporation, are less robust especially in harder-to-transfect on cell
types (Dullaers et al., 2004; Cao et al., 2010). One potential circumvention is to de-
livery multiple virus into the same cell, but there has been evidence about high titer
of AAV transduction lowering stem cell viability (P. Lin et al., 2012; Marasini et al.,
2017). On the lentivirus side, due to its mutagenic potential of reverse transcription
and integration, most clinically relevant protocols aim for integration copy number
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as low as possible (L. Fernández et al., 2019; Ghassemi et al., 2022). This limitation
provokes the question that, is there a more scalable approach for integrating more
complex circuit into cells?

The more promising approach is to distribute different modules of the circuit into
different cells (types, or strains), thus creating multicellular synthetic circuits. Much
like cells in multicellular organism or bacterial communities, cells carry out simple
tasks and coordinate actions through cell-cell communications for more sophisti-
cated system-level functions (more in section 1.1). This approach potentially re-
duces the amount of required engineering per cell type, and scales the circuit up by
adding in more cell types.

Additionally, multicellular circuits also provide the following benefits over tradi-
tional single cellular circuits:

1. Reusability of components. Dividing the circuit components into different
cell strains enables the reuse of the same components, but in different cells.

Traditionally in single cell synthetic biology, the up-scaling is constrained by
the number of an ”orthogonal” components, that do not interfere with each
other when put together in a single cell. For example, recent work from our
lab demonstrated that one can construct all seven basic logic gates with three
proteases with pairwise orthogonality (Gao et al., 2018). However, a straight-
forward scale up of this concept will require 3xN orthogonal proteases for a
circuit with N logic gates.

Furthermore, even theoretically orthogonal and scalable systems can have un-
expected cross talk when implemented into the same cell. For example, the
synthetic zinc-finger system that in theory should be able to generate hundreds
of synthetic transcriptional factors (TFs) by combinatory rearrangement, faces
challenges to create an orthogonal set of six TFs (Khalil et al., 2012). In
another example, synthetic Notch (synNotch) and chimeric antigen receptor
(CAR), two systems derived from entirely different origins (Notch and TCR,
respectively), can have unexpected cross interactions when expressed on the
same cell surface (I. Zhu et al., 2022).

These problems can potentially be solved by multicellular synthetic circuits,
as each cell strain provides a physically separated, thus orthogonal context for
its sub-circuits.
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2. Cell type specialization. Another unique advantage ofmulticellular synthetic
circuits is the potential to harness the inherent specification of different cell
types.

For example, in cell-based therapies against solid tumors, the engineered cells
need to infiltrate, recognize, amplify themselves, and kill cancer cells. The
most common cell type to engineering for this purpose currently are T cells
due to their exceptional ability of self amplification upon target engagement
and killing capacity. However, they can have poor infiltration against solid
tumors (Scarfò and Maus, 2020). On the other hand, macrophages are known
to be good at infiltration (Klichinsky et al., 2020; Aalipour et al., 2019), but
lack the capability of self-amplification and killing effectively. Amulticellular
circuit could program the infiltration and detection function intomacrophages,
and then relay the information to engineered T cells for killing, thus taking
advantage of both cells’ natural specialty.

1.1 Inspiration from natural multicellular circuits
Cells in bacterial communities and multicellular organisms naturally operate multi-
cellular circuits to achieve complex functions. In this section, wewill discuss several
natural circuits and try to answer what are required components for these types of
circuit.

In microbial communities, cells can decide when to disperse from their multicellular
structure, biofilm, based on environmental cues produced or caused by other cells
in the biofilm, like specific fatty-acid signals, or simply depletion of oxygen (Rum-
baugh and Sauer, 2020). In the case of quorum sensing cells secrete diffusive signals
to inform each other about the current population density (quorum) and coordinate
cooperative behaviors (Waters and Bassler, 2005; Papenfort and Bassler, 2016).

A classic example in animal development is the ”French flag” model, in which a
diffusive molecule (morphogen) is produced by a group of cells and shapes a spatial
gradient in the population. The gradient is further perceived by cells, and triggers
different irreversible changes (differentiation) in the receiving cells (Bier and De
Robertis, 2015). A more complex example is the somitogenesis in vertebrates, in
which a gene oscillation on single cell level are fixed into a spatial repetitive pattern
(somites) (Gibb, Maroto, and Dale, 2010). This process is achieved by a circuit con-
sisting of a gene osccilator on single cell level, contact dependent Notch signal for
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local synchronization, and several diffusive molecules to form opposing gradients
for final determination of cell state.

Our immune system provides a series of examples ofmulticellular circuits, where the
regulation (both via cell cycle regulation and differentiation) of population size of
different types is key to the functions. For example, IL-2’s secretion by immune cells
(mostly CD4 T and dentritic cells) are important for primary expansion of both CD8
and CD4 T cells upon antigen recognition, and are further produced by activated T
cells, turning into a positive feedback driving the T cells’ clonal expansion. IL-2 also
tip the balance between the differentiation of Th17 cell and survival of Treg cells,
ultimately determining the extension or termination of inflammation (Boyman and
Sprent, 2012).

Despite the complexity in the wiring of the natural circuits above, we can conclude
and identify the essential components from these circuits, and develop synthetic
counterparts for synthetic application.

1.2 Modules for ideal multicellular circuit
Based on observing above natural examples (section 1.1), we propose that the fol-
lowing components are keys for multicellular circuits (schematics in Figure 1.1).

1. Intracellular logic. These circuits, as the traditional focus of synthetic bi-
ology, are spatially separated in different cell types, and are responsible for
processing the inputs and producing outputs on single cell level. These cir-
cuits, as demonstrated previously, can be transcription based (R. Zhu et al.,
2022; Khalil et al., 2012), post-translation-based (Gao et al., 2018), RNA
logic (Matsuura et al., 2018; Wroblewska et al., 2015), splicing-based (North
et al., 2022), or a combination of all of the above.

2. Contact dependent signal. Contact dependent synthetic signal programs the
cells to communicate with their immediate neighbors.

Systems with this function have been developed over the years by re-
engineering natural receptors like Notch (to synNotch and SNIPR) (Morsut
et al., 2016; I. Zhu et al., 2022), TCR (to CAR) (Noll and Fraietta, 2022; Y.
Liu et al., 2021) or cytokine receptors (Kojima, Scheller, and Fussenegger,
2018). Though notably CAR mentioned above do not provide fully synthetic
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outputs, the natural output (in this case T-cell cytotoxicity) can be convenient
in a lot of applications. ¹

3. Diffusive signal. Diffusive signal in a multicellular circuit can either provide
global/long-distance communications or spatial information if produced by
a group of spatially defined cells (similar to ”morphogens” in development
biology).

Previous examples of this class include repurposed various natural systems
like GPCR (Barnea et al., 2008), Sonic Hedgehog (P. Li and Elowitz, 2019),
cytokine-receptor (Sockolosky et al., 2018), or fully modular designs (MESA,
Daringer et al., 2014). Additionally, synthetic systems produce and sense
metabolites from either plant (M.-T. Chen and Weiss, 2005) or bacteria (Bac-
chus et al., 2012) has been developed for cell-cell communication in mamm-
slian system. Thoughmost systems above are not designed to send and receive
orthogonal signals (with the exception of the IP-CRE1 system from plant,
(M.-T. Chen and Weiss, 2005)), some of them (e.g. synthetic GPCR-based
systems and MESAs) can potentially perceive synthetic secreted proteins and
peptides.

4. Control of cell proliferation and differentiation. Another major aspect of
multicellular circuit is the ability to control population dynamics (both abso-
lute size and relative ratio of populations), either via driving differentiation or
regulate proliferation based on input. Control of proliferation can be achieved
via regulation of proliferation (e.g. controlled cytokine release for immune
cells (Allen et al., 2022), or expression of cell cycle arrestors (Satyanarayana
and Kaldis, 2009)), or cell death (e.g. controlled apoptosis (Straathof et al.,
2005; Gao et al., 2018)). On the other hand, drive of differentiation has been
achieved by either rewiring of the endogenous differentiation circuit (Kitada
et al., 2018), or creating fully synthetic bi-stable gene switch to lock cells into
a certain desired state (cell-type) (R. Zhu et al., 2022).

1.3 Content of this thesis
In this thesis, I will present an auxin-based diffusive signaling module for mam-
malian cell-cell communication and a robust circuit for population control in mam-

¹This and the next point about receptors for surface bound and diffusive signals are well reviewed
by Manhas et al., 2022 from a receiver angle.
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Figure 1.1: Components for the ideal multicellular synthetic circuit.
Different cell types use their intracellular logic to process inputs from, as well as
send output signals to other cells, regulating cell proliferation and differentiation on
a multicellular level.

malian cells. I will also present a DNAmethylation-based, tunable gene switch, that
could potentially drive stable cell-type differentiation.

Finally, I will present our ongoing advances on constructing multicellular circuit
in immune cells, demonstrating the potential of multicellular circuits in clinically
relevant applications.

Together, these works demonstrated the possibility of constructing multicellular cir-
cuits in mammalian systems, and that multicellular circuit can further extend the
scope synthetic biology to achieve more complex functions.
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C h a p t e r 2

SYNTHETIC AUXIN-BASED MAMMALIAN SIGNALING
CIRCUITS FOR ROBUST CELL POPULATION CONTROL

2.1 Introduction
Cells use intercellular communication systems to sense and control their own pop-
ulation density. In microbial communities, cells exchange diffusive signals to co-
ordinate cooperative behaviors and form biofilms through the process of quorum
sensing (Waters and Bassler, 2005; Papenfort and Bassler, 2016) or manipulation
of distribution of the redox small molecules (Dietrich et al., 2013). In multicellular
organisms, intercellular communication is essential to enable precise developmen-
tal patterning (Gibb, Maroto, and Dale, 2010; Bier and De Robertis, 2015), control
immunological responses (Boyman and Sprent, 2012; C.-C. Chen et al., 2015; Mul-
doon et al., 2020), and coordinate organism-level physiology (Keener and Sneyd,
2009, Chapter 16).

Synthetic intercellular communication systems could allow the engineering of in-
herently multicellular behaviors not possible with cell-autonomous circuits (Toda,
Blauch, et al., 2018). For example, in bacteria, foundational synthetic biology stud-
ies showed how coupling quorum sensing systems to cell death could enable bacteria
to limit their own population size (You et al., 2004; Scott and Hasty, 2016), or drive
synchronized oscillations of drug release for therapeutic applications (Din et al.,
2016). In mammalian cells, an orthogonal, or “private” communication channel that
allows specific communication between engineered cells could enable engineering
of analogous circuits (Figure 2.1).

The ideal private communication system for mammalian population control would
use a diffusible signal, avoid undesired interactions with non-engineered cells, per-
mit external control over the strength of signaling, and operate in a broad variety of
cell types. It should also allow direct and rapid control of diverse target protein activ-
ities to allow flexible interfacing within cells, and exhibit minimal immunogenicity
to facilitate potential biomedical applications.



8

Synthetic intercellular communication channel based on auxin
In the past, mammalian cells have been engineered to produce, sense, and process
signals from natural ligands by rewiring signaling pathways such as Nodal-Lefty,
Sonic Hedgehog, and Notch (Matsuda et al., 2012; P. Li and Elowitz, 2019; Sekine,
Shibata, and Ebisuya, 2018), and by repurposing the amino acid tryptophan as a
signaling molecule (Bacchus et al., 2012). However, these approaches are not or-
thogonal to endogenous systems. On the other hand, synNotch receptors allow mul-
tiple orthogonal communication channels, but depend on cell contact interactions to
mediate diffusible signaling (Toda, McKeithan, et al., 2020).

Auxins, a class of plant-specific hormones that coordinate growth and behavior in-
cluding root initiation, embryogenesis, and tropism (Tanaka et al., 2006), represent
an excellent candidate for this role. Molecularly, auxin induces protein-protein in-
teractions between the F-box transport inhibitor response 1 (TIR1) protein and its
target proteins. This leads to the assembly of a Skp, Cullin, F-box containing (SCF)
complex, which in turn recruits E2 ubiquitin ligases that target specific proteins for
degradation (Reitsma et al., 2017). Because TIR1 and its targets are absent in mam-
mals, auxin does not regulate endogenous mammalian proteins. However, ectopic
expression of TIR1 from rice (osTIR1) is sufficient to confer auxin-dependent degra-
dation of proteins engineered to contain a minimal auxin inducible degron (mAID,
or AID for simplicity in this paper) (Nishimura et al., 2009; Natsume et al., 2016).
Thus, auxin is orthogonal to endogenous mammalian pathways, but can enable di-
rect control of cellular activities through engineered protein targets. Additionally,
in yeast, ectopic expression of bacterial indole-3-acetic acid hydrolase was shown
to catalyze auxin production from an inactive precursor indole-3-acetamide (IAM),
allowing control over auxin production (Khakhar et al., 2016). Nevertheless, a full
auxin sending and receiving signaling system, which is necessary for population
control, has not been established in mammalian cells.

In this thesis, we engineer the auxin pathway to act as a private mammalian commu-
nication channel. Combining auxin-synthesizing enzymes and auxin transporters,
and employing alternative auxin precursors, we show that the auxin pathway can be
used for synthetic quorum sensing in mammalian cells.

Robust mammalian population control circuit
With a established system capable of sending and receiving a diffusible signal si-
multaneously, we can construct the simplest population control circuit by coupling
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a quorum-sensing circuit to cell death, similar to what has been achieved in bacte-
ria (You et al., 2004; Scott and Hasty, 2016). This circuit configuration essentially
created a negative feedback loop on between population size and cell net growth
(Figure 2.1, right panel). However, a critical challenge for any population control
circuit, including the negative feedback circuit mentioned above, is evolutionary
robustness. By limiting growth, a population control circuit inherently selects for
“cheater” mutations that escape regulation.

Previous works has established several type of circuit to counter this ”cheater” prob-
lem. In bacteria, toxin-antitoxin systems and periodic strain replacement can prevent
cheater escape (Stirling et al., 2018; Liao et al., 2019). However, these systems use
components that do not function in mammalian cells or are not cell-autonomous. In
the mammalian context, a seminal analysis of natural cell population size control
systems in cytokine and glucose sensing circuits revealed a paradoxical architec-
ture, in which a single signal stimulates both proliferation and death of the same
target cell population, to actively select against cheaters (Hart et al., 2014). In this
paradoxical design, mutations that diminish signal sensing lead to cell death and are
eliminated (Karin and Alon, 2017). Despite its power and elegance, the paradoxical
architecture has not, to our knowledge, been demonstrated synthetically in living
cells.

In this thesis, we used the auxin cell-cell communication module (see 2.1) to con-
struct and analyze synthetic population control circuits with different architectures.
Specifically, we constructed and compared negative feedback and paradoxical con-
trol systems that regulate their own population size through auxin quorum sensing.
While both circuits limit population size at early times, the paradoxical system en-
hances evolutionary stability, as predicted theoretically, extending the duration of
population control.

2.2 Engineered mammalian cells sense population with auxin-based commu-
nication channel

In this section, we engineered mammalian cells (CHO cells) to sense, respond to and
produce auxin, by ectopic expression of components from plants and agrobacterium.
We further engineered cells to sense and produce simultaneously, and achieved syn-
thetic quorum sensing in mammalian system.
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Figure 2.1: The plant hormone auxin allows private-channel mammalian cell-cell
communication.
Left: an ideal mammalian private-channel communication system would allow en-
gineered cells to send and respond to an orthogonal signal that does not interact with
host cells. Middle: Engineered cells that can send and receive the signal simulta-
neously can respond to their own population size. Right: coupling the sending-
receiving function with cell survival in a negative feedback loop enables population
control.

Engineered mammalian cells sense auxin
To establish and characterize auxin regulation of mammalian cell growth, we cou-
pled auxin sensing to drug resistance and fluorescence. Specifically, we fused blas-
ticidin S deaminase (BlastR) (Kimura, Takatsuki, and I. Yamaguchi, 1994), whose
protein product is necessary for survival in the presence of blasticidin, to AID and
mCherry domains, allowing auxin-dependent degradation and fluorescent readout
of protein concentration, respectively. We then stably integrated this chimeric gene,
along with a constitutively co-expressed osTIR1, in CHO-K1 cells to create an
auxin-sensitive “Receiver” cell line (Figure 2.2A).

To validate auxin regulation of mCherry-AID-BlastR, we cultured Receivers in me-
dia containing different concentrations of two auxin variants: either the major nat-
ural auxin, indole-3-acetic acid (IAA), or a synthetic auxin analog, 1-napthalenatic
acid (NAA) (Figure 2.2B). Both auxins reduced mCherry fluorescence in a dose-
dependent manner, with EC50 values of 0.11 μM and 0.76 μM, respectively. Ad-
dition of IAA to media containing blasticidin was sufficient to degrade BlastR and
inhibit cell survival (Figure 2.2C). This effect was dose-dependent with both blas-
ticidin and IAA. Comparing fluorescence of mCherry-AID-BlastR in Figure 2.2B
with cell survival in 2.2C shows that a small amount of mCherry-AID-BlastR is
sufficient to enable survival in blasticidin. These results confirmed that the AID
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domain and osTIR1 together are sufficient to enable net growth regulation by auxin
(IAA) in mammalian cells.

Figure 2.2: Engineered auxin receivers responds to auxin.
(A) Auxin Receiver cells constitutively express a fluorescent target fusion protein,
mCherry-AID-BlastR, as well as the F-box protein osTIR1. In the presence of auxin
(yellow circle), osTIR1 and the AID-tagged target protein assemble into an SCF
complex, which allows ubiquitylation of the target protein, leading to target degra-
dation. Both proteins are encoded on a single transcript, with an intervening T2A
ribosomal skip sequence (grey square) to yield separate proteins (Szymczak et al.,
2004).
(B) Auxin regulates intracellular protein levels. The response of mCherry fluo-
rescence in Receiver cells (A) to two different species of auxin (IAA and NAA)
was measured after two days of treatment (dots). The responses follow Michaelis-
Menten kinetics (fitted lines, Supplementary text), with indicated EC50 values.
(C) Auxin regulates cell density. Cells were treated with a combination of IAA and
blasticidin at different concentrations for four days and passaged once. Cells were
counted by flow cytometry (n=3, error bar = standard deviation). In (B) and (C), the
x axis uses a symmetric log (symlog) scale to include a value of 0.

Engineered mammalian cells produce auxin
In addition to sensing, a population control system requires that cells produce auxin
at levels sufficient to trigger responses in receiving cells (Khakhar et al., 2016).
Auxin can be synthesized in two enzymatic steps: (1) oxidation of L-tryptophan to
indole-3-acetamide (IAM) and (2) hydrolysis of IAM to IAA (Figure 2.3A) (Sitbon
et al., 1992). By itself, the second enzymatic step can produce either IAA or NAA
from precursors IAM or 1-naphthaleneacetamide (NAM), respectively, enabling di-
rect control of auxin production (Figure 2.4A) (Kawaguchi et al., 1991). To iden-
tify enzymes that efficiently catalyze this reaction, we compared thirteen indole-3-
acetamide hydrolases from bacteria and plants (Figure 2.3B, left), transiently ex-
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pressed them individually in Receivers, and measured their ability to downregulate
AID-tagged mCherry fluorescence by flow cytometry.

Three enzymes reduced mCherry to levels comparable to that produced by addition
of IAA itself (Figure 2.3B). Among these, we selected A. tumefaciens iaaH for fur-
ther use. We stably integrated it in Receivers to create a Sender-Receiver cell line
(Figure 2.4B). After 2 days of culturing Sender-Receivers in media containing the
IAM precursor, the resulting conditioned media, diluted into an equal volume of
fresh media for optimum cell growth, reduced mCherry-AID-BlastR to levels com-
parable to those generated by saturating concentrations of IAA (Figure 2.4C and
2.4D). The Sender-Receiver line was also able to produce the auxin NAA (which, as
shown below, has some advantages compared to IAA) from its corresponding pre-
cursor NAM (Figure 2.4D), albeit with a diminished response compared to NAA,
consistent with the higher EC50 of NAA compared to IAA. These results show that
iaaH expression in mammalian cells can efficiently produce both auxins from cor-
responding precursors.

The ability to synthesize auxin in mammalian cells without exogenous precursors
could facilitate in vivo applications of population control circuits. Bacterial auxin
(IAA) synthesis pathways use a tryptophan 2-monooxygenase, iaaM (also known
as aux1 or TMO), to synthesize IAM from L-tryptophan (Figure 2.3A). Sender-
Receivers expressing iaaM (from P. savastanoi), cultured in media without pre-
cursors, produced auxin concentrations in conditioned media that were sufficient
to degrade the auxin reporter in Receiver cells (Figure 2.3C). Furthermore, iaaM-
expressing Receivers produced precursor in conditioned media, allowing auxin pro-
duction by Sender-Receivers (Figure 2.3C). These results demonstrate the two step
iaaM-iaaH auxin synthesis pathway can operate in mammalian cells without exoge-
nous precursors. However, in the following experiments, we used iaaH with added
precursors to allow external control of auxin synthesis.

To estimate the spatial range of auxin signaling, we seeded a field of Sender-
Receivers adjacent to a larger region of Receivers, and applied media in a 1.5%
agarose gel to prevent non-diffusive transport (Methods, section A.3). After 48
hours, mCherry fluorescence was reduced in Receivers proximal to the Sender-
Receiver region, forming a long-range gradient. This effect occurred in the pres-
ence, but not the absence, of the IAM precursor, consistent with a dependence on
IAA production (Figure 2.4E, bottom). Image analysis revealed auxin response
in Receivers declining to half its maximum value at a length scale of 15.6±0.85
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millimeters (Methods, section A.3), or approximately 750 cell diameters, from the
source region, within 48 hours (Figure 2.4E, top), consistent with expectations for
a small molecule the size of auxin diffusing in buffered solutions (Robinson, J. E.
Anderson, and J. L. Lin, 1990) (Figure 2.3D and Supplementary text 2.5). These
results show that auxin can provide information about global cell density over an ex-
tended region, and further demonstrate the possibility of using auxin as a synthetic
gradient-forming morphogen for applications in synthetic developmental biology
(Teague, Guye, and Weiss, 2016).

Engineered cells sense and respond to population density
We next asked whether Sender-Receiver cells could sense their own population den-
sity by producing auxin at a rate proportional to population size and sensing auxin
concentration in the local environment (quorum sensing, Figure 2.1, middle panel).

We analyzed the dependence of reporter expression on cell population density in the
presence of concentrations of each precursor (NAM and IAM) sufficient to generate
saturating levels of auxin. With the NAMprecursor, reporter fluorescence decreased
in response to increasing population density (Figure 2.5A, darker blue line). By con-
trast, addition of IAM generated a strong, but density-independent, decrease in fluo-
rescence (Figure 2.5A, light blue line). We reasoned that this density-independence
could result from IAA’s limitedmembrane permeability at neutral pH (Raven, 1975),
potentially causing newly synthesized IAA to accumulate intracellularly. Though
the rate of exchange is sufficient to fully induce receiver cells (on the timescale of
days, Figure 2.4D and 2.4E), it could be insufficient to prevent intracellular accu-
mulation of IAA due to the faster rate of auxin production by iaaH (typically several
μM per minute) in the same cell (Mishra et al., 2016). To overcome this issue, we
stably expressed the auxin exporter PIN2 from Arabidopsis thaliana (Petrásek et al.,
2006) in Sender-Receiver cells (Sender-Receiver-PIN2 cells) (Figure 2.5B, right).
PIN2 expression produced a modest decrease in auxin sensing, suggesting the trans-
porter was functional (Figure 2.6A), but allowed quorum sensing across most of the
full dynamic range of auxin concentration sensing (Figure 2.5B and 2.6B). Cells re-
sponded similarly to cell density across different culture media volumes, indicating
quorum sensing responded to cell density rather than absolute cell number (Figure
2.5C). Together, these results establish that Sender-Receiver cells can sense their
own population density in two ways: using NAMwithout PIN2, or using either pre-
cursor with PIN2.
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Figure 2.3: Expression of enzymes from agrobacterium enables cells to produce
auxin.
(A) IAA can be synthesized from L-tryptophan (L-Trp) in a two-step pathway. (B)
Twelve candidate indole-3-acetamide hydrolases were screened for the ability to
convert IAM to IAA. The phylogenetic tree was created with CLUSTAL-OMEGA
(Sievers et al., 2011) and phyML3.0 (Guindon et al., 2010) using default settings.
Candidate enzymes were transfected into Receiver cells, and auxin production was
assessed bymCherry-AID degradation (Figure 2.4A) after 48 hours. The fluorescent
results are normalized to the control without auxin. Candidates that could down-
regulate the mCherry by over 50% are highlighted in yellow. iaaH from A. tumefa-
ciens (black arrow) was selected for subsequent experiments.
(C) Media conditioned by iaaM (from P. savastanoi) expressing cells contains sub-
strate for auxin production by iaaH. Cells transfected with iaaM were used to con-
dition the media for 48 hours, as shown in Figure 2.4C. Conditioned media was
combined with an equal amount of fresh media and then applied to reporter cells for
48 hours before flow cytometry.
(D) Auxin diffusion observed in Figure 2.4E matches theoretical predictions (see
also Supplementary text 2.5).

Linking quorum sensing to cell survival could enable cell population control (Figure
3.1, right). To test this possibility, we seeded cells at different densities in media
containing blasticidin to make cell growth dependent on BlastR levels, as well as the
precursor IAM. After 4 days, cells seeded at high, but not low, densities exhibited
reduced cell numbers compared to cells plated at the same density without IAM



15

Figure 2.4: Sender-Receiver cells produce to auxin.
(A) Indole-3-acetic acid hydrolases such as iaaH, aux2, and AMI1 hydrolyze in-
active auxin precursors (IAM and NAM) to their respective active form (IAA and
NAA).
(B) Stable expression of iaaH in Receiver cells allows them to produce auxin from
precursors (blue square).
(C) Conditioned media experiment (schematic). Fresh culture media with or with-
out precursors was added to plated sender cells, collected, mixed at 1:1 ratio with
standard fresh media, and then applied to receiver cells.
(D) iaaH can produce IAA and NAA from IAM and NAM precursors, respectively.
Media with or without precursors were conditioned by Sender-Receivers or WT
CHO-K1 cells for 48 hours and applied to Receiver cells. Receivers cultured with
fresh media were also assayed as controls. Data are normalized to Receiver cell
fluorescence treated with media conditioned by WT cells. n=3.
(E) Auxin senders can generate an auxin gradient. Sender-Receivers (green) were
seeded within a 7x7 mm square at the edge of a 60 mm dish, and Receivers were
plated everywhere else (Receiver region). One day after plating, the media was
replaced with fresh media containing low-melting-point agarose, with or without
IAM (Methods, section A.3). Plates were imaged after 48 hours. Inset on top:
Quantification of the average pixel intensity of mCherry expression in cells. Error
bars denote standard deviation of the four images of each column.



16

or IAA (Figure 2.5D). These results demonstrate density-dependent control of cell
survival.

Figure 2.5: Sender-Receiver cells sense their population density and regulate sur-
vival accordingly.
(A-B) Sender-Receiver and Sender-Receiver-PIN2 cells perform quorum sensing.
For both plots, cells were seeded at different densities and induction conditions,
with either of the two auxins (saturating signaling) or their precursors (to allow quo-
rum sensing). mCherry fluorescence was assayed after two days as a reporter of
auxin sensing. Inset: Cells in B express the transporter PIN2, which actively ex-
ports auxin. Data were fitted onto an inverted Michaelis-Menten’s function on log
scale (see Figure 2.6B for fitted parameters, Supplementary text).
(C) Sender-Receiver-PIN2 cells sense population size per unit volume. Cells were
grown for two days at 6 different densities for each media volume, and cultured on
a rocker for better mixing.
(D) Sender-Receiver-PIN2 triggers cell death at high population density. Cells were
seeded at different confluence levels, grown for four days in media with 50 μg/ml
blasticidin and IAM, IAA, or no auxin. Error bars indicate standard deviation from
triplicates.

2.3 Multicellular paradoxical circuit achieve robust population control
The circuit with quorum sensing linked to cell survival (section 2.2) presents a nega-
tive autoregulatory feedback loop, resembling a similar design in bacterial systems,



17

Figure 2.6: Sender-Receiver cells sense their population density.
(A) The right-shifted auxin response curve of PIN2 expressing cells is consistent
with active export of IAA from the cells. Two PIN2-expressing cell lines were incu-
bated with IAA for 48 hours and then assayed for mCherry fluorescence. The data
were fitted with the same method in Figure 2.2B.
(B) Quantitative analysis of Figure 2.5A and B shows that the expression of PIN2
rescues dynamic range (indicated by the double-sided arrows in the left panel) lost
to self-sensing (Supplementary text).

where a quorum sensing signal induces cell killing. The bacterial circuit was found
to be susceptible to “cheater”mutations that allowed cells to escape control and grow
to the limit of environmental capacity (Balagadde, 2005). In this section, we will
demonstrate that similar problem was also encountered in our mammalian circuit,
and we constructed a circuit with paradoxical architecture with improved robustness
against cheaters.

Cells with simple negative feedback circuit are susceptible to cheaters
Slightly different from bacteria, for adherent mammalian cells, environmental ca-
pacity is limited by the surface area of the culture plate. We therefore define an
escape event as cells growing to confluency (covering the full surface of the plate)
and remaining confluent for the duration of the experiment. When we cultured the
Sender-Receiver-PIN2 cell line in media containing blasticidin and IAM to activate
the circuit, we observed escape after 16 days of culture (Figure 2.7A, Movie S1¹),
which reflects the acquisition of a “cheating” phenotype, with which cells are able to
proliferate in high auxin (IAA) and blasticidin (Figure 2.7B). These results show that
simple negative feedback population control circuits in mammalian cells, like their
bacterial counterparts, are susceptible to selection pressure for cheater mutations.

¹see section 2.5
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Figure 2.7: Cells with simple negative feedback circuit is susceptible to cheaters.
(A) A pilot experiment showed that the Sender-Receiver-PIN2 cells escape regula-
tion after 15 days of continuous culture. Cells were seeded into a 24-well imaging
plate with 50 μg/ml of blasticidin solely (Circuit off) or also with 100 μM IAA or
IAM (Circuit on). Each trace reflects an average of 12 positions in a sample well.
Shaded envelopes represent the standard deviation of the averages.
(B) Cheater cells collected from the end of the movie in Figure 2.6A have high
survival rates when grown in IAAwith blasticidin for 4 days as compared to parental
cells. Cell counts measured with flow cytometry were normalized to matched cells
grown without drugs. Bars represent standard deviation from triplicates.

The ”Paradaux” cells implement paradoxical population control
A “paradoxical” circuit architecture, in which a quorum sensing signal either stim-
ulates or inhibits both cell proliferation and cell death, can make population con-
trol more mutationally robust by counterselecting against cheaters that lose signal
sensing (Karin and Alon, 2017). In the paradoxical circuits, positive net growth
can occur only at signal concentrations lying between two non-zero bounds, similar
to the Allee effect in ecology (Courchamp, Berec, and Gascoigne, 2008) (Figure
2.8A, blue regions). By comparison, the simpler, non-paradoxical negative feed-
back architecture, in which signals only down-regulate growth, exhibits positive net
growth at all signal concentrations below a single upper bound (Figure 2.8A, lower
left). While both circuits exhibit stable fixed points at the maximum of their positive
growth zones, they respond differently to cheater mutations that reduce auxin sensi-
tivity (the predominant cheater phenotype observed in Figure 3.5C and D). Specif-
ically, with negative feedback alone, such cheater mutations extend the regime of
positive net growth to higher signal concentrations and cell densities, providing a
growth advantage over non-mutant cells (Figure 2.8A, lower right). By contrast, in
the paradoxical circuit, the same mutation would cause signal sensing to drop be-
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low the lower bound, activating the cell death arm of the circuit (Figure 2.8A upper
right). In this way, the paradoxical circuit design should suppress escapes by cheater
mutations that reduce or eliminate signal sensing.

We designed a paradoxical circuit in which auxin represses both proliferation and
death, a configuration that is well-suited to the inhibitory nature of auxin-dependent
protein degradation (Figure 2.8A, upper left). In addition to auxin regulation of
BlastR, we added a parallel regulatory pathway in which auxin negatively regulates
cell death by inducing degradation of iCasp9, an ectopically expressed master reg-
ulator of apoptosis (caspase 9) activated by the small molecular dimerizer AP1903
(Figure 2.8B) (Straathof et al., 2005; Di Stasi et al., 2011). We added an AID do-
main in iCasp9 to provide auxin regulation, and fused it to the monomeric GFP
variant mGFPmut3, to allow direct readout of its concentration (Landgraf et al.,
2012) (Figure 2.8B). This design allows one to operate the same cell line in three
regimes, depending on what combinations of blasticidin and AP1903 are added to
the medium. With only blasticidin, the circuit operates in the pure negative feedback
regime; with blasticidin and AP1903, it operates in the paradoxical regime; and with
neither inducer it has unregulated growth. Because it implements paradoxical reg-
ulation through auxin, we dubbed this circuit “Paradaux.”

To encode the Paradaux circuit, we designed a single multi-protein construct ex-
pressing osTIR1, the auxin-regulated iCasp9 system, and the auxin-regulated BlastR
construct described above (Figure 2.8C). To eliminate one potential mechanism for
evolutionary escape, we positioned BlastR at the C-terminal end of the construct,
so that premature stop codon mutations would deactivate BlastR, decreasing sur-
vival. We integrated the construct to create stable monoclonal CHO-K1 cell lines
for further analysis (Methods, section A.1). Because this line lacks PIN2, we used
NAM/NAA rather than IAM/IAA for all Paradaux experiments. Survival of these
cells increased monotonically with auxin in the presence of AP1903 and decreased
with auxin in the presence of blasticidin, demonstrating that both branches of the
Paradaux circuit were individually functional (Figure 2.9A, red and green lines).
(An additional monoclonal line with an independent integration of the same circuit
is shown in Figure 2.10A). Further, including both blasticidin and AP1903 produced
a biphasic survival curve (Figure 2.9A, blue dots), the key requirement for paradox-
ical population control.
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Figure 2.8: Paradoxical architecture reduces susceptibility to cheater mutations.
(A) In the paradoxical architecture, the same signal inhibits growth (red pathway)
and death (green pathway). This can produce a window of auxin concentrations
leading to positive net growth (light blue region). Without mutation, the paradoxi-
cal and negative feedback circuits operate similarly around a stable equilibrium point
of large population size (solid black dots, left panels). Mutations that eliminate sens-
ing make both death and growth independent of auxin concentration (right panels),
which selects against mutations in the paradoxical circuit due to negative net growth.
(B) In the paradoxical circuit implementation, auxin regulates growth through
BlastR (upper path), and also regulates apoptosis via iCasp9 (lower path), each with
distinct fluorescent protein readouts and a small molecule (blasticidin and AP1903)
as a control switch.
(C) The full paradoxical circuit can be encoded as a single open reading frame, with
distinct proteins separated by T2A peptides (grey squares).

Mathematical modeling identifies parameter regimes required for paradoxical
control
To identify parameter regimes, including concentrations of blasticidin and AP1903,
that optimize its population control capabilities, we developed amathematical model
of the Paradaux circuit. Assuming rapid intracellular-extracellular auxin equilibra-
tion, as observed for NAA (Figure 3.6A), and timescale separation between fast
intracellular dynamics and the slower cell population dynamics (Figure 2.10B, Sup-
plementary text), we derived an approximate model based on two differential equa-
tions. The first represents the extracellular auxin concentration shared by all cells,
denoted �. The second describes the cell population size, denoted # , which ranges
from 0 to the environmental carrying capacity, normalized as 1 (Supplementary
text).
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We assume auxin is produced at a constant rate per cell, _�, and diluted by periodic
media changes, approximated as a continuous process with rate constant X�:

3�

3C
= _� · # − X� · � (2.1)

We also assume cell growth can be described by a generalized logistic function
(Richards 1959) (Figure 2.10C, Supplementary text), modified to incorporate the
effects of blasticidin, �, and iCasp9, �, on growth:

3#

3C
= '6 (�, �, �) · # · (1 − #a) (2.2)

Here, '6 denotes the cellular growth rate, a function that can be written as a sum of
two Hill-like terms representing the combined auxin dependent effects of blasticidin
and iCasp9 on cell survival (See Equation 2.15, 2.16 and 2.17for the exact form).
The exponent a is the non-linear correction parameter in the generalized logistic
growth function (Richards, 1959).

To constrain the effective biochemical parameter values in the model, we incorpo-
rated experimentally measured values of the sensitivity of AID-tagged proteins to
auxin, the unperturbed cell growth rate, the auxin secretion rate, and the non-linear
growth correction parameter (Figure 2.2B; Figure 2.10C and 2.10D). Remaining
parameters were fit using the auxin-dependent survival rates measured with either
AP1903 or blasticidin (Figure 2.9A, red and green line). The model initially over-
estimated actual growth rates when both arms of the circuit were simultaneously
active (Figure 2.9A, dashed purple lines), possibly due to previously reported syn-
ergy between apoptosis and blasticidin-dependent translational inhibition (Holcik
and Sonenberg, 2005). We therefore added a phenomenological synergistic inter-
action term to the growth rate expression (Equation 2.19 and Supplementary text;
Table 2.1, parameter set 1; Figure 2.9A, dotted line). Finally, we checked that ex-
perimental parameter values expected to be independent of integration site, such
as maximum cell death and growth rates, as well as synergy and Hill coefficients,
agreed, within 2-fold, with those measured for a second Paradaux monoclonal cell
line with an independent integration of the circuit construct (Figure 2.10A; Table
2.1, parameter set 2).

Before initiating challenging long-term analysis of population control, we used the
model to systematically scan for AP1903 and blasticidin concentrations likely to
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favor paradoxical population control. For each pair of AP1903 and blasticidin con-
centrations, we classified the dependence of cell survival on auxin into one of five
qualitatively distinct behaviors: (1) positive net cell growth across all auxin con-
centrations (Figure 2.9B, purple background, “uncontrolled growth” in 2.11); (2)
negative net cell growth across all auxin concentrations (2.9B, green background);
(3) permissive growth, in which cells proliferate only beyond a minimum auxin con-
centration (2.9B, pink background); (4) simple negative feedback control, analogous
to the Sender-Receiver behavior (2.9B, yellow background, “negative feedback in
2.11”); and (5) paradoxical control (2.9B, blue background, “paradoxical feedback
in 2.11”). Only the negative and paradoxical feedback regimes produce a non-zero,
stable fixed point, allowing population control. The desired paradoxical regime oc-
curred in a window of blasticidin and AP1903 concentrations centered around 50
μg/ml and 50 nM, respectively (2.9B). Further, this paradoxical window could be
enlarged by optimizing the expression levels of iCasp9 and BlastR (2.9C).Within the
paradoxical regime, the circuit produced the expected bistability of population size
(Figure 2.10E) and robustness to mutations that eliminate auxin sensing, simulated
by setting sensed auxin to zero (2.9D).

Additionally, we explored the effect of the 2-3 day time delay required for blasticidin
to kill sensitive cells (Sato et al., 2012) (Figure 2.10F). Time delays in negative
feedback loops are known to produce oscillations under some conditions (Potvin-
Trottier et al., 2016; Elowitz and Leibler, 2000). In simulations of the paradoxical
circuit, inclusion of a time delay led to oscillations of population density with peri-
ods of 2 weeks or more depending on the value of the delay parameter, g (Equation
2.22). A bifurcation (Martinez-Corral et al., 2018) between damped and sustained
oscillations occurred at approximately g = 48 ℎAB (Movie S2²). Taken together,
these results provided insight into parameter dependence and expected dynamics of
the circuit, and identified specific AP1903 and blasticidin concentrations for long
timescale analysis of the experimental circuit.

Paradoxical circuits extend the duration of population control
To experimentally analyze population control, we continuously monitored cultures
of the Paradaux cell line using time-lapse movies (Figure 2.11B). We performed
three sets of time-lapse experiments, the longest of which lasted for 42 days (an arbi-
trary time scale constrained by technical limitations). Cells were cultured in regimes
of uncontrolled growth (no blasticin or AP1903, the “always positive” regime in

²see section 2.5
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Figure 2.9: Paradaux cells are predicted to be robust to cheaters.
(A) Paradaux cells respond to auxin in a biphasic manner. Cells were seeded at
1/8 confluence (grey dashed line) and pretreated with NAA (24 hours), then treated
with combination of NAA, blasticidin (20 μg/ml) and AP1903 (50 nM) (72 hours).
Pink, green, and blue dots show the mean and standard deviation in the presence of
AP1903, blasticidin, or both, respectively (n=3). Solid red and green lines: fits to
the model. Purple dashed lines: predictions for the fully circuit based on the green
and red curves. Dotted purple line: prediction with the synergy term.
(B) Different classes of behavior can occur in different parameter regimes. We
simulated auxin-dependent growth in different regimes and identified five distinct
regimes (insets). We numerically analyzed and sorted growth curves for each con-
centration of blasticidin and AP1903 (central plot). Blue dot indicates the inducer
concentrations used in the time-lapse movie analysis (2.11). The grey region in-
dicates curves that not classified into one of these categories (0.68% of total, see
Figure 2.9)C and Supplementary text).
(C) Optimizing the expression and ratio of BlastR and iCasp9 widen the paradoxical
regime. For each expression level, we analyzed the percent of blasticidin-AP1903
concentrations that generate paradoxical behavior, similar to panel E.
(D) Dynamic simulations show the Paradoxical Control circuit provides evolution-
ary robustness. For negative feedback system, V� = VBH= = 0. Mutated strains were
simulated with � fixed to zero, as sensing deficient mutations. On day 25, 50, 75
and 100, mutants were introduced into the system at 1%. These mutants take over in
the negative feedback circuit (top) but not the paradoxical circuit (bottom). Dashed
line: carrying capacity.
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Figure 2.10: Model and parameter fitting of the paradoxical circuit.
(A) A second Paradaux line responds to auxin in a biphasic manner. Condition
is same as Figure 2.9A, except 4 nM of AP1903 and/or 50 μg/ml blasticidin were
used. Curves are fitted directly from the survival data due to in-availability of the
maximum growth rate (Table 2.1).
(B) The complete and reduced (approximate) versions of the model show similar
dynamics, (overlap of black and cyan trajectories, Supplementary text).
(C) Generalized logistic growth (Equation 2.2) fits PC1’s growth curve better. Data
are from the first 120 hours of the uncontrolled growth sample in movie set 1 (Figure
2.11B). Smoothed with a Gaussian filter. U = 0.0395/ℎA; a = 2.26.
(D) Auxin secretion rate (_� = 2.09`"/10624;; ·ℎA . Sender-Receivers were seeded
at 10,000 cells per well. After different durations (0 to 73.5 hours), conditioned
media was collected and cells were counted to estimate exponential growth rate.
The conditioned media was applied to Receivers at 1X, 0.5X, or 0.25X dilution, and
then Receiver fluorescence was compared to a standard curve.
(E) Dynamic simulation of the system shows biphasic growth. For each initial cell
density, the initial auxin concentration was determined by setting Equation 2.1 to
equal zero (equilibrium for auxin).
(F) Simulation with delay (g, Equation 2.22) incorporated show oscillated be-
haviours. Cells were seeded at 0.1, with delay applied to the blasticidin related
response.
(G) Sub-sampling of the “unclassified” curves from Figure 2.9B shows that they are
intermediate between “permissive” and “paradoxical” categories.
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Table 2.1: List of parameters and fitted values for model of the Paradaux cells.
Fitted values are labeled as (1) or (2), in cases where themajor Paradaux line (labeled
as 1, Figure 2.9A), and the one used from confirming the model (labeled as 2, Figure
2.10C) were fit with different values. Dimensionless values are labeled as “DL” in
the “Unit” column.

Figure 2.9B), negative feedback (blasticidin added), or paradoxical feedback (both
blasticidin and AP1903). In the uncontrolled regime, cells grew to and remained at
full confluence for the duration of the movie (Figure 2.11A, Movie S3³). In the lat-
ter two regimes, population dynamics exhibited oscillations, consistent with models
incorporating time delays for blasticidin-dependent cell killing (Figure 2.10F).

The negative feedback regime limited population size for 1 or 2 oscillatory peri-
ods ( 20-30 days), after which cells escaped control (exceeded >95% confluence)
for the remainder of the movie (at least 10 subsequent days, 2.11B). This behav-

³see section 2.5
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ior is consistent with the experimentally observed susceptibility of simple negative
feedback control to escape mutants (Figure 2.13C and D), and simulated responses
to introduction of sensing mutants (Figure 2.9D). By contrast, in the paradoxical
regime, cultures exhibited oscillations in population density, but remained at sub-
saturating densities for significantly longer (p<0.005, Kaplan-Meier estimate, log-
rank test (Kishore, Goel, and Khanna, 2010)). In fact, over half of the cultures
remained sub-confluent for the full duration of the movies (Figure 2.11A-C; Movie
S3⁴). More specifically, across the three movie sets and the 11 individual cultures
in the paradoxical group, only one culture escaped control before the 32 day mark
(Figure 2.11A,Movie set 3). Together, these results demonstrate that the paradoxical
control circuit reproducibly extends the duration of population control.

Phenotypical and expression analysis indicates paradoxical circuit prevent
cheating
To gain insight into how cells evolved during long term culture, we isolated cells at
the end of each of the 30 individual movies, passaged them in standard media, and
assayed their behaviors under different conditions (Figure 2.12A-E). The fluores-
cence of mCherry and mGFP, which are co-expressed with BlastR and iCasp9, re-
spectively, varied substantially across all isolates, reflecting independently acquired
changes in the expression of circuit components, rather than amplification of a com-
mon founder mutation already present in the parental cell line. However, variation
of the two reporters was strongly correlated expression across isolates, suggesting
that mutations or other adaptations occurred upstream of both circuit arms (Figure
2.12A).

The two population control conditions produced different effects on circuit com-
ponent expression and phenotypic behavior. In cells selected under negative feed-
back conditions, basal BlastR expression was upregulated, on average, by 73%, and
showed 49% less responsiveness to auxin compared to the uncontrolled group (Fig-
ure 2.12B and C; p = 0.014 and p<0.001, respectively). By contrast, isolates from
the paradoxical feedback conditions showed significantly lower basal BlastR expres-
sion (p = 0.008) and retained a larger dynamic range of BlastR regulation compared
to negative feedback isolates (p = 0.007). These differences in BlastR regulation
were also reflected in cell survival (Figure 2.12B and C). When cultured in a com-
bination of blasticidin and NAA, mimicking high cell density, negative feedback
isolates exhibited increased survival compared to the uncontrolled group (p<0.001

⁴section 2.5
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Figure 2.11: The paradoxical circuit allows mutationally robust population control.
(A) Composite kymograph of long-term cultures with no control (100 μM NAM;
upper panel), negative feedback (100 μM NAM and 50 μg/ml blasticidin; middle
panel), or paradoxical feedback (100 μM NAM, 50 μg/ml blasticidin, and 50 nM
AP1903; lower panel), from movie set 3. For visualization, the images were ana-
lyzed using ilastik and 30-pixel-wide strips from each timepoint were combined to
make the kymograph.
(B) Population dynamics for the three movie sets conditions reveal delayed muta-
tional escape for the paradoxical circuit (shaded envelopes represent the standard
deviation across 12, 25, and 36 stage positions, for each movie set respectively).
Solid dots indicate escape events, defined by cells exceeding 95% confluency and
not returning below that threshold for the duration of the movie. Black arrows indi-
cate late cheating isolates that are similarly denoted with arrows in Figure 2.12D.
(C) Kaplan-Meier estimate (Kishore, Goel, and Khanna, 2010) of survival (no mu-
tant escape) for movies in (B). Samples in movie set 2 that ended earlier were treated
as dropouts. The samples under paradoxical feedback retain population control sig-
nificantly longer than those under negative feedback (p<0.005, log-rank test).

Figure 2.12D). While individual paradoxical isolates also exhibited elevated sur-
vival, the increase compared to the uncontrolled condition was not significant at the
group level (p=0.085). We also note that the two isolates which were classified as
cheaters in the final days of movie set 3 (Figure 2.11B, black arrows) were unable
to survive in this condition (Figure 2.12D, pink dots with arrows), suggesting they
could potentially have returned to lower cell density had the movie duration been
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longer. Together, these results suggest that paradoxical conditions preserved more
of the original BlastR regulation and function compared to negative feedback con-
ditions.

The paradoxical architecture is designed to suppress sensing deficient mutations that
reduce the responsiveness of both arms of the circuit to auxin. More specifically,
cells that lose auxin sensing should no longer degrade BlastR (Figure 2.12I, lower
right), and therefore obtain a growth advantage. By contrast, in the paradoxical cir-
cuit, such sensing deficient cells would also be unable to degrade iCasp9, leading to
their elimination (Figure 2.12F, upper right). Thus, sensing deficient isolates from
the negative feedback condition should become susceptible to killing through the
iCasp9 arm, even in the presence of auxin. In fact, isolates from negative feedback
conditions were sensitive to the combination of AP1903 and auxin, indicating that
they had acquired the potential to be counter-selected under paradoxical conditions
(Figure 2.12E, p<0.001). Thus, cells with reduced sensing gain a growth advantage
in negative feedback conditions but are counter-selected under paradoxical condi-
tions, consistent with the principle of paradoxical control.

To better understand the heritable changes that drive adaptation during long term
culture, we sequenced the circuit from endpoint isolates from the first two movie
sets. Several mutations appeared at elevated frequencies, occurring either in the AID
domain fused to BlastR, consistent with positive selection through reduction of AID
activity, or in osTIR1, near the 5’ end of the circuit transcript, potentially reducing
expression of all circuit components (Figure 2.13A; Table 2.2). However, in most
isolates, no mutations occurred at significantly elevated frequencies, suggesting that
most relevant adaptations (observed in Figure 2.12A-E) lie outside the circuit itself.

Therefore, we performed RNA-Seq expression analysis to investigate global tran-
scriptional changes. Expression profiles from isolates cultured in the same condi-
tions generally clustered together, suggesting that each operating mode of the circuit
selects for a distinct set of gene expression changes (Figure 2.13B). In addition, so-
lates from the uncontrolled growth conditions clustered with the parental cells, as
expected. Pathway enrichment analysis further revealed that ribosome components,
the primary targets of blasticidin, were significantly upregulated in both negative
feedback and paradoxical conditions (Figure 2.13C). Proteasome components were
up-regulated only in negative feedback conditions (Figure 2.13C and D), consistent
with opposite selection pressures on proteasome activity generated by auxin regu-
lation of BlastR and iCasp9 in the paradoxical condition.
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Figure 2.12: Phenotypes of isolates indicate paradoxical circuit prevent cheating.
(A-C) Isolates were treated with 10 μM NAA, or nothing, for two days prior to flow
cytometry assay for mCherry and mGFP fluorescence, co-expressed with BlastR
and iCasp9 respectively. Bars represent standard deviation from triplicates (A and
B), or bootstrapping (C, n=9). (A) Isolates from all long term cultures show corre-
lated BlastR and iCasp9 expressions. (B) Isolates from negative feedback, but not
paradoxical feedback, showed upregulation in BlastR, compared to control. (C) Iso-
lates from negative feedback showed diminished dynamic range compared to both
control and paradoxical groups.
(D-E) BlastR and iCasp9 expression levels affect survival rates across different con-
ditions. Cells were seeded in 96-well imaging plates with IAA or standard media for
one day, and the second drug, blasticidin (D) or AP1903 (E), was added. Samples
were then imaged to estimate confluency at day 4. For each isolate, survival rates
were normalized to the group with no second drug. The black arrows in (D) high-
light the isolates that cheated at the final days in movie set 3, black arrows in Figure
2.11B. Values and errors were calculated by bootstrapping (n=6, Methods, section
A.6).
(F) How the paradoxical architecture, but not negative feedback, eliminates cells
that lose the ability to sense auxin (schematic).

2.4 Conclusions and discussions
Natural cytokine-based control circuits allow cells to regulate their own population
dynamics, as well as those of other cell types. Synthetic circuits could provide anal-
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Figure 2.13: Targeted DNA and whole-genomic RNA sequencing reveal mutations
and gene expression changes during long term culture. (continue on next page)
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Figure 2.13: Targeted DNA and whole-genomic RNA sequencing reveal mutations
and gene expression changes during long term culture. (continued from last page)
(A) Four mutations of significant positive selection were detected in the circuit com-
ponent sequencing (details listed in Table 2.2). The integrated transgene was am-
plified and sequenced (Illumina). Mutations were detected by comparing reads of
isolates to those of the parental line (chi-square test, Bonforroni corrected p<0.05,
Method, section A.6). The frequency threshold for positive selection (red dashed
line) was determined as the 5th percentile (Bonferroni corrected) of the distribution
of synonymous mutations, assumed to follow normal distribution.
(B) Isolates that evolved in the same conditions clustered together, based on
variance-stabilizing transformed (VST) read count across the whole transcriptome.
Genes that are significantly differentially expressed between the groups (fold change
> 32, adjusted p<0.01) are shown here (DESeq2, Love, Huber, and Anders, 2014).
Genes that lack annotation in RefSeq were manually annotated (Method, section
A.5), with the RefSeq number in parentheses.
(C) Pathway enrichment analysis shows that the negative feedback and paradoxical
feedback affect different sets of pathways. Enrichment analysis was performed with
Gene Set Enrichment Analysis’ (GSEA) ranked method against MSigDB’s curated
version of KEGG canonical pathways (Kanehisa et al., 2021).
(D) The negative and paradoxical circuit design exert different evolutionary pres-
sures on the proteasome pathway. Direct comparison of the KEGG proteasome
pathway between the paradoxical and negative group was analyzed by GSEA, as
shown with a standard GSEA plot. Here, blue (red) regions indicate genes whose
expression is significantly greater (lower) in the negative feedback condition com-
pared to the paradoxical condition.

ogous capabilities. To this end, we engineered simultaneous production and sensing
of the plant hormone auxin in mammalian cells, and coupled it to genes controlling
cell proliferation and death. The enzymes iaaH and iaaM, together with PIN2, al-
low cells to produce and export auxin. osTIR1 together with AID domains provide
a simple, direct means of sensing auxin and coupling it to arbitrary protein targets.
These components thus provide a long-range private communication channel, and
enable the foundational property of quorum sensing (section 2.2). Coupling quo-
rum sensing to cell survival opens up the possibility of creating population control
circuits, provoking the question of what circuit architectures can provide robust,
long-term control. Consistent with previous work (Karin and Alon, 2017), math-
ematical modeling showed that a paradoxical architecture, in which auxin inhibits
survival mediated by BlastR and killing by iCasp9, can generate a range of qualita-
tively different behaviors and, in some regimes, suppress cheaters (Figure 2.8 and
2.9). To experimentally realize this capability, we constructed the “Paradaux” cir-
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Table 2.2: Details of the mutations detected in DNA sequencing. (continue on next
page)

cuit, and compared its operation in three distinct regimes—uncontrolled growth,
negative feedback, and paradoxical—by using media with different combinations of
blasticidin and AP1903. Long-term culturing for up to 43 days revealed that while
both negative and paradoxical feedback architectures can limit cell population size
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Table 2.2: Details of the mutations detected in DNA sequencing. (continued from
last page)
Circuit components of isolates from movies set 1 and 2 (Figure 2.11) were am-
plified and sequenced. For simplicity, uncontrolled growth, negative feedback and
paradoxical feedback conditions are noted as unCt, Neg and Para, respectively, in
the table. Four out of 18 sequenced isolates exhibited non-synonymous mutations
at frequencies that were significantly elevated compared to those of synonymous
mutations, consistent with positive selection (Bonferroni corrected, p<0.05, Figure
2.13A). Three of these (one in a negative feedback cheater isolate, the other two
from non-cheating paradoxical isolates) squired mutations in the AID domain of
the AID-BlastR fusion protein. Reduced activity of this AID domain would be ex-
pected to increase fitness under both paradoxical and negative feedback conditions.
The fourth mutation, in a non-cheating paradoxical isolate, was a premature stop
codon in osTIR1, near the 5’ end of the circuit transcript, which could potentially
eliminate expression of all circuit components from the integrated copy in which it
appears. (Because there are multiple genomic integrations of the circuit, any indi-
vidual mutation could have a limited beneficial effect.)

for weeks, the former is more susceptible to escape by sensing-deficient cheaters.
By contrast, the paradoxical design suppressed these cheaters, as predicted theoreti-
cally, and provided more robust population control for the conditions and timescales
explored here.

The auxin system can be applied cell therapies
With these developments, private communication channels, population sensing, and
population control could improve engineered cell therapies by allowing cells to co-
ordinate their responses and localize activities at target sites. Previously, several
studies attempted to activate latent natural signaling abilities to trigger coordinated
multicellular responses. For example, to locally stimulate immune function, T cells
were engineered to secrete IL-12 and IL-18 upon tumor infiltration (Chmielewski et
al., 2011; Hu et al., 2017). Similarly, secretion of bispecific T-cell engagers (BiTEs)
by engineered T cells was shown to guide bystander T-cells to attack at the cancer
site, successfully improving infiltration and reducing toxicity caused by normal tis-
sue expressing the target (Choi et al., 2019). Private auxin-based communication
channels would complement these approaches by allowing engineered cells to not
only specifically sense and limit their own local population size but also to enable
conditional activation only beyond a minimum density.

We therefore anticipate the incorporation of synthetic communication, or popula-
tion control systems in future generations of engineered cell therapies. In the later
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part of the thesis (Chapter 4), I will present our ongoing effort in this direction,
demonstrating the potential of one possible multicellular circuit in engineered cell
therapy.

Limitation of this study
The Paradaux cell line requires addition of the auxin precursors IAM or NAM for
auxin synthesis. Though this provides a good external control method for our ex-
perimental setup, it might be suboptimal in therapeutic scenarios. For these appli-
cations, complete biosynthesis of IAA can be achieved by expressing tryptophan
2-monooxygenase (iaaM), in conjunction with iaaH (Figure 2.3).

The use of blasticidin and its auxin-regulated resistance gene for growth control is
not ideal, since antibiotics have complex effects on the cell, must be added to the
media, and broadly affect all cells exposed to the drug, making them inappropriate
for cell therapy applications. Enzyme-prodrug systems could provide an alternative
approach with fewer non-specific effects on host cells (Trask et al., 2000; Sharrock
et al., n.d.). Alternatively, a more generalizable, cell-autonomous system could be
achieved by coupling auxin to a cell-cycle regulator, such as Cdk1, 2 or 3 (Satya-
narayana and Kaldis, 2009), or other genes (Harborth et al., 2001) essential for sur-
vival and/or cell cycle progression.

Due to the inherent time delays within the feedback loop, the Paradaux circuit ex-
hibits oscillatory behaviors (Figure 2.10F), similar to earlier synthetic population
control circuits in bacteria Balagadde, 2005. Reducing feedback delays or imple-
menting more sophisticated control systems (Chevalier et al., 2019) should facilitate
non-oscillatory homeostatic dynamics.

Finally, although the paradoxical control system successfully extended the duration
of population control, cells nevertheless accumulated adaptive changes (Figure 2.11,
2.12 and 2.13). Future work exploring even longer timescales should reveal how
long the paradoxical design can extend the duration of control in the presence of
strong selection pressure to subvert it.

2.5 Supplementary text
In this section, I will provide the detailed mathematical deductions that are omitted
in sections 2.2 and 2.3, as well as the captions for the related movies.
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Estimation of auxin diffusion coefficient
To estimate the auxin diffusion coefficient, we modeled the system as a fixed con-
centration source, with the standard result for one-dimensional diffusion:

=(G, C) = =0 · erfc
(

G

2
√
�C

)
(2.3)

in which, = is the concentration as a function of time (C) and space (G), =0 is the fixed
concentration source, erfc the complementary error function and � is the diffusion
coefficient. The diffusion coefficient of auxin has been previously measured to be
5.58×10−62<2/B (Robinson, J. E. Anderson, and J. L. Lin, 1990). Therefore after 48
hours, the diffusion will expand to approximately 3 to 4 centimeters (Figure 2.3D).
Compared to this ideal fixed concentration source model, the in vitro experimental
gradient (Figure 2.4E) is expected to exhibit delays in both auxin production and
auxin sensing. Nevertheless, the experimentally observed gradient length scale was
similar to the theoretical model prediction (tens of millimeters).

Fitting for the auxin and population responsive curves
To fit the mCherry’s response curve to auxin and population (Figure 2.2B, 2.5A-
B and 2.6), we assumed the log of fluorescence (�) follows a inverted Michaelis-
Menten’s equation:

;>6(�) = ;>6(�<0G) − �<? ·
G

��50 + G
(2.4)

Here, �<0G represents the basal level of fluorescence; �<? represents the max am-
plitude the population or auxin (represented by G) could reduce the fluorescent; and
��50 represents the concentration, or population number when the reduction is half
of the �<?.

In Figure 2.6B, to avoid the problem that the above function (Equation 2.4) does not
extrapolate well when fitted with flat lines (controls and samples treated with auxin),
we used G = 103 and G = 3 · 105 for the extreme values. More specifically, the “ideal
dynamic range” was defined as �2>=CA>; (G=103)

�0DG8= (G=103) , the “loss to self-sensing” was defined

as �2>=CA>; (G=103)
�?A42DAB>A (G=103) , the “loss to saturation” was defined as �?A42DAB>A (G=3·105)

�0DG8= (G=3·105) , and the

“actual dynamic range” was defined as �?A42DAB>A (G=103)
�?A42DAB>A (G=3·105) .
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Model of the paradoxical population control circuit
Here we describe a dynamical model of the paradoxical population control circuit.
The model is based on the following biochemical reactions, interactions, and as-
sumptions:

• Auxin, denoted �, is synthesized from its precursor through an iaaH-catalyzed
hydrolysis reaction at a constant synthesis rate per cell _�, eliminated at a
rate X�, which is dominated by dilution due to media changes. Auxin diffuses
rapidly in and out of the cell compared to the timescales of cell population
dynamics, and its concentration is therefore assumed to be at quasi-steady
state (Equation 2.1).

• iCasp9, denoted �, and BlastR, denoted ', are produced at rates _� and _',
respectively.

• Auxin binds reversibly to osTIR1 to form an auxin-osTIR1 complex, which
ubiquitylates and degrades iCasp9 and BlastR via their attachedAID domains.
These reactions are described using classical enzyme kinetics with the auxin-
osTIR1 complex as the activating enzyme, described as a constant rate aD1.
In addition to auxin-induced active degradation, iCasp9 and BlastR are also
eliminated at rate X due to dilution (Equations S3 and S4).

• The concentrations of iaaH and osTIR1 are assumed to be constant. Auxin
precursor is assumed to remain at excess, saturating concentration.

• osTIR1 is assumed to be present at excess concentration compared to the
iCasp9-auxin-osTIR1 and BlastR-auxin-osTIR1 complexes, and therefore po-
tential competition between iCasp9 and BlastR for osTIR1 can be neglected.

With these assumptions, we can describe the dynamics of iCasp9 and BlastR with
the following differential equations:

3'

3C
= _' − aD1 · ' · � − X · ' (2.5)

3�

3C
= _� − aD1 · � · � − X · � (2.6)

The model represents blasticidin and AP1903 interactions as follows:
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• Extracellular Blasticidin, denoted �, diffuses into the cell, where it is de-
noted �8=C , and undergoes subsequent enzymatic inactivation by BlastR, with
a threshold concentration of  �, and a Hill coefficient =1:

�8=C = � · ( �)=1

( �)=1 + '=1
(2.7)

• AP1903 forms an active caspase complex, [� : �=2] with iCasp9, with a
threshold concentration of  �

3
and a Hill coefficient =2:

[� : �=2] =
1

( �
3
)=2

· � · �=2 (2.8)

In these two cases, we allow the more general Hill kinetics to account for potential
intermediate reaction mechanisms that could influence the effective cooperativity in
the final expressions. Additionally, we assumed that both inactivation of Blasticidin
and iCasp9 binding to AP1903 are rapid and have reached steady state.

As described in themain text the overall population dynamics can be described using
a generalized logistic function, with the growth rate represented as a linear combi-
nation of blasticidin-dependent and iCasp9-dependent terms (Equation 2.2). The
Blasticidin-dependent growth rate, �� , is a sum of two terms. The first describes
attenuation of the maximum natural cell proliferation rate, U, with increasing blasti-
cidin, while the second represents an increase in the cell death rate, V, with increased
blasticidin. These terms are associated with half-maximal blasticidin concentrations
of  6 and  3 , respectively:

�� = U
^6

^6 + �8=C
− V �8=C

^3 + �8=C
(2.9)

For simplicity, we assume ^6 = ^3 = ^. Thus, Equation 2.9 can be reduced to the
following form:

�� = (U + V) ^

^ + �8=C
− V (2.10)

We similarly describe the iCasp9-dependent cell death rate, �� , with a Hill function
dependence on the concentration of the AP1903-iCasp9 (� : �=2) complex:

�� = V�
[� : �=2]

[� : �=2] + ^ [�:�]
(2.11)
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Adding Equations 2.10 and 2.11 together and substituting the corresponding terms
from Equations 2.7 and 2.8, generate the complete form of the growth rate function
'(�, �, �) in Equation 2.2:

'6 (�, �, �) = (U + V) ^ [( �)=1 + '=1]
^ [( �)=1 + '=1] + �( �)=1

− V − V�
1

( �
3
)=2

· � · �=2

1
( �

3
)=2

· � · �=2 + ^ [�:�]
(2.12)

To simplify this description, we assumed a time-scale separation between the faster
auxin-population dynamics and the slower intracellular reactions involving ' and
�. Using singular perturbation theory (Del Vecchio and Murray, 2014), the system
can then be approximated by a simpler system that retains only the slower dynamics
(Equation 2.1 and 2.2), while the faster dynamics (Equation 2.5 and 2.6) are consid-
ered to be at equilibrium: 3'

3C
= 3�

3C
≈ 0. With this approximation, we can write '

and � in terms of the auxin concentration, �.

' =
_'

X + aD1�
(2.13)

� =
_�

X + aD1�
(2.14)

We also defined the following additional parameter combinations for simplicity (see
Table 2.1):

^� =
aD1

X
; ^� =

1
^

; %' =
_'

 �
; %� =

_�

 �
3

; ^� =
1

^ [�:�]
(2.15)

We can then substitute ' and � in Equation 2.12 to obtain the following:

'6 (�, �, �) = (U + V) · � (�, �) − V − V� · � (�, �) (2.16)

in which:

� (�, �) =
(^�� + 1)=1 +

(
%'

X

)=1

(^�� + 1)=1 (^�� + 1) +
(
%'

X

)=1
(2.17)
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� (�, �) =
^� � ·

(
%�
X

)=2

^� � ·
(
%�
X

)=2
+ (^�� + 1)=2

(2.18)

To verify the validity of the approximation, we compared the full model (Equation
2.1, 2.2, 2.5 and 2.6) to the approximate model, where Equation 2.5 and 2.6 are set to
0. We simulated both models using the parameter values in Table 2.1 (the Paradaux
set). The two sets of traces closely followed each other (Figure 2.10B), indicating
that the approximate system accurately reproduced the dynamics of the full model.

Representing synergy between iCasp9 and blasticidin control of cell survival
As discussed in the main text, the model above overestimated actual survival rates
when both arms of the circuit were simultaneously active (Figures 2.9A and 2.10A,
dashed purple lines), likely due to synergy between apoptosis and blasticidin-
dependent translational inhibition. We therefore added a phenomenological syner-
gistic interaction term: −VBH= · [1−� (�, �)] ·� (�, �) to the growth rate expression
('6 in Equation 2.12):

'6 (�, �, �) = (U + V�) ·� (�, �) − V− V� ·� (�, �) − VBH= · [1−� (�, �)] ·� (�, �)
(2.19)

Equation 2.19 gives the final form of the paradoxical growth curve with the synergis-
tic correction, and is used to improve data fitting (Figures 2.9A and 2.10A, dotted
purple lines). Together with the fitted parameters, the reduced system (Equations
2.1 and 2.2, with '6 defined as Equation 2.19) was used to run parameter screens
and dynamic simulations (Figures 2.9B-D and 2.10E-F).

Parameter screening and stability analysis
For numerical parameter screening and stability analysis, we computed some terms
analytically to make the process faster and more efficient. The stability at equilib-
rium points of the reduced dynamical system (Equations 2.1 and 2.2), is determined
by its Jacobian matrix (J4@, see below) and its eigenvalues.

P4@ =

(
−X� _�

'′(�) · ! (#) '(�) · !′(#)

)
(2.20)

Here, ! (#) = # (1 − #a).
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Note that in the operating range (0 < # < 1), ! (#) > 0 and !′(#) > 0; and at
any equilibrium points, 3#/3C = 0. Together with the explicit form of Equation
2.1, the points above leads to '(�) = 0 at equilibrium. Therefore, the eigenvalues
(_1 0=3 _2) of J4@ at equilibrium are the roots of the quadratic characteristic equa-
tion:

_ · (X� + _) − _� · '′ · !′ = 0 (2.21)

As noted above that !′ > 0, the sign of roots (eigenvalues _1 0=3 _2) can be solely
determined by the sign of '′. For '′ > 0, at least one of the eigenvalues has a real
part greater than zero, making the associated equilibrium point unstable. For If '′ >

0, we can deduce that the real parts of both eigenvalues are less than zero, making
the equilibrium point stable. Based on this analysis, we screened the equilibrium
points of the system and the corresponding sign of '′ to determine the stability and
type of each parameter set (Figure 2.9B-C).

Besides the five major behavior categories described above (Figure 2.9B, surround-
ing plots), a small but significant portion (0.68% of total) of conditions appearing
at the border between “permissive” and “paradoxical” types, could not be classi-
fied into any of the five types. To further investigate these cases we down-sampled
the space from 201 x 201 to 21 x 21 conditions and plotted all the six (0.62% or
total) unclassified curves, as well the permissive and paradoxical types next to this
region (Figure 2.10G; grey, pink, and light blue, respectively). Inspection of these
curves revealed a transitional behavior between permissive and paradoxical, with
the unusual equilibrium points caused by the nonlinearity of the introduced syner-
getic term. Note that the range of net growth rate of the system is around -0.09 0.04
defined by U, U − V� and U − V� . The net growth rates of these curves around the
unusual equilibrium points is significantly lower (-0.01 to 0.02), indicating those
points are unstable. Therefore, those curves’ dynamics, although not mathemati-
cally classified, will behave similarly to either permissive or paradoxical types.

Delayed blasticidin killing affects oscillations
To simulate the delay effect of blasticidin killing cells (Sato et al., 2012), we added
a time delay g to the blasticidin related growth function (Equation 2.17) at time C,
resulting in a delayed blasticidin growth term, � (�, �)C−g. We then replaced blasti-
cidin related growth term � (�, �) in Equation 2.19 with this new term with delay:
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'6 (�, �, �, g) = (U + V�) · � C−g − V − V� · �C − VBH= · [1 − � C−g] · �C (2.22)

In the above equation, we omitted the arguments of the growth functions for sim-
plicity (e.g. � (�, �)C is simplified to � C). Additionally, for simulations in Figure
2.10F and Movie S2 we assumed � C−g = �0;∀C < g. The results of this delay are
the oscillations shown in Figure 2.10F and Movie S2.

Captions for the movies

• Movie S1. Sender-Receiver-PIN2 cells escape after 15 days of continuous
culture. Available at: cell.com/cms/10.1016/j.cell.2022.01.026/
attachment/4d93513d-0e2b-4c05-915d-d9758e6a59fc/mmc2.mp4

Cells were seeded into a 24-well imaging plate with 50 μg/ml of blasticidin
solely (“Uncontrolled”) or with 100 μM IAM (“Population circuit on”) or IAA
(“Killing constitutive on”). Images of constitutively expressed NLS-citrine
were taken with a 20x inverted microscope once per hour.

• Movie S2. Numerical simulation reveals delay bifurcation between
damped and limit cycle oscillations. Available at: cell.com/cms/10.
1016/j.cell.2022.01.026/attachment/d5136ed3-b14b-4d23-959d-
b05fd2ddcc98/mmc3.mp4

This movie shows simulated dynamics of the paradoxical feedback model for
different values of the delay parameter, g. For each value of g, the simula-
tion shows two trajectories starting from different initial conditions. Note the
transition from damped to limit cycle oscillations between 42 and 54 hours.
Initial conditions were held fixed at a cell seeding density of 0.1 and auxin
concentration of 40 μM and 16 μM for trajectory 1 and trajectory 2, respec-
tively.

• Movie S3. Time-lapse imaging from Figure 5A reveals robust-
ness of the paradoxical population control architecture. Available
at: cell.com/cms/10.1016/j.cell.2022.01.026/attachment/
c8b7534d-3f50-47f9-b41c-7e952a8f3b7f/mmc4.mp4

10,000 cells were seeded per well into a 24-well imaging plate (Figure 2.11A),
with no control (100μMNAM; left), negative feedback (100 μMNAMand 50
μg/ml blasticidin; middle), or paradoxical feedback (100 μMNAM, 50 μg/ml
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blasticidin, and 50 nM AP1903; right). Images of constitutively expressed
mTagBFP2 were taken with a 20x inverted microscope every 4 hours, in a
6x6 grid, and stitched together. Bar=500micron. This movie is from movie
set 3.
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C h a p t e r 3

EPIGENETIC-BASED SYNTHETIC GENE REGULATION

3.1 Introduction
The field of synthetic epigenetics seeks to harness epigenetic regulatorymechanisms
to control gene expression on different timescales (Kungulovski and Jeltsch, 2016;
Nakamura et al., 2021). The inherent memory-like property of epigenetical expres-
sion regulation make it idea to create, or at least simulate, multiple cell types without
the required additional circuit designs to ”lock” the cells in a certain state (Gardner,
Cantor, and Collins, 2000; R. Zhu et al., 2022).

Regulation of gene silencing by DNA methylation in natural context
One particular type of synthetic regulation is utilizing DNA methylation to regulate
desired gene target. In natural mammalian context, DNA methylation occurs ex-
clusively at CG dinucleotides (CpGs) site, and plays critical roles in development,
tumor progression, and aging (Ehrlich, 2002; Greenberg and Bourc’his, 2019; Mc-
Cabe, Brandes, and Vertino, 2009; Smith and Meissner, 2013). These functions
result mainly from the ability of CpG methylation to induce and stabilize gene si-
lencing in mammals, through multiple mechanisms (Attwood, Yung, and Richard-
son, 2002; H. Zhu, G. Wang, and Qian, 2016). Control of DNA methylation and
further gene silencing depends on both trans-acting factors and the DNA sequence
itself. Trans-factors includemethylation “writers,” such as DNAmethyl-transferases
(DNMTs) (Lyko, 2018) and “erasers” such as TET1 (Morita et al., 2016) that estab-
lish and alter methylation marks, as well as “readers,” such as MeCP2 and histone
deacetylases (Choudhury et al., 2016) that link methylation to regulation of gene
transcription (Moore, T. Le, and Fan, 2013; H. Zhu, G. Wang, and Qian, 2016).

In mammals, DNA methylation occurs almost exclusively at CpGs, it has been un-
clear how the dynamics of gene silencing of these system depends on the DNA
sequence of the regulated target gene. Previously, various evidence that suggest
CpG content could play pivot role in gene regulated has been discovered in natural
context, at genome level. For example, regions with different CpG content exhibit
distinct methylation patterns (Lövkvist et al., 2016; Weber et al., 2007), potentially
due to cooperativity between nearby CpGs (Haerter et al., 2014; Bruno, Williams,
and Del Vecchio, 2022). High CpG-density regions (CpG islands) from a human
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chromosome largely maintain their methylation state when hosted in a transchromo-
somic mouse model (Long et al., 2016), suggesting that DNA sequence composition
plays a strong role in establishing stable methylation states. Conversely, insertion of
several hundred base pairs of CpG-free DNA can disrupt these patterns, permitting
de novo methylation of the surrounding CpG island (Takahashi et al., 2017). These
studies suggest that DNA sequence plays an important role in methylation.

However, the precise role of CpG sequence context can be difficult to discern at
natural loci, where regulation is also affected by many other cis- and trans-acting
factors, including cell-type specific methylation writer and reader profiles, neigh-
boring (non-CpG) motifs that recruit epigenetic modifiers, pre-existing chromatin
states, etc.

Synthetic gene silencing by DNMT recruitment
Recent work demonstrated the ability to regulate synthetic or endogenous gene ex-
pression by recruiting DNMTs to specific target genes (Bintu et al., 2016; X. S. Liu
et al., 2016; Nuñez et al., 2021; Van, Fujimori, and Bintu, 2021), and even create
fully synthetic DNA methylation based systems for synthetic epigenetic memory
(Park et al., 2019).

These synthetic systems grant us full control over the sequence of the regulated tar-
get, and timing of the DNMT recruitment, thus provide us a unique opportunity to
gain insight into how CpG content can affect the dynamics of the silencing. Addi-
tionally, understanding the effects of sequence composition on silencing rates could
provide insight into gene regulation by DNA methylation and also expand the syn-
thetic epigenetic toolbox, for fine tuning circuits.

In this chapter, we adapted a previously established DNMT recruitment system to
analyze the effects of DNA sequence on methylation-dependent silencing (Bintu et
al., 2016). We derived a library of promoters with different CpG densities from
a synthetic promoter and observed the relationship between CpG density and the
silencing dynamics occurring after DNMT recruitment (Figure 3.1). We also iden-
tified several specific CpG elements that appear to play disproportionate roles in
silencing dynamics and confirmed that one of them (near the TATA box and tran-
scription start site), causes significant changes in methylation dynamics. Our results
reveal how CpG density influences silencing dynamics, and provide a library of pro-
moters with different silencing rates for synthetic applications.
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Figure 3.1: rTetR fused DNMT3b catalytic domain methylate and silence a reporter
with of different CpG content upon recruitment.
Schematic of the synthetic methylation-silencing system: rTetR fused DNMT3bCD
is expressed constitutively, and upon induction of dox, recruited to the promoter
region of a site-specifically integrated Citrine reporter. The recruitment methylates
the promoter and further silences the gene expression, with dynamics depending on
the promoter’s CpG content.

3.2 Promoter CpG content regulates DNMT-dependent silencing dynamics
In this section, we will investigate how CpG content, or more specifically density,
on promoters can influence the rate of silencing when targeted by DNMT. We will
construct a library of promoter with different CpG density follow their silencing
dynamics inside a well controlled, fully synthetic, DNMT recruitment system.

Construction of a promoter library with varying CpG content
To investigate the relation between promoter CpG content, and its DNMT-dependent
silencing rate, we adopted a previously described synthetic methylation-silencing
system (Bintu et al., 2016). In this system, the catalytic domain of DNMT3b (named
DNMT3bCD) is fused with a reversed tetracycline repressor (rTetR), allowing pre-
cise temporal control of the recruitment to a target gene by adding doxycycline (dox)
to the culture media (Urlinger et al., 2000). The construct also incorporated a co-
expressed H2B-mCherry fluorescent protein fusion. We stably integrated this con-
struct using the piggyBac transposon system, and selected a single stable clone.
This enabled direct comparison of different promoters (see below) with the same
DNMT3bCD expression context.

As the target gene, we used an H2B-mCitrine (Zacharias et al., 2002) fluorescent
fusion protein. This target was driven by one of a set of promoters containing vary-
ing densities of CpG (see below). In each promoter, an array of 5 rTetR binding
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sites (TetO) was fused upstream of the promoter, allowing recruitment of rTetR-
DNMT3bCD (Figure 3.1). To enable direct comparison between target promoters
at the same genomic context, all reporter cassettes were site-specifically integrated
at single copy into a landing pad previously engineered within an artificial chromo-
some (S. Yamaguchi et al., 2011).

We constructed a library of synthetic promoters that differed in their CpG densities.
We started with a synthetic version of the human elongation factor 1α promoter
(pEF1s(orig), with 18% CpG density), a 544bp fusion of promoter fragments from
the human EF1α promoter and human T-cell virus (HTLV) (Argentova et al., 2017)
that has been commercially available (InvivoGen inc.) as well as used for antibody
expression and gene therapies (Fu et al., 2021; Oliveira et al., 2022). To identify
conserved CpG elements, we compared both the EF1α fragment and HTLV frag-
ments of this promoter to there natural orthologs, respectively (Sayers et al., 2022).
We then removed or added CG pairs into the promoter at non-conserved sites. With
this procedure, we generated promoters with varying CpG densities at 9.6% and
24% (pEF1s(low) and pEF1s(high), respectively, Figure 3.2, middle).

Next, to broaden the range of CpG densities, we designed an additional DNA seg-
ment, inserted upstream of the promoter, containing high (60%)CpGdensity (Figure
3.2, high CpG insert). We altered this CpG insert by swapping out CG with GC din-
ucleotides, or by replacing C with T, to create a lower CpG density (5.4%) insert,
while otherwise preserving its sequence similarity with the high CpG insert (Figure
3.2, low CpG insert). Altogether, we combined the three pEF1s promoters with the
two inserts, or with no insert, to produce a library of 7 sequences whose overall CpG
density ranged from 8.0% to 36% (Figure 3.2 right). Despite their variation in CpG
density, all 7 promoters drove strong expression of the fluorescent protein reporter
(Figure 3.3A and B).

DNMT-dependent silencing rate correlates with promoter CpG density
Previous analysis of silencing dynamics by DNA methylation in a similar system
revealed that silencing occurs through stochastic, all-or-none, irreversible events in
individual cells (Bintu et al., 2016). In order to assess the fraction of cells silenced
under different conditions, we used the unsilenced (actively expressing) expression
distribution to define a silencing threshold, set at 2 standard deviations below the
mean fluorescence levels of actively expressing cells (Figure 3.4A). Once silenced
by recruitment of DNMT3b, cells remained off for at least ten cell generations, as
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Figure 3.2: Design of the library of promoters with varying CpG content.
5x tandem TetO binding sites were fused with a insert (or no insert) and a pEF1s
synthetic promoter to make the library of the promoter. Red lines represent CpG
dinucleotides, and the pEF1s promoters are vertically aligned to show sequence ho-
mology.

previously described (Bintu et al., 2016) (Figure 3.3C).

To quantify silencing dynamics across the library, we analyzed the dynamics of silent
cell accumulation over a 25 day time course after addition of dox (Figure 3.4B,
right). The stability of the H2B-Citrine protein makes it challenging to capture the
dynamics occurring at a similar or faster scale compared to cell division (approx. 22
hours). Therefore, we repeated a similar time course for the four fastest promoters,
except that before analyzing cells, we cultured them for 2 additional days without
dox, allowing time for fluorescent protein levels to dilute out in transcriptionally
silent cells, and therefore better reflect the transcription state of the gene (Figure
3.4B, left). This procedure allowed us to quantify the fraction of silent cells for up
to 25d after dox addition.

The time-course dynamics for each promoter could be summarized by a stochastic
silencing rate. We defined this empirical silencing rate as the inverse of the time
required to silence 50% of the population (C−1

1/2). Silencing rates varied over nearly
an order of magnitude across promoters with various CpG densities (Figure 3.4C).
Further, the logarithm of the silencing rate correlated linearly with CpG density
over this range (Figure 3.4C). These results show that across varying CpG densities,
DNMT-dependent silencing dynamics are broadly consistent with a stochastic, all-
or-none silencing process, occurring at a rate that depends on CpG density.
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Figure 3.3: Generation of the cell line and their stability after silencing.
(A-B) Site-specific integration of the reporters generates cell populations with uni-
form expression after FACS sorting: Cells are transfected and selected with ge-
neticin for 14 days (A). And then subcloned (None-pEF1s(orig)) or FACS sorted
(all others) for further analysis (B).
(C) Cells that are silenced remain stably silenced: The silenced population were
taken from the end of time trace of Figure 3.4B, no release group (left). These cells
were further cultured for 17 days without recruitment (no dox) (right).

A phenomenological model explains the dependence of silencing rate on CpG
content
Next, to explore potential mechanisms for the control of silencing rate by CpG den-
sity, we constructed a phenomenological mathematical model. We assume that each
cell can be in either an active or a silent state. Under DNMT recruitment condi-
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Figure 3.4: Promoters’ silencing rate correlates tightly with their CpG content.
(A)Example of one time points’ flow data: Cells with reporters driven by the “None-
pEF1s(orig)” promoter were induced with dox (or no dox for control) for 10 days,
and analyzed by flow cytometry. The “log-Gaussian fit” is estimated by fitting data
higher than 400 FITC fluorescence A.U. with a Gaussian distribution, after logarith-
mic transformation.
(B) Time course of the silenced fraction of different promoters: For the long time
scale experiment (right), cells were treated with or without dox, and the fraction of
silencing is determined as described in A: cells with lower fluorescence than `−2f
of the no dox control groupwere determined as silenced. The silencing rate is further
normalized to the no dox group (Method, see section A.6). For the shorter time scale
(left), the same method is used except the flow cytometry analysis is performed two
days after the withdrawal of the dox.
(C) Summary of the silencing rates in B: The silencing rate C1/2−1 is the inverse of
time at which point 50% of the population got silenced. More specifically, the time
is derived from linear interpolation of the neighboring data points before and after
the 50% mark. If silencing rates of the cell lines is available in the faster scale plot
(B, left), it is used instead.
(D) Hypothesis of the two-step phenotypical model: In this model, DNA are methy-
lated first by the recruited DNMT3bCD at rate  ; . Subsequently the methylated
CpGs leads to gene silencing at rate V.
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tions, cells in the active state transition to the silent state at a rate V , whose value
can depend on the CpG density, 2, and the time since the start of DNMT recruit-
ment, C. With these assumptions the size of the active population fraction, �, can be
described by a simple differential equation:

3�

3C
= −V(2, C) · � (3.1)

Note that cell proliferation does not need to be explicitly incorporated due to the
heritability of the expression state.

To identify a minimal model capable of explaining the data, we first assumed that
the silencing rate V is time independent, and determined only by 2:

V(2, C) =  1(2) (3.2)

Empirically, this means the promoters’ silencing is not affected by the dox induction
history, and is a constant only determined by its own CpG content, 2. This model
fits (see supporting information) the behavior of the faster silencing (higher CpG
density) promoters. However, it failed to capture an initial delay in silencing of the
slower (lower CpG density) promoters (Figure 3.5A).

To account for the delay in silencing of lower CpG promoters, we next tried the
simplest time-dependent model, in which the silencing rate V grows linearly with
time:

V(2, C) =  2(2) · C (3.3)

In contrast to the time-independent model (Equation 3.2), this model fit slower pro-
moters, but overestimated silencing in the faster promoters (Figure 3.5B, Supple-
mentary text).

These results suggested a third model, in which time-dependent effects saturate at
higher silencing rates:

V(2, C) =  <0G ·  ; (2) · C
 <0G +  ; (2) · C

(3.4)

Here,  <0G represents the maximum silencing rate, which is approached when the
product  ; (2) · C is high. Critically, we assume  <0G is a constant independent of
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the CpG density, and therefore shared between different promoters, increasing the
total number of parameters across all promoters by one, from 7 (one for each of the
 (2) values) to 8. This model generally captured the dynamics of both the faster and
slower promoters (Figure 3.5C). However, some early dynamics of one intermediate
density promoter deviated significantly. The log of the parameters  ; (2) generally
correlated with c, similar to the empirically determined C1/2−1 (Figures 2D, S2D).
Taken together, these results provide a phenomenological parameterization of the
dependence of silencing dynamics on CpG density. To explain how this model (de-
scribed by Equation 3.4) could arise from underlying biochemical interactions, we
considered an underlying model in which the process of DNMT-silencing occurs
through two distinct steps (Figure 2D). First, recruitment of DNMT3b leads to slow
and independent methylation of individual CpG dinucleotides ( ; (2) · C), such that
the total rate of methylation is proportional to the number of unmethylated CpG
in the promoter proximal region. Second, transcriptional silencing occurs at a rate
that depends in a saturating manner on the total number of methylated CpGs in the
promoter. These assumptions provide a hypothesis for the empirical model.

3.3 Methylation-specific sequencing revealed accumulation of methylation
and a potentially significant CpG

In this section, we performed methylation specific sequencing (EM-Seq, NEB) to
test the model we proposed above. Additionally, the sequencing results also revealed
a specific CpG locating between TATA box and TSS, that can explain a significant
portion of the difference in silencing rate between promoters.

Methylation accumulates after DNMT recruitment
Themodel predicts a linear accumulation of methylation over time after dox addition
at a rate dependent on the CpG density of the promoter. To test this prediction, we
used FACS to isolate the transcriptionally active cell fraction (� in the model), at
different times after dox addition (Figure 3.6A). We then measured promoter CpG
methylation profiles using methylation specific sequencing (EM-seq, NEB. Vaisvila
et al., 2021) (Figure 3.6A).

As expected, we observed constant rates of methylation accumulation in the tran-
scriptionally active populations (Figure 3.6B). Contrary to the model, however, the
rate of methylation accumulation was independent of the CpG density of the pro-
moter. In fact, the rate of methylation per CpG was greater at promoters with lower
CpG densities (Figure 3.6A), but the total number of methylated CpG in the pro-
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Figure 3.5: Comparison of the different models.
(A-C) Fitting of the data using different models (described by Equation 3.2-3.4):
Data points are from the same set from Figure 3.4B, combined. All fitting is done
with the least square method (see SUPPORTING INFORMATION).
(D) Silencing rates from the fitting of the model in C are mostly consistent with
our experimental finding (Figure 3.4C). Fitting of  ; from C are plotted against the
promoters’ CpG content. Red line implies where  <0G is when divided by 1 day.
Note the  ;s of the promoter with highest CpG content is omitted here as it is over
105. This is likely due to the artifact of the fitting algorithm: As the initial empirical
rate (V(2, C)C=0) get closer to the maximum possible rate  <0G , the fitting static (sum
of the variations) became insensitive to the time dependent term ( ; (2) · C), as long
as it is big enough. So that the algorithm will try to increase its value for trivial gain
in the static for “infinitely fast” saturating kinetics.

moter region is similar across different promoters. This behavior is compatible with
saturation of methylation capacity of the locally recruited DNMT3bCD. Alterna-
tively, it could also reflect an effective interaction, in which unmethylated CpGs
inhibit methylation at nearby CpG sites (Haerter et al., 2014).
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Figure 3.6: Sequencing reveals the constant accumulation of methylation, and po-
tentially master CpGs.
(A) Schematics of the FACS-Sequencing experiment. Cells are treated with dox,
and then FACS-sorted to three bins based on the Citrine brightness (high, med and
low), consisting cells that are “still ON”, “recently silenced” and “long silenced”
respectively. The first two groups were analyzed bymethylation specific sequencing.
(B) Methylation accumulates with time in the “still ON” cell population, regardless
of promoter sequence: “still ON” populations are sorted out as indicated in A at
intended dates, and subsequently analyzed by methylation specific sequencing (EM-
seq), targeting the integrated gene promoter.
(C) CpGs around TATA-box and TSS (highlighted in green) show significant differ-
ence in methylation between the “still ON” and “recently silenced” group: Methy-
lation percentages of different samples at different days were pooled together for
comparison (a total of 10 from “still ON” vs. 6 from “recently silenced”. P-values
are from student t-test, and stars are given with the step-down multi-hypothesis cor-
rection (** corrected p<0.01; * corrected p<0.05).
(D) Mutation at CpG793 changes promoters’ silencing rate significantly: Quantifi-
cation of the silencing rate  ; of time course (Figure 3.6).  ; is estimated based on
the model described by Equation 3.4 (Supplementary text). Error bars are generated
by bootstrapping of the data points.
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Figure 3.7: Mutation on CpG793 change silencing rate significantly.
(A) Methylation rates (number of methylated CpG on each individual CpG accu-
mulate overtime, but are slower on CpG denser promoters. Same method as Figure
3.6B, except the y-axis is plotted as the number of methylated CpG over total CpG.
(B) Time course is performed similarly to Figure 3.4B. Error bar represents standard
deviation from bootstrapping of triplicates.

A single CpG partially explains differences in silencing rate
The apparent discrepancy between the CpG density-dependent silencing rate and
the density-independent methylation rate provoked the question of whether certain
individual CpGs might play disproportionate roles in controlling silencing. Such
CpGs would be expected to exhibit a significant difference between cell populations
containing active versus recently silenced promoters.

To discover such CpGs, we pooled all available sequencing results from different
days. Within the pEF1s region, where all three promoters overlap ( 90%of the pEF1s
region) (Figure 3.6C), we identified three CpGs with significantly different methy-
lation levels between the two expression groups (p<0.05, with step-down multi-
hypothesis correction Romano and Shaikh, 2006). Interestingly, two of the most
significant CpGs, including the top ranked one (CpG at position 793, or CpG793
for short), are located between the TATA box and the transcription start site (TSS)
(arrow in Figure 3.6C), consistent with previous reports suggesting functionally im-
portant CpG islands around the TSS (Fenouil et al., 2012). CpG793 was among the
CpGs that were eliminated in the construction of the low CpG pEF1s(low) promoter,
consistent with the lower silencing rate observed for this promoter (Figure 3.4B).
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To test for a functional role of CpG793, we mutated it to CpC in pEF1s(orig) and in
pEF1s(high). Conversely, we also reverted this position back to CpG in pEF1s(low),
where all 22 other CpGs including for CpG793 were mutated previously. Together,
these constructs provided a set of controlled comparisons in which position 793 was
either CC or CG in pEF1s(high), pEF1s(orig), and pEF1s(low) (Figure 3.6D, top).

We analyzed silencing rates for each of these promoters. These rates,  ; , were sig-
nificantly (p<0.01) lowered in all three “CC” variants of promoters, compared to the
CG variants (Figure 3.6D lower, and Figure 3.7B). Further, the CpG793 variant of
pEFs1(low) and the CpC793 variant of pEFs1(orig) exhibited similar silencing rates
despite differing systematically at 22 sites other than position 793. This suggests that
a single CpG position could compensate for 22 other mutations.

3.4 Conclusion and discussion
While effects of sequence on DNMT-dependent gene silencing have long been ob-
served, a controlled system in which to directly analyze the effects of sequence on
silencing has not been available. Here, we constructed a library of synthetic promot-
ers, featuring varying CpG content and DNMT-dependent silencing kinetics (Figure
3.1 and 3.2). Strikingly, silencing rate correlates directly with CpG content (Figure
3.4C). However, this correlation could not be explained by a corresponding effect
of CpG content on methylation, as methylation accumulated at similar rates in all
promoter variants (Figure 3.6B). Finally, we observed evidence that a certain CpG
(CpG793), located between the TATA box and the TSS, can play a disproportionate
role in control of silencing rate (Figure 3.6D). Together, these results should pro-
vide a versatile set of components for engineering synthetic epigenetic circuits with
desired silencing behaviors, as well as a foundation for future investigations of the
mechanisms of DNMT-dependent silencing. Finally, our observation that the DNA
sequence-based substrate of epigenetic modifications could alter the regulation dy-
namics, might also apply into fully synthetic epigenetic circuits (Park et al., 2019).

A remaining mystery is why the rate of methylation accumulation is not correlated
with the rate of silencing. One possible explanation is that silencing is affected by
sequence-dependent, but methylation-independent, processes. For example, RNA
secondary structure can induce silencing independent of DNAmethylation (Ajjugal,
Kolimi, and Rathinavelan, 2021). Modifying CpG content could also alter the bind-
ing of sequence specific DNA binding proteins and thereby affect silencing (Bird,
2002; Scala et al., 2020). It will also be interesting to see how these observations can
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be generalized to non-constitutive promoters that are naturally regulated bymethyla-
tion, especially since several previous reports suggested DNA methylation machin-
ery can have different effects on regulated and constitutive promoters (Blackledge,
Thomson, and Skene, 2013; Neri et al., 2013). Additionally, the sequencing results
obtained here indicate that methylation accumulation is remarkably independent of
CpG density (Figure 3.6B). This suggests possible saturation ofmethylation capacity
of the locally recruited DNMT3bCD. In the future, however, one could test satura-
tion of methylation capacity, by increasing the amount of local DNMT3b recruit-
ment. Furthermore, it will be interesting to see if the observations made here can be
extended to fully synthetic methylation-based gene regulation systems, both mam-
malian (Park et al., 2019) and bacterial (Maier, Möhrle, and Jeltsch, 2017). These
and other directions should help to understanding of how sequence and regulatory
proteins interact to control gene silencing, to enable predictive design of synthetic
epigenetic circuits.

3.5 Supplementary text
Tomore efficiently fit the observed time traces to the mathematical model, we solved
the first two proposed models analytically (time-independent V, and linearly time-
dependent V, described in Equation 3.2 and 3.3) before fitting. Specifically, by com-
bining Equation 3.1 and 3.2, we have:

3�

3C
= − 1(2) · � (3.5)

This can be solved by integrating the time-independent right hand part, with the
assumption that the cells are 100% in “ON” state at beginning �C=0 = 1. We have
the following for the time-independent rate model:

�(C) = 4− 1 (2)·C (3.6)

Similarly, the time-dependent model (described by Equation 3.3) can be solved to:

�(C) = 1
2
4− 2 (2)·C2 (3.7)

In Figures 3.5A and B, Equation 3.6 and 3.7 are used respectively to fit the ex-
perimental time traces (Figure 3.4B). Each trace of different genotypes are fitted
individually, resulting in 7  1(2)s and 7  2(2)s, respectively. For the model with
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the saturation relationship (Equation 3.4), since there is no analytical solution to the
model, we fitted the model with a single  <0G shared by all genotypes, and 7 in-
dependent  ; (2)s for each genotype. All data points are pooled together and fitted
with a least-square method (scipy package, Figure 3.5C and D).
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C h a p t e r 4

MULTICELLULAR CIRCUIT FOR IMMUNOTHERAPIES

4.1 Introduction
Engineered cell therapies represent one of themost exciting frontiers of biomedicine.
In current cell-based immunotherapy, patient immune cells are isolated, stimulated,
expanded, genetically modified to express synthetic receptors (e.g. chimeric antigen
receptor, or CAR), and then reintroduced into patients, where they can kill targeted
cell populations, such as tumors (Feldman et al., 2015; Rohaan, Wilgenhof, and
Haanen, 2019). Currently, even the most successful cell therapies (Ramos, Heslop,
and Brenner, 2016) focus on engineering a single modified cell type. By contrast,
the natural immune system typically uses an army of specialized cell types that reg-
ulate one another’s activity, proliferation, and death with great temporal and spatial
precision. Here we ask whether a similar principle of multicellular specialization
could enhance engineered cell therapy.

Here we propose a multicellular circuit consisting of 1) macrophages specialized to
detect tumor cells (”Seekers”) and 2) T-cells bearing auxin-activatable chimeric anti-
gen receptors (CARs) that could kill cells when activated (”Killers”). More specif-
ically, the Seeker cell will release auxin upon detection of tumor antigens and label
the region, while the Killers only activate in the labeled tumor region. This first-
of-its-kind multicellular circuit design should provide key advantages over single
cell-type designs, including specialization of cell function, and reduced off-site cy-
totoxicity and T-cell exhaustion. More generally, it should demonstrate the potential
of multi-cell type strategies for cell therapy.

More specifically, we will prototype our circuit based on the regime where the
macrophage seekers will ”seek” EGFRvIII and produce auxin to locally activate
CAR bearing T cells for killing of Her2 positive cells (Figure 4.1). We chose
EGFRvIII as our target for seeker, because it is a neoantigen that are only expressed
by tumor cells, but is hard to target directly as tumor cells with lower or no EGFRvIII
expression escapes (An et al., 2018). While Her2 is highly expressed by several types
of tumor cells (including in breast cancer, lung cancer, etc. (Oh and Bang, 2020)), it
is also broadly expressed by healthy epithelial cells. This makes Her2 dangerous for
targeting systemically with high affinity antibody or CARs. With our multicellular
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design, we hope to demonstrate that we can eliminate a Her2 positive tumors, with
sparse expression of EGFRvIII, while not affecting Her2 cells elsewhere.

In the following sections, we will present advances of this ongoing project, demon-
strating the auxin can be produced and sensed by engineered immune cells, and can
locally label a tumor in mouse model.

Figure 4.1: Seeker-Killer multicellular circuit for spatially localized tumor elimina-
tion.
Seeker (monocyte or macrophage) express a SNIPR synthetic receptor that can de-
tect tumor specific EGFRvIII antigen, and produce auxin to label the region upon
engagement. Then the auxin will activate the Killers (CAR bearing T-cells) for elim-
ination of Her2 positive cells without EGFRvIII expression.

4.2 Auxin is produced and sensed by immune cells
To demonstrate that the auxin cell-cell communication system can be implemented
in immune cells, we first implemented both the auxin sending and receiving com-
ponents into cell lines derived from lymphocytes.

THP-1 cells produce auxin upon detection of cancer specific antigen
To construct the seeker, we start with THP-1 monocyte cells as they are easy to en-
gineer and can be induced to differentiate to macrophages (Daigneault et al., 2010).
We first test if THP-1 seekers with constitutively expressed auxin synthesis cassette,
consisting of the two enzymes, iaaM and iaaH (Figure 4.2A), can produce auxin.
Additional to the original construct, we designed a new optimized version with re-
arranged gene order (Figure 4.2B). The rearranged gene order should allow higher
expression of the two proteins, as the T2A peptide is known to decrease translation
efficiency of the downstream gene (Z. Liu et al., 2017).

The auxin production was measured by coculturing the senders with CHO receivers
(Figure 2.2). As expected, both the original and optimized cassette drove the produc-
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tion of auxin, as they decrease the mCherry in the receivers cells in a cell number-
dependent manner (Figure 4.2C). Notably, our optimized cassette produced auxin at
a similar level in THP-1 cells to the CHO senders from the original publication.

Figure 4.2: THP-1 cells produces auxin with optimized auxin synthesis module.
(A) Schematic of the auxin synthesis pathway, same as Figure 2.3A.
(B) The auxin synthesis plasmid is optimized by rearranging the component position
on the transcribed mRNA. The expressions are all driven by a constitutive pEF1α
promoter.
(C) CHO senders with the original synthesis module (from Ma et al., 2022), and
THP-1 senders integrated with both the original and optimized module via lentiviral
transduction are coculuted with CHO receivers (fromMa et al., 2022 with additional
mTagBFP2 labeling). Sender cells are seeded with 3x titration series starting from
10,000 cell per well. Both senders and receivers are assayed by flowcytometry after
4 days, and are differentiated via BFP brightness in analysis.

THP-1 seekers produce auxin upon tumor specific antigen recognition
To construct seekers that could release auxin in response to detection of tumor spe-
cific antigen, we adopted the SNIPR receptor system (I. Zhu et al., 2022) with sin-
gle chain antibody against EGFRvIII (R. A. Morgan et al., 2012) as extracellular
domain. The EGFRvIII-recognizing SNIPR receptor will release Gal4-VP16 fusion
transcriptional factor into the nucleus, inducing the expression of genes driven by a
UAS fused minimal promoter (Figure 4.3A). We chose EGFRvIII as our target as it
is a neoantigen that is only expressed by tumor cells, but is hard to target directly as
tumor cells with lower or no EGFRvIII expression escape (An et al., 2018). We also
engineered SKOV3 cells, a tumorigenic cancer cell line to express EGFRvIII as a
target.
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The THP-1 seeker cells successfully detected the EGFRvIII target and expressed
the auxin cassette when cultured with target cells (Figure 4.3B and C). More impor-
tantly, the seeker cells produce a significant amount of auxin with the target cells
(Figure 4.3D).

Auxin regulates CAR activity in Jurkat cells
For prototyping the killer circuit, we adopted a Jurkat cell (T-cell lymphoma-based
cell line) based assay (Bloemberg et al., 2020). In order to make auxin able to ac-
tivate CAR activity, we modified a 2nd generation CAR against Her2 (X. Liu et
al., 2015), a tumor associated antigen expressed on SKOV3 cells. We fused a TEV
protease cleavage site (tevcs) between the co-stimulation domain (4-1BB), and ef-
fective domain (CD3ζ). With this modification, the CAR should be rendered non-
functional with the presence of TEV protease (TEVp). The TEVp is then tagged
with AID, making it degradable with the presence of auxin. Therefore the CAR
functionality will be activated when the cells sense auxin (Figure 4.4A). We inte-
grated these components, together with the osTIR1 auxin receptor into Jurkat cell
via lentiviral transduction, co-incubated the engineered cells with SKOV3 cells, and
stained for the early T-cell activation mark CD69 (Figure 4.4B). We demonstrated
that the CAR activity is almost suppressed to basal level with the TEV strategy, and
can be recovered when auxin is added.

4.3 Auxin labels tumor locally in vivo
Another critical question about this system is whether auxin can label a tumor lo-
cally, or it defuses too fast and becomes a global signal inside an animal. To test
this, we take advantage of the tumorigenic capability of CHO cells used in Chapter
2. More specifically, we took the full sender-receivers (Figure 2.3C) and receivers
(Figure 2.4E, with additional label of mTagBFP2 expression), and implemented the
mixture of the two subcutaneously into one flank of immuno-compromised NSG
mouse and let it form a tumor (the proximal side). Simultaneously we implemented
a receiver-only tumor on the other flank of the same mouse (the distal side) (Figure
4.5A). After about two week (exact time depends on the humane endpoint criteria),
tumors are dissected out and assayed by flowcytometry. If the auxin signal is local,
we should see only the proximal receivers showing down-regulatedmCherry fluores-
cence. Indeed, we observed pair-wise, significant down-regulation of the mCherry
only in the proximal side, and the distal receivers shows almost identical mCherry
to that of receivers in the mouse without implemented senders (Figure 4.5B).
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Figure 4.3: THP-1 seekers produce auxin upon tumor specific antigen recognition.
(A) Schematic of the SNIPR system. The SNIPR receptor detects surface expres-
sion EGFRvIII and release a Gal4-VP16 fusion transcriptional activator, triggering
expression of auxin synthesis pathway.
(B) THP-1 seekers express citrine when coculture with EGFRvIII+ targets. THP-
1 seeker cells coculutred with mixtures of two type of SKOV3 cells, that express
either a control plasmid (mTagBFP2, blue), or EGFRvIII (mScarlet, red). Cells
were imaged after 5 days of or coculture. Numbers on the upper left corner of each
image indicate the percentage of EGFRvIII+ SKOV3 cells. Note the second image
(from the right) is specially selected as most field of view of that group does not have
EGFRvIII positive (red) cells. Initial effector (Seeker) to target (SKOV3) seeding
ratio = 1:5. BAR = 100 micron.
(C) THP-1 seekers express citrine when cocultured with EGFRvIII+ target cells.
Same setup as (B) except the cells were assayed by flowcytometry at the end.
(D) THP-1 seekers produced when cocultured with EGFRvIII+ target cells. Condi-
tioned media was collected at the end of experiment (same setup as (B) and (C)),
and diluted by 2x and applied to receiver CHO cells. A parallel experiment with re-
ceivers cultured with different auxin (IAA) was performed to calculated the standard
curve, which is used for back-calculating the IAA concentration in the conditioned
media. n = 3.

The above result demonstrated that auxin senders, when spatially restricted, can sig-
nal to their immediately neighboring cells, but not distal cells on the whole organism
level.
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Figure 4.4: Auxin regulate CAR activity in Jurkat cells.
(A) Schematic of the auxin-TEVp regulated CAR. The left shows the regular 2nd
generation CAR, consisting of a external antigen recognation domain (anti-her2
scFv), a co-stimulation domain (4-1BB) and a effector domain (CD3ζ). The right
shows auxin regulated CAR, inwhich a TEVprotease cleavage site (tevcs) is inserted
between 4-1BB and CD3ζ. The auxin-regulated CAR is rendered non-functional
with the presence of TEV protease (TEVp), which is degraded by auxin.
(B) Jurkat cell bearing the auxin-TEV regulated CAR is cultivatable by auxin. Jurkat
cells that express the CAR, TEVp-AID and osTIR1 via lentiviral transduction are
co-incubated with SKOV3 cells, and are stained for surface CD69 expression after
48 hours. Mismatched CAR recognize CD19, which is absent on target cells.

4.4 Conclusion and future directions
Our results above have demonstrated that we could implement both the auxin send-
ing and receiving machinery into immune related cell types, and wire them to reg-
ulate related functions. Further experiments are needed to realize the full potential
of this multicellular circuit.

Demonstration of auxin regulated killing in primary T-cells
The auxin regulated CAR system can be directly implemented and test in T-cell
killing assay. Though Jurkat cells are derived from T-cell lymphoma, they do not
have cytotoxicity against target cells, partially also due to they are more similar to
CD4 T-cells. Furthermore, even in primary T-cell, early activation marker CD69
expression does not necessarily correlated with killing capacity (Bloemberg et al.,
2020). Critically, engineered primary T-cells can be used for further in vivo testing
in NSG mice with xenografted tumors, as a well-established model (see Choe et al.,
2021; I. Zhu et al., 2022 etc.).
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Figure 4.5: Auxin labels tumor locally in vivo.
(A) Schematic of the in vivo experiment. CHO sender-receivers (citrine labeled)
and pure receivers (mTagBFP labeled) are mixed in 1:10 ratio, and then injected
subcutaneously on one (proximal) flank of NSG mouse, while pure receivers were
injected on the other (distal) flank. 5 million cells in total are injected on each flank.
Another group of mice received only the distal flank injection as control.
(B) Mice were sacrificed upon humane endpoint, and tumors were dissected out
for downstream analysis. The tumors were first homogenized by incubation with
collagenase (2 mg/ml) and DNase I (0.1 mg/ml), and analyzed by flowcytometry. In
flowcytometry analysis, We always gated on the mTagBFP2 high population for the
receiver.

In vitro and in vivo demonstration of the circuit
The multicellular circuit needs to be tested in vitro first. In vitro test can be per-
formed by co-incubation of seekers, killers (Jurkat or primary T cell based) and tar-
get cells with different EGFRvIII expression sparsity (similarly to Figures 4.3 and
4.4). The in vitro experiment should provide important info about how sparse can
our seeker detect EGFRvIII bearing cells, and what is the optimal ratio (or absolute
number) between seeker and killer. It is also interesting to see if we can induce the
differentiation of THP-1 cells to macrophages effectively and also retain our circuit
functionality.

In vivo experiments should be carried similarly to established CAR-T testing against
xenografted tumor in mice. Initially, the seeker will be co-injected with the tumor
as there is no active seeking component (more discussed below). However, it would
also be interesting to see if the monocyte cells, or differentiated macrophages can
”seek” the tumor naturally.
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Engineering the seeker function into primary macrophage
Our approach majorly focuses on engineering immortalized monocytes, due to the
fact that the more clinically relevant PBMC derived monocytes and macrophages
cannot be engineered effectively. However, recent studies have shown advances in
this field, either by using a specially designed adenovirus (N. R. Anderson et al.,
2021), or by engineering iPSCs and differentiating them into macrophages (Zhang
et al., 2020). It would be interesting to see if we can use the same the strategy to
engineer our seekers.

Engineering active seeking mechanism
Another missing part of our circuit is that our seekers are not engineered to be
”tumor-homing.” Though in our design, the auxin is not produced until the detection
of the cancer specific target, preventing ”leaking” of auxin at off-tumor places, we
still might face challenges in getting enough seeker cells into the tumor. Two po-
tential strategies can be applied here: 1) Promoting macrophage proliferation after
the engagement of the target. Though this is technically different from homing, an
inplace proliferation can also enrich the macrophage number on the tumor site. This
can potentially be achieve by expressing the macrophage survival factors (e.g. CSF-
1 or its receptor, Hume and MacDonald, 2012). 2) Implementation of active seek-
ing receptors. Previous studies have employed similar strategies such as expressing
chemotaxis-enabling chemokine receptor (Craddock et al., 2010), or by expressing
synthetic receptors that change the surface adhesive property of the seekers (Stevens
et al., 2022).
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C h a p t e r 5

CONCLUSIONS AND DISCUSSIONS

In this thesis, I presented an auxin-based diffusive signaling module for mammalian
cell-cell communication and based on this communication module, we achieved
quorum-sensing, as well as robust population control in mammalian cells. We also
demonstrated a DNA methylation-based, tunable gene switch that can be fine tuned
by changing promoter CpG density and potentially drive stable cell-type switching
and differentiation. Finally, I presented our ongoing effort on constructing auxin-
based multicellular circuit in immune cells, demonstrating the potential of multicel-
lular circuits in clinically relevant applications.

In this chapter, I will further discuss the potentials of using these components for
multicellular circuits, and remaining biological questions about our discoveries.

5.1 Potential applications of the auxin communication module in synthetic
development biology

Besides applications in immunotherapies (demonstrated in Chapter 4), the auxin
communication system opens up the possibility of engineering other more complex
multicellular circuits for developmental biology. For example, to record the relative
distance between two groups of cells, one could engineer receivers that permanently
activate in response to auxin secreted by a second cell type. Alternatively, one could
take advantage of the two-step nature of auxin biosynthesis (Figure 2.3) by separat-
ing the steps into distinct cells, thereby enabling a proximity-dependent ”AND gate”,
that enables recording of three cell groups’ proximity information simultaneously.

More complex circuits for synthetic development could be achieved by combining
the auxin with additional diffusible or contact dependent, orthogonal signals, as well
as other synthetic gene circuit. This approach could enable synthetic bidirectional
signaling (X. Zhou et al., 2018) or even Turing-like spatial pattern formation (Turing,
1990). Another possibility is to construct a synthetic segmentation clock circuit, as
described in section 1.1. In natural context, segmentation clock is driven by a com-
bination of gene oscillation, contact-dependent signaling, moving gradients formed
by diffusive signals, and cell type determination (differentiation). With the auxin
cell-cell communication module presented here, we now have synthetic version of
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all the modules mentioned above, including gene oscillator (Tigges et al., 2009),
synthetic surface receptor (SynNotch and SNIPR (Morsut et al., 2016; I. Zhu et al.,
2022)), and various modules to define cell states with memory. It would be inter-
esting to understand the fundamental mechanisms of segmentation by constructed a
synthetic circuit with these components ”from bottom-up”.

5.2 Other molecules potentially serve as additional communication channels
Natural circuits (e.g. immune system (Boyman and Sprent, 2012)) rarely use only
one channel for communications between cells. In fact, even a simple two-cell cir-
cuit for maintaining cell type ratio and population size requires a two-signal, bidi-
rectional communication (X. Zhou et al., 2018). Therefore, it is critical to develop
additional synthetic and orthogonal signal modules in mammalian system. Candi-
date molecules for additional channels include the plant hormones abscisic acid and
gibberellin, both of which have partiallymapped biosynthetic pathways (Mashiguchi
et al., 2011; Finkelstein, 2013; Early and Martin, 1990) and were previously engi-
neered to induce protein-protein interactions, enabling them to regulate transcrip-
tion or protein localization in mammalian cells (Liang, Ho, and Crabtree, 2011;
Miyamoto et al., 2012). The plant IP-CRE1 cytokinin system, which has been suc-
cessfully ported to yeast, uses a plant-specific hormone as a diffusible signal to in-
duce phosphorylation and further transcriptional activation, providing an additional
potential signaling system (M.-T. Chen and Weiss, 2005). Bacterial autoinducers
and synthetic proteins also provide attractive candidates for additional orthogonal
signaling channels (Daringer et al., 2014; Morsut et al., 2016; Hong et al., 2012).

5.3 Remaining questions about how CpG density regulate silencing rate
Our methylation specific sequencing results (Figure 3.4B) demonstrated that regard-
less of the CpG densities on the promoter, the speed of CpG methylation (measured
by total methylation) seems to be similar among promoters. Even more puzzling
part is that, methylation rates, measured by methylation normalized to CpG num-
ber, are anti-correlated with promoter CpG density (Figure 3.7A). Considering the
CpG density is tightly correlated with silencing speeds (Figure 3.4), the above ob-
servation provokes the question why we observed different silencing speeds when
the underlying methylation are the same, or sometime suggests the opposite.

Here we will discuss the following possible explanations that can be further ex-
plored:
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• The change of sequence by adding or removing CpGs could alter the tran-
scription factors’ (TFs) binding motifs. These changes on binding motif could
have changed the composition of factors surrounding the promoter, and fur-
ther change how CpG methylation silence the promoter. To test this hypoth-
esis, one could query the surrounding sequences of each altered CpG against
known TF bindingmotifs and ask if the change of CpGwill disrupt existing, or
introduce new motifs. However, this requires a high throughput approach, as
most knownmotifs are defined as a short (normally 5 to 8 base pair) consensus
sequence with ambiguous nucleotides (commonly defined as position prob-
ability matrix) (Castro-Mondragon et al., 2022). Due to this ambiguity, any
sequence that is longer than several hundreds base pairs will likely have hun-
dreds of potential known TF binding sites. Indeed, comparison between our
modified promoters in the CIS-BP database (Weirauch et al., 2014) identified
around one hundred binding motifs that are potentially altered (109 between
pEF1s-Orig and pEF1s-Low; 99 between pEF1s-Orig and pEF1s-High). To
fully delineate which TF binding motif is responsive for the difference in si-
lencing speed we observed, a screening in the lists are likely to be needed.

• DNMT3b-CD we recruited to the promoter can silenced the gene through a
methylation independent, but CpG dependent pathway. It is well documented
that the protein DNMT3b, even with its catalytic domain deactivated, has sig-
nificant function in regulating epigenetics and thus gene expression through
its protein and heterochromatin interacting domain (Nowialis et al., 2019).
Though we specifically used the ”catalytic domain” version of the DNMT3b
in this study, the ATRX domain that are shown to be associated with hete-
rochromatin (T. Chen, Tsujimoto, and E. Li, 2004) still remains in this ver-
sion. To further distinguish between methylation dependent and independent
effect, one could use a catalytic inactivated version of DNMT3b as control.

• Besides alternating TF motifs, adding CpGs also create artificial CpG islands
in and around the promoter, and CpG islands (regardless of methylated or not)
can recruit TFs or epigenetic moderators. Though proteins that binds to un-
methylated CpG islands are commonly considered to be associated with gene
activation (Yin et al., 2017; Thomson et al., 2010), it is possible that the addi-
tional CpG island we introduced can recruit other proteins that are insensitive
tomethylation, and regulate gene silencing subsequently. For example, Tet1, a
known protein that bind to CpG rich region but are insensitive to methylation,
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can both maintain hypomethylation of a promoter (activating role), as well as
interact with polycomb repressive complex 2 (PRC2) to induce gene silenc-
ing (H. Wu et al., 2011). Another similar example is KDM2B, that binds to
CpG islands and recruit polycomb repressive complex 1 (PRC1), potentially
inducing gene silencing (Farcas et al., 2012).

• Phenotypically, our finding is also very similar to the genetic mechanism of
fragile X syndrome (FRX), in which an increased CGG repeat number up-
stream of the promoter leads to the abnormal hypermethylation and gene
silencing during development (Garber, Visootsak, and Warren, 2008). The
exact molecular mechanism leading to silencing in FRX is not yet fully un-
derstood, but various hypothesis, including toxic secondary RNA structure
(Ajjugal, Kolimi, and Rathinavelan, 2021) and aberrant histone deacetylation
(Coffee et al., 1999) has been proposed. It will be interesting to cross compare
the promoters and inserts we created in this study to the promoter involved in
FRX, and investigate if there is any similarity.

We also want to note that it is very likely that the above proposed hypothesises are
not mutually exclusive, as ”interplay” between epigenetic marks and factors is very
common (Atlasi and Stunnenberg, 2017). Therefore to solve this mystery, multiple
aspects of the system, including but not limited to histone modification, TF interac-
tion with specific DNA sequence, RNA secondary structure and post-transcriptional
modifications might be required to be investigated further.
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A p p e n d i x A

EXPERIMENTAL AND ANALYSIS METHODS IN THIS THESIS

A.1 Cell line handling and plasmid construction
Tissue culture and cell lines
CHO-K1 (Hamster cells, ATCC Catalog No. CCL-61) cells and their derivatives
were grown on tissue culture grade plastic plates in Alpha MEM Earle’s Salts, sup-
plemented with 10% Tet System Approved FBS (ClonTech, or VWR), 100 U/ml
penicillin, 100 μg/ml streptomycin, 0.292 mg/ml L-glutamine (GIBCO) or 1x Glu-
taMax (GIBCO). The complete media is filtered with 0.22 micron filters.

SKOV3 (ATCC Catlog No. HTB-77) cells are cultured in McCoy’s 5A media
(ThermoFisher), supplemented with 10% Tet System Approved FBS (ClonTech,
or VWR), 100 U/ml penicillin, 100 μg/ml streptomycin, 0.292 mg/ml L-glutamine
(GIBCO) or 1x GlutaMax (GIBCO). The complete media is filtered with 0.22 mi-
cron filters.

Both Jurkat (ATCC Catlog No. TIB-152) and THP-1 (ATCC Catlog No. TIB-202)
cells are cultured in RPMI-1640 media (ThermoFisher, or ATCC), supplemented
with 10% Tet System Approved FBS (ClonTech, or VWR), 100 U/ml penicillin, 100
μg/ml streptomycin, 0.292 mg/ml L-glutamine (GIBCO) or 1x GlutaMax (GIBCO),
and 0.05 mM 2-mercaptoethanol. The complete media is filtered with 0.22 micron
filters.

293FT (Thermofisher Catlog No. R70007) cells for lentiviral production are cul-
tured in DMEM media (ThermoFisher), supplemented with 10% Tet System Ap-
proved FBS (ClonTech, or VWR), 100 U/ml penicillin, 100 μg/ml streptomycin,
1x NEAA (GIBCO Cat # 11140076), 1 mM sodium pyruvate, and 0.292 mg/ml
L-glutamine (GIBCO) or 1x GlutaMax (GIBCO).

All cells above a maintained and passaged according to manufacture’s instruction
unless specified otherwise.

For long-term culturing demonstrated in chapter 2.3, cells were seeded in 24-well
TC-treated plates (total media 500 μL per well) with imaging-grade plastic bottoms
(ibidi inc. # 82406), andmediawas changed every 12 hours with one of the following
methods:
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• Adding and mixing 200 μL fresh media into the well, taking out the media,
and putting back 500 μL (movie set 1 in Figure 2.11)

• Taking out the media. Centrifuge at around 2000 xg is applied for the old
media to remove floating cells. Add back 350 μL and add 150 μL of fresh
media (movie sets 2 and 3 in Figure 2.11)

Both methods simulate a media refreshing rate of 0.693/day (equivalent to media
half-life = 1 day).

For the co-culturing experiments in Chapter 4 between THP-1, CHO, and SKOV3
cells, we use a mixture (1:1) of media of the involved cell types. For coculturing
Jurkat and SKOV3 cells, Jurkat cell media is used.

Lentivirus production
To produce lentivirus for tranducing Jurkat, THP-1 and SKOV3 cells, we used the
ViraPower system (Invitrogen Cat # K497500). More specifically, we followed the
”Forward Transfection Procedure” in the manual, except virus are either produced in
T75 flasks instead of 10 cm dishes suggested in the manual due to our lab’s biosafty
regulation. We also produced virus in T25 flasks. In that case, everything is scaled
down to 1/3 of protocol for T75/10 cm protocol.

For transducing THP-1 cells, an additional step of concentrating the virus is added
after the virus production. We used the lenti-X kit (Takara Bio, Cat # 631232), and
concentrated the virus 5 folds. The final concentrated virus was re-suspended in
complent THP-1 medea described above.

Cell line engineering via lipofection
To create each stable cell line for CHO cells, the following steps were used: 1) Cells
were first transfected with 800-1000 ng of plasmid DNA using Lipofectamine 2000
or Lipofectamine LTX according to manufacturer’s instructions. 2) 24-48 hours
later, cells were transferred to selection media containing antibiotics (see below) as
appropriate for 1-2 weeks. 3) If needed, single clones were isolated through the
technique of limiting dilution.

For piggyBac constructs, the initial transfection consisted of the target plasmid along
with the construct expressing the piggyBac transposase in a 1:4 mass ratio.

For integration of the reporters in Chapter 3, methods similar to previous literature
(Bintu et al., 2016) were used. Briefly, we co-transfected 600 ng reporter plasmid
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and 200 ng PhiC31 integrase plasmid using the method above.

Antibiotic concentration for selection media: Blasticidin 10-50 ng/ml; Geneticin
400 ng/ml

Cell line engineering via lentivirus
To establish stable cell lines via lentiviral transduction, 50k cells are seeded in 24
well plate, together with 400 μL of fresh media, 400 μL of media containing virus
(see above) and polybrene (0.8 μg/ml final concentration, Sigma, Cat # TR-1003).
Cells were incubated for 24 hours and put into fresh media after. For transduction
with two virus, 200 μL of media with each virus is added.

THP-1 seeker cells are established by the viral transduction described above, and
then sorted for positive citrine expression after coculture with EGFRvIII positive
SKOV3 cell (labeled with mScarlet). After 96 to 120 hours of culculture, cells are
harvested and sorted for mScarlt negative, Citrine positive. Sorted cells are then
cultured and passaged for at least a week for resting before used for downstream
assays.

Conditioned media
The process is described in Figure 2.4C. Cells were first seeded at about 20% con-
fluence with fresh media for conditioning, and cultured for 2 days. The supernatant
was collected as “conditioned media,” and further filtered with 0.22 micron filter
or centrifuged at 300 g for 3 minutes to remove any remaining cells. The condi-
tioned media was then combined with fresh culture media at 1:1 ratio, and applied
to receiving cells.

Plasmid construction
All plasmids are constructed using standard cloning techniques, including Gibson
Assembly (NEB, Gibson et al., 2009) and GoldenGate Assembly (NEB, Engler,
Kandzia, and Marillonnet, 2008). The plasmids and their maps are available by
requests at Addgene (see Chapter B).

mAID and osTIR1 coding sequences were amplified from Addgene plasmids
#72827 and #72834 (Natsume et al., 2016). iCasp9 coding sequence was ampli-
fied from addgene #15567 (Straathof et al., 2005). PIN2, mGFP, and iaaM coding
sequences (CDS) were codon optimized for expressing in mice and synthesized as
dsDNA at Integrated DNA Technology together with all oligos for cloning. Coding
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sequences for screening indole-3-hydrolases were synthesized as cloning plasmid at
Twist Bioscience.

A.2 Flowcytometry and FACS
Flowcytometry
Cells are washedwith DPBS (GIBCO) first and then trypsinized with 0.25% trypsin-
EDTA (GIBCO) for 1 minute at room temperature. The mixture was then neutral-
ized by culture media and cells were resuspended in Hank’s Balanced Salt Solution
(GIBCO) with 2.5 mg/ml Bovine Serum Albumin (BSA). Cells were then filtered
through a 40 μm cell strainer (Falcon) and analyzed by flow cytometry (MACSQuant
VYB, Miltenyi or CytoFLEX, Beckman Coulter).

Analysis of data is done with the open source, in-house developed software,
EasyFlow (github.com/AntebiLab/easyflow) or EasyFlowQ (github.com/
ym3141/EasyFlowQ).

For counting cells, 1000 CountBright beads (Life Technologies) were spiked into
the sample before filtering, gated out by their fluorescence in analysis, and used to
estimate cell number in each sample.

FACS
For sorting in Chapter 2 and 3, FACSwas performedwith SY3200Cell Sorter (Sony)
at Caltech FLow Cytometry Facility.

For sorting in Chapter 4, cells were sorted on Sony MA900. Briefly, cells were
collected by centrifuging at 500 g for 5 minutes, and are resuspended in Hank’s
Balanced Salt Solution (GIBCO) with 1% FBS. Cells were then filtered through a
40 μm cell strainer (Falcon) before sorting. THP-cells were sorted with chips with
130 μm nozzle and standard laser/filter configuration, and subsequently collected in
full media.

A.3 Imaging setup and analysis
General imaging setup
For imaging experiments, cells were seeded at 24 or 96-well TC-treated plates with
imaging grade plastic bottoms (ibidi inc.), as described above. For imaging in Figure
4.3B, media was replaced by FluoroBrite DMEM (Thermofisher, Cat # A1896701)
right before imaging.

Snapshots were acquired on either 1) the EVOS imaging system (ThermoFisher)
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with the EVOSAMG 4x objective (0.13 NA), or a 10x olympus objective (0.30 NA),
with the system’s default auto-scanning function; 2) the Olympus IX81 fluorescence
microscope described below, but without the climate control system.

Time-lapse imaging
Time-lapse images were acquired on an inverted Olympus IX81 fluorescence mi-
croscope with Zero Drift Control (ZDC), an ASI 2000XY automated stage, iKon-M
CCD camera (Andor, Belfast, NIR), and a 20x olympus objective (0.70 NA). Fluo-
rophores were excitedwith anX-Cite XLED1 light source (LumenDynamics). Cells
were kept in a custom-made environmental chamber enclosing the microscope, with
humidified 5%CO2flow at 37°C.Microscope and image acquisitionwere controlled
by Metamorph software (Molecular Devices).

For results in Figure 2.11, 12, 25, and 36 positions (about 665um x 665um each)
were imaged in each sample, for movie set 1, 2, and 3, respectively. For movie set 1,
12 imaging positions are distributed on a 3x4 grid with 3.5mm intervals. For movie
sets 2 and 3, the positions are distributed in a 5x5 or 6x6 grid with 600μm intervals,
and later stitched using Fiji’s stitching plugin (Preibisch, Saalfeld, and Tomancak,
2009). Image of each position is acquired every hour for movie set 1, and every four
hours for movie sets 2 and 3. Figure 2.7A were imaged with the same method as
movie set 1.

Long-range gradient and analysis
For Figure 2.4, silicone-based inserts (ibidi inc. #80269) were first attached to the
bottom of TC-treated 6cm dishes. Sender-receiver cells were seeded inside the in-
serts and allowed to settle down for 2 hours. The inserts are removed and the whole
dish is washed with PBS twice to remove non-attached Sender-Receiver cells. Re-
ceiver cells were then seeded in the dish at approximately 20% confluence, and al-
lowed to settle down for another 6 hours. To prepare agarose infused media, 2% low
melting point agarose (EMD) was melted in alpha-MEM at 95°C for 10 minutes,
and temperature was cooled to 42°C, before IAM and other ingredients of com-
plete media (described above) were mixed in. Agarose infused media was applied
to dishes with original media removed and allowed to solidify at room temperature
for 20 minutes, before moved into the incubator.

For analysis, the images were background-subtracted, stitched together and masked
by the constitutivemTagBFP2 fluorescent in blue channel (not shown) and quantified
by summing up intensities of pixels that passed the mask. Error bars are standard
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deviations of four images at the same distance.

Confluency estimation from images
Images, regardless of acquisition conditions, were converted to grey-scale for anal-
ysis in cases where pseudo-color was applied by the software automatically (a 2x2
binning is applied if acquired using the EVOS system). For each experiment, around
5 images were used in ilastik (Berg et al., 2019) pixel classification mode to train
a classifier (decision tree-based), that classifies each pixel as cell or not cell (the
trained models are available with the full data set). The classifier was then applied
to the entire set of images, and output as probability masks. The masks were then
analyzed to determine the fractions of “cell” pixels in the image. This value was
then used to estimate confluence.

A.4 Animal experiment
Mouse line and handling
NSG mice used in Chapter 4 are from The Jackson Laboratory (Strain # 005557),
and maintained by the Shapiro lab as described in Abedi et al., 2022.

Seeding of the tumors
Cells are grown to 80-100% confluence in the appropriate media and then
trypsinized, spun down, and resuspended in sterile PBS for injection. For each sub-
cutaneous tumor, 5 million cells in 100 μL are injected. Then the mouse grow for
12 days with tumor reaching approximately 1000 mm³ in volume before sacrificed
for analysis.

Tumor homogenization and analysis
Tumors were first dissected from mice scissors and crush into small pieces. Then
they were digested with 2 mg/mL collagenase P and 0.1 mg/mL DNAse I in Lei-
bovitz’s L-15 medium (Thermofisher) at 37C for 2 hours. Cells were then spun
down, and washed twice, and eventually resuspended with flowcytometry buffer de-
scribed above. They were later analyzed by flowcytometry.

A.5 NGS and analysis
DNA-sequencing analysis
Cells were passaged for at least twice after the long term cultures, before harvested
for genomic DNA extraction (Qiagen #69504, with on column RNA digestion). The
extracted DNA was then amplified by PCR. Sequencing library were prepped and
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indexed with Illumina Nextera XT kit (Illuminia #FC-131-1024) and sequenced on
Illumina MiSeq, with 300 nt pair-ended setup.

The reads were first trimmed and filtered by Trim Galore! (Babraham Institute)
and then aligned with Bowtie2 (Langmead and Salzberg, 2012) to the template se-
quence. For mutation calling (Figure 2.13 and Table 2.2), we calculated the distri-
bution among four possible nucleotides at each position based on the result from the
parental line, as our expected nucleotide distribution for each position (one pseu-
docount included to avoid significance calling due to low sampling size). We then
compared the frequencies of such from other isolates to the expected distribution
above to identify any significant deviation (Chi-Square test was used here as a good
approximation for multinomial test. p<0.05 with Bonferroni correction).

All the significant results are plotted, with their corresponding isolates origin and
frequency, in Figure 2.13A. Among these mutations, we assumed synonymous mu-
tations follow normal distribution to set our expected mutation frequencies for neu-
tral mutations, and determined any non-synonymous mutation that exceeds the 5th
percentile (after Bonferroni correction) of this distribution is potentially positively
selected (Figure 2.13A, red dotted line).

RNA-sequencing analysis
Cells were cultured for 2 days at under 80% confluence before harvested for bulk
RNA extrusion (Qiagen #74104). The library preparation and sequencing was per-
formed at Millard and Muriel Jacobs Genetics and Genomics Laboratory at Caltech
as service. Specifically, RNA integrity was assessed using Bioanalyzer (Agilent
Technologies #5067-1513) andmRNAwas isolated using NEBNext Poly(A)mRNA
Magnetic Isolation Module (NEB #E7490). RNA-seq libraries were constructed us-
ing NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB #E7770) following
manufacturer’s instructions. Libraries were quantified with Qubit dsDNA HS Kit
(ThermoFisher Scientific #Q32854) and the size distribution was confirmed with
Bioanalyzer (Agilent Technologies #5067-4626). Libraries were sequenced on Il-
lumina HiSeq2500 in single read mode with the read length of 50nt to the depth of
15 million reads per sample following manufacturer’s instructions. Base calls were
performed with RTA 1.13.48.0 followed by conversion to FASTQ with bcl2fastq
1.8.4.

The reads were first trimmed and filtered by Trim Galore! (Babraham Institute) and
then counted with kallisto (Bray et al., 2016) with the CHO transcriptome (RefSeq
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GCF_000223135.1) as a reference. Genes that are differentially expressed were de-
termined with DESeq2 (Love, Huber, and Anders, 2014) and exported as ranked
lists, with B86=(;>62�>;3�ℎ0=64) · −;>6(?039) as weights. The top 30 genes in
each of the three comparisons (negative vs control, paradoxical vs control and para-
doxical vs negative), if not annotated with a symbol in the RefSeq file, are manually
annotated by looking up their gene products in RSCB PDB (RSCB.org, Berman et
al., 2000). The ranked gene list is then input into the GSEA (Subramanian et al.,
2005) to perform pathway enrichment analysis, against the curated KEGG pathway
annotation (MSigDB: c2.cp.kegg.v7.4.symbols), with mapping from mouse gene
symbol to human orthologs.

Enzymatic methylation-specific sequencing
Cells were sorted as described above and immediately lysed for DNA extraction
(DNeasy Blood & Tissue Kit, Qiagen). Total DNA is then converted with NEBNext
Enzymatic Methyl-seq Conversion Module (NEB) according to the manufacturer’s
instructions, and further amplified (EpiMark Hot Start Taq DNA Polymerase, NEB)
with primers targeting the promoter region and the gene body (nucleotide 1943-4438
on the none-pEF1s(orig) plasmid). The amplified targets are further prepared into
library (Nextera XT Library Prep protocol, Illumina) and sequenced on the MiSeq
(250bp pair ended, Illumina) platform.

The resulting reads were first trimmed and filtered by TrimGalore! (Babraham Insti-
tute) and then aligned and analyzed by Bismark (Krueger and S. R. Andrews, 2011)
and SAMtools (Danecek et al., 2021) to generate the methylation calling statistics.

A.6 Miscellaneous data processing and statistical testing
Silenced fractions in Chapter 3
The background silenced fraction ((3>G−) from the no-recruitment control sample
(no dox) is subtracted from the observed silenced fraction ((3>G+) from the with-
recruitment group experiment, and further normalized by the “fraction still available
for silencing” (“still ON” fraction in the control1−(3>G−. Consequently, the silenced
rate of a given sample is calculated as ( =

(3>G+−(3>G−
1−(3>G− .

Note we observed that the highest background silencing is about 35% in the in-
sert(high)-pEF1s(high) genotype at 25th day (last time points in Figure 3.4B).

Bootstrapping and significant tests
All statistical testings in this study are Student’s t-test if not specified otherwise.
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The curve and significance test in Figure 2.11C are based on the Kaplan-Meier es-
timation of the “survival rate.” Between negative and paradoxical feedback, a log-
rank test is performed with the null hypothesis that there is no significant difference
between the estimated survival rate (Kishore, Goel, and Khanna, 2010), using the
lifeline python package (Davidson-Pilon, 2019).

For expression ratios (Figure 2.12C) and survival rates (Figure 2.12D and E), the
means and standard deviations were calculated by normalizing treatment replicates
to control replicates with bootstrapping. Specifically, for each isolate, we perform
replicates for both the treatment (n=3 for all) and control (n=3 for 2.12C, n=2 for
2.12D and E) group, then normalize the measurements from the treatment groups
to the control groups, with all possible combinations (n=9 for 2.12C, n=6 for 2.12D
and E). The means and standard deviations of all the normalized measurements were
reported as a single data point with bars in the corresponding figures

Similarly, for each time point in Figure 3.6B, each of the three “with recruitment”
samples are normalized to each of three “no recruitment” control samples, according
to the method described above. Therefore a total of 9 data points are generated, and
the error bars represent the standard deviation of these points. To generate standard
deviation of the estimated silencing rate in Figure 3.6D, we bootstrapped the data
points in Figure 3.6D. Specifically, in each round, 10 of the 64 data points (9 points
for each of 7 time points and plus one at (0, 0)) are randomly selected and fitted to
the model. We bootstrapped 6 times, and bars represent the standard deviation.
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A p p e n d i x B

DATA AVAILABILITY AND DEPOSITS

The plasmids used in Chapters 2 and 3 have been deposited at addgene, under the
article numbers #28212030 and #28233817, respectively.

Matlab code for mathematical modeling of the paradoxical circuit (section
2.3) is available at Github (github.com/labowitz/auxin_paradox_matlab_
code). Imaging analysis code is available at Github (github.com/labowitz/
MovieTools).

For section 2.3, the raw data of DNA sequencing for detection of mutations are avail-
able as ACCN. PRJNA784643 at BioProject (ncbi.nlm.nih.gov/bioproject/).
Raw and processed data of RNA sequencing for pathway analysis are available at
ACCN. GSE189948 at Gene Expression Omnibus (ncbi.nlm.nih.gov/geo/).

Raw and processed data of methylation specific sequencing of Chapter 3 is also
available at Gene Expression Omnibus (ncbi.nlm.nih.gov/geo/), under ACCN.
224403.

The plasmid GenBank files, raw data, and processing/plotting scripts for generating
the figures shown in Chapters 2 and 3 are available at data.caltech.edu, doi.org/
10.22002/D1.1613 and doi.org/10.22002/ct5kt-cv878, respectively.

Further information and requests for resources and reagents should be directed to
and will be fulfilled by the Elowitz lab.
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