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Poland   

A R T I C L E  I N F O   

Keywords: 
Mutation rate 
Luria–Delbrück distribution 
Fluctuation assay 
Plating efficiency 
Phenotypic lag 
Cell death 

A B S T R A C T   

The fluctuation assay remains an important tool for analyzing the levels of mutagenesis in microbial populations. 
The mutant counts originating from some average number of mutations are usually assumed to obey the Lur
ia–Delbrück distribution. While several tools for estimating mutation rates are available, they sometimes lack 
accuracy or versatility under non-standard conditions. In this work, extensions to the Luria–Delbrück protocol to 
account for phenotypic lag and cellular death with either perfect or partial plating were developed. Hence, the 
novel MLE MUtation Rate calculator, or mlemur, is the first tool that provides a user-friendly graphical interface 
allowing the researchers to model their data with consideration for partial plating, differential growth of mutants 
and non-mutants, phenotypic lag, cellular death, variability of the final number of cells, post-exponential-phase 
mutations, and the size of the inoculum. Additionally, mlemur allows the users to incorporate most of these 
special conditions at the same time to obtain highly accurate estimates of mutation rates and P values, confidence 
intervals for an arbitrary function of data (such as fold), and perform power analysis and sample size determi
nation for the likelihood ratio test. The accuracy of point and interval estimates produced by mlemur against 
historical and simulated fluctuation experiments are assessed. Both mlemur and the analyses in this work might 
be of great help when evaluating fluctuation experiments and increase the awareness of the limitations of the 
widely-used Lea–Coulson formulation of the Luria–Delbrück distribution in the more realistic biological contexts.   

1. Introduction 

1.1. The concept of measuring mutagenesis in microorganisms 

In microbial genetic studies, researchers are often compelled to es
timate the mutation rate, that is, the pace at which mutations are 
accumulated within the genome under certain conditions in a given 
genetic background and specific organism. Genetic mutations can arise, 
i.a., during DNA replication, DNA repair, or upon exposure to certain 
endo- and exogenous agents that chemically change the identity of the 
nitrogenous base within the nucleotide [1,2]. Whatever the mechanism, 
the mutation rate in a specific genetic background can often be infor
mative of the underlying biological processes that affect the fidelity of 
DNA replication or the effectiveness of DNA repair. 

Numerous assays have been developed to score mutagenesis. A 
modern approach to this problem is deep sequencing of genomic DNA of 
colonies that underwent multiple passages and accumulated mutations 
after hundreds of generations [3]. This method is precise because it is 
more robust against selecting only certain groups of mutations (for 

example, silent mutations can be observed). Moreover, it allows 
analyzing not only the rate but also the specificity of occurring muta
tions. On the other hand, mutation accumulation assays are 
time-consuming, laborious, and expensive. Other methods of measuring 
the mutator phenotype are based on counting the number of mutant 
cells that acquired a selectable mutation in a certain reporter gene, 
either before, during, or after the culture/colony growth. These mutants 
can be sorted and counted in flow cytometry (e.g., mutations in the gene 
encoding green fluorescent protein (GFP) can be scored with the usage 
of fluorescence-activated cell sorting [4]), but most usually are plated, 
allowing mutant colonies to be counted on a solid medium containing a 
selective agent (usually an antibiotic, a carbon source, or an amino 
acid). 

These experiments usually start with several small parallel cultures 
of a given microorganism, grown to saturation under specified condi
tions. After growth, the whole, or a portion of, culture is plated onto the 
solid medium containing some selective agent. A small portion (usually 
a dilution) of all or only selected cultures is plated on a non-selective 
medium to estimate the population size in each sister culture. After 
that, the plates are incubated until visible colonies are formed [5]. 
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Since with this approach, mutations are not observed directly, but 
rather by their effect on cell physiology (i.e., the ability to grow on se
lective medium), to infer conclusions about the mutation rate from the 
number of mutants on the plate, a certain statistical model must be 
applied. This is caused by the fact that the population of mutant cells (as 
well as non-mutants) grows exponentially, and the final number of 
mutants in the culture depends not only on the mutation rate but also on 
the time the mutation happened, and on how many divisions (genera
tions) the mutant cell underwent afterward (Fig. 1A). This type of 
experiment is the oldest approach to mutation rate scoring and histori
cally has been called a fluctuation assay. The first fluctuation assay was 
described by Salvador Luria and Max Delbrück in 1943 and eventually 
inspired generations of biostatisticians and microbiologists to pursue 
novel, more precise and accurate methods of measuring mutagenesis in 
living cells. To this day, fluctuation assay is a commonly used tool to 
estimate mutation rates in bacterial and eukaryotic microorganisms and 
some human cell lines. 

Mutations occurring in a unperturbedly growing microbial culture 
are typically modeled by the Luria–Delbrück (LD) distribution [6], 
sometimes called Lea–Coulson (LC) distribution, to acknowledge their 

big contribution to the topic [7]. Because there are no explicit expres
sions for the mean and the standard deviation of the Luria–Delbrück 
probability distribution, it is a common practice to use approximate 
methods such as the Jones method of the median, the Lea–Coulson 
method of the median, Drake formula, and methods based on the mean 
number of mutants (reviewed in [5]). Since there is a finite probability 
that a selectable mutation will occur quite early during culture growth, 
giving rise to an exceptionally big number of mutants on the plate 
(so-called ‘jackpot’ culture), the mutant distribution is heavy-tailed, and 
therefore methods of mutation rate calculation based on the mean 
number of mutant cells per plate are significantly biased; so are, 
although to a somewhat lesser extent and particularly with small sam
ples, methods based on the median [8]. Sometimes scientists are 
confined to reporting only mutant frequency (often incorrectly called 
mutation frequency), that is, the average number of mutants observed 
per some number of cells. Mutant frequency, however, is not a biological 
property and strongly depends on the number of generations the culture 
underwent. Because of that, mutant frequencies measured by different 
protocols are not comparable and are not informative about the number 
of mutations that led to the observed number of mutants (Fig. 1A, B) [8, 
9]. 

1.2. The Luria–Delbrück distribution and the fluctuation protocol 

The Luria–Delbrück mutant distribution arises from combining 
several simple ideas. The basis of the derivation that is easy to follow 
was developed by Stewart et al., and it will be presented here [10,11]. 
First, we assume that the non-mutant cells grow deterministically 
(without randomness) but non-synchronously, according to a 
well-known equation for exponential growth: 

Nt = N0eβt (1)  

where N0 is the size of the inoculum, β is the growth rate of the cells, and 

Nomenclature 

LD distribution Luria–Delbrück distribution 
LC distribution Lea–Coulson distribution 
MLE maximum likelihood estimate 
CI confidence interval 
PMF probability mass function 
CDF cumulative distribution function 
LRT likelihood ratio test  

Fig. 1. The graphs depicting the interplay be
tween the number of mutations and the pro
portion of mutant cells in the culture under 
different conditions. Data were simulated using 
the draw.clone function from R package flan 
assuming exponential cell lifetimes, t = 3, and 
mutation probability = 0.5. The proportion of 
mutants in the culture is presented next to each 
graph. Black lines: wild-type cells. Red lines: 
mutant cells. Gray lines: mutant cells that have 
not yet expressed mutant phenotype. Tilted 
cross: cell death. (A) The observed number of 
mutant cells depends on the stage at which the 
mutation occurred. While most mutations are 
expected to occur late during exponential 
growth of the culture (because most cell di
visions happen at this time), the “early” muta
tions lead to the presence of so-called “jackpot” 
cultures with an exceptionally high number of 
mutant colonies. (B) If the growth of the culture 
were interrupted at an earlier moment, the 
produced mutant frequency would be lower 
(0.64 vs. 0.72) despite the constant mutation 
rate. (C) The observed mutant colony count 
depends on the growth rate of the mutant cells 
relative to the growth rate of the non-mutant 
cells. Here, due to the mutant growth rate 
being equal to half the growth rate of the non- 
mutant cells, the mutant frequency is 0.55. 
(D) The presence of a phenotypic lag decreases 
the observed mutant colony count. Here, with a 

phenotypic lag equal to one generation, the two last mutations produce cells that fail to grow on a selective medium because the mutant phenotype is not expressed at 
the time of plating (proportion of mutants 0.61). (E) Death of a mutant cell decreases the mutant count (mutant frequency 0.64). (F) However, the death of a non- 
mutant cell increases the number of cellular divisions needed to reach a given culture size, inflating the mutant count (mutant frequency 0.78).   
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t is the time we take the measurement of Nt. In the context of mutation 
rate estimation with the usage of the fluctuation protocol, the only time 
that is of interest is usually the time when the culture stopped growing, 
so we can equate t with the time when we interrupted culture growth 
and Nt with the size of the culture at this time. The exact value of t and β 
is not important because they are implicitly but unequivocally described 
by Nt. 

The stochastic process of mutation is modeled as an inhomogeneous 
Poisson process whose intensity function λ(t) is equal mutation rate per 
cell per time unit, times the size of the population at time t: λ(t) =
aNt = aN0eβt. In other words, mutation is a rare event, and the chance of 
mutation at any given moment increases exponentially with time, pro
portionally to Nt. The actual number of mutations occurring between 
τ = 0 and τ = t is a Poisson-distributed random variable with mean 

E[m(t)] =
∫ t

0
λ(τ)dτ =

∫ t

0
aN0eβτdτ =

a
β

N0(eβt − 1) = μ(Nt − N0). (2) 

(See (2) and (3) in [12]). The parameter μ = a∕β that made 
appearance in the above equation is the unitless mutation rate per cell 
division we are interested in estimating. There are two important pieces 
of information to give at this point. First, for large t, the expectation of m 
can be replaced with the actual count of m. Second, while the number of 
cell divisions is Nt − N0, the size of the inoculum is usually of the order of 
magnitude 102− 103 and the usual final culture size has the order of 
magnitude 108− 109. Therefore, in most cases we can ignore N0, and 
hence: 

μ =
E[m(t)]
Nt − N0

≈
m(t)
Nt

. (3)  

Consequently, we arrive at the usual expression for mutation rate per 
cell division. Importantly, μ does not depend on the growth rate of the 
cells. It is assumed that this form of mutation rate does not change when 
the growth rate changes. The same assumption is used throughout this 
paper. The mutation rate per unit of time (here denoted by a) can be 
obtained by multiplying (3) by the independently estimated growth rate 
of the strain, although it is rarely reported. Multiplication by other 
factors (2 or logarithm of 2), which were proposed by Luria & Delbrück 
[6] and Armitage [13], has been discouraged [14]. 

The problem at hand is how to retrieve the number of mutations 
m = μN0eβt from the number of mutants on the plate. If we consider a 
very short period dt, during which there are dN cell divisions, then the 
chance of a mutation occurring between t and t + dt is given by the 
differential 

μN0eβtβdt. (4) 

Now, let us say that at some point during culture growth, a mutation 
arose: one wild-type cell divided into one wild-type cell and one mutant 
cell. If this mutation arose at some time τ before t, then the mutant cell 
has time t − τ to proliferate. We could model the dynamics of the mutant 
cells using the same equation (1), as this was done originally by Luria 
and Delbrück, but their growth is frequently taken as random. A sto
chastic process similar to the deterministic exponential growth process 
is called the Yule process, or the pure birth process, in which the chance 
of a single mutant cell growing to a clone of size n ≥ 1 between the time 
mutation happened τ, and the time the culture stopped growing t is given 
by (equation (8.15) in Bailey 1964 [15]) 

e− β(t− τ)[1 − e− β(t− τ)]
n− 1 (5)  

which is also an expression for the probability mass function of the 
geometric distribution with p = e− β(t − τ). In the Yule process, the life
times of individual cells are exponentially distributed with the mean 
equal β. For large t, deterministic and stochastic models give asymp
totically equivalent results [16]. If we now extend our considerations to 
the whole time of the culture growth from the beginning to the end at 
time t, the mean number of mutations giving rise to n ≥ 1 colonies is 

given by the integral of the product of equations (4) and (5) over the 
whole time of culture growth, that is, 

λn =

∫ t

0
μN0eβτβe− β(t− τ)[1 − e− β(t− τ)]

n− 1dτ. (6) 

Evaluation of the above with some approximations explained later 
leads to the classic formulation of the Luria–Delbrück distribution by Lea 
and Coulson ((25) in [10]): 

λn ≈
m

n(n + 1)
. (7)  

{λn} can be interpreted as follows: the number of mutations resulting in a 
clone of size n ≥ 1 is a Poisson-distributed random variable with the 
Poisson parameter (mean) λn. {λn} can be used to derive a formula for 
the probability distribution of the total number of mutants in the culture 
provided that, on average, m mutations occurred, i.e., the LD 
distribution. 

At this moment, it is worth pointing out that in (3), we conveniently 
overlook that in a real-world scenario, we replace Nt with the average 
culture size, which contains both wild-type and mutant cells. The actual 
number of wild-type cell divisions is smaller than the culture size that is 
estimated by plating on non-selective medium. Because the estimate of 
Nt usually has only 3 significant digits, the additional inaccuracy 
introduced by ignoring mutant cells (similarly to neglecting inoculum) 
when calculating the number of divisions is minuscule, so Nt + n ≈ Nt. 
(It needs to be noted that this n, denoting the number of mutants, is 
different from n in (5), (6), and (7), as in those equations n represents the 
size of the clone). However, for this reason, the mutant cell population 
relative to Nt should be kept small so that the error does not grow out of 
control. 

The Luria–Delbrück mutant distribution is merely an approximation 
of a complex biological process. As a consequence of the model, a classic 
fluctuation assay has a set of assumptions: cells (a) grow exponentially 
and (b) independently from each other with (c) no death events (d) from 
an inoculum that is miniscule in size compared to the final culture; 
mutations occur (e) at the moment of cell division (f) at a low and (g) 
constant rate from the time the culture growth started until it stopped, 
(h) are not influenced by previous mutations, (i) do not revert, (j) do not 
occur after culture growth has stopped (either in the stationary phase or 
after plating), are (k) immediately expressed, and (l) result in creation of 
only one mutant cell (this refers to the moment of mutation and should 
not be confused with further proliferation of this single initial mutant 
cell); mutant cells (m) have life-times that obey the exponential distri
bution, (n) constitute a small portion of the whole culture, (o) have 
comparable fitness to non-mutant cells, and (p) are always detected; (q) 
parallel cultures are homogenous in terms of volume and size. 

While most of the conditions imposed by the Luria–Delbrück model 
can be easily met, many commonly used fluctuation protocols do not 
strictly meet its criteria. The requirement that the cells are in the 
exponential growth phase is commonly violated. The cultures are usu
ally grown to saturation (frequently overnight); therefore, the cells un
dergo growth deceleration and eventually enter the stationary phase. 
How this affects the presumptive constancy of mutation rate during 
growth is not well understood; it is known, however, that some unicel
lular organisms entering the stationary phase activate SOS-induced DNA 
polymerases and accumulate mutations that increase their fitness under 
conditions of nutrient depletion [17–19]. 

In the above example, the potential conflict between assumptions 
and protocol can be circumvented by interrupting the culture growth 
when cells are still in the exponential phase. However, there are many 
situations where deviations from the fluctuation criteria are not quite in 
the researcher’s hands. For instance, forward mutations in rpoB affect 
the structure of bacterial RNA polymerase; therefore, they are non- 
neutral regarding cellular fitness and can affect growth rate to a 
different extent depending on the genetic background (Fig. 1C) [20]. 
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Stress-induced mutagenesis due to the presence of a sub-inhibitory 
antibiotic concentration during culture growth can increase the death 
rate of wild-type cells, and so can certain genetic backgrounds that 
severely impact cellular growth (such as mismatch repair deficiency). 
Mutations in carbon source metabolism-associated genes such as lacZ 
can occur after plating due to adaptive mutagenesis because the selec
tive agent does not immediately kill the non-mutant cells [21,22]. A 
phenotypic lag (the phenomenon of delayed expression of a scorable 
phenotype post mutation due to the necessity to accumulate mutant 
protein product at a sufficient level) is also widespread with mutations 
causing antibiotic resistance, yet rarely accounted for (Fig. 1D) [23,24]. 
Finally, an elevated mutation rate can force the researcher to plate only 
a portion of the culture on a selective medium. Because of that, not all 
mutant cells will be directly detected (imperfect plating or plating effi
ciency less than 100 %). While, in theory, in the last example, the 
researcher can stop the culture growth when mutant cells are still 
countable, this might violate the assumption that the final number of 
cells in culture is much bigger than the starting cell count. 

The method of choice for estimating mutation rates by employing the 
Luria–Delbrück distribution is the maximum likelihood estimation 
(MLE) [5]. MLE is a statistical tool for finding the value of some 
parameter of a statistical distribution for which the data are most likely 
to be observed (drawn from). Based on numerous simulations, 
maximum likelihood-based methods are the most accurate of all avail
able tools for mutation rate estimation under the Luria–Delbrück pro
tocol [9,25–27]. The popularity of the MLE method can be attributed to 
Ma, Sandri, and Sarkar, who developed recursive algorithms for efficient 
computation of the values of the probability mass function (PMF) [28, 
29], as well as tremendous work of Qi Zheng with SALVADOR [12,30]. 

Among significant contributions that allowed to relax some of the 
strict conditions imposed by the fluctuation protocol that the researcher 
cannot easily mitigate are the works of: Armitage, who proposed the 
adjustment for imperfect (not 100 %) plating based on binomial thin
ning (this work was later extended by Crane, Jones, Stewart, Gerrish, 
Zheng) [11,13,25,31–34,35]; Angerer, who derived modifications for 
the phenotypic delay and the presence of residual mutations (the subject 
was also studied by Armitage, Koch, Mandelbrot, Newcombe, Crump 
et al., and Stewart et al.) [10,13,16,23,36–38]; Mandelbrot, Koch, Jones, 
and Stewart, found analytical solutions that allow accounting for dif
ferential growth of mutant and non-mutant cells (a model that takes into 
account the relative fitness of the mutant cells compared to non-mutants 
has been named Mandelbrot–Koch model, see Fig. 1C), also with 
imperfect plating [11,34,36,37]; Zheng, who developed the model 
allowing to correct for the variation between population sizes in parallel 
sister cultures (a gamma mixture of the LD distribution, sometimes 
called the B0 distribution) [39–42]. Kendall, Zheng, Stewart, Angerer, 
and Dewanji et al. have also considered increased cell death and the 
effect of the size of the inoculum [43,10,30,44–46]. Dewanji et al. 
proposed an alternative solution to the mutant birth-and-death model, 
which considers deceleration at the late phase of culture growth. The 
occurrence of residual mutations is easy to account for if the expected 
number of post-plating mutants is known, but this, in turn, is hard to 
quantify in practice. It has been proposed that adaptive mutagenesis on 
lactose plates may be limited by using scavenger and filler strains and 
incubating the plates for as short a period as possible [22]. 

1.3. Tools for estimating mutation rates 

Several tools for mutation rate estimation are currently available: bz- 
rates [47] and flan [48], both using the so-called empirical generating 
function (GF) method and asymptotical normality assumption, as well as 
rSalvador [27] and FluCalc [49] based on the maximum likelihood (ML) 
method. bz-rates is an online tool, whereas flan and rSalvador are free 
packages for an open statistical analysis language R, and FluCalc is 
written in Python. flan and rSalvador have their online versions avail
able at http://shinyflan.its.manchester.ac.uk and https://websalvador. 

eeeeeric.com, respectively. A popular tool for estimating mutation 
rates is FALCOR [50], available at https://lianglab.brocku.ca 
/FALCOR/index.html, which also uses the ML method. Based on simu
lations, rSalvador is the most accurate. However, it does not exactly 
meet our needs. Here, a novel tool for fluctuation data analysis is 
introduced: MLE Mutation Rate Calculator, or mlemur. 

Based on the frameworks developed by Qi Zheng, mlemur allows the 
user to obtain point and interval estimates of mutation rates, compare 
two datasets using the likelihood ratio test to calculate P values and 
adjust computed P values using either Bonferroni, Bonferroni–Holm, or 
Benjamini–Hochberg corrections, estimate the power and the sample 
size for the likelihood ratio test, and compute confidence intervals (CIs) 
for an arbitrary function of mutation rates. 

Unlike flan and rSalvador, mlemur is almost entirely typing–free: 
after initialization via the mlemur::mlemur() command in R, all control 
is done from within the web browser window. At every stage, mlemur 
provides the user with information about the type of input required in 
each data field and feedback when an error occurs. Users can also load 
their data from an XLS(X) file to simultaneously compute mutation rates, 
confidence intervals, and P values (adjusted or not) for a whole set of 
strains. At last, with a single click, researchers can download the results 
in a spreadsheet format. Additional options for calculating mutation 
rates and P values for paired data (colony counts on selective and non- 
selective medium for each culture), finding confidence intervals for an 
arbitrary function (such as fold or difference) of mutation rates, esti
mating statistical power (the probability that true differences will be 
discovered), and determining sample size to achieve a prescribed level 
of power of the likelihood ratio test, have been implemented. 

With mlemur, one can calculate mutation rates using a handful of 
options: 

• the standard Lea–Coulson model (approximate Luria–Delbrück dis
tribution) with almost all the previously mentioned assumptions in 
place but overlooking the impact of the inoculum,  

• the exact Luria–Delbrück distribution with consideration for the size 
of the inoculum,  

• the compound LC–gamma model (B0 distribution), which accounts 
for variability in culture sizes,  

• the Mandelbrot–Koch model with differential growth of mutants and 
non-mutants,  

• the stochastic modification of Angerer’s model where the phenotypic 
delay is present,  

• the Birth–Death (BD) model with cell death,  
• the Poisson–LC convolved distribution where post-plating residual 

mutations are anticipated. 

A unique feature of mlemur is that it allows the user to combine most 
of these generalizations when modeling their data with either perfect or 
partial plating. This is especially handy when one scores for multiple 
phenotypes at once or when dealing with particularly strong mutators. 

Additionally, the functions for simulating fluctuation experiments 
and calculating mutation rates using various historical methods have 
been implemented and are available from the R console in mlemur. The 
mathematical background for all developments can be found in Sup
plementary File S1, but the most relevant derivations will also be 
available in the following sections. 

In this work, I present the possibilities of mlemur and derive new 
formulas for some extensions of the Luria–Delbrück protocol. I focus on 
the practical application of the Luria–Delbrück model to estimate mu
tation rate from simulated and real-world data, investigating the accu
racy and confidence interval coverage of point and interval estimates. 
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2. Materials and methods 

2.1. Algorithms for maximum likelihood estimation 

The algorithms used in this work for estimating mutation rates are a 
part of the free R statistical package mlemur, available at https://github. 
com/krystianll/mlemur. They are also described in detail in Supple
mentary File S1. 

2.2. Simulating fluctuation experiments 

Most of the work presented here was done by analyzing simulated 
fluctuation experiments. The simulation algorithm that is a part of 
mlemur combines previously used approaches with the novel addition of 
phenotypic lag [41,42,48]. The outline of the simulation of a single test 
tube is presented here:  

• The final culture size is taken either as a constant or as a random 
variable drawn from a gamma distribution.  

• Growth (and death if applicable) of the non-mutant cells is assumed 
to be deterministic and exponential. The time of culture growth is 
calculated per tube using the starting and the final numbers of cells 
and the non-mutant death rate. The average number of mutations, 
which is proportional to the number of cellular divisions, is calcu
lated using the average mutation rate, the growth rate, the death 
rate, and the time of culture growth.  

• The actual number of mutations in the test tube is drawn from a 
Poisson distribution using the average number of mutations from the 
previous step. 

• The mutation event times (expressed in terms of the number of in
dividual cell divisions at that moment as a fraction of the total 
number of cell divisions at the end of culture growth) are drawn from 
a uniform distribution, and then mutation epochs are calculated. For 
each mutant clone, the length of phenotypic lag is drawn from a 
Poisson distribution, with the mean being the average length of 
phenotypic lag (supplied as the number of generations, with a 
‘generation’ defined as the mean time required for the population 
size to double, log (2/β). If a particular mutation epoch exceeds the 
total time of culture growth minus the extent of phenotypic lag, the 
mutant lineage is discarded.  

• The size of the mutant clone is drawn from the distribution of the 
number of cells in a simple birth-and-death process using (8.46) in 
Bailey 1964 [15].  

• If the plating is imperfect, the number of mutant colonies on the 
plates is drawn from a binomial distribution. 

To simulate the mutant counts under the protein dilution model, a 
slightly modified version of the code used by Barna was used [51]. 

The code for simulating a fully stochastic Bartlett mutation model is 
an evolution of the Renshaw algorithm described by Zheng [41,46], 
available at https://github.com/eeeeeric/rSalvador/blob/master/p 
ython-examples/simuKessler.py. 

3. Results and discussion 

3.1. The probability distribution induced by the Luria–Delbrück model 

The probability distribution induced by considerations from the 
Introduction can be written concisely ((18) in [10]) 
∑∞

n=0
pnzn = exp

[
− m + λ0 +

∑∞

n=1
λnzn

]
. (8) 

Here λn is the expected number of mutations that produce a clone of 
size n, which in the case of a simple Luria–Delbrück model, is given by 
(6). It is, however, convenient to re-cast the above as (see Lemma 2 in 
[12]) 

∑∞

n=0
pnzn = exp

{
m
∑∞

n=0
hnzn

}
. (9)  

In this form, the auxiliary sequence {hn} is independent of m. Calculating 
the values of the probability mass function (PMF) comes down to 
calculating the values of the auxiliary sequence, which needs to be done 
only once and can be reused for different values of m in each iteration 
when the MLE of m is found numerically by maximization of the like
lihood function. 

The formula for {hn} obtained by evaluating (6) exactly is given by 

h0(φ) = − 1

hn(φ) = (1 − φ)n− 1 1 + φn
n(n + 1)

for n ≥ 1

⎫
⎪⎬

⎪⎭
, (10)  

with φ = N0∕Nt (see (7) in [52]). The Lea–Coulson simplification used to 
obtain (7) was to neglect inoculum by substituting φ = 0, in which case 
we arrive at 

hn =
1

n(n + 1)
for n ≥ 1. (11) 

In the following sections, formulas for {hn} will be shown when some 
of the assumptions of the Luria–Delbrück model are violated. Unless 
stated otherwise, in all these cases it will be assumed that φ = 0, as in the 
LC formulation. Many of these formulas were already presented in the 
literature. I also present simulation-based studies and, in some cases, 
real-world examples of how violation of these assumptions affects the 
mutant distribution and, consequently, estimation of the mutation rates. 

3.2. Plating a part of the culture 

One of the most important deviations from the Luria–Delbrück 
model concerns plating only a fraction of the culture. A parameter 
defined as the fraction of culture plated is called plating efficiency, ε. As 
argued in [27], mutant cells are not uniformly dispersed throughout the 
culture, and sampling introduces an additional element of chance. From 
a statistical point of view, upon sampling, each mutant cell undergoes an 
independent Bernoulli trial with the probability of success (forming a 
colony) equal ε. This is best understood if we consider a culture con
taining a single mutant cell. If we plate half of this culture, the mutant 
cell has a 50 % chance of being plated. If the culture contains 2 mutant 
cells, then each of these cells will be plated with a 50 % probability: we 
might expect that one mutant cell will be plated, but it is also possible 
that we plate 0 or 2 because plating of one cell does not influence the 
probability of another cell being plated. Armitage was the first to pro
pose to model partial plating using the binomial distribution (see (50) in 
[13]). By multiplying (6) by the expression for the PMF of the binomial 
distribution, we can arrive at the formula for the expected number of 
mutations producing k ≥ 1 mutants, of which n ≥ 0 are observed 
(equation (4) in [25]): 
∫ t

0

(
k
n

)

εn(1 − ε)k− nμN0eβτβe− β(t− τ)[1 − e− β(t− τ)]k− 1dτ. (12) 

Based on the work of Stewart and Zheng [10,11,25], the formula for 
{hn} with imperfect plating assumes the form 

h0(ε) = ζlogε

h1(ε) = ζ
(

− 1 −
logε
1 − ε

)

hn(ε) = ζ
(

1
n(n − 1)

− hn− 1(ε)
)

for n ≥ 2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (13)  

with 

ζ =
ε

1 − ε.
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Due to the random nature of sampling, approaches based on dividing 
either colony counts or an intermediate estimate m* obtained assuming 
perfect plating by the plating efficiency parameter to return the true 
number of mutants in culture or true value of m, respectively, will 
inescapably fail. Fig. 2 corroborates the intuitive notion that plating a 
portion of size ε of a culture with the average number of mutations m1 
and plating whole culture with the average number of mutations m2 
= εm1 give completely different distributions of colony counts. Another 
popular correction for imperfect plating was proposed by Stewart 
(equation (41) in [10]): 

m = m*ε − 1
εlogε. (14) 

As was shown by Zheng, Stewart’s correction gives acceptable point 
estimates only for large values of ε [25]. However, even then, applying it 
to confidence limits will usually render the more important interval 
estimates outside nominal coverage (Table 1). 

Expectedly, sampling from culture comes with a trade-off: the lower 
the plating efficiency, the wider the confidence interval, and to control 
the loss of precision of estimation, the experimentalist must set up a 
higher number of parallel cultures (Table 1, column: Armitage correc
tion – median CI width). 

The popular tool for mutation rate estimation, FALCOR, cannot 
correctly handle the cases when ε < 1. Firstly, the authors propose 
normalizing the colony counts to 1 ml of the culture, which is invalid for 
the reasons explained above. In the column “Rosche and Foster” in 
Table 1, m was estimated by first dividing colony counts by ε to obtain a 
theoretical number of mutant cells in the whole culture and then using 
these new colony counts to compute MLE with the assumption ε = 1. 
This approach gives acceptable results for bigger values of ε, whereas for 
ε = 0.1, m is underestimated by ~ 24 % (Table 1, column: Rosche and 
Foster – median m). The underestimation is heavily influenced by cul
tures with 0 mutant cells. Secondly, FALCOR utilizes the following for
mula proposed by Rosche and Foster to calculate approximate 95 % 
confidence intervals [5]: 

CL95% = exp[log(m) ± 1.96σ(e1.96σ)
∓0.315

],

with 

σ ≈
1.225m− 0.315

̅̅̅̅
C

√ ,

and C being the number of cultures. This method works well when the 

departure from the classical Lea-Coulson model is small, i.e., when the 
whole or a big part of the culture is plated. Comparison of the coverage 
of CIs produced using an inverted likelihood ratio test with these ob
tained using Rosche and Foster method shows that the latter are non- 
conservative, especially for very low values of ε because the loss of 
precision caused by partial plating is not accounted for (Table 1, column: 
Rosche and Foster – CI coverage). 

3.3. Differential growth of mutants and non-mutants 

An important limitation of the classic Luria–Delbrück model is that it 
requires the mutant cells to have the same growth rate as the wild–type 
cell. However, when measuring the mutagenesis of the reporter genes 
that are also essential for the functioning of the cell (such as rpoB or gyrA 
in the case of E. coli), one may expect that the mutations, while favorable 
during growth on the selective media containing Rif or Nal, might be 
disadvantageous when cells are not exposed to the selective agent [53]. 

As far as mutation rates are of concern, accounting for the differen
tial growth rate of mutant and wild-type populations requires only 
knowledge about their relative fitness. Therefore, even a simple strategy 
of estimating the fitness of two competitors, namely competition assay, 
will suffice. Another popular fitness assay is, e.g., the estimation of the 
maximum growth rate from OD measurements (reviewed in [54]). 

To make things more troublesome, rpoB has around eighty muta
tional sites [55], with different classes of substitutions and sequence 
contexts; each site may affect cell growth to a different extent. One E. coli 
study with 8 different rpoB mutations showed that the relative fitness 
could lie anywhere between 0.7 and 1.0 [56]. Similar studies were 
conducted in other bacteria [57–59]. It is unclear how variability in the 
mutant fitness affects mutant distribution and accuracy of mutation rate 
estimation. 

The generalization of the Lea–Coulson model that allows mutant 
cells to grow at a different rate than non-mutant cells is often called 
Mandelbrot–Koch model [30,36,37]. Under this formulation, {hn} can 
be written as follows: 

h0(r) = − 1

h1(r) =
r

1 + r

hn(r) =
n − 1
n + r

hn− 1(r) for n ≥ 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (15)  

with r being the relative growth rate of non-mutants compared to mu
tants. The reciprocal value ρ = 1∕r is defined as the relative growth of 
mutants to non-mutants. It is easily checked that when substituting 
r = 1, one arrives at the Lea–Coulson formulation. 

Solution for the case ε ∕= 1 has been found by Stewart and reiterated 
by Jones [11,34]: 

h0(r, ε) = − 1 +
r(1 − ε)

r + 1
F(1, 1; r + 2; 1 − ε)

hn(r, ε) = rεrB(n, r + 1)F(r, r + 1; r + 1 + n; 1 − ε) for n ≥ 1

⎫
⎬

⎭
. (16) 

Here, B is the beta function, and F(a, b; c; z) is the Gauss hypergeo
metric function. To save computational time {hn} can be computed using 
recursive formulas provided in the Supplemental Information. 

The impact of differential fitness is most significant in the case of 
early mutants, which produce more offspring (Fig. 1C, Fig. 3). For 
example, a lower mutant growth rate results in lower jackpot colony 
counts and, therefore, lower variance. As a side note, when r ⟶ ∞ (and 
therefore ρ ⟶ 0), the mutant distribution asymptotically becomes the 
Poisson distribution. Table 2 shows that when r and ε are correctly 
accounted for, both point and interval estimates are accurate for various 
parameter values. 

Fig. 2. Empirical CDFs of mutant counts under different plating efficiency 
parameters. One 100,000-tube experiment was simulated for each case. For 
picture clarity, only the values of the CDF up to the colony count of 5000 are 
shown. Red – m = 10, ε = 1; green – m = 25, ε = 0.4; blue – m = 100, ε = 0.1. 
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3.4. Phenotypic lag 

Phenotypic lag, or phenotypic delay, is the time required to express 
the selectable phenotype by cells that have already acquired mutation in 
the reporter gene. For example, mutations in E. coli rpoB that confer 
resistance to rifampicin can only be expressed if a sufficient number of 
wild-type RNA polymerase molecules are replaced by the mutant vari
ants, such that rifampicin does not inhibit transcription to a lethal 
extent. Disappearance of the wild-type protein can result either from its 
dilution during cell division, when the daughter cell inherits roughly 
half of the proteins of the parental cell, or because of protein turnover 
(degradation and resynthesis). The role of the latter in bacteria depends 

on protein half-lives and the doubling time, and for example, in E. coli it 
seems to be small. The doubling time of laboratory E. coli strains under 
optimal conditions can be as short as 20 min [60], while the half-life of 
RNA polymerase is ~ 200 min [61]. Consequently, RifR phenotypic lag 
in E. coli has been estimated to be 4–5 generations [24]. Therefore, all 
mutations occurring in the last 4–5 generations will fail to be expressed 
(in other words, genotypic mutants will not be phenotypic mutants, 
Fig. 1D). Recently there has been evidence that a big role in phenotypic 
delay may be played by chromosome segregation in quickly dividing 
cells [24,62]. Many bacteria in the exponential phase start the next cycle 
of DNA replication before the previous one is finished, leading to a 
possibility of a heterozygous state where one copy of a gene of interest 
acquired mutation, whereas another did not. The target gene copy 
number may vary depending on its location on the chromosome [63]. If 
a selectable allele is recessive, it won’t be expressed until the cell reaches 
homozygosity. Simulations performed in the same study suggest that 
effective polyploidy combined with recessive mutation does not influ
ence mutation rate estimation simply because the increased chance of 
mutation caused by polyploidy cancels out the phenotypic delay caused 
by incomplete chromosome segregation [24]. However, effective poly
ploidy plays a significant role when combined with protein dilution 
mechanisms [64]. Indeed, since the inhibiting activity of antibiotics 
requires interaction with their molecular targets, it seems that the sig
nificance of protein dynamics in the context of phenotypic lag should 
not be neglected. 

The awareness of the delayed phenotypic expression of a newly ac
quired allele is widespread in genetic engineering and seemingly less so 
when reporting fluctuation data, although its effect on mutant distri
bution has been considered since the model’s conception. The possible 
appearance of phenotypic delay was raised in two big fluctuation ex
periments reported by Newcombe in 1948 and Boe et al. in 1994 [23, 
65]. The phenotypic delay was of interest to Armitage, Crump & Hoel, 
Koch, Angerer, Stewart et al., and Kissling et al. [5,10,13,16,38,62]. 

The simplest way to model phenotypic lag, considered by Armitage 
and further developed by Angerer, is to assume that a certain amount of 

Table 1 
Analysis of point and interval estimates for different values of plating efficiency.  

Simulation parameters Armitage correction Stewart correction Rosche and Foster (FALCOR) 

NE nC m ε median m CI coverage median CI width median m CI coverage median CI width median m CI coverage median CI width 

10000 30 50 0.8 50.3 94.7 % 29.4 % 47.4 88.3 % 30.1 % 50.1 90.4 % 25.5 % 
10000 30 10 0.8 10.0 94.7 % 42.7 % 9.62 93.9 % 43.5 % 9.84 93.6 % 42.5 % 
10000 30 10 0.4 10.0 95.1 % 45.6 % 8.72 81.0 % 48.8 % 9.58 89.2 % 42.8 % 
10000 30 10 0.1 10.0 95.6 % 57.4 % 8.13 76.8 % 63.3 % 7.60 38.6 % 46.0 % 
10000 30 10 0.01 9.93 95.2 % 113 % 8.93 95.5 % 118 % 0.600 0.00 % 100 % 
10000 100 10 0.01 10.0 95.0 % 61.7 % 8.96 91.9 % 63.9 % 0.608 0.00 % 55.7 % 
10000 30 100 0.01 100 94.8 % 43.1 % 66.3 4.1 % 54.8 % 70.1 9.8 % 23.0 % 

NE – number of experiments simulated; nC – number of cultures in each experiment; m – the average number of mutations; ε – plating efficiency. In all simulations, N0 
= 103 and Nt = 109. Nominal CI coverage is 95 %. Median CI width was calculated by first expressing the width of CI for each experiment as a percent of the cor
responding MLE and then taking the median value. 

Fig. 3. Empirical CDFs of mutant counts with different mutant relative fit
nesses. One 100,000-tube experiment with m = 10 was simulated for each case. 
For picture clarity, only the values of the CDF up to the colony count of 5000 
are shown. Red – ρ = 1.0; green – ρ = 0.8; blue – ρ = 1.25. 

Table 2 
Analysis of point and interval estimates of m for different values of relative mutant fitness and plating efficiency.  

Simulation parameters MK formulation LC formulation 

NE nC m ε ρ median m CI coverage median m CI coverage 

10000  30  10  0.8  1.2  10.1  95.3 %  12.0  65.1 % 
10000  30  10  0.8  0.8  10.0  95.2 %  8.40  62.8 % 
10000  30  10  0.8  0.5  10.0  95.0 %  6.41  0.04 % 
10000  30  10  0.5  1.2  10.1  94.6 %  12.0  65.6 % 
10000  30  10  0.5  0.8  10.0  94.8 %  8.32  62.9 % 
10000  30  10  0.5  0.5  10.0  94.6 %  6.24  0.04 % 
10000  30  10  0.1  1.2  10.0  95.0 %  12.6  64.7 % 
10000  30  10  0.1  0.8  10.0  94.3 %  7.84  63.4 % 
10000  30  10  0.1  0.5  9.99  95.0 %  5.37  0.32 % 

NE – number of experiments simulated; nC – number of cultures in each experiment; m – the average number of mutations; ε – plating efficiency; ρ – relative mutant 
fitness. MK formulation – mutant distribution with correction for ρ. LC formulation – simple model where ρ = 1. In all simulations, N0 = 103 and Nt = 109. Nominal CI 
coverage is 95 %. 
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time (say, tlag) since mutational event must pass for the cell to be able to 
express mutant phenotype [38]. This time can be imputed as the number 
of generations (with one generation being the time required for a pop
ulation to double in size) because, ultimately, it is implicitly expressed 
by the size of the culture at time t − tlag, which we shall denote as Nlag. 
(We remember that t is the time when culture growth is interrupted, that 
is when N = Nt; see (1)). 

If mutations occurring after t − tlag are not expressed, the outcome is 
the same as if no mutations occurred between t − tlag and t (although 
existing mutants continue proliferating in that time). What this means in 
practice is that the upper limit of integrals in (6) and (12) becomes 
t − tlag. The formula derived by Angerer (modified to be applicable to 
the problem at hand) is 

h0(Λ) = −
1
Λ

hn(Λ) =
1 −

(

1 −
1
Λ

)n(
1 +

n
Λ

)

n(n + 1)
for n ≥ 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (17)  

where Λ = Nt∕Nlag = 2l. Here l denotes the extent of phenotypic lag in 
generations. Additionally, it is shown in Supplementary File S1 that 
when ε ∕= 1, the extension of (17) becomes 

h0(Λ, ε) = q0(Λ, ε)
h1(Λ, ε) = − ζq0 + q1(Λ, ε)
hn(Λ, ε) = − ζhn− 1(Λ, ε) + qn(Λ, ε) for n ≥ 2

⎫
⎬

⎭
, (18)  

with 

q0(Λ, ε) = ζlog
(
− εΛ
s − 1

)

q1(Λ, ε) = ζ
[

1
s − 1

− log
(
− εΛ
s − 1

)]

qn(Λ, ε) =
ζ

n(n − 1)

[

1 −
sn− 1(s − n)
(s − 1)n

]

for n ≥ 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (19)  

and s = ε(1 − Λ). 
In the Lea–Coulson model, the lifetimes of individual mutant cells are 

independent and exponentially distributed random variables. From this 
angle, the constant (in terms of time) phenotypic lag seems overly se
vere: some cells may acquire mutation during the lag time but undergo 
enough divisions such that sensitive protein will be sufficiently diluted. 
Naturally, the impact will be more significant with longer phenotypic 
lag and a lower mutation rate. To include an element of stochasticity to 
the Angerer model, we might assume that the lengths of phenotypic lag l 
of every mutant clone are i.i.d. random variables obeying the Poisson 
distribution with some mean λ. The new expressions that substitute (17) 
and (19), respectively, assume the forms: 

h0(λ) = −
e− λ

2

hn(λ) =
∑∞

l=0

e− λλl

l!

1 −

(

1 −
1
Λ

)n(
1 +

n
Λ

)

n(n + 1)
for n ≥ 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (20)  

q0(λ, ε) =
∑∞

l=0

e− λλl

l!
ζlog

(
− εl

s − 1

)

q1(λ, ε) =
∑∞

l=0

e− λλl

l!
ζ
[

1
s − 1

− log
(
− εΛ
s − 1

)]

qn(λ, ε) =
∑∞

l=0

e− λλl

l!
ζ

n(n − 1)

[

1 −
sn− 1(s − n)
(s − 1)n

]

for n ≥ 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (21)  

with Λ and s appropriately substituted. 
Delayed phenotypic expression of a mutant phenotype has the biggest 

impact on the lower tail of the mutant distribution [5,13,36], which is 
reflected in the shapes of the empirical cumulative distribution functions 
(CDFs) in Fig. 4. Accordingly, Table 3 shows that the phenotypic lag of 
just two generations decreases mutation rate estimates by almost half. 

To test the performance of the novel stochastic Angerer model 
against real-world data, two famous experiments performed by New
combe [23] and by Boe et al. [65] were revisited. The Newcombe study 
reported eight 25-tube (200 μl each) experiments. Each culture was 
inoculated with either 101 or 103 cells and grown to an average of 
3.5 × 108 cells (see Table 1 in the original paper). Newcombe used two 
methods to calculate m and observed that the P0 method gave a much 
lower estimate than Luria–Delbrück’s method of the mean. Ruling out 
the possibility of an upward bias, he suspected that the discrepancy 
might result from the phenotypic delay, which affects mainly the dis
tribution’s lower tail. Since the P0 method uses the proportion of cul
tures containing 0 mutants, it is the most sensitive to bias caused by 
phenotypic lag. 

Several methods of accounting for phenotypic lag have been pro
posed. One is to discard the lower tail of the empirical CDF and fit the 
rest [13]. Koch proposed another: he suggested dividing colony counts 
by 2l to see the mutant distribution as it was before phenotypic lag 
started [36]. Newcombe also presented methods based on the mean 
number of cells in each culture [23]. 

Recently, the CDF and the Koch methods were employed, using 
minimization of the sum of squared errors, to jointly find the value of m 
and the size of the phenotypic lag in the Newcombe experiment [51]. 
The extent of phenotypic delay has been estimated at 3–4 generations, in 
agreement with analysis by Armitage [13], and the adjusted mutation 
rate between 1.34 × 10− 8 and 2.82 × 10− 8. 

Here I will employ maximum likelihood estimation under 
Lea–Coulson and stochastic Angerer models to find the possible values of 
m and λ. The MLEs of μ under the Lea–Coulson formulation range from 
4.27 × 10− 9 to 1.13 × 10− 8. For all experiments combined, the μ̂(with 
the hat atop a symbol denoting its maximum likelihood estimate) is 
6.88 × 10− 9 (95 % CI, 5.99− 7.84 × 10− 9). Joint estimation produces μ̂ 
of 7.84 × 10− 9 to 5.27 × 10− 8 and λ̂ between 0.856 and 4.77. When all 
data are combined, one obtains μ̂= 2.45 × 10− 8 (95 % CI, 
1.76− 3.46 × 10− 8) and λ̂ 3.17 (95 % CI, 2.44− 3.94). The estimates 
are, therefore, in good agreement with previous analyses. 

A similar investigation was performed using data reported by Boe 
et al. [65]. Twenty-three experiments, each comprising 48 parallel 
tubes, were performed. Cultures were inoculated with a varying number 

Fig. 4. Empirical CDFs of mutant counts with phenotypic lag constant within a 
clone, but Poisson-distributed from clone to clone. One 100,000-tube experi
ment with m = 10 was simulated for each case. For picture clarity, only the 
values of the CDF up to the colony count of 5000 are shown. Red – λ = 0; green 
– λ = 1; blue – λ = 2; purple – λ = 3. 
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(order of magnitude 101− 104) of cells, but this parameter was deemed of 
little importance. The final size of the culture is not provided in the 
paper; thus, I will focus on the estimates of m. Under the Lea–Coulson 
model, m̂ = 0.737 (95 % CI, 0.679− 0.797), whereas under the sto
chastic Angerer model, it is m̂ = 0.954 (95 % CI, 0.805− 1.136), and the 
estimate of phenotypic lag is ̂λ = 0.601 (95 % CI, 0.259− 0.957). Similar 
results were obtained in the analysis using historical methods (the es
timates of phenotypic lag were between 0.6 and 1) [51]. 

Barna [51] also performed two experiments with E. coli cells growing 
in a defined medium containing glucose or maltose as a carbon source. 
This change affects the population doubling time (from ~ 23 to 
~ 48 min, respectively), but also the estimates of mutation rate under 
the Lea–Coulson model: μ̂= 6.99 × 10− 7 (95 % CI, 
4.60 × 10− 7− 1.00 × 10− 6) in case of glucose medium and 
μ̂= 2.02 × 10− 6 (95 % CI, 1.58− 2.52 × 10− 6) in case of maltose me
dium. The 3.5-fold difference has been ascribed to phenotypic lag, 
estimated to be between 1.58 and 2 generations. Joint estimation of m 
and λ shows significant differences only with glucose data with the new 
mutation rate of μ̂= 1.59 × 10− 6 (95 % CI, 0.64− 4.33 × 10− 6) and 
phenotypic lag of λ̂ = 1.71 (95 % CI, 0.03− 3.63) generations. The dif
ference between glucose and maltose data is insignificant when one 
accounts for the phenotypic delay. To conclude, the stochastic Angerer 
model reiterates the results obtained using historical methods. 

Considering recent evidence for the significance of protein dilution 
for the expression of a mutant phenotype in bacteria, it is worth inves
tigating how the above model with stochastic phenotypic lag performs 

against data simulated with consideration for protein dilution. The 
simulation algorithm is based on the one from Barna [51]. It takes two 
arguments: the initial number of wild-type proteins u in the cell and 
some threshold value of the number of wild-type proteins in the cell, 
smaller than u, above which the said cell is sensitive to the antibiotic. As 
argued in [64] (see Supplemental Information in the referenced paper), 
with u protein units initially in the cell, resistance emerges approxi
mately after λ = log2 u generations (see equation S1 in [64]); therefore, 
we have simulated 1, 2, 3, or 5 generations of phenotypic lag by setting u 
to 2, 4, 8, or 32, respectively (Table 4). However, this is only a mean 
estimate of when a randomly chosen cell should develop resistance, and 
it does not consider the whole population, in which wild-type protein 
levels in all cells are co-dependent. Additionally, in a scenario where 
wild-type proteins are entirely distributed into daughter cells, u cells 
possess a single unit of the wild-type protein. These cells can never reach 
phenotypic resistance if one assumes that the wild-type proteins must be 
diluted entirely out of the cell for it to lose sensitivity. Therefore, to 
allow for the whole mutant clone to become resistant, in the simulations, 
the threshold value was set to 1. Since the protein dilution model is 
indexed by more parameters than the stochastic Angerer model, one can 
anticipate that u might not easily translate into λ; thus, m and λ were 
estimated jointly. The stochastic Angerer model approximates protein 
dilution with acceptable precision and accuracy: the error of the point 
estimation of m as judged by the median, is not bigger than ~ 5–10 % of 
the true value, and the confidence intervals retain coverage close to 
nominal in all cases except when both sample size and phenotypic lag 
are small (nC = 30, u = 2) (Table 4). This, however, is not caused by the 

Table 3 
Analysis of point and interval estimates of m for different extents of phenotypic lag and plating efficiencies.  

Simulation parameters SA formulation LC formulation 

NE nC m ε λ median m CI coverage median m CI coverage 

10000  30  10  1  1  10.0  95.1 %  7.66  35.3 % 
10000  30  10  1  2  10.0  94.8 %  5.41  1.32 % 
10000  30  10  1  3  10.1  94.9 %  3.48  0.020 % 
10000  30  10  0.5  1  10.0  95.2 %  7.80  44.7 % 
10000  30  10  0.5  2  10.1  94.9 %  5.66  3.02 % 
10000  30  10  0.5  3  10.1  95.3 %  3.80  0.020 % 
10000  30  10  0.1  1  10.0  94.7 %  8.16  71.6 % 
10000  30  10  0.1  2  10.0  94.9 %  6.35  23.5 % 
10000  30  10  0.1  3  9.98  94.5 %  4.66  2.67 % 

NE – number of experiments simulated; nC – number of cultures in each experiment; m – the average number of mutations; ε – plating efficiency; λ – average phenotypic 
lag. In all simulations, N0 = 103 and Nt = 109. SA formulation – stochastic Angerer formulation; mutant distribution with correction for λ. LC formulation – simple 
model where λ = 0. Nominal CI coverage is 95 %. 

Table 4 
Assessment of efficiency of stochastic Angerer formulation of the Luria–Delbrück distribution against protein dilution model.  

Simulation parameters Joint estimation LC formulation Observed power 

NE nC m u median m CI coverage median λ median m CI coverage  

10000 100 1 2 1.06 95.1 % 0.938 0.703 24.6 % 50.6 % 
10000 100 1 4 1.10 94.6 % 1.75 0.502 0.43 % 85.2 % 
10000 100 1 8 1.10 95.0 % 2.42 0.354 0.0 % 93.5 % 
10000 100 1 32 0.97 94.9 % 3.46 0.179 0.0 % 92.8 % 
10000 100 10 2 9.96 95.3 % 0.739 8.20 13.4 % 46.4 % 
10000 100 10 4 10.1 94.6 % 1.49 6.60 0.06 % 91.5 % 
10000 100 10 8 10.3 94.9 % 2.22 5.07 0.0 % 99.8 % 
10000 100 10 32 9.86 94.7 % 3.49 2.60 0.0 % 100 % 
10000 30 1 2 1.06 96.8 % 0.900 0.699 67.0 % 20.9 % 
10000 30 1 4 1.11 95.5 % 1.72 0.500 25.8 % 42.1 % 
10000 30 1 8 1.08 95.7 % 2.38 0.353 5.2 % 52.6 % 
10000 30 1 32 0.95 95.6 % 3.40 0.183 0.0 % 54.3 % 
10000 30 10 2 9.78 96.6 % 0.592 8.23 55.3 % 18.6 % 
10000 30 10 4 9.82 95.1 % 1.35 6.66 11.5 % 47.5 % 
10000 30 10 8 10.0 95.1 % 2.12 5.11 0.78 % 77.3 % 
10000 30 10 32 9.64 94.7 % 3.39 2.61 0.0 % 97.0 % 

The threshold value of protein units in the cell above which the phenotype is not expressed has been set to 1. NE – number of experiments simulated; nC – number of 
cultures in each experiment; m – the average number of mutations; u – initial number of protein units; λ – average phenotypic lag. In all simulations, N0 = 103 and Nt 
= 109. Joint estimation – MLEs of m and λ were estimated simultaneously under the stochastic Angerer model. LC formulation – estimation of m under the Lea–Coulson 
formulation. Nominal CI coverage is 95 %. Observed power – percent of estimations with λ significantly (P < 0.05) greater than 0. 
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model itself but rather by the well-known inaccuracy of the likelihood 
ratio test near the boundary of the parameter space: the confidence in
tervals for m cannot be correctly estimated if the value of the nuisance 
parameter λ reaches 0, which is the minimum value λ can assume, and 
which violates the regularity conditions of Wilks’ theorem [66] (in 
agreement with that, λ was found to be significantly greater than 0 only 
in ~ 20 % cases, Table 4). However, the good CI coverage when regu
larity conditions are met might be related to the fact that the shapes of 
the CDFs under the protein dilution model and under the stochastic 
Angerer model with m and λ chosen to be the same as joint estimates 
from protein dilution simulated data are remarkably similar (Fig. 5). 

When the threshold value in the stimulations is set to 0, the sto
chastic Angerer model performs somewhat worse, albeit better than 
expected, with the median m being lower than the nominal value by 
about 10 % in the case of 2–8 protein units and by ~ 30 % in case of 32 
protein units, and CI coverage around 90 % not only for a more realistic 
sample size (nC = 30) but also for a larger one (nC = 100) which should 
be more sensitive to deviations from the model assumptions (Table S1). 
Based on these results, as well as the good agreement of the estimates 
with previously published data, the stochastic Angerer model may be 
helpful when analyzing data affected by phenotypic delay even though it 
does not exactly reflect the physiological nature of the process, partic
ularly because the exact distribution of the number of resistant bacteria 
under the protein dilution model (or protein dilution combined with 
effective polyploidy) is currently unknown. 

It should also be noted that there does not seem to be one correct 
method to model phenotypic delay: in some organisms, such as eukary
otic (particularly mammalian) cells, protein degradation might play a 
more significant role. For example, the doubling time of Saccharomyces 
cerevisiae is 1.5–2.3 h [67], and the half-lives of protein products of the 
popular reporter genes such as URA3 or CAN1 may vary between 1.4 and 
3 h [68,69]. While arguably some form of accounting for the phenotypic 
delay is better than not correcting at all, it will be interesting to see in the 
future how a “mechanism-agnostic” formulation such as the one pre
sented above fares against other, more biologically relevant models. 

3.5. Cell death 

Under the classic Luria–Delbruck model, the population growth is 
modeled by a pure birth process, where we assume no cell death. 
However, there are certain scenarios where death events can frequently 
occur, for example:  

• Selectable mutation acquired during growth increases the chance of 
dying of a mutant cell. Wild-type cells are unaffected. This will 
introduce a negative bias when estimating the mutation rate.  

• The assayed bacterial strain carries certain genetic mutations that 
severely affect cellular fitness. Both wild-type and mutant cells will 
be affected.  

• Cells grow in the presence of a sub-inhibitory concentration of an 
antibiotic. Again, wild-type and mutant cells can be subjected to 
death unless one scores for mutations leading to resistance to the said 
antibiotic. In such a case, only wild-type cells are sensitive, as se
lective pressure will lead to the selection of resistant cells. 

Several new symbols need to be introduced. In addition to the pre
viously defined β, the growth rate of a strain, the mean death rate is 
typically denoted by δ. These are assumed to be constant over time. 

Further, to ensure population growth, we assume that β > δ. We can 
express death rate as a fraction of growth rate δ = dβ. Additionally, we 
can express the death of a cell in terms of probability. The probability of 
cell death is p = d∕(1 + d), implying that d = p∕(1 − p). Since we 
assumed d < 1, p < 0.5. 

We can extend the assumption of deterministic growth of non
–mutant cells by saying that these cells grow and die deterministically, 
which means that β in (1) and (4) is replaced by the net growth rate 
β* = β − δ = β(1 − d). This should hold for reasonable values of d and 
sufficiently large inocula. For example, under a simple stochastic model, 
the chance of extinction as t ⟶ ∞ of a population starting with N0 cells 
is dN0 (see (8.59) in [15]), so for example, for d = 0.9 and N0 = 1000, the 
chance of extinction is ~ 10− 46. The impact of the stochastic growth of 
non-mutant cells on the estimates of mutation rates will be discussed in 
the next section. 

It is important to remember that in the described model, cells mutate 
during division (hence the name mutation rate per cell division). Thus 
expressions (1) to (4) are of use only when the number of divisions can be 
equated to Nt − N0. This is not the case when there is cell death, as in this 
scenario, some divisions are masked by dying cells. When cell death oc
curs, more divisions are required to reach the same number of cells 
(Fig. 1F). The real number of cell divisions can be extracted by simple 
reasoning. If the chance of death of a wild-type cell is p, out of a given 
number of wild-type cell events, a fraction p will be deaths, and 1 − p will 
be births; for example, when p = 0.4 (which implies d = 2∕3), out of 10 
events we will have 6 births and 4 deaths, so starting from a single (N0 =1) 
cell we have Nt = 1 +1 +1 +1 +1 +1 +1 − 1 − 1 − 1 − 1 = 3. The increase 
in cell count is Nt − N0 = 2. On the other hand, Nt − N0 = Births − Deaths, 
and Births∕Deaths = (1 − p)∕p = 1∕d, so the number of cell divisions is 
clearly Births = (Nt − N0)∕(1 − d) = 6. Hence, when wild-type cell death 
occurs, mutation rates are inflated by a constant factor (1 − d)− 1. The 
correcting factor was first derived by Newcombe [23] and reiterated by 
Zheng [46]. The phenomenon of overestimation of mutation rates due to 
cell death was also reported by Frenoy & Bonhoeffer based on similar 
reasoning supported by simulations [70]. 

The dynamics of the mutant cells can be modeled by a simple birth- 
and-death process, as previously suggested [30,37,43,71,72]. Under this 
model, upon completion of the lifetime, a cell can either divide (+1) or 
die (− 1). The most profound difference between mutant and non-mutant 
cells is that each mutant clone starts with a single cell; therefore, its 
chance of dying cannot be neglected: if the original mutant cell dies, the 
whole mutant lineage will never be. Consequently, mutant cell death 
introduces a downward bias on mutation rate estimation (Fig. 1E). 

For reasons explained later, I will focus on the situation where the 
death rate is the same for wild-type and mutant cells, that is,ß*

1/ß*
2 =

r* = ß1/ß2 = r. Here, ß*
1 and ß*

2 are the mean per capita growth rates of 
non-mutants and mutants, respectively. (The case when d1 ∕= d2, for 
example, when cells are exposed to a sub-inhibitory concentration of an 
antibiotic and d2 = 0 was studied by Zheng [46]). The expression for the 
auxiliary sequence {hn} assumes the form 

h0(r, d) = − 1 + rdB(r; 2)F(1, r; r + 2; d)
hn(r, d) = (1 − d)2rB(n; 1 + r)

F(n + 1, r + 1; n + r + 1; d) for n ≥ 1

⎫
⎬

⎭
. (22) 

When only a part of the culture is plated, the expression is somewhat 
more complicated:   
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Fig. 5. Empirical CDFs of mutant counts 
under the protein dilution model. One 
100,000-tube experiment with m = 1 (A, 
C, E, G) or m = 10 (B, D, F, H), and the 
initial number of protein units cell u = 2 
(A, B), u = 4 (C, D), u = 8 (E, F), or u 
= 32 (G, H) that need to be diluted down 
to 1 or less for the phenotype to be 
expressed was simulated for each case. 
Black continuous lines represent the 
empirical CDFs. MLEs of m and λ esti
mated jointly from these data, but 
assuming stochastic Angerer distribu
tion, were used to simulate additional 
experiments under the stochastic 
Angerer model. These CDFs are repre
sented by red dashed lines. Additional 
CDFs are presented for reference. For 
picture clarity, only the values of the 
CDF up to the colony count of 5000 are 
shown.   
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Simulations show that the upward bias from an increased number of 
divisions has a dominant effect over the downward bias caused by dying 
mutant clones, resulting in higher mutant counts (Fig. 6) and over
estimated mutation rates (Table 5). Small death rates (< 10 % of growth 
rate) have little impact on the point estimates of mutation rates. How
ever, the bias quickly rises; at d = 0.25, the difference is ~ 20 %. At d 
= 0.6− 0.7, mutation rates are essentially doubled (Table 5). 

In the end, I would like to discuss the case when the presence of an 
antibiotic in the liquid medium promotes the selection of resistant 
bacteria (d1 ∕= d2 = 0), which was studied in [46]. Under the assumptions 
considered above, bacterial growth in the presence of a sub-inhibitory 
concentration of an antibiotic has, apart from increasing the number 
of cell divisions, the additional effect of decreasing the net growth rate of 
the non-mutant cells, leading to r < 1 and thus further inflating mutant 
counts. However, setting a very big wild-type death rate, such as d1 
= 0.95 leads to r* = 0.05. When the wild-type population grows so 
much slower than the mutant cells, one can quickly encounter a situa
tion where the mutant count is much bigger than that of non-mutants, 
violating the requirement that mutant cells comprise only a negligible 
part of the culture. Additionally, the switch to phenotypical resistance is 
probably not instantaneous. In reality, mutant cells will continue to die 
at the same rate as wild-type cells for the period of phenotypic lag, or 

possibly with a gradual change of death rate from that of wild-type cells 
to that of mutants (in any case, the mutant death rate is probably not 
constant over time). As departing from these useful assumptions would 
inevitably lead to a significantly more complicated model, for the time 
being, mlemur cannot treat such cases. 

3.6. Variation of the final number of cells in parallel cultures 

Under the Luria–Delbrück model, we assume that each sister culture 
contains the same number of cells. It is clear, however, that complete 
homogeneity of the culture sizes is impossible to achieve. This problem 
has been studied previously by Ycart and Veziris, and Zheng [41,42,73]. 
Because the mutation rate is constant, a smaller number of cells in a 
given culture will result in a smaller average number of mutations (see 
(3)), increasing the fraction of smaller colony counts. As the Lur
ia–Delbrück distribution’s PMF values are generally bigger for smaller 
colony counts, one can deduce that high variability in culture size will 
deflate the mutation rate estimate. 

A good unitless measure of dispersion is the coefficient of variation 
(CV), which is the standard deviation (SD) divided by the mean number 
of cells in each culture (Nt). Two studies were conducted to assess the 
impact of CV on the estimates of m. In the study by Ycart and Veziris, the 
fluctuation data were simulated assuming a log-normal, gamma, or 
other similarly shaped distribution [42]. In Zheng 2016, each culture 
was simulated using a Bartlett stochastic algorithm [41]. These works 
concluded that a CV as big as 0.2 has an insignificant impact on the 
estimates of m. 

When CV is big, Zheng proposed two methods to deal with extra 
variability. One is to use the B0 distribution, a mixture of gamma and 
Luria–Delbrück distributions indexed by m and CV [40,41]. While 
mutant counts are Luria–Delbrück distributed, the parameter m is a 
random variable obeying the gamma distribution. The CV of m is 
assumed to be the same as the CV of Nt. Another method is the so-called 
“Golden Benchmark method”, which means estimating μ directly using 
pairs of mutant counts and population sizes for each test tube [41]. 

In the current study, I investigated the impact of CV in the context of 
wild-type cell death. The model developed in the previous section ne
glects the stochastic nature of the wild-type dynamics, whose important 
consequence is the inflation of the variance of culture size. If we assume 
that wild-types grow according to the simple birth and death process, 
then using (8.48) and (8.49) in [15] and with minor rearrangements, we 
arrive at the following formula for the coefficient of variation of Nt: 

CV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + d
1 − d

Nt − N0

NtN0

√

≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + d

N0(1 − d)

√

(24) 

Fig. 6. Empirical CDFs of mutant counts with non-zero death rate. One 
100,000-tube experiment with m = 10 was simulated for each case. The death 
rate is the same for wild-type and mutant cells. For picture clarity, only the 
values of the CDF up to the colony count of 5000 are shown. Red – d = 0; green 
– d = 0.25; blue – d = 0.5; purple – d = 0.9. 

h0(r, d, ε) = − 1 + rdB(r; 2) + F(1, r; r + 2; d)
1 − d
r + 1

[dF(1, 1 + r; 2 + r; d)

+
(1 − ε − d)

ε

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F
(

1, 1 + r; 2 + r;
ε + d − 1

ε

)

d2 > 1 − 2ε

ε
1 − d

F
(

1, 1; 2 + r;
ε + d − 1

d − 1

)

otherwise

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎥
⎦

hn(r, d, ε) = r(1 − d)2

ε B(n; 1 + r)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F
(

n + 1, r + 1; n + r + 1;
ε + d − 1

ε

)

d > 1 − 2ε

( ε
1 − d

)r+1
F
(

r + 1, r; n + r + 1;
ε + d − 1

d − 1

)

otherwise

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for n ≥ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (23)   
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which shows that the coefficient of variation increases with smaller N0 
and bigger d. However, setting for example N0 = 103, Nt = 108, and d 
= 0.7 gives CV = 0.075. Even d as big as 0.95 gives CV = 0.197, within 
the 20 % safety threshold [41], indicating that the variability might be 
controlled so long as the inoculum is sufficiently big. 

To test whether one can model the dynamics of the wild-types using a 
deterministic approach with acceptable results, I simulated fluctuation 
data using the fully stochastic fixed-time Bartlett algorithm by Qi Zheng, 
which can be found in the rSalvador source files and was described in 
[46]. The fate of the culture is tracked event by event, and each event 
might be one of four: wild-type birth, wild-type death, mutant birth, or 
mutant death, with mutant birth resulting from either cell division or 
mutation. The lifetimes of all cells are exponentially distributed. 
Consequently, the number of births and deaths, their ratio, and Nt are all 
random variables (because the process is stochastic). However, with a 
sufficiently long growth time, the mean number of births should be close 
to its deterministic equivalent, which, as shown previously, is given by 
(Nt − N0)∕(1 − d). For example, if one sets N0 = 100, t = 15.4, μ = 10− 4, 

and d = 0.7 (which corresponds to β1 = 1, β2 = 1, δ1 = 0.7, δ2 = 0.7 in the 
simulation algorithm), the average Nt from 106 simulated test tubes is 
10,086, and the mean number of births is 33,287. The same number of 
births is produced in the deterministic setting as calculated using 
(10 086 − 100)∕(1 − 0.7). 

I have simulated a series of 10,000 100-tube experiments with the 
values of d between 0.5 and 0.9, μ = 10− 4 or 10− 5, and t chosen such that 
Nt varied from 104 to 2.5 × 105 (which corresponded to m between 1 
and 25). Since Nt was kept relatively small to save computational time, 
and in some cases, φ was as big as 0.02, I chose to correct for the size of 
the inoculum in the estimations of m. However, in a real-world scenario, 
the number of wild-type cells is unknown because the number of col
onies on non-selective plates is a sum of mutant (n) and non-mutant 
colonies (Nt). Therefore, μ was estimated using the average total cul
ture size: to obtain the estimate, m was divided by (Nt 
+ n − N0)∕(1 − d). 

The experiments demonstrate that when the number of wild-types is 
a random variable (because of their stochastic growth), μ is slightly 

Table 5 
Analysis of point and interval estimates of m under conditions of a non-zero death rate.  

Simulation parameters BD formulation LC formulation 

NE nC m ε d median m CI coverage median m CI coverage 

10000  30  10  1  0.1  10.0  95.0 %  10.8  89.5 % 
10000  30  10  1  0.25  10.0  94.6 %  12.3  53.8 % 
10000  30  10  1  0.65  10.1  94.9 %  21.2  0.0 % 
10000  30  10  1  0.9  10.0  94.8 %  52.7  0.0 % 
10000  30  1  1  0.1  1.00  94.8 %  1.06  93.5 % 
10000  30  1  1  0.25  1.00  95.1 %  1.18  87.2 % 
10000  30  1  1  0.65  1.00  94.5 %  1.79  19.5 % 
10000  30  1  1  0.9  1.00  94.8 %  3.52  0.0 % 
10000  30  10  0.1  0.1  10.0  94.8 %  10.8  91.9 % 
10000  30  10  0.1  0.25  10.0  94.7 %  12.4  67.2 % 
10000  30  10  0.1  0.65  10.1  94.6 %  22.0  0.0 % 
10000  30  10  0.1  0.9  10.1  95.0 %  56.0  0.0 % 

NE – number of experiments simulated; nC – number of cultures in each experiment; m – the average number of mutations; ε – plating efficiency; d – relative death rate. 
In all simulations, N0 = 103 and Nt = 109. BD formulation – the Luria–Delbrück model with mutant dynamics modeled using simple birth-death process. LC formulation 
– the simple model where d = 0. Nominal CI coverage is 95 %. 

Table 6 
Point and interval estimates of μ under a fully stochastic model with cell death.   

Simulation parameters Culture size LD distribution B0 distribution Golden Benchmark 

Line NE nC N0 t 104μ d ρ 10− 4 median 
Nt + n 

median 
CV 

104 

median μ 
CI 
coverage 

104 

median μ 
CI 
coverage 

104 

median μ 
CI 
coverage 

1  10000  100  100  9.2  1  0.5  1  0.996  17.2 %  0.987  95.4 %  1.00  95.6 %  0.999  95.3 % 
2  10000  100  100  12.4  1  0.5  1  4.93  17.2 %  0.976  93.3 %  1.00  95.7 %  1.00  95.1 % 
3  10000  100  100  13.8  1  0.5  1  9.94  17.2 %  0.969  90.4 %  1.00  95.9 %  1.00  94.9 % 
4  10000  100  200  12.4  1  0.5  1  9.87  12.2 %  0.985  93.6 %  1.00  95.7 %  1.00  95.1 % 
5  10000  100  100  15.4  1  0.7  1  1.02  23.6 %  0.975  94.9 %  1.00  96.1 %  1.00  95.6 % 
6  10000  100  100  20.7  1  0.7  1  4.99  23.7 %  0.950  86.7 %  1.00  96.0 %  1.00  94.9 % 
7  10000  100  100  20.7  1  0.7  0.8  4.98  23.7 %  0.953  86.4 %  1.00  96.2 %  1.00  94.8 % 
8  10000  100  100  23  1  0.7  1  9.95  23.7 %  0.938  77.4 %  0.999  96.4 %  1.00  94.9 % 
9  10000  100  100  23  0.1  0.7  1  9.92  23.7 %  0.971  94.7 %  0.998  95.9 %  0.999  95.2 % 
10  10000  100  250  17.7  1  0.7  1  5.07  15.0 %  0.981  93.5 %  1.00  95.6 %  1.00  94.8 % 
11  10000  100  250  20  1  0.7  1  10.1  15.0 %  0.975  92.0 %  1.00  95.5 %  1.00  95.0 % 
12  10000  100  500  17.7  1  0.7  1  10.1  10.6 %  0.988  93.8 %  1.00  95.2 %  1.00  95.0 % 
13  10000  100  250  53  1  0.9  1  5.04  27.3 %  0.926  75.7 %  1.00  96.6 %  1.00  94.8 % 
14  10000  100  500  46.1  1  0.9  1  5.05  19.3 %  0.964  89.9 %  1.00  95.9 %  0.999  95.0 % 
15  10000  100  500  53  1  0.9  1  10.1  19.4 %  0.956  85.1 %  0.999  96.1 %  0.999  95.4 % 
16  10000  100  500  53  0.1  0.9  1  10.1  19.4 %  0.978  94.5 %  0.100  95.4 %  0.100  95.0 % 
17  10000  100  1000  46.1  1  0.9  1  10.1  13.7 %  0.979  92.3 %  1.00  95.5 %  0.999  94.7 % 
18  10000  100  1000  55.2  1  0.9  1  25.1  13.7 %  0.974  89.2 %  0.999  96.0 %  0.998  95.1 % 
19  10000  100  2000  39.1  1  0.9  1  10.0  9.6 %  0.989  94.5 %  0.999  95.7 %  0.999  95.4 % 

NE – number of experiments simulated; nC – number of cultures in each experiment; N0 – the size of inoculum; t – time of culture growth; μ – mutation rate per cell; d – 
relative death rate; ρ – relative mutant fitness; Nt + n – the average final number of cells in the culture (non-mutant and mutant). Cell cultures were simulated using a 
fully stochastic Bartlett algorithm until a prescribed value of Nt + n was reached but modeled by a simple birth-death process for mutants with deterministic growth of 
wild-types, with consideration for the inoculum, using either Luria–Delbrück distribution or B0 distribution where CV is taken into account. For each experiment, μ was 
calculated by dividing the estimate of m by (Nt + n − N0)∕(1 − d). Mean and CV for Nt were calculated for each experiment, and the median values are presented in the 
table. Nominal CI coverage is 95 %. 
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underestimated when one uses the Luria–Delbrück distribution with cell 
death, as judged by the median μ lower by 1–7 % than the nominal 
value. The results show that the performance of both point and interval 
estimates strongly depends on the size of the inoculum, as this parameter 
significantly affects CV, but also on Nt, or rather on the associated m 
(Table 6, column LD distribution). For example, for d = 0.7, μ = 10− 4, 
and N0 = 100, the 95 % CI coverage when Nt ≈ 104 (m ≈ 1) is 94.9 %, 
but when Nt ≈ 5 × 104 (m ≈ 5), it is 86.7 % and for Nt ≈ 105 (m ≈ 10) it 
drops to 77.4 %, even though in all these cases CV remains stably around 
24 % (Table 6, lines 5–8). The likely explanation for this observation is 
that bigger values of m produce higher per-plate mutant counts, 
increasing precision, and this, in turn, negatively affects CI coverage; for 
example, decreasing mutation rate to 10− 5 while keeping Nt ≈ 105 (m ≈
1) increases CI coverage to 94.7 % (Table 6, compare lines 8 & 9). The 
drop in accuracy might be alleviated by decreasing the variability in 
culture sizes: for μ = 10− 4 and Nt ≈ 105 (m ≈ 10), increasing N0 to 250 
(CV ≈ 15 %) gives 95 % CI coverage 92.0 %, and for N0 = 500 (CV ≈ 11 
%) it is 93.8 % (Table 6, compare line 8 to lines 11–12). Similar ob
servations can be made for the case where Nt ≈ 5 × 104 (m ≈ 5) (Table 6, 
compare lines 6 & 10). 

The usage of B0 distribution significantly improves the accuracy of 
point estimates of μ at any value of CV, albeit at the cost of producing too 
conservative confidence intervals when CV or m is high (one can observe 
95 % CI coverage at 95.2–96.6 %, Table 6, column B0 distribution). This 
problem only affects the CIs of μ, and the confidence intervals of m retain 
the correct coverage; for example, if, in the estimations described in Line 
8 of Table 6 we replace each observed Nt with the mean from 106 test 
tubes (pooled from all experiments) equal 9.95 × 104, the CI coverage 
becomes 95.0 %. The cause of this discrepancy is that it is the value of m 
that is directly estimated by the algorithm, and the variability in Nt is 
reflected in a similar variability in m, which is already incorporated in 
the model. Dividing m by the true value of Nt results in a situation where 
we correct for the variability in culture sizes twice. Consequently, values 
of m farther from the true value are partially offset by similar variability 
of Nt. Thus, the observed variance of μ is smaller than anticipated, and 
the CI coverage increases. 

Alternatively, if the values of Nt for each culture are known, one can 
also use the Golden Benchmark method described in previous para
graphs: one may note a high accuracy of point estimates and CI coverage 
at 94.7–95.6 % (Table 6, column Golden Benchmark). The good per
formance of the Golden Benchmark method is particularly striking, 
considering that we disregarded the variability in the proportion of 
deaths vs. births, replacing it with its mean value equal d. This param
eter plays a crucial role in recovering the number of cell divisions from 
the number of living cells. However, a brief analysis of the number of 
births and deaths in the simulated data shows that the distribution of the 
deaths-to-births ratio is characterized by a low variance, which might 
explain why this parameter seems to have a negligible impact on the 
estimates in practice (Table S2, Figure S1). 

These observations remain consistent when d = 0.5 or d = 0.9. 
However, in the latter case, one needs to use bigger inocula (order of 
magnitude 103) to counterbalance the extra variability caused by the 
high death rate and its effect on the estimates using the Luria–Delbrück 
distribution (Table 6). Decreasing the sample from 100 to a more real
istic 30 cultures per experiment improved the coverage of confidence 
intervals produced using Luria–Delbrück distribution, which is most 
evident when one compares, for example, Lines 6, 7, 8, 13, and 15 be
tween Table 6 and Table S3. Overall, these results suggest that it is 
possible to neglect the stochastic nature of the wild-type cell dynamics 
without much loss of accuracy and precision of the estimation so long as 
the values of m and CV are controlled, and cultures are grown for a 
sufficiently long time. 

3.7. A universal sequence? 

Feeling encouraged by the number of developments concerning the 

relaxation of the Luria–Delbrück protocol requirements, it might be 
appealing to attempt deriving a universal sequence that combines 
existing generalizations of the Lea–Coulson model. However, one 
quickly arrives at complex dilemmas, one of which has been described in 
section 3.6. A related problem can be easily imagined if a researcher 
wishes to correct simultaneously for differential growth of mutant and 
wild-type cells and phenotypic lag. If a genetic mutant does not express a 
resistant phenotype for some time, we can imagine that the same trait 
will be extended to other phenotypes: growth rate and death rate. In the 
most naïve scenario, a living cell will instantly change its growth dy
namics from that of a wild-type cell to that of a mutant when the period 
of phenotypic lag expires. While a closed-form expression for the case d 
= 0 can be derived under this assumption, it becomes significantly more 
complicated when we replace the Yule process with the simple birth- 
and-death process. Additionally, it seems more realistic that the 
growth rate and death rate change would be gradual over the period of 
phenotypic delay as wild-type proteins are being successively replaced 
by their mutant forms. Instead of taking β and δ as constants, we could 
model mutant dynamics using a non-homogeneous process such as the 
one described in chapter 9.3 in Bailey [15]. This, however, raises a 
question of how exactly the change in β and δ over time occurs. 

The outcome of a fluctuation assay may be affected by more than one 
factor simultaneously. Thus, the statistical model should include as 
many factors as possible. Alas, the progress in this area is limited by the 
need for more biological data, the increasing complexity of the model, 
and the mathematical and computational difficulties associated with it. 
Hence, the adjustment for the phenotypic lag is currently limited to 
cases where it is assumed that apart from acquiring the ability to grow 
on a selective medium, there are no other changes in phenotype (i.e., β1 
= β2 and δ1 = δ2). 

4. Concluding remarks 

Eighty years after the publication of the Luria & Delbrück paper, 
fluctuation analysis has seen numerous developments that aim to relax 
its strict requirements. For a long time, however, the researchers were 
limited to a basic protocol that did not account for inter-strain differ
ences in fitness, phenotypic lag, cellular death rate, and other deviations 
that affect the number of mutant colonies on the plate. One such devi
ation is imperfect plating, which should be adequately modeled to 
obtain correct results (Table 1). To this day, the nuances are frequently 
disregarded, perhaps due to a lack of knowledge, judging by the un
failing popularity of FALCOR (e.g., [74–76]). With the computational 
power of modern CPUs, it is becoming feasible to incorporate multiple 
additional parameters to increase the accuracy of mutation rate esti
mation. The current study provides important extensions to the fluctu
ation data analysis using the maximum likelihood method, with the 
possibility to account for cell death or phenotypic lag, particularly with 
partial plating. The new package mlemur does so in a user-friendly way, 
allowing one to obtain point and interval estimates and compare them 
between different strains and for many strains simultaneously. Tools to 
calculate the statistical power of the likelihood ratio test and to deter
mine the sample size required to achieve the prescribed power have also 
been implemented in mlemur. These developments have been described 
in Supplementary File S1, and Table S4 contains an analysis of the 
required sample sizes for a wide variety of the values of m, which might 
be valuable when designing a fluctuation experiment. 

Nevertheless, the difficulties encountered when modeling bacterial 
growth in the presence of a sub-inhibitory concentration of an antibiotic 
underline the fact that the classical Luria–Delbrück distribution, even 
with extensions, might not be a suitable model for every fluctuation 
assay. Novel approaches were proposed and might be available for the 
user in the future [43,44,46,77–80]. The mechanism of phenotypic lag 
and its impact on growth and death rate is also poorly studied, yet it has 
a profound effect on the distribution of mutant cells. While the same 
problems do not plague modern methods based on whole genome 
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sequencing, the low cost and complexity, and the speed of generating 
data remain important advantages of the fluctuation assays, warranting 
further development of more sophisticated statistical models of muta
tion and cell proliferation. 
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