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ABSTRACT

A high-level method was obtained to solve the SEI model problem involving Symmetrization measures in numerical 
calculations through the Implicit Midpoint Rule method (IMR). It is obtained using Non-Standard Finite Difference Schemes 
(NSFD) with Extrapolation techniques combined. In solving differential equation problems numerically, the Extrapolated 
SEI model method is able to generate more accurate results than the existing numerical method of SEI model. This study aims 
to investigate the accuracy and efficiency of computing between Extrapolated One-Step Active Symmetry Implicit Midpoint 
Rule method (1ASIMR), Extrapolated One-Step Active Symmetry Implicit Midpoint Rule method (2ASIMR), Extrapolated 
One-Step Passive Symmetry Midpoint Rule method (1PSIMR) and the extrapolated Two-Step Passive Symmetry Midpoint 
Rule method (2PSIMR). The results show that the 1ASIMR method is the most accurate method. For the determination of 
the efficiency of 2ASIMR and 2PSIMR methods have high efficiency. At the end of the study, the results from the numerical 
method obtained show that Extrapolation using Non-Standard Finite Difference has higher accuracy than the existing 
Implicit Midpoint Rule method.
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ABSTRAK

Kaedah peringkat tinggi diperoleh untuk menyelesaikan masalah model SEI yang melibatkan langkah simetri 
(symmetrization) dalam pengiraan berangka melalui kaedah kaedah titik tengah tersirat (IMR). Ia diperoleh menggunakan 
teknik ekstrapolasi yang digabungkan dengan skema perbezaan terhingga bukan standard. Dalam menyelesaikan masalah 
persamaan kebezaan secara berangka, kaedah model SEI yang diekstrapolasi mampu menjana keputusan yang lebih tepat 
berbanding kaedah berangka model SEI yang sedia ada. Hal ini bertujuan untuk menyiasat ketepatan dan kecekapan 
pengkomputeran antara kaedah titik tengah tersirat simetri aktif satu langkah yang diekstrapolasi(1ASIMR), kaedah titik 
tengah tersirat simetri aktif dua Langkah yang diekstrapolasi(2ASIMR), kaedah titik tengah simetri pasif satu langkah 
yang diekstrapolasi(1PSIMR) dan kaedah titik tengah simetri pasif dua langkah yang diekstrapolasi(2PSIMR). Hasil kajian 
menunjukkan bahawa kaedah 1ASIMR adalah kaedah yang paling tepat. Bagi penentuan kecekapan kaedah kaedah 2ASIMR 
dan 2PSIMR mempunyai kecekapan yang tinggi. Pada akhir kajian, keputusan daripada kaedah berangka yang diperoleh 
menunjukkan bahawa skim perbezaan terhingga bukan standard ekstrapolasi mempunyai ketepatan yang lebih tinggi 
berbanding kaedah berangka yang sedia ada.

Kata kunci: Perbezaan terhingga bukan standard; ekstrapolasi; Model SEI; kaedah titik tengah; tersimetri
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INTRODUCTION

Malware propagation is being investigated extensively 
because it poses a significant danger to information 

exchange. It also represents one of the most critical security 
threats we must confront. As with a biological disease, 
latent period can be infected from the spread of the virus. 
Same goes to the mode of susceptibility, transmission, 
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and resistance (Hethcote 2000), also the device itself, the 
spatial structure, and the environment in which it could be 
disseminated with other factors (Akmam et al. 2021).

The theory systems of Ordinary Differential Equations 
(ODEs) are being used to explore the dynamic spread of 
the virus by using the mathematical models. The standard 
epidemic models that can describe the spread of the virus is 
susceptible (S), exposed (E), infected (I) and recovered (R) 
(Androulidakis et al. 2016).

Numerical methods are used to solve initial value 
problems in differential equations are divided into two 
categories namely Multi-Step Method and Runge-Kutta 
Method. Each of these numerical techniques is often used 
in solving Ordinary Differential Equation (ODE) problems. 
To solve closely related methods such as the Implicit 
Midpoint of Symmetry Method, the numerical solution 
must be near to zero in order to get the exact solution. 
It applies to methods that combine the same features for 
both the Multi-Step Method and the Runge-Kutta Method 
(Butcher 1966). There are various existing methods that 
involve numerical methods to solve initial value problems. 
The two main methods, namely One Step method such 
as Euler method and Implicit Midpoint and multi-Step 
method such as Adams-Moulton and Euler-Romberg 
method (Atkinson et al. 2011). The One Step method is 
easy to use and it divides the solution by a segment of a 
short straight line. The Implied Midpoint (IMR) method 
is extended to Two Step Symmetry. This symmetry is 
equivalent to a Symmetrization applied in two steps. The 
advantage of Two-Step Active symmetry, the method has a 
sequence of two behaviors compared to a sequence of One 
Step symmetry behaviors (Razali & Chan 2015).

The main method that involves numerical methods 
to solve initial value problems in this system is called 
the Symmetrized Implicit Midpoint Rule (IMR). It has 
one step and two step methods, both of this step have 
active and passive modes, which are One Step Passive 
Method of Symmetry (N. Razali et al. 2018), One Step 
Active Method of Symmetry, Two Step Active Method of 
Symmetry and Two Step Passive Method of Symmetry 
(1PSIMR,1ASIMR,2ASIMR,2PSIMR). All of this method 
is Extrapolated in order to obtain higher order method 
(Gorgey 2018). It also has the advantage suppressing the 
order reduction when used with higher order methods.

METHODOLOGY

The flow of numerical experiment can be summarized in the 
flowchart as shown in figure 1. Problem from SEI model 
is chosen to test the performance studied of Extrapolated 
Implicit Midpoint Rule methods, namely 1ASIMR, 1PSIMR, 
2ASIMR and 2PSIMR. The coding for each method is 
establish in MATLAB program and is checked for errors. 
The selected benchmark problem is then added into the 
program for computation after verification stage. For each 
approach under investigation, the computing processes 

are repeated. To uncover issues in the codes, the resulting 
results are verified for consistency. If the results are normal, 
the investigation process for the performance of 1ASIMR, 
1PSIMR, 2ASIMR and 2PSIMR in solving the benchmark 
problem is carried out. The approach is to calculate the 
average and computation time for each method, which will 
be detailed in the Results and Discussion. 

FIGURE 1. Flow chart of research

Comparison of the numerical performance between 
1ASIMR, 1PSIMR, 2ASIMR and 2PSIMR is performed and 
relevant conclusion is drawn.

SEI MODEL

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜇𝜇(𝑁𝑁 − 𝑑𝑑) − 𝛽𝛽𝑑𝑑𝛽𝛽, 𝑑𝑑(0) = 	𝑑𝑑/ 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛽𝛽𝑑𝑑𝛽𝛽 − (𝜇𝜇 + 𝜎𝜎)𝑑𝑑, 𝑑𝑑(0) 	= 	𝑑𝑑/ 

 
𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑 = 𝜎𝜎𝑑𝑑 − (𝜇𝜇 + 𝛾𝛾)𝛽𝛽, 𝛽𝛽(0) 	= 	 𝛽𝛽/ 

 

(1)
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FIGURE 2. compartment diagram for SEIR model

Combination Of Non-standard Difference Method with Extrapolation

𝑆𝑆"#$ =
𝑆𝑆" + ℎ"𝜇𝜇𝜇𝜇

1 + ℎ"(𝜇𝜇 + 𝛽𝛽𝐼𝐼")
, 

𝐸𝐸"#$ =
𝐸𝐸" + ℎ"𝛽𝛽𝐼𝐼"𝑆𝑆"#$

1 + ℎ"(𝜇𝜇 + 𝜎𝜎)
, 

𝐼𝐼"#$ =
𝐼𝐼" + ℎ"𝜎𝜎𝐸𝐸"#$

1 + ℎ"(𝜇𝜇 + 𝛾𝛾)
 

The proposed approaches’ fixed points will be the same as 
the critical point of the SEI model and they will have the 
same stability properties. Richardson’s Extrapolation is a 
well-known approach for obtaining higher-order procedures, 
and it has been much discussed in the scientific literature 
(Hairer & Norsett 1993). Firstly, we compute the numerical 
outcomes of the initial value problem using a numerical 
approach of order p (1) by performing ni steps with step size  
hi to obtain yhi(x0 + h) := Ti,1. Then we calculate for h1 >        
h2 > h3 > . . . (taking hi = h/ni , with ni as a positive integer) 
(Xiong et al. 2020). 

DERIVING EXTRAPOLATION WITH NSFD

“Harmonic sequence” has been used in this equation to 
be considered in Richardson Extrapolation. This method 
is used because easy to calculate the number of methods 
increasing by using the algorithm of Aitken-Neville:

𝑇𝑇",$%& = 𝑇𝑇",$ +
(𝑗𝑗 − 𝑘𝑘)(𝑇𝑇",$ − 𝑇𝑇".&,$)

𝑘𝑘  

the second-order methods:

𝑦𝑦"𝑥𝑥$ + ℎ' ( = 𝑇𝑇+,+ = 2𝑇𝑇+,. − 𝑇𝑇.,. = 2𝑦𝑦0
+
(𝑥𝑥$ + ℎ) − 𝑦𝑦0(𝑥𝑥$ + ℎ), 

the third-order methods:

𝑦𝑦(𝑥𝑥$ + ℎ' )	= 𝑇𝑇,,, =
9𝑦𝑦/

,
(𝑥𝑥$ + ℎ) − 8𝑦𝑦/

2
(𝑥𝑥$ + ℎ)	+ 𝑦𝑦/(𝑥𝑥$ + ℎ)	
2 , 

Lastly, fourth-order methods:

𝑦𝑦"𝑥𝑥$ + ℎ' ( = 𝑇𝑇+,+ =
−𝑇𝑇.,. + 24𝑇𝑇1,. − 81𝑇𝑇4,. + 64𝑇𝑇+,.

6

=
64𝑦𝑦6

+
(𝑥𝑥$ + ℎ) − 81𝑦𝑦6

4
+	24𝑦𝑦6

1
(𝑥𝑥$ + ℎ) − 𝑦𝑦6(𝑥𝑥$ + ℎ)	

6 . 

The constant β will be used in the MATLAB to obtain the 
result for accuracy and efficiency of the SEI model (Jansen 
& Twizell 2002)  S = N, by setting all the derivative equal 
to zero. Which is E = 0, I = 0 (Martín-Vaquero et al. 2018).

𝑆𝑆∗ =
(𝜇𝜇 + 𝜎𝜎)(𝜇𝜇 + 𝛾𝛾)

𝜎𝜎𝜎𝜎 , 

 

𝐸𝐸∗ =
𝜇𝜇𝜇𝜇
𝜇𝜇 + 𝜎𝜎 −

𝜇𝜇(𝜇𝜇 + 𝛾𝛾)
𝜎𝜎𝜎𝜎 , 

 
𝐼𝐼∗ =

𝜇𝜇𝜎𝜎𝜇𝜇
(𝜇𝜇 + 𝜎𝜎)(𝜇𝜇 + 𝛾𝛾) −

𝜇𝜇
𝜎𝜎, 

while the continuous model’s bifurcation point (1) is

𝛽𝛽∗ =
(𝜇𝜇 + 𝜎𝜎)(𝜇𝜇 + 𝛾𝛾)

𝜎𝜎𝜎𝜎  

TABLE 1. Stability of critical point in SEI model

β \ critical point trivial not-trivial
< β stable Not stable
= β Naturaly not stable -
> β Not stable stable

VARIABLE-STEP ALGORITHMS

For successful integration of these models, adaptive step 
size selection is critical.

ℎ"#$ = ℎ"𝑚𝑚𝑚𝑚𝑚𝑚	 *𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓,𝑚𝑚𝑓𝑓𝑓𝑓	0𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑓𝑓 ∙ (1/𝑒𝑒𝑒𝑒𝑒𝑒)$/89: 

The fac =0.5 is the number of factors use, facmax=4 is the 
highest number of factors to use and facmin=10-1 is the 
lowest number of factors to use while k is the number of 
orders for Extrapolation.

The error is used to describe the fast of the length step 
whether increase or decrease. By calculate with Tk,k – Tk,k–1, 
we can estimate the error and we can calculate the tolerance 
by sc. The value of err and sc can be calculated as:

𝑒𝑒𝑒𝑒𝑒𝑒 = $1
3
'
(

)*+

,
-𝑇𝑇/,/ − 𝑇𝑇/,/2+3)

𝑠𝑠𝑠𝑠)
6
7

 

𝑠𝑠𝑠𝑠# = 𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙# = 𝑚𝑚𝑚𝑚𝑚𝑚,-𝑦𝑦/,#-, -𝐴𝐴1,1,#-2 ∙ 𝑅𝑅𝐴𝐴𝐴𝐴𝑙𝑙#, 

where y0,i is the number of component from the previous 
step length, and Tk,k,i is the number of component that been 
obtained from the population.
 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(10)
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ℎ"#$ = ℎ"𝑚𝑚𝑚𝑚𝑛𝑛 

)𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓,𝑚𝑚𝑓𝑓𝑓𝑓	 0𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑛𝑛, 𝑓𝑓𝑓𝑓 ∙
𝑒𝑒𝑒𝑒𝑒𝑒"4

𝑒𝑒𝑒𝑒𝑒𝑒"#$
$/678 

were α = 0.08 (when the previous step is accepted, if it is 
rejected α = 0) as it was suggested in (Gustafsson 1991) 
(Hairer & Norsett 1993). 

The sets of parameters  and  are very important to detect 
the efficiency of computation because it can be compared in 
the numerical solution.

RESULT AND DISCUSSION

ORDER BEHAVIOUR OF SYMMETRIZED IMPLICIT MIDPOINT RULE

In order to obtain a good stability analysis in a Numerical 
Analysis is by focusing on the behavior of the global error 
(t). this is because the behavior can be determined by the 
ODE solution which are the stability depends on the step size 
(Al-Mutib 1984). Figure 3 show the order behavior of the 
Symmetrized of a SEI model.

TABLE 2. Definition of parameter

Variable Parameter value Definition
N 50000000 Human population
μ 0.02 Rate of natural birth
m 8 Probability of changing 

from E to I
g 5 Rate of recovery
β 0.0000005 Transmission rate
S 1250000 Suspected population
E 50000 Exxposed population
I 30000 Infected population

FIGURE 3. Behaviour of compartment population over time for 
SEI model

EFFICIENCY OF SYMMETRIZATION IMPLICIT MIDPOINT RULE

The Numerical method’s efficiency can be measured by 
using the CPU time. It can solve a problem to a certain level 
of precision. The total number of iterations and the CPU 
time per iteration determine the efficient of the model. The 
result can show the numerical algorithm by producing the 
behavior of the graph. The stiffness Symmetrization IMR’s 
efficiency is comparable to that of the dynamic analysis 
approach in terms of total CPU time (Lewis 1989). 

Figure 4 to Figure 6 show the maximum global fault 
diagram against the sum of the functions of this evaluator 
plotted to determine the efficiency of the Implicit Midpoint 
Rule of One-Step and Two-Step Symmetrization. From the 
results obtained, 2ASIMR have highest efficiency.

FIGURE 4. Efficiency diagram for β=0.0000005 

FIGURE 5. Efficiency diagram for β=0.000005 

(12)
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FIGURE 6. Efficiency diagram for β=0.00005

ACCURACY OF SYMMETRIZED IMPLICIT MIDPOINT RULE

The Symmetrized Implicit Midpoint Rule analysis 
algorithm evaluates the accuracy of a numerical solution by 
detecting the solution of the problem as the original problem 
similarity. This help to improve the Symmetrized Implicit 
Midpoint Rule analysis from creating a lot of error. The rise 
of the bound can be observed to detect error analysis which 
most cases far exceed the Numerical error values themselves 
(Rogalev & Rogalev 2020). Figure 7 to Figure 9 show that 
2ASIMR have the most accurate compare to other methods.

FIGURE 7. Accuracy diagram for β=0.0000005

FIGURE 8. Accuracy diagram for β=0.000005 

FIGURE 9. Accuracy diagram for β=0.00005

CONCLUSION

To solve the SEI model for malware spread, high-order 
approaches are used with the Non-Standard Different 
Scheme (NSFD) that was discovered throughout the 
research. As a result, the new method produces result that 
dynamically consistent and stable with the SEI model.

The analysis of Numerical show a smooth solution, 
but the model is constantly changing and some variables 
are changing at the same time. As a result, addressing 
the solution problem is critical in changing the step size. 
In discrete schemes, different methods have been tried to 
control the error. Finally, these adaptive step sizes were 
compared to determine the approaches’ acceleration and 
efficiency.

Finally, the computational accuracy of 1PSIMR, 
2ASIMR and 2PSIMR is lower than 1ASIMR where 
the accuracy increase through the time passes. For 
the determination of the Efficiency, 2ASIMR and 
2PSIMR methods are the most efficient due to the extra 
symmetrization step (Zlatev et al. 2017). However, due 
to the fact that 1ASIMR is more accurate that 2ASIMR 
and 2PSIMR at large space and time steps at which the 
computation time is short. At the end of the study, the 
results from the numerical method obtained show that the 
non-standard finite difference scheme of Extrapolation 
has higher accuracy than the existing numerical method.

The idea of merging Extrapolation approaches with 
other non-standard finite difference schemes for different 
types of issues could be studied in the future. This can 
be accomplished by using a higher order approach with 
multiple parameters to solve the autonomous differentiation 
system, which is a challenge in the traditional scheme.
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