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A framework for defining weights of decision makers in group decision-making, using 
consistency between different multicriteria weighting methods
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aDepartment of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden; bFaculty of Agriculture, University of 
Novi Sad, Novi Sad, Serbia; cDepartment of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden

ABSTRACT
Most forest operations are complex problems that require the weights of relevant criteria – representing 
trade-offs between various economic, ecological, and social aspects of the problem – to be defined. Usually 
this is done by using multicriteria weighting method(s) in a group (participatory) context in order to include 
different opinions and to minimize risk of poor individual judgments. Furthermore, in group decision- 
making, the weights of decision makers (DMs) must be defined. However, no consensus exists on the best 
way to determine related weights assigned to DMs. For that purpose, we propose the consistency-based 
group decision-making framework (CGDF), which uses the expertise of a DM to weight the responses of the 
DM when deriving an overall group decision. The novel part of CGDF is the inter-weights consistency 
method (ICM) for evaluating the expertise of a DM based on the consistency of the weights the DM assigns 
to different criteria using different multicriteria weighting methods. We demonstrate the utility of ICM and 
CGDF by applying them to a decision-making problem from Swedish forest operations – defining weights of 
criteria relevant for designing the machine-trail network for driving in the forest terrain.
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Introduction

In the past, forestry was mainly concerned with maximizing 
profit, so the main considerations focused on economical effi-
ciency. However, nowadays forest operations are expected to 
consider all dimensions of sustainability, and therefore complex 
problems require the balancing of trade-offs between various 
economic, ecological, and social aspects of the problem (Marchi 
et al. 2018). Hence, there is a need of multicriteria decision 
analysis (MCDA) methods for such balancing, which to 
a certain extent are used in the planning of forest operations 
(Blagojevic et al. 2019). In the MCDA methods, criteria are 
defined and given weights to computationally find a solution. 
Criteria are chosen to represent the values of interest, that are 
being considered required to balance. Those are normally rather 
straightforward to define, compared to the process to define how 
to weight their importance relative to each other.

The most common way to define the weights assigned to 
criteria is to elicit preference values (subjective judgments) 
from experts or decision makers (DMs). Usually this is done 
in a group (participatory) context in order to include different 
opinions and to minimize risk of poor individual judgments.

There are several multicriteria weighting methods for deriv-
ing weights from preference statements, the most common 
being direct point allocation (DIRECT), simple multi-attribute 
rating technique (SMART) (Edwards 1977; von Winterfeldt and 
Edwards 1986), analytic hierarchy process (AHP) (Saaty 1980), 
trade-off (Keeney and Raiffa 1976) and SWING (von 
Winterfeldt and Edwards 1986). The last two methods explicitly 

incorporate criteria ranges in the elicitation questions, meaning 
that minimum and maximum levels for each criterion need to be 
known before interviews start. Although the impact of elicitation 
methods on weights is undisputed, there does not yet seem to be 
any consensus about the most valid method (Lienert et al. 2016).

Besides the weighting method, quality of outcome depends to 
a great extent on two other aspects: (i) the size and composition 
of the group of DMs, and (ii) the expertise of DMs and the 
corresponding quality of their judgment (Kontic 2000; Noble 
2004). The literature suggests there is no standard procedure for 
defining the former aspect of the problem setting – rather, it is 
case specific. In contrast, there are many approaches for deter-
mining the expertise (henceforth referred to as “weight”) of 
a DM: see, for example, the detailed review by Koksalmis and 
Kabak (2019). We now describe two of the main approaches.

Cooke’s classical approach (Cooke 1991) is, according to 
French (2011), the most frequently applied method in the 
validity or knowledge-based approach, in which the weights 
assigned to DMs are based on their ability to perform a relevant 
task. As a result many DMs may be discarded (having zero 
weights) from the subsequent decision-making process 
(French 2011). When there is some objective, an external 
criterion exists (such as correct answer to question) then the 
validity-based approach can be reasonable and straightfor-
ward – expertise of DMs will be determined easily by compar-
ing their judgments with the correct answers (Weiss and 
Shanteau 2003). The main problem with this approach is that 
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experts are usually needed in precisely those domains where no 
correct answers exist (Gigerenzer and Goldstein 1996).

The second way of defining expertise of DMs is based on 
characteristics that experts would be expected to have 
(Shanteau et al. 2002). Such characteristics might include: (1) 
experience – number of years of relevant job experience; (2) 
certification – in many professions, individuals receive some 
form of title or qualification in recognition of their skills and 
competencies; (3) social acclamation – professionals are asked 
whom they consider to be an expert; (4) consistency – expert´s 
judgments should be internally consistent (Einhorn 1972, 
1974); (5) consensus – experts in a given field should agree 
with each other (Einhorn 1972, 1974); (6) discrimination abil-
ity – ability to make fine discriminations between similar but 
not equivalent cases (Hammond 1996); (7) behavioral charac-
teristics – experts share many common characteristics such as 
self-confidence, creativity, perceptiveness, communication 
skills and stress tolerance (Abdolmohammadi and Shanteau 
1992); and (8) knowledge tests – experts are identified based on 
tests of factual knowledge. Although these characteristics have 
been useful in identifying experts, each of them has one or 
more serious flaws (Shanteau et al. 2002). As a solution for 
measuring expertise, Weiss and Shanteau (2003) propose the 
CWS (Cochran–Weiss–Shanteau) index which represents the 
ratio of discrimination ability over inconsistency. This means 
that an expert – like a good measuring instrument – must be 
both discriminating and consistent. The main idea behind this 
method is that it can be easy for lay people (nonexperts) to 
display discrimination or consistency, but hard to do both. 
Although this may be true in many cases, it is also important 
to highlight two important shortcomings of this method:

● Designing a questionnaire that can calculate discrimina-
tory ability is a very complicated task for the decision 
analyst (Weiss and Shanteau 2003).

● Answering the questionnaire may be time-consuming for 
DMs – instead of giving only answers related to analyzing 
decision problems, they need to invest additional time to 
answer consistency and discriminatory questions.

Given that no consensus exists regarding the most valid elicita-
tion method (for criteria weighting and evaluation of expertise) 
and that existing methods for defining DMs’ weights have 
many limitations, this paper presents the consistency-based 
group decision-making framework (CGDF). An integral part 
of the framework is a novel method for defining the weights 
assigned to DMs – the inter-weights consistency method 
(ICM). This paper has two main objectives. The first is to 
present a group decision-making framework that is neutral 
with respect to multicriteria weighting methods, thereby 
enabling a DM to use more than one weighting method and 
then have the freedom to select the method that best reflects 
their individual preferences. The second objective is to present 
a novel method for assigning weights to DMs, one that is easy 
to use and is not time-consuming. ICM is based on the con-
sistency between results provided by DMs using different 
weighting methods. It has its origins in the work of Weiss 
and Shanteau (2003), but is less complicated and time- 
consuming to use than their CWS index. Although consistency 

is not a guarantee that someone is an expert, it is a good 
indicator that a DM has a clear opinion or a clear understand-
ing about the problem under consideration – at least in relation 
to other DMs. The application of CGDF and ICM is demon-
strated in a forestry related decision-making problem. As 
a case, weights were defined for criteria included for designing 
machine-trail networks for logging operations. Recently, com-
putational multi-objective methods for designing these net-
works have been proposed (e.g. Hosseini et al. 2018; 
Holmström et al. 2022), all of which require the weights of 
relevant criteria.

The focus of this study was on how to defining weights of 
decision makers in group decision-making situations, but to 
assist in applying the results into solving real-life MCDA pro-
blems the steps for doing so are described in Appendix A.

Case context

Harvesting and moving the harvested trees to roadside for 
transportation are significant forestry operations, in the sense 
that large amounts of resources are required, large monetary 
values are created, and ecological and social harm may be 
caused by these activities (Blagojevic et al. 2019). In the 
Nordic countries, for example, these operations are usually 
performed by cut-to-length (CTL) machines. The harvester 
fells and processes trees into logs of various assortments 
(such as various kinds of saw-logs and pulp-logs). The har-
vester then moves the logs to the side so that it can advance 
(and harvest more trees) without damaging them. This results 
in a “machine-trail network” of paths (or “strip roads”) cleared 
of trees and logs. A forwarder then travels down the machine 
trails collecting logs and transporting them to roadside land-
ings. The activities of this heavy machinery on wet and soft 
ground may cause soil compaction, which can lead to consid-
erable long-term impact in biological activity (Heralt 2002; 
Horn et al. 2007) and if soil is moved and ruts are created, 
surface water run-off may result in leakage of sediments and 
pollutants such as mercury into streams (Porvari et al. 2003; 
Eliasson 2005). There are also economic reasons for avoiding 
soil damage. Driving on wet and soft ground reduces speed 
and/or increases fuel consumption, and a machine that 
becomes stuck in mud results both in severe time losses and 
possible machine damage (Hosseini et al. 2018).

Determining an optimal machine-trail network is a complex 
problem that requires understanding of how forestry machines 
will operate on the terrain as well as the trade-offs between 
various criteria – representing economic, social and ecological 
aspects (Hosseini et al. 2018). Machine-trail networks are cur-
rently designed manually based on intuitive decisions about 
the importance, correlations, and effects of many potentially 
conflicting criteria. However, computational methods for 
designing these networks have been proposed (Hosseini et al. 
2018; Holmström et al. 2022), all of which require the weights 
of relevant criteria.

Consistency-based group decision-making framework

Consistency – which can be also called intra-individual relia-
bility (Weiss and Shanteau 2003) – is a statistical measure of 
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the extent to which an individual’s preferences are logical and 
based on expertise rather than randomly chosen (Noble 
2004). There are three main schools of thought regarding 
the formation and consistency (existence) of preferences. 
The economics school of thought is based on the assumption 
that DMs have existing preferences and express those prefer-
ences during the elicitation process. The second is based on 
the view that people’s preferences are often constructed dur-
ing the process of elicitation (Slovic 1995). According to 
Lichtenstein and Slovic (2006) in many situations we do not 
really know our real preferences so we construct them during 
the elicitation process. The third school of thought – which 
underpins CGDF and ICM – is based on the idea that inex-
perienced DMs construct their preferences during the elicita-
tion (decision-making) process, while DMs with experience 
in the problem domain have more consistent (or stable) pre-
ferences (Hoeffler and Ariely 1999). For example, take the 
comparison between a soon-to-be and an experienced parent 
when evaluating different baby strollers and their respective 
attributes, which showed that the experienced parent has 
consolidated their preferences (Hoeffler and Ariely 1999). 
Although experience is not the same as expertise, there is 
undoubtedly a positive relationship between them (Shanteau 
et al. 2002).

Consistency can be measured using a single weighting 
method (e.g. in AHP method consistency index is used to 
measure consistency of individual judgments), over time, by 
repeatedly collecting preferences from the same DMs using the 
same weighting method (e.g. Lienert et al. 2016). It can also be 
measured by using different weighting methods. According to 
Einhorn (1972, 1974) consistency is a necessary condition for 
expertise – because an expert could hardly behave randomly. 
However, inconsistency in a DM’s responses may not be just 
because of lack of expertise. It could be that the DM did not 
understand the problem and related question(s), misunder-
stood the weighting method(s), did not have experience of 
using weighting method(s), was not fully concentrating, was 
tired, or just changed preferences during the elicitation phase. 
Whatever the reason, inconsistency is an indicator that the DM 
may be relatively unreliable. Therefore, a key-idea in the CGDF 
and ICM is that the weights of less consistent DMs should have 
lower impact on group decisions than those who are more 
consistent.

ICM, which forms the core of CGDF, uses the Euclidean 
distance metric to calculate inter-weights consistency, given by 
equation (1): 

EDj ¼

Pn
i¼1
Pp

k¼1 wk
ij � wij

� �2

p � 1

2

6
4

3

7
5

1
2

; j ¼ 1; . . . ;m (1) 

where m is the number of decision makers; n is the number of 
criteria, p is the number of weighting methods used; EDj is the 
inter-weights consistency of decision maker j, wk

ij is the weight 
assigned to criterion i by decision maker j using weighting 
method k, and wij ¼

1
p
Pp

k¼1 wk
ij. It should be noted that other 

Lebesgue spaces (Lp) metrics (Manhattan distance, for exam-
ple) could be used to define inter-weights consistency, but 

Euclidean distance is more often used in relevant literature to 
measure consistency (Blagojevic et al. 2016).

Obviously, if EDj equals 0, then DM j is perfectly consistent, 
meaning that DM j assigned the same weight to every criterion 
for each weighting method. Otherwise, the smaller the value of 
the EDj the greater the inter-weights consistency. In addition, 
ED should be interpreted only in relative and not absolute 
terms (i.e. it can be only used to say which of two experts is 
more consistent for that particular decision-making problem), 
otherwise it is necessary to divide ED by the number of criteria 
to make it comparable with EDs from other decision-making 
problems. Then, the proposed CGDF and ICM are defined in 
the following steps:

Begin CGDF:
Step 1. Individual weights wk

ij are obtained from every DM 
using p weighting methods (k = 1, . . . , p) and p � 2. The 
order in which preferences of DMs are collected (order of 
usage of weighting methods) is not prescribed by CGDF. This 
order and p are defined by the decision analyst according to the 
characteristics of the particular decision-making problem.
Step 2. The results of the different weighting methods are 
shown to the DM who chooses the set of weights (wselect

ij ) that 
the DM considers represents their preferences in the most 
accurate way.
Begin ICM:
Step 3. For every DM, average weights of criteria from all used 
weighting methods (wij) are computed.
Step 4. EDj and 1=EDjare computed for DM j, j = 1,. . ., m. If 
EDj = 0 (although this can happen only in theory) then the 
decision analyst selects a fixed, positive value that is close to 0.
Step 5. The weight assigned to a DM j is derived using equa-
tion (2): 

αj ¼
EDj
� �� 1

Pm
j¼1 EDj
� �� 1 (2) 

Note that 
Pm

j¼1 αj ¼ 1.
End ICM

Step 6. Finally, the group weight of each criterion i (wgr
i ) is 

calculated by summing the products of the weight selected by 
the DM j for criterion i and the weight assigned to DM j by 
ICM, equation (3): 

w gr
i ¼

Xm

j¼1
wselect

ij � αj

� �
; i ¼ 1; . . . ; n (3) 

End CGDF
As Step 4 indicates, we have to introduce a correction in the 

case of a DM having perfect consistency (that is EDj = 0 for 
some j). However, such a situation only arises if the DM 
allocates equal weights to each criterion using each weighting 
method. Although this is possible in principle and requires no 
cognitive effort on the part of the DM, it is hard to see what 
a DM would achieve by doing that. This strategy may be only 
beneficial if the DM truly believes that all criteria should have 
equal weights. Otherwise, this strategy is unrepresentative of 
the DM’s true position and interests, and means that the DM’s 
real preferences are not taken into consideration in the group 
decision-making process.
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Alternatively, using CGDF and ICM have several desirable 
qualities:

● Simplicity – it is easy for the decision analyst to prepare 
a questionnaire because only questions related to the 
presented problem will be asked (it is not necessary to 
have additional questions).

● Effectiveness – using several weighting methods allows 
a DM to select a method that best expresses their prefer-
ences and serves as a mechanism for calculating the con-
sistency of a DM.

● Efficiency – the presented methodology is relatively quick 
to implement and therefore suitable when there are many 
DMs and time constraints.

Materials and methods

Selected criteria relevant for designing the machine-trail 
network for driving in the forest terrain

For the sake of this study and to progress the work on machine- 
trail network design, five criteria were identified based on 
literature reviews and our personal views. The selected criteria 
were:

● ECON – to minimize financial costs (all possible harvest-
ing and forwarding costs: fuel consumption, operator’s 
salaries, maintenance, etc.);

● SOIL – to minimize risk of soil damage – compaction and 
rutting (proportional to weight of the machines, number 
of the machine passages, soil moisture, etc.);

● CO2 - to minimize CO2 emissions;
● ERG – to minimize the tilt and roll of the machines (due 

to ergonomic reasons); and
● GROW – to minimize the area with roads (i.e. to max-

imize the stand’s capacity to grow trees).

Methods used for criteria weighting

As noted in the introduction, there are many methods to elicit 
criteria weights. However, it is important to notice that for the 
real-life multicriteria decision-making problems it is necessary 
to have the ranges of the selected criteria, i.e. weights have to be 
defined in relation to ranges of criteria.

This study used DIRECT, AHP, and SMART which are 
described in general terms below.

In the DIRECT method, the DM allocates points to each 
criterion. For example, the DM is asked to distribute 100 points 
among the criteria. The DM is also allowed to distribute more 
(or less) than 100 points. Then the points are summed, and the 

final weights are the points of each criterion divided by 
the sum.

In the AHP method (Saaty 1980), the DM compares all 
n criteria in pairs (n n � 1ð Þ=2 comparisons in total), and 
assigns a value aij from the scale given in Table 1 representing 
the relative importance of criterion i over criterion j.

These values are used to define a matrix A in which aii ¼ 1 
for all i and aij ¼ 1=aji for all i and j. The weights of the criteria 
are then calculated using one of exiting prioritization methods. 
In this study we used the logarithmic least squares (LLS) 
prioritization method (Crawford and Williams 1985), where 
the weights of criteria are the normalized geometric means of 
the rows of matrix A (equation (4)): 

wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQn
j¼1 aij

n
q

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQn
j¼1 aij

n
q� � (4) 

SMART (Edwards 1977; von Winterfeldt and Edwards 1986) is 
a decision-support method developed in the field of multi- 
attribute utility theory (Kangas et al. 2015). When using 
SMART, the weights are elicited in two steps: (1) the DM 
ranks all criteria; and (2) the DM begins by assigning 10 points 
to the least important (lowest ranked) criterion, and then 
assigns points greater than or equal to 10 (with no upper 
limit) to the other criteria (Pöyhönen and Hämäläinen 2001). 
Then the weight of a criterion is defined to be the points 
assigned to it divided by the total points assigned to all criteria 
(like the DIRECT method).

Data gathering

Criteria weights were gathered from a group of 18 forestry 
experts (DMs), all from Sweden, in individual, face-to-face 
interviews conducted by the same decision analyst in order to 
obtain independent answers that had not been influenced by 
the opinions of other members of the group. The interviews 
were held during May and June 2018 and lasted around 15 to 
30 min per person. The group comprised managers from for-
estry companies, contractor, forestry PhD students and for-
estry university researchers.

During the interviews, the problem, criteria, methods and 
questions were explained by the decision analyst. The DMs 
were also provided with a two-page questionnaire (Figure B1 in 
Appendix B). The first page contained the problem setting, the 
selected criteria and space to assign weights to the criteria using 
the DIRECT method (Q1). On the second page, DMs defined 
weights using AHP (Q2) and SMART (Q3), expressed an 
opinion about the relevance of the criteria to the problem 
(Q4), and suggested other criteria (Q5). The results of all 

Table 1. Saaty’s importance scale.

Definition Importance

Equal importance 
Weak dominance 
Strong dominance 
Demonstrated dominance 
Absolute dominance 
Intermediate values

1 
3 
5 
7 
9 

(2, 4, 6, 8)
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three weighting methods were shown to DMs and then they 
orally stated which of the three weighting methods they pre-
ferred using for the criteria weighting.

Comparing group weighting of criteria

For the presented case-study, the group weighting of criteria or 
just group decisions (GDs) are made from combinations of two 
sets of weights assigned to DMs (equal and derived with ICM) 
and four sets of individual criteria weights (obtained with 
DIRECT, AHP, SMART, and with selected weighting method). 
This is eight GDs in total and their descriptions are given in 
Table 2. In four of them the weights assigned to DMs are 
derived using ICM and one GD represents the value computed 

using CGDF. The main goal was to compare GDs where 
weights assigned to DMs were equal with those where weights 
assigned to DMs were derived with ICM.

Results

Table B1 in Appendix B presents the full results obtained from 
the questionnaires and the corresponding EDs. In Appendix A, 
the procedure for how to apply the weights in a real-life MCDA 
situation is described.

The weights assigned to a particular criterion varied con-
siderably, as shown in Table 3. Most DMs had a tendency to 
give round numbers to weights with the DIRECT method (see 
Table B1 in Appendix B). Extreme weights were given only 
with AHP and DIRECT, but not with the SMART method 
(Table 3).

Table 4 shows weights of criteria for the weighting method 
selected by each DM and the weight assigned to each DM using 
ICM. The SMART method was selected by eight DMs, AHP by 
seven and DIRECT by three.

The weights assigned to DMs using ICM ranged from 
0.0260 (DM11) to 0.1268 (DM12) (Table 4), both DMs being 
forestry university researchers (see Table B1 in Appendix B). 
Table 5 shows the differences between these two DMs. Notice 
that ICM accounted for the differences in the weights assigned 
by these DMs by assigning a weight to DM12 that is consider-
ably more than would be assigned if all DMs were treated 
equally (i.e. one-eighteenth or approximately 0.0555) and con-
siderably less to DM11.

Finally, Table 6 presents the eight GDs. Ranges for the 
group criteria weights were quite narrow, irrespective of the 

Table 2. Description of group weighting of criteria.

Group 
decision

Weights of criteria obtained 
with:

Method of assigning weights to 
DMs

GD1 DIRECT Equal weights are assigned to 
DMs

GD2 DIRECT ICM weights are assigned to 
DMs

GD3 AHP Equal weights are assigned to 
DMs

GD4 AHP ICM weights are assigned to 
DMs

GD5 SMART Equal weights are assigned to 
DMs

GD6 SMART ICM weights are assigned to 
DMs

GD7 Selected method by DM Equal weights are assigned to 
DMs

CGDF Selected method by DM ICM weights are assigned to 
DMs

Table 3. Extreme weights assigned to each criterion.

Criteria Minimum weight Decision maker-method
Maximum 

weight Decision maker-method

ECON 0.080 DM18-AHP 0.600 DM7, 10, 13, 15-DIRECT
SOIL 0.049 DM5-AHP 0.475 DM14-AHP
CO2 0.000 DM3, 10, 14, 15, 16-DIRECT 0.300 DM5-DIRECT
ERG 0.000 DM10, 15, 16-DIRECT 0.527 DM11-AHP
GROW 0.000 DM10-DIRECT 0.474 DM17-AHP

Table 4. Individual weights of criteria obtained with selected weighting method and weights assigned to DMs using ICM.

DMs

Criteria weights

Weights of DMsMethods ECON SOIL CO2 ERG GROW

DM1 SMART 0.264 0.236 0.167 0.139 0.194 0.0345
DM2 AHP 0.317 0.460 0.032 0.072 0.119 0.0679
DM3 SMART 0.235 0.294 0.059 0.265 0.147 0.0616
DM4 AHP 0.235 0.094 0.098 0.519 0.054 0.0593
DM5 SMART 0.526 0.053 0.132 0.263 0.026 0.0324
DM6 SMART 0.469 0.250 0.125 0.125 0.031 0.0309
DM7 AHP 0.596 0.122 0.043 0.176 0.063 0.0462
DM8 SMART 0.500 0.250 0.036 0.071 0.143 0.0461
DM9 DIRECT 0.400 0.100 0.250 0.100 0.150 0.0614
DM10 DIRECT 0.600 0.400 0.000 0.000 0.000 0.0279
DM11 SMART 0.306 0.222 0.167 0.278 0.028 0.0260a

DM12 AHP 0.362 0.175 0.070 0.054 0.338 0.1268b

DM13 AHP 0.486 0.287 0.032 0.077 0.117 0.0595
DM14 DIRECT 0.300 0.300 0.000 0.100 0.300 0.0494
DM15 SMART 0.400 0.320 0.040 0.040 0.200 0.0440
DM16 SMART 0.213 0.426 0.021 0.021 0.319 0.0946
DM17 AHP 0.180 0.221 0.084 0.040 0.474 0.0846
DM18 AHP 0.080 0.088 0.037 0.521 0.274 0.0470

aMinimal weight of DM; bmaximal weight of DM.
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method used to compute the GD. However, there were three 
small, but distinct, differences in how the weights were 
allocated to criteria, depending on whether the DM weights 
were uniformly assigned (GD1, GD3, GD5 and GD7) or 
determined using ICM (GD2, GD4, GD6 and CGDF). First, 
in GDs where ICM is used, all criteria had the same ranking, 
no matter which weighting method was used (as shown in 
Figure 1). In contrast, when equal weights were used criter-
ion ERG was ranked third in GD3, otherwise it was ranked 
fourth. Second, the inter-weights consistency metric (defined 
by Euclidean distance) is less for the group weightings based 
on ICM weightings for DMs (GD2, GD4 and GD6) than for 
the group weightings that assign equal weight to every DM 
(GD1, GD3 and GD5), as shown in Table 7. In practice, this 
means that differences between group weights of criteria 
(obtained with three different weighting methods) were 

lower when ICM weights of DMs were used. Third, the 
differences between maximum and minimum group criterion 
weights (max-min) and the standard deviation (SD) for 
a single weighting method (i.e. compare GD1 with GD2; 
GD3 with GD4; GD5 with GD6; and GD7 with CGDF) 
were always smaller when ICM weights for DMs were used 
(as shown last two column of Table 6). This is probably 
because DMs who gave more extreme and more dispersed 
criteria weights were less consistent, meaning their criteria 
weights contributed less when ICM weights were used, 
thereby reducing their effect on the group weighting.

Finally, when we compare weights of criteria obtained by 
proposed CGDF (where all DMs had weights obtained by ICM 
and used selected weighting method) with weights obtained by 
GD7 (where all DMs had equal weights and used selected 
weighting method) we can see that in both cases criterion 

Table 5. Weights and ranks of criteria obtained with all weighting methods for DMs with lowest (DM11) and highest weight (DM12).

DMs Methods ECON SOIL CO2 ERG GROW

DM11 DIRECT 0.265 (1) 0.206 (3) 0.235 (2) 0.147 (4–5) 0.147 (4–5)
AHP 0.239 (2) 0.120 (3) 0.071 (4) 0.527 (1) 0.043 (5)
SMART 0.306 (1) 0.222 (3) 0.167 (4) 0.278 (2) 0.028 (5)

DM12 DIRECT 0.333 (1–2) 0.222 (3) 0.056 (4–5) 0.056 (4–5) 0.333 (1–2)
AHP 0.362 (1) 0.175 (3) 0.070 (4) 0.054 (5) 0.338 (2)
SMART 0.316 (1–2) 0.211 (3) 0.053 (5) 0.105 (4) 0.316 (1–2)

Table 6. Weights assigned to criteria by group decisions.

Group decision Method Weights of DMs

Weights of criteria

Max-min SDECON SOIL CO2 ERG GROW

GD1 DIRECT Equal 0.354 0.230a 0.108b 0.136 0.169 0.246 0.098
GD2 ICM 0.338 0.237 0.096 0.125a 0.201 0.242 0.096
GD3 AHP Equal 0.354 0.241 0.065a 0.176b 0.164a 0.289 0.107
GD4 ICM 0.326 0.250 0.066 0.152 0.206b 0.260 0.098
GD5 SMART Equal 0.335 0.245 0.097 0.155 0.169 0.238 0.092
GD6 ICM 0.317a 0.252b 0.088 0.141 0.201 0.229 0.090
GD7 Selected Equal 0.359b 0.239 0.077 0.159 0.165 0.282 0.106
CGDF ICM 0.337 0.244 0.072 0.142 0.205 0.265 0.101

In a particular column, arepresents the minimum weight for the criterion, and bis the maximum weight.
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Figure 1. Ranking of criteria based on group decisions.
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ECON was the most important with weight of 0.337 and 0.359, 
respectively. However, within CGDF criterion ECON was less 
important than within GD7. Also criteria SOIL and GROW 
had higher weights within CGDF (0.244 and 0.205) than within 
GD7 (0.239 and 0.165).

Discussion

In most of the forestry related decision-making problems it is 
necessary to define weights of relevant criteria which represent 
trade-offs between various economic, ecological, and social 
aspects of the analyzed problem. For that purpose we devel-
oped and demonstrated the consistency-based group decision- 
making framework (CGDF) that is neutral with respect to 
multi-criteria weighting methods, thereby enabling DMs to 
use more than one weighting method and then have the free-
dom to select the method which best reflects their individual 
preferences. An integral part of the framework is a novel 
method for defining the weights assigned to DMs – the inter- 
weights consistency method (ICM). The use of CGDF and ICM 
was illustrated by a case study of a particular decision-making 
problem that arises in forestry such as defining weights of 
criteria relevant for designing the machine-trail network for 
driving in the forest terrain.

In the presented case study the DIRECT method was the 
least selected (only the times, Table 4). This could be because 
the DIRECT method was the first question in the questionnaire 
and the DMs views about their preferences may have changed 
while completing the questionnaire. Another possible explana-
tion is that in the DIRECT method all criteria weights must be 
considered simultaneously and with approximately the same 
degree of importance while in AHP and SMART methods 
criteria are compared in pairs, which is less cognitively 
demanding for DMs. The idea of pairwise comparisons could 
be reduced to the following common-sense rule: consider two 
criteria at a time if you are unable to handle more than that 
(Kawa and Koczkodaj 2015). In addition, note that only CGDF 
and GD5 (combination of SMART and equal weights of DMs) 
had no extreme (maximum and/or minimum) criteria values 
(Table 6). Conversely, GD3 (combination of AHP and equal 
weights) had three extreme criteria values, consistent with the 
results of Schoemaker and Waid (1982), Belton (1986) and 
Pöyhönen and Hämäläinen (2001) who found that AHP pro-
duces a larger range of weights than the other weighting 
methods.

We believe CGDF and ICM could be useful for most group 
decision-making problems, not just for forest operations pro-
blems. CGDF is comparatively simple, making it easy to use, 
and thus less likely to produce procedural errors and more 
likely to be useful in practice. Moreover, there are no guaran-
tees that more complicated procedures will provide more 
accurate outputs, and in many cases, fast and frugal methods 
can produce results that are close to or even better than those 

obtained by more extensive analysis (Katsikopoulos and Fasolo 
2006). In addition, ICM is relatively quick to implement and 
therefore suitable when there are many DMs and time con-
straints. These properties were very important for the pre-
sented decision-making case-study because DMs from forest 
industry (operator and four forest company managers) did not 
have too much time to dedicate to interviews – which were 
done during DMs working hours. However, it was very impor-
tant for this problem domain – and probably for many others – 
to have opinions from practitioners (and not just academics) 
included in the decision-making process.

However, there are no guarantees that consistent prefer-
ences are correct and accurate. However, other methods for 
defining expertise are also affected by this problem. Garthwaite 
et al. (2005) conclude that in order for an elicitation process to 
be successful, the preferences do not need to be “true” in an 
objectivist sense and cannot be judged that way, but should be 
an accurate representation of the expert’s present knowledge, 
regardless of the quality of that knowledge (Riabacke et al. 
2012). Similarly, Noble (2004) claims that an expert may not 
be able to provide an accurate judgment but any DM with 
a clear understanding of the issue, decision variables, and the 
decision process should be able to demonstrate consistency in 
making judgments, which is critical to ensuring the quality of 
obtained decisions. Comparing the ranges of criteria weights 
(Table 5), given by the least consistent decision-maker (DM11) 
and the most (DM12), it seems reasonable to assign weights of 
0.0260 and 0.1268, respectively, to them (Table 4). Thus, 
DM11’s weights, despite being the least consistent, are still 
included in the group decision. However, the influence (DM 
weight) of those criteria weights is decreased from 0.0556 
(equal weight assigned to each DM) to 0.0260 (ICM weights). 
Arguments supporting the approach used in ICM can be found 
in Aubert and Lienert (2019), who stated that inconsistent 
preferences between weighting methods suggest either that 
DM preferences have not yet been decided or that the DM 
does not know how to express those preferences with the 
weighting methods in use. Perhaps, it is not fair or just to 
decrease the weight assigned to a DM whose preferences are 
not expressed well with the available methods, but it is reason-
able, pragmatic, and practical, especially in the situation when 
DMs have limited time available.

Like many methods for evaluating expertise, ICM does 
not attempt to equate expertise with answers to known 
questions because such questions and answers do not 
exist in many problem domains. Although ideal weights 
of DMs (“true” or “correct” measure of DMs' expertise) is 
impossible to achieve, ICM can minimize effect of random 
and poor answers. ICM does not necessarily assign high 
weights DMs with advanced knowledge, rather it assigns 
high weights to DMs who have already reflected on the 
decision problem and formed opinions. However, it is 
likely that DMs with advanced knowledge related to the 
decision-making problem will have formed such opinions. 
For instance, Lienert et al. (2016) found strong indications 
that having more knowledge and expertise about problem- 
related issues is correlated with higher preference stability 
whilst the influence of other explanatory variables remains 
inconclusive. It could be that DMs reflected on the decision 

Table 7. ED values for group decisions within same set of DMs weights.

Group decisions within same set of DMs weights ED

Group decisions (GD1,GD3 and GD5) with equal weights of DMs 0.047
Group decisions (GD2, GD4 and GD6) with ICM weights of DMs 0.035
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problem, formed preferences and then over a longer period 
of time (e.g. one month) changed preferences for some 
other reasons (such as sociodemographic factors, past 
experience, knowledge and expertise about a topic, learn-
ing, the occurrence of externals events, the strength of 
preferences and the difficulty of the elicitation method), 
but the literature on these topics is scant and the evidence 
even contradictory (Lienert et al. 2016). One potential 
advantage of CGDF and ICM is that the time between 
preference elicitations with different methods is very short 
(less than one minute), so the effect of many of the factors 
listed above should be minimal.

An alternative and similar method could be to define 
weights of DMs by using consistency of preferences over 
time (rather than using different weighting methods), mean-
ing that preferences from the same DMs will be elicited using 
a single weighting method on more than one occasion. This 
method makes sense, but is much more time-consuming 
than our approach because time between two interviews 
would need to be much longer. Also, in situations where it 
is necessary to assign equal weights to DMs, inter-weights 
consistency can be used as feedback for DMs (Aubert and 
Lienert 2019). This means that DMs showing high levels of 
inconsistency are advised to reconsider the criteria weights 
they have assigned. Again, this approach is more time- 
consuming than CGDF and according to Barzilai (1998) 
forcing improvements in consistency, similar to forcing con-
sensus, should be avoided because it may distort the indivi-
dual’s true answer.

In summary, CGDF and ICM attempt to reduce the effect of 
answers from DMs whose expertise is less than that of others in 
the decision-making group (and increase it for those with more 
expertise), while being simple and quick to implement. Thus, 
CGDF and ICM are particularly useful when DMs and decision 
analysts have only limited time available for interviews and 
there are limited resources for analyzing the responses of DMs. 
In addition, several interesting observations arise from the 
application of CGDF and ICM to the forestry case study. The 
main outcome from the results section is that ICM weights of 
DMs made group decisions (weights assigned to criteria based 
on the collective weights of the DMs) less dependent on the 
choice of weighting method(s). This is true for the group 
rankings of criteria – GDs based on ICM produced same 
rankings (Figure 1) – and for group weights of criteria – 
differences between GDs obtained with three different weight-
ing methods were lower when ICM weights of DMs were used 
(Table 7). This property of ICM could be especially beneficial 
for the decision analyst – in particular making the job of the 
decision analyst less complicated – because the choice of 
weighting method will have less impact on the group decision 
compared to when DMs have equal weights. Last, as noted 
earlier, ICM reduced the dispersions and ranges in group 
criteria weights for a single weighting method (last column in 
Table 6) compared to group decisions obtained when DMs 
have equal weights. Whether this is an advantage or not of 
ICM is unclear, but it will be important to try to find an 
explanation for this occurrence and thus determine whether 
it is an advantageous feature of ICM. In conclusion, further 
case studies – using real-world group decision-making 

problems – are required in order to better understand CGDF 
and ICM and hopefully confirm the positive preliminary find-
ings described above.

Conclusions

Most aspects of forestry address complex problems that require 
the weights of relevant criteria – representing trade-offs 
between various economic, ecological and social aspects of 
the problem – to be defined. When addressing this in planning 
processes in a structured way, this is usually done by using 
multicriteria weighting method(s) in group (participatory) 
context in order to include different opinions and to minimize 
risk of poor individual judgments. Furthermore, in group 
decision-making, the weights of decision makers (DMs) must 
be defined.

For that purpose, we proposed the consistency-based group 
decision-making framework (CGDF), which uses the expertise 
of a decision maker (DM) to weight the responses of the DM 
when deriving an overall group decision. The novel part of 
CGDF is the inter-weights consistency method (ICM), for 
evaluating the expertise of a DM based on the consistency of 
the weights the DM assigns to different criteria using different 
multicriteria weighting methods. Although inconsistency in 
a DM’s responses may not be just because of lack of expertise, 
it indicates that the DM is relatively unreliable and therefore, in 
the presented framework, the weights of less consistent DMs 
have lower impact on group decisions than those who are more 
consistent.

The presented framework has several desirable qualities. 
First, it is neutral with respect to multi-criteria weighting 
methods, thereby enabling DMs to use more than one weight-
ing method and then have the freedom to select the method 
which best reflects their individual preferences. In situations 
where no consensus exists regarding the most valid weighting 
method, this is an objective and transparent procedure. 
Second, using several weighting methods serves as 
a mechanism for calculating the consistency of DMs. The 
presented framework is relatively simple (it is easy to prepare 
and analyze questionnaires) and suitable for the presented 
decision-making case-study when DMs from the forest indus-
try (operators and forest company managers) do not have 
much time to dedicate to interviews.
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Appendix A. Example of steps required to apply the study’s results in a real-life case study

This text gives an example on how the article’s weights of decision makers in group decision-making situations can be applied. In a theoretical example, 
the steps to determine an optimal machine trail network is provided, starting from defining criteria and ending at the objective function of a multicriteria 
optimization problem.

To keep the example simple and clear, only a small set of criteria is used and with hypothetical ranges. Moreover, only the steps needed to be taken is 
presented, so no actual solution for the problem is provided.

Step 1. Identify the criteria (i.e. objectives) used for determining an optimal machine trail network.

Three criteria are considered in this example:
Criterion 1: Length (km)
Criterion 2: Time (hours) and
Criterion 3: Soil damage risk (proportion (%) of the trail network being located on certain soils).

Step 2. Identify the ranges for each criterion

Ranges are found by single-objective optimization for each criterion. Hypothetical results of those three single-objective optimizations are presented in 
Table A1. The results from the three optimizations providing the minimum and maximum values of all criteria when optimizing for different criterion. 
Thus, the ranges for the criteria are identified (Table A2).

Step 3. Normalizing the values of each criterion

In order to consider the different criteria fairly in respect to each other, despite different ranges of their respective scales, criterion values are normalized. 
This can be done in different ways, but a common way is to use a continuous (score) scale from 0–100, where 0 represents the worst value of each 
criterion and 100 represents the best value. Those worst and best values are the ranges already obtained in Step 2 (Table A2). A value function needs to be 
defined, to describe how a criterion value translates to the normalized scale. Any function is possible, but for simplicity here they are assumed to be linear 
according to Figures A1–3.

Table A1. Results of single-objective optimizations.

Optimization Length (km) Time (hours) Soil damage (%)

1: Minimize length 0.7a 1.0 15
2: Minimize time 0.9 0.95a 20
3: Minimize soil damage risk 1.3 1.05 5a

Table A2. Ranges of values for criteria.

Criterion Range (min-max)

Length (km): 0.7–1.3
Time (hour): 0.95–1.05
Soil damage risk (%): 5–20

Figure A1. Value function for the hypothetical relationship between the values within the length range and the normalizing score.
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Step 4. Define weights of criteria

In this step weights for each of the criteria – reflecting their relative importance – are assigned. Usually this is done in group (participatory) 
context in order to include different opinions and to minimize risk of poor individual judgments. In order to do that properly and 
meaningfully, selected criteria with corresponding ranges (min-max) should be presented to DMs before application of multicriteria weighting 
methods. To define weights of criteria (or objectives) DMs are encouraged to take into account both the difference between the least and most 
preferred values within each criterion (here, presented in Tables A1 and A2), and how much they care about that difference.
Furthermore, in group decision making, the weights of decision makers (DMs) must be defined. For that purpose, we propose to use the consistency- 
based group decision-making framework (CGDF), which is described in detail in this paper. The integral part of CGDF is the inter-weights consistency 
method (ICM), for defining weight of a DM based on the consistency of the weights the DM assigns to different criteria using different multicriteria 
weighting methods.

Finally, the group weights of criteria (wgr) are calculated by summing the products of the individual weights of criteria and corresponding weights of 
DMs. To novice users within the field of MCDA we recommend reading Multi-criteria analysis: a manual (2009) for more details.

Step 5. Multi-objective optimization of machine-trail network
Use criteria scores (s) from step 3 and the group weights of criteria (wgr) from step 4 to create a goal function for a multi-objective optimization, which in 
this example would be to: 

Maximize : w gr
length � slength þ w gr

time � stime þ w gr
soil damage risk � ssoil damage risk 

Figure A3. Value function for the hypothetical relationship between the values within the soil damage risk range and the normalizing score.

Figure A2. Value function for the hypothetical relationship between the values within the time range and the normalizing score.
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Appendix B

Table B1. Individual weights of criteria obtained with all weighting methods and corresponding consistency measures (selected weighting method by each DM is 
highlighted).

Criteria weights

Decision makers Methods ECON SOIL CO2 ERG GROW ED

DM1 FCM DIRECT 0.350 0.250 0.100 0.100 0.200
AHP 0.554 0.221 0.048 0.061 0.116 0.1723
SMART 0.264 0.236 0.167 0.139 0.194

DM2 FCM DIRECT 0.300 0.400 0.100 0.100 0.100
AHP 0.317 0.460 0.032 0.072 0.119 0.0876
SMART 0.231 0.385 0.077 0.115 0.192

DM3 FCM DIRECT 0.300 0.300 0.000a 0.300 0.100
AHP 0.175 0.369 0.039 0.341 0.076 0.0964
SMART 0.235 0.294 0.059 0.265 0.147

DM4 FCM DIRECT 0.250 0.150 0.150 0.350 0.100
AHP 0.235 0.094 0.098 0.519 0.054 0.1003
SMART 0.263 0.105 0.158 0.421 0.053

DM5 CON DIRECT 0.300 0.100 0.300b 0.200 0.100
AHP 0.385 0.049a 0.128 0.385 0.052 0.1836
SMART 0.526 0.053 0.132 0.263 0.026

DM6 PST DIRECT 0.250 0.250 0.200 0.150 0.150
AHP 0.577 0.208 0.086 0.095 0.033 0.1926
SMART 0.469 0.250 0.125 0.125 0.031

DM7 PST DIRECT 0.600b 0.150 0.100 0.100 0.005
AHP 0.596 0.122 0.043 0.176 0.063 0.1286
SMART 0.455 0.273 0.091 0.136 0.045

DM8 RES DIRECT 0.400 0.200 0.200 0.100 0.100
AHP 0.511 0.308 0.050 0.059 0.073 0.1289
SMART 0.500 0.250 0.036 0.071 0.143

DM9 RES DIRECT 0.400 0.100 0.250 0.100 0.150
AHP 0.308 0.084 0.234 0.089 0.284 0.0968
SMART 0.410 0.128 0.205 0.051 0.205

DM10 RES DIRECT 0.600b 0.400 0.000a 0.000a 0.000a

AHP 0.506 0.326 0.028 0.044 0.096 0.2133
SMART 0.295 0.269 0.128 0.141 0.167

DM11 RES DIRECT 0.265 0.206 0.235 0.147 0.147
AHP 0.239 0.120 0.071 0.527b 0.043 0.2290
SMART 0.306 0.222 0.167 0.278 0.028

DM12 RES DIRECT 0.333 0.222 0.056 0.056 0.333
AHP 0.362 0.175 0.070 0.054 0.338 0.0469
SMART 0.316 0.211 0.053 0.105 0.316

DM13 RES DIRECT 0.600b 0.200 0.050 0.100 0.050
AHP 0.486 0.287 0.032 0.077 0.117 0.100
SMART 0.469 0.313 0.031 0.094 0.094

DM14 RES DIRECT 0.300 0.300 0.000a 0.100 0.300
AHP 0.259 0.475b 0.029 0.050 0.188 0.1204
SMART 0.313 0.313 0.031 0.094 0.250

DM15 RES DIRECT 0.600b 0.200 0.000a 0.000a 0.200
AHP 0.443 0.338 0.032 0.032 0.155 0.1352
SMART 0.400 0.320 0.040 0.040 0.200

DM16 RES DIRECT 0.200 0.400 0.000a 0.000a 0.400
AHP 0.150 0.393 0.032 0.032 0.393 0.0629
SMART 0.213 0.426 0.021 0.021 0.319

DM17 RES DIRECT 0.200 0.200 0.150 0.050 0.400
AHP 0.180 0.221 0.084 0.040 0.474b 0.0703
SMART 0.190 0.190 0.143 0.095 0.381

DM18 RES DIRECT 0.120 0.120 0.060 0.500 0.200
AHP 0.080a 0.088 0.037 0.521 0.274 0.1266
SMART 0.167 0.167 0.083 0.333 0.250

FCM: forest company manager; CON: contractor; PST: PhD student; RES: researcher; ED: Euclidean distance. 
aMinimal weight of criterion; bmaximal weight of criterion.
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Figure B1. Questionnaire.

142 B. BLAGOJEVIC ET AL.


	Abstract
	Introduction
	Case context
	Consistency-based group decision-making framework
	Materials and methods
	Selected criteria relevant for designing the machine-trail network for driving in the forest terrain
	Methods used for criteria weighting
	Data gathering
	Comparing group weighting of criteria

	Results
	Discussion
	Conclusions
	Acknowledgements
	Disclosure statement
	ORCID
	References
	Appendix A. Example of steps required to apply the study’s results in a real-life case study
	Appendix B

