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Abstract

To understand how climate change affects crop yields, we need to identify the cli-

matic indices that best predict yields. Grain yields are most often predicted using pre-

cipitation and temperature in statistical models, assuming linear dependences.

However, soil water availability is more influential for plant growth than precipitation

and temperature, and there is ecophysiological evidence of intermediate yield maxi-

mizing conditions. Using rainfed maize and soybean yields for 1970–2010 across the

USA, we tested whether the aridity index, that is, the ratio of precipitation and

potential evapotranspiration seasonal totals and a proxy of soil water availability, bet-

ter predicts yield than growing season precipitation total, average temperature and

their interaction. We also tested for non-monotonic responses allowing for interme-

diate yield-maximizing conditions. The aridity index alone explained 77% and 72% of

maize and soybean yield variability, compared with 78% and 73% explained by tem-

perature, precipitation and their interaction. Yield responses were non-monotonic,

with yields maximized at intermediate precipitation and temperature as well as at

intermediate aridity index of 0.79 for maize and 0.98 for soybean. The yield maximiz-

ing precipitation also increased with growing season average temperature, faster in

maize than soybean. The intermediate yield maximizing conditions show that rainfed

maize and soybean yields could both increase and decrease depending on whether

climatic conditions come closer to or deviate from the yield maximizing conditions in

the future. In most counties, during 1970–2010, the precipitation and aridity index

were lower and temperature higher compared with those maximizing yields, suggest-

ing that climate change will reduce yields.
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1 | INTRODUCTION

Temperature, precipitation and their interaction are often used to pre-

dict crop yields with statistical models (e.g., Lobell & Field, 2007; Luan

et al., 2021; Matiu et al., 2017; Ray et al., 2015), explaining

approximately a third of crop yield variability globally, with large local

variations (Ray et al., 2015). Several aspects of the crop response to

precipitation and temperature are mediated by soil water availability

(e.g., Hamed et al., 2021; Luan & Vico, 2021; Riha et al., 1996), making

soil moisture a better predictor of yields (Proctor et al., 2022). Soil
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moisture data are unavailable for long periods and over wide geo-

graphical areas, limiting robust statistical inference. We can neverthe-

less capture key aspects of the local soil water balance without

information on soil moisture via the balance between water supply

and energy-driven demand. This balance can be summarized by the

aridity index (AI), here defined as the ratio of precipitation and poten-

tial evapotranspiration, both cumulated over the growing season. AI

to great extent predicted water partition between evapotranspiration

and runoff from field to catchment (Budyko, 1974; Good et al., 2017)

and allowed for distinguishing vegetation controlled by water excess

or deficit (Famiglietti et al., 2021). It also emerged as one of the two

quantities governing the terrestrial water balance, via dimensional

analysis of a minimalist stochastic soil water balance (Porporato

et al., 2004), and was linked to abrupt changes of a variety ecosystem

attributes (Adams et al., 2021; Berdugo et al., 2020). As a proxy of

local water availability and by capturing the joint role of precipitation

and temperature in conjunction, AI affords a more process-oriented

look at the relationship between climatic conditions and crop yields

than precipitation, temperature and their interaction. In spite of this

potential, AI or some of its modifications have so far mostly been used

for crop suitability delineation (van Wart et al., 2013). The few predic-

tions of yield based on AI are limited in geographical scales and ranges

of climatic conditions (Bannayan et al., 2010; Karimzadeh

Soureshjani, 2021; Yin et al., 2016). As such, the ability of AI to

explain yield variability compared with precipitation, temperature and

their interaction remains unknown over a wide range of conditions.

The ecophysiological and biogeophysical mechanisms linking crop

yield to precipitation and temperature are complex and often non-

monotonic. Both insufficient and excessive water availability can be

damaging, and crop yields are highest at intermediate precipitation, as

confirmed by process-based models and empirical observations cover-

ing an extensive range of conditions (e.g., Grassini et al., 2015; Li

et al., 2019; Proctor et al., 2022; Wang, Wu, et al., 2020). Indeed, low

precipitation can contribute to plant water stress, in turn impairing

most plant processes and reducing rainfed crop yields (Farooq

et al., 2009; Hsiao, 1973; Lawlor & Tezara, 2009). Excessive precipita-

tion facilitates nutrient leaching, denitrification and pathogen prolifer-

ation and is often associated to reduced solar radiation. These can

negatively affect crop yields, but the associated yield reduction

remains largely unresolved (Li et al., 2019; Rosenzweig et al., 2002).

Warmer temperature and high frequency of temperature-related

warm extremes monotonically reduced yields of staple cereals in sur-

veys, field warming experiments and global crop model applications

(e.g., Asseng et al., 2014; Vogel et al., 2019; Wang, Zhao, et al., 2020;

Zhao et al., 2017). Other evidence points to an intermediate tempera-

ture that facilitates key plant processes (Wang et al., 2017; Way &

Yamori, 2014) and maximizes yields across US counties (Hoffman

et al., 2020; Lobell et al., 2011; Schlenker & Roberts, 2009) and glob-

ally at the country scale (Proctor et al., 2022). Hence, the net effects

of climatic conditions on yields and the accurate representation of

yield response to both temperature and precipitation remain uncertain

(Barlow et al., 2015; Li et al., 2019; Peng et al., 2020; Wang

et al., 2017). Specifically, despite indications of intermediate

precipitation and temperature maximizing plant activity and growth,

most statistical analyses of yields consider linear dependencies, thus

potentially overlooking non-monotonic responses.

Along similar lines, field data, remote sensing algorithms and

modelling point to a global ‘mesic maximum’, that is an intermediate

AI that maximizes the biological water use fraction (defined as the

ratio of annual transpiration to precipitation; Good et al., 2017). Crop

yields are proportional to transpiration because of the monotonically

increasing relationships among transpiration, gross primary production

and biomass accumulation (Beer et al., 2009; Grassini et al., 2009;

Sadras & Connor, 1991; Vico & Porporato, 2015). Based on these

relationships, we can expect that crop yields are highest at intermedi-

ate AI, in line with the globally emerging mesic maximum (Good

et al., 2017). However, the few attempts made to explain yields with

AI assumed a linear dependence (Bannayan et al., 2010; Karimzadeh

Soureshjani, 2021; Yin et al., 2016). Tests for an intermediate AI that

maximizes yields are lacking. Moreover, the AI maximizing yields is

not necessarily the same of the mesic maximum because the relation-

ship between transpiration and grain yield is nonlinear (e.g., Purcell

et al., 2007; Vico & Porporato, 2015 and references therein).

Temperatures are increasing and precipitation amounts and pat-

terns are changing in some locations with climate change. Warmer

temperature enhances atmospheric vapour pressure deficit (Ficklin &

Novick, 2017) and potential evapotranspiration (Monteith, 1965),

speeding up soil water depletion (Ficklin & Novick, 2017). The net

effect of these changes can be captured directly by the yield maximiz-

ing AI, whereas we expect that warming increases the precipitation

aat which yield is maximized. Where this intermediate yield maximiz-

ing precipitation lies and how it changes with temperature have not

been identified for key commodity crops over a large geographical

area of a country or continent.

We used time series of yields of maize (Zea mays) and soybean

(Glycine max) during 1970–2010 from 1719 and 1393 counties in the

USA, respectively. The counties are dominated by rainfed agriculture

and span a wide range of climatic conditions. We summarized the

growing season climatic conditions experienced by the crops either

with growing season precipitation total, PGS, and average tempera-

ture, TGS, or with the aridity index over the same period, AIGS. We

hypothesize that (i) AIGS alone explains yield variability equally well to

or better than precipitation, temperature and their interaction;

(ii) there is an intermediate precipitation that maximizes yield, which

increases with temperature; and (iii) there is a yield maximizing AIGS.

In the process, we parameterize statistical models that can be used to

predict effects of changing climatic conditions on the yields of two

dominant commodity crops.

2 | MATERIALS AND METHODS

2.1 | Meteorological and crop yield data

Daily precipitation and minimum, mean and maximum temperatures

were obtained from gridded data at 1/8� spatial resolution for 1949–
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2010 developed by Maurer et al. (2002). These data cover most of

the period for which yield information is available and have a spatial

resolution adequate to represent the county conditions.

The soybean and maize yields across the USA are the survey yield

data by county available through the US Department of Agriculture

(USDA) National Agricultural Statistics Service (USDA NASS, 2020).

We focused on the period 1970–2010 because yield data are avail-

able for a majority of counties starting in 1970, and year 2010 marks

the end of the meteorological dataset. We used the generic yields,

that is, yields with no specification of irrigated or rainfed cropping, for

all counties in the USA where at least 10 years of data, even if non-

consecutive, were available (Supporting information, Figure S1). To

avoid confounding effects of irrigation, we limited our analyses to

counties dominated by rainfed cropping, as indicated by fraction of

irrigated land area <10% (Supporting information, Figure S2). Our con-

clusions did not change appreciably when setting this threshold to

20% (results not shown).

2.2 | Climatic indices describing the growing
season conditions

The growing season was defined as the period between the mean

planting and harvesting dates for each county. These dates were

obtained from the crop calendar map available at 1/2� spatial resolu-

tion (USDA NASS 1997 data, collated and aggregated by Sacks

et al., 2010). We aggregated the gridded planting and harvesting dates

via the ‘raster’ package (Hijmans, 2019) in R, version 4.0.2 (R Core

Team, 2022), by weighted fraction of area falling within the county

boundaries and ignoring the grid cells for which no value was

available.

To summarize the growing season conditions, we considered

three climatic indices: growing season precipitation total, PGS; growing

season temperature average, TGS, calculated based on the daily mean

temperature; and growing season aridity index, AIGS, defined as the

ratio of precipitation to potential evapotranspiration, PET, both cumu-

lated over the growing season. In the following, we used this defini-

tion of AI consistently: when referring to literature in which other

definitions are used, for example, based on the inverse of our AI, we

translate their conclusions in terms of AI as defined here.

To calculate AIGS, we determined the daily PET for each pixel with

the Hargreaves–Samani formula (Hargreaves & Samani, 1985):

PET¼0:0135kRsRaλ�1 Tmax �Tminð Þ0:5 Tþ17:8ð Þ ð1Þ

where PET is expressed in mm day�1, Ra is the extraterrestrial radia-

tion (MJ m�2 day�1), calculated as in Dingman (1994), Tmax, Tmin and

T are the maximum, minimum and mean daily temperatures (�C), λ is

the latent heat of vaporization (2.45 MJ kg�1) and the other terms are

empirical coefficients. We selected this PET estimate because it

requires no additional data beyond location and standard meteorolog-

ical data. The empirical radiation adjustment coefficient kRs was set to

0.16, given that most of the counties are not in coastal regions

(Raziei & Pereira, 2013). This value also falls within the range of coef-

ficients that ensure the best match with estimates from the standard-

ized Penman–Monteith for short crops in the region for which most

crop yield data are available (Supporting information, Figure S1;

Aschonitis et al., 2017).

PGS, TGS and daily PET from Equation (1) were aggregated at the

county scale following the same procedure used for the planting and

harvesting dates. The county aggregated daily PET was then cumu-

lated over the local growing season, to get PETGS and the growing

season AI calculated as AIGS = PGS / PETGS. In all the analyses, we

considered the actual climatic indices, instead of the anomalies after

de-trending, in order to identify the combinations of conditions that

gave the highest soybean and maize yields.

The resulting data covered a wide range of climatic conditions.

The frequency and spatial distribution of the climatic indices are

reported in Supporting information, Figures S3–S7. Few yields were

available at combinations of especially high or low precipitation totals

and average temperature (Figure S5). To avoid fitting the model for

climatic conditions with limited information on yields, we removed

the datapoints relative to specific counties and years with climatic

conditions outside the 5th and 95th percentiles of PGS and TGS

(i.e., PGS outside the range 28.4–75.9 cm and TGS outside the range

15.7–25.3�C for maize; and PGS outside the range 25.7–70.4 cm and

TGS outside the range 17.2–25.3�C for soybean). Choosing less con-

servative thresholds (e.g., 1st and 99th) did not appreciably alter the

key conclusions (not shown). The resulting dataset comprised 50,757

maize yield records from 1719 counties and 39,990 soybean yield

records from 1393 counties (on average 29.5 years of data per county

for maize and 28.7 years per county for soybean). Maize was grown in

99% of the counties for which soybean data were available, and soy-

bean was cultivated in 80% of the counties with yield data for maize

(Supporting information, Figure S1).

2.3 | Statistical analyses

Linear mixed effect models were fitted for maize and soybean yields

separately. For each crop, we considered in separate models

either growing season average temperature (TGS) together with

total precipitation (PGS), or aridity index (AIGS) alone, as fixed

effects explanatory climatic variables. In all models, we included

among the fixed effects also year (t) elapsed from 1969 as a continu-

ous variable to account for technological improvement and long-term

effects of climate change. Random effects were county and year as

factorial variables, to control for the general impacts from spatial het-

erogeneity and covariation over the study area within a year,

respectively.

In the temperature-precipitation models, we initially included as

fixed effects, beyond t, the factors TGS, PGS, PGS
2, TGS

2 and all possible

two-way interactions between them, with either maize or soybean

yield per hectare, county and year as response variable, that is,

LUAN ET AL. 3 of 13
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Yield¼ β0þβttþβPPGSþβTTGSþβP2PGS
2þβT2TGS

2þβPTPGSTGS

þβP2TPGS
2TGSþβPT2PGSTGS

2þβP2T2PGS
2TGS

2: ð2Þ

Here, β0 is the model global intercept, βt, βT and βP are slopes

describing the linear dependences on time, temperature and precipita-

tion, respectively, and βP2 and βT2 capture the quadratic response of

yield to precipitation and temperature, respectively. The interaction of

temperature and precipitation is represented by the slopes βPT, βP2T,

βPT2 and βP2T2. We compared the performance of this most complex

model with seven reduced-complexity model variants. All these model

variants retain t, TGS, PGS and the interaction TGS � PGS but include

just some of the other terms, namely, the quadratic dependences and

their interactions (see Supporting information, Section S3 for the list

of model variants considered). The TGS � PGS interaction was retained

in all model variants because physiological evidence and analyses of

field and survey data show that the effects of low precipitation caus-

ing water stress are exacerbated under high temperature (e.g., Cohen

et al., 2021; Luan et al., 2021; Matiu et al., 2017; Suzuki et al., 2014)

and those of excessive precipitation under cooler temperatures (Li

et al., 2019). In the following, for each crop, we retained the best per-

forming model variant, that is, the model with the lowest value of the

Akaike information criterion (AIC). For maize, the best performing

model variant (Table S1) had the following structure of fixed effects:

Yield¼ β0þβttþβPPGSþβTTGSþβP2PGS
2þβT2TGS

2þβPTPGSTGS

þβP2TPGS
2TGSþβPT2PGSTGS

2: ð3Þ

For soybean, the best performing model variant was (Table S1)

Yield¼ β0þβttþβPPGSþβTTGSþβP2PGS
2þβT2TGS

2þβPTPGSTGS: ð4Þ

Conversely, only one model was considered with AIGS as climatic

explanatory variable. This included linear and quadratic dependencies

on AIGS. The fixed effect part of model was

Yield¼ γ0þγttþγAAIGSþγA2AIGS
2, ð5Þ

where γ0 is the model global intercept, γt and γA describe the linear

dependences on t and AIGS, respectively, and γA2 is the quadratic

dependence on AIGS.

The precipitation and temperature corresponding to the absolute

maximum yield were determined by solving the system obtained by

setting to zero the first derivatives with respect to PGS and TGS of

Equation (3) for maize and Equation (4) for soybean. The dependence

of the yield maximizing precipitation on temperature (PGS*(TGS)) was

instead determined as the precipitation at which the first derivative

with respect to PGS of Equation (3) for maize and Equation (4) for soy-

bean equals 0. For maize, this led to

PGS
� TGSð Þ¼� βPþβPTTGSþβPT2TGS

2
� �

= 2 βP2þβP2TTGSð Þ½ �: ð6Þ

Whereas, for soybean, PGS* was obtained as

PGS
� TGSð Þ¼� βPþβPTTGSð Þ= 2βP2ð Þ: ð7Þ

Similarly, the yield maximizing aridity index, AIGS*, corresponds to

the position of the vertex of the parabola in Equation (5), that is,

AIGS
� ¼�γA= 2γA2ð Þ: ð8Þ

We determined the confidence intervals of PGS*(TGS) and AIGS*

by creating pseudo-replicates of the dataset via 2000 bootstraps with

resampling and estimating the linear mixed effect model coefficients

of the models in Equations (3)–(5) and the yield maximizing conditions

(Equations 6–8) for each pseudo-replicate.

The R statements of the final models (Equations 3–5) are

reported in the Supporting information, Section S4. We fitted the

models with a restricted maximum likelihood approach using the

‘lme4’ package version 1.1.23 (Bates et al., 2015) in R version 4.0.2

(R Core Team, 2022). Linear model assumptions, including homosce-

dasticity and normality of errors, were visually checked in the residual

plots. All the assumptions were satisfied. The correlations between

precipitation and temperature were low (Figure S3), indicating no

issue with collinearity. We quantified the performance of the selected

models via the fraction of variance explained by the fixed effects

alone (marginal coefficient of determination R2) and the total fraction

of variance explained (conditional R2), determined following Naka-

gawa and Schielzeth (2013), as well as the root-mean-square error,

normalized by the yield range (NRMSE).

3 | RESULTS

3.1 | Growing season precipitation and
temperature as predictors of yield

Precipitation, temperature and their interactions explained 78% and

73% of the yield variability for maize and soybean, respectively (con-

ditional R2, Table 1). As expected, the temperature and precipitation

interaction was significant (Table 1). There were also negative qua-

dratic dependences on PGS and TGS, that is, yield was maximized at

intermediate PGS and TGS.

The absolute highest yields were achieved at intermediate precip-

itation and temperature, specifically at PGS of 63.4 cm and TGS of

17.9�C for maize and at PGS of 58.6 cm and TGS of 20.0�C for soy-

bean, when estimated based on the fixed effects only (dots in

Figures 1–3). Yields improved over time, giving 0.10 and

0.03 ton ha�1 annual yield increases in maize and soybean, respec-

tively (Table 1).

In maize, the yield sensitivity to a change in precipitation

depended on temperature. An increase in precipitation increased

yields at low temperature but had no effect at high temperature

4 of 13 LUAN ET AL.
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(Figure 2a). In contrast, soybean yields increased with precipitation for

PGS below approximately 55 cm and decreased at higher PGS irrespec-

tive of temperature (Figure 2b). Also the sensitivity of yield to temper-

ature depended on the climatic conditions (Figure 2c,d).

The yield maximizing precipitation, PGS*, increased with tempera-

ture in both crops and was higher in maize than soybean (Figure 3). In

addition, yield maximizing precipitation increased faster with tempera-

ture in maize than soybean.

3.2 | Aridity index as predictor of yield

The model based on AIGS and time only (Equation 5) explained 77%

and 72% of yield variability of maize and soybean yields (conditional

R2 in Table 2), that is, a proportion of variability comparable with that

of the temperature and precipitation models (Equations 3–4; Table 1).

Yet, compared with the precipitation and temperature models, the

fixed factors of the AIGS model had a lower explanatory power. The

TABLE 1 Model coefficient estimates, standard errors (SE) and p values for the best performing precipitation and temperature model,
selected based on the AIC criterion, for maize (Equation 3) and soybean (Equation 4). Effects significant at p ≤ 0.05 are highlighted in bold.
Marginal and conditional R2 represent the variation explained respectively by the fixed factors alone and by the entire model, including fixed and
random effects (Nakagawa & Schielzeth, 2013). NRMSE is the root-mean-square error, normalized by the range of yields included in the dataset.

Predictors

Maize Soybean

Estimates SE p Estimates SE p

β0 (ton ha�1) �2.990 1.849 0.106 �9.880 3.320 * 10�1 <0.001

βt (ton ha�1 yr�1) 1.031 * 10�1 6.524 * 10�3 <0.001 2.626 * 10�2 1.864 * 10�3 <0.001

βP (ton ha�1 cm�1) 1.247 * 10�2 4.324 * 10�2 0.773 2.791 * 10�2 2.355 * 10�2 <0.001

βT (ton ha�1�C�1) 4.439 * 10�1 1.674 * 10�1 0.008 1.089 2.947 * 10�2 <0.001

βP2 (ton ha�1 cm�2) �2.709 * 10�3 2.892 * 10�4 <0.001 �3.374 * 10�4 1.392 * 10�5 <0.001

βT2 (ton ha�1�C�2) �1.159 * 10�2 3.915 * 10�3 0.003 �2.801 * 10�2 6.729 * 10�4 <0.001

βPT (ton ha�1�C�1 cm�1) 1.814 * 10�2 3.366 * 10�3 <0.001 5.801 * 10�4 9.346 * 10�5 <0.001

βP2T (ton ha�1�C�1 cm�2) 1.013 * 10�4 1.397 * 10�5 <0.001 - - -

βPT2 (ton ha�1�C�2 cm�1) �6.981 * 10�4 7.295 * 10�5 <0.001 - - -

Observations 50,757 39,990

Marginal R2 0.467 0.363

Conditional R2 0.782 0.725

NRSME 0.0787 0.0756

AIC 150,264 28,310

Abbreviations: AIC, Akaike information criterion; NRMSE, root mean square error, normalized by the yield range.

F IGURE 1 Crop yield Y as a function
of growing season precipitation and
temperature based on the fixed effects of
the best performing model for (a) maize
(Equation 3) and (b) soybean (Equation 4).
The model coefficients are summarized in
Table 1. Elapsed years from the beginning
of the records were set to the
intermediate year within the period
1970–2010, that is, t = 1989–
1969 = 20 years. The white dots denote
the conditions at which yield is at its
absolute highest, as determined by
simultaneously setting to zero the partial
derivatives of Equation 3 or 4 with
respect to PGS and TGS. The ranges of
climatic conditions correspond to the 5th

and 95th percentiles of observations
(Figure S5).
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AIGS model had marginal R2 of 0.34 and 0.28 for maize and soybean

(Table 2), to be compared with 0.47 and 0.36, respectively, for the

precipitation and temperature models (Table 1). The performance was

lower also based on the AIC. AIC for the AIGS model was larger than

that for the best performing precipitation and temperature model var-

iants by 1669 and 1382 for maize and soybean, respectively (Tables 1

and 2). Similarly, the root mean square error normalized by the yield

range (NRMSE) was slightly higher in the AIGS model than in the pre-

cipitation and temperature models (+1.3% and +1.4% for maize and

soybean, respectively).

Yield depended nonlinearly on AIGS in both crops. The AIGS at

which yield was at maximum, AIGS*, was 0.787 for maize and 0.976

for soybean, with bootstrap 5%–95% confidence intervals of 0.763–

0.792 and 0.964–0.988, respectively (Figure 4).

3.3 | Comparison of yield-maximizing conditions
with 1970–2010 observations

The precipitation totals corresponding to the absolute highest yields

(dots in Figure 1) were exceeded only by 14.6% of the values of PGS

included in the maize dataset and by 11.6% of those in the soybean

dataset. Conversely, the temperatures for the absolute yield maximum

were exceeded by 81.2% of the values of TGS in the maize dataset

and by 68.4% of those in the soybean dataset.

The faction of observations below the yield maximizing precipita-

tion PGS* increased with recorded TGS and more so for maize than

soybean (Figure 5a). In the warmer growing seasons (TGS > 22�C), PGS

was lower than PGS* in all or almost all cases for maize. In other

words, in most counties and years included in the 1970–2010 dataset,

F IGURE 2 Sensitivity of yield Y to
unitary change of (a,b) precipitation and
(c,d) temperature, as expressed by the
derivatives of yield with respect to PGS

and TGS, respectively, based on the fixed
effects of the best performing model
variant, for (a,c) maize (Equation 3) and
(b,d) soybean (Equation 4). The model
coefficients are summarized in Table 1.

The thick black contours denote the
conditions at which the derivative equals
zero. The black dots correspond to the
conditions at which yield is at its absolute
highest (i.e., correspond to the white dots
in Figure 1). The ranges of climatic
conditions considered correspond to the
5th and 95th percentiles of the
observations (Figure S5).
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PGS was lower than the value corresponding to the maximum yield for

that county and year, with, on average, very few exceptions in the

Northeast for maize and the deep South for soybean (orange and yel-

low hues in Supporting information, Figure S8).

Similarly, AIGS* corresponds to the 92th and 90th percentiles

within the dataset for maize and soybean, respectively. AIGS* was

greater than AIGS in most observations, particularly in warmer years

and in maize (Figure 5b), with average geographic distribution in line

with that of the differences between average PGS and PGS*

(Supporting information, Figure S9).

4 | DISCUSSION

Our models explained more than 70% of the observed yield variability

(Tables 1 and 2), placing them at the upper end of previous global

explorations (e.g., Ray et al., 2015). Growing season precipitation total,

PGS, average temperature, TGS, and their interactions performed bet-

ter than growing season aridity index, AIGS, according to AIC and

capacity of the fixed effects to explain yields, but the overall fractions

of explained variance and normalized RMSEs were similar. As such,

our first hypothesis is only partially supported. AI emerges as a viable

alternative to precipitation and temperature to explain yield variability

but does not improve predictions, despite being a closer proxy of

plant water availability. This lack of improvement in explanatory

power could be caused by the direct effect of temperature on crop

development and yield formation, which is partially captured by the

TGS and TGS
2 terms in the precipitation and temperature models, but

not included in the AI model. Nevertheless, the small difference in

performance between the PGS and TGS and the AIGS models suggests

that reductions in yields when away from the yield maximizing

conditions can be primarily ascribed to the effect of water deficit or

excess, resulting from the interaction of temperature, evaporative

demand and precipitation, rather than a direct effect of temperature

on the crops.

Crop yields depended nonlinearly on temperature, precipitation

and their interactions, as seen from the model selection (Supporting

information, Section S3) and coefficient significances (Table 1), in line

with ecophysiological evidence (e.g., Suzuki et al., 2014; Way &

Yamori, 2014). Including nonlinear dependences on precipitation and

temperature as well as interactions between these conditions appears

necessary to explain a large share of yield variability. This is an

improvement with respect to statistical modelling in which crop yields

were predicted from precipitation and temperature and that included

the nonlinear dependencies but did not account for the interactions

between temperature- and precipitation-related indices (Lobell &

Burke, 2010; Ortiz-Bobea et al., 2021). Conversely, statistical models

in which temperature-precipitation interactions have been considered

have lacked nonlinear dependencies on precipitation and temperature

(Carter et al., 2018; Hawkins et al., 2013; Luan et al., 2021; Urban,

Sheffield, & Lobell, 2015). These would not capture the effects of

both insufficient and excessive precipitation and temperature, limiting

their use to generally dry (wet) or warm (cold) conditions. Moreover,

the clear nonlinear dependence of crop yields on temperature is a

step forward in effectively summarizing yield responses to tempera-

ture, which is needed to improve process-based model predictions

(Lobell & Burke, 2010; Wang et al., 2017).

In line with our second hypothesis, yields were maximized at

intermediate precipitation (Figure 1), and the yield maximizing precipi-

tation increased with temperature (Figure 3), clearly indicating that

warming enhances the needed water supply. This points to the key

role of soil water availability, more than temperature directly, in defin-

ing yields, in line with recent results (Proctor et al., 2022). Our esti-

mated yield maximizing precipitation ranged from 570 to 840 mm for

maize and from 556 to 629 mm for soybean, over the range of tem-

peratures included in the dataset (lines in Figure 3). These yield maxi-

mizing precipitation ranges are in broad agreement with other results.

The total water supply needed for the highest yield quantified via

process-based models in the US Corn Belt ranged between 700 to

1000 mm for maize (Grassini et al., 2009, 2011) and 700 to 750 mm

for soybean (Grassini et al., 2015; Sharda et al., 2019). These values

are somewhat higher than our estimates, likely because they include

also the depletion of soil water storage during the growing season. In

the same region, maize yield shifted from being positively to

negatively affected by a precipitation increase when April-to-August

precipitation reached 650 mm, based on a statistical model (Lobell

et al., 2020). This threshold is comparable with the precipitation at

which the absolute maximum yield is achieved based on our model

results (634 mm; dots in Figures 1a and 3).

Yield depended nonlinearly also on growing season AI for both

crops, with the highest yield at intermediate AIGS, as per our third

hypothesis. The few previous analyses using AI to explain yields are

limited in geographical and climatic range and are all based on linear

relationships. They showed yield increased with AI, at the annual scale

F IGURE 3 Yield maximizing precipitation, PGS*, at different
growing season temperatures TGS for maize (blue solid line) and
soybean (red dashed line), based on Equations 6 and 7, respectively,
and the coefficients in Table 1. The shaded areas correspond to the
5%–95% confidence intervals, obtained via bootstrapping of the data.
The dots denote the conditions at which yield is at its absolute
highest (i.e., correspond to the white dots in Figure 1). The lines
extend to the ranges of average growing season temperature, TGS,

covered by the dataset trimmed at the 5th and 95th percentiles.
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in wheat and barley in Iran (Bannayan et al., 2010; Karimzadeh

Soureshjani, 2021), during the growing season in soybean and wheat,

and within shorter periods in maize and rice in north-eastern China

(Yin et al., 2016). Despite not considering these more complex depen-

dences, the ratio of monthly precipitation to temperature—somewhat

proportional to AI—explained 34% to 78% of maize and sorghum yield

variation depending on month and location across Botswana

(Byakatonda et al., 2018). Yet, for the large range of climatic condi-

tions explored here, neglecting the quadratic dependence on AIGS

reduces the fraction of explained variance and doubles the NRMSE

(not shown).

The estimated yield maximizing aridity index (AIGS*) is 0.79 for

maize and 0.98 for soybean (Figure 4), to be compared with the inter-

quartile range of aridity indices maximizing biological water use (0.53

to 0.77, obtained by Good et al., 2017). Hence, both maize yields

across the USA and biological water use globally are maximized when

PET exceeds precipitation, whereas soybean yields are highest when

precipitation nearly balances PET.

AIGS* is greater than the AI maximizing the biological water use

for both crops. This suggests that to maximize yields, precipitation

needs to meet a larger fraction of potential evapotranspiration in

crops compared with vegetation annually and globally, that is, that

maize and soybean are on average less water stressed when achieving

the maximum yield. The difference between AIGS* and the global

mesic maximum is likely even larger than apparent from these figures,

because we focused on the growing season only, whereas the mesic

maximum in Good et al. (2017) was based on conditions during the

entire year. In locations with growing season coinciding with the

warmer season (like most of the USA), AIGS is lower than AI calculated

over the entire year (like those in Good et al., 2017), except when pre-

cipitation occurs mostly during the growing season. There are several

possible explanations for the difference between AIGS* and the AI

maximizing biological water use. Nonlinear relationships link the grain

yield that we assessed here to transpiration, which drives biological

water use (Purcell et al., 2007; Vico & Porporato, 2015 and references

therein). Unfavourable conditions of short durations, such as water

stress, could reduce yield more than indicated by the cumulated actual

evapotranspiration to which the biological water use is proportional.

Another possible explanation is that crops are generally more aniso-

hydric than other species (Konings & Gentine, 2016), that is, they

maintain their stomata open even under water limitation.

The existence of yield maximizing intermediate growing season

precipitation total, average temperature and AI implies that depending

TABLE 2 Model coefficient estimates, standard errors (SE) and p values for the fitted maize and soybean AI model (Equation 5). Effects
significant at p ≤ 0.05 are highlighted in bold. The marginal and conditional R2 represent the variation explained respectively by the fixed factors
alone and by the entire model, whereas NRMSE is the root-mean-square error, normalized by the range of yields included in the dataset.

Predictors

Maize Soybean

Estimates SE p Estimates SE p

γ0 (ton ha�1) 6.044 * 10�1 1.836 * 10�1 0.001 3.408 * 10�1 5.032 * 10�2 <0.001

γt (ton ha�1 yr�1) 1.004 * 10�1 6.918 * 10�3 <0.001 2.539 * 10�2 1.775 * 10�3 <0.001

γA (ton ha�1) 9.313 2.447 * 10�1 <0.001 2.856 6.491 * 10�2 <0.001

γA2 (ton ha�1) �5.913 2.060 * 10�1 <0.001 �1.462 4.174 * 10�2 <0.001

Observations 50,575 39,990

Marginal R2 0.342 0.278

Conditional R2 0.771 0.720

NRMSE 0.0797 0.0767

AIC 151,933 29,692

Abbreviations: AIC, Akaike information criterion; NRMSE, root mean square error, normalized by the yield range.

F IGURE 4 Crop yield Y as a function of AIGS, based on the fixed
effects of the AI model (Equation 5), for maize (blue solid line) and
soybean (red dashed line), extending only over the ranges of AIGS
corresponding to PGS and TGS within the 5th to 95th percentiles.
Vertical lines correspond to the yield maximizing aridity index, AIGS*
as determined by the fixed effect part of the model (Equation 8) and
the coefficients in Table 2. The shaded areas extend to the AIGS* 5%–
95% estimated by bootstrapping of the data. The confidence interval
of the maize is not centered around AIGS* determined via the
coefficients in Table 2 because the range of AIGS in the database is
skewed towards values lower than AIGS* (Supporting information,
Figure S4), affecting the fully random data bootstrapping with
replacement. Elapsed years from the beginning of the records were
set to an intermediate year within the period 1970–2010, that is,
t = 1989–1969 = 20 years.
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on location and year, yields could be constrained by both insufficient

and excessive precipitation and by warm and cool conditions and their

combinations. Nevertheless, the yield maximizing precipitation corre-

sponded, for both crops, to a precipitation that was higher than most

of the observations, in particular in warmer years and counties and for

maize (Figure 5). Similarly, the yield maximizing AIGS was higher than

observed AIGS in >80% of the cases in the dataset, that is, the precipi-

tation was higher for a set PET, or PET was lower for a set precipita-

tion. Moreover, yield maximizing precipitation totals were within the

upper half of the precipitation totals observed within the dataset for

soybean but exceed observations for temperatures above 22�C for

maize (Figure 5a and Figure S3). Hence, in most counties, rainfed corn

and maize production over the period 1970–2010 occurred in condi-

tions where precipitation was often lower and temperature higher

than ideal (Figures 5, S8 and S9). Temperature will continue to

increase in the USA and globally, whereas projected changes in pre-

cipitation amount and pattern differ by region (Liu et al., 2020;

Wuebbles et al., 2017). Rising temperatures will exacerbate the occur-

rence of insufficient precipitation input, while being beneficial in the

minority of locations where yields are currently reduced by water

excess. Indeed, precipitation above the local norm had a negative

effect on maize yield in the northern US states, while the effect was

positive in the southern states (Li et al., 2019). In the majority of loca-

tions, global warming will be detrimental for yields, unless accompa-

nied by an adequate increase in precipitation or further expansion of

irrigation, if locally sustainable. Conversely, growing season potential

evapotranspiration is increasing in many agricultural regions but not,

for example, in the US Midwest (Basso et al., 2021; Liu et al., 2020).

Because of the compounded uncertainties in changes in potential

evapotranspiration and precipitation, we cannot speculate on whether

climate change will further increase the counties and years with AIGS

lower than the yield maximizing value.

Within the general patterns described above, some differences

emerged between maize and soybean. Precipitation needed to maxi-

mize yields was larger in maize than soybean under all temperatures

(Figure 3). Despite its C4 photosynthetic pathway, rainfed maize had

11% higher cumulated growing season evapotranspiration than

rainfed soybean, according to eddy covariance data (Suyker &

Verma, 2009). Hence, larger precipitation totals during the growing

season are needed to meet the greater evapotranspiration demand of

maize compared with soybean, which is in line with our results.

Accordingly, maize received insufficient precipitation to maximize

yields more frequently than soybean across most of the USA during

1970–2010 and in all cases when growing season average tempera-

ture exceeded 22�C (Figure 5). This pattern places maize at larger risk

of yield reduction under global warming. Similarly, AIGS* was lower in

maize than soybean likely due to the higher water demands and hence

more frequent water limitation of maize compared with soybean.

Finally, for maize, yield sensitivity to a change in precipitation was

higher at lower temperature and under excess more than shortage of

precipitation under those conditions (Figure 2). But when factoring in

the yield difference, that is, when normalizing the partial derivatives

by yields, maize had a higher relative sensitivity than soybean only at

excess precipitation (not shown), in line with effects of precipitation

anomalies on yields across the USA (Nelson & Burchfield, 2021) but in

contrast to global country-level data (Proctor et al., 2022).

The explanatory power of our models was high and yield maxi-

mizing precipitation estimates were in agreement with other findings,

despite considering only the average conditions over the growing sea-

son. Crop growth and yield are influenced also by intra-seasonal cli-

matic conditions. Short-term stress conditions can markedly damage

crops and reduce yields (e.g., Troy et al., 2015; Vogel et al., 2019),

especially at critical developmental stages (Tack et al., 2016) and if co-

occurring, for example, heat and water stress (Hamed et al., 2021;

Luan et al., 2021). The role of water-mediated damaging short-term

conditions is likely reduced at higher precipitation totals, as shown by

a model application (Dietzel et al., 2016). Moreover, the effects of

growing season conditions can be altered by pre-season soil water

storage. A crop model showed that higher pre-season soil water led to

overestimated yield losses under water stress and underestimated

losses at water excess (Li et al., 2019), by buffering against later water

shortage and enhancing water excess. This effect of pre-season soil

water content would also hold true for our model results and

F IGURE 5 Percentage of observations exceeding (a) yield
maximizing precipitation, PGS* and (b) yield maximizing aridity index,
AIGS*, as a function of growing season average temperature for maize
(blue) and soybean (red). Each dot refers to observations falling within
±0.5�C of the temperature indicated on the x-axis.
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particularly so for the central USA, where water excess at planting is

increasingly frequent (Urban, Roberts, et al., 2015). Higher pre-season

soil water storage would reduce yield sensitivity to changes in precipi-

tation at insufficient precipitation and increase that under precipita-

tion excess, all else being the same, potentially calling for a model able

to accommodate nonsymmetric responses to precipitation. The rele-

vance of pre-season conditions also depends on crop species,

although in complex ways. For example, the longer growing season of

maize compared with soybean might reduce the effect of pre-season

soil water status on the final yield. At the same time, maize earlier

sowing and final deeper roots (Borg & Grimes, 1986; Sacks

et al., 2010) might enhance the benefits from off-season recharge

where growing season rainfall is limited.

5 | CONCLUSIONS

Crops, in particular if rainfed, depend nonlinearly on precipitation and

temperature to achieve their yield potential, all other conditions being

equal. The effects of temperature and precipitation are largely

mediated by soil water availability, which can be partially described by

the aridity index, that is, the ratio between precipitation and potential

evapotranspiration. Examining county yield data for rainfed maize and

soybean across the USA over 1970–2010, we found that

growing season aridity index alone explained yield variability

almost equally well as growing season temperature, precipitation and

their interactions, but had a lower performance based on the AIC,

despite being a proxy of water availability to meet evaporative

demands. Yields of both maize and soybean responded nonlinearly to

precipitation and temperature, and aridity index, with intermediate

conditions leading to the maximum yields. The yield maximizing pre-

cipitations increased with temperature for both crops and more so for

maize. The yield maximizing aridity index exceeded the global esti-

mates of the mesic maximum, suggesting that crops achieving the

highest yield are on average less water stressed than vegetation

globally.

Yields can both increase or be reduced by a change in precipita-

tion under warming conditions, depending on whether the co-varying

precipitation and temperature shift conditions closer or farther away

from the yield maximizing precipitation for the corresponding temper-

ature. However, most of the observations over 1970–2010 across the

USA are relative to conditions where precipitation is lower than that

maximizing yield for the local temperature and aridity index below the

yield maximizing value. Hence, warming could be more damaging than

beneficial for US rainfed maize and soybean. Knowledge of the loca-

tions where future climatic conditions will move farther away from

those that maximize yields allows identifying climate change vulnera-

bility hotspots, where adaptation is most urgent.
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