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Abstract: The continuous nature of space and time is a fundamental tenet of many scientific endeavors.
That digital representation imposes granularity is well recognized, but whether it is possible to
address space completely remains unanswered. This paper argues Hales’ proof of Kepler’s conjecture
on the packing of hard spheres suggests the answer to be “no”, providing examples of why this
matters in GIS generally and considering implications for spatio-temporal GIS in particular. It seeks
to resolve the dichotomy between continuous and granular space by showing how a continuous
space may be emergent over a random graph. However, the projection of this latent space into
3D/4D imposes granularity. Perhaps surprisingly, representing space and time as locally conjugate
may be key to addressing a “smooth” spatial continuum. This insight leads to the suggestion of
Face Centered Cubic Packing as a space-time topology but also raises further questions for spatio-
temporal representation.
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1. Introduction

This work started with a seemingly simple hypothesis: “Any and all locations on a
map may be uniquely addressed with arbitrary precision”. If true, then errors due to grain
may be assumed to tend, at least asymptotically, toward zero at a high enough resolution.
If not, addressable space would seem to be fundamentally different from continuous space,
with granularity being fundamental, not merely imposed by the data resolution.

The hypothesis will be shown to be false (at least for Euclidean space). This is of
theoretical interest but also practical import when small uncertainties carry decisive impli-
cations. Section 3 attempts to resolve the apparent dichotomy from a limited set of logical
premises. It succeeds in so far as showing how relative position may be fully addressed but
fails to achieve the same for absolute position in Euclidean space. The attempt, however,
shows the importance of the duality between space and time, leading to the title question:
“Does time smoothen space?” i.e., if Euclidean space cannot be completely addressed all at
once, perhaps it can be over time?

As such, the paper makes two contributions to the issue of space-time representation.
At the theoretical level, it raises the previously overlooked possibility that analytical space
is fundamentally incomplete in a scale-independent manner rather than merely spatial
data being imprecise at a given scale. At the practical level, it is noted that this incomplete
part may be less easily generalized in spatio-temporal analysis, particularly in applications
that are inevitably close to the grain, such as immersive spatial query. Face Centered Cubic
Packing is then proposed as a novel approach to represent space-time.

1.1. Research Background
1.1.1. Spatial Granularity in Theory

“Granularity is closely related, but not identical, to imprecision. Granularity refers to
the existence of clumps or grains in information, in the sense that individual elements in
the grain cannot be distinguished or discerned apart”. Duckham et al. [1]
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If Euclid’s Elements is the quintessential early text to reference ideas of continuous space,
Logistica (by Barlaam of Seminara 1290–1350) was the inspiration for early work on mere-
ology (the study of parts and wholes), e.g., Wolf’s Ontologia [2]. Of particular relevance
is Wolf’s observation that “An actual part is a part that is contained in its own boundaries. A
possible part, on the other hand, is a part whose boundaries can be arbitrarily assigned” (Wolf [2],
see Camposampiero [3]), i.e., the distinction between ontologies of naturally defined objects
and the problematic Modifiable Areal Units (MAUP). Galton [4] clarifies the distinction
between spatial (fields/objects) and temporal (fluents/events) contexts, the latter being
also subject to Modifiable Temporal Unit Problems (MTUP) [5].

Early works in GIS [6–8] cite Elementary Concepts of Topology by Alexandroff [9] as a
key reference to set topology, and Shortridge and Goodchild cite Klain and Rota [10] and
Solomon [11] as work in computational geometry upon which they build [12]. Shortridge
and Goodchild state, “Mapping is a divide-and-conquer activity” [12]. Thus, maps are ‘sets’
of topologically distinct objects, including the space between. The challenge is to find the
minimum definition of such a set for vector [13], raster [14], or lattice [15] representation.
Arguably, the most important distinction between raster and vector in this context is that
raster granularity imposes a hard, non-isometric limit on geometric precision [16].

Vector coordinates are usually grids, computed via arrays [17], and while metadata
generally refers to a single “mean error” [18] for measurements on the coordinate grid
sampling over time produces uncertainty between grids [19], e.g., from GPS epochs (See
http://www.nbmg.unr.edu/staff/pdfs/Blewitt_Encyclopedia_of_Geodesy.html (accessed
on 15 July 2021)). Therefore, determining inter-year change presents what Shortridge and
Goodchild identify as a “Laplace extension of the Buffon problem” [12].

Another important consideration in array representation is whether a vector can be
rotated such that its function is frame independent [20]:

“When we state that observables are not pure numbers but operators, and the observed
values of these observables are the eigenvalues of these operators, that alone is sufficient
to ensure that two operators which do not commute must be related by an uncertainty
principle”. [21]

Coordinates are effectively operators of displacement from an origin, with eigenvectors
between. Usually, analytical operations on spatial data are invertible [22] but not necessarily
commutative. In some cases, variables are complementary, such as height, slope, and
aspect [23] or depth and roughness. For a partition with zero length, concepts such as
slope or roughness are meaningless in discrete space, so one must impose a finite grain to
measure them.

The Heisenberg Uncertainty Principle is often misconstrued as a property of, or an
observation effect on, fundamental particles but is, in fact, a result of the non-diagonalizable
geometry of space-time (see Siddharthan [21]). Heisenberg’s genius was to recognize the
relationship between this principle and the spatial discernibility of particles as Fourier
wavelets (the smaller the spatial envelope, the less certain are derivatives across it, such
as momentum), so it is interesting to note that early work in GIS on partitioning cast the
problem of appropriate statistical units in terms of discernibility of Fourier waves [20],
and that more recently the principle has also been shown for spectral decomposition
of graphs [24]. With spatial data, there is generally the option to increase precision as
necessary, but when granular precision matters, the principle applies.

1.1.2. Spatial Granularity in Practice
Intersect and Overlay

Shortridge and Goodchild [12] estimated the probability of geometric intersections
between objects and tilings, particularly the probability that a circle of a given radius will
intersect with gridded points. A well-known problem in rasterization is that small objects
may “disappear” if no such intersect occurs. Figures from that paper (reproduced below,
Figure 1) show how this probability varies with the resolution-object size ratio:

http://www.nbmg.unr.edu/staff/pdfs/Blewitt_Encyclopedia_of_Geodesy.html
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Figure 1. Figure 7a (left) and Figure 8 (right) from Shortridge and Goodchild [12] (reproduced by
permission, license 5104250425992).

Shortridge and Goodchild [12] show that the probability of intersection follows an
S curve, with an increasing slope up to about 0.5. Thereafter the curve flattens out (in
a faint tone to indicate there is also overlap between the circles). The authors state that
“the probability that a polygon is missed during conversion to raster is clearly a function of raster
cell size and polygon shape and area”. [12]. It leaves the question of the appropriate raster
representation when the circles overlap.

Visibility Analysis

Line of sight intersection occurs in a projected space with occlusion affected by view
orientation and angular precision [25]; thus, it cannot be validated in the field or via test
figures [26]. Angular precision matters in both raster and vector methods [27,28]. Conse-
quently, information about uncertainty in a viewshed must be generated following Hidden
Surface Removal, which is challenging for analytical purposes [26]. While typical ranges of
uncertainty in viewsheds can be ascertained for a terrain model of typical topographies [29],
the range of possible viewsheds is, in principle, unbounded since a minute gap in a surface
can provide extensive visibility. Thus, despite improvements in speed [30], modeling uncer-
tainty in visual analysis requires consideration of perceptual issues such as autocorrelation
and scene coherence [31]. The problem is then to distinguish between Wolf’s [2] “actual”
and “possible” parts. Most visual landscape classifications have modifiable partitions,
but there are also higher order topologies (e.g., Euler Zones, see [31]) forming (locally)
viewpoint invariant discrete partitions on the more detailed aspect graph [32], a process
called graph granulation [33]. Visibility is thus one area where geographical scale effects,
which are hard to statistically bound, can arise from granular effects at extremely small
grain sizes.

Graph Partition and Granulation

“Any spatial partition has a corresponding dual graph” [33]. The common “dissolve”
operation simplifies polygon data by combining adjacent partitions with common at-
tributes. Implicitly the nodes of these partitions are combined into a single node in the
dual graph. Subgraphs of a network partition it into a coarse-grained representation of
the full graph [33]. How coarse and detailed graphs relate across scales is important for
problems such as efficient route finding [34], particularly when the location of the traveler
is imprecise [35].

Path Analysis

Graph granularity also affects path analysis in discreet space. For example, topology is
implicit in the partial ordering of a square raster. However, Triangular Irregular Networks
(TIN) usually represent topology explicitly [36], with some data structures offering more
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complete representations (e.g., a Quad-Edge Delaunay TIN [37]) making more directions of
travel available to routing and flow algorithms. Finer orientations can be achieved by using
a larger step radius [38] and multiple scales ([39]), but Goodchild [40] shows the movement
is only asymptotically Euclidean with a smaller grain.

From Tilings to Lattices

Spatial overlay, intersect, visibility, flow, and network operations are all vulnerable
to even minuscule uncertainties due to the binary nature of the decisions to be made at a
partition. Overlay and intersect have the advantage that while errors may compound and
propagate during analysis, the decision remains local to the objects concerned. In analyses
such as visibility, least cost path, and flow accumulation, the error will be “transmitted”
elsewhere in a manner that is hard to trace. Therefore, amplification of error by projection
or accumulation is problematic, both with positional uncertainty (due to conceptual vague-
ness [41] or observed imprecision [42]) and topological incompleteness. For clarification,
‘uncertainty’ leaves one unsure as to degree but with some basis for estimation, whereas
‘incompleteness’ leaves one lacking knowledge.

The Region Connection Calculus (RCC) [43] is an interesting alternative model of
tiling space since it both draws directly on mereology [44] and can be derived from lattice
algebra [43]. Lattices are an example of partial ordering [40], which shall prove essential
in Section 3. Lattices can also represent vagueness, which is “closely related to granular-
ity” [33] since space within discrete grains at one precision may be divided by the grain
at another.

2. Establishing Whether All Locations on a Map Can Be Uniquely Addressed

This brief method to answer the opening hypothesis rests on three conditions: (a) That
isometric precision implies a position be defined within a radius describing a hard perimeter.
(b) The shape of the function describes the probability of a unique intersection between
any point and the set of available addresses. (c) What happens to that function when the
resolution approaches infinity?

2.1. Unique, Spherical Address Units

By convention, precision is measured as a distance “r” in all directions, thus a circle
or sphere. It is, of course, possible to map two locations closer than “r” to a precision of
“r”, but doing so implies topological vagueness as it cannot be discounted that any two
objects mapped as such may, in fact, be in the same place. If coordinates are considered as
a three-dimensional (3D) lattice of addresses, a sphere can be defined around each point,
giving a complement equivalent in radius to the measurement precision, while the lattice
spacing defines coordinate resolution. Condition (a) met, the answer to the hypothesis
depends on the shape of the function in (b). If it reaches one, then the hypothesis must be
held as true, or it if tends asymptotically toward one, it is least arbitrarily close to being true.

The experiment in Figure 1 can now be reversed; does increasing the coordinate
resolution improve the probability of locating a point on a lattice of circles asymptotically,
as Shortridge and Goodchild [12] showed for locating a circle on a lattice of points? If
coordinate resolution exceeds measurement precision, complements overlap so the address
would be vague. If the complements “squash”, they are no longer isometric. The probability
function for a unique intersection is thus limited to the bold part of the line in Figure 1,
beyond this the answer depends on condition (c). As resolution tends towards infinitely
high and measurement precision toward an infinitely small point, what happens to the
odds that a random point will fall onto a unique address?

2.2. Kepler Conjecture

The Kepler Conjecture states that it is impossible to pack hard spheres in 3D such that
the total volume enclosed by the spheres exceeds more than c74% of the total volume of
their collective convex hull, more formally:
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”The packing density δ (Λ) of any sphere packing Λ in R3 does not exceed π
√

18 ≈
0.74048”. [45]

Hales [46] demonstrated this conjecture is probably correct. Since the conjecture and
Hales’ Proof of it are confined to Euclidean space, any implications must be restricted to it.
Nevertheless, within that common analytical arena, while the degree to which precision
affects representational completeness may be contingent on scene coherence [29] or spatial
autocorrelation [47] of the phenomena, space itself appears to not be fully addressable.

2.3. Interim Conclusions

The implication of Hales’ proof [46] is that the absolute risk of a point not finding an
address is constant with resolution thus the opening hypothesis must be false. While it may
be generally understood that all spatial data is only a sample, this implies something more
fundamental about analytical space itself. A notion of scale-constant incompleteness would
carry implications for how the relationship between Tobler’s First Law and Heterogeneity
is understood, particularly for fractal phenomena [47], by placing an upper bound on the
proportion of space that can be sampled independently. For a succinct overview of the
relationship between ’big data’ and sphere packing see Cohn’s, Arnold Ross Lecture of
2014, (https://www.ams.org/publicoutreach/students/mathgame/cohn-slides-2014-web.
pdf, accessed on 13 February 2023). Immersive, real-time applications are often close to
the grain. Granularity in space-time blurs the distinction between spatial and temporal
uncertainty which is generally considered to be a problem to be resolved but could prove
to be the solution to this apparent paradox of a “grainy continuum”.

3. Does Time Smoothen Space?

Answering the opening hypothesis in the negative has posed an apparent paradox
with theoretical and practical implications. This section will first attempt to resolve that
paradox in theory and then propose a pragmatic approximation for a space-time data
structure in the form of Face Centered Cubic Packing (FCCP).

3.1. Space-Time Representation

Geographical sciences have long been aware of the intimate connection between
space and time [48]. Methods proposed for space-time representation include modeling
spatio-temporal data as points and tracks [49], sequential stacks and semantic events [50]
or as fields and surfaces, tessellated such as kinetic Voronoi diagrams [51] or discrete
prisms [52] the most commonly applied of which is the space-time cube. Peuquet [53]
presents a thorough theoretical overview of the issues in spatio-temporal mapping and
some early modeling approaches, which remains remarkably current. Ohori et al. [54]
provide a more recent review of spatio-temporal models in GIS. They identify several
additional approaches to those mentioned (composite methods, object-oriented models,
and some conceptual and semantic models) but conclude that most consider time to be a
distinct dimension onto which snapshots or events are to be mapped. These approaches to
modeling space-time are perhaps better described as 3D + 1 since the time dimension is not
topologically integrated (at least not in four dimensions, prisms have been implemented
with time as the third dimension either as part of the object or by extrusion). Ohori et al. [54]
present a 4D model of space-time prisms based on topological vector objects, arguing that
“true” 4D requires time to be topologically integrated with space. Prior work that does this
includes the 4D partitioning approach of Erwig and Schneider [55] and the fuzzy space-time
coordinates of Brimicombe [56]. More recently, Nesani Samany et al. proposed the Fuzzy
Spatio-Temporal Prism [57]. All these methods start from a “monist” [58] assumption of an
extant space over which partitioning events unfold. There is also a long-standing approach
whereby space-time is “constructed” from discrete elements, beginning well before the
famous discussions of Newton, Leibnitz, and Clarke on the relationship between space,
time, and continuity. This approach will be taken below, but what properties need to be
considered? As the aim is only a consideration of space-time as an information formalism,

https://www.ams.org/publicoutreach/students/mathgame/cohn-slides-2014-web.pdf
https://www.ams.org/publicoutreach/students/mathgame/cohn-slides-2014-web.pdf
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not its physical existence [59], it seems reasonable to focus on the peculiar properties of
time identified by Peuquet [53] as of relevance to GIS:

a. Time is directional (the arrow of time);
b. Chaotic behavior may amplify small uncertainties through time;
c. Relative space and time are subjective, and neither exists independently;
d. Both space and time are generally conceived as continuous, yet for purposes of

objective measurement, they are conventionally broken into discrete units;
e. Temporal data is often incomplete. Science has traditionally viewed incompleteness

as something to be overcome rather than to be openly acknowledged or willingly
incorporated into models as a basic characteristic.

(Summarized by Peuquet [53]).
Property (d) expresses the “grainy-continuum” paradox. The next section sets out a

method (logical argument) for how discrete elements may generate a continuous space in
which the other properties are innate.

3.2. Time as Relative Dimension in Space
3.2.1. Premises

The work of mathematician Roger Penrose introduces a number of important concepts
and principles which are central to the later arguments pursued here:

A necessary constraint is ”to get rid of the continuum and build up physical [ . . . read
spatial . . . ] theory from discreteness”. [60]

One should “concentrate only on things which, in fact, are discrete in existing theory
and try and use them as primary concepts—then to build up other things using these
discrete primary concepts as the basic building blocks. Continuous concepts could emerge
in a limit, when we take more and more complicated systems”. [61]

”The most obvious physical concept that one has to start with . . . and which is connected
with the structure of space-time in a very intimate way, is in angular momentum”. [60]

However, despite the importance of Penrose’s thinking to this work and some apparent
parallels with problems in physics, like Penrose: “the picture I want to give here is just a model
. . . I certainly don’t want to suggest that the universe ‘is’ this picture or anything like that”. [60].

3.2.2. Building Dimensions

Consider two or more observations that are measurably distinct, i.e., a “natural”
topology of real numbers [62]. To establish an order of change a third is needed, a triad [63]
(not to be confused with Peuquet’s triad of locations, times, and objects [48]), which may
connect as a graph [64]. A random graph [65] un-directed and without pre-assigned global
characteristics (such as dimensions or convexity) ensures no implicit background.

3.2.3. Building a Probabilistically Continuous Dimension from a Graph

The “threshold of connectivity” of a random graph is the number of edges needed for
there to be a strong probability all nodes in the graph are connected [65], e.g., for a binomial
random graph “G(n,p) at p(n) = log n/n” [66]. The number of spanning trees of a connected
graph is an invariant Nn−2 as given by Cayley’s formula [67], but every connected graph
contains at least one spanning tree [68], (theorem 4.12). It is thus always possible for such
a connected graph to randomly form an ordered set [66] (e.g., a tuple, line, or tree, etc.)
where every node has a unique matrix of graph distance to all other nodes. If such a graph
describes the diffusion of information throughout a network, then the maximum “time” (in
a number of moves) it could take for information to diffuse throughout the network is when
the spanning tree is an Euler path. Simple paths between other nodes will therefore require
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some fraction of this maximum. The probability of a topological chain (a tuple) of length
no greater than i to form a path between any two particular nodes is given by Equation (1):

Pi =
2
n
+

i

∑
v=2

1
nv

(1)

P = probability of a path between two points being achieved in i random steps where
v = vth node added to the path; n = total nodes. i.e., the initial chance of a direct connection
(P = 2/n) plus the sequential sum of the chances that each further node added (v) to the
chain will be the destination, each such chance being 1/n.

In Equation (1), each ith additional node on the path increases the chance of a complete
path by 1/n since nodes already in the path are still available. In this way, information
moves over/through the graph by a node randomly swapping its position in the graph to
create the path.

3.2.4. Topological Rotation

Consider a simple graph where one node connects all the others directly. Thus, others
have a graph distance from each other of two. Given a constant metric per edge, these
points can describe a circular arc in two dimensions (2D), while one point sits at the center,
i.e., a wheel graph [69]. Abstracting this further (a circulant [24]), the concept of rotation
in a topological sense is known as an “orbit” of the node under “group action”, a subset
of which “fix” the node by returning the system to its original state [70]. So even without
literal “spinning”, the concept of total angular momentum is relevant, and the term will be
used for convenience to denote the ability of a node to swap position. The total momentum
M is thus the set of all possible orbits (hereafter, one “revolution” of the system). The
maximum relative “speed” information may attain over such a graph is the shortest path
forming an arc of an orbit. How “fast” that arc might be transited, relative to some external
clock, is irrelevant but cannot be infinitely fast since if the start is returned to instantly,
no change can be observed (contradicting the natural topology premise [62]). With the
property of angular momentum paths may not be equally likely:

Pij =
2mimj

M
+

a

∑
v=2

mvma

M
(2)

P = probability of a path; i = start node; j = end node; v = next node added; a = the
node completing the path to the destination; m = a node with momentum; M = total angular
momentum of the system.

In Equation (2), the probability of a direct path (P) forming is for two nodes i and
j connecting directly, given their fraction of the total momentum of the system M. For a
path of three or more nodes, one must then add the sequential sum of the probability (in
proportion to M) that each subsequent node added to the tuple will complete the path
directly to mj.

3.2.5. Conservation of Momentum

The analogy may be extended to the conservation of angular momentum by instead
considering m as the amount of information flowing through nodes to evenly distribute M,
forming a signal across the graph [24]. A higher net momentum between nodes means
more frequent (“briefer”) interactions but also a higher probability of new connections,
thus a locally faster transmission rate (i.e., clustering [71]). The relationship between each
cluster and the full set is given by Equation (3):

∃M mj
i ∼ d ∈ P, M ∼ D, n ⊆ N ∀i, j ∈ n ∈ M (3)

i.e., there exists a set of points M, such that for any subgraph n and any points i, j on n, the
angular momentum mij follows distribution d defined by probabilities P (from Equation (2)),
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and total angular momentum M follows distribution D, and each subgraph n belongs to a
set of points N.

The probability of distribution mi
j ∼ d (hereafter f ) existing on D will then be the

Cauchy product (or the discrete convolution) of f and M~D (the probability distribution of
M here after g) in Equation (4):

( f ∗ g)[nm]=
M

∑
m=0

f [m]g[nm −m] (4)

i.e., the probability of a distribution of momentum within subgraph f being formed across
the parent set g on n discrete elements in common of momentum m respectively is the
discrete convolution f ∗ g.

In the simplest case, f is just an Euler path over g formed at random as per Equation (2).
As m accumulates into f, so too does the probability of a path existing between i and
j. Implicit here is that membership of a subgraph is defined by connection, i.e., f is a
consistently connected graph while g may not be. The more the momentum concentrates
into some subgraphs over others, the more the overall graph becomes structured, and
the passage of information over the N subgraphs takes on a structured number of steps,
i.e., some branches become probabilistically more distant relative to others.

3.2.6. A Lattice of Communication

The individual nodes in the graph have no spatial relationship (they are not embedded
in space at all), but they constitute a network over which information travels in discrete
steps. However, in principle, the relative communication time between one node and all
others is continuous. Any number of nodes may be transited en route, and these may
have any relative angular momentum, so any fraction in communication time is possible.
The distribution of momentum values possible is discrete (being divided over nodes in
the graph). However, the metric of communication time, being based on arbitrary ratios
of frequencies, may include complex and irrational numbers ([72] p.14) so the emergent
dimension of “Lattice Communication Time” (LCT) is genuinely continuous. Each path
between two nodes on the graph can thus be mapped as a vector between points in this
continuous, latent hyperspace.

The spatial representation of diffusion of signals on a graph, which partitions it into re-
gions, is known as Graph Spectral Decomposition, in which “the Laplacian encodes a notion
of smoothness on a graph” [24] (for a good introduction, see, Knyanzev, B, Spectral Graph
Convolution Explained and Implemented Step By Step. https://towardsdatascience.com/
spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801 ac-
cessed on 4 June 2021).

It is clear from Equation (2) that time t for path ij is a probabilistic fraction of M (the
LCT domain). Similarly, the relative “volume” of f to g is bounded by the proportion
of M in f if both are connected. But g is not necessarily a connected graph. Consider a
case where every node in g has equal momentum and connects to another node, or not, at
random. Over enough iterations, the mean graph distance between all nodes would be
equal. The only geometric projection for this is if all nodes are at the same (fuzzy) point.
Branching into connected subgraphs represents a divergence from such a low-order state,
e.g., a branch may be a path to a leaf node which, though multi-step, is still more probable
than the leaf node connecting directly to any other node in G (Equation (5)):

Pij > Piv ∀tij =
mij

M
∈ Fij ∈ G ∀v ∈ G : v /∈ Fij (5)

F is a vector space of the LCT of a subgraph on G containing a path between nodes ij with
momentum m. v is any node in G, not in F . tij is the LCT vector for path ij of length equal
to the proportion of the domain M constituted by mij. For all cases where this is so, the
probability P of the path ij is such that ij has a greater probability than iv.

https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801
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Equation (5) defines the condition at which a path Pij becomes more probable than
alternative paths from i to v. Figure 2 illustrates this, but by taking a node i, which projects
to the same point in LCT space as the rest of G and a path from this node to j, which
is reached via some structured route therefrom. This divergence “stretches” G from its
projected point-like form into a vector. Other branches are added to illustrate that if
structured paths exist from j to other points, these could also project to vectors which, in
this simple case, are resolvable in 2D (Figure 2).

Figure 2. Projecting the graph G into 2D. All nodes with equal probability of connecting project to
point G. Nodes with a higher probability of connecting to each other than to nodes in point G project
to sub-graphs with geometric position based on relative path length in units of fractions of the total
momentum of the system M.

Although relative speed is analogous to distance, G is a hyper-space with complex
topology and relative positions, not a spatial volume such as Rn with absolute locations; but
it has the potential to be similar. Consider the outcome that a single packet of information
happens to take a route from one node in the graph to every other node through a single
chain with no loops. G would be a 1D ordinal series of nodes with equal LCT time
difference, i.e., a scalar vector. If each node has differing angular momentum, then sections
of this vector would take different lengths of “time” to cross (per Equation (2)). Either way a
continuous spatial dimension can emerge, in the latent space [71], on a random graph. The
LCT field is scalar, but an emergent space with independent dimensions is more particular.

3.2.7. Building a Probabilistically Continuous Volume

Additional dimensions result from the graph entering a state, requiring a new Linearly
Independent Vector through the LCT. Carrell [73] defines a LIV thus:

“a set of vectors is linearly independent if no one of them can be expressed as a linear
combination of the others” [73], p. 116.

If a cycle exists with three or more nodes, then each direction of rotation over that
cycle represents different orderings of linear combinations of two independent vectors in
any LCT metric space such that the sums are the same, i.e., it needs two dimensions to
represent it geometrically. Carrell (ibid) further states that:

“Fn can’t contain more than n independent vectors. Our definition of dimension will in
fact amount to saying that the dimension of an F-vector space V is the maximal number
of independent vectors. This definition gives the right answer for the dimension of a line
(one), a plane (two) and more generally Fn (n)”. [73], p. 121.
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To resolve the LCT into projected space, a new dimension must be added whenever
some combination of the existing independent vectors cannot complete a path. There remains
the question of the precision of that space in all dependent vectors through it (Equation (6)):

P ≡ ∑
V∈Tpn∈F

(V ⊕V) (6)

i.e., A manifold P is the direct sum of V independent vectors (each comprising a tuple T of n
nodes with a probability p of existing (given by Equation (2)) over a discrete scalar field F .

3.2.8. Precision in Projected Space

Although discrete elements of each dimension are composed only of topological ele-
ments with non-oriented angular momentum, they now also have a probabilistic ordering
in LCT and so must occupy a discrete position in the LCT to some rational interval. If
achieving this requires the LCT to be resolved into more than one dimension, then so
too must that interval. Thus, the problem is not simply one of ordering nodes in one
dimension but of packing them in two or more dimensions and thus also packing their
circular, spherical, or hyper-spherical error margin.

Let P from Equation (6) be one instantiation of the metric space of the LCT and Tpn a
tuple on that space. Each element e of that tuple Tpn has a spherical margin of error of
radius r around it (Equation (7)):

e = B ≡ {x, y ∈ P|d(x, y) ≤ r} ∀e ∈ P (7)

Each element e of the metric space P is B, which has the dimensions dx, dy (being less
than or equal to radius r).

As per Kepler’s conjecture, no packing of B can fill space, but this can be resolved by
recognizing that there is indeed the possibility for every relative position in LCT, but not
every vector can be embedded to a common absolute precision in Rn simultaneously. Thus,
if the graph topology to resolve the LCT requires Rn for a continuous space, realizing this
requires at least Rn+1. Another way of viewing this conclusion is to say that the lattice in
Rn represents the most complete (probable) mapping between LCT and Rn achievable.

The most efficient 3D packing structure is hexagonal [74], such that each higher
dimension places nodes at the center of the dual for the mesh in the dimension below it,
which is also the center for the interstitial space. Expressed formally (Equation (8)):

(Bn
1 ∩ Bn

2 6= ∅)→ B2 = V ≡ B?
1 ∈ Pn+1 (8)

If the finite complement B of two elements intersects in n-dimensional space, then B2
must be an element of the B1,2 vector dual V in the next dimension in P .

Some of the points in the projected map may have vague topology in 3D space
alone, but it is explicitly recognized that only one of the possible nearest conditions to
this may be defined at any one time. Any subset of the higher dimensional LCT may be
“foregrounded” [75] in the projected partition, so no vector is ever impossible, but others
must be “traced over” [75].

3.3. Stability of the LCT

Vectors in LCT are not created by the passing of a packet of momentum between two
nodes but by the ordered passing of that packet across many nodes. Relative LCT distance
and position are the results of net relative connection speed across all nodes in the graph.
Most probable is thus mapped as most direct, as per random walk theory [76] (Figure 3):
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Figure 3. From Song and Miller [76] Visit probability using random walk theory, reproduced by
permission license number 5104220298977.

Straight vectors in LCT represent the most probable path given the angular momentum
distribution, so following the principle of least action [77], Feyman’s [78] path integral
formula can be applied. Let T be a tuple with a Gaussian probability of describing the
shortest path over the field F (from Equation (6)). Let V be a linear vector in F having the
same start xa and endpoint xb as T (Equation (9)):

Pt(C(Vx ∩ Tx) 6= ∅) = P(((
∫ x(τ)=y

x(0)=x
Dxexp(−

∫ t

0

x2

2
dt)−V) 6= 0) ≤ (1/2) (9)

i.e., the probability P at an instance t that the Complement { to the intersection between the
elements of the straight line V and the elements of the Tuple T is not empty (and thus the
path taken was not linear) is equal to the probability that the integral path dt of the vector
of a free particle moving from xa to xb over τ convolutions, minus the straight-line vector
V = [xa xb] does not equal zero given a potential set of paths Dxy. P must have a value
equal to or less than 0.5 since, for a Gaussian distribution, a linear route is more probable
than an indirect route.

The implication of Equation (9) is that a straight line is the most probable path over the
LCT. A node is only likely to resolve into R3 when it provides an important link between many
points in the LCT rather than a “tunnel” between just two points. If only considering an instant,
the projected LCT is timeless and granular. Smoothness results from iterations reordering the
packing topology. So to be strictly accurate, it is “iteration” rather than time that smooths space.
Thus, “over time” discrete space (d) becomes smoother (i.e., 3dt ' 4D). This “topological
time” is conjugate with the three spatial dimensions; it is not an independent “arrow” of time
but Rovelli [79] shows the traditional sense of time as an independent dimension directing
“progression” could be emergent from partial ordering effects at each spatial scale.

3.4. Summary

The core proposition of this section is that from a random graph, a latent field may
emerge, which is a spatial continuum in the sense of addressing any set of relative spatial
relations to isometric precision but sphere packing imposes a grain when projected into
absolute Euclidean location. This grain may be “smoothened” by iteration, resulting in the
emergence of a fuzzy space-time continuum. Figure 4 summarizes these steps:
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Figure 4. Steps for the emergence of fuzzy space-time from a discrete graph: (a) a triad of three nodes;
(b) a simple path chaining together triads; (c) an orbit (topological “clock”); (d) clustering of the
graph; (e) latent vectors over the graph (f) uncertainty in the relative position of nodes, represented
geometrically as a circular complement to the position (but not in projected space); (g) packing of
isometric uncertainty complements in projected space (B1 and B2 represent solutions to paths ABD
and EADCBAEBD respectively); (h) geometric projections of the graph (i) motion as a path integral
through a hexagonal lattice, yellow spheres represent possible positions for midway points between
green spheres (i.e., the central node in each triad).

Sections 3.2 and 4.2 are explained in detail in Supplementary Materials.

4. Discussion: From a Dynamic LCT to a Computable Lattice
4.1. Implications for Space-Time Representation

The process of attempting to build, rather than define, a continuous space from
discrete elements reveals, mechanistically, implications of the points (a,e) by Peuquet [53]
in Section 1, on which basis several ideals for space-time representation may be noted:

• Ideally, use discrete units which can be “smoothly” space-filling. (d,e);
• Ideally, represent incompleteness and non-commutativity. (a,c,e);
• Ideally, use isometric grains. (b);
• Ideally, represent granular space-time conjugation explicitly. (c);
• Ideally, represent local uncertainty in causality while respecting causality globally. (a)

(Galton et al. [80] observe that “granularity effects may often confound an attempt to
derive strict causation”).

A graph with emergent LCT appears to overcome some of the apparent contradictions
in these ideals. The LCT is fundamentally smooth but discreetly addressed by the graph.
Incompleteness is inherent in that only spatial relations within the graph are defined (there
is no question to be asked as to the location of “empty space”). Uncertainty is isometric
along the edges of the graph, and space-time is locally conjugate, but global causality
emerges. However, a fuzzily-emergent space has obvious flaws as a spatial data structure.
Even were it feasible to compute an emergent LCT, it is dynamic and a projection in Rn
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only remains smooth so long as it contains little data. There is no escaping entirely Kepler’s
conjecture on sphere packing. So what is the best approximation in a simple, static lattice?

4.2. FCCP for Space-Time Representation

The central issues are how to best minimize anisometric uncertainty and normalize it
between space and time, how to represent spatio-temporal conjugation, and what to do
with the incomplete part.

If time is simply recorded as a non-geometric time stamp, then uncertainty in the time
at which the trajectory crosses from one unit of space to the next is not represented (red
point in Figure 5A). In a space-time prism (Figure 5B), rational units are maintained for
change in space or time but not both. Geometrically this is no different from 2D raster tiling
being non-isomorphic. However, this is arguably more fundamental in space-time because
movement can only happen simultaneously in both spatial and temporal dimensions i.e., it
will always be over non-axial vectors in space-time (it is not diagonalizable).

Figure 5. Representations of a trajectory in space-time. (A) Implicit time (e.g., animation). (B) One
vertical side of a space-time cube. (C) FCCP, black dot in yellow circle = time step, red dot in grey
circle = inter-time step.

Hexagonal data structures [81] are more information-dense than Cartesian coordinates
but also less convenient to represent in a computer. Voronoi-Delaunay triangulation could also
represent a hexagonal data structure [82] but computation for 4D would be hard [54]. A simpler
option, easily applied to fields, is to use a Cartesian array but offset the origin for alternate
layers (a Face Centered Cubic Packing, FCCP) and define the offset layers as representing spatio-
temporal uncertainty between the non-offset layers and vice versa (Figure 5C). In effect, this
interweaves two offset space-time cubes, each of which provides topology for observations that
are uncertain on the grain of the other. Conceptually challenging but computationally trivial.

Peuquet suggests (in 2001, but the point remains valid) that the slow progress in
addressing temporal aspects of GIS is partly because “historically there has been a general
emphasis on the short-term and implementation-oriented solution” [53]. FCCP is suggested here
simply to encourage discussion, not asserted as the solution, and whether a simple array or
a 4D mesh would be an appropriate implementation depends on the application. However,
a general test of the principle would be what proportion of spatio-temporal data points
(and any imputed midway points) can be unambiguously addressed to a constant accuracy
in FCCP compared to other data structures.

5. Conclusions
5.1. On the Representation of Time

Langran suggests that all maps have a temporal reference, even if only an implicit
‘now’ [83]. The increasingly real-time nature of data sources highlights that maps usually
cover a period of collection, which has traditionally been allocated a publication date.
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Generalizing a period to a single timestamp is equivalent to an orthographic projection
because all points in time project to the same plane, rather as height on a 2D map. The
scale ratio between spatial and temporal dimensions is, effectively, a foreshortening effect,
so determining square units is important. Considering analyses such as spatio-temporal
clustering, is 2m 2s away closer than 1m 3s? How equivalent are uncertainties in space
and time for point-in-prism analyses [52] or object-based view-shed analyses [25] where
inter-visibility is dependent on temporal factors? If detecting motion in discrete space [84],
should one assume a linear, constant motion within each grain or consider a straight line
to be the lower bound [85] on a probability function in position [75]? All are examples
where the spatial-to-temporal scale relationship might amplify uncertainty. In calling for
greater attention to the development of a theory of space-time representation, Peuquet
highlights the relation between continuous and discrete space, in particular when handling
inexactness, interpolation for incompleteness, and multiple histories [53], all of which have
been encountered here:

Computable representation of space-time: How does the selection of an optimal
grain size reflect the fact that there may be a non-linear uncertainty between a measurement
made too early or too late, e.g., as to the position of a shadow at noon, which itself varies
over seasons, scales and locations? Consider also how spatio-temporal conjugation affects
the examples from Section 1. Intersect becomes intercept, at the grain precision in measuring
speed must offset precision in estimating location. Visibility Analysis becomes not just a
matter of where there is a line of sight but when and for how long. Graph granulation is
commonly applied to space-time applications, but doing so with vague location [35] means
spatial and temporal uncertainty are not independent. Goodchild’s [40] early work on path
analysis must surely come into play, but whether 4D lattice paths tend to the Euclidean
length in the same asymptotical manner is an open question;

Incompleteness: Hales’ proof [46] undermines the principle that absolute vs. discrete
space is a matter of differentiation alone; precision-independent incompleteness needs
further exploration;

Spatio-Temporal Scale(s): Although Peuquet agrees, “it usually does not make sense to
measure time in meters or feet”, [53] the point has been moot since 1960 when the meter was
defined in wavelengths of light. Perhaps the distinction between meters and the time by
which they are measured over-complicates space-time for 4D models? One would not, after
all, model a terrain’s height on a different mathematical base to its horizontal distance. On
the other hand, seconds are not fundamental scientific units either, one might ask “seconds
per what?” (Smart, see Harrison [59]).

The term “related” in Tobler’s First Law implies some common point of causation or
interaction, an interpretation supported by t Tobler “invoking” his first Law in the context
of prediction from trend. [86]. But Galton points out that “At geographical scales . . . change is
mostly much slower than at the scale of individual humans” [4]. Could this suggest a more general,
unified interpretation of Tobler’s First Law; near things are more contemporaneously related
than distant things? For example, the erosion of sand on a beach by a single rainstorm and the
formation of a river delta by millennia of rainstorms shows how time scale becomes spatially
embedded across spatial scales within a reference frame as to the speed of the phenomenon
i.e., time operates locally to the phenomena.

The concept of a “time cone” or “light cone” is well known from physics [79]. One
might then term this consequent spatial pattern a “time shadow” from layers of past
moments projecting onto our present (credit: Robert Mann for the term). In this view,
probabilistic, spatio-temporal change could be modeled as “time-sheds” via multiple views
linked by the “shadows” cast from different viewpoints [25] with time as the “z” axis of
perspective projection.

Identifying the correct reference frame [20] could be key to finding a ratio by which
to normalize spatial and temporal scales. For fractal phenomena, the fractal dimension
seems like an obvious candidate for investigation. Spatial scientists have the advantage of
not needing to determine “plank units” which function for all cases. However, a sound
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theoretical basis for determining square spatio-temporal units suitable to a given dataset or
phenomenon would be useful, as would theory for how within these grains space and time
become probabilistically conjugate.

5.2. On Granularity and the Emergence of Spatial Smoothness

The paradox of a continuous volume, defined by relative position yet which cannot be
filled by discrete positions, may have a partial solution as presented here, but this paper
can only hope to add a little further weight of logical argument to the idea’s long history.
Mathematical proof, if indeed possible, is of huge complexity, as would be any implemen-
tation. Nonetheless, it serves to clarify why a continuous space must be the product of a
process and not a static condition. Progression through time happens in our minds when
we observe [79]. Information space-time is not absolute but an analytical product.

This shift in perspective is also valuable if it encourages thinking beyond the Cartesian
array to the idea of coordinates as data structures that crystallize an information space.
Interestingly, this need not lead to the abandonment of simple data structures such as
arrays, but there seems to be much to explore. Perhaps a-periodic tiling and quasi-crystals
present options for avoiding periodic sample bias or better approximating Euclidean paths?

The most intriguing idea arising from this work is that time may act as a “smooth-
ing” function on discrete space. Discussion within GIS on discreteness versus continuity
generally rests epistemologically on Euclidean geometry and set theory. Yet, to draw the
thread from Wolf’s “possible parts” [2,3], Bittner and Smith [75] observe that set theory
creates object discontinuity under membership change, and we move from MAUP to a
Modifiable Temporal Unit Problem [5]. FCCP offers a simple update to the space-time cube
that “sutures together” time slices via interstitial topology, reducing object discontinuity.

As one anonymous reviewer pointed out, “it is often claimed that space and time cannot
be separated in the context of geographical information . . . but a proof is lacking”. This paper
provides a step toward that proof, but there is work to be done. If “the relationship between
the discrete space of computation and idealized continuous space is . . . important for
GIS” [44], perhaps the arrival in mainstream usage of real-time, immersive, spatio-temporal
mapping is an opportune moment to reexamine some key tenets as to their suitability for
space-time representation?

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi12030119/s1, Supplementary 1, “Time as relative dimension
in space”.
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