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Aims: Through analyzing the responses of the radial growth and element

concentrations (B, Mg, Al, K, Ca, Mn, Fe, Zn, Na, P, Ni, and Cu) of tree rings of

two dominant tree species to forest fires, we aimed to investigate the relationship

between tree rings and the fires.

Methods: We sampled wood cores of Pinus sylvestris and Larix gmelinii in the

northern forest region of China, where forest fires happened in 1990 and 2008.

The ring-width growth of P. sylvestris and L. gmelinii from 1986 to 1995 and 2004

to 2013 in two sites of Tahe County were measured. Element concentrations in

tree rings were determined using inductively coupled plasma mass spectrometry

(ICP-MS).

Results: Our results showed that tree-ring radial growth was largely reduced after

the fire, together with the increase in concentrations of B, Al, Mn, and Fe but the

decrease in some samples in K. Strong correlations were observed between tree-

ring growth and concentrations of Mg and Mn of P. sylvestris and Znof L. gmelinii.

Discussion: The results provide evidence that variations in tree-ring growth and

element concentrations, particularly concentrations of B, Al, Mn, and Fe, are

potentially useful to monitor forest fires, which add new insights into the study

of forest fire history.
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Introduction

As a major disturbance to the forest ecosystem, forest fires have significant effects on
forest resources and climate change (Flannigan et al., 2009; Heydari et al., 2017). The rising
global temperature and intensifying human activities increase the frequency and intensity of
forest fires, resulting in greater economic and ecological losses (Liu et al., 2012; Carvalho
et al., 2016). The use of tree-ring elemental compositions for environmental pollution
monitoring holds great promise. For example, heavy metals in trees have been used to
monitor the frequency and intensity of environmental pollution (Parzych and Jonczak, 2014;
Turkyilmaz et al., 2018). Since Lepp (1975) first introduced the concept dendrochemistry,
progress has been made in the study of pollution history (Mihaljevič et al., 2015; Odabasi
et al., 2016; Xu et al., 2017; Muñoz et al., 2019). For instance, a decline in the number
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of ships in São Paulo, Brazil results in lower Cd, Cu, and Pb
levels in tree rings (Locosselli et al., 2018). The Pb of black spruce
tree rings was used to reconstruct the history of Pb pollution in
Canada (Richer-Laflèche et al., 2008). Variations in Zn and Cd
concentrations in tree rings of white poplar and ailanthus in Xi’an,
China, are correlated with environmental changes (Liu et al., 2018).
The Cu content of pine tree rings near a copper smelter in Zambia
is higher (Mihaljevič et al., 2018).

Forest fires generate a large number of pollutants and the
chemical elements that bind to them. During the fire, several
elements, including B, Mg, Al, K, Ca, Mn, Fe, Zn, Na, P, Ni, and
Cu, are released and deposited in the soil. These elements, which
are absorbed by the roots of trees and accumulated in their woody
tissues, are essential macro and trace nutrients for tree growth.
Potentially, tree-ring element concentrations could be used to study
forest fire history. It is essential for the evaluation and management
of forest fires to dissect mechanisms of fire occurrence, which
is made possible through the study of fire history. Currently
numerous studies based on historical data or fire scars shed light on
fire history (Lazarina et al., 2017; Mundo et al., 2017; Bobek et al.,
2019; Krisnawati et al., 2021; Xu et al., 2021). However, historical
data are only available for a few 100 years, and the formation
of fire scars depends primarily on fire intensity (Van Horne and
Fulé, 2006; McEwan et al., 2007). Under intense fires, a high
mortality rate makes it difficult to observe fire scars, whereas they
don’t form under low intensity. Thus, studies of the physiological
characteristics of tree rings may provide additional insight into the
reconstruction of fire history.

We aimed to examine the effects of forest fires on the radial
growth and element concentration of tree rings of two conifer
species. Coniferous trees have straight trunks, easily distinguishable
tree rings, strong CO2 and SO2 adsorption capacities and
pronounced environmental responses (Rucandio et al., 2011;
Parzych and Jonczak, 2014). In this study, two dominant conifer
species, Pinus sylvestris and Larix gmelinii were used to perform
dendrochemistry in regions with a high incidence of forest fires.
Using inductively coupled plasma mass spectrometry (ICP-MS),
the concentrations of 12 elements (B, Mg, Al, K, Ca, Mn, Fe,
Zn, Na, P, Ni, and Cu) before and after the fire were determined.
Furthermore, we measured the ring width during the studied years.
We hypothesized that forest fires would decrease radial growth,
while increasing element concentrations in tree rings.

Materials and methods

Study area and sampling

This study was conducted in Tahe County in the Greater
Khingan range in Heilongjiang Province (Figure 1). Tahe County
is among the most important forest regions in China, where the
terrain and vegetation conditions make the area prone to forest fires
(Chang et al., 2007; Liu et al., 2012). There are two tree species,
Pinus sylvestris and Larix gmelinii dominating the forest of the
area. Through evolution, these two species have formed strong
adaptability to forest fires and other environmental stresses. They
have crowded needles making the understory vegetation high in
water content, and a lot of ash that is an inflammable substance

negatively influencing the flammability. Thus, it is not easy to burn.
Besides, these species have straight trunk, good natural pruning
ability, thick bark, and well-closed canopy. The discontinuous
distribution of combustibles in the forest floor makes it difficult to
form a crown fire. These features result in enhanced resistance of
P. sylvestris and L. gmelinii to forest fires.

There were two sampling sites: Tahe 7.5 (7.5 km from Tahe
County) and Tahe 18 (18 km from Tahe County), in which forest
fires occurred in 1990 and 2008, respectively. Both fires were caused
by lightning strikes, which had the burned area of about 670 hm2

and destroyed around 550 hm2 woodland. The fires were fast-
moving surface fires with some tree crown fires. In this area, a
large amount of humus has been deposited during the long-term
vegetation succession. Because of plant ash, the soil color in the
fire region is darker. Sampling was conducted in the same slope
direction in the burned and unburned area. We relied on the main
diffusion and settlement trajectory of flue gas particles that were
mostly affected by wind direction (in the meteorological data) at
the time when the fire happened to determine the unburned area.
The unburned area was 1 km away from the burned area. Obvious
fire marks in numerous trunks were found in the burned area,
but not in the unburned area. Wood cores of P. sylvestris and
L. gmelinii were collected in July 2021. Each species had seven
trees in the burned area and seven in the unburned area. All trees
were between 35 and 45 years old. We sampled seven trees in
an area of 100 m2, and each tree was 5–10 m away from others.
Punchers of 5 mm in diameter were used to collect core samples
at 1.3 m from the ground. Each tree had four core samples from
four directions.

Ring width analysis

The collected cores were dried at room temperature and
were fixed using white latex. The core surface was polished
with sandpaper until the boundary could be clearly seen under
the microscope. Tree-ring analyzer (LINTAB 6.0, Heidelberg,
Germany) with 0.001 mm precision was used to measure the
ring width. COFECHA software was used to check the quality
of cross-dating and to determine a calendar year of each ring
(Holmes, 1983). We performed ARSTAN program to de-trend and
standardize the ring width data after cross-dating (Cook, 1986). We
focused on periods from 1986 to 1995 and 2004 to 2013.

Determination of element
concentrations

Core samples were separated and softened in ultrapure water,
followed by cleaning using ultrasound (18.2 M�, 1 h) and 70%
ethanol. Each ring was peeled using a stainless-steel blade under the
microscope, and rings from the same calendar year were packaged
to the same bag. All samples were dried at 60◦C for 48 h, and were
ground after cooling and kept in a drying vessel until further use.
We weighed 0.05 g of each sample that was immersed in 2 mL
HNO3 and 2 mL H2O2 in PTFE for 5 min. After digestion, the
solution was diluted with 5% HNO3 to a final volume of 40 ml, and
then was filtered through 0.45 µm syringe filters. Concentrations of
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FIGURE 1

Tree cores sampled from two sites in Tahe County in the Greater Khingan range of China.

FIGURE 2

Radial growth of tree rings. (A) Heatmaps of ring width [mean (standard errors)] in Tahe 7.5 (1986–1995) and Tahe 18 (2004–2013) in the burned area
(BA) and unburned area (UBA), where ps and lg stands for Pinus sylvestris and Larix gmelinii, respectively. (B) Boxplots of ring width before
(1986–1989 in Tahe 7.5, 2004–2007 in Tahe 18) and after (1990–1992 in Tahe 7.5, 2008–2010 in Tahe 18) the fire. Statistical analysis was assessed
with two-tailed unpaired t-test.

12 elements were measured by ICP-MS (Agilent 7900, Santa Clara,
CA, USA) and calculated using the following equation:

C = P × V/M

where C is the concentration of an element (µg g−1), P is the
concentration of an element in the solution (µg l−1), V is the
volume of the solution (0.04 l), and M is the weight of each
sample (0.05 g).

Statistical analysis

The normality of the data was assessed using lm function in
R 4.1.0 (R Core Team, 2022). For each tree species, the ring width
and element concentrations before and after the fire were compared
by two-tailed unpaired t-test in SPSS 25.0 (IBM Corporation).
Pearson correlation coefficients between the ring width and
element concentrations, and between element concentrations were
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FIGURE 3

Concentrations of elements in Tahe 7.5 (1986–1995) and Tahe 18 (2004–2013) in the burned area and unburned area.

computed using the rcorr function in the package Hmisc in R
(Harrell, 2020).

Results

Radial growth of tree rings

Variations in tree-ring radial growth of P. sylvestris and
L. gmelinii were observed, with ring widths ranging from 3.9 to
14.2 mm (Figure 2A). Tree ring radial growth trends in the burned

area were comparable to those in the unburned area. The width
of the ring increased from 1986 to 1989 in Tahe 7.5 and from
2004 to 2007 in Tahe 18, but decreased in 1990 and 2008 when
a fire happened. After the fire, P. sylvestris radial growth quickly
returned to pre-fire levels, while L. gmelinii radial growth continued
to decline for several years. To compare the radial growth before
and after the fire, we focused on two time periods: before the
fire (1986–1989, 2004–2007) and after the fire (1990–1992, 2008–
2010). Forest fires impeded the tree-ring radial growth of P. sylvestri
and L. gmelinii, particularly in Tahe 18. In the burned area, the
average tree-ring width of two species was over 10 mm prior
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FIGURE 4

Boxplots of concentrations of eight elements in Tahe 7.5 and Tahe 18 before (1986–1989 in Tahe 7.5, 2004–2007 in Tahe 18) and after (1990–1992
in Tahe 7.5, 2008–2010 in Tahe 18) the fire. Statistical analysis was assessed with two-tailed unpaired t-test (*P < 0.05, **P < 0.01, ***P < 0.001).

to the fire, but decreased to approximately 7 mm after the fire
(Figure 2B).

Element concentrations in tree rings

Concentrations of 12 elements in tree rings fluctuated over
the study period, particularly B, Mg, Al, K, Ca, Mn, Fe, and Zn
concentrations (Figure 3 and Supplementary Figure 1). Therefore,
the analyses focused on these eight elements. The changing trends
displayed a similar response regardless of sampling sites (Tahe 7.5
and Tahe 18) or studied areas (the burned and unburned area).
Element concentrations were highly sensitive to fire effects during
the first 3 years after the fire (1990–1992, 2008–2010). During these
years, the highest concentrations of B, Al, K, and Mn were found
in the burned area, whereas the concentration of Mg in P. sylvestri
in Tahe 18 decreased. In the unburned area, the concentrations
of Ca, Fe, and Zn raised while the concentration of K dropped

to its lowest level. Similar results were observed concerning the
comparison between two time periods (Figure 4), forest fires may
increase or decrease element concentrations in specific regions and
tree species.

Correlation studies

The autocorrelation results revealed that several tree elements
migrated annually (Table 1 and Supplementary Table 1). A larger
number of elements exhibited 1 and 2 years migrations in the
burned area than in the unburned area. Among them, the 1
and 2 years migrations had the greatest effect on Fe and Zn in
L. gmelinii. The results implied that element migration was more
active in the burned area, which may contribute to the rise in
element concentrations.

Forest fires may enhance the relationship between pairs of
elements, according to the interaction between elements (Figure 5
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TABLE 1 Autocorrelation coefficients (with significant differences) of element concentrations and Pearson correlation coefficients (positive
correlations, blue colored; negative correlations, orange colored) for tree-ring width and element concentrations in Pinus sylvestris and Larix gmelinii
in the burned area of Tahe 7.5 and Tahe 18 (*P < 0.05, **P < 0.01).

Element Sampling site Tahe 7.5 Sampling site Tahe 18

Pinus sylvestris Larix gmelinii Pinus sylvestris Larix gmelinii

Autocorrelation coefficients

1st 2nd 1st 2nd 1st 2nd 1st 2nd

B 0.549** – 0.488** – – – 0.422* –

Mg – – – – – – – –

Al – – 0.459* – 0.623* – – –

K 0.510* – 0.460* – 0.612* – – –

Ca – – 0.418* – – – – –

Mn – – 0.588** – 0.500* – 0.602* –

Fe – – 0.862** 0.649** – – 0.608* 0.453*

Zn 0.308* – 0.383* 0.357* – – 0.770** 0.471*

Pearson correlation coefficients

Before After Before After Before After Before After

B 0.935* 0.584 0.226 −0.097 −0.924* 0.048 −0.47 0.845*

Mg −0.163 0.994* −0.722 −0.683 −0.452 0.816* 0.61 −0.075

Al −0.451 0.858* 0.418 −0.546 −0.378 0.118 0.75 −0.87*

K 0.568 −0.196 0.957* 0.484 0.532 0.917* 0.904* −0.935*

Ca −0.468 0.224 −0.23 −0.662 0.406 −0.963* −0.403 −0.435

Mn −0.992* 0.993* 0.694 −0.618 −0.036 0.626 0.976* −0.184

Fe 0.337 −0.57 −0.222 0.301 0.626 0.177 −0.122 0.429

Zn −0.42 −0.639 −0.16 0.998* −0.116 0.425 −0.959* 0.317

and Supplementary Figure 2). Notably, correlations between B and
Zn in P. sylvestris in Tahe 7.5, which were negative prior to the fire,
became positive after the fire. The results suggested that forest fires
may play a role in the elemental proportions in tree rings. Similar
correlations between the growth and element concentrations in
tree rings were observed. In both the burned and unburned
area, several negative correlations between ring-width growth and
element concentrations of P. sylvestris became positive as a result
of the fire (Table 1 and Supplementary Table 1). L. gmelinii
exhibited the exact opposite results. Besides, different correlations
were discovered between the burned and unburned area, indicating
that the fire and species may influence the relationship between
growth and element concentrations in tree rings. These findings
clarify the potential interactions between tree-ring growth and
element concentrations, as well as interactions between different
elements.

Discussion

We found that the radial growth of P. sylvestris and L. gmelinii
tree rings decreased after the fire, particularly in Tahe 18. The
suppression of growth may have been caused by the increasing
temperature and drought stress (McLaughlin and Percy, 1999;
Voelker, 2011), which were associated with the fires. Typically,
forest fires are accompanied by the production of a large amount

of flue gas. The particles and pollutants in the flue gas cause plants
to close their stomata. Stomatal closure cuts down photosynthesis
efficiency by decreasing the absorption of CO2 (Zhao et al., 2008;
Malik et al., 2012), and consequently inhibits the growth of tree
rings. Notable is the correlation between the increase in element
concentrations due to air pollution and the reduction in ring
width (Dmuchowski and Bytnerowicz, 2009). The fire may promote
the absorption of certain elements, whose increased concentration
will inhibit root development and auxin biosynthesis, thereby
inhibiting plant growth. Since radial growth contains large-
scale environmental information that is influenced by the forest
ecosystem and atmospheric environment (Abiyu et al., 2018;
Gaspard et al., 2018; Bosela et al., 2019), it has been considered as
an indicator of environmental changes.

The fire caused variations in the element concentrations in tree
rings of P. sylvestris and L. gmelinii. Following a wildfire, trees
improve the utilization efficiency of water and nutrient elements
from the soil (Pearson et al., 2005). Torres-Alvarado et al. (2011)
noted that volcanic eruptions increased the amount of metal
elements e.g., Al in tree rings. They pointed out that volcanic
eruptions may melt glaciers at the mountain’s peak that contain
pollutants that are absorbed into the xylem by the roots. Ballikaya
et al. (2022) found that forest fires have a significant impact on
the accumulation of elements in tree rings, which is primarily
due to the metabolism of substances between atmosphere, soil,
and trees. Using synchrotron radiation X-ray fluorescence analysis,
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FIGURE 5

Correlation matrix plot between element concentrations in Tahe 7.5 and Tahe 18 in the burned area before (above the diagonal) and after (under the
diagonal) the fire. Pearson correlation coefficients with significance levels were listed (*P < 0.05, **P < 0.01).

researchers identified 20 elements in the particulates released by
forest fires in Siberia, with relative high concentrations of B, K, Ca,
Fe, and Mn (Golobokova et al., 2020; Ukraintsev et al., 2020). After
the fire, soil nutrients may dominate the absorption of nutrients
by plants during the growth process (Alcañiz et al., 2016). Due to
the burning of the surface humus layer, which increases surface
runoff, the damaged forest canopy reduces rainfall absorption,
resulting in an increase in soil moisture (Johnson et al., 2007). As
the growing season progresses into summer, the Greater Khingan
range experiences an increase in precipitation, and surface runoff
from the burned area rises. Numerous elements in the ash are
distributed to the forest ecosystem via leaching, before entering the
soil and being utilized by plants (Lagerström et al., 2009), which
could increase the element content. These findings were consistent
with those of other research. For instance, after the fire, the Mn
concentration in the soil was more than five times that of soil
without fire (Costa et al., 2014; Campos et al., 2016), and the Ni and
Cu concentrations in the ash increased significantly (Bogacz et al.,
2011). Moreover, the post-fire environment promotes the renewal
rate of vegetation, and some elements in the soil are absorbed and
utilized by plants and fixed in plants, leading to increases in certain
element contents in tree rings (Badia and Marti, 2008).

The accumulation of elements in the xylem of trees is mainly
influenced by physiological characteristics of trees, such as the
storage and transport of elements, and environmental factors
(Kalugina et al., 2017; Zakrzewska and Klimek, 2018). Trees can

absorb numerous elements from the environment into their wood
tissues through their roots, leaves and bark (Solgi et al., 2020). After
entering the xylem, elements may migrate horizontally between
tree rings, moving from the physiologically active region to the
inactive region (Battipaglia et al., 2010). The gradual increase in Zn
concentration from heartwood to sapwood in tree rings, is likely
due to Zn’s horizontal migration (Amais et al., 2021; Nechita et al.,
2021). The forest fire’s flue gas contains a high concentration of
Zn, which can be absorbed by plants and accumulate in tree rings.
Elements e.g., K can be transferred via the xylem or phloem, or
even across boundaries (Yamaji and Ma, 2019). When the content
of K in the environment increases, it will stress the transboundary
movement of K in tree rings (Takahashi et al., 2020; Bardule
et al., 2021). Some elements, e.g., B and Ca, are fixed or have
limited mobility in the phloem (Stanfield et al., 2019). Besides,
the movement of elements in tree rings varies among tree species,
which is related to the xylem structure or xylem sap in trees (Smith
and Shortle, 2001). Fe and Zn have poor migration abilities in tree
rings of Picea mariana and Pinus massoniana, whereas Zn can
migrate across the rings in Pinus tabuliformis (Prohaska et al., 1998;
Liu et al., 2009). Thus, characterizing the migration of elements in
tree rings may contribute to forest fire monitoring.

In this study, forest fires inhibited the growth of ring width,
and altered the element content in tree rings. In the burned area
the concentrations of B, Al, and Mn showed an increase after
the fire, and Fe and Zn in the unburned area. The fire intensity
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at the two sampling sites was relatively high, so the effects on
the content of some elements in tree rings of P. sylvestris and
L. gmelinii were similar. This may be resulted from the sensitivity
of the soil environment and the bark of trees to forest fires
(Hannam et al., 2019). Fires of high intensity that have a negative
impact on the availability of nutrient elements can raise the ground
surface temperature in forests, stimulate microbial activity, and
consequently promote nutrient absorption through the roots. The
responses may lead to a rise in element concentrations within tree
rings (Goodale and Aber, 2001). Our research indicates that tree-
ring elements, particularly B, Al, Mn, and Fe concentrations, have
the potential to be used as indicators of forest fire occurrence and
are promising for reconstructing fire history.
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