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Abstract

Drillstrings are one of the critical components used for exploring and exploiting

oil and gas reservoirs in the petroleum industry. As being very long and slender,

the drillstring experiences various vibrations during the drilling operation, and these

vibrations are random in essence.

The first part of the thesis focuses on stochastic stick-slip dynamics of the drill

bit by a finite element model and a single degree of freedom drillstring model in

Chapters 3 and 4, respectively. In the single degree of freedom model, the path

integration (PI) method is firstly used to obtain the probability density evolution of

the dynamic response. Then Monte Carlo (MC) simulation is used for validating PI

results and conducting the parametric study.

The second step of my research is to study the stochastic dynamics of a vertical,

multiple degrees of freedom drillstring system. The work of this part is presented in

Chapter 5. The novelty of this work relies on the fact that it is the first time that

the statistic linearization method is applied to a drillstring system in the bit-rock

interaction to find an equivalent linear dynamic system which is then solved with the

stochastic Newmark algorithm. After that, the stick-slip and bit-bounce phenomena

are analyzed from random viewpoint.

The third step of my research move on to directional drilling. A static study of

directional drillstring from random viewpoint is presented in Chapter 6. The finite

element method (FEM) based on the soft string model is employed and built. Then
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two strategies are taken to model the random component for hoisting drag calculation.

The purpose of this work is to analyze the effects of the random component on hoisting

drag calculation by the MC simulation method.
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Chapter 1

Introduction

Natural resources play an essential role in powering the civilization of humanity.

Among them, crude oil, or petroleum, is one of the most crucial resources in the

modern economy. Driven by the increasing demand for energy and the development

of modern technology, the growth in drilling technology over the 20th century was

enormous [1]. The rotary drilling method improves the drilling efficiency in the deep

borehole drilling as the most prevalent drilling method, while Measurement While

Drilling (MWD), Rotary Steerable Tools and advanced drill bits lay the foundation

for directional drilling [2].

From the petroleum exploration phase to the fuel consumption phase, the oil and

gas industry can be mainly classified into three parts: upstream, midstream and down-

stream. The upstream is responsible for exploring and producing hydrocarbons. In

this business segment, after a potential reservoir is located by geophysics exploration,
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a drilling rig system will be deployed to reach the target reservoir. This procedure is

an essential component of exploring and exploiting hydrocarbon resources. However,

it is negatively influenced by drillstring vibrations, which are considered the important

cause of drillstring components’ premature failure. It has been reported that drill-

string vibrations can initiate fatigue cracks which are responsible for the majority of

drillstring failures [3]. Furthermore, unwanted drillstring vibration may lead to bit

wear and failure, deterioration of the well trajectory, stabilizer wear, decreased rate of

penetration (ROP), and reduced accuracy of MWD tools. As a result, industry and

academia have been making enormous research efforts to investigate the sources of

unwanted vibrations and suggest corresponding strategies to suppress them. Among

all the methods and technologies utilized, conducting numerical simulation with drill-

string vibration models is a cost-effective way for bottom-hole assembly design and

pre-drilling analysis. It has been pointed out that the study of drillstring dynamics

based on vibration models is the necessary step toward developing control strategies

to ensure fast and efficient drilling without premature component failures [4]. As the

study of drillstring dynamics has significant application meaning, a comprehensive

literature review of the drillstring dynamics will be given in Chapter 2.

This thesis focuses on the stochastic analysis of the drillstring in the drilling

operation. Numerical models of drillstring are established based on the drill rig

system in the upstream portion of the oil and gas industry. Therefore, an overview of

a rotary drill rig system will be presented in the following 1.1 section to illustrate the
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background information. Each component that is related to the drillstring numerical

model will be introduced. In section 1.2, the purpose of the research will be presented.

1.1 Overview of a Rotary Drilling Rig System

A drilling rig is an integrated system that enables drilling operations in the petroleum

industry. Depending on the reservoir location, a drilling rig can be established on

land or at sea. Taking a land system as an example, it generally contains four ma-

jor components: hoisting system, rotating equipment, circulating system and power

generation system. Figure 1.1 shows the basic elements of a land drilling rig system

[5]. The blowout preventer in the figure is the safety system. Normally, a drilling rig

system is powered by either the internal-combustion diesel engines at the rig site or

an electric power supply from existing power lines [6]. The following subsections will

introduce some other vital components in the drilling rig system.

1.1.1 Hoisting System

As can be seen in Figure 1.2, a hoisting system contains derrick, crown block, trav-

elling block, drilling line, and drawworks [7]. The derrick is a steel frame supporting

the weight of the drillstring assembly. On the top of a derrick stays the crown block,

which is a fixed set of pulleys. Unlike the crown block, the travelling block is a freely

moving section of a block and tackle. It contains a set of pulleys or sheaves. Running

from the drawworks to the first pulley on the crown block, the drilling line goes down
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Figure 1.1: Basic Elements of a Drill Rig System [5]
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to the first pulley on the travelling block, then back up to the second pulley on the

crown block, etc. [8]. A similar procedure will repeat several rounds, resulting in the

force on the hook being several times larger than the force provided by the drawworks.

Finally, the drilling line goes over the crown block pulley and down to the deadline

anchor. Working together, the crown block, drilling line and travelling block make it

possible to lift or lower the drillstring and balance the hook load.

Figure 1.2: Hoisting system [7]
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1.1.2 Drill Pipe and Drill Collar

The drillstring plays an important role in rotary drilling by transporting the torque

from the surface to the bit, achieving directional drilling trajectory, providing the

weight on the bit (WOB) and serving as a conduit for drilling fluid [2]. It is mostly

made up of drill pipes. Being a tubular steel body with threaded ends, drill pipes can

be connected as a section extending thousands of meters. It starts from the surface

to a few hundred meters above the drill bit.

Connecting the drill pipe and the drill bit, drill collars are extra heavy steel pipes

providing the necessary weight on the bit (WOB) to facilitate drilling. They are

thick-walled tubes with an outside diameter larger than the normal drill pipe. Drill

collars also require significant strength and rigidity to stabilize the downhole assembly,

facilitate straight drilling and protect themselves from excessive fatigue or wear.

The hoisting system supports part of the drillstring weight during the drilling

operation. A concept of neutral point is introduced, which marks the stress status

transition from tension to compression. Usually, for safe drilling, the neutral point

should be on the drill collar section by controlling the WOB; therefore, the drill pipe

section is normally rotating in tension.

1.1.3 Drill Bit

Located at the end of the drillstring, drill bits are crucial components that influence

ROP. They can be mainly classified into two categories: roller-cone (RC) bit and
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polycrystalline diamond compact (PDC) bit. Depending on the formation property

(soft or hard), different types of drill bits can be selected to enhance effective drilling

performance.

Depending on the number of cones, several types of RC bits exist. Figure 1.3 shows

a tricone bit [9], which is widely used in drilling. With the help of bearing, each cone of

RC bits can rotate with respect to its own axis. Each cone is embedded with hardened

metal inserts, which crushes the rock into cuttings when drilling. Compared with

tricone bits, two-cone bits have more space for larger bearings and nozzle placements.

They are suggested for soft formations to avoid the balling problem. Four-cone bits

are normally selected for drilling large holes.

Unlike RC bits, PDC bits do not have moving elements since they are fixed-head

bits that rotate as one piece. Figure 1.4 shows a PDC bit [10]. In drilling, the PDC

bit shears the rock with the polycrystalline diamond inserts that are lined on the

surface of its blades (Figure 1.4). PDC bits are generally used for drilling in soft to

medium-hard formations.

A hybrid structure bit, also named roller PDC hybrid bit, was developed recently.

It takes advantage of both the rock crushing strength of roller cones and the shearing

mechanism of PDC bits. As can be seen in Figure 1.5, roller cones and fixed PDC

cutters are combined in the hybrid bit [11]. It has been reported that such a single

patented design can enhance drilling efficiency and stability [12].
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Figure 1.3: A tricone bit [9]

Figure 1.4: A PDC bit [10]
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Figure 1.5: A bottom view of hybrid bit [11]

1.1.4 Drilling Fluid

In a circulating system, drilling fluid (also called drilling mud) is a critical component

to aid drilling. It plays an important role in maintaining wellbore stability and keeping

drilling pressure balance. In drilling, gas or water in the underground formation

may exert tremendous pressure on the wellbore. Without the help of drilling fluid,

the formation fluids may enter into the wellbore or even flow to the surface with

unexpected high velocity, leading to a catastrophic ”blow-out”.

By circulating down the drillstring and ejecting from the bit nozzles, the drilling

fluid also cleans the cuttings around the drill bit and carries them to the surface. In

this way, the drilling fluid will prevent the accumulated debris from decreasing the

rate of penetration (ROP) or even locking the drilstring in place.
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The Drilling fluid can also be used to cool the drill bit and drilling assembly.

Heat will be generated due to the bit-rock interaction and the friction between the

drillstring and the wellbore in the drilling process. Without transferring the heat,

components of the drillstring would fail more rapidly. Further, working with additive

lubricants, drilling fluid can lubricate the contact surface to reduce the torque and

drag. This function of drilling fluid makes a contribution to enabling drilling in the

extended reach wells.

Finally, drilling fluid transmits hydraulic energy to power downhole tools, like mud

motor and Rotary Steerable System (RSS), etc. Meanwhile, with the help of mud

pulse telemetry, downhole Measurement While Drilling (MWD) tools can transmit

information to the surface by pressure pulses. As a result, downhole real-time con-

ditions could be presented to the rig personnel for making appropriate and effective

decisions.

1.2 Research Purpose

In reality, downhole condition is highly unpredictable due to many uncertain and in-

consistent factors. These uncertainties may exist in material property, borehole wall

diameter, bottom hole assembly eccentricity, bit–rock interaction, drilling fluid and

weight-on-hook, etc. Therefore, it is more realistic to investigate drillstring dynamics

from a random/stochastic viewpoint. However, compared with drillstring determin-

istic dynamics analysis, research work in drillstring stochastic dynamics is slim. It is
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the reason why this thesis focuses on the stochastic analysis of the drillstring.

It is well known that stick-slip is a severe format of vibration with apparent

detrimental effects on the drilling system. The study of the drillstring stick-slip phe-

nomenon has significant practical meaning. With the consideration of the randomness

components in drillstring model, the dynamic characteristics of stick-slip can be eval-

uated more accurately, which may provide more reliable information for migrating

stick-slip vibration.

Another purpose of this research work is to consider random component in cal-

culating torque and drag. Estimating torque and drag plays a critical role in drilling

complex wells, such as ultra-deep wells, extended-reach wells, directional wells, etc.

Considering wellbore randomness in torque and drag calculation will allow the well

planner to develop a risk assessment for a challenging well trajectory, which will

benefit the exploitation of new hydrocarbon resources.

As mentioned above, there are many uncertainties in the drillstring system. How-

ever, it is meaningful and necessary to understand a complex problem gradually.

That’s probably why the current research works on stochastic dynamics of drillstring

are focused on part of the uncertainties. The research work of this thesis consists

of four parts. Each part considers different random component(s) depending on the

research objective. The following four subsections will introduce them in detail.
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1.2.1 Stick-slip Analysis of A Drillstring Subjected to Deter-

ministic and Stochastic Excitations

This part of the research work is written in Chapter 3. Its objective is to investigate

the stochastic response of the drill bit in the stick-slip phenomenon. The random

excitation is assumed to be White noise caused by the random friction between the

drill bit and the bottom of the hole. The probabilistic distribution of the responses

at each discretized time instant is obtained. The two points, which represent entering

and leaving the stick stage, are examined with special attention.

1.2.2 Investigation on Bit Stick-Slip Vibration with Random

Friction Coefficients

This part of the research work is written in Chapter 4. As further research work

from Chapter 3, it investigates stochastic stick-slip response by considering random

components in both static and kinetic frictions. In the stick stage, the static friction

is treated as either a deterministic value or a random variable. While in the slip stage,

the random component of the kinetic friction is assumed as White noise. Then path

integration (PI) method is firstly used to obtain the probability density evolution of

the response. Monte Carlo (MC) simulation is used to validate the PI results and

statistical analysis. In addition, parametric studies on damping, rotary speed, weight

on bit, drillstring length and different combinations of pipe and collar are conducted
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for both deterministic and random cases. The purpose of the research includes:

� Studying how uncertainties of the friction influence the stick-slip response.

� Analyzing how the changes of parameter influence the stick-slip response with

the consideration of random friction.

The contribution of this work relies on that it is the first time differentiating the

static and kinetic frictions in the model of random friction when studying the stick-

slip vibration of the drillstring. Their effects on the characteristic of stick-slip, such

as the period and first passage time, can be investigated. It will provide more detailed

information when predicting the behavior of the drillstring stick-slip.

1.2.3 Investigation on Random Vibration of a Drillstring

This part of the research work is written in Chapter 5. In view of that the academic

research in stochastic dynamics of drillstring is slim, work in Chapter 5 investigates

the axial-torsional coupled vibration of a drillstring under combined deterministic

and random excitations. The finite element method (FEM) is used to model the

system. The random excitation at the bit-rock interaction, which is considered in the

bit axial direction, is treated as Gaussian white noise. Statistic linearization will be

first applied to find an equivalent linear dynamic system, which is then solved with

the stochastic Newmark algorithm. The purpose of the research includes:

� Validating the Statistic linearization and stochastic Newmark algorithm by com-

paring the results with the Monte Carlo simulation.
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� Analyzing the statistics of the responses, including the means and standard

deviations of the bit axial displacement and rotational velocity.

� Analyzing stick-slip and bit-bounce phenomenon from the random viewpoint.

The contribution of this work relies on that it is the first time replacing the drillstring

nonlinear bit-rock interaction model with an equivalent linear model in an axial-

torsional coupled drillstring. After that, an exact analytical form of solution can be

obtained by using linear system techniques. It will largely improve computational

efficiency.

1.2.4 Static Study of Directional Drillstring from Random

Viewpoint

This part of the research work is written in Chapter 6. Based on the literature review,

work of this chapter aims to study the calculation of drillstring hoisting drag from

random viewpoint. The finite element method (FEM) based on soft string model is

firstly used for hoisting drag calculation of an S-shaped well. Then two strategies are

taken to model the random component. The first strategy considers the randomness

of the downhole friction. The second strategy considers the randomness of contact

between drillstring and wellbore. Parametric studies on both strategies are conducted.

Monte Carlo (MC) simulation is employed for statistical analysis. The methodology

can be extended into torque or drag calculation in lowering, ream in and ream out

drilling conditions. In summary, the purpose of the research includes:
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� Building the finite element model of drillstring based on soft string model for

hoisting drag calculation.

� Presenting two strategies to model the random component.

� Analyzing the effects of the random component on hoisting drag calculation by

MC simulation method.

The contribution of this work relies on that it evaluates hoisting drag with the con-

sideration of random components. It will improve the estimation of surface hoisting

drag, making it safer to choose drilling devices, such as top drive and motor.

1.3 Research Contribution Summary

In the study of the drillstring from random viewpoint, the research work of this thesis

attempts to make a contribution by considering these elements:

� Differentiate the static and kinetic frictions in the model of random friction.

� Use PI method to obtain the probability density evolution of the bit stick-slip

response.

� Replace the drillstring nonlinear bit-rock interaction model with an equivalent

linear model in an axial-torsional coupled drillstring.

� Suggest a novel approach for calculating random hoisting drag.
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The next chapter will give a literature review of prior work related to drillstring

random vibration and point out the gaps in the prior work.
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Chapter 2

Literature Review

It is well known that three primary categories of vibratory motions exist in rotary

oil-well downhole equipment: axial, torsional and lateral. The modes of vibration

in drillstring [13] are depicted in Figure 2.1. An overview of drilling dynamics from

deterministic perspective for three vibration modes and their coupling modes will be

firstly given due to the fact that the deterministic dynamic models of drillstring are

the foundation for stochastic analysis. As downhole vibrations are prevalent causes of

drillstring failures, a brief review of drillstring fatigue failure is given in this chapter

as well. Finally, stochastic drillstring models and solution techniques are surveyed

and introduced.
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Figure 2.1: Modes of vibration in drillstring [13]

2.1 Deterministic drillstring dynamics

2.1.1 Axial vibration

Drillstring axial vibration is not difficult to be observed and detected at the surface.

It is a vibration phenomenon parallel to its longitudinal axis. It has been found that

the bit-formation interaction and the coupling effects from other vibration modes are

the main causes of the axial vibration [14].

One of the most recognized axial vibration forms is bit-bounce, in which the bit

repeatedly lifts off bottom and impacts formation. Severe bit-bounce may cause

premature bit failure, damage bottom hole assembly (BHA) and decrease the rate

of penetration (ROP). Spanos et al. [15] analyzed the bit-bounce phenomenon of
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roll-cone bits in detail. Simulation results from their analytical model indicated that

the rotary speed is associated with the axial resonant frequencies of the system. After

that, many other researchers used the axial-torsional coupled model to investigate the

axial bit-bounce and torsional stick-slip vibrations [16–18]. Some of the work from

this perspective will be introduced in detail in the torsional vibration section.

Bit-bounce is likely to happen in near-vertical holes when drilling with RC bits due

to their interaction with the formation. While in directional drilling, axial stick-slip

vibration is also detected and studied by researchers. Based on a new experimental

apparatus, Wang et al. [19] reported the axial stick-slip motion of drillstring while

studying the toolface behavior in slide drilling. Experimental results indicated that

a proper choice of rocking velocity [20] can help relieve axial stick-slip.

2.1.2 Torsional vibration

Torsional vibration is the angular vibration of the drillstring along its axis of rota-

tion. Due to the torsional flexibility of the drillstring, downhole torsional speed may

experience severe changes during drilling [21, 22]. An extreme phenomenon of drill-

string torsional vibration is called stick-slip. It is a periodic switch between stick and

slip phases, during which rotation of the drillstring is largely slowed down (or even

stopped) and then suddenly increased when the torque on bit (TOB) overcomes the

anti-torque result from the rock cutting and friction. As such, the rotary speed of the

drillstring in the slip phase can be several times higher than that of the rotary table
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[23].

Stick-slip vibration is harmful to drilling as it can largely decrease ROP and

cause fatigue failure of the drilling tools. It has been reported that stick-slip can be

destructive to the PDC bit [24]. To understand the causes and consequences of stick-

slip vibration and find an effective way to migrate it, numerous researchers investigate

the drillstring stick-slip vibration through numerical modelling, experimental setup

and field testing.

The numerical model of drillstring in stick-slip analysis can be roughly divided into

three categories: single degree of freedom (SDOF) lumped parameter model [25–28],

multiple degrees of freedom (MDOF) model [16, 29–35] and distributed parameter

model [36, 37].

In the SDOF lumped parameter model, the drillstring is simplified as a lumped

mass-spring system with its top rotating at a constant speed [26] or driven by a rotary

table [27]. Figure 2.2 presents an example of lumped mass-spring model [28]. The

drill pipe is modelled by a linear torsional spring k. The drill collar and drill pipe

are assumed to be rigid and modelled as the equivalent mass moment of inertia J1.

Based on this model, Van de Vrande et al. [28] analyzed the stick-slip vibration of

autonomous dynamic systems with dry friction. The authors used smooth functions

to approximate the discontinuous friction forces. The method was validated to be

accurate and reliable by simulation results.

MDOF model has the advantage of showing more drillstring details. Figure 2.3
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Figure 2.2: Simplified drillstring model in [28]

presents a drillstring model, which was simplified as a torsional pendulum with two

degrees of freedom. Based on this model, Puebla and Alvarez-Ramirez [29] proposed

an approach for suppressing stick-slip oscillations. In their work, stick-slip oscillations

were analyzed using the models of Navarro-López and Suarez [38], Serrarens et al.

[39] and Mihajlovic [40].

Navarro-López and Licéaga-Castro [30] developed a drillstring model considering

the motion of the rotary table, drill pipes, drill collars and drill bit. The four de-

grees of freedom lumped pendulum model can be seen in Figure 2.4. Based on this

model, a dynamical sliding-mode control was proposed to migrate drillstring stick-slip

oscillations.

Figure 2.5 presented an n-dimensional lumped-parameter model of a conventional
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Figure 2.3: Simplified model of the drilling system in [29]

Figure 2.4: Four degrees of freedom lumped pendulum model in [30]
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drillstring. Navarro-López and Cortés [31] used this model to analyze the stick-slip

oscillation of the bit. In the parameter study of the WOB, the motor torque and the

rotary speed, different bifurcations were identified and safe drilling parameters were

suggested.

Figure 2.5: Drillstring model describing the torsional behavior in [31]

Figure 2.6 shows a discrete axial-torsional coupled model of the drillstring system.

The coupling between two vibration modes was realized by modelling the TOB as

a combination of friction contact and cutting processes at the bit-rock interface.
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Using this model, Richard et al. [32] studied the self-excited stick-slip oscillations of

drillstring with a drag bit. Simulation results indicated that the model could capture

stick-slip and bit-bounce behaviors. It was reported that the delayed and coupled

nature of the cutting process might initiate the self-excited vibrations and stick-slip

oscillations. The model in Figure 2.6 was used or expanded by many other researchers

[41, 42].

Figure 2.6: Sketch of a mechanical model of the drilling system in [32]

Yigit and Christoforou [16] formulated the equations of motion of a rotary drill-

string with a lumped parameter model (Figure 2.7), which considers axial-torsional

coupling. The authors suggested that rotational control along with axial control can
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effectively suppress stick-slip vibrations and bit-bounce.

Figure 2.7: Sketch of the model in [16]

Many other researchers used the finite element method (FEM) to build drillstring

dynamic models for studying stick-slip vibration. Khulief et al. [33] developed a

numerical model of drillstring using the Lagrangian approach in conjunction with the

finite element method (FEM). Their model considered torsional-bending inertia cou-

pling, axial-bending geometric nonlinear coupling, gyroscopic effect and gravitational

field effect. Simulation results were reported to be in excellent agreement with the ob-

servations and measurements from the field. Sampaio et al. [34] used a geometrically

nonlinear model to study the drillstring axial-torsional coupling. The geometrical

stiffening was realized and analyzed using a nonlinear finite element approximation,
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accounting for large rotations and nonlinear strain-displacements.

Based on the lumped-segment approach, Sarker et al. [35] presented a bond graph

model of drillstring to analyze the bit bounce and stick-slip vibrations. The dynamic

model was axially-torsionally coupled due to bit-rock interaction. A state feedback

controller, which was designed based on a linear quadratic regulator (LQR) technique,

was proposed in the paper. Simulation results indicated that this controller could

effectively suppress stick-slip oscillations and make it possible to drill at lower speeds.

In another work of Sarker et al. [43], the authors extended their model to study the

longitudinal and torsional dynamics of a horizontal drillstring.

Numerous experimental and field studies were conducted to analyze drillstring

stick-slip vibrations. Based on 3500 hours of field measurements, Dufeyte and Hen-

neuse [44] pointed out that it is possible to mitigate stick-slip vibrations by controlling

rotary table velocity, WOB and mud viscosity. Research work from Chen et al. [45]

indicated that roller cone bit might have the stick-slip problem in some drilling con-

ditions. Yaveri et al. [46] analyzed the cause of the stick-slip and whirl phenomenon

by conducting a case study on 16 offshore wells.

2.1.3 Lateral vibration

Lateral vibration occurs in the direction orthogonal to the wellbore centerline. In the

case of lateral vibration, the center of rotation of the drillstring will diverge from the

wellbore centerline. Contact between drillstring and wellbore will occur if the lateral
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displacement exceeds the clearance between them [47, 48].

Lateral vibration is considered the most destructive among the three vibrations

and can create large shocks. It may cause uneven drillstring and stabilizer wear, and

bore-hole wall enlargement. In fact, it is one of the critical factors that induce BHA

failures [49–54]. However, paradoxically, lateral vibration is difficult to detect at the

surface because it barely travels beyond the neutral point [21].

Lateral vibration can be induced by many sources. The first one is mass imbalance.

As explained by Vandiver et al.: ”If the center of gravity of the drill collar is not

initially located precisely on the centerline of the hole, then as the collar rotates,

a centrifugal force acts at the center of gravity, causing the collar to bend” [54].

Mass imbalance can be caused by production and the unevenly distributed electrical

components along the drillstring. It can also be generated by pre-bent or pre-buckled

drillstring tools, which introduce an artificial eccentricity in drilling [54, 55]. The

second is friction contact. The lateral restoring forces and tangential friction forces

induced by the contact between drillstring/bit and formation were reported as the

source of lateral vibration by many researchers [56–58]. Besides these, drillstring

rotational speed [50] and dynamic coupling [59–62] can also generate lateral vibration.

An important subset of lateral vibrations is the BHA whirl phenomenon. Most of

the BHA will operate in compression as drilling proceeds. This situation causes the

BHA to be a region where buckling and whirling are likely to occur. The BHA whirl

can be qualified as a forward or backward whirl depending on whether the BHA
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rotates around the wellbore in the same direction as the driving rotation, as can

be clearly seen in Figure 2.8. Further, forward and backward whirl can be divided

into forward synchronous whirl [54], forward whirl [63], no whirl, non-synchronous

backward whirl [54], synchronous (”pure”) backward whirl [54, 63] and chaotic whirl

[63–65]. Macpherson et.al. [66] provided a brief explanation of various whirl cate-

gories.

Figure 2.8: BHA whirl phenomenons in [13]

Multiple degrees of freedom finite element models were used by numerous re-

searchers to investigate lateral vibration and whirl. Millheim et al. [67] indicated

that increasing rotation speed could increase lateral vibration amplitude and the
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probability of whirl could be increased by enlarging contact friction coefficient. Baird

et al. [68] reported that whirl could be detected by changing the clearance between

bit and wellbore. Simulation results from their paper indicated that the phenomenon

of bit whirl is prominent for small hole clearances. A similar conclusion could be

found in the research from Braker and Azar [69].

In 1985, Mitchell and Allen [51] pointed out that lateral vibration was responsible

for BHA failures in drilling. After that, more research efforts were taken to develop

new theories and models of lateral vibration and whirl.

Using a nonlinear lumped-parameter ODE, Jansen [70] built a model of drillstring

between two stabilizers. Simulation results indicated that rotary speed below the

lateral natural frequency of the drillstring is key to initiating forward whirl, and

backward whirl is influenced by stabilizer friction contact. Later, Jansen [63] improved

this work by considering the gravity and the contact between the drill collar and

wellbore. Based on Jansen’s work, Van der Heijden [65] improved the model by

applying the Hamiltonian formulation to get analytical solutions. Van der Heijden

corroborated Jansen’s findings that forward whirl may change to backward whirl or

chaotic whirl in some conditions.

Heisig et al. [48] reported that in some conditions, drillstring sinusoidal buckling

(”snaking”) could transition to whirl or backward whirl. The work of Dykstra et

al. [71] suggested that BHA backward whirl can be removed by decreasing WOB

and contact friction values. Theron et al. [72] pointed out that increasing friction
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coefficients and contact damping will encourage whirl phenomenon. While increasing

stiffness and damping of the drillstring bending mode will discourage whirl.

Gorelik and Höhn [73] reported a dependency between the whirl mode and initial

conditions of drillstring. In their paper, parametric studies of hole inclination and

forcing frequency were conducted. As a result, transition zones between snaking

and backward whirl were presented. Popp et al. [74] analyzed backward whirl by

conducting tests on an in-house backward whirl testing rig. Test results indicated

that friction induced contact may lead to backward whirl.

Dunayevsky et al. [75] pointed out that axial vibration is a crucial factor in

drillstring whirl, as geometric imbalance may be induced if the applied WOB is larger

than the critical load for static buckling. Vandiver et al [54] reported a case study of

backward whirl, which was caused by bit-bounce. Same dominant peak can be noticed

in the frequency domain of the WOB and BHA bending moment. Christoforou and

Yigit [56] found that backward whirl of BHA may get initiated by the parametric

resonance when the frequency of axial loading at the bit is roughly twice the natural

bending frequency.

Working with mass imbalance, stick-slip vibration of drillstring may also enlarge

lateral vibrations [62]. Based on this phenomenon, some researchers suggested con-

trolling lateral vibration by migrating stick-slip oscillations. Yigit and Christoforous

[76] effectively eliminated the lateral vibration by adding an active controller to the

rotary table. Al-Hiddabi et al. [77] took advantage of nonlinear inverse dynamic con-
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trollers to modulate the rotary table speed and bit speed, respectively. The authors

suggested that controlling bit speed may be more effective in migrating stick-slip

oscillation and alleviating lateral vibration.

2.1.4 Directional drilling

Directional drilling is of crucial importance in the oil and gas industry due to its

ability to increase drilling efficiency and maximize potential profit. For example, the

number of offshore platforms has been greatly reduced by drilling long horizontal reach

wells. The need for drilling deep and extended-reach wells is increasing. However, it

is constrained by many factors, such as the drilling torque and drag [78], which make

drilling beyond a certain measured depth impossible. Estimating torque and drag is

critical in well profile planning, real-time drilling, and post-analysis [79]. Therefore,

enabling an accurate prediction of torque and drag is very important.

In general, the existing torque and drag calculation methods are mainly based on

two classical models: the soft-string model [80] and the stiff-string model [81]. The

soft-string model developed by Johancsik et al. [80] has exerted a great influence over

the petroleum industry. The basic idea of this method is based on the assumptions

that the drillstring lateral stiffness can be neglected and its body is continuously

contacting with the wellbore. As a result, the value of friction coefficient is crucial

to the application of this method and was usually found by Coulomb’s friction model

[82]. Based on the soft-string model, optimal well path design was addressed [82, 83]
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as well as the hydrodynamic influence on torque and drag calculation was considered

[84, 85]. In recent years, Aadnoy et al. [86] developed analytical friction models

for straight, build-up, drop-off, catenary profiles and side bends. In another work of

Aadnoy et al. [87], new torque and drag equations for curved sections were given and

a tension dominant process was presented. However, the obvious shortcoming of the

soft-string model is the overestimation of torque and drag because the drillstring is

in continuous contact with the wellbore.

In drilling process, especially in directional drilling, the drillstring system usually

experiences overall rigid motion, 3D rotation, large wellbore deformation and severe

downhole vibrations. These dynamic factors may lead to significant detrimental ef-

fects on the drilling system. Those detrimental effects include a decrease in the rate of

penetration (ROP), interference with measurement while drilling (MWD) tools, and

causing fatigue of the drilling components. As directional drilling has been widely

used for decades and the need to drill deep and directional wells is increasing nowa-

days, more and more papers in the open literature study directional drilling from

the dynamic viewpoint. In the existing works, some researchers took advantage of

commercial software [88, 89] to study the contact between drillstring and borehole,

some built models of their own using finite element models [90, 91] or multibody

dynamic models [92] to study real-time torque and drag. Siamak et al. [93] employed

finite element and finite segment methods to build a dynamic model for well path

design. Sarker et al. [94] developed a bond graph dynamic model of a horizontal
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oilwell drillsting to predict its longitudinal and torsional response. To increase ROP,

an Agitator tool was simulated as a force excitation in their paper.

2.2 Drillstring fatigue

Drillstring failures are costly and time-consuming in the oil and gas industry. There

are many failure modes of drillstring [3]. Among them, fatigue is the main cause for

most drillstring failures according to field data [3, 95–97]. Thus, avoiding catastrophic

drillstring failures caused by fatigue damage during drilling operations is of great

economic significance.

The research on drillstring fatigue is based on experimental works, theoretical

models analysis and case studies. There are rich literatures on experimental work

of drillstring fatigue analysis [98–100]. In the experiments, full-size drill pipes were

usually subjected to different excitations in the air or corrosive media. The data

provided by these experimental works formed the basis for the theoretical prediction

of fatigue.

Many researches about the drillstring failure analysis are based on case studies

[101–105]. Among them, Wang et al. [103] systematically investigated the causes of

drillstring failure encountered during drilling practice in the northeast Sichuan region

(China) based on more than 130 failure cases. Fault tree analysis was conducted. It

was observed that the deterioration of fatigue resistance of drillstring is related to its

poor quality or manufacturing defects and unscientific design. Further, prevention
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measures were proposed.

Theoretical models are developed mainly along two lines to analyze fatigue failures

of drillstrings. One is based on the fracture mechanics theory, which studies the cracks

propagation in drill pipe body under cyclic loads [106]. This method is developed on

the assumption that micro cracks already exist in the drill pipe materials and will

propagate in the drill pipe body in certain directions under cyclic loadings. The

crack area constitutes a stress concentration zone and will eventually lead to drill

pipe failure if the critical dimension of the crack is reached [107–109]. For example,

Chi et al. [109], predicted the fatigue life of a drillstring based on the assumption

that fatigue failure occurs when the initial crack in the drillstring grows to reach a

limiting size.

The other method uses the cumulative fatigue damage model, which is based

on the S-N curve, a failure criterion, and a damage accumulation rule [110–114].

Comparatively, the second method is more widely accepted, partly because of data

support from experimental works. This method was initiated by Lubinski [110].

After that, many modifications were made to the S-N curves, boundary conditions,

and cyclic stress calculation by Hansford and Lubinski [111], Wu [112, 113], Sikal et

al. [114], Sathuvalli et al. [115] and other researchers. To use this method properly, a

lot of factors need to be considered [116, 117]. For example, mean stress, the sequence

of cyclic loading, stress concentration factor, safety factor, corrosion effect, etc.

It is recognized that the cumulative fatigue damage is of stochastic nature [118].
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The randomness comes mainly from two aspects: the uncertainty of materials’ fatigue

resistance and the uncertainty of loading [118]. In fact, there is generally a consid-

erable scatter in fatigue data. Even apparently identical specimens may give greatly

varying fatigue data in test [119]. Therefore, it is necessary to use a statistical pro-

cedure to consider cumulative fatigue damage. To predict the rate of occurrence of

stress cycles, many counting methods are available to extract and count the equivalent

load cycles from a random time history. Of all the methods proposed, the rain-flow

cycle counting method is regarded as the most successful and is widely used in the

open literature [114, 120, 121].

Several analytical approximation techniques based on the stress autospectral den-

sity function were also developed. These methods include Rayleigh approximation

method [122], peak approximation method [123], single moment method [124], the

method proposed by Ortiz and Chen [125] and the formula of Wirsching and Light

[126]. It is pointed out by Lutes and Sarkani [119] that, for very narrowband Gaussian

processes, good agreement among all these methods can be obtained. However, for

processes that are not narrowband, sometimes, significant differences can be noticed

[119]. Meanwhile, it is reasonable that the probability distribution of a stress process

is non-Gaussian. Thus, numerous works have been done by researchers [123, 127, 128]

to approximate the non-Gaussian effect for a narrowband stress process. In the recent

years, researches for predicting fatigue life under stationary broadband non-Gaussian

[129] or Gaussian processes [130, 131] were published.
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2.3 Stochastic drillstring dynamics

The downhole condition is highly unpredictable due to many uncertain and inconsis-

tent factors. These uncertainties may exist in material property, system dimension,

fluid-structure interaction, bit-rock interaction, etc. Therefore, it is more meaningful

to investigate drillstring dynamics from random/stochastic viewpoint.

Although rich publications exist in the open literature on drillstring dynamic

study, few research works are available on random vibrations of drillstring.

Bogdanoff and Goldberg [132] were regarded as the pioneer in introducing the

probabilistic approach to drillstring dynamics. They modelled WOB and TOB using

a zero-mean normally distributed process in the late 1950s.

With a model of a drill collar section between two stabilizers, Kotsonis and Spanos

[64] analyzed the effects that a stochastic WOB would have on the overall lateral

vibrations. A one-sided power spectral density was used to generate the time histories

for a zero-mean random axial force. The power spectral density was characterized by

two energy peaks at 3X and 6X the rotation speed. Their research indicated that the

collar would undergo chaotic motion with a minor component of randomness when

the collar rate of rotation reaches and exceeds the natural frequency of the collar.

The research group of Spanos and Chevallier utilized the statistical linearization

method to investigate the lateral behaviors of nonlinear drilling assemblies subject to

deterministic and random excitations [21, 133, 134]. In the Ph.D. thesis of Chevallier

[21], the author built a drillstring finite element model based on Euler-Bernoulli beam
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theory. The nonlinearity of the system due to the contact between the drillstring

assembly and the formation was formulated by Hertz’s contact law. The random

input forces were defined by their power spectral densities, which were estimated

from field data and based on the influence of the bit type on excitation mechanisms.

As can be seen in Figure 2.9, the excitations induced by roller cone bits were modelled

with band-limited white noise and excitations induced by PDC bits were modelled

by a Kanai-Tajimi process. After synthetic time histories were generated using Auto

Regressive Moving Average (ARMA) filters, Monte Carlo simulation was conducted

to get the system response in the time domain. Further, the statistical linearization

technique was used to find an equivalent linear dynamic system. This procedure was

implemented by using the covariance matrix approach in the time domain and the

spectral matrix technique in the frequency domain. However, the work of Chevallier

[21] didn’t consider drilling fluid in the finite element model, which influences the

lateral stiffness of the drillstring.

Ritto et al. [135–140] made contributions to investigate the stochastic vibration

of drillstring with uncertainties in the bit-rock interaction [135–138] and weight-on-

hook [139, 140]. In one of their research works, the authors [136] developed a non-

linear drillstring finite element model based on the Timoshenko beam theory. The

dynamic model considered bit-rock interaction, fluid-structure interaction and impact

forces. A new strategy that uses the non-parametric probabilistic approach was devel-

oped to describe the uncertainties in the bit-rock interaction. The results of the paper
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Figure 2.9: Excitation models for BHA with a tricone bit (a) and a PDC bit (b) in

[21]
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indicated that the uncertainties play a crucial role in the coupling among the axial,

torsional and lateral responses. In their another work [140], the supporting force ex-

erted by the hook at the top was modelled as a random variable with its probability

density function constructed by means of the Maximum Entropy Principle. Results

from Monte Carlo simulations indicated that the system response is sensitive to the

dispersion on the weight-on-hook.

Based on a nonlinear stochastic drillstring finite element model, Ritto et al. [141]

proposed a methodology for robust optimization to maximize the expected mean

ROP of the drillstring. The computational model considered the uncertainties of

the structure and the uncertainties of the bit-rock interaction. The nonparametric

probabilistic approach was used to model these uncertainties. The proposed robust

optimization problem respected the integrity limits of the system, which were rep-

resented by the ultimate stress of the material, the damage cumulated by fatigue

and the stick-slip factor. Simulation results indicated that the robust analysis gives

different responses between the deterministic and random optimization analysis.

Based on the bit-rock interaction law proposed by Yigit and Christoforou [16], Qiu

and Yang [142] built a finite element model of drillstring with axial-torsional, lateral-

torsional coupled. Gaussian white noise was added to the TOB. Dynamic behaviors

of the drillstring model subject to both deterministic and random excitations were

investigated. Monte Carlo simulation was employed to obtain the statistics of the

stochastic response. Simulation results were analyzed in terms of the mean and
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standard deviation of bit speed. Random components in drillstring axial and lateral

directions were observed due to axial-torsional and lateral-torsional couplings.

Based on the Euler-Bernoulli beam theory and finite element method, Marquez

[143] developed a mathematical representation of a suspended drillstring assembly

subject to stationary and non-stationary excitations at the PDC bit. By using a col-

ored noise with double-sided power spectrum (Figure 2.10) and passing it through an

auto-regressive (AR) digital filter, synthesized time histories of stationary and non-

stationary excitations were generated for Monte Carlo simulations. The statistical

linearization technique was used to obtain an exact, analytical form of solution. Sim-

ulation results demonstrated a lower lateral displacement at the drill bit compared

with the results from Chevallier [21]. Further, the author developed a stochastic model

of a drillstring with RC bit for vibration assisted drilling (VAD). Synthesized time

histories of a stationary process were generated by passing the band-limited white

noise via a moving-average (MA) digital filter. The author analyzed the resonance

effect in which the natural frequency splits into two due to the gyroscopic effects.

When simulation with soft formation, it was observed that natural frequencies were

separated at lower RPMs. While for compact formations, natural frequencies were

separated at higher RPMs. Compared with deterministic cases, resonance effects were

developed at lower RPM in Monte Carlo simulations.

With an axial-torsional coupled drillstring model discretized by means of the finite

element method, Lobo et al. [144] proposed a novel stochastic model to describe the
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Figure 2.10: Two-sided auto-spectral density for a colored process in [143]

uncertainties on the rock strength and analyzed the effect of such uncertainties on

torsional vibration severity. The cutting component of the TOB was considered a

stochastic process generated by Itô stochastic differential equations. Two different

stochastic processes were considered to model the rock strength. The first one was the

Ornstein-Uhlenbeck process which continues to vary without considering the rotary

speed of the drill bit. While the second one was a novel stochastic process which

considered the bit dynamics when severe torsional vibration happens. Compared with

the deterministic model, statistical analysis of the Monte Carlo simulation results

indicated that the uncertainties on rock strength may lead to predictive scenarios

where bit vibrations amplitude is significantly larger. However, the type of rock that

is suitable for applying the novel stochastic model is obscure in the paper.
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In the Ph.D. thesis, Popp [145] conducted a stochastic analysis of the BHA whirl

phenomenon in drillstring with a three-degrees-of-freedom lumped parameter model.

In the deterministic case, the author improved whirl models by considering gravity,

asymmetry, Hertzian contact, non-Hertzian contact and BHA misalignment, respec-

tively. In the stochastic case, lateral-torsional coupling was considered in the dynamic

model. By using ARMA digital filters and target spectra from downhole TOB mea-

surements, time-histories of excitation were synthesized. The stick-slip TOB spectrum

was modelled by a modified colored noise spectrum (e.g. Kanai-Tajimi spectrum),

while the consistent TOB spectrum was modelled by a modified Davenport spectrum.

By implementing the Newmark-β scheme, Monte Carlo simulation was conducted to

generate stochastic responses for statistic analysis. Research results indicated that

backward whirl is not likely to be induced by torsional coupling in smooth drilling

but could be initiated by stick-slip oscillation and friction-induced contact. The the-

oretical studies were supplemented by experimental tests in a rig and 2D/3D finite

element analysis (FEA) models in a commercial software package. The work of Popp

[145] didn’t consider the fluid forces in the equations of motion when studying BHA

whirl. It will lead to less consideration of WOB and TOB.

Volpi et al. [146] conducted a stochastic analysis of coupled lateral-torsional drill-

string vibration based on a three-degrees-of-freedom lumped parameter model. In

the stochastic model, uncertainties in the borehole wall diameter, in the bottom hole

assembly eccentricity, and in the bit–rock interaction were modelled as random vari-
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ables. Critical vibration phenomenons like severe torsional vibration, lateral impact,

forward whirl and backward whirl were analyzed in both deterministic and stochastic

cases. Probabilistic maps for three uncertain parameters were presented to analyze

the impact of uncertainties on critical vibration phenomenons. Several conclusions

could be drawn from statistical results. The probability of backward whirl could be

enlarged by increasing either WOB or rotational speed. Randomness in the borehole

diameter could reduce the chances of the backward whirl and lateral impact. Ran-

domness in the bottom hole assembly eccentricity could largely increase the impact

incidence. The uncertainties in the bit-rock interaction could greatly affect severe

torsional vibration, backward whirl and impact.

Lobo et al. [147] analyzed control strategies for suppressing stick-slip vibration of

drillstrings by using a torsional drillstring model with the consideration of uncertain-

ties in the bit-rock interaction. The modelling of uncertainties was calibrated with

field data to improve its reliability. The significance of the paper relies on that it

calibrated stochastic excitation modelling. However, the drilling formation that is

suitable for applying the calibrated stochastic excitation was not suggested by the

authors.

All the works mentioned above are for vertical drilling. Some other researchers

work on directional drilling from random viewpoint.

Ritto et al. [148] studied the drillstring horizontal dynamics with uncertainties

on the frictional force by assuming a random frictional coefficient field. Only the
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horizontal part of the drillstring was considered, which was modelled using a bar

model and was discretized by means of the finite element method. As can be seen

in Figure 2.11, the dynamic model was subjected to a constant force (fsta) from drill

pipes, a harmonic force (fhar) due to the mud motor driving force, friction (ffric) and

force from bit–rock interaction (fbit). The system’s performance was measured by the

ratio Y between the output and input power. Results from Monte Carlo simulation

indicated that the probability density functions of Y were quite different for different

slenderness parameters and different uncertainty levels of the frictional coefficient.

Further, stick-slip behavior in the axial direction was observed and analyzed in the

paper.

Figure 2.11: Sketch of the system analyzed in [148]

Tian et al. [149] conducted vibration characteristics analysis and experimental

study of horizontal drillstring with a random friction force. The distribution of the
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random friction coefficient was assumed to be Gaussian and the random variable

was described by Karhunen-Loéve method. An equation was established to evaluate

horizontal drilling efficiency. The analysis model of the drillstring was verified by

comparing the theoretical calculation with the experimental test. The phase diagram

and Poincare plot of the test point indicated a chaotic vibration response of the

system. The work of Tian et al. [149] and Ritto et al. [148] only considered axial

direction in their dynamic models. According to work by Aadnoy et al. [86], the

rotation will decrease the axial drag compared to a non-rotating pipe.

Kremers et al. [150] proposed a model-based control strategy for directional

drilling by treating the bottom hole assembly (BHA) as a linear Euler-Bernoulli beam.

Parameter uncertainties and gravity-induced perturbations were considered in their

work. Cunha et al. [151] analyzed the nonlinear stochastic dynamics of drillstrings in

a horizontal configuration. A beam theory with the effects of rotary inertia and shear

deformation was considered in their model. Parameters in the bit-rock interface law

were modelled by random variables.

2.4 Summary

Compared with the research effort in deterministic drillstring dynamics, work in

stochastic drillstring dynamics is relatively slim. However, the downhole condition

is unpredictable in nature. Researchers have found different responses by using the

deterministic and random drillstring models [141, 143] and believe that the stochas-
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tic drillstring model is essential to design and evaluate control strategy for migrating

stick-slip vibrations of drillstring [147]. Therefore, research in drillstring from ran-

dom/stochastic viewpoint is necessary and needs strengthening.

In the majority of drillstring stochastic vibration analyses, random excitation

was either generated by using a digital filter and approximated excitation spectra

[21, 143, 145] or modelled by assuming critical parameters as random variables or

stochastic processes [136, 140, 144, 146, 148]. MC simulation was generally used for

obtaining statistic results [136, 140–142, 144–146] as a closed-form solution is chal-

lenging or impossible to derive for nonlinear stochastic drillstring systems. However,

MC requires extensive computation and is often used to verify the results from other

methods.

For large-scale engineering problems, combining the stochastic linearization tech-

nique and some direct schemes, such as the stochastic Newmark and stochastic differ-

ence methods, is an effective way to get an exact analytical form of solution. Following

this perspective, Chevallier [21] and Marquez [143] applied the stochastic lineariza-

tion technique when dealing with drillstring lateral nonlinearity. More work could be

done for the drillstring in other directions. Based on this, in Chapter 5, work of this

thesis will replace the nonlinear bit-rock interaction model with an equivalent linear

model in an axial-torsional coupled drillstring.

Very few publications exist in the literature that modelled friction as random when

dealing with the stick-slip vibration of the drillstring. To the author’s best knowledge,
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the works by Ritto et al. [148], Jialin et al. [149], and Cunha et al. [151] are the

few papers considering friction as random. However, these works didn’t differentiate

the static and kinetic frictions, which were reported to exhibit randomness through

experiments by Ibrahim et al. [152]. In view of this, research work of the thesis

will differentiate the static and kinetic frictions in the model of random friction to

analyze their influences on the stick-slip vibration of the drillstring. What’s more,

Path Integration (PI) method will be first applied to obtain the probability density

evolution of the bit stick-slip response.

Finally, in drilling deep and extended-reach wells, the estimation of torque and

drag plays an important role in well profile planning, real-time drilling, and post-

analysis [79]. However, very few publication exists in the open literature dealing with

torque and drag calculation from random viewpoint. To fill this gap, work of this

thesis will present a novel approach for calculating random hoisting drag in Chapter

6. Based on this, the range of surface drag and torque could be estimated, allowing

the well planner to develop a risk assessment for a challenging well trajectory.
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Chapter 3

Stick-slip Analysis of A Drillstring

Subjected to Deterministic and

Stochastic Excitations

The research work of this chapter has been published: Hongyuan Qiu, Jianming Yang

and Stephen Butt. Stick-slip analysis of a drillstring subjected to deterministic and

stochastic excitations. Shock and Vibration, Volume 2016, Article ID 9168747, 7

pages.

3.1 Co-authorship Statement

Hongyuan Qiu: Dynamic Modeling, Methodology, Simulation, Data Processing,

Result Analysis and Writing Manuscript. Dr. Jianming Yang: Supervision and
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Reviewing. Dr. Stephen Butt: Supervision and Reviewing.

3.2 Abstract

Using a finite element model, this paper investigates the torsional vibration of a drill-

string under combined deterministic and random excitations. The random excitation

is caused by the random friction coefficients between the drill bit and the bottom of

the hole, and assumed as white noise. Simulation shows that the responses under

random excitation become random too, and the probabilistic distribution of the re-

sponses at each discretized time instant are obtained. The two points, entering and

leaving the stick stage, are examined with special attention. The results indicate that

the two points become random under random excitation, and the distributions are

not normal even when the excitation is assumed as Gaussian white noise.

3.3 Introduction

In oil and gas industry, wells are drilled for either exploration or production pur-

poses. The drillstring, a very long and slender structure, experiences various vibra-

tions during drilling operations, which can have significant detrimental effects on the

drilling system [153]. Those detrimental effects include decrease of rate of penetra-

tion (ROP), interference with measurement while drilling (MWD) tools, and causing

fatigue of the drilling components. In general, three vibration modes exist in the
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drillstring, namely axial, torsional and lateral. Among the three vibrations, torsional

vibration has attracted significant research effort partially due to its severe negative

effects on drilling efficiency and life of drillstring components. In the open literature,

the torsional vibration /dynamics of a drillstring has been modeled in several ways

[31, 33, 61]. A torsional pendulum with one or two degrees of freedom is often used

[29, 41, 154] for modeling stick-slip, one special type of torsional vibration. These

models are good to look at the dynamics qualitatively; however, they may not be

adequate to provide more quantitative insight to the problems under investigation.

Thus, some other researchers modeled the system with the Finite Element Method

(FEM) [34, 155, 156]. In modeling the torsional vibration, a important factor is

the excitation to the system. Some researchers accounted for the friction between

the drillstring and the wellbore, others focused on the resistant torque on the bit

[16, 28, 29, 31, 32, 153, 154]. Existing research has revealed that the excitation from

the bit-rock interaction is especially complicated [32, 153, 154], involving both fric-

tion and cutting mechanisms. Under certain conditions, the friction mechanism may

cause stick-slip motion of the bit which has particularly negative effect on the drilling

system. Some researchers examined the stick-slip motion and the complicated dy-

namics in torsion [16, 28, 29, 31, 32, 153]. Undoubtedly, these research works are

helpful to understand the complex dynamics of the drillstring in rotation; however,

limitations exist. First, both field test and theoretical analysis have indicated that the

friction mechanism between two surfaces is very complicated; the friction coefficient,
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in reality, is related to various different factors, such as the profile of the surface, the

materials and the lubrication conditions etc. The value of friction coefficient is always

highly scattered. Second, the downhole condition is highly unpredictable due to the

many uncertain factors in the well bore. These factors determine that the drillstring

vibration and dynamics can’t be well understood with deterministic theory, rather

methods from random vibration and/or stochastic dynamics would be much more

powerful tools. As a matter of fact, Bogdanoff and Goldberg [132] realized this point

already in as early as 1950’s, and proposed a probabilistic model. However, research

work along this direction has progressed very little since then, probably due to the

conceptual complexity of random vibration. Among the very few researchers working

on random vibrations of drillstring, Chevallier [21] investigated lateral vibration with

a nonlinear random model. In his work, the excitation for a tri-cone bit and a PDC

bit were modeled as a Kanai Tajimi process and as band limited white noise, respec-

tively. The nonlinearity was handled with a stochastic linearization technique. In

recent years, Ritto et al. [135–138] also investigated drillstring dynamics with prob-

abilistic models. Their focus was placed on the bit-rock interaction, and the drilling

fluid effect on dynamics. In some other papers, Ritto et al. [139, 140] also studied

the uncertainties in the weight-on-hook.

In general, there is a lack of work on torsional vibration of drillstrings from the

random perspective. In view of this fact, this paper, which is based on the work

of [157], focuses on the random torsional vibration of a drillstring. FEM is used to
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Figure 3.1: The dynamic model of the system.

build the dynamic model. The central difference method is then used to solve for the

solution, and Monte Carlo (MC) simulation is carried out to obtain the statistics of

the responses. The paper is organized as follows. In Section 3.4, a dynamic model

is developed. Following that, the solution strategies used in both deterministic and

random cases are presented in Section 3.5. Simulation results are presented and

analyzed in Section 3.6. Finally, conclusions are drawn in Section 3.7.
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3.4 Formulation

3.4.1 Dynamic Model

The drillstring investigated in this paper is schematically shown in Figure 3.1. For

convenience of mathematical derivation, it is assumed that the top is clamped, while

the ground rotates with a constant speed. This does not change the nature of problem

in terms of the relative motion. The drillstring, including drill pipes and drill collars,

is discretized into finite elements. If only the rotation is considered, the element

stiffness matrix Ke and mass matrix Me are given by:

Ke =



GJ
le

− GJ
le

−GJ
le

GJ
le


(3.1)

Me =


ρJle

3
ρJle

6

ρJle
6

ρJle
3

 (3.2)

where G is the shear modulus of the drillstring material, ρ is the drillstring density, J

is the polar moment of inertia of drillstring cross section, and le is the element length.

By assembling the local stiffness and mass matrices, the global mass and stiffness

matrices of the system can be obtained. After some mathematical manipulation, the

governing equation of motion of the whole system can be represented by the following
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form:

Mq̈(t) + Cq̇(t) +Kq(t) = T (3.3)

where q(t) denotes the global rotation displacement vector; T represents the torque

excitation to the system; M , C and K are the system global mass, damping and

stiffness matrices, respectively; C is assumed to be a linear combination of K and M

as below:

C = αM + βK (3.4)

where α and β are constants to be selected.

3.4.2 Excitation

In equation (3.3), the excitation to the system is generalized as a torque T which

consists of several components explained below. The first important component of

excitation is the periodic torque created by the cutting mechanism, denoted by T0.

It is straightforward to assume this excitation as a periodic function of time with a

frequency of Nω. For simplicity, it can be represented as a sinusoidal function as

below.

T0 = a+ b sin(Nωt) (3.5)

where a and b are constant parameters, ω is the rotary speed of the ground, and N

is the number of cutters on the bit.
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Another important component of the excitation is the torque T1 created by the

friction between the cutter and the bottom [31]. Depending on the two possible

motion condition, the torque T1 can be represented as:

T1


≤ Wrbµ1 |ω − ωb| = 0

= Wrbµ2 |ω − ωb| > 0

(3.6)

where W is the weight on bit, ωb denotes the instantaneous rotary speed of the bit,

rb is a number related to the radius of the cutter, µ1 and µ2 represent the static and

kinetic friction coefficients respectively.

Given the fact that it is almost impossible to capture the exact ω − ωb = 0 in

simulation, equation (3.6) can be recast into an alternative form as below.

T1


≤ Wrbµ1 |ω − ωb| ≤ e

= Wrbµ2 |ω − ωb| > e

(3.7)

where e is a preset small number, the proper value of which can be determined by

trial and error in simulation.

There are several different expressions for µ1 and µ2 available in the literature

[28, 29, 31]. The kinetic friction coefficient µ2 used in this paper is taken reference to

Puebla and Alvarez-Ramirez [29] and is given as follows:

µ2 = µcb + (µ1 − µcb) exp(−γb |ω − ωb|) (3.8)

where µ1 and µcb are the static and Coulomb friction coefficients respectively, γb is a

positive constant, and µ2 is substantially smaller than µ1 in general. The relationship

between µ1 and µ2 in equation (3.8) is graphically shown in Figure 3.2.
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Figure 3.2: Torque created by the friction between the cutter and the bottom.

Switching between static and dynamic friction is the primary cause for stick-slip.

Numerous papers have investigated stick-slip of the drilling bit from the deterministic

point of view [16, 28, 29, 31, 32]. However, the deterministic representation of the

excitation above is highly idealized compared to the reality. The friction, in particular,

is hard to model with deterministic theory. Experiments [158, 159] in both drilling

industry and other areas have indicated that friction is stochastic or random in nature.

According to Kilburn’s work [158], friction force can be represented by combining

a deterministic component and a Gaussian form random component. As such, to

account for the effect of random component in the bit rock friction, a Gaussian white

noise ξ(t) with a constant spectral intensity S0 is added to the deterministic torque

T1 in this paper. The excitation T , therefore, is expressed as

T = T0 + T1 + ξ(t) (3.9)
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3.5 Solution Strategy

3.5.1 Solution of Dynamic Model

The response of equation (3.3) to the excitation is numerically solved by using the

central difference method. In this method, the time is first discretized into short time

steps ∆t, then the acceleration and velocity vectors at time ti can be written as [160]:

q̇i = 1
2∆t

(qi+1 − qi−1) (3.10)

q̈i = 1
∆t2

(qi+1 − 2qi + qi−1) (3.11)

where subscript i indicates the time instant ti. For the algorithm to be stable and

converge, the time step ∆t has to meet the following condition [161]:

∆t < ∆tcrit =
2

ωn
(3.12)

where ∆t and ωn represent the time step and the maximum natural frequency of the

system respectively.

By substituting equation (3.10) and (3.11) into (3.3), and rearranging the terms,

one has [160]:

qi+1 = ∆t2N1Ti +N2qi +N3qi−1 (3.13)

with

N1 = [M + 1
2
∆tC]−1 (3.14)

N2 = N1[2M −∆t2K] (3.15)

N3 = N1[1
2
∆tC −M ] (3.16)
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Equation (3.3) is highly nonlinear due to the presence of friction. For comparison

purpose, it is solved for both deterministic and random cases. In the random case,

the dynamic equation is solved to a certain time with randomly generated excitation

samples, and the response statistics are obtained by Monte Carlo simulation.

The random excitation ξ(ti) in simulation is generated as below [161]:

ξ(ti) =

√
2πS0

∆t
Ui (3.17)

where Ui are random number series generated by the computer which is normally

distributed with zero mean and unit standard deviation.

3.5.2 Strategy for probability density estimate

In order to obtain the statistics of response, the ranges of the responses, both qi and

q̇i, are divided into a certain numbers of small intervals.Assuming the sample size of

Monte Carlo simulation is N1 , the probabilistic density of the response falling into a

specific small area in slip stage is computed by:

p1 =
n1

N1δqδq̇
(3.18)

In the stick case, the probabilistic density is calculated by:

p2 =
n2

N1δq
(3.19)

where δq and δq̇ are the interval length along the q and q̇ directions respectively, n1

and n2 are the numbers of the solution falling into the slip area and the stick interval
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respectively, and p1 and p2 are the PDF at the specific slip area and stick interval

respectively.

3.6 Simulation Results

The parameters of the drillstring in the simulation are listed in Table 3.1. In the

simulation, the drillstring system is divided into 30 elements, 20 elements for the

drill pipes and 10 elements for the drill collars. Some other parameters used in the

simulation are listed in Table 3.2

Table 3.1: Drillstring parameters.

Parameters Drillpipe Drillcollar

Length 1, 000 m 200 m

Outer diameter 0.127 m 0.2286 m

Inner diameter 0.095 m 0.0762 m

Material density 7850.0 kg/m3 7850.0 kg/m3

Elastic modulus 210×109 N/m2 210×109 N/m2

Shear modulus 7.6923×1010 N/m2 7.6923×1010 N/m2
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Table 3.2: Other parameters used in simulation.

Parameter Value parameter value

a 2× 104 Nm b 5× 103 Nm

W 4× 105 N rb 0.22 m

µ1 0.3 e 0.01 rad/s

S0 15 α 0.03

β 0.03 ∆t 0.0002

N 3 µcb 0.21

µsb 0.3

3.6.1 Results from Deterministic Case

It has been well known that stick-slip happens when the rotary speed is lower than a

threshold value [44]. This phenomenon is also observed in the simulation of this paper.

Under the simulation parameters given above and a rotation speed of 10 rad/s (95 rpm),

the response of the deterministic part is shown in Figure 3.3. In this figure, the time

history of the relative rotation speed between the bit and the rock is given in Fig-

ure 3.3(a). It can be clearly seen the stick-slip motion exists. Two representative

points, the leaving point and the entering point to the stick-slip, are marked in this

figure. In the deterministic case, these points (time instants) within a motion period

are uniquely determined. In Figure 3.3(b) the phase plane is shown; the stick-slip

is characterized by the flat straight line. Increasing the rotary speed or decreas-
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Figure 3.3: Stick-slip when the ground speed is 10 rad/s: (a) Time history; (b) Phase

plane.

ing the WOB can effectively mitigate the stick-slip [16]. However, decreasing the

WOB should be done cautiously because it may have negative influences on drilling

efficiency. A simulation with the same parameters but a higher rotation speed of

35 rad/s (332 rpm) is also conducted, the results are shown in Figure 3.4. Clearly,

stick-slip is gone. The response is analogous to a sinusoidal curve, and no horizontal

line exists in the phase plane any more.

3.6.2 Results from Random Case

Due to the random component of the friction, it is expected that the response will

become random as well. Correspondingly, the phase plane will become diffused around
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Figure 3.4: No stick-slip when the ground speed is 35 rad/s:(a) Time history; (b)

Phase plane.
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Figure 3.5: Mean responses: (a) Time history; (b) Phase plane.

63



180 182 184 186 188 190 192 194 196 198 200
−30

−20

−10

0

10

X: 183.4
Y: 0

Time (s)
(a)

M
e
a
n
 r

e
la

ti
v
e
 v

e
lo

s
it
y
 o

f 
th

e
 b

it
 (

ra
d
/s

)

X: 186.6
Y: 0

−10 0 10 20 30 40 50 60

−25

−20

−15

−10

−5

0

Mean displacement of the bit (rad)
(b)

M
e
a
n
 r

e
la

ti
v
e
 v

e
lo

s
it
y
 o

f 
th

e
 b

it
 (

ra
d
/s

)

Figure 3.6: Mean responses: (a) Time history; (b) Phase plane.

Figure 3.7: Phase plane for all MC samples between two representative points (stick-

slip).
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leaving slip.
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a single line in the deterministic case. To capture the response features of the motion

in the random case, MC simulation is conducted with a sample size of 200 and a noise

intensity of S0 = 15.

Although field test data has long recognized the random nature of down-hole

vibration, no data have been reported on the strength of the randomness in public

literature. The power spectral density of S0 = 15 may not be realistic in real drilling

operation; however, this does not affect the significance of the study.

The first simulation case in random case in at the relatively high rotation speed

at 35 rad/s which is the same as the deterministic case in Figure 3.4. Figure 3.5 gives

the mean response of the case in which no stick-slip is observed. Compared with

Figure 3.4, the two cases are very similar to each other. Here for saving of space, we

do not give the diffused phase plane for the random case.

The stick slip case corresponding to the deterministic case in Figure 3.3, but with

a random excitation component is also simulated. The mean response of this case

is shown in Figure 3.6. No obvious difference exists between this figure and Figure

3.3. However, if we draw all the simulation samples together in the phase plane, the

single phase plane curve in Figure 3.3 will become diffused as shown in Figure 3.7.

For any time instant, the points will be scattered in a range with varying probability.

Using equation 3.18 and 3.19 the probabilistic distribution density (PDD) at each

time point can be obtained, as is shown in Figure 3.8. If stick-slip exists, the two

representative points, entering and leaving the stick stage, have special interests;
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based on which some researchers developed control algorithms in order to mitigate

the stick-slip. So knowing the times of these two points are crucial for the control

strategy to be successful. In the deterministic case, the time instants for these two

points are deterministic. For instance, the two points in Figure 3.3 are t = 184.2s

and t = 186.7s respectively. The statistics of these two points (marginal PDD) are

shown in Figure 3.9. Clearly, both points are scattered in a range. In addition, the

distribution is distorted from normal. The reason for that is the nonlinearity caused

by the friction. In theory, for a nonlinear system, excitation with normal distribution

may not lead to responses with normal distribution.

3.7 Conclusions

Using a finite element model, this chapter investigates the stick-slip behavior of a

drillstring subject to both deterministic and random excitations. Stick-slip behaviors

in both deterministic and random cases are obtained through simulation and com-

pared. The PDF of the stick-slip response in the phase plane is also obtained. The

single curve of the phase plane in the deterministic case changes to diffused in a range.

Correspondingly, the two points, entering and leaving the stick stage becomes diffused

too. Due to the nonlinearity caused by the friction, the PDDs of these two points are

distorted from normal distribution even the excitation is assumed as Gaussian white

noise.
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Chapter 4

Investigation on Bit Stick-Slip

Vibration with Random Friction

Coefficients

The research work of this chapter has been published: Hongyuan Qiu, Jianming Yang

and Stephen Butt. ”Investigation on bit stick-slip vibration with random friction

coefficients.” Journal of Petroleum Science and Engineering 164 (2018): 127-139.

4.1 Co-authorship Statement

Hongyuan Qiu: Dynamic Modeling, Methodology, Simulation, Data Processing,

Result Analysis and Writing Manuscript. Dr. Jianming Yang: Supervision and

Reviewing. Dr. Stephen Butt: Supervision and Reviewing.
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4.2 Abstract

Torsional vibration of a drillstring, bit stick-slip in particular, is investigated with a

simplified single degree of freedom (DOF) model. The friction in the bit-rock inter-

action is modeled as random, and the motions in stick and slip stages are treated

separately. In the stick stage, it is treated as in static equilibrium. By assuming

a deterministic or random friction coefficient, the points leaving the stick stage are

determined either as a deterministic point or scattered points in a range. In the

slip stage, for random friction which is assumed as white noise, the motion becomes

Markovian. Then, the probabilistic distribution of the responses with displacement

and velocity is calculated with the numerical path integration (PI) technique. Also

Monte Carlo (MC) simulation is conducted for verifying purposes. By considering the

randomness in the excitation, the response at any time instant becomes a spreading

area centred around the means. The time instants leaving and entering the stick

stage also become random, and can only be represented by probability. Compari-

son against MC shows that results from the two methods are in good agreement.

Parametric studies on damping, rotary speed, weight on bit, drillstring length and

different combination of pipe and collar are conducted for both deterministic and

random cases.
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4.3 Introduction

Drillstrings are critical components of drilling in the oil and gas industry. The drill-

string may experience three types of vibrations during drilling operation, namely axial

vibration, torsional vibration and lateral vibration, or their combination. Stick-slip

is a severe format of torsional vibration with apparent detrimental effects on the

drilling system. It happens when the rotation of the drillstring is slowed down (or

even stopped) and then suddenly increased when the torque overcomes the anti-torque

from the rock cutting and friction. Under this situation, the rotary speed and torque

on the bit may be several times larger than those on the surface [162], causing high

cyclic stress within the drillstring and premature failure of drilling components [59].

The rate of penetration (ROP) could be drastically decreased as well by the stick-slip

[17]. It is reported that stick-slip happens in as high as 50 percent of drilling time.

To control and mitigate its obvious harmful effect, numerous researchers have

worked on stick-slip through modeling, simulating, lab and field test and so forth.

Patil and Teoduriu [163] examined the effect of operational factors, such as rotation

speed of the rotation table, drillstring stiffness, as well as weight on bit (WOB). High

rotation speed can eliminate stick-slip, but may leads to whirling of the drillstring.

Wu et al [23] made effort to decouple the two vibration modes and gave a schematic

description of optimum zone. Viguie et al. [164] investigated the possibility to control

stick-slip with passive control methods. Jansen and Steen [165] tried to mitigate the

stick-slip by active damping.
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It has been clear that the essential cause of stick-slip is the different friction

mechanisms between the cutting bit and the rock (bit-rock interaction) in the two

stages. However, friction between two objects depends on many factors, such as profile

of the contact surfaces, materials and lubrication condition and so forth. It is difficult

to model the friction accurately with deterministic theory. Experiments have proven

that the friction between two objects be random in essence, and better represented by

a random process [158]. In addition, Ibrahim et al [152] indicated that both static and

kinetic friction coefficients exhibited randomness through experiments. Some other

works [166, 167] found that the friction might change the qualitative character of the

dynamic response. Therefore, without inclusion of the randomness in the friction, it

would be less possible to fully understand the stick-slip behavior.

Although numerous publications exist in the literature dealing with stick-slip of

drillstrings, very few modelled the friction as a random process. To the authors best

knowledge, the works by Ritto et al [148] and Cunha et al. [151] are the few papers

considering friction as random. The work by Ritto et al [148] considered friction

as a random field while a random distribution of friction coefficient was employed in

[151]. Both work didn’t differentiate the static and kinetic frictions, which, as pointed

before, is the essential factor for stick-slip.
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Figure 4.1: Drillstring model. (a) A drillstring; (b) Torsional vibration model

4.4 Dynamic Model

A drillstring model is schematically shown in Fig 4.1(a). If we focus on only the vi-

bration in torsional direction, the system can be represented by a single DOF model

as shown in Fig 4.1(b). For convenience, the top end of the drillstring is regarded as

fixed, while the ground is considered rotating with constant rotation. This treatment

does not change the vibration characteristics, but facilitates mathematic manipula-

tion. The simple lumped mass and spring model has been used by many researchers

[165, 168].

The equation of motion of the torsional vibration model can be expressed as below.

Jφ̈(t) + Cφ̇(t) +Kφ(t) = To (4.1)

where J , C and K are the equivalent inertia, viscous damping and stiffness of the
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Figure 4.2: Simplified sketch of arbitrary drillstring

drillstring system respectively, φ(t) is the drill-bit torsional displacement, and To

represents the torque on bit (TOB). For an arbitrary drillstring consisting of drill

pipe and drill collar sections shown in Fig 4.2, J . K and C can be calculated as:

J = ρJ0l0 + ρJ1l1 (4.2)

K =
GJ0

l0
∗ GJ1

l1
/(
GJ0

l0
+
GJ1

l1
) (4.3)

C = αJ + βK (4.4)
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with

J0 =
π

32
(D4

po −D4
pi) (4.5)

J1 =
π

32
(D4

co −D4
ci) (4.6)

where damping C is considered as Rayleigh damping, α and β are two constants to

be selected, l0 and l1 are the length of drill pipe and drill collar respectively. ρ is

the drillstring density, G is the shear modulus of the drillstring material. D is the

diameter of the drill pipe or drill collar with subscripts po, pi, co and ci as pipe outer,

pipe inner, collar outer and collar inner respectively. T0 simulates the torque from the

bit cutting action, which is treated differently for two distinctive mechanisms, cutting

and friction. Therefore, T0 can be divided into two parts: Tc and Tf [62] representing

the component of cutting and friction respectively.

Tc , the component related to cutting action, depends on the number of cutters

and the depth of cutting. There are many different representations of this component

[17, 32, 62]. The general simplified expression of it can be represented by the following

form.

Tc =


a if |ω0 − ωb| = 0,

a+ b sin(Nω0t) if |ω0 − ωb| > 0.

(4.7)

where a and b are constant parameters which depend on the depth of cutting, rock

and the geometries of the cutter [169] and formation surface elevation, N is the

number of cutters on the bit, ωb and ω0 are the rotary speed of the bit and the
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ground respectively, The two conditions, |ω0 − ωb| = 0 and |ω0 − ωb| > 0, represent

the thresholds of stick and slip.

Tf , depending on stick or slip, can be represented as below [169]:

Tf =


≤ Wrbµ1 if |ω0 − ωb| = 0,

= Wrbµ2sgn(ω0 − ωb) if |ω0 − ωb| > 0.

(4.8)

where rb is the radius of the bit, µ1 and µ2 are the static and kinetic friction coefficients

respectively. sgn is the signum function. W is the weight on bit (WOB) as shown in

Fig 4.2, which is calculated as:

|W | = |Fh −BF × (Wp +Wc)| (4.9)

where Fh is the hook load, BF is the buoyant factor, Wp is the weight of the drill

pipe section and Wc is the weight of the drill collar section.

Given the fact that it is almost impossible to capture the exact |ω0 − ωb| = 0

with numerical methods, the two conditions for stick and slip, |ω0 − ωb| = 0 and

|ω0 − ωb| > 0, are approximated by the following:

|ω0 − ωb| ≤ e (4.10)

|ω0 − ωb| > e (4.11)

here e is a preset small tolerance approximating zero for numerical simulation, the

proper value of which can be determined through trial and error.

There are several types of relations between µ1 and µ2 available in literature

[28, 29, 31]. The two most representatives include the coulomb model [43] and the
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Figure 4.3: Friction Coefficients

exponential law. In the coulomb law µ1 is greater than µ2, but both are taken as

constant. In the exponential law, µ2 gradually decreases with the increase of the

relative sliding speed. In this paper the relatively simpler coulomb law is adopted

and the relationship between µ1 and µ2 is shown in Fig. 4.3.
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By defining the following transformations,

x =
φ

2π
(4.12)

ωn =

√
K

J
(4.13)

t̃ = ωnt (4.14)

c =
C

Jωn
(4.15)

ω̃ =
ω0

ωn
(4.16)

ω̃1 =
Nω0

ωn
(4.17)

f1 =
a+Wrbµ1

2πJω2
n

(4.18)

f2 =
b sin(ω̃1t̃)

2πJω2
n

+
a+Wrbµ2

2πJω2
n

(4.19)

Eqn. (4.1) can be nondimensionalized as below.

ẍ(t) + cẋ(t) + x(t)


≤ f1 if |ω0 − ωb| ≤ e

= f2 if |ω0 − ωb| > e

(4.20)

For simplicity, t̃, ω̃ and ω̃1 are denoted thereafter by t, ω0 and ω1 respectively.

Field data indicated that drillstring vibration in general is random except for reso-

nance cases in which some specific frequencies stand out [170]. For proper accounting

of the randomness in friction, we distinguish the two different motion status, namely

stick and slip, and treat them separately. In the stick stage, the bit is stuck to the

ground which rotates at constant speed. Thus ẍ = 0 and it is basically in static

equilibrium. In the slip stage, the bit moves relative to the ground with different

relative speed; therefore, it is a dynamic problem. These two motion status can be
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represented as below:

cẋ(t) + x(t) ≤ f1 if |ω0 − ωb| ≤ e (4.21)

ẍ(t) + cẋ(t) + x(t) = f2 +W (t) if |ω0 − ωb| > e (4.22)

In these equations, f1, and f2 are related with the static and kinetic friction, respec-

tively. W (t) is white noise representing the random component (or uncertainty) of

the kinetic friction during the slip motion.

4.5 Solution Strategy

In stick stage, the bit sticks to the ground and is in static equilibrium. Once the

elastic potential energy stored in the drillstring overcomes a threshold relating to the

breakage of the rock, the equilibrium would be broken, and the slip stage starts. The

two stages, stick and slip are treated individually as below.

4.5.1 Stick stage

The point, at which the bit leaves the stick stage and starts the slip stage, is deter-

mined as:

x0 = f1 − cω0 (4.23)

x0 will be used as one of the initial conditions for the slip stage. Depending on

µ1, it may be a random or deterministic variable. If the static friction coefficient

µ1 is considered as random following Gaussian distribution N(µ, σ), then x0 is also
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Gaussian distributed. If µ1 is taken as a constant as treated in most of the existing

literature, then x0 is a deterministic point. These two types of initial conditions for

slip stage are schematically shown in Fig 4.4, with ’+’ representing the deterministic

starting point and Gaussian like distribution representing random starting field.

Figure 4.4: Two initial conditions for slip stage

4.5.2 Slip stage

Starting from x0 calculated in the stick stage, the slip motion is governed by Eq. (4.22).

The response of such a dynamic system under White noise is a Markov process [171].

The response probabilistic distribution function (PDF) is computed through numer-

ical path integration in which the continuous time is first discretized into many time

instant ti. τ = ti − ti−1 is the length of the small time interval. xi and ẋi represent

the response displacement and velocity at ti, respectively. As a Markovian process
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the PDF of the response at time instant ti depends only on the immediate previous

time instant ti−1 [172]. This can be represented as:

p(xi, ẋi, ti | xi−1, ẋi−1, ti−1; ...;x0, ẋ0, t0) = p(xi, ẋi, ti | xi−1, ẋi−1, ti−1) (4.24)

Therefore, the PDF at time ti can be calculated as the integration as below:

p(xi, ẋi, ti) =

∫∫
R

q(xi, ẋi, ti | xi−1, ẋi−1, ti−1)× p(xi−1, ẋi−1, ti−1)dxi−1dẋi−1 (4.25)

where p(xi, ẋi, ti) and q(xi, ẋi, ti | xi−1, ẋi−1, ti−1) are the PDF at time instant ti and

the transitional PDF from time instant ti−1 to time instant ti. R is the region of

integration.

With a given starting instant and a known transition PDF, the long term response

PDF can be calculated through a series of integration as below[173]:

p(xi, ẋi, ti) =

∫∫
R

q(xi, ẋi, ti | xi−1, ẋi−1, ti−1)dxi−1dẋi−1∫∫
R

q(xi−1, ẋi−1, ti−1 | xi−2, ẋi−2, ti−2)dxi−2dẋi−2

· · ·∫∫
R

q(x2, ẋ2, t2 | x1, ẋ1, t1)dx1dẋ1∫∫
R

q(x1, ẋ1, t1 | x0, ẋ0, t0)p(x0, ẋ0, t0)dx0dẋ0 (4.26)

If the time step τ is chosen adequately short, the transitional PDF between two

adjacent time instants can be approximated as Gaussian [174–176] and be expressed
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as:

q(xi, ẋi, ti | xi−1, ẋi−1, ti−1) ≈ 1

2πσxiσẋi

√
1−ρ2

e

[
− z

2(1−ρ2)

]
(4.27)

z =
(xi−uxi )

2

σ2
xi

− 2ρ(xi−uxi )(ẋi−uẋi )
σxiσẋi

+
(ẋi−uẋi )

2

σ2
ẋi

(4.28)

u and σ are the mean and standard deviation respectively. Depending on the sub-

scripts, they may be for x or ẋ. ρ is the correlation coefficient calculated as:

ρ =
σxiẋi
σxiσẋi

(4.29)

The means, which would not be zero due to the deterministic f2, can be obtained

by any numerical integration algorithm, such as the Runge-Kutta methods [171]. The

standard deviations can be obtained by the following equations [119]:

σ2
xi

=
G0

4ξω3
n

{
1− e−2ξωnt

[
ω2
n

ω2
d

+ A−B
]}

(4.30)

σ2
ẋi

=
G0

4ξωn

{
1− e−2ξωnt

[
ω2
n

ω2
d

− A−B
]}

(4.31)

σxẋi =
G0

2ω2
d

e−2ξωntsin2ωdt (4.32)

A =
ξωn
ωd

sin 2ωdt (4.33)

B =
ξ2ω2

n

ω2
d

cos 2ωdt (4.34)

with

G0 = 2πS0 (4.35)

ξ =
c

2
(4.36)

ωn = 1 (4.37)

ωd = ωn
√

1− ξ2 (4.38)
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where S0 represents the spectrum intensity of the White noise.

Theoretically, the integration in Eq. (4.26) is conducted in the whole space, or

for both x and ẋ to be (−∞,∞). For numerical simulation, the integration can

only be conducted on a limited space x × ẋ ∈ (xl, xu) × (ẋl, ẋu). The subscripts l

and u represent the lower and upper limits for the integration, respectively, which are

determined by a rule that the majority of the probability is included in this region. In

this paper, the limits are determined by ±4σ around the means. After the integration

space is determined, the space is first discretized into grids, and then the integration

is carried out numerically within the predetermined space. To improve the accuracy

of the integration, the Gauss-Legendre quadrature technique with four Gauss points

is used [173].

At the intersections of the two stages (the starting and ending of the slip stage),

the assumed Gaussian distributed PDF in the next discretized point may go beyond

the horizontal stick line as shown in Fig. 4.5. This is called back rotation in drillstring

dynamics which rarely happens in reality. In view of this fact, the PDF going beyond

the stick line is dragged back and added to the corresponding points on the straight

stick line. This is illustrated in Fig. 4.5(a) for a starting point and Fig. 4.5(b) for

an ending point respectively. Starting from point P1, the distribution of PDF for

the next time instant scatters around its mean point P1′ as shown. The probability

density beyond the stick line represented by the three small points is simply dragged

in parallel and added to the corresponding points on the stick line. This treatment
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Figure 4.5: Calculation method in two cases. (a) Starting point; (b) Ending Point.
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would bring in some error; however, it should be very limited given that the time step

is chosen very short [171].

4.6 Simulation and Result analysis

Table 4.1: Drillstring specification

Drill pipe length l0 850 m

Pipe outer diameter Dp1 0.127 m

Pipe inner diameter Dp2 0.1016 m

Drill collar length l1 66 m

Collar outer diameter Dc1 0.1651 m

Collar inner diameter Dc2 0.0572 m

Hook load Fh 129 KN

Buoyant factor BF 0.83

Drillstring density ρ 7850.0 kg/m3

Shear modulus G 7.6923×1010 N/m2

Parameters of the drillstring used in the simulation of this paper are listed in

Table 4.1. Other relevant parameters are given as: J = 137.689 kg m2, K0 =

1349.2 N m rad−1, α = 0.1, β = 0.01, C0 = 148.69 N m s rad−1, W = 2×105 N,

rb = 0.22 m, a = 104 N m, b = 2500 N m, N = 3, µ1 = 0.3, µ2 = 0.21. The dimen-
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sionless parameters obtained from Eq. (4.12) to (4.19) are given as: f1 = 2.7367, f2 =

2.2695 (without harmonic excitation), f0 = 0.2949 (harmonic excitation amplitude),

c = 0.345, ω0 = 0.4, ω1 = 1.2, ξ = 0.1725, S0 = 0.0002, e = 0.003.

For the path integration (PI) simulation, the integration space is discretized as:

x × ẋ = [1.0, 3.5] × [−0.8, 0.8], and is divided into 200 × 120 equally sized small

areas. The time in slip is divided into 14 equal time steps by t0, t1, t2, . . . , t13 in the

simulation. While in the MC, Eqs. (4.21) and (4.22) are directly solved with central

difference method [177]. The sample size in taken as 10,000, and the white noise W (t)

in Eq. (4.22) is simulated as [161]:

W (ti) =

√
2πS0

∆t
Ui (4.39)

where Ui are random number series generated by the computer which is normally

distributed with zero mean and unit standard deviation.

4.6.1 Simulation results

Stick-slip under deterministic load has been studied by many researchers. In this

chapter, we don’t intend to dig deeper into it; however, for comparison purpose the

deterministic case is solved by setting the random parts in Eqs. (4.21) and (4.22) as

zero. the phase plane representation of the stick-slip response under only deterministic

load is shown in Fig. 4.6 in which 14 representative points are marked with ”+”. As

expected, the phase plane is as the ones seen in many other papers with a horizontal

line indicating the stick and a curve under representing the slip. Two points, points
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Figure 4.6: Phase plane of response under deterministic excitation with f1 = 2.7367,

f2 = 2.2695, f0 = 0.2949, c = 0.345, ω0 = 0.4, ω1 = 1.2

1 and 13, representing the end of and entrance to the stick stage respectively, are of

special interest.

The random case is simulated with two scenarios: 1) the static friction is taken

as deterministic (µ1 = 0.3), and the kinetic friction (µ2) is treated as random and 2)

both the static friction (µ1) and kinetic friction (µ2) are treated as random.

The simulation results for deterministic µ1 and random µ2 are presented in Fig.4.7.

in which (a) is the results from PI and (b) is from MC. In this case, the end of the

stick would be a individual point as in the deterministic case. With proceeding in the

slip stage, the single point becomes a spread area due to the random kinetic friction

µ2. The spreading area is initially very small, and gradually grows into stable when

approaching the entrance of the stick stage.
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Figure 4.7: The PDF evolution with deterministic static friction (µ1 = 0.3). (a) PI

simulation; (b) MC simulation.
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Figure 4.8: The PDF evolution with random static friction (µ1 ∼ N(0.3, 0.01)). (a)

PI simulation; (b) MC simulation.
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Figure 4.9: The PDF at point 10 with µ1 = 0.3. (a) PI simulation; (b) MC simulation.
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Figure 4.10: The PDF at point 10 with µ1 ∼ N(0.3, 0.01). (a) PI simulation; (b) MC

simulation.
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Figure 4.11: The marginal PDF of x at point 13. (a) µ1 = 0.3; (b) µ1 ∼ N(0.3, 0.01).
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Figure 4.12: PDF of the period of the stick-slip motion. (a) µ1 = 0.3; (b) µ1 ∼

N(0.3, 0.01).
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Figure 4.13: First passage time mean and standard deviation with different random

intensity. (a) First passage time mean; (b) First passage time σ.

While the results for random µ1 and µ2 are given in Fig. 4.8, with Fig. 4.8(a) and

4.8(b) for PI and MC respectively. The difference between Fig. 4.7 and 4.8 is that

the end of the stick stage (point 1 in deterministic case) becomes a horizontal line in

this case. This is reasonable because random µ2 causes the equilibrium in the stick

stage be broken at different point for different value of µ2. However, the scattered

distributions approaching the entrance of the stick, such as the points 11, 12 and

13 in the deterministic case, are very similar, no obvious difference is observed. For
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better understanding the probabilistic distribution of the random case, the PDF at

a typical point (such as point 10) is presented in Fig. 4.9 and 4.10. Clearly, the two

figures are very similar to each other.

In deterministic case, stick-slip is a periodic motion with a certain period. When

the randomness in friction is considered, this certain period will become random and

the point entering the stick stage will become random as well. Fig. 4.11 and Fig. 4.12

give the distribution of x and the motion period under the random case. As expected,

the static friction has limited effect on the distribution of x, which matches the former

observations that distributions are almost the same near the end of slip in Fig. 4.7

and Fig. 4.8. While in Fig. 4.12, a more flat distribution of motion period is obtained

after using random static friction coefficient. The peak value in Fig. 4.12(b) is 2.38,

almost 36.7% smaller than that in Fig. 4.12(a). It is supported by the truth that stick

situation is controlled by µ1 (Eq. (4.21)) and therefore the stick time is influenced by

the random factor.

The portion of time in the slip stage is an indicator of the severity of the stick

slip. This can be examined as a first passage problem with the threshold of v0. By

computing the statistics of this part of time, the fist passage time can be obtained for

different random intensity, and the results are shown in Fig. 4.13. It can be seen that

the mean values don’t change very much while the standard deviation becomes larger

as the random excitation getting stronger. The standard deviation for deterministic

µ1 is a little bit smaller than that for the random µ1. This is reasonable given that the
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randomness in µ1 would contribute to the scattering (standard deviation) of variables.

4.6.2 Parametric study

It is well known that friction causes very complicated dynamics. Here we do not intent

to make through analysis of the dynamic phenomena. Rather we simply change some

of the parameters to demonstrate the changes in the responses. In the random case,

MC simulation is employed to gather samples for statistical analysis.
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Figure 4.14: Phase plane changes due to damping with f1 = 2.7367, f2 = 2.2695, f0

= 0.2949, ω0 = 0.4, ω1 = 1.2. (a) Limit cycle with different damping coefficient c;

(b) Bifurcation; (c) Random case; (d) Bifurcation random case.

The first parameter we examine is the viscous damping coefficient c. The value
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Figure 4.15: Phase plane changes due to harmonic excitation amplitude f0 with f1

= 2.7367, f2 = 2.2695, c = 0.345, ω0 = 0.4, ω1 = 1.2. (a) Limit cycle enlarged as f0

increasing; (b) Bifurcation; (c) Random case; (d) Bifurcation random case.
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Figure 4.16: Phase plane changes due to harmonic excitation frequency with f1 =

2.7367, f2 = 2.2695, f0 = 0.2949, c = 0.345. (a) Single period motion; (b) Bifurcation;

(c) Single period motion; (d) Stick vanish as N increasing; (e) Random case; (f)

Random case.
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Figure 4.17: Ratio of stick time to total drilling time for different rotary speed at

surface in deterministic condition. Pipe length 850 m, collar length 66 m, WOB 200

KN.

c = 0.345 used in the simulation of previous section is taken as the base. We gradually

change its value and present the results in Fig. 4.14. First, the damping is increased

from 1.2c to 1.9c with only deterministic excitation, and the results are shown in

Fig. 4.14(a). It can be seen that with the increase of damping, the stick stage becomes

smaller and smaller, but no essential change in the response. To a certain point, 1.9c

in this case, the stick disappears completely, and the bit motion becomes general one

periodic oscillation. If decreasing the damping gradually to 0.2c, it is found that

the stick-slip remains but the form of the phase plane changes to the one shown

in Fig. 4.14(b). Obviously the nature of response has changed and this is called

bifurcation in dynamics. The cases corresponding to 1.9c and 0.2c with random

excitation are given in Fig. 4.14(c) and 4.14(d). As seen in Fig. 4.14(c), some responses
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Figure 4.18: Distribution of R for different rotary speed at surface under random

friction: (a) 30 RPM; (b) 40 RPM; (c) 50 RPM; (d) 60 RPM; (e) 70 RPM; (f) Partial

enlargement of result at 70 RPM; (g) 80 RPM; (h) 90 RPM.
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Figure 4.19: Ratio of stick time to total drilling time for different WOB in determin-

istic condition. Pipe length 850 m, collar length 66 m, rotary speed 30 RPM

still see the stick stage appeared even though in deterministic case the motion is

completely slip.

The second parameter we studied is the amplitude of the harmonic excitation, and

the results are showed in Fig. 4.15. In Fig. 4.15(a), we consider only the deterministic

excitation by gradually changing the excitation amplitude from 0.6f0 to 1.4f0. At

0.6f0, no stick appears. With the increase of the excitation amplitude, stick appears

and the size of the limit cycle is increased as well. If the amplitude is further increased

to 2.6f0, a two-periods motion is detected as shown in Fig. 4.15(b). The random cases

corresponding to 0.6f0 and 2.6f0 are given in Fig. 4.15(c) and 4.15(d) respectively. It

is noted that the random excitation does not change the basic form of the response,

simply scattering the single line to an area.
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Figure 4.20: Distribution of R at different WOB at random friction: (a) WOB 40

KN; (b) WOB 50 KN; (c) WOB 60 KN; (d) WOB 70 KN; (e) WOB 80 KN; (f) WOB

90 KN; (g) WOB 100 KN; (h) Partial enlargement of result from WOB 100 KN.
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Figure 4.21: Ratio of stick time to total drilling time for different pipe length in

deterministic condition. collar length 66 m, WOB 200 KN, rotary speed 77 RPM

The third parameter studied is the harmonic excitation frequency. According to

Eq. (4.7), the excitation frequency is determined by the rotation velocity ω0 and the

cutter number N . We examine several combinations of ω0 and N and the results

are depicted in Fig. 4.16. First, for the most common three cutter bit (N = 3) with

ω0 = 0.25 under only deterministic excitation, a regular stick-slip motion is observed

in Fig. 4.16(a). Keeping all other parameters unchanged, but increasing the cutter

number N to 5 and 6, the motion is still stick-slip, but the forms are changed to

Fig. 4.16(b) and 4.16(c) respectively. If we keep ω0 = 0.4, but change N from 3 to

7, the responses are shown in Fig. 4.16(d). We can see that the stick is gone with

higher number of cutters. However, it is hard to draw general conclusion due to the

fact that innumerous combinations are possible. Two cases with random excitations
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Figure 4.22: Distribution of R at different drill pipe length at random friction: (a)

Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6; (g) Case 7.
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Figure 4.23: Ratio of stick time to total drilling time for different combination of drill

pipe and drill collar in deterministic condition. WOB 100 KN, rotary speed 35 RPM,

pipe length 850 m, collar length 66 m

are also shown in Fig. 4.16(e) and 4.16(f). The scattering effect of the randomness

in excitation is seen clearly.

The portion of time staying in stick is a important indicator of the severity of

stick-slip. We define a parameter R in this paper to evaluate this parameter as:

R =
stick duration

motion period
× 100% (4.40)

First we change the rotary speed at surface, keeping other parameters in the

simulation unchanged. If only deterministic excitation considered, R would be certain,

and the results are given in Fig. 4.17. As can be seen with increasing of the the rotary

speed, the time staying on stick (R value) decreases gradually. This is in agreement

with common sense. Under the simulation case, the stick disappears (R becomes
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Figure 4.24: Distribution of R for different combination of drill pipe and drill collar

at random friction: (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4; (e) Group

5; (f) Group 6; (g) Group 7.
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zero) at 80 RPM . In the random case, R would be random and its distributions

from 30 RPM to 90 RPM are shown in Fig. 4.18. From Fig. 4.18(a) to 4.18(d) the

dominant motion is stick slip. The distribution of R is sometimes off normal, for

example Fig. 4.18(b). This is reasonable given that the friction is a strong nonlinear

factor. At 70 RPM , motions with no stick slip appear as shown in Fig. 4.18(e).

A closer look at the stick slip part (the right part of the distribution) as given in

Fig. 4.18(f) reveals that the distribution of this part is still close to normal. However,

with further increase of RPM , more motions move to the non-stick-slip. At 90 RPM ,

stick slip almost completely disappears as in Fig. 4.18(h).

Then, we examine the effect of weight on bit (WOB) on the value of R. In the

simulation the rotary speed is taken as 30 RPM , and WOB is changed from 40 to 100

(kN) with other parameters unchanged. The case with only deterministic excitation

is given in Fig. 4.19. As can be seen, R gradually increases with the increase of

WOB. With random excitation considered, at low WOB, such as 40 (kN), no stick

slip happens (Fig.4.20(a)). With the increase of WOB, more motions move to stick

slip as shown from Fig.4.20(b) through 4.20(f). To the point of 100 (kN), almost all

motions are in stick slip as shown in Fig.4.20(g) and 4.20(h).

Length and diameter of drill pipe and drill collar have significant effect on the

dynamics of drillstrings through affecting the stiffness and mass. We examine the

dynamics by setting the drillpipe length as 450 m, 650 m, 850 m, 1050 m, 1250 m,

1450 m and 1650 m, and the results are presented in Fig. 4.21 and 4.22. In Fig. 4.21,
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only deterministic excitation is considered. We can see that for the length under

1000 m no stick slip is observed. Also, the value of R increases with the increase

of drill pipe length. The results with inclusion of random excitation are given in

Fig. 4.22. Similar conclusion can be drawn with Fig. 4.21, but with extra information

of probability.

Table 4.2: Specification for different pipe and collar group

Item Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Drill pipe outer diameter D0 (m) 0.1010 0.1143 0.1270 0.1270 0.1270 0.1397 0.1397

Drill pipe inner diameter d0 (m) 0.0848 0.1005 0.1120 0.1016 0.095 0.095 0.095

Drill collar outer diameter D1 (m) 0.1207 0.1524 0.1651 0.1651 0.1651 0.1842 0.2286

Drill pipe inner diameter d1 (m) 0.0508 0.0572 0.0572 0.0572 0.0572 0.0714 0.0762

Drillstring stiffness K (Nm/rad) 456.08 603.98 903.42 1342.71 1558.10 2606.43 2637.55

Drillstring inertia J (kg m2) 44.75 71.87 104.58 137.86 154.31 253.38 333.34

For the effect of drillpipe and drillcollar diameter, seven combinations are con-

sidered based on real pipe (6 types) and collar (5 types) which are given in Table

4.2. The stiffness K and mass J for each case are given in this table as well. The

simulation results are schematically plotted in Fig. 4.23 and 4.24 for deterministic

and random case respectively.

4.7 Conclusion Remarks

This chapter investigates the stick-slip motion with a SDOF drillstring model sub-

jected to combined deterministic and random excitations. The static friction in stick
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and kinetic friction in slip are treated separately in this chapter, but both include ran-

domness. Therefore, the dynamic response becomes random as well. Path integration

and Monte Carlo simulation are used to obtain the probabilistic response. Simulation

indicates that results from PI and MC agree very well with each other. In the last,

parameter study is carried out through MC for the main drillstring parameters. The

conclusions can be drawn as follows:

� Randomness in friction has a significant effect on torsional stick-slip vibration

of a drillstring system. To account for the random effect, a stochastic dynamic

model is developed and the response in probability is obtained.

� Static friction coefficient µ1 has more obvious influence on stick. More specifi-

cally, random µ1 mainly affects the response at the end of stick, while its effect

on the starting of stick is very limited. Also it has an obvious effect on the

period of the stick-slip.

� Kinetic friction coefficient µ2 has more apparent effect on slip. The randomness

of µ2 causes the response in slip stage scattering in an area. The stronger the

randomness, the larger the scattered area.

� Factors which lead to stick-slip include decreasing RPM, increasing WOB, en-

larging the pipe length and employing weaker combination of pipe and collar.

Simulation indicates that although the system doesn’t have stick-slip problem

in deterministic case, it may be still in stick-slip in random case.
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Chapter 5

Investigation on Random

Vibration of a Drillstring

The research work of this chapter has been published: Hongyuan Qiu, Jianming Yang,

Stephen Butt, Jinghan Zhong. ”Investigation on random vibration of a drillstring.”

Journal of Sound and Vibration 406 (2017): 74-88 [178].
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Result Analysis and Writing Manuscript. Dr. Jianming Yang: Supervision and

Reviewing. Dr. Stephen Butt: Supervision and Reviewing. Jinghan Zhong:

Data Support.
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5.2 Abstract

This paper investigates the axial-torsional coupled vibration of a drillstring under

combined deterministic and random excitations. Finite element method (FEM) is

used to model the system. The random excitation at the bit-rock interaction, which

is considered in the bit axial direction, is treated as Gaussian white noise. Statistic

linearization is first applied to find a equivalent linear dynamic system which is then

solved with stochastic Newmark algorithm. The statistics of the responses, includ-

ing the means and standard deviations of the bit axial displacement and rotational

velocity are obtained and analyzed.

5.3 Introduction

Drillstrings are slender structures used to dig into the rock in search of oil and gas.

Failures of drillstrings are time and money consuming; therefore, the dynamics of

drillstrings must be investigated and carefully controlled.

In the recent decades, the drillstring dynamic models can be mainly divided into

three categories: finte element method (FEM) model [33, 34, 136], lumped parameter

method model [16, 60] and continuous parameter method model [22, 170, 179].

During drilling process, the drilling system usually experiences three types of

vibrations, namely axial vibration, torsional vibration and lateral vibration. Each

individual vibration mode is of great academic interest; however, coupled vibration
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study has more practical significance. Typically, a drillstring vibrates in three major

coupled modes: lateral-torsional, axial-lateral and axial-torsional. Bit-rock interac-

tion is regarded as a major cause of axial-torsional coupling. To represent the bit-rock

interaction, some researchers [180] used friction-based models; some others considered

both cutting and friction [41, 153, 154, 181].

Downhole condition is highly unpredictable due to many uncertain and inconsis-

tent factors. These uncertainties may exist in material property, system dimension,

fluid-structure interaction, bit-rock interaction, etc. Therefore, it is more meaning-

ful to investigate drillstring dynamics from random/stochastic viewpoint. In fact,

Bogdanoff and Goldberg [132] realized this point already in as early as 1950’s, and

proposed a probabilistic model of drillstring dynamics. However, research along this

direction thereafter has progressed slowly, probably due to the inherent complexity of

random vibration. Among the very few researchers working on random vibration of

drillstring, Chevallier [21] investigated the lateral vibration with a nonlinear random

model. In his work, the excitations for a tri-cone bit and a PDC bit were modeled

as a Kanai Tajimi and band limited white noise precess, respectively. The nonlinear-

ity in the contact between drillstring and formation was handled with a stochastic

linearization technique. In recent years, Ritto [135–138] made great contribution in

drillstring dynamics with probabilistic models. Their focus was placed on the bit-

rock interaction, and the drilling fluid effect on dynamics. In some other papers,

Ritto [139, 140] also studied the uncertainties in the weight-on-hook. Qiu et al. [169]
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studied stick-slip vibration with random excitation on the bit in torsional direction.

5.4 Dynamic Model
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Figure 5.1: Schematic representation of a drillstring

The drillstring investigated is schematically shown in Fig. 5.1. It is a fixed-free

model with the top rotating at a constant speed and under constant hook load. It

is composed of drill pipe, drill collar and drill bit. At the bottom, the drill bit

is subjected to a combination of weight on the bit (WOB) and torque on the bit

(TOB). The body of the drillstring is subjected to the buoyant weight and drilling
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Figure 5.2: Finite element and its stiffness and mass matrices

fluid axial force.

The drillstring is discretized into finite elements considering axial and torsional

degrees of freedom at each node, as shown in Fig. 5.2. The local stiffness and mass

matrices of the finite element, which are given in the figure, can be found in any finite

element textbook. In the matrices, E is the Young’s modulus of drillstring material,

G is the shear modulus, ρ is drillstring density, J is the polar moment of inertia of

drillstring cross section, A is the cross section area and le is the element length. J , A

and le have different values for pipe and collar. By assembling the local stiffness and

mass matrices of each element, the global mass and stiffness matrices of the system

can be obtained, and the equation of motion is expressed in the general form as below:

Mq̈(t) + Cq̇(t) + Kq(t) = F(q) (5.1)

where q(t) denotes the general coordinate vector, F(q) represents the deterministic

excitation vector, including weight on the bit WB, torque on the bit TB, buoyant
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weight fb, drilling fluid axial force fd and constant hook load f0, M, C and K are

the system’s global mass, damping and stiffness matrices, respectively, C is assumed

to be a linear combination of K and M as below:

C = αM + βK (5.2)

where α and β are constants to be selected.

The buoyant weight on each node of the element is given as:

fb =
1

2
ρgAle(1−

ρ1

ρ
) (5.3)

where ρ1 is the density of the drilling fluid and g is the gravitational acceleration.

The drilling fluid axial force on each node of the finite element, according to [136], is

given as:

fd =
1

2
Mf leg −

1

2
Aiρ1leg −

1

4
Cfρ1leDoU

2
o (5.4)

where Mf is the fluid mass per unit length, Ai is the inner cross section area of the

beam element, Cf is the fluid viscous damping coefficient, Do is the outside diameter

of the element and Uo is the outside dilling fluid velocity.

Hook load f0 is on the top of the drillstring, which is given as:

f0 = FhWd (5.5)

where Fh is the hook load factor, Wd is total drillstring buoyant weight, which can

be calculated as:

Wd = ρg(Aplp + Aclc)(1−
ρ1

ρ
) (5.6)
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where Ap and Ac are cross section area of drillpipe and drillcollar, lp and lc are length

of drillpipe and drillcollar section.

According to [41, 181], the WB and TB account for the sum of a cutting term

acting on the cutting faces of an equivalent cutter and a friction term at the all wear

flats/rock interfaces:

WB = Wf +Wc (5.7)

TB = Tf + Tc (5.8)

Wf and Tf are represented as:

Wf =


0 if xbn ≤ 0

kcnxbn if xbn < d∗

Rbσnl if xbn ≥ d∗

with d∗ =
Rbσl

kc
(5.9)

Tf = r
Rb

2
uWf (5.10)

where kc is the rock linear contact stiffness, n is the blade number of an ideal

drag bit, xbn is related to the bit axial displacement and represents the drag bit

instantaneous depth of cut at time tn, d∗ marks a critical depth of cut beyond which

the increase of depth of cut will have no influence on the contact forces [181], Rb is

the bit radius, σ is the rock contact stress, l is the wear flat length for the bit, r is a

parameter typically in the range from 1 to 4/3 [32], u is the friction coefficient, which

is modeled with distiction between static and kinetic frictions, is represented as [29]:

u = uk + (us − uk) exp(−γb |ωb|) (5.11)
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Figure 5.3: Sketch of velocity weakening function

where us and uk are the static and kinetic friction coefficients respectively, γb is a

positive constant, ωb is the rotary speed of drill bit. u is graphically shown in Fig. 5.3.

Being independent of the bit cutter arrangement and the bit shape, the cutting

components Wc and Tc are written as [181]:

Wc =


0 if xbn ≤ 0

ζεRbnxbn if xbn > 0

(5.12)

Tc =


0 if xbn ≤ 0

ε
R2
b

2
nxbn if xbn > 0

(5.13)

where ζ is the ratio of the vertical to horizontal force for a sharp cutter, ε is the

intrinsic specific energy required to remove a unit volume of rock.

It is worth of noting that Eq.(5.9) to Eq.(5.13) are not exactly the same as those

given in [181]. In [181], the WB and TB are renewed at each angle of 2π
n

. While in this

paper, the WB and TB are renewed at each time step. The contact between the rock

116



and bit will be lost only when the displacement of the bit is negative. In addition,

backwards rotation of the bit is not considered.
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Figure 5.4: Nonlinearity in the bit rock interaction. (a) Nonlinearity in Wf ; (b)

Nonlinearity in Tf ; (c) Nonlinearity in Wc; (d) Nonlinearity in Tc.

To incorporate random excitation into the system, Gaussian white noise is added

to the right hand side of Eq. (5.1). It is added at the end of the drillstring finite

element in the axial direction. Then, the equation of motion becomes:

MQ̈(t) + CQ̇(t) + KQ(t) = F(Q) + BW(t) (5.14)

where Q(t) is the random general coordinate vector, W(t) represents an array of
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Gaussian white noise and B is a matrix representing the intensity of the white noise

(For detail, please see Appendix. A or [178]).

5.5 Solution Strategy

Eq.5.14 is solved with both stochastic Newmark [182] and Monte Carlo simulation

(MC), so that they can verify each other. In the MC simulation, Eq.5.14 is numerically

solved by using deterministic Newmark integration scheme and the sample size is

taken as 2000.

5.5.1 Statistical Linearization

Eq. 5.14 is nonlinear due to WB and TB. If we draw pictures of WB and TB versus

the depth of cut xbn , the nonlinearities in the bit-rock interaction will be clearly

noticed as depicted in Fig. 5.4. For simplification, f1 represents Wf , f2 is Tf , f3

stands for Wc and f4 is Tc. To use the stochastic Newmark scheme, we first apply the

statistical linearization (SL) technique to transform Eq.5.14 into a equivalent linear

set. In addition, SL is applied to each time step for accuracy consideration. For each

time step, an equivalency of fi, which is represented by f ei , can be represented in the

following linear form:

f ei = keixi + f 0
i (5.15)

where the subscript i is from 1 to 4, and the superscript e denotes the equivalent. f 0
i

is a constant. The difference between the equivalent linear force f ei and the original
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nonlinear fi is defined as δi:

δi = fi − f ei = fi(xi)− keixi − f 0
i (5.16)

To find optimum kei and f 0
i that make δi minimum in probabilistic sense, the expected

value of δ2
i is minimized by solving the following two equations:

∂

∂kei
E(δ2

i ) = 0 (5.17)

∂

∂f 0
i

E(δ2
i ) = 0 (5.18)

where E(·) is the operation of ensemble average. This leads to:

kei =
E(xifi(xi))

σ2
i

(5.19)

f 0
i = E(fi(xi)))− keiE(xi) (5.20)

If xi is a Gaussian process, Eq. (5.19) can be simplified as below:

kei = E(
dfi(xi)

dxi
) (5.21)
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After some mathematical manipulation the following equations for kei and f 0
i can be

obtained:

ke1 =
kcn

2
(erf(y2)− erf(y1)) (5.22)

f 0
1 =

kcnσ√
2π

(e−y
2
1 − e−y22) +

Rσnl

2
(1− erf(y2)) (5.23)

ke2 =
rRbu

2
ke1 (5.24)

f 0
2 =

rRbu

2
f 0

1 (5.25)

ke3 =
ξεRbn

2
(1− erf(y1)) (5.26)

f 0
3 =

ξεRbnσ√
2π

e−y
2
1 (5.27)

ke4 =
εR2

bn

4
(1− erf(y1)) (5.28)

f 0
4 =

εR2
bnσ

2
√

2π
e−y

2
1 (5.29)

where erf(·) is the error function, and y1 and y2 are calculated as follows:

y1 = − µ√
2σ

(5.30)

y2 =
d∗ − µ√

2σ
(5.31)

where µ and σ are the mean and standard deviation of bit axial displacement respec-

tively. The derivation of Eq. (5.22) to (5.31) is presented in Appendix. B.

It can be seen that kei and f 0
i depend on µ and σ, which, in turn, depend on kei

and f 0
i . Ideally, iteration is needed generally to get the converged kei and f 0

i at each

step. However, the computation would become drastically intensive if the iteration is

conducted. A remedy to this issue is to calculate kei and f 0
i using the mean and the
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variance of the previous time step. Given the fact that the time step is very small

and both the mean and variance change pretty smoothly, the error caused by this

approximation is limited. For the friction coefficient u, we calculated a mean value

E(u) at every simulation step using mean and variance of bit rotary speed.

5.5.2 Stochastic Newmark scheme

After the stochastic linearization, Eq. 5.14 becomes:

MQ̈(t) + CQ̇(t) + KeqQ(t) = F + BW(t) (5.32)

where Keq is the equivalent stiffness matrix, F is the deterministic excitation vector.

Keq and F should be updated at each simulation time step. By using the stochastic

Newmark scheme introduced by Bernard and Fleury [182] and setting the parameters

γ = 1
2

and δ = 1
2
, we obtain the following equations:

(C +
∆t

2
Keq)Qn+1 + MQ̇n+1 = (C− ∆t

2
Keq)Qn + MQ̇n

+
∆t

2
(Fn + Fn+1) +

√
∆tBNn+1

(5.33)

MQn+1 −M
∆t

2
Q̇n+1 = MQn + M∆t

2
Q̇n + B∆t

√
∆t

12
Pn+1 (5.34)

where ∆t is the length of time step, Nn and Pn are independent Gaussian random

sequences with zero mean and variance of unity. The subscripts n and n+1 indicate

the corresponding value of parameters at time instant tn and tn+1. The computation
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can be achieved step by step starting from a deterministic initial condition [q0 q̇0]T .

Eq. 5.33 and 5.34 can be rearranged in a more concise form:

Yn+1 = A1Yn + A2Hn + A3Wn (5.35)

The matrices in Eq. 5.35 are defined as below:

Yn =
[
Qn Q̇n

]T
(5.36)

Hn = [Fn Fn+1]T (5.37)

A1 =

C + ∆t
2

Keq M

M −M∆t
2


−1 C− ∆t

2
Keq M

M M∆t
2

 (5.38)

A2 =

C + ∆t
2

Keq M

M −M∆t
2


−1 ∆t

2
I ∆t

2
I

0 0

 (5.39)

A3 =

C + ∆t
2

Keq M

M −M∆t
2


−1 
√

∆tB 0

0 B∆t
√

∆t√
12

 (5.40)

Wn = [Nn+1 Pn+1]T (5.41)

5.5.3 Solution for Statistics

Multiplying Eq. 5.35 with its transpose and taking the ensemble average, the following

recursive equation can be arrived (Appendix. C):

Rn+1 = A1RnA
T
1 + A2HnH

T
nAT

2 + A3IA
T
3 + A1E(Yn)HT

nAT
2 + A2HnE(YT

n )AT
1

(5.42)
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where Rn is the correlation matrix, which is expressed as:

Rn = E(

QnQ
T
n QnQ̇

T
n

Q̇nQ
T
n Q̇nQ̇

T
n

) (5.43)

The ensemble average E(Yn) is obtained by taking the ensemble average of Eq. 5.35.

As the means of Nn and Pn are equal to zero, E(Yn) is given as:

E(Yn+1) = A1E(Yn) + A2Hn (5.44)

5.5.4 Initial Condition

The initial conditions could be either stochastic or deterministic. For the sake of

simplicity, deterministic initial condition is used in this paper. By neglecting the terms

related to the acceleration and velocity on the left hand side of Eq. 5.1, deterministic

initial displacement can be obtained by solving the equation below:

Kq0 = F(q0) (5.45)

For the initial velocity, the axial velocity is set zero and the torsional velocity is set

equal to the constant rotary speed at the top. It is proven that the initial conditions

do not affect the final stationary response [119].
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5.6 Simulation and Result analysis

5.6.1 Parameters in Simulation

The drillstring model is made up of drillpipe and drillcollar sections. the parameters

of the drillstring used in the simulation are given in the following. The length of

drillpipe is 1000 m and is evenly divided into 20 finite elements. Drillpipe outer

diameter is 0.127 m, inner diameter is 0.095 m. Drillcollar is 200 m long with outer

diameter 0.2286 m and inner diameter 0.0762 m. It is evenly divided into 10 finite

elements. The values of the other parameters used in the simulation are listed as

below: ρ = 7850.0 kg m−3, E = 210×109 N m−2, G = 7.6923×1010 N m−2, r = 1.3,

Rb = 0.22 m, l = 5 mm, ζ = 0.8, kc = 37.5 MN m−1, ε = 45 MPa, σ = 45 MPa,

ρ1 = 1310 Kg m−3, Cf = 0.0125, U0 = 1.5 m s−1, us = 0.30, uk = 0.21, γb = 1, n = 3,

α = 0.1, β = 0.1, ∆t = 0.0002 s.

5.6.2 Results Analysis

Based on the above parameters, simulation is first conducted for three hook load

factors, Fh = 0.807, 0.983 and 0.768, representing a medium, heavy and light hook

load. It is noted that only the statistics of the axial displacement and torsional

velocity are presented in the following for the sake of space-saving given that they are

related to bit bounce and stick slip.

In case study 1, the hook load factor Fh is taken as 0.807. Using Eq. 5.5 and 5.6,
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Figure 5.5: Statistical analysis in medium loading. (a) Bit axial displacement µ; (b)

Bit axial displacement σ; (c) Bit torsional velocity µ; (d) Bit torsional velocity σ.

the weight on bit is computed as 160 KN. The simulation results with the Stochastic

Newmark and MC in this case are presented in Fig. 5.5. The spectral density S0

of the random excitation at the bit is taken as 1 × 105. It can be noticed that,

the solutions from both methods become stationary after a short time (at most 10

seconds). Also the results from the two methods agree well except that the one from

MC in Fig. 5.5(b) has larger fluctuation. It is proven that increase of sample size of

MC can smooth out the result. However, this will increase the simulation time. In

the paper, the sample size in MC is taken as 2000.

To check the range of the responses, we build the probability density distribution

(PDD) of the bit axial displacement shown in Fig. 5.6(a). It is clearly seen that in
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Figure 5.6: (a) PDD of bit axial displacement under medium loading with S0 = 105

at t = 10s; (b) PDD of bit axial displacement under medium loading with different S0

at t = 10s; (c) Ratio of ke1 to k1 in medium loading with varying white noise intensity;

(d) Ratio of ke3 to k3 in medium loading with varying white noise intensity.

this case the majority of the axial displacement (99.76% falls between 0 and critical

d∗ represented by the red vertical line. Thus, it is almost linear. If the intensity of

the white noise is changed, it can be expected the PDD of the response will change

as well. The PDD of the bit axial displacement under 4 different noise intensities

(1× 105, 2× 105, 3× 105 and 4× 105) are given in Fig.5.6(b). As expected, with the

increase of the noise intensity, the PDD becomes flatten out with larger distribution

ranges. The consequence is that more responses will be beyond the critical axial

displacement d∗. As a result more nonlinearity will occur. To verify this statement,
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the ratios of ke1/k1 and ke3/k3 are given in Fig. 5.6(c) and 5.6(d). Clearly with the

increase the nonlinearity becomes larger, but still minor.
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Figure 5.7: Statistical analysis in light loading. (a) Bit axial displacement µ; (b) Bit

axial displacement σ; (c) Bit torsional velocity µ; (d) Bit torsional velocity σ.

In the case 2 with Fh = 0.983, the weight on bit ends up as 14 KN. Such a small

weight on bit is not practical in real drilling; however, for illustration purpose we

still present the results in Fig. 5.7 and 5.8. Due to the decrease of the WOB, the

PDD of the bit axial displacement moves to the left with the left tail penetrating

cross the critical value of 0 as shown in Fig.5.8(a). When the axial displacement

becomes negative, the contact between the bit and the formation is lost and bit bounce

happens. It can be seen that in this case under the noise intensity of 1 × 105, the
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probability of bit bounce can be obtained by calculating the area shaded in Fig.5.8(a),

which is about 1.5% at this instant t = 10s. This tiny part of responses won’t affect

the equivalent stiffness very much. However, with the increase of the noise intensity,

the nonlinear effect becomes larger. This is shown in Fig.5.8(b), 5.8(c) and 5.8(d).
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Figure 5.8: (a) PDD of bit axial displacement under light loading with S0 = 105 at

t = 10s; (b) PDD of bit axial displacement under light loading with different S0 at

t = 10s; (c) Ratio of ke1 to k1 in light loading with varying white noise intensity; (d)

Ratio of ke3 to k3 in light loading with varying white noise intensity.

In the case 3, the hook load factor is taken as 0.768, which gives a WOB of

192 KN. The results of this case are given in Fig. 5.9 and 5.10. Contrast to the

previous two cases, the main part of bit axial displacement (about 99.9% as shown in
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Figure 5.9: Statistical analysis in heavy loading. (a) Bit axial displacement µ; (b)

Bit axial displacement σ; (c) Bit torsional velocity µ; (f) Bit torsional velocity σ.

Fig. 5.10(a)) is mainly located to the right of the critical depth d∗ under the relatively

heavy WOB. Correspondingly, the nonlinearity in axial direction (ke1/k1) will be very

large as shown in Fig. 5.10(c). While ke3 is not affected that much as there is no such

a critical threshold in k3 and k4 (Fig. 5.4(c) and 5.4(d)) . Also with the increase of

noise intensity, the PDD of the axial displacement is also flatten out to a larger range

as indicated in Fig. 5.10(b).

To get a closer look at the effect of hook load (or WOB) on the equivalent stiffness,

we set Fh in between 0.98 and 0.745, and equally divide it into 43 steps. Then the

ratios ke1/k1 and ke3/k3 are calculated and presented in Fig. 5.11. The vertical red

lines in these figures represent the critical cutting depth d∗. In the deterministic case,
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the stiffness k1 would be 0 if the cutting depth exceeds d∗. The change from k1 to

0 is abrupt. However, the switch in the probabilistic case is gradual as indicated

by the points from A to F in Fig. 5.11(a). Given that the equivalent stiffness is a

probabilistic average of the total stiffness, this is reasonable. Another observation is

that the hook load affects ke3 very little except at the very beginning, in Fig. 5.11(b),

where the cutting depth is very small. In this case, the bit may get out of contact

with the formation, and bit bounce happens. It is straightforward that bit bounce

affects the equivalent stiffness.
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Figure 5.10: (a) PDD of bit axial displacement under heavy loading with S0 = 105

at t = 10s; (b) PDF of bit axial displacement under heavy loading with different S0

at t = 10s; (c) Ratio of ke1 to k1 in heavy loading with varying white noise intensity;

(d) Ratio of ke3 to k3 in heavy loading with varying white noise intensity.
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Figure 5.11: Results of ke1 and ke3 from light loading to heavy loading. (a) Ratio of

ke1 to k1; (b) Ratio of ke3 to k3.

For the range of hook load above, the probability of bit bounce with 4 different

noise intensities are computed and presented in Fig. 5.12. As can be seen the proba-

bility becomes larger with a stronger noise under the same hook load. On the other

hand, if the noise intensity keeps constant, the bit bounce probability decreases with

the increase of the WOB.

We also examined the distribution of torsional speed under the above parameters
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Figure 5.12: Probability of bit bounce with varying weight on bit under different

random intensity.
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Figure 5.13: Distribution of bit rotary speed under different weight on bit.
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with different WOB as shown in Fig. 5.13. Clearly, with the increase of WOB, the

torsional speed distribution becomes scattered in larger ranges. Thus, larger WOB

is more likely to cause stick slip. This is in agreement with the results reported in

deterministic case.

Intuitively, stick slip happens if the bit torsional speed is below 0 at any moment.

To observe the stick slip more clearly, we change the rotary speed on the top to 2 rad/s

with S0 = 1× 105 and WOB = 177KN . With the statistics calculated we construct

the distribution of torsional speed at 4 discrete instants as shown in Fig. 5.14. At the

instants t = 8.5s and t = 20.4s, the probabilities of stick slip are almost negligible as

shown in Fig. 5.14(a) and 5.14(d) respectively. While at t = 11.7s and t = 16.4s, the

probabilities become 38.9% and 11.5% respectively as indicated in Fig. 5.14(b) and

5.14(c).

5.7 Conclusion Remarks

This chapter investigates the vibration of a drillstring under combined deterministic

and random excitations. Statistic linearization techniques are employed to get an

equivalent linear replacement for the bit-rock interaction nonlinearity. Stochastic

Newmark scheme is used to obtain the means and the standard deviations of the

response. With this model, the probability of bit bounce and stick slip at any moment

can be predicted. The main conclusions drawn from this work include:

1. White noise intensity has obvious effect on the distribution of the responses.
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Figure 5.14: Prediction of stick-slip when rotary speed on the top is 2 rad/s, white

noise intensity is 105 and WOB is 177 KN. (a) PDD of bit torsional velocity at

t = 8.5s; (b) PDD of bit torsional velocity at t = 11.7s; (c) PDD of bit torsional

velocity at t = 16.4s; (d) PDD of bit torsional velocity at t = 20.4s.
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Stronger noise in general causes the distribution scattered in larger areas, but

with lower probabilistic distribution density peak values.

2. If the axial load on the bit is classified into light, medium and heavy. In the

medium loading condition, the drillstring model behaves basically as a linear

system. A linear model is well suited to analyze the vibration response.

3. When the drillstring is lightly or heavily loaded, the nonlinearity in the bit-rock

interaction becomes apparent and an equivalent stiffness needs to be sought,

which is in general smaller than the actual stiffness.

There are many further investigations that could be performed with this system.

For instance, a comprehensive modeling of stochastic excitations in drillstring axial,

torsional and lateral directions.
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Chapter 6

Static Study of Directional

Drillstring from Random

Viewpoint

The work of this chapter is partially based on a published conference paper: Hongyuan

Qiu, Jianming Yang, Geoff Rideout, Stephen Butt. A random method for calculation

of hoisting drag. In Proceedings of the ASME 2020 39th International Conference on

Ocean, Offshore & Arctic Engineering, June 28-July 3, 2020.

6.1 Co-authorship Statement of Published Paper

Hongyuan Qiu: Dynamic Modeling, Methodology, Simulation, Data Processing,

Result Analysis and Writing Manuscript. Dr. Jianming Yang: Supervision and
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Reviewing. Dr. Geoff Rideout: Supervision and Reviewing. Dr. Stephen Butt:

Supervision and Reviewing.

6.2 Abstract

In reality, downhole conditions are highly unpredictable due to many uncertain and

inconsistent factors, such as the uncertainty of the friction and contact between drill-

string and bore-hole. As friction and contact are crucial components in torque and

drag calculation, it is meaningful and practical to consider their uncertainty. This

paper presents a random method for calculation of hoisting drag. Firstly, the fi-

nite element method (FEM) is used for hoisting drag calculation of a directional

drilling well in the deterministic case. Then two strategies are taken to model the

random component in the downhole. The first strategy considers the randomness of

the downhole friction. Instead of being a deterministic value, the friction coefficient

is considered as Gaussian. The second strategy considers the randomness of contact

between drillstring and wellbore. As a result, the drillstring is no longer continuously

contacting with the wellbore in the curved section of well profile, which can help avoid

overestimating torque and drag. Parametric studies on both strategies are conducted.

Monte Carlo (MC) simulation is employed for statistical analysis. The probability

density distributions and mean values of drag will be studied. The methodology can

be extended into torque or drag calculation in lowering, ream in and ream out drilling

conditions. Results from this paper indicate that surface hoisting drag is nearly Gaus-
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sian when the friction coefficient is Gaussian. The contact loss leads to considerable

reduction in the surface hoisting drag when contact uncertainty is considered. The

skewness of the probability distribution of surface hoisting drag is influenced by the

contact probability, length ratio of the hold section to all the other sections, and the

inclination angle of the hold section when random contact is considered. The work of

this paper will help estimate the range of surface drag and torque, which allows the

well planner to develop a risk assessment for a challenging well trajectory.

6.3 Introduction

Directional drilling is of crucial importance in oil and gas industry due to its ability

to increase drilling efficiency and maximize potential profit. For example, the number

of offshore platforms has been greatly reduced by drilling long horizontal reach wells.

The need for drilling deep and extended-reach wells is increasing. However, it is

constrained by many factors such as the drilling torque and drag [78], which make

drilling beyond a certain measured depth impossible. The estimation of torque and

drag plays a critical role in well profile planning, real-time drilling and post analysis

[79].

The existing torque and drag calculation methods are mainly based on two classi-

cal models: the soft-string model [80] and the stiff-string model [81]. The soft-string

model developed by Johancsik et al. [80] has exerted a great influence over the

petroleum industry. This method is based on the assumptions that the drillstring
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lateral stiffness can be neglected and its body is continuously contacting with the

wellbore. As a result, the value of friction coefficient is crucial to the application

of this method and was usually found by Coulomb’s friction model [82]. Based on

the soft-string model, optimal well path design was addressed [82, 83] as well as the

hydrodynamic influence on torque and drag calculation was considered [84, 85]. In

recent years, Aadnoy et al. [86] developed analytical friction models for straight,

build-up, drop-off, catenary profiles and side bends. In another work of Aadnoy et

al. [87], new torque and drag equations for curved sections were developed and a

tension dominant process was presented. However, the obvious shortcoming of soft-

string model is the overestimation of torque and drag because the drillstring is in

continuous contact with the wellbore.

Although many publications exist in the open literature dealing with torque and

drag calculation theoretically or dynamically, one fundamental factor, the uncertainty

in the downhole, has been neglected. In reality, downhole conditions are highly un-

predictable due to many uncertain and inconsistent factors, such as the uncertainty

of the friction between drillstring and bore-hole. Experiments in other areas have

proven that the friction between two objects is random in essence, and better repre-

sented by a random process or random variables [158]. For example, Ibrahim et al

[152] pointed out that both the static and kinetic friction coefficients show random

time variations in the experiments. Besides, work of some researchers [166, 167] also

indicated that the random component of friction force may be critical for successful
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modeling in some applications. As friction is significant in torque and drag calcu-

lation, it is meaningful and practical to consider the uncertainty of friction in the

model.
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Figure 6.1: Drag force balance of drillstring element in straight section

6.4 Methodology

6.4.1 Hoisting drag calculation based on finite element method

The drillstring can be divided into many finite elements. The buoyancy factor β,

drillstring component unit weight w, component length l, inclination angle α in dif-

ferent element may be not the same. Therefore, the parameters in the i th section of

drillstring are marked with subscript i. If the i th element of drillstring is in straight

section, drag force balance in the element is schematically shown in Fig. 6.1 with Fi
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Figure 6.2: (a) Drag force balance of drillstring element in build-up section; (b) Drag

force balance of drillstring element in drop-off section
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given as:

Fi = Fi−1 + βiwili(cosαi + u0sinαi) (6.1)

where u0 is friction coefficient. If inclination αi is equal to zero, the element is in

vertical position and friction term in Eq. 6.1 will diminish. If inclination αi is equal

to 90 degree, the element is in horizontal position and weight term will diminish.

Fig. 6.2 shows the drag force balance when the i th element of drillstring is in

curved section. In either build-up or drop-off, Fi can be represented as:

Fi = Fi−1 + βiwilicos(
αi + αi−1

2
) + u0FNi (6.2)

where FNi is the normal force. When azimuth angle is zero, it is calculated as [80]:

FNi = Fi−1|αi − αi−1| ± βiwilisin(
αi + αi−1

2
) (6.3)

where + is for drop-off section and − is for build-up section.

6.4.2 Random component

The modeling of random component in drag calculation is based on two strategies.

The first strategy assumes that the friction coefficient is Gaussian. Therefore, for

each drillstring section, the deterministic u0 becomes a random variable u1, which

follows N(µ, σ). Thus, Eqs. 6.1 and 6.2 in strategy 1 becomes:

Fi = Fi−1 + βiwili(cosαi + u1sinαi) (6.4)

Fi = Fi−1 + βiwilicos(
αi + αi−1

2
) + u1FNi (6.5)
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There are two reasons why the friction coefficient is assumed as Gaussian. The first

is convenience, as one of the key features of the Gaussian distribution is the relatively

simple form of its probability density function. The second reason is that Gaussian

distribution often provides quite a good approximation to measured statistical data.

Presumably, this is due to central limit theorem [119]. These are reasons why the

Gaussian distribution is extensively used in applied probability.

In the second strategy, the contact between drillstring and wellbore in the curved

section is modeled as Bernoulli distribution. The probability mass function of Bernoulli

distribution is represented as:

f(x; p) = px(1− p)1−x =


p if x = 1

1− p if x = 0

(6.6)

The Bernoulli distribution gives two status, x = 1 or 0, which corresponding to

two contact status in drillstring curved section: contact or non-contact. Therefore,

if drillstring contacts with the wellbore, x = 1. p is the probability that contact

happens. Based on this, a random variable γ, which has the probability of 1−p to be

0 (no contact) or probability of p to be 1 (contact), is used in Eqs. 6.2 for strategy 2:

Fi = Fi−1 + βiwilicos(
αi + αi−1

2
) + γu0FNi (6.7)

6.4.3 Solution strategy

Monte Carlo (MC) method is used to generate the samples for statistical analysis.

Each sample is just a calculation of hoisting drag from drillstring bottom to the top
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Figure 6.3: Probability of X that is larger than zero for N(0, 1)

with uncertainty factor considered.

In strategy 1, the drag calculation of each sample is based on random friction

coefficient. At each point of the finite element, when Eq. 6.4 or 6.5 is conducted,

a Gaussian random variable u1 is generated by Matlab built-in function, which fol-

lows N(µ, σ). µ is the mean and σ is the standard deviation of friction coefficient,

respectively.

In strategy 2, γ is fulfilled by a Gaussian distribution and a logical statement. To

make it clear, an example is given as follows. Assuming the probability of contact p

between drillstring and wellbore is 0.5, for each sample, γ at each point of the finite

element is generated by a logical judgment in Matlab:

γ = (N(0, 1) > 0) (6.8)

As can be seen in Fig. 6.3, for X that follows N(0, 1), the probability of X that
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is larger than zero is 0.5. For each simulation, if the logical statement is true, γ is

equal to 1, otherwise it is equal to 0. By changing the mean value of the Gaussian

distribution in Eq. 6.8, different probability of contact can be simulated.

6.5 Simulation and result analysis

6.5.1 Well profile and specification

Figure 6.4: S-shaped well profile

An S-shaped well is considered in this paper for case study. For this case there is

145



no change in azimuth. The configuration of the well is shown in Fig. 6.4. As can be

seen, the total drillstring can be separated into 5 parts. Part A is 300 m long and is

vertical, which starts from the surface to the top of build-up section. Part B is the

build-up section with the curve radius 573 m. Part C is a 300 m long hold section

with a constant inclination angle 45◦. Part D is the drop-off section with the curve

radius 573 m. Part E is 200 m long, which starts out just below the drop-off section

and is vertical. The build angle for both build-up and drop-off sections is 3◦/30 m

and is constant.

The total length of the drillstring is 1700 m, which consists of 200 m drillcollar

(only part E) and 1500 m drillpipe. The drillcollar outer diameter is 0.2286 m and

inner diameter is 0.0762 m. Drillpipe outer diameter is 0.127 m and inner diameter

is 0.095 m. The well is filled with 1300 kg/m3 drilling mud.

6.5.2 Results analysis and parametric study

For hoisting drag calculation, the drillstring is divided into 33 finite elements. The

total curved section of build-up and drop-off is divided into 30 elements with each

element 30 m long. Section A, C and E are represented by 1 element, respectively.

The number of finite element in the straight section will not influence the static

force. In the curved section, as the calculation becomes complicated, deterministic

simulation is conducted to find out the sufficient number of finite elements. Figure 6.5

indicates that 30 elements are enough to represent the curved section. As can be seen
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Figure 6.5: Surface hoisting drag with different finite elements in the curved section
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Figure 6.6: (a) Mean of friction coefficient in Monte Carlo simulation test; (b) Stan-

dard deviation of friction coefficient in Monte Carlo simulation test

in the figure, dividing the curved section into 100 elements only increase the surface

hoisting drag by 0.2%, compared with the result from 30 elements. Considering MC

method needs large computer memory, 30 elements are employed to represent the

curved section.

The hoisting drag is firstly calculated by following strategy 1, in which a random

friction coefficient is considered. It is assumed to be Gaussian with mean value 0.22
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and standard deviation 0.02. Therefore, at each point of the finite element, friction

coefficient is randomly chosen from N(0.22, 0.02). MC method is employed to gather

the results for statistic analysis and the sample size is taken as 20,000. Because the

friction coefficient is randomly generated, its distribution may not be as planned if

MC sample size is not enough. To verify the sample size, MC simulation test is

conducted 100 times. Fig. 6.6 indicates that 20,000 sample size is enough to obtain

satisfied mean and standard deviation of the random friction coefficient.

The hoisting drag is calculated from bottom to top. In Fig. 6.7(a), red line is

the hoisting drag obtained from deterministic friction coefficient, the value of which

is 0.22. Blue line represents the mean hoisting drag from MC simulation. Grey area

marks the result from all the MC samples. It can be seen clearly that red line and

blue line appear as one in the figure, and they are approximately in the center of the

grey area.

For statistical analysis, the surface hoisting drag (when the drilling depth is zero)

is selected. The probability density distribution of surface hoisting drag is presented

in Fig. 6.7(b). Statistical information of the samples, like mean, standard deviation,

kurtosis and skewness are calculated and listed in the figure. For an exact Gaussian

distribution, the skewness is 0 and kurtosis is 3. Therefore, Fig. 6.7(b) indicates that

surface hoisting drag is nearly Gaussian distributed when the friction coefficient is

Gaussian.

Then, the standard deviation of the friction coefficient is changed to see its in-
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Figure 6.7: Monte Carlo simulation result with random friction: (a) Hoisting drag

for all MC samples; (b) The probability density distribution of hoisting drag on the

surface
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Figure 6.8: Monte Carlo simulation results with varying standard deviation of friction

coefficient: (a) The probability density distribution of hoisting drag on the surface

with σ = 0.01; (b) The probability density distribution of hoisting drag on the surface

with σ = 0.02; (c) The probability density distribution of hoisting drag on the surface

with σ = 0.03; (d) The probability density distribution of hoisting drag on the surface

with σ = 0.04.
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Figure 6.9: Relationship between σ of friction coefficient and σ of surface hoisting

drag

fluence on the surface hoisting drag. Fig. 6.8 shows the statistical results based

on standard deviation 0.01, 0.02, 0.03 and 0.04. As can be seen, the distributions

are nearly Gaussian in all the sub-figures and mean values are the same. The stan-

dard deviation of the surface hoisting drag simultaneously increases as the standard

deviation of friction coefficient changes from 0.01 to 0.04. Fig. 6.9 indicates a lin-

ear relationship between the standard deviation of friction coefficient and standard

deviation of the surface hoisting drag.

In strategy 2, the hoisting drag is firstly calculated by considering the probability

of contact between drillstring and wellbore in the curved section is 0.5. The contact

probability is 1 for section C. For section A and E, as they are both vertical, the

contact probability is assumed to be 0. Like what we did in strategy 1, MC simulation
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Figure 6.10: Probability of contact in the simulation test

test is conducted 100 times. Fig. 6.10 indicates that 20,000 sample size is enough to

simulate 0.5 contact probability.

In Fig. 6.11(a), red line is the hoisting drag without considering random contact,

thus the contact probability is 1.0. Blue line represents the mean hoisting drag from

MC simulation with contact probability 0.5. Grey area marks the result from all

the MC samples. It can be seen clearly that blue line appears approximately in the

center of the grey area. The contact loss leads to considerably reduction in the surface

hoisting drag.

The probability density distribution of surface hoisting drag is presented in Fig.

6.11(b). Statistical information of the samples, like mean, standard deviation, kurtosis

and skewness are also calculated and listed in the figure. As can be noticed, the

distribution is still approximately Gaussian.
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Figure 6.11: Monte Carlo simulation result with contact probability 0.5: (a) Hoisting

drag for all MC samples; (b) The probability density distribution of hoisting drag on

the surface
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Figure 6.12: Mean hoisting drag with different contact probability

Then, the contact probability between drillstring and wellbore is going to be

changed to see its influence on the surface hoisting drag. When the contact probability

is small, meaning that friction term in Eq. 6.7 is negligible, we expect that the

majority of the hoisting drag in MC samples are close to the static drag. On the

other hand, as contact probability probability grows, we expect that the majority of

the hoisting drag are more and more likely to be the deterministic hoisting drag. In

Fig. 6.12, blue line on the left represents the static drag. Red line on the right is

maximum hoisting drag. As the contact probability changes from 0.1 to 0.9, the mean

hoisting drag is shifting from left to right as expected. Meanwhile, the probability

density distribution of the surface hoisting drag with different contact probability is

shown in Fig. 6.13. Like the transition of the mean, the distribution shifts from the

left to right as contact probability increases.
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Figure 6.13: Probability density distribution of surface hoisting drag with different

contact probability: (a) Contact probability 0.1; (b) Contact probability 0.2; (c)

Contact probability 0.3; (d) Contact probability 0.4; (e) Contact probability 0.5; (f)

Contact probability 0.6; (g) Contact probability 0.7; (h) Contact probability 0.8; (i)

Contact probability 0.9.
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Figure 6.14: Statistic results of surface hoisting drag with all random component

considered: (a) Mean; (b) Standard deviation
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Figure 6.15: Skewness and kurtosis of surface hoisting drag under different length

ratio: (a) only consider random friction coefficient, which follows N(0.22, 0.02); (b)

only consider random contact with contact probability 0.7
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Figure 6.16: Skewness of surface hoisting drag under different length ratio: (a) contact

probability 0.2; (b) contact probability 0.4; (c) contact probability 0.6; (d) contact

probability 0.8
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Fig. 6.14 shows the mean and standard deviation of surface hoisting drag with

both random friction and random contact considered. The contact probability varies

from 0.1 to 0.9, and the standard deviation of the friction coefficient changes from

0 to 0.04. As can be seen in Fig. 6.14(a), with the increase in contact probability,

the mean value increases as well; however, the changing standard deviation of the

friction coefficient does not make any significant changes to the mean value. In

Fig. 6.14(b), a larger standard deviation of friction coefficient generally increases

the standard deviation of surface hoisting drag. The simulation results resemble

downward parabola with peak values around the contact probability of 0.6.

All the simulations above are based on a 1700-meter long S-shaped well with a

hold section of 300 meters. In the following, different hold section lengths will be

chosen to change the length ratio of this section to all the other sections. By doing

so, the effect of changing the length ratio on the probability density distribution of the

surface hoisting drag will be analyzed. Fig. 6.15(a) shows the skewness and kurtosis of

the distribution from MC simulation with only random friction coefficient considered.

As can be seen in the figure, the skewness and kurtosis are slightly changing around

0 and 3, respectively. It indicates that the distribution of surface hoisting drag may

be nearly Gaussian when the friction coefficient is Gaussian, regardless of the length

ratio. Fig. 6.15(b) shows the statistic results of skewness and kurtosis from simulation

only considering random contact. As can be seen from the result, when the contact

probability is 0.7, the distribution of surface hoisting drag shows negative skewness.
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Further, with the increase in length ratio, the negative value decreases. It indicates

that the left tail of the distribution may get longer.

Fig. 6.15(b) presents a trend of skewness when contact probability is 0.7. Further,

the trend of skewness will be studied by calculating the skewness of the probability

density distribution of the surface hoisting drag under different length ratios at contact

probability 0.2, 0.4, 0.6, and 0.8, respectively. As can be seen in Fig. 6.16, at low

contact probability like 0.2 (Fig. 6.16(a)), the positive skewness is getting larger as

the length ratio increases. While at high contact probability like 0.8 (Fig. 6.16(d)),

the negative skewness decreases as the length ratio increases. It can also be observed

in Fig. 6.16 that, at the same length ratio, the skewness decreases as the contact

probability increases. A similar observation could be found in Fig. 6.13 as well.

The results of Fig. 6.16 indicate that the skewness of the probability distribution of

surface hoisting drag is influenced by the length ratio and contact probability when

random contact is considered.

The inclination angle of the hold section is another parameter to be studied.

Statistic analysis of surface hoisting drag is conducted based on the MC simulation

with random friction coefficient, different length ratio of hold section to all the other

sections and varying inclination angle from 21 to 90 degrees. The corresponding

results are presented in Fig. 6.17. Further, to make it clear, statistic results at one

specific hold section length (300 m) are presented in Fig. 6.18. As can be seen in

Fig. 6.17 and 6.18, the skewness and kurtosis are just changing around 0 and 3,
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Figure 6.17: Skewness and kurtosis of surface hoisting drag under different length

ratio and inclination angle, with only random friction coefficient considered, which

follows N(0.22, 0.02): (a) Skewness; (b) Kurtosis
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Figure 6.18: Skewness and kurtosis of surface hoisting drag when hold section is 300

meters, considering only random friction coefficient, which follows N(0.22, 0.02)
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respectively. It indicates that the inclination angle of the hold section does not have

any significant influence on the skewness or kurtosis of the distribution of surface

hoisting drag, when random friction coefficient is considered.
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Figure 6.19: Skewness and kurtosis of surface hoisting drag under different inclination

angles with contact probability 0.7

The following parameter study of inclination angle will only consider random

contact for calculating surface hoisting drag. Fig. 6.19 presents the skewness and

kurtosis of the result distribution when the contact probability is 0.7. As can be

seen, the probability distribution has negative skewness and its value increases as

the inclination angle increases. Further, in Fig. 6.20, the trend of the skewness is

presented for contact probability at 0.2, 0.3, 0.7 and 0.8. Simulation results indicate
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Figure 6.20: Skewness of surface hoisting drag under different inclination angle: (a)

contact probability 0.2; (b) contact probability 0.3; (c) contact probability 0.7; (d)

contact probability 0.8
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that, at low contact probability, skewness of the probability distribution of surface

hoisting drag is positive. Its value can be decreased if the inclination angle of the

hold section increases. While contact probability is high, skewness of the probability

distribution of surface hoisting drag is negative. Its value can be increased with the

increasing of inclination angle. The results of Fig. 6.20 indicate that the skewness of

the probability distribution of surface hoisting drag is influenced by the inclination

angle when random contact is considered.

6.6 Conclusion and remarks

This chapter studies the calculation of drillstring hoisting drag from a random view-

point. Two strategies are taken to model the random component. The first strategy

considers the randomness of the downhole friction. The second strategy considers the

randomness of contact between drillstring and wellbore. MC simulation is employed

to estimate the statistics for them. A parameter study is conducted to determine how

the statistics vary with the parameters.

When the friction coefficient is Gaussian, surface hoisting drag is also Gaussian

distributed, with its mean the same as the deterministic case. There is a linear rela-

tionship between the standard deviation of friction coefficient and standard deviation

of the surface hoisting drag.

When contact probability between the drillstring and wellbore is considered, the

contact loss leads to considerable reduction in the surface hoisting drag. As the
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contact probability grows, the mean and distribution of the surface hoisting drag is

shifting from the side of static drag to the side of deterministic hoisting drag.

The skewness of the probability distribution of surface hoisting drag is influenced

by the contact probability, length ratio of the hold section to all the other sections,

and the inclination angle of the hold section when random contact is considered.

The skewness value changes from positive to negative as the contact probability in-

creases. Further, at low contact probability, the positive skewness can be enlarged by

increasing the length ratio or decreasing the inclination angle. While at high contact

probability, the negative skewness can be decreased by increasing the length ratio or

decreasing the inclination angle.

The methodology can be extended into torque or drag calculation in lowering,

ream in and ream out drilling conditions. The work of this chapter will help estimate

the range of surface drag and torque, which allows the well planner to develop a

risk assessment for a challenging well trajectory. Based on the assessment, drilling

devices, such as top drive and motor, can be safely and wisely chosen.
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Chapter 7

Conclusion

7.1 Summary

The research work from this dissertation studies the stick-slip, bit-bounce and hoisting

drag calculation of drillstring from random viewpoint. Different downhole uncertain-

ties are considered. The random friction coefficients are used in drillstring torsional

stick-slip analysis. Gaussian white noise on the bit in the axial direction is employed

in an axial-torsional coupled model. While studying the hoisting drag calculation of

directional drilling, the random contact between the drillstring and the wellbore is

considered.

7.2 Concluding Remarks and Highlights

Concluding remarks and highlights of each chapter are given below.
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7.2.1 Conclusion and highlights from Chapter 3

Chapter 3 analyzes the stochastic torsional stick-slip vibration of a drill bit using a

finite element model of drillstring. The random excitation is caused by the random

friction coefficient in the bit-rock interaction. The two points, which represent enter-

ing and leaving the stick stage, are examined with special attention. The highlights

of this chapter include:

� Phase plane of the stick-slip response become diffused in a range in the random

cases.

� The two points, which represent entering and leaving the stick stage, become

diffused in the random cases.

� Due to the nonlinearity caused by the friction, the probabilistic distributions of

the two points are not normal even when the excitation is assumed as Gaussian

white noise.

7.2.2 Conclusion and highlights from Chapter 4

Chapter 4 investigates stick-slip with the friction considered random by using a single

degree of freedom (DOF) drillstring model. In the stick stage, the static friction is

treated as either a deterministic value or a random variable. While in the slip stage,

the kinetic friction is treated as a combination of deterministic and random compo-

nents. Then path integration (PI) method is firstly used to obtain the probability
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density evolution of the response. Monte Carlo (MC) simulation is then used for

validation of the PI results and statistical analysis. In addition, parametric studies

on damping, rotary speed, weight on bit, drillstring length and different combina-

tions of pipe and collar are conducted for both deterministic and random cases. The

highlights of this chapter include:

� Analyzing drillstring stick-slip response based on random static and kinetic

frictions.

� Random static friction influences the period of stick-slip motion.

� Random kinetic friction influences the moment entering the stick stage.

� Parametric study also indicates the necessity of research from stochastic view-

point.

7.2.3 Conclusion and highlights from Chapter 5

In Chapter 5, a two DOFs drillstring model, considering both axial and torsional

direction, is used for stochastic dynamic analysis. Finite element method is used

to build the drillstring model. The random excitation at the bit-rock interaction,

which is considered in the bit axial direction, is treated as Gaussian white noise. The

nonlinear bit-rock interaction is replaced with an equivalent linear term by statistic

linearization. The linear dynamic system is then solved with the stochastic Newmark

algorithm. The highlights of this chapter include:
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� Stochastic Newmark strategy yields reliable results when comparing to MC.

� Work of this chapter will help predict the probability of the bit bounce and

stick slip at any moment more effectively.

7.2.4 Conclusion and highlights from Chapter 6

Chapter 6 studies the calculation of drillstring hoisting drag from random viewpoint

by considering the randomness of the downhole friction and the randomness of con-

tact between drillstring and wellbore. Statistical analysis and parameter study are

conducted based on MC simulations. The highlights of this chapter include:

� When the friction coefficient is Gaussian, surface hoisting drag is also Gaussian

distributed, with its mean the same as the deterministic case.

� When contact probability between the drillstring and well-bore is considered, as

the contact probability grows, the mean and distribution of the surface hoisting

drag is shifting from the side of static drag to the side of deterministic hoisting

drag. The contact probability influences the range and shape of the surface

hoisting drag distribution.

� The skewness of the probability distribution of surface hoisting drag is influenced

by the contact probability, length ratio of the hold section to all the other

sections, and the inclination angle of the hold section when random contact is

considered.
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� Work of this chapter will help estimate the range of surface drag and torque,

which allows the well planner to develop a risk assessment for a challenging well

trajectory.

7.3 Recommendations for Future Work

Based on the current research, some recommendations can be offered.

7.3.1 Stochastic dynamics modeling of directional drilling

As suggested by the literature review, works on stochastic dynamics of directional

drilling are necessary. Therefore, a whole directional drillstring dynamic model is

highly recommended. The randomness of the downhole friction is suggested to be

considered. As friction is really significant in producing torque and drag in directional

drilling [78], it is meaningful to consider the uncertainty of friction when predicting

the dynamic responses in the downhole.

It is reported by Ritto et al. [136] that drilling fluid can lead to a significant change

in system mass and stiffen the drillstring at the bottom. It is also proved that the

drilling fluid is critical to the drilling dynamics, especially for the lateral vibrations

[183]. As the contact between drillstring and borehole in directional drilling is critical,

considering the fluid-structure interaction is recommended.

171



7.3.2 Research on control strategies

It is highly recommended to analyze control strategies for suppressing stick-slip vi-

bration of drillstrings by using a stochastic dynamic drillstring model with the con-

sideration of uncertainties in the bit-rock interaction. It is recommended to calibrate

the uncertainties with field data to improve its reliability.
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Appendix A

The drillstring model is made up of drillpipe and drillcollar. Drillpipe is 1000 m and

is evenly divided into 20 finite elements. Drillcollar is 200 m and is evenly divided into

10 finite elements. Therefore we have 62× 62 global stiffness matrix K and 62× 62

global mass matrix M.

Q(t) is the 62× 1 random general coordinate vector:

Q(t) =

[
Q1(t) Q2(t) Q3(t) · · · Q60(t) Q61(t) Q62(t)

]T
(A1)

F(Q) is a 62 × 1 excitation vector including WOB, TOB, buoyant weight fb,
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drilling fluid axial force fd and constant hookload f0, which is given as:

F(Q) =



−f0 + fb + fd

0

2fb + 2fd

0

2fb + 2fd

0

...

2fb + 2fd

0

fb + fd −WOB

−TOB



(A2)

W(t) represents an array of Gaussian white noise:

W(t) =

[
0 0 0 0 · · · 0 0 w(t) 0

]T
(A3)

where w(t) is Gaussian white noise.
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B is a 62× 62 matrix representing the intensity of the white noise:

B =



0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 0 0 0

0 0 0 · · · 0
√

2πS0 0

0 0 0 · · · 0 0 0



(A4)

It is worth noting that Stochastic Newmark method [182] has already considered

the time step affection in the White noise when deriving Eqs. (5.33) and (5.34).

Therefore, G = 2πS0, rather than G = 2πS0

∆t
, is used in the simulation.
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Appendix B

f1(x) = Wf =


0 if x ≤ 0

kcnx if x < d∗

Rbσnl if x > d∗

g(x) =
1√
2πσ

e
−(x−µ)2

2σ2 (B1)

ke1 = E(
df1(x)

dx
) =

∫ +∞

−∞

df1(x)

dx

1√
2πσ

e
−(x−µ)2

2σ2 dx =

∫ d∗

0

kcn
1√
2πσ

e
−(x−µ)2

2σ2 dx (B2)

Letting

y =
x− µ√

2σ
(B3)

Then

dx =
√

2σdy (B4)

Substituting Eqs. (B3) and (B4) into Eq. (B2) leads to

∫ d∗

0

kcn
1√
2πσ

e
−(x−µ)2

2σ2 dx =
kcn

2

2√
π

∫ y1

y2

e−y
2

dy =
kcn

2
(erf(y2)− erf(y1)) (B5)

where

y1 = − µ√
2σ

(B6)

y2 =
d∗ − µ√

2σ
(B7)
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E(f1(x)) =

∫ +∞

−∞
f1(x)g(x)dx =

∫ d∗

0

kcnxg(x)dx+

∫ +∞

d∗
Rbσnlg(x)dx (B8)

∫ d∗

0

kcnxg(x)dx =

∫ y2

y1

kcn√
π

(
√

2σy + µ)e−y
2

dy

=

√
2kcnσ√
π

∫ y2

y1

ye−y
2

dy +
µkcn√
π

∫ y2

y1

e−y
2

dy

=
kcnσ√

2π
(e−y

2
1 − e−y22) +

µkcn

2
(erf(y2)− erf(y1))

(B9)

∫ +∞

d∗
Rbσnlg(x)dx =

∫ +∞

y2

Rbσnl√
π
e−y

2

dy =
Rbσnl

2
(1− erf(y2)) (B10)

f 0
1 = E(f1(x))− ke1E(x) =

kcnσ√
2π

(e−y
2
1 − e−y22) +

Rbσnl

2
(1− erf(y2)) (B11)

f3(x) = Wc =


0 if x ≤ 0

ζεRbnx if x > 0

(B12)

ke3 = E(
df3(x)

dx
) =

∫ +∞

0

df3(x)

dx

1√
2πσ

e
−(x−µ)2

2σ2 dx

=

∫ +∞

y1

ξεRbn√
π

e−y
2

dy =
ξεRbn

2
(1− erf(y1))

(B13)

f 0
3 =

∫ +∞

0

ξεRbnx
1√
2πσ

e
−(x−µ)2

2σ2 dx− ke3E(x)

=
1√
π
∗
∫ +∞

y1

ξεRbn(
√

2σy + µ)e−y
2

dy − ke3µ

=
ξεRbnσ√

2π
e−y

2
1 +

µξεRbn

2
(1− erf(y1))− ke3µ

=
ξεRbnσ√

2π
e−y

2
1

(B14)
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Following the same mathematical manipulation, we have W e
f , T ef , W e

c and T ec as

below:

W e
f =

kcn

2
(erf(y2)− erf(y1))x+

kcnσ√
2π

(e−y
2
1 − e−y22) +

Rσnl

2
(1− erf(y2)) (B15)

T ef = rW e
f

Rb

2
u (B16)

W e
c =

ξεRbn

2
(1− erf(y1))x+

ξεRbnσ√
2π

e−y
2
1 (B17)

T ec =
εR2

bn

4
(1− erf(y1))x+

εR2
bnσ

2
√

2π
e−y

2
1 (B18)
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Appendix C

Yn+1 = A1Yn + A2Hn + A3Wn (C1)

Rn+1 = E(Yn+1Y
T
n+1) = A1RnA

T
1 + A2HnH

T
nAT

2 + A3IA
T
3

+A1E(Yn)HT
nAT

2 + A2HnE(YT
n )AT

1 + A1E(YnW
T
n )AT

3

+A3E(WnY
T
n )AT

1 + A2HnE(WT
n )AT

3 + A3E(Wn)HT
nAT

2

(C2)

Firstly, A2HnE(WT
n )AT

3 and A3E(Wn)HT
nAT

2 are zero because of the zero mean of

Wn. Then:

E(YnW
T
n ) = E([A1Yn−1 + A2Hn−1 + A3Wn−1]WT

n )

= A1E(Yn−1W
T
n ) + A3E(Wn−1Wn)

= A1E(

Qn−1

Q̇n−1


Nn+1

Pn+1


T

) + A3E(

Nn

Pn


Nn+1

Pn+1


T

)

(C3)

Expressing [Qn−1 Q̇n−1]T by using Eq. (C1) continuously until the state vector be-

comes [q0 q̇0]T and taking into account that E(NnN
T
m) = 0 (m 6= n) and E(PnP

T
m) =

0 (m 6= n), Eq. (C3) is changed to the following:

E(YnW
T
n ) = An

1E(

q0

q̇0


Nn+1

Pn+1


T

) (C4)
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By applying the initial condition, which is constant, the value of Eq. (C4) becomes

zero. Following the same process, E(WnY
T
n ) is also zero. Therefore, Eq. (C2) is

simplified to:

Rn+1 = A1RnA
T
1 + A2HnH

T
nAT

2 + A3IA
T
3 + A1E(Yn)HT

nAT
2 + A2HnE(YT

n )AT
1

(C5)
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