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ABSTRACT 

 

With increasing global energy demand, energy-related offshore activities continue to increase. As 

part of this expansion, exploration and operations in harsh ocean environments are becoming more 

common. Harsh environments are characterized by low temperatures, strong winds, high waves, 

and ice. These harsher conditions apply increased structural loads and may increase the probability 

of accidents. Such environmental variables are usually interdependent. Failure to consider these 

dependencies, when modelling harsh environmental loads, leads to less accurate predictions of 

design loads and consequently less accurate predictions of offshore structures’ capacity to 

withstand these loads.  

This work addresses the dependence issue between environmental variables and seeks to improve 

predictions of environmental loads and offshore structural capacity.  The benefits of considering 

dependence structures using copula functions are assessed for bivariate and vine-copulas are 

assessed for multivariate cases of the environmental variables. In each case this is followed by 

applications to assess offshore structure resilience. Two types of dependence structures are studied: 

symmetric and asymmetric. Environmental loads are estimated using copula functions to see how 

significantly the correlation influences the estimation. The copula functions are then applied to 

assess structural capacity in terms of resilience. A bivariate application case uses copula functions 

to model two influencing factors that determine the velocity of an iceberg. Results show that the 

resilience of the offshore structure is mainly dependent on absorptive capacity. Multivariate 

models are then constructed using Vine Copulas, and a total environmental load is estimated. This 

multivariate copula model is applied to assess the resilience of an offshore structure subjected to 

multiple environmental loads.  
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The study concludes that the accuracy of environmental load predictions can be improved using 

copula functions to model environmental factor dependencies. In addition, the concept of structural 

resilience provides a better means of considering the overall resistance of a structure subject to 

harsh and dependent multivariate environmental loads. 

Applications of the proposed methodologies in this thesis help to develop a robust approach to 

deal with uncertainties related to dependence structures between marine environmental variables. 

In addition, this thesis helps to develop safer offshore structures operating in harsh environment 

by estimating the structure’s capacity in term of resilience in the design stage.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background and Motivation 

Oil and gas are still the dominating energy resources, although renewable energy keeps gaining 

more attention (Desilver, 2020). The Canadian Association of Petroleum Producers  (CAPP) 

predicts that by 2040, global oil demand is projected to increase to 106.3 million barrels per day 

(CAPP, 2019). Energy-related offshore activities are also projected to increase by 2040, requiring 

regulators to be mindful of the offshore structures' operational and environmental performance 

(IEA, 2018). The increasing demand leads to energy exploration in harsh environments that are 

challenging conditions for humans, equipment, and infrastructure due mainly to extreme weather 

conditions (Khan et al., 2015). Freezing temperatures, strong winds, high waves, and icebergs are 

external factors commonly encountered in harsh environments (Necci et al., 2019; Shi and Duan, 

2021). These environmental factors can cause severe impacts on offshore structures that may lead 

to major accidents. 

Arctic and sub-arctic regions are considered the harshest environment due to their more extreme 

weather conditions and challenging locations (Fu et al., 2018; Necci et al., 2019). However, these 

areas remain favorable for oil and gas exploration despite these challenging factors due to their 

large recoverable hydrocarbon reserves; the melting of sea ice makes it even more attractive 

(Huntington, 2015; Necci et al., 2019). Even with these potentials, the risks from environmental 

factors remain. Deyab et al. (2018) state that the failure risk for offshore structures is strongly 

dependent on the harshness of the environmental conditions. Accidents caused by harsh 

environments are predicted to be more frequent in the Arctic compared to other areas (Tarantola 

et al., 2019). However, the recorded number of accidents in this area is minimal, making it more 
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challenging to develop data-based statistical models for this area. In addition, only a few studies 

have focused on offshore infrastructure in harsh environments (Necci et al., 2019; Zheng et al., 

2016). 

Studies on harsh marine environments are subject to data uncertainties and data scarcity. Another 

significant challenge is the existence of dependence among the environmental variables. API 2A-

WSD mentions that relationships exist between environmental variables and should be considered 

carefully (American Petroleum Institute, 2002). Zhang et al. (2018) state that environmental 

variables may coincide and thus can cause more severe damage to offshore structures. Failure to 

capture this dependence will likely underpredict the probability of failures of offshore structures 

due to harsh environmental factors. 

Generally, the typical environmental loads acting on offshore structures are wind, wave, and 

current loads (Chandrasekaran, 2015; Det Norske Veritas, 1996). These forces can, and regularly 

do, cause severe damage to offshore structures. Hurricane Katrina, Hurricane Rita, Hurricane 

Gustav, and Hurricane Ike are examples of extreme environmental conditions that destroyed 

offshore facilities (Cruz and Krausmann, 2008; Kaiser and Yu, 2010). 

Modelling the degree of dependence between environmental variables is of crucial importance. In 

the API 2A-WSD standard, it is mentioned that wind speed/wave height, wave height/wave period, 

wave height/current speed, and wind speed/current speed usually show dependent relationships 

(American Petroleum Institute, 2002) that should be considered. 

Several studies have been conducted to model the joint distributions between environmental 

variables in offshore engineering design. The traditional conditional joint probability model is the 

most recommended and widely used (Ernst and Seume, 2012; Zhang et al., 2018). However, these 
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standard conditional joint probability models assume that the environmental variables follow 

specific distribution models. It is assumed that wave height usually follows a Weibull distribution, 

while wave peak period follows a log-normal distribution (Zhang et al., 2018). Ewans and Jonathan 

(2014), Jonathan et al. (2010), and Jones et al. (2016) also utilized traditional conditional joint 

distribution models to identify the relationship between two ocean parameters. Using traditional 

conditional joint distribution models is convenient as they are already well-developed. However, 

one clear disadvantage of using this type of model is that the joint model only depends on one 

bivariate model that requires specific assumptions on the data distribution (Zhang et al., 2018). 

Thus, the marginal distribution of each environmental variable and their dependence structure is 

not captured properly.  

Another method commonly used to construct multivariate models in marine engineering is the 

Nataf transformation. Sagrilo et al. (2011) and Sinsabvarodom et al. (2020) used the Nataf 

transformation to model bivariate ocean parameters and their dependence structure. But this 

transformation relies on normal data transformation, and its implementation can cause problems 

in some cases, for example, wave height data usually follow a Weibull distribution. The normal 

transformation will exclude outliers and it is better to understand why the data is distributed the 

way they are distributed. Thus, a more flexible model is needed to model dependence between 

environmental variables without assumptions about their marginal distributions. 

An alternative method to model multivariate environmental variables is copula functions. A copula 

function is a model that combines two or more univariate marginal distributions and their 

dependence structure to form a multivariate function. The method has been widely used in 

hydrology, and environmental science related problems (Zhang et al., 2018). Guo et al. (2019) and 

Hashemi et al. (2015) used copula models to estimate risks in process industries. Zhang et al. 
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(2019) proposed a reliability assessment based on soil-structure interaction using copula models. 

In addition, Vanem (2016) and Zhang et al. (2018) developed joint statistical models using copula 

for ocean parameters. The applications of copula functions were mainly found in the financial, 

environmental science and hydrological industries. The use of copula functions to perform 

multivariate analysis for marine environmental variables is still limited.  Hence, the motivation of 

this research is to investigate the applications of copula functions to perform multivariate analysis 

for offshore structures subjected to environmental variables. Copula functions are then used to 

estimate environmental loads acting on offshore structures to investigate the significance of 

copulas to the structures’ safety.  

1.2 Thesis and Research Objectives 

The overall premise of this research is that better consideration of dependencies between 

environmental variables will improve predictions of environmental loads on offshore structures 

and that the use of Copula functions provides an improved way of modelling these dependencies 

that captures marginal dependencies and more complex dependency structures evident in 

environmental data, particularly the data from harsh environments. In order to investigate and 

assess this premise, a methodology for incorporating copula functions into offshore environmental 

load assessment is developed in four stages, listed below, and ultimately incorporates the concept 

of structural resilience as a better means of quantifying the resistance of offshore structures to more 

complex environmental load models. 

a. Understand the significance of copula functions to estimate environmental loads for the 

bivariate case 

b. Apply bivariate copula models to quantify the resilience of offshore structures subjected to 

ice load 
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c. Develop copula models for multivariate cases 

d. Apply multivariate copula models to assess the resilience of offshore structures subjected 

to multiple natural hazards. 

Fig. 1.1 outlines the tasks conducted to achieve the research objectives mentioned above. 

 

Fig. 1.1. Research tasks 

Fig. 1.1 shows that two main cases are studied as two tasks to model marine environmental load 

for offshore structures: bivariate and multivariate cases. The first task is to compare symmetric 

and asymmetric copulas to model paired environmental variables to estimate the total 

environmental load in the bivariate case. Asymmetric copulas are constructed using the by-product 

rule with Archimedean copulas as the base copulas. This first task also aims to identify whether 

copula functions are well suited to model environmental variables. The second task in the bivariate 

case is to incorporate copula functions to assess the offshore structure’s capacity in terms of 
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resilience. Bivariate copula functions are used to model joint distribution between the influencing 

factors of the iceberg’s velocity. Reliability-based resilience is estimated based on the calculated 

ice load considering complex dependencies. 

In a multivariate case, after validating the construction of asymmetric copulas and implementing 

copula models in a bivariate case, modelling more than two variables is carried out. First, 

multivariate copula models are constructed using Vine copulas, where bivariate copulas are 

selected to model each pair of all selected environmental variables. After constructing multivariate 

copula models, the next task is to implement them to develop a probabilistic model using vine 

copulas to estimate total environmental loads for a structure subjected to multiple natural hazards. 

1.3 Novelties and Contributions 

This doctoral research’s main novelties and contributions are highlighted as follows: 

a. An advanced probabilistic methodology is proposed for offshore system design 

considering complex dependencies for bivariate cases. The model is necessary to capture 

the dependence structure among ocean parameters and to have the flexibility in handling 

the statistical characteristics of ocean parameters. Copula functions are introduced to model 

the ocean parameters considering symmetric and asymmetric dependence. The 

probabilistic model estimates the total environmental load acting on an offshore structure. 

This contribution will help address the common assumption when modelling 

environmental variables that only consider symmetric dependence and independent cases 

to estimate the total environmental load. This scientific contribution is presented in Chapter 

3 of this thesis. 
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b. A novel framework is introduced to incorporate the probabilistic methodology using copula 

functions into assessing the resilience of offshore structures considering ice load. 

Independence between the influencing environmental parameters to estimate ice load was 

historically always assumed. In addition, the number of studies focused on the analysis of 

the capacities of offshore structures to resist ice load is still limited. This contribution aims 

to deal with this common assumption and investigate an offshore structure’s response to 

an ice load considering all types of dependence structures between wind velocity and wave 

height. This scientific contribution is presented in Chapter 4 of this thesis. 

c. A novel advanced probabilistic methodology is introduced for offshore system design 

considering multiple natural hazards. Vine copulas are introduced to model more than two 

environmental variables considering both symmetric and asymmetric dependence. The 

application of the proposed methodology is demonstrated through its use in a real-life 

scenario. The methodology is helpful in the probabilistic structural analysis of offshore 

structures for design considering all types of dependence structures. This scientific 

contribution is presented in Chapter 5 of this thesis. 

d. A novel framework is introduced to assess the capacities of offshore structures to resist 

multiple environmental loads. The challenge of linearity and symmetric assumptions to 

define the relationship between environmental variables is addressed. The proposed 

methodology serves as a good tool for offshore structure design. The C-vine-based 

probabilistic methodology can reveal that symmetric and asymmetric copula functions can 

define the environmental variable in higher dimensions. This scientific contribution is 

presented in Chapter 6 of this thesis. 
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1.4 Outline of Thesis 

 

Fig. 1.2. Organization of the doctoral thesis 
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This doctoral thesis is written in a research manuscript-based format. Thus, the outcomes of the 

doctoral thesis are presented in four peer-reviewed journal articles. Fig. 1.2 illustrates the 

structures of this doctoral thesis. The introduction, literature review, and conclusions are presented 

in Chapters 1, 2, and 7. While Chapters 3 to 6 are written based on the submitted papers to the 

respective peer-reviewed journals. 

Chapter 2 presents the literature review of relevant studies to address the research gaps in 

modelling the dependence between correlated variables.  

Chapter 3 provided an in-depth study of bivariate copula models to estimate the total 

environmental loads on offshore structures. Symmetric and asymmetric copula models are used 

and compared to other models that include independent and traditional joint probabilistic models. 

This chapter is published in the Journal of Safety in Extreme Environments. 

Chapter 4 proposed a copula-based methodology to assess the resilience of offshore structures 

considering bivariate dependence models between environmental variables. Symmetric and 

asymmetric copula functions are used to model the wind speed and wave height. The total ice load 

is estimated using the proposed methodology, and the capacities of offshore structures in terms of 

resilience are assessed. This chapter is published in the Journal of Reliability Engineering & 

System Safety. 

Chapter 5 provided a further in-depth study to develop a probabilistic model in higher dimensions. 

Vine copulas are studied for both symmetric and asymmetric dependence. Multivariate models 

based on C-vine copulas are proposed to estimate the total environmental loads on offshore 

structures. The proposed methodology is compared to other methodologies to show the advantages 
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of using the copula-based probabilistic model when dealing with correlated variables in higher 

dimensions. This chapter is submitted to Ocean Engineering. 

Chapter 6 proposed a framework for assessing the resilience of offshore structures subjected to 

multiple environmental loads. C-vine copula models proposed in the previous chapter are used to 

model the selected environmental variables. The results are used to assess the capacities of offshore 

structures to resist multiple environmental loads. This chapter is completed and ready for 

submission for publication. 

Chapter 7 includes the summary of this thesis and the conclusions drawn through the technical 

works. Recommendations for future works are also presented in this chapter. 

1.5 Co-authorship Statement 

This doctoral thesis is the sole authorship of the candidate (Adhitya Ryan Ramadhani) under the 

supervisory committees comprising Dr. Faisal Khan, Dr. Salim Ahmed, Dr. Bruce Colbourne, and 

Dr. Mohammed Taleb-Berrouane. The detailed roles and contributions of the author and co-

authors in the current research are presented below 

Adhitya Ryan Ramadhani: Conceptualization and concept ideation, formulation and 

development of methodology, data processing, investigation and analysis, models testing and 

validation, writing the original draft, reviewing and editing the manuscripts in response to co-

authors and journals’ reviewers’ feedback. 

Dr. Faisal Khan: Supervision, research idea formulation, conceptualization, and review of the 

methodologies, formal analysis, reviewing and editing the copula-based models, reviewing and 

editing the manuscripts, project administration, and funding acquisition. 
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Dr. Salim Ahmed: Supervision, conceptualization, and reviewed the methodologies, and model 

validation, reviewed and edit of the manuscript and thesis. 

Dr. Bruce Colbourne: Supervision, conceptualization, and review of the methodologies, models 

validation, review and edit of the manuscript and thesis. 

Dr. Mohammed Taleb-Berrouane: Supervision, conceptualization and review of the 

methodologies, models validation, review and edit of the manuscript and thesis. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Joint Statistical Models 

Offshore structures operating in harsh environments are prone to natural hazards. These natural 

hazards have significant interdependence. A multivariate joint probability model is required to 

model this dependence between correlated variables. There have been several past studies that 

focus on the development of joint statistical models. Stedinger (1983) developed a joint probability 

model using the logarithms of the peak flow values and probability-weighted moment estimators. 

The model was used to identify the dimensionless flood-flow frequency distribution. Hosking and 

Wallis (1988) used Monte Carlo simulation to assess flood frequency records' dependence on 

different sites. Kottegoda and Natale (1994) proposed a joint statistical model based on two-

component log-normal distribution to represent the low natural flows. The maximum likelihood 

method was used to estimate the distribution parameters. However, most past studies assumed the 

joint probability models follow the multinormal distribution or its extensions (Salvadori and De 

Michele, 2010). 

The most used model to study the joint statistical model for correlated variables is based on the 

conditional joint distribution model. Lucas and Guedes Soares (2015) modeled the bivariate 

distributions to describe the sea state conditions. A comparison was made to identify the 

performance between the conditional modelling approach, the Plackett model, and Box-Cox 

transformations. Morton and Bowers (1996) developed a multivariate point process model in 

extreme value analysis to assess the semi-submersible structure’s response to the wind and waves. 

Muraleedharan et al. (2015) modeled the average conditional exceedance of wave peak periods 

using generalized Pareto and three-parameter Weibull models. Another popular joint statistical 
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model is the Nataf transformation. Sagrilo et al. (2011) and Sinsabvarodom et al. (2020) used the 

Nataf transformation to model bivariate ocean parameters and their dependence structure. Silva-

González et al. (2013) used the Nataf transformation to model the environmental contours and 

examine the environmental variables' correlation coefficients. Xiao (2014) proposed a 

methodology to calculate the equivalent correlation coefficients for two correlated variables using 

the Nataf transformation. In addition, Lin et al. (2020) proposed a new approach for an efficient 

and accurate Nataf transformation. Although Nataf transformation and other traditional conditional 

joint probability models have been extensively used for multivariate analysis, these approaches 

only apply to a certain extent. A more flexible model is necessary to capture the dependence 

between environmental variables without requiring any assumptions about their marginal 

distributions.  

A copula function is a powerful tool for multivariate analysis. Copula functions do not require the 

identification of univariate marginal distribution. The application of copula functions to model 

multivariate variables has been widely investigated. In the financial industry, Zhi et al. (2022) used 

copula functions to capture autocorrelations and dependencies for multiple collateral prices in 

inventory financing. The copula parameterization process was able to help identify the least risky 

and most predictable collateral unit. Fang and Madsen (2013) used the Gaussian copula to model 

dependencies on real-life insurance data and a finance data set. Copula functions were also used 

to capture the correlation between stock and cryptocurrency markets (Boako et al., 2019; Tiwari 

et al., 2019). The copula model could estimate the time-varying correlations between 

cryptocurrency and S&P index markets. In the process industry, Guo et al. (2019) and Li et al. 

(2022) proposed a Copula-Bayesian approach to risk assessment. The proposed model was able to 

be effective in estimating more reliable accident probabilities. In addition, Hashemi et al. (2015) 
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used the Archimedean copulas to work on multivariate process risk assessment and concluded that 

combining copula functions increased risk estimation accuracy. Copula functions have also been 

extensively used to model the multivariate analysis of hydrological variables such as rainfalls and 

flood events (Durante and Salvadori, 2009; Jiang et al., 2019; Salleh et al., 2016; Salvadori and 

De Michele, 2010). In these studies, copula functions captured the dependence structure among 

the investigated variables to provide better accuracy in estimating hydrological risk. De Michele 

et al. (2007) and Zhang et al. (2018) used Copula functions to model environmental variables and 

captured their dependency structures in the ocean and coastal engineering. However, most of these 

studies only considered a typical copula family to model the correlated variables. This copula 

family also assumes linearity when capturing the dependence structure. Marine environmental 

variables in ocean environments usually show nonlinear and asymmetric dependence structures. 

The asymmetric nature of dependence has not been duly considered in using copula functions to 

model marine environmental applications (Zhang et al., 2018). The inability to capture this type 

of dependence will result in a less accurate assessment with subsequent effects on the design of 

the offshore structures. Thus, asymmetric copulas are introduced in this research and will be used 

in all case studies in the following chapters.  In addition, these past studies only focused on a 

bivariate case of environmental variables. An extreme marine weather event can involve more than 

two variables with interdependent relationships. Failure to capture this dependency may lead to 

unexpected load events. 

Due to their flexibility in capturing all types of dependence structures, copula functions are 

beneficial in modelling marine environmental variables (De Michele et al., 2007; Dong et al., 

2017; Ramadhani et al., 2021; Salleh et al., 2016; Zhang et al., 2018, 2015). Vine copulas are 

introduced to address the issue of modelling environmental variables in higher dimensions. Vine 
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copulas can provide much more flexibility based on a graphical model used to construct the 

multivariate joint statistical models from pair copulas (Bedford et al., 2016). Wei et al. (2021) 

proposed vine copula models to construct a trivariate joint probability model of typhoon-induced 

wind, waves, and the time lag between them. Heredia-Zavoni & Montes-Iturrizaga (2019) 

constructed directional environment contours using vine copulas. Amini et al. (2021) and Tang et 

al. (2020) applied vine copulas to estimate the reliability of physical structures. Bai et al. (2021) 

and Heredia-Zavoni & Montes-Iturrizaga (2019) proposed a joint model based on vine copulas to 

construct three-dimensional environmental contours. Dong et al. (2022) and Xu et al. (2020) 

investigated the multivariate analysis of loads on wind turbines using vine copulas. Nagler et al. 

(2022) investigated vine copulas to determine their ability to capture different types of dependence. 

It was concluded that copulas could capture both cross-sectional and serial dependency. Zhao et 

al. (2021) used a Gaussian copula model to estimate the characteristics of extreme response for a 

mooring system in a complex ocean environment. Vine copulas were also valuable in assessing 

the reliability of geotechnical structures. Vine copulas were used to model the dependence 

structure of multiple soil parameters (Lü et al., 2020; Tang et al., 2020; Xu and Zhou, 2018; Zhang 

et al., 2019). Copula functions could provide better results for the reliability-based geotechnical 

structure design (Lü et al., 2020). Vine copulas are also able to offer more flexible ways for 

geotechnical practitioners to model the cross-correlation among geotechnical random fields (Tang 

et al., 2020). From these studies, Vine copulas are shown to be able to fully define complex 

dependency structures between many observed variables. Vine copulas are also able to model 

dependency in higher dimensions, which traditional copulas cannot do. However, the multivariate 

copula models used in the vine copulas in these studies are mostly based on well-established copula 

functions that assume symmetric dependence. Hence, it is necessary to consider both symmetric 
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and asymmetric copulas to construct the multivariate joint distribution using C-Vine copulas when 

modelling marine environmental variables. 

2.2 Resilience Assessment Framework 

The concept of resilience was introduced. Resilience is the capacity of a system to survive the 

occurrence of unfavorable events and the capacity to recover the system's functionality (Genest et 

al., 2009; Hashemi et al., 2015; Vanem, 2016; Zarei et al., 2021). Offshore constructions are prone 

to various dangers and high degrees of functional unpredictability throughout their operational 

lifetimes since they are complex systems operating in challenging settings (Bucelli et al., 2018). 

Offshore structures must maintain high levels of structural reliability to withstand any disruption-

causing dangers to keep operating. The ability of offshore safety to bounce back from extreme 

natural and human-made catastrophes is crucial for preventing disastrous results. The assessment 

of a structure's resilience has been the subject of various previous studies.  

The process industry assessed pipeline systems' resilience against microbiologically-influenced 

corrosion using Petri-nets (Kamil et al., 2021; Taleb-Berrouane et al., 2020; Taleb Berrouane, 

2020).  A nuclear power plant resilience model was implemented in the power and energy field. A 

resilience framework in the nuclear industry was also researched to examine micro-events that 

occur during power plant operations. A resilience index was created for wind power plants as a 

diagnostic tool to evaluate potential risks (Afgan and Cvetinovic, 2010). To improve decision-

making regarding asset integrity management, a novel resilience analysis of wind turbines was 

also presented (Qin and Faber, 2019). To determine priority in the ranking of choice alternatives, 

the resilience performance of a wind energy park was analyzed. Another probabilistic approach 

for predicting the robustness of offshore wind farms was created (Liu et al., 2022). The model 

illustrated the importance of current uncertainty in asset integrity management. The concept of 
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resilience is also common in the transportation industry. A minimum residual optimization model 

was used to explore the robustness of maritime transport systems (Dui et al., 2021). The 

Infrastructure Resilience-oriented Modelling Language (IRML), which was developed, served as 

the foundation for a framework to evaluate marine LNG offloading systems (Hu et al., 2021). A 

hybrid knowledge-based and data-driven strategy were presented to quantify railway system 

resilience (Yin et al., 2022). The model could show the quantitative relationship between the 

robustness of the railway system and various sorts of incidents. However, studies on the resilience 

of offshore structures to environmental loads, especially ice loads, have been minimal. Despite the 

vast body of application of resilience quantification in various fields, studies on the resilience of 

structures subjected to correlated multivariate environmental variables have not been reported in 

the open literature. Most assessments of resilience to natural disasters concentrate on the 

performance of bridges, homes, or commercial buildings under wind or seismic loads (N. Xu et 

al., 2020). 

2.3 Research gaps 

Based on literature reviews, some critical issues in modelling environmental loads for offshore 

platforms in harsh environments are as follows: 

a. Assumed marginal distributions to fit conditional joint distributions between 

environmental variables. 

b. Asymmetrical dependence is neglected when dealing with environmental variables 

c. Multivariate analyses (more than two variables) for marine environmental variables are 

still limited. 

d. An Independent case is usually assumed when estimating environmental loads on offshore 

structures. 
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e. The resilience of offshore structures operating in a harsh environment subjected to 

correlated multivariate environmental variables, especially ice loads, has not been 

extensively investigated. 
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CHAPTER 3  

ENVIRONMENTAL LOAD ESTIMATION FOR OFFSHORE 

STRUCTURES CONSIDERING PARAMETRIC DEPENDENCIES 
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Abstract 

Multivariate models to estimate environmental load on an offshore structure are an essential 

consideration. A reliable approach is necessary to capture the dependency among parameters and 

to be flexible in handling the statistical characteristics of ocean parameters. Previous studies on 

marine engineering usually assumed symmetric dependence when considering multivariate 

models. In this chapter, both symmetric and asymmetric copula functions are constructed for 

modelling ocean parameters and the estimation of total environmental load. Results are compared 

with the traditional joint probability approach to demonstrate the advantage of using copula 

functions. The results reveal that environmental loads strongly depend on the significance of 

dependence, which is defined as the copula function's correlation. The probability of failure, 

estimated using copula functions, is higher than the traditional joint probability estimate. In 

addition to this, Root-mean-square errors (RMSE) and the mean absolute errors using copula 

functions are lower than those of the traditional joint probability modelling. Thus, the use of copula 

functions provides a more conservative approach to safety. Therefore, the use of copula functions 

to capture both dependence types, while estimating ocean environmental loads provide a better 

understanding of the environmental load and its contribution to the failure probability. 

Keywords: environmental load, copula functions, asymmetric copula functions 

 

3.1 Introduction 

Offshore structures are vulnerable to the harsh marine environments that they operate in. The 

design of offshore structures is dominated by environmental loads that can be categorized as wind, 

wave, current, marine ice, and temperature loads especially for steel offshore platforms (Wilson, 

2002). However, environmental loads that are usually considered during structural analysis consist 
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of wind loads, wave loads and current loads during severe storms if these conditions are identified 

as having significant impact on the structure (Sigurdsson, 1996). The impact of natural hazards, 

such as hurricanes, on offshore structures can be enormous with 44 offshore oil and gas facilities 

destroyed and 21 others damaged during Katrina, and 69 destroyed installations and 32 severely 

damaged installations during Rita (Cruz and Krausmann, 2008). Hurricanes Gustav and Ike 

destroyed 60 platforms and damaged 31 in August and September 2008 (Kaiser and Yu, 2010). 

Thus, it is important to understand and assess the impact of marine environment variables on 

offshore structures. 

The marine environment is a complex system subjected to various sources of data uncertainties. 

One of the main sources of uncertainties is the dependence among variables. From a practical 

perspective, due to their dependence, a combination of load variables can cause more severe 

damage to offshore structures than that predicted by applying the loads individually (Zhang et al., 

2018). This dependence structure needs to be taken into account properly in the analysis of 

environmental loads. The commonly used assumption of linear dependence may not be able to 

adequately capture the dependence structure between ocean parameters as the parameters, by their 

nature, usually show a nonlinear dependence (Fazeres-Ferradosa et al., 2018). Also most of the 

previous studies assumed symmetric dependence for their modelling; this assumption may lead to 

more uncertainties when dealing with ocean parameters (Zhang et al., 2018). The main idea behind 

this research is to minimize uncertainty by capturing all possible dependence types between ocean 

variables. 

There have been numerous published studies that deal with multivariate analysis. Performing 

multivariate analysis for marine environments requires consideration of the relationships between 

variables. API 2A-WSD specifies that environment data might have a specific type of relationship 
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that should be taken into account when using multivariate analysis (American Petroleum Institute, 

2002). In this standard, the common marine environmental variables that have relationships are 

wind speed/wave height, wave height/wave period, wave height/current speed, and wind 

speed/current speed. These primary dependencies should be considered when performing 

multivariate analysis. The most common method used for multivariate analysis is the joint 

probability distribution. However, Fazeres-Ferradosa et al. (2018) concluded that the traditional 

joint probability distribution is not suitable for modelling the complex nature of a marine 

environment. de Waal and van Gelder (2005) used a probabilistic approach in multivariate analysis 

of the environmental loads on an offshore structure. They concluded that dependence between 

variables makes the analysis more complicated and a robust multivariate analysis method that can 

model all types of dependence is needed. One method that is quite popular to construct multivariate 

models in offshore engineering problems is the Nataf transformation. Sinsabvarodom et al. (2020) 

used the Nataf transformation to study uncertainties in modelling ice loads during ice - structure 

interaction. Sagrilo et al. (2011) also implemented this transformation method to construct a Nataf 

model that considered wave, wind and current parameters. However, the Nataf transformation 

depends on whether the transformed standard normal variables are close to multi-normal, so the 

implementation was criticized because the transformation procedure might be unnecessary for 

some cases (Bang Huseby et al., 2013).  

An alternate method for conditional joint probability analysis is the use of copula models that are 

suited for multivariate analysis. Zhang et al. (2018) modeled multivariate ocean data using copula 

functions to capture the dependence of the data and model conditional joint distribution between 

ocean variables. De Michele et al. (2007) used copula functions in a multivariate analysis of sea 

storms variable. Hashemi et al. (2015) utilized copulas from the Archimedean family to work on 
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multivariate process risk assessment and concluded that the integration of copula functions for 

fault detection increased the accuracy of the risk estimation. Guo et al. (2019) incorporated copula 

functions into a Bayesian network in order to understand the influence of this integration on the 

calculation of probability of occurrence of an event for a process system. Taleb-Berrouane et al. 

(2020) proposed a combination of Petri-nets and Bayesian networks to present dependencies 

between influencing factors. In another work, Yang et al. (2020) also analyzed the dependency by 

integrating a conditional probability approach – the Bayesian network with a time-dependent 

scenario evolution approach (Abaei et al., 2022; Deyab et al., 2018; Kabir et al., 2019; Taleb-

berrouane et al., 2018), Stochastic Petri-nets (Kamil et al., 2019; Taleb-Berrouane et al., 2019; 

Taleb-Berrouane and Khan, 2019; Talebberrouane et al., 2016). Mahfoud and Massmann (2012) 

used copula functions in stock market analysis to model a relationship between two different stock 

indices; the German DAX-30 and French CAC-40. Thus, copula functions are powerful tools that 

can be used in multivariate analysis, especially in the ocean engineering field. 

A Copula function in a multivariate analysis is a substitute for a traditional joint distribution. In a 

traditional joint distribution, marginal distributions should be identified and treated as belonging 

to the same family. In addition, a mathematical function for joint distribution becomes complicated 

for more than two variables. A Copula function does not require the identification of a univariate 

marginal distribution. The original data can be transformed into a copula domain that is uniformly 

distributed (Zhang et al., 2018). Hence, copula functions will be used in this work to perform the 

multivariate analysis for the environmental loads on an offshore structure. 

The asymmetric nature of dependence has not been duly considered in the use of copula functions 

to model marine environmental applications. Zhang et al. (2019) constructed asymmetric copulas 

to capture the physical phenomena of soil parameters in a soil-structure loading analysis. They 
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concluded that ignorance of dependence structure may result in different estimation of structure 

response and lower quality of structural reliability analysis. Vanem (2016) mentions that much 

attention has been devoted to trying to capture asymmetric dependence, especially for ocean data. 

He also identifies several methods to construct asymmetric copulas. Wei and Kim (2018) 

constructed a copula-based regression to capture asymmetric dependence. Grimaldi and Serinaldi 

(2006) compared symmetric and asymmetric copulas and concluded that asymmetric copulas are 

more flexible. However, the effect of uncertainties in asymmetric dependence for ocean 

parameters has not been vastly investigated. Copulas from the Archimedean family are often used 

in the literature and in software packages due to their ease of use in capturing dependence between 

variables. Inability to capture this type of dependence will result in less accurate assessment with 

subsequent effects on the design and resilience of the offshore structures. 

This work aims to fill the gaps in performing multivariate statistical modelling for ocean 

parameters considering all types of dependence. This work presents a copula-based environmental 

load estimation for an offshore structure. A comparative study between symmetric and asymmetric 

copulas to represent all possible dependencies between marine environment variables is also 

carried out. Several copula functions are compared to identify the best-fitted function in bivariate 

analysis. A comparison between the estimated probability of occurrence using traditional joint 

probability distribution and that derived from copulas is also presented to identify the benefits of 

the copula functions. Finally, various correlation coefficients from different copula functions are 

considered to identify the significance of these on the estimation of environment loads. 

The remainder of this chapter is organized as follows. Section 3.2 presents basic theories in copula 

functions. The proposed methodology is presented in section 3.3 and the application of the 

proposed method in load estimation is presented in section 3.4. Data analysis for the synthetic data 
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used to illustrate symmetric and asymmetric copulas for a bivariate case is discussed in section 

3.5. To understand the significant of copula application, a case study is described and discussed in 

section 3.6. Section 3.7 presents the two methods of estimation of probability of occurrence, to 

provide the comparison between copula functions and the traditional approach. The concluding 

remarks of this chapter are presented in section 3.8. 

 

3.2 Copula Theories 

A Copula is a function that joins or “couples” univariate marginal distributions to construct 

multivariate distribution (Nelsen, 2006). By using copulas, it is possible to construct a multivariate 

distribution from different univariate marginal distributions. This makes copula functions 

advantageous when dealing with conditional joint probability distributions. The definition of 

copula was first introduced in Sklar’s Theorem. 

Let H be an n-dimensional distribution function with marginal distribution 𝐹1, 𝐹2, . . . , 𝐹𝑛, then there 

exists a copula C such that. 

 

𝐻(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹(𝑥2). . . , 𝐹(𝑥𝑛)) (3.1) 

The joint conditional probability distribution by taking into account the copula in the model can 

be estimated using 

𝑓𝑋2∨𝑥1 =
𝑓𝑋1𝑋2(𝑥1, 𝑥2)

𝑓𝑋1(𝑥1)
= 𝐶𝑋1𝑋2 (𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2)) . 𝑓𝑋2(𝑥2) (3.2) 

Based on Sklar’s Theorem, it can be seen that a copula model does not consider the characteristic 

of univariate marginal distribution in the multivariate model as the copula model is a multivariate 
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model for variables after being transformed into the cumulative distribution function with a 

uniform distribution function (Zhang et al., 2018). This is because the random variables 𝑈𝑖 = 𝐹𝑖(𝑋𝑖) 

are uniformly distribution on [0,1]. Thus, the domain and range for an n-dimensional copula 

function can be seen as:  

 𝐶: [0,1]𝑛 → [0,1]             (3.3) 

In another form, a copula is a joint distribution function for an n-dimensional probability defined 

as 

𝐶(𝑢1, 𝑢2, . . . , 𝑢𝑛) = 𝑃(𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2, . . . , 𝑈𝑛 ≤ 𝑢𝑛) (3.4) 

Due to this flexibility, this copula function is useful when modelling ocean parameters. There are 

many copula families that can be implemented on a single problem and one of these families, that 

has been widely used is the Archimedean families. Clayton, Gumbel and Frank copulas from the 

Archimedean family are used as the base copulas in this research. This Archimedean copula family 

is frequently applied as it is relatively easy to construct the copula functions compared to other 

copula families. An n-dimensional Archimedean copula can be constructed using a generating 

function 𝜙(. )(Nelsen, 2006) 

𝐶𝑎𝑟𝑐ℎ𝑖𝑚𝑒𝑑𝑒𝑎𝑛(𝑢1, 𝑢2, . . . , 𝑢𝑛; 𝜃) = 𝜙
[−1](𝜙(𝑢1; 𝜃) + 𝜙(𝑢2; 𝜃)+. . . +𝜙(𝑢𝑛; 𝜃); 𝜃) (3.5) 

where 𝜙: [0,1] × 𝛩 → is a monotone function with 𝜙(1) = 0 and 𝜃 is a parameter with the domain 

𝛩. 

Three common families of Archimedean copula along with their parameters for bivariate 

distributions are presented in Table 3.1. 
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Table 3.1 Common Archimedean copulas (Zhang et al., 2018) 

Copula 𝐶𝛾(𝑢1, 𝑢2) Generating function 𝜙𝛾(𝑡) 𝛾 ∈ 

Clayton (𝑢1
−𝛾 + 𝑢2

−𝛾 − 1)
−1
𝛾  

𝛾

𝛾 + 2
 (1.∞) 

Gumbel 𝑒𝑥𝑝 {−[(−𝑙𝑛𝑢1)
𝛾 + (−𝑙𝑛𝑢2)𝛾]

1
𝛾} 1 −

1

𝛾
 [1,∞) 

Frank 
−1

𝛾
𝑙𝑛 (1 +

(𝑒−𝑢1𝛾 − 1)(𝑒−𝑢2𝛾 − 1)

𝑒−𝛾 − 1
) 

1 −
4

𝛾
(1 − 𝐷1(𝛾)) 

Where
 

𝐷1(𝛾) =
1

𝛾
∫

𝑡𝑑𝑡

𝑒𝑥𝑝(𝑡) − 1

∞

0

 

(−∞,∞) 

 

 

3.3 Proposed Methodology for Dynamic Environmental Load Estimation 

The proposed methodology to estimate environmental load is schematically illustrated in Fig. 3.1. 

Dependency and asymmetry measurements are carried out after simulating the data sets. Different 

copula functions are then fitted to these data and used to estimate environmental loads. 

3.3.1 Simulate the ocean parameters data 

Three different ocean parameter data sets containing wind speed (m/s), wave height (m) and 

current speed (cm/s) are analyzed in order to identify whether any dependence occurs in one of the 

possible combinations of the three ocean parameters. Due to the limitation to obtain these data sets 

in any available resources, these data are simulated. 

3.3.2 Transform observed data into pseudo-observations 

One of the advantages of using copula is that it does not depend on the univariate marginal 

distribution of the variables, thus it is recommended to apply pseudo-observations to the observed 

data (Leontaris et al., 2016). These observed data (𝑋𝑖); where i refers to random variables, can be 
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transformed into pseudo-observations using the ranks (𝑅𝑖). Genest, et al defined pseudo-

observations as (Genest et al., 2009) 

𝑈𝑖 =
𝑅𝑖

𝑛 + 1
=
𝑛𝐹𝑖(𝑋𝑖)

𝑛 + 1
 

(3.6) 

where n is the number of observations and iF̂
 is the empirical cumulative function defined as 

𝐹𝑖(𝑡) =
1

𝑛
∑ 1(𝑋𝑖 ≤ 𝑡)
𝑛
𝑖=1 . 
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Fig. 3.1. Flowchart for the methodology 
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3.3.3 Dependence measurements 

Dependence among variables is characterized by their correlation (Zhang et al., 2019). 

Correlation analysis is a method to evaluate the strength of the relationship between two 

random variables (Franzese and Iuliano, 2019). This analysis is carried out to identify if there 

is a connection between the two variables. If a correlation is found, a systematic change in one 

variable will influence a systematic change in the other variable. A positive correlation means 

if one variable increases, the other variable will also increase. Whereas a negative correlation 

means that if one variable increases, the other variable will decrease. Another type of 

correlation is the partial correlation. It measures the relationship between two variables by 

removing one or more related variables. Partial correlation is best used in multiple regression 

cases. In addition to this, partial correlation is used for data having an approximately normal 

distribution and a linear relationship between variables. In this chapter, attention is given to the 

measure of the relationship between two variables without controlling one or more of the other 

variables. As nonlinear relationships and marginal distributions, other than the normal 

distribution, are also considered. Bivariate correlation is then used to measure the relationship 

between two variables. 

To identify the existence of dependence between ocean parameters, a concept of capturing and 

interpreting dependence is discussed in this section. There are two methods of measuring 

dependence between variables. The most common method is using Pearson’s correlation, 

which is usually denoted by 𝜌. Suppose X and Y are two random variables and their linear 

correlation coefficient can be denoted as 

𝜌(𝑋, 𝑌) =
𝐶𝑜𝑉(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)√𝑉𝑎𝑟(𝑌)
 

(3.7) 

where CoV is covariance and Var is variance (Zhang et al., 2018).  
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However, this Pearson’s correlation has a distinctive weakness making it unsuitable for 

modelling ocean parameters. Pearson’s correlation can only represent linear dependencies 

whereas ocean parameters show nonlinear dependencies (Zhang et al., 2018). Thus, a more 

robust method to measure dependence based on rank correlation is introduced here . 

There are two measures based on rank correlation; Kendall’s 𝜏 and Spearman’s rho (𝜌𝑠). 

a) Spearman’s rho (𝜌𝑠) 

Spearman’s rho is a rank correlation that is proportional to the difference between the 

probabilities of concordance and dis-concordance of two vectors (Hashemi et al., 2015). If X 

and Y are continuous random variables whose copula is C then the Spearman’s rho for X and 

Y is given as follows 

 
(3.8) 

b) Kendall’s tau (𝜏) 

Kedall’s tau is the most widely used method to calculate dependence between random variables 

(Hashemi et al., 2015). Kendall’s tau is defined by a concordance function between two 

continuous random variables with different joint distributions but common marginal 

distributions. 

Nelsen stated that, for a bivariate random vector with copula C, Kendall’s tau can be calculated 

by identifying the difference between the probabilities of concordance and dis-concordance of 

two independent observations (Nelsen, 2006). 

 
(3.9) 

 

  3),(12 −= vuuvdCs

 1),(),(4 −= vudCvuC
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Zhang et al. (2018) mentioned that Kendall’s 𝜏 and Spearman’s 𝜌𝑠are able to minimize the 

influence of unequal variances, outliers and nonlinearity that cannot be solved using linear 

Person’s correlation. 

Another issue when applying copula to model environmental loads is that some copula 

families, especially Archimedean copulas, are only valid for symmetric data, while most ocean 

parameters show non-symmetric dependence. Thus, a way to identify whether a pair of ocean 

parameters is symmetric is also developed in this research. 

3.3.4 Test for asymmetry 

To understand how a copula is categorized as asymmetry, it is important to introduce the basic 

definition of symmetric copula. Genest and Nešlehová (2013) stated that a copula is said to be 

symmetrical when it satisfies these following properties  

𝐶(𝑢1 , 𝑢2) = 𝐶(𝑢2 , 𝑢1) 

When the above condition is not satisfied for some 𝑢1, 𝑢2 ∈ [0,1], a copula C is said to be 

asymmetric. This asymmetric dependence can occur in the present case as a result of causality 

relationships between selected ocean parameters. 

In addition to this basic definition of symmetric dependence, Durante and Salvadori (2009) 

expressed a more general term to quantify the symmetry of a copula by the following equation  

𝜂𝑝(𝐶) = 2{∫ ∫ |𝐶(𝑢1, 𝑢2) − 𝐶(𝑢2, 𝑢1)|
𝑝𝑑𝑢1𝑑𝑢2

1

0

1

0

}

1
𝑝

 (3.10) 

 

Where p can be set to any value greater than or equal to 1. Eq. 3.10 can also be interpreted as 

this measure of asymmetry is the distance between copula C and its transposed copula 𝐶𝑇. 



39 
 

Zhang et al. (2019) also show a more general form to measure asymmetry for bivariate copulas 

by setting the value of p approaching infinity as seen in  

 
(3.11) 

 

3.3.5 Construction of asymmetric copulas 

There are several ways to construct asymmetric copulas and many involve intense 

mathematical modelling. Zhang, et al., on the other hand, proposed three methods for 

constructing asymmetric copulas that are practical and popular (Zhang et al., 2018). These 

methods are: 1) asymmetric copulas constructed by products, 2) asymmetric copulas 

constructed by linear convex combinations, and 3) skewed copula. These methods provide easy 

copula construction by utilizing base copulas such as the Archimedean copulas (Zhang et al., 

2018). Zhang et al. (2019) state that the construction of asymmetric copula by product is the 

best tool to represent ocean parameters and more practical for implementation in a complex 

engineering system. 

The construction of asymmetric copula by product was generally introduced by Liebscher 

through the following theorem (Liebscher, 2008) 

Assume that 𝐶1 , . . . , 𝐶𝑘 : are copulas. Let 𝑔𝑗𝑖 : [0,1] → [0,1] for 𝑗 = 1, . . . , 𝑘, 𝑖 = 1, . . . , 𝑑 be functions 

with the property that each of them is strictly increasing or identically equal to 1. 

Then the general formula to construct asymmetric copula by product can be defined by  

�̄�(𝑢1, . . . , 𝑢𝑑) =∏𝐶𝑗 (𝑔𝑗1(𝑢1), . . . , 𝑔𝑗𝑑(𝑢𝑑))       𝑓𝑜𝑟𝑢𝑖 ∈ [0,1]

𝑘

𝑗=1

 (3.12) 

To satisfy the assumptions of the theorem, the function 𝑔𝑗𝑖should have these following 

properties 
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a) 𝑔𝑗𝑖(1) = 1 and 𝑔𝑗𝑖(0) = 0, 

b) 𝑔𝑗𝑖 is continuous on (0,1], 

c) If there are at least two functions 𝑔𝑗1𝑖 , 𝑔𝑗2𝑖with 1 ≤ 𝑗1, 𝑗2 ≤ 𝑘 which are not identically equal 

to 1, then 𝑔𝑗𝑖(𝑥) > 𝑥 holds for 𝑥 ∈ (0,1), 𝑗 = 1, . . . , 𝑘 

The introduction of function𝑔𝑗𝑖plays a significant role in constructing symmetric copulas into 

asymmetric copulas. Liebscher also introduced several functions 𝑔𝑗𝑖  that are usually applied to 

construct an asymmetric copula 

(I) 𝑔𝑗𝑖(𝑣) = 𝑣
𝜃𝑗𝑖for j = 1,…,k, where 𝜃𝑗𝑖 ∈ [0,1] and ∑ 𝜃𝑗𝑖 = 1

𝑘
𝑗=1  

(II) 𝑔𝑗𝑖(𝑣) = 𝑣
𝜃𝑗𝑖𝑒(𝑣−1)𝛼𝑗𝑖for j = 1,…,k, where ∑ 𝜃𝑗𝑖 = 1

𝑘
𝑗=1 , ∑ 𝛼𝑗𝑖 = 0

𝑘
𝑗=1  and 𝜃𝑗𝑖 ∈ (0,1), 𝛼𝑗𝑖 ∈

(−∞, 1), 𝜃𝑗𝑖 ≥ −𝛼𝑗𝑖 

(III) 𝑔1𝑖(𝑣) = 𝑒𝑥𝑝(𝜃𝑖 −√|𝑙𝑛𝑣| + 𝜃𝑖
2) , 𝑔2𝑖(𝑣) = 𝑣𝑒𝑥𝑝 (−𝜃𝑖 + √|𝑙𝑛𝑣| + 𝜃𝑖

2)  for 𝜃𝑖 ≥
1

2
 

Zhang et al. (2019) also applied type-I function to construct asymmetric copula and obtained 

better results compared to other functions. The use of type I function in Eq. 3.12 is also known 

as constructing asymmetric copula by extra-parameterization and also satisfies a form of 

Khoudraji device when d is selected to be equal to 2 (Durante and Salvadori, 2009; Vanem, 

2016). Type-I function are preferred by some researchers as the use of other functions might 

result in over-parameterized copula, as there are several new parameters introduced in the 

function in order to construct the asymmetry. Thus, in this work, asymmetric copula are 

constructed by product or extra-parameterization using Archimedean copulas as base copulas 

and type-1 function for the asymmetric dependence modelling. A simple illustration of 

constructing asymmetric copula using this technique can be seen in the following example. 

Example: Constructing asymmetric copulas by product using a type-I function 

Suppose 𝑔𝑗1 = 𝑢
𝜃𝑗𝑖 ,  and  𝑔𝑗2 = 𝑢

1−𝜃𝑗𝑖 , C1= Clayton and C2 = Clayton. 

Applying equation 13 and the type-I function 
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�̄�(𝑢1 , 𝑢2) = ∏ 𝐶𝑗(𝑢
𝜃𝑗𝑖 , 𝑢1−𝜃𝑗𝑖)𝑘

𝑗=1 , with Cj follows Clayton family: 

�̄�(𝑢1 , 𝑢2) = (1 +∑(𝑢𝑖
𝜃1𝑖)

−𝛾1
− 1

𝑑

𝑖=1

)

−1
𝛾1

(1 +∑(𝑢𝑖
1−𝜃2𝑖)

−𝛾2
− 1

𝑑

𝑖=1

)

−1
𝛾2

 

For a bivariate problem, we set d=2, thus a constructed asymmetric copula based on two 

Clayton copula families and substituting a type-I function becomes  

�̄�(𝑢1, 𝑢2) = (𝑢1
−𝛾1𝜃11 + 𝑢2

−𝛾1𝜃12 − 1)
−1
𝛾1 (𝑢1

−𝛾2(1−𝜃21) + 𝑢2
−𝛾2(1−𝜃22) − 1)

−1
𝛾2  

3.3.6 Copula parameter estimation 

The next step after applying the symmetric or asymmetric copula is to estimate the copula 

parameters. (Genest and MacKay, 1986) developed a method to estimate copula parameters by 

considering the relationship between a copula parameter and its Kendall’s tau. Hashemi et al. 

(2015) estimated copula parameters using the relationships to Kendall’s tau for the 

Archimedean copula families as follows in Table 3.2. 

Table 3.2. Archimedean copulas and their Kendall’s tau expressions. 

Family 𝜏 

Clayton 𝛾

𝛾 + 2
 

Gumbel 1 −
1

𝛾
 

Frank 1 −
4

𝛾
+ 4𝐷1 (𝛾) 𝛾⁄  

 

Linearized non-linear inversion can be implemented to estimate the parameters of copulas that 

have more than one parameter in their distribution function.  

A flowchart of this method is presented in Fig. 3.2. 
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Fig. 3.2. Flowchart of linearized non-linear inversion method. 

Step-1. Perform an iteration to develop an initial model (m0) the relationship between the data 

and the model parameter can be defined as 𝑑𝑐𝑎𝑙 = 𝑔(𝑚).  

Step-2. Identify the relation between the observed data (dobs) and dcal .  

Step-3: Identify a Jacobian matrix. A Jacobian matrix (Jk), also known as a sensitivity matrix, 

is introduced when there is still significant difference between the observed and calculated 

data.  

Step-4: Solve the inversion solution by applying Eq. 3.13 into any mathematical model of a 

problem. 

 
(3.13) 

Copula parameters, including for asymmetric copulas, can then be estimated using Eq. 3.13. 
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3.4 Application of the Methodology: Load Estimation 

Synthetic data from the constructed joint probability distribution and copula function are 

obtained for each ocean parameter to calculate the total load from the combined ocean 

parameters. Synthesized data from a constructed copula function is generated using a 

conditional distribution function. This conditional copula function is defined by using a partial 

derivative as shown in Eq. 3.14. Then, the synthetic data can be obtained by taking the inverse 

function of the conditional copula function. 

𝐹(𝑈2 ∨ 𝑈1: 𝛾) = 𝑃(𝑈2 ≤ 𝑢2 ∨ 𝑈1 ≤ 𝑢1) =
𝜕𝐶(𝑢1, 𝑢2; 𝛾)

𝜕(𝑢1)
 (3.14) 

3.4.1 Environmental load calculation 

Offshore marine structures are designed uniquely in order to withstand design loads arising 

from a specific location and environment. Loads that usually affect offshore marine structures 

are wind, wave, current, earthquake, and sometimes ice depending on the characteristic of the 

environment where the structures are to be located. In this research, the calculation of loads is 

limited to three environmental loads that most commonly affect marine structures; wind loads, 

wave loads and current loads (Nizamani et al., 2017). 

Wind loads 

Wind load on a structure arises from steady and fluctuating wind speed. The wind force can be 

calculated using several standards available for the design of offshore structures. In this 

research, the wind force, is calculated using a standard by DNV (DNV, 2010). 

The wind force on a structural member or surface acting normal to the member axis can be 

calculated using the following equation 

 
(3.15) 

Where 

sinCqAFwind =
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C = shape coefficient 

q = basic wind pressure or suction 

A = projected area of the member normal to the direction of the wind velocity 

α = angle between wind direction and the member axis 

Basic wind pressure can be estimated using  

 
(3.16) 

where, 𝜌𝑎 is the mass density of air and assumed to be 1.226 kg/m3 and 𝑈𝑧 is the wind velocity 

profile that can be estimated using 

𝑈𝑧 = 𝑈𝑧0 (
𝑧

𝑧0
)
1 7⁄

 
(3.17) 

where, 

𝑈𝑧0= mean velocity at reference height 

z0 = reference height, usually taken as 10 m 

z = height above mean sea level 

Wave loads 

There are several wave forces that can affect marine structure such as breaking wave loads, 

non-breaking wave loads and wave slam roads. A simple non-breaking wave load is used to 

illustrate the calculation of wave loads on a simple slender marine structure. The total wave 

force can be estimated by adding the drag force and inertia force (DNV, 2010). 

The total wave force for a suitably slender structure, or element of a structure, can be estimated 

by using Morison’s equation as follows (Bellad and Deshpande, 2018) 

 
(3.18) 

 
2

1 2

zaUq =
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𝐹𝑇𝑤𝑎𝑣𝑒 =  C𝑀𝜌𝑉�̇� +
1

2
𝐶𝐷𝜌𝐴|𝑢|𝑢 (3.19) 

where, 

𝐶𝑀  and C𝐷are inertia and drag coefficient 

𝜌 = water density  

V = volume of the body 

A = reference area 

u = water wave particle velocity 

�̇�= water wave particle acceleration 

When calculating wave force on an offshore structure, it is also important to select the most 

appropriate wave theory as shown on Table 3.3. This wave theory selection can be based on 

(S. Zhang et al., 2015). 

Table 3.3. The application of wave theories 

Condition Wave Theory 

𝑑

𝐿
≥ 0.2,

𝐻

𝐿
≤ 0.2 Airy wave theory 

0.1 <
𝑑

𝐿
< 0.2,

𝐻

𝐿
≥ 0.2 Stokes wave theory 

0.04 0.05 <
𝑑

𝐿
< 0.1 Solitary wave theory 

 

where, d is water depth, L is wavelength, and H is wave height. Wave theories considered in 

this chapter can be seen in Appendix 3A. 

Current loads 

Current loads are also commonly taken into consideration in designing offshore structures. 

Chavito et al. (2014) provided an equation to calculate the force due to current load as a drag 

force 
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(3.20) 

where, 

CD = drag coefficient 

𝜌 = water density 1025 kg/m3 

U = current velocity (m/s) 

A = reference cross-sectional area (m2) 

 

Total environmental loads 

The total environmental load acting on a structure can then be estimated as 

 
(3.21) 

where, 𝜓𝑖 are the factors for load combination. These factors can be taken as shown in Table 

3.4 (Yu. Shmal et al., 2020). 

Table 3.4. Factors of load combination. 

Types of calculated loads 

Combinations 

I II III IV V VI 

Dead loads 1.0 1.0 0.9 1.0 1.0 1.0 

Long-term live loads 0.95 — 0.8 1.0 0.95 0.95 

Short-term live loads: 

• ice load (h = 0.8 m); — — 0.8 — — 1.0 

• wave load (repeated once in 100 years); 1.0 1.0 — — — — 

• wind load; 0.9 0.9 0.8 1.0 0.8 0.9 

  
2

1
UAUCF DCurrent =

 = iiTot FF 
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Types of calculated loads 

Combinations 

I II III IV V VI 

• current load 0.9 0.9 0.8 — 0.8 0.9 

Special loads: 

• ice load (h = 2.5 m); — — — — 1.0 — 

• seismic load — — 1.0 — — — 

 

Using Table 3.4, the total environmental load in Eq. 3.21 is modified to𝐹𝑡𝑜𝑡 = 𝐹𝑤𝑎𝑣𝑒 +

0.9𝐹𝑤𝑖𝑛𝑑 + 0.9𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

3.5 Synthetic Ocean Data Analysis 

To demonstrate the effectiveness of the methodology in calculating environmental loads, a 

comparative study is presented here. It starts from the use of a general joint probability 

distribution, a symmetric copula, and an asymmetric copula for the combination of two ocean 

parameters analyzed in this research. The environmental data used to illustrate this proposed 

comparison were simulated using the Hilbert transform method. 

As mentioned previously, asymmetric copulas are constructed to capture asymmetric 

phenomenon, usually found in ocean parameter data. These asymmetric copulas are 

constructed using a product rule method, also known as the extra-parameterization method, 

from selected base copulas. Although there are many copula families that can be set as base 

copulas, Archimedean copulas are used here as they have been commonly used in multivariate 

analysis. In addition, Archimedean copulas; Clayton, Gumbel, and Frank, can model tail 

dependencies, which might be suitable in constructing asymmetric copulas (Zhang et al., 2018). 

The possible combinations for constructing asymmetric copulas from the Archimedean copulas 
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are Clayton-Gumbel, Clayton-Frank, and Gumbel-Frank. These combinations provide a means 

to conduct multivariate analysis to estimate environmental loads. 

3.5.1 Dataset preparation using Hilbert Transform 

In this work, to capture the essence of real environmental data, wind speed is assumed to be 

the dominating factor. Wave height and current speed are the concomitant factors with a 

positive correlation with the dominating factor (i.e., wind speed and wave height). There is 

usually a delayed time between the occurrence of wind and wave. Wind speed will not 

immediately cause wave in the ocean. In this case, the Hilbert transform is found to be the most 

suitable method. It has been a common method in many aspects of science of technology 

especially in signal processing (Rusu et al., 2005). The Hilbert transform creates a function 

H(u(t)) from a given function u(t) (Klingspor, 2015). 

 
(3.22) 

Pranowo (2019) provided a general equation of this Hilbert transform as follows  

 
(3.23) 

where 𝐻(𝑊) is the Hilbert transform of matrix 𝑊 and 𝜙 is the phase rotation. This phase 

rotation can be varied to achieve a specific correlation coefficient between two ocean 

parameters. The phase rotation is ranging from 0 to  𝜋/2. 
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Fig. 3.3. Hilbert transform flowchart. 

 

Fig. 3.3 shows the flowchart to perform Hilbert transform. Below is the procedure developed 

to implement the Hilbert transform to prepare the data sets used in the next section: 

Select the data basis, in this case wind speed as the dominating factor. 

1. Set the phase rotation. This value is ranging from 0 ≤ 𝜑 ≤
𝜋

2
.   

2. Apply Hilbert transform equation. 

3. Transform the values to the original data statistics. 

MATLAB codes for this Hilbert transform are presented in Appendix 3D. 

Table 3.5. AIC values for all ocean parameters 

 Weibull Normal Lognormal Rayleigh Extreme Value Gamma 

Wind Inf. 23418* Inf. 24177 25121 23637 
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Wave 13244 13677 13089 13546 15759 12985* 

Current 45653* 45712 46953 46169 47310 46018 

* Indicates the best model 

Before continuing with joint probability analysis, marginal distributions for each ocean 

parameter are identified. The possible distributions fitted to the ocean parameters are Weibull, 

Normal, Lognormal, Rayleigh, Extreme Value and Gamma distribution. The Akaike 

Information Criterion (AIC) is utilized to select the best-fitted distribution among the possible 

distributions for the ocean parameters. AIC is a method based on using an in-sample fit to 

estimate the likelihood of a model (Mohammed et al., 2015). This method calculates the 

amount of information lost by a proposed model. AIC can be estimated using the following 

equation 

𝐴𝐼𝐶 = −2 ∗ 𝑙𝑛(𝐿) + 2 ∗ 𝑘 (3.24) 

where, L is the value of maximum likelihood and k is the number of parameters. 

The smallest value of AIC indicates the best distribution model for the data set as illustrated in 

Table 3.5. Table 3.5 shows the synthetic environmental data distribution fits after the Hilbert 

Transform process. This shows that the normal distribution is best-fitted to simulated wind 

data, Weibull is best-fitted to the simulated current data, while simulated wave height can be 

fitted by the gamma distribution. Kolmogorov-Smirnov (KS) tests are carried out to examine 

the goodness of fit of these distributions. P-Value from the KS test for wind, wave, and current 

data are 0.0398, 0.2398, and 0.0143 respectively. These P-values show that the fitted 

distribution is valid (fail to reject the null hypothesis) at a significance level of 1% for each 

ocean parameter. In terms of dependence measures, the synthetic ocean data show that the 

transform process introduces a much stronger dependence compared to the original data so that 

these data sets can be used to illustrate the comparison between symmetric and asymmetric 

copulas in the next section. Table 3.6 shows the distribution parameters for each variable. 
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Table 3.6. Distribution parameters statistics 

 Mean Variance Shape Scale 

Wind 6.582 6.259   

Wave 2.159 0.892 5.226 0.413 

Current 56.778 547.673 63.919 2.607 

 

Fig. 3.4 illustrates that each pair of ocean parameter has positive dependence in the scatter 

plots. The value of the dependence for each pair are presented in Table 3.7. 

Table 3.7. Dependence measures for simulated data. 

 Pearson’s linear 

correlation 
Spearman’s rho Kendall’s tau 

Wind-Wave 0.8362 0.8097 0.6240 

Wave-Current 0.7850 0.7693 0.5663 

Wind-Current 0.7903 0.7596 0.5786 

 

From Table 3.7, all dependence measures show that all pairs have positive dependence with 

wind speed and wave height having the strongest dependence. These synthetic data are utilized 

to construct asymmetric copulas using the Archimedean copulas as base copulas.  



52 
 

 

Fig. 3.4. Scatter plots for all synthetic ocean parameter pairs 

 

 

Fig. 3.5. Empirical probability and scatter plots for synthetic ocean data in copula domain. 
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Fig. 3.5 shows the empirical probability distribution function scatter plots for all pairs of ocean 

parameters in the copula domain. These synthetic data show a tail dependence in both upper 

and lower tails. The impact of this tail dependence can be further investigated by constructing 

asymmetric copulas. 

Before constructing the asymmetric copulas, it is necessary to calculate the asymmetric value 

of each ocean parameter pair. By using Eq. 3.11, the measures of asymmetry of the wind-wave, 

wave-current, and wind-current pairs are 0.43 %, 0.58% and 0.43% respectively. Klement and 

Mesiar (2006) mentioned that a copula is symmetric only if 𝜂∞ = 0 so that Eq. 3.11 will have 

values ranging from 0 to 1/3. Thus, the value 𝜂𝑝 is greater than 0 if a pair of data sets is 

asymmetric. According to this, we may suspect that the synthetic ocean data pairs have a small 

degree of asymmetry so that the construction of asymmetric copulas will be necessary to fully 

capture this data characteristic. The comparison will be presented and discussed in the 

following section. As mentioned on the basic theories of constructing asymmetric copulas, the 

individual functions are developed from Type-1 functions by inserting 𝑔𝑗𝑖 = 𝑢
𝜃𝑖𝑗and 𝑔𝑗𝑖 =

𝑢1−𝜃𝑖𝑗  into the selected base copulas. For further details, all constructed asymmetric copulas 

using type-1 individual functions can be seen in Fig. 3C.1 in Appendix 3C.  

The parameter estimates for all possible symmetric and asymmetric copulas for correlated wind 

speed and wave height are shown in Table 3.8. The values of parameter estimates are obtained 

using the concept of linearized non-linear inversion as explained previously. Parameters for 

other ocean parameter pairs can be seen in Table 3C.1 and Table 3C.2 in Appendix 3C. 

Table 3.8. Parameters estimates of wind speed and wave height 

Copula type Copula function Parameter estimate Mean absolute error  

One parameter 

copula 

Clayton 𝛾 = 1.8918 0.0132 

Gumbel 𝛾 = 2.5191 0.0021 
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Frank 𝛾 = 8.4663 0.1253 

Asymmetric 

copulas by product 

Clayton-Gumbel 

Type-I 

𝛾1 = 46.258  

𝛾2 = 3.0059 

0.0021 
𝜃11 = 0.1778𝜃12

= 0.3911 

𝜃21 = 0.8222𝜃22

= 0.6089 

Clayton-Frank 

Type-I 

𝛾1 = 41.1615𝛾2

= −11.2184 

0.0037 
𝜃11 = 0.2804𝜃12

= 0.0756 

𝜃21 = 0.7196𝜃22

= 0.9244 

Gumbel-Frank 

Type-I 

𝛾1 = 2.6219𝛾2

= −17.5714 

0.0024 
𝜃11 = 0.9002𝜃12

= 0.9343 

𝜃21 = 0.0998𝜃22

= 0.0657 

 

From all of these asymmetric copula formulations using the synthetic data, the Gumbel-Frank 

Type-I seems to be the least appropriate fit to the wind-current and wave-current data, while 

Clayton-Frank Type-1 is the least fitted to the wind-wave data. The Gumbel copula is found to 

be the best fitted to model symmetrical dependence. This finding is also supported by a similar 

conclusion mentioned by Zhang et al that the Clayton-Frank combination cannot represent the 

data dependency very well (Zhang et al., 2018). The asymmetric copulas seem to represent the 

synthetic environmental data with smaller mean absolute errors compared to the symmetric 

copulas. Only the Gumbel copula has a similar mean absolute error value to the asymmetric 

copulas. Thus, considering asymmetric copulas when modelling environmental data, it is 

important to capture the real dependence type between environmental variables. This 

consideration can also be beneficial for further analysis. Appendix 3B contains further details 

and discussion on the comparison between symmetric and asymmetric copulas. 
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3.6 The Case Study 

To illustrate the use of copula functions in estimating environmental loads, a simple offshore 

structure is selected. A mono-pile with a deck and a derrick on top are assumed. 

Wind loads are calculated on the top side of the structure. There are two main structures subject 

to wind, a deck with dimensions of 15 x 15 x 4 for width, length, and height respectively and 

a cylindrical derrick with diameter equal to 3 m and height of 10 m. Shape coefficients, C, will 

be selected from available information on structure dimensions. Based on the DNV standard, 

the selected structures have shape coefficients of 0.5 and 0.9 for derrick and deck respectively 

(Sigurdsson, 1996). Wind loads will be calculated at different heights and the result can be seen 

in Table 3.9. 

Table 3.9. Calculated wind loads. 

Heights(m) Fwind(N/m) Reference Area 

10 1433.63 

Deck 12 1510.29 

14 1578.29 

16 455.46 

Derrick 19 478.38 

24 511.40 

 

As can be seen, the wind load increases in accordance to the structure’s height and depending 

on the dimensions of the reference area.  

When calculating wave load, a single vertical cylindrical member is assumed (see Fig. 3.6). A 

steel pile with diameter of 1.32 m and length of 37.8 m is assumed. The immersed part of this 

steel pile is set to be 27.8 m.  
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Fig. 3.6. A vertical mounted cylindrical pile. 

There are two additional quantities that need to be estimated. The selection of drag and added 

mass coefficient will impact the calculated wave load. These two coefficients can be 

determined based on Reynold’s number (Re) and Keulegan-Carpenter number (KC). KC can 

be obtained using Eq 25 (Haritos, 2007). 

 
(3.25) 

where, 

 
(3.26) 

  

From these two equations, it is estimated that the drag and inertia coefficients are 1.25 and 1.5 

respectively (Chakrabarti, 1994). These values are estimates, and values measured from real 

environment data, might differ according to the flow parameters and surface characteristics 
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To calculate wave loads, wavelength (L) of 85.29 m, wave period (T) of 7.54 second, wave 

height (H) of 3.26 m and angular frequency of 0.8333 were used to estimate wave loads in time 

domain and in the horizontal direction. The calculated wave load using Morison equation is 

illustrated in Fig. 3.7. 

 

Fig. 3.7. Wave loads in time domain (second) 

The current load is estimated to be 7614.57 N/m using the same pile dimensions and an average 

current speed from the data of 56.923 cm/s. Thus, the total environmental load acting on a 

structure can be estimated by adding these three different loads and applying the appropriate 

factor for load combination.  

In order to compare the outcomes of applying three different symmetric copulas and three 

different constructed asymmetric copulas, random data is generated according to the selected 

copula function with various correlation coefficients (Kendall’s tau). There are three possible 

pairs of correlated environmental variables that are compared here for the bivariate analysis. 

Significant wave height, average wind speed, and average current speed from each generated 

random data set are used to calculate the environmental loads acting on a structure. 
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Fig. 3.8. Total environmental load for best-fitted symmetric and asymmetric copula for (a) 

wind and wave, (b) wind and current, and (c) wave and current. 

 

From Fig. 3.8, it can also be seen that the asymmetric copula provides lower total 

environmental loads. However, the Gumbel copula provided better results in estimating total 

environmental loads with the selected data set. This is because the data set used to illustrate 

this comparison shows a very small asymmetry measurement and symmetric plot as seen in 

Fig. 3.5. 

Estimation of total environmental loads using all copula functions can be seen in Fig. 3C.2 in 

Appendix 3C. This shows that each copula function shows different characteristics when it 

comes to environmental load estimation. Clayton shows decreasing value of total 

environmental loads when the correlation coefficient increases. This also shows that the 

Clayton copula has stronger dependence at lower values. The estimated environment load using 
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Gumbel shows increasing values with the increase in correlation coefficient. This is aligned 

with the characteristics of the Gumbel copula where a stronger dependence is found at higher 

values. On the other hand, the Frank copula shows fluctuating value when correlation is set to 

be 0.5 and 0.7. The Frank copula, in nature, does not show any stronger dependence at either 

tail. When using asymmetric copulas, a similar trend is found when Frank is used as the basis 

copula. Clayton-Frank and Gumbel-Frank also showed fluctuating estimated load when 

correlation is set to be 0.5 and 0.7. Clayton-Gumbel showed a similar trend to the Gumbel 

copula as the correlation coefficient increased. Asymmetric copula functions in this pair of 

environment variables are found to provide slightly lower total environmental load. 

Another important aspect when modelling environmental loads is to be able to capture an 

accurate dependency type. This remains a challenge as it is a common problem to have data 

scarcity in real engineering practice. Thus, it is difficult to identify an appropriate copula 

function when the necessary information cannot be obtained. The use of symmetric copulas is 

often preferred. They can be easily applied and there have been several studies that have 

demonstrated application of these functions. However, in an engineering context, symmetrical 

dependence might not be an appropriate assumption, especially when dealing with environment 

variables. Ocean parameters usually show strong dependency at either one of the extremes. 

Thus, use of asymmetric copula can offer more accurate analysis in extreme cases. 

 

3.7 Estimation of Probability of Occurrence 

To illustrate the benefits of using copula functions, a comparison of probability of occurrence 

is estimated using the different methods. As mentioned previously wave, wind, and current 

loads were selected as they are the dominating loads on offshore structures. Offshore structures 

are normally designed to withstand extreme wind-wave-current conditions with low frequency 
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of occurrence and high severity. When dealing with this type of load, considering return period 

and the associated design values is important in estimating the probability occurrence for any 

combination of environmental loads. Dong et al. (2017) mentioned that when actual marine 

environmental data is used, selecting a conditional variable, which is commonly considered as 

dominating factor, is the initial step in trying to estimate the conditional probability of 

occurrence of the other factors. When a dominating factor (conditional variable) is given, the 

other variables then can be calculated, based on the selected return periods, that are usually 

selected from a design standard. Zhai et al. (2017) also concluded that when conditional 

probability density of a given variable reaches its maximum, the other two concomitant 

variables are likely to occur. 

To illustrate this method, for a bivariate analysis, maximum wave height (Hmax) or maximum 

wind speed (Wmax) is selected as the dominating factor while one of the other two variables is 

considered the concomitant variable. 

The conditional bivariate probability distribution can then be modeled using  

 
(3.27) 

 

With x as the dominating factor, 𝑐(𝑥, 𝑦) is the copula function between the two variables and 

𝑓(𝑥, 𝑦) is the joint probability distribution. 

Liu and Zhang (2016) explained a conditional correlation model that can describe the joint 

probability distribution based on copula function. The conditional probability distribution is 

written as follows 

 
(3.28) 
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And the conditional return period based on the copula function can be estimated using this 

equation 

 

(3.29) 

 

Random variable X is denoted as the dominating factor, while random variable y is the selected 

concomitant factor. 

In this work, a return period T (year) of 100 years is selected as recommended by the standard 

(American Petroleum Institute, 2002). The design value for the dominating factor (Hmax or 

Wmax) and the respected concomitant factor using different symmetric copulas can be seen in 

Table 3.10. 

Table 3.10. Design value with dominating factor Hmax and concomitant factor W or C. 

 

Hmax with concomitant W or C 

T = 100 years 

Hmax W 

Prob. 

Hmax C 

Prob. 

(m) (m/s) (m) (cm/s) 

Clayton 

12.97 

14.371 4.26 x 10-6 

12.97 

130.235 6.42 x 10-7 

Gumbel* 15.967 3.32 x 10-6 146.38 5.79 x 10-7 

Frank 6.634 2.41 x 10-5 62.158 2.00 x 10-6 

Clayton-Gumbel Type-1* 17.141 4.51 x 10-7 152.103 1.46 x 10-7 

Clayton-Frank Type-1 18.124 3.20 x 10-8 141.603 3.71 x 10-7 

Gumbel-Frank Type-1 15.479 6.35 x 10-6 148.054 2.74 x 10-7 

Independent joint dist. 8.909 4.13 x 10-10 83.631 3.35 x 10-11 
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Conditional joint dist. 25.597 1.62 x 10-12 113.507 3.59 x 10-13 

*Indicates the best-fitted copula 

Table 3.11. Design value with dominating factor Wmax and concomitant factor H or C 

 

Wmax with concomitant H or C 

T = 100 years 

Wmax H 

Prob. 

Wmax C 

Prob. 

(m/s) (m) (m/s) (cm/s) 

Clayton 

34.93 

5.9798 1.01 x 10-5 

34.93 

128.952 7.19 x 10-7 

Gumbel* 5.9158 7.61 x 10-5 149.791 3.52 x 10-7 

Frank 2.1178 6.39 x 10-5 62.905 1.92 x 10-6 

Clayton-Gumbel Type-1* 6.363 3.19 x 10-5 145.189 5.46 x 10-7 

Clayton-Frank Type-1 6.319 1.39 x 10-5 125.969 2.49 x 10-6 

Gumbel-Frank Type-1 6.184 4.63 x 10-5 147.514 3.79 x 10-7 

Independent joint dist. 0.732 2.07 x 10-29 35.033 1.34 x 10-30 

Conditional joint dist. 18.249 2.07 x 10-26 141.125 2.28 x 10-28 

*Indicates the best-fitted copula 

A detailed consideration is given to the best fitted symmetric and asymmetric copula, along 

with traditional joint distribution approaches. Probabilities of occurrence of a concomitant 

factor given a dominating factor are found to be greater when estimated using copula functions. 

The Root-Mean-Square error (RMSE) and the mean absolute error values are used to select the 

best model fitted to the synthetic data. RMSE is calculated between empirical data and the 

selected distribution functions compared in this chapter. In general, RMSE can be estimated 

using 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂� − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (

𝑆𝑇𝑌𝐿𝐸𝑅𝐸𝐹13. 𝑆𝐸𝑄𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑅𝐴𝐵𝐼𝐶130

) 

 

Where, 𝑦𝑖 is the actual data, 𝑦𝑖 is the predicted data, and n is the number of data. RMSE values 

from the best-fit symmetric and asymmetric copula, traditional joint independent and 

conditional functions are compared below. 

 

Fig. 3.9. Empirical data plotted against selected distribution functions for wind speed and 

wave height data 

 

Table 3.12. RMSE and mean absolute error between empirical data and fitted distribution 

functions 
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Ocean 

parameter 

Gumbel 
Clayton-Gumbel 

Type-1 

Traditional joint 

independent 

function 

Traditional joint 

conditional 

function 

RMSE 
Absolute 

Error 
RMSE 

Absolut

e Error 
RMSE 

Absolute 

Error 
RMSE 

Absolute 

Error 

Wind-wave 0.0178 0.0021 0.0029 0.0021 0.0299 0.0299 0.0662 0.0481 

Wind-current 0.0232 0.0052 0.0053 0.0033 0.0305 0.0209 0.0797 0.0497 

Wave-current 0.0228 0.0038 0.0039 0.0027 0.0313 0.0216 0.0995 0.0775 

 

Fig. 3.9 and Table 3.12 show that the Gumbel and the Clayton-Gumbel type-1 have lower 

RMSE and mean absolute error than the traditional joint distribution approaches. For the 

Gumbel function, mean absolute error values are lower than RMSE. This is because RMSE has 

higher sensitivity to outliers in the data set. This shows that the synthetic environmental data 

are better modeled using the copula functions. It also supports the results showing the 

probabilities of occurrence in Table 3.10 and Table 3.11. In this illustration, Gumbel and 

Clayton-Gumbel type-1 are found to provide a better inherent safety when designing a 

structure. This finding supports some of the work conducted by other researchers. Salleh et al. 

(2016) demonstrated that the copula method is effective for bivariate analysis of flood risks 

while preserving the dependence structure of the flood characteristics. Zhang et al. (2015) 

compared the conditional approach to model offshore environment parameters using the Nataf 

transformation and copula functions. They concluded that the copula-based approach provides 

more flexibility and a better description of the nonlinear dependencies between ocean 

parameters. The copula was also used for marine environmental analysis (Dong et al., 2022). 

They concluded that conditional probability using the copula function could better present a 

joint design value of significant wave height and the corresponding wind and current speed. 

Thus, from the findings of this research and other relevant works, it can be concluded that the 
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use of copula functions to analyze marine environmental variables will result in a better 

approach and interpretation compared to the traditional joint probability approach and the Nataf 

transformation. In addition to this, the predicted concomitant factor from the dominating factor 

in both Gumbel and Clayton-Gumbel Type-1 show similar results. However, the Gumbel 

copula provided higher probability compared to Clayton-Gumbel Type-1. It also supported a 

finding on the estimated total environmental load where the Gumbel copula resulted in higher 

loads. As mentioned before, the data set used to illustrate this copula application shows 

symmetrical dependence from the beginning with a relatively small asymmetric measurement. 

Although mean average errors estimated using all asymmetric copulas show lower values than 

symmetric copulas, the Gumbel copula seems to be the best-fitted function in this case. 

Therefore, the total environmental load estimated using this copula will give better design 

values for further analysis. However, this symmetric dependence in environment parameters is 

unlikely to be found in other data sets, and thus a consideration of asymmetric copulas remains 

necessary in this case. 

3.8 Conclusion 

In this chapter, the influence of different copula functions used to estimate environmental loads 

on an offshore structure is analyzed and interpreted. The Gumbel and Clayton-Gumbel type-1 

Copula functions were concluded to provide lower RMSE values and higher probability of 

occurrence compared to the traditional joint distribution function approaches. This improves 

the inherent safety when designing a fixed offshore platform. The generated data set was 

scattered symmetrically in copula domain and was shown to have relatively small asymmetry 

measurement. Thus, a symmetrical copula, in this case the Gumbel copula, was best fitted to 

the data set to estimate the environment load and probability of occurrence.  
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The case study shows that there are two main factors that can lead to different results from the 

application of asymmetric copulas. Firstly, the selection of new individual functions to 

construct asymmetric copulas is important. Different individual functions will result in 

different models. Secondly, varying dependency level or correlation coefficient in asymmetric 

copulas is also uncertain. Unlike symmetric copula, this process can be done by assuming the 

same parameter to vary the desired dependence level. However, the ignorance in considering 

asymmetric dependence when dealing with environment variables may also result in errors 

when estimating total environmental loads. The application of asymmetric copula to perform 

multivariate analysis for offshore structures are concluded to be beneficial to capture all 

possible dependency levels that ocean parameters data might have.  

In a future work, a large met-ocean data set will be used to improve the reliability of the 

environmental load estimation for offshore structures. A copula-based multivariate analysis 

will also be potential future research when dealing with marine environment. 
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Appendix 3A: Wave theories 

There are three possible methods to calculate wave load in this chapter. 

1. Airy Wave Theory 

In this theory, water particle velocity and acceleration in the horizontal direction can be 

estimated by  

𝑢𝑥 =
𝐻𝑔𝑘

2𝜔

𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑐𝑜𝑠ℎ( 𝑘𝑑)
𝑐𝑜𝑠( 𝑘𝑥 − 𝜔𝑡)

�̇�𝑥 =
2𝜋2𝐻

𝑇2
𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡)

}
 
 

 
 

    (3A.1) 

 

g = standard gravity 

H = wave height 
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k = wave number that is calculated using this equation 

𝑘 =
2𝜋

𝐿
   (3A.2) 

While in the vertical direction 

𝑢𝑧 =
𝐻𝑔𝑘

2𝜔

𝑠𝑖𝑛ℎ( 𝑘(𝑧 + 𝑑))

𝑐𝑜𝑠ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡)

�̇�𝑧 = −
2𝜋2𝐻

𝑇2
𝑠𝑖𝑛ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑐𝑜𝑠( 𝑘𝑥 − 𝜔𝑡)

}
 
 

 
 

   (3A.3) 

2. Stokes Wave Theory 

The horizontal water particle velocity and acceleration should satisfy this following equation 

𝑢𝑥 =
𝐻𝜋

𝑇

𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑐𝑜𝑠( 𝑘𝑥 − 𝜔𝑡) +

3

4
(
𝐻𝜋

𝑇
) (
𝐻𝜋

𝐿
)
𝑐𝑜𝑠ℎ( 2𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ
4( 𝑘𝑑)

𝑐𝑜𝑠 2 (𝑘𝑥 − 𝜔𝑡)

�̇�𝑥 = 2(
𝜋2𝐻

𝑇2
)
𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡) + 3(

𝐻𝜋2

𝑇2
) (
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𝐿
)
𝑐𝑜𝑠ℎ( 2𝑘(𝑧 + 𝑑))
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4( 𝑘𝑑)

𝑠𝑖𝑛 2 (𝑘𝑥 − 𝜔𝑡)
}
 
 

 
 

    

(3A.4) 

While equation 3A.5 is used to estimate water particle velocity and acceleration in the vertical 

direction 

𝑢𝑧 =
𝐻𝜋

𝑇

𝑠𝑖𝑛ℎ( 𝑘(𝑧 + 𝑑))
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(3A.5) 

3. Solitary Wave Theory 

Water particle velocity and acceleration can be approached by Equation 3A.6 
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𝑢 =
𝐶𝑁 [1 + 𝑐𝑜𝑠 (𝑀 [
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   (3A.6) 

 

Where M,N are functions of H/d and 

C is speed of solitary wave that can be estimated using 

𝐶 = √2𝑔(𝐻 + 𝑑)   (3A.7) 

 

Appendix 3B: Comparison between symmetric and asymmetric copulas 

In order to give a full comparison between symmetric and asymmetric copulas, the dependence 

level between two environmental variables will be varied. For Archimedean copulas used as 

symmetric copulas, it is very straightforward to be able to specify the desired dependence level 

as there is a relationship between Kendall’s tau and the copula parameter as seen in Table 3.1.  

Fig. 3B.1 shows the constructed scatter plots for Clayton copula with different dependence 

levels. Clayton with 𝜏 = 0.3is very scattered as the dependence level is weak, while specifying 

𝜏 = 0.9 will result in a more centered scatter plot that shows very strong dependence between 

two variables. 

In order to show the dependence characteristic among symmetric copulas, scatter plots will be 

constructed by specifying the same dependence level, taken 𝜏 = 0.7, for each copula. Fig. 3B.2 

shows that Clayton copula will be best used to capture data set exhibiting strong low values 

dependencies. Gumbel on the other hand, will be best-fitted to characterise strong dependency 

at high values, while Frank is best used to describe the characteristics of data that posses weak 
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dependency on both tails. In addition to this, all the Archimedean copulas can be seen to be 

distributed symmetrically along the diagonal line thus they are appropriate to capture 

symmetrical dependence among variables. Furthermore, selecting the best-fitted copula for the 

environmental variable is then very crucial in order to be able to capture the true dependency 

characteristic for the data pairs. 

However, when the pair of the environmental variables shows asymmetric dependence, varying 

dependence level will not be as easy as on the symmetric case. Unlike symmetric copulas, the 

constructed asymmetric copulas does not have any exact or explicit relationship between their 

parameters and the Kendall’s tau. There are additional parameters introduced to construct the 

asymmetric copulas in this chapter. Varying the dependence level (Kendall’s tau) will result in 

changes in all these new introduced parameters. In this chapter, limitation will be made in order 

to illustrate the impact of varying this dependence level. 𝛾1 and 𝛾2will be set constant so that 

the variation of Kendall’s tau will only impact on the values of 𝜃11 and 𝜃12. 
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Fig. 3B.1. Clayton copula with various dependence levels 

 

 

 

Fig. 3B.2. Symmetric copulas with 𝜏 = 0.7 
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For illustration purpose, asymmetric copulas for wave height and wind speed will be selected 

to know the relations between the value of Kendall’s tau and copula parameter 𝜃11 and 𝜃12. 

 

 

Fig. 3B.3. Plots of the value of Kendall’s tau by changing 𝜃11 and 𝜃12 for a specified data set 

Fig. 3B.3 shows that by varying 𝜃11 and 𝜃12 from 0 to 1, the value of Kendall’s tau for this data 

set applied for wind speed and wave height will change from 0 to around 0.9. These values will 

change differently according to the assumed 𝛾1 and 𝛾2 used in the construction of this Kendall’s 

tau simulation. The maximum kendall’s tau value will be obtained if 𝜃11 = 𝜃12. Whereas, 

dependence between two variables can be neglected if 𝜃11 = 1 and 𝜃12 = 0, and vise versa. 

From this simulation, it can be seen that the degree of freedom in the dependence modelling 

for asymmetric copulas really depends on the characteristic of the data set and the additional 

copula parameters introduced. The newer copula parameters introduced in the function, the 
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process to vary dependence level will become more complicated. The comparison of all 

asymmetric copula functions with a selected Kendall’s tau used in this chapter will be 

illustrated on Fig. 3B.4. 

 

 

Fig. 3B.4. Asymmetric copulas with 𝜏 = 0.7 

 

Compared to Fig. 3B.2, Fig. 3B.4 shows more asymmetrical dependence with the same 

Kendall’s tau value. Thus, by applying some assumptions mentioned previously, the 

constructed asymmetric copulas can still be used to generate various dependence levels by 

changing the values of 𝜃11 and 𝜃12. However, there has not been any universal guidance on 

how to really conclude that two variables possess asymmetrical dependence, as also discussed 

earlier. In addition to this, another uncertainty rises when it comes to the selection of best-fitted 
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copula for a data set to perform further analysis. All in all, considering asymmetric copula 

functions in dealing with environmental data has been found very important to capture all 

possible dependence types. Thus, with these concerns, a simple case study to estimate 

environmental loads for an offshore installation will be provided using various types of copulas 

function, both symmetric and asymmetric. This is to give a complete comparison how the 

selection of a copula function can impact on the estimated environmental load with various 

dependence levels. 

 

Appendix 3C: Detailed results 

The constructed asymmetric copulas for the synthetic data can be seen as follows 
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Fig. 3C.1. Probability distribution function of asymmetric copulas for synthetic environment 

data 

 

While copula parameters for the wind-current and wave-current data pair can be seen on Table 

3C.1 and Table 3C.2. 
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Table 3C.1 Parameters estimates of wind speed and current speed 

Copula type Copula function Parameter 

estimate 

Mean absolute 

error  

One parameter copula 

Clayton 𝛾 = 1.4035 0.013 

Gumbel 𝛾 = 2.1656 0.0052 

Frank 𝛾 = 7.0566 0.118 

Asymmetric copulas 

by product 

Clayton-Gumbel 

Type-I 

𝛾1 = 6.2068  

𝛾2 = 3.155 

0.0033 
𝜃11 = 0.449𝜃12

= 0.2405 

𝜃21 = 0.551𝜃22

= 0.7595 

Clayton-Frank 

Type-I 

𝛾1 = 48.7659𝛾2

= −8.4883 

0.0036 
𝜃11 = 0.149𝜃12

= 0.3747 

𝜃21 = 0.851𝜃22

= 0.6253 

Gumbel-Frank 

Type-I 

𝛾1 = 2.3593𝛾2

= −17.7482 

0.0038 
𝜃11 = 0.7011𝜃12

= 0.5656 

𝜃21 = 0.2989𝜃22

= 0.4344 

 

Table 3C.2 Parameters estimates of wave height and current speed 

Copula type Copula function Parameter estimate Mean absolute error  

One parameter 

copula 

Clayton 𝛾 = 1.4734 0.0138 

Gumbel 𝛾 = 2.1930 0.0038 

Frank 𝛾 = 7.2175 0.1186 

Asymmetric 

copulas by product 

Clayton-Gumbel 

Type-I 

𝛾1 = 10.4446𝛾2

= 3.3543 
0.0027 

𝜃11 = 0.7267𝜃12

= 0.3746 
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𝜃21 = 0.2733𝜃22

= 0.6254 

Clayton-Frank 

Type-I 

𝛾1 = 53.8552𝛾2

= −8.3465 

0.0034 
𝜃11 = 0.1097𝜃12

= 0.3431 

𝜃21 = 0.8903𝜃22

= 0.6569 

Gumbel-Frank 

Type-I 

𝛾1 = 2.2252𝛾2

= −15.868 

0.0037 
𝜃11 = 0.3064𝜃12

= 0.6266 

𝜃21 = 0.6936𝜃22

= 0.3734 

 

Total environmental loads estimated using all copula functions are depicted as follows 

 

Fig. 3C.2. Total environmental load for (a) wind and wave, (b) wind and current, and (c) 

wave and current 
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Table 3C.3 Total loads (kN/m) for correlated wind and wave 

Correlation Clayton Gumbel Frank Clayton-Gumbel Clayton-Frank Gumbel-Frank 

0.3 22.764 22.667 22.716 22.500 22.547 22.477 

0.4 22.685 22.677 22.535 22.576 22.634 22.584 

0.5 22.606 22.688 22.355 22.652 22.721 22.690 

0.6 22.578 22.766 22.517 22.661 22.578 22.586 

0.7 22.551 22.844 22.680 22.671 22.435 22.483 

0.8 22.550 22.858 22.600 22.837 22.409 22.588 

0.9 22.549 22.873 22.520 23.002 22.384 22.693 

 

 

Table 3C.4 Total loads (kN/m) for correlated wind and current 

Correlation Clayton Gumbel Frank Clayton-Gumbel Clayton-Frank Gumbel-Frank 

0.3 22.618 22.647 22.655 22.672 22.539 22.588 

0.4 22.626 22.701 22.612 22.674 22.535 22.643 

0.5 22.634 22.754 22.568 22.675 22.532 22.699 

0.6 22.648 22.821 22.643 22.732 22.577 22.672 

0.7 22.662 22.889 22.717 22.788 22.623 22.644 

0.8 22.663 22.894 22.648 22.816 22.596 22.621 

0.9 22.665 22.899 22.578 22.845 22.568 22.598 

 

 

Table 3C.5 Total loads (kN/m) for correlated wave and current 

Correlation Clayton Gumbel Frank Clayton-Gumbel Clayton-Frank Gumbel-Frank 



83 
 

0.3 22.616 22.620 22.489 22.595 23.035 22.290 

0.4 22.580 22.666 22.506 22.647 22.771 22.598 

0.5 22.543 22.712 22.522 22.698 22.507 22.907 

0.6 22.514 22.822 22.620 22.717 22.306 22.624 

0.7 22.485 22.932 22.719 22.736 22.104 22.341 

0.8 22.399 22.937 22.647 22.789 22.317 22.441 

0.9 22.314 22.942 22.575 22.841 22.529 22.541 

 

Appendix 3D: MATLAB code for Hilbert transform 

clear, clc, close all 

data = load('new ori data.txt'); 

wind = data(:,1); 

wave = data(:,2); 

curr = data(:,3); 

 

r = 30; % phase rotation 

r = deg2rad(r); 

wave2 = wind*cos(r) + imag(hilbert(wind))*sin(r);  

wave2 = (wave2 - min(wave2))/(max(wave2) - min(wave2))*(max(wave) - min(wave)) + min(wave);  

corr(wind, wave2) 

 

r = 70; % phase rotation 

r = deg2rad(r); 

curr2 = wind*cos(r) + imag(hilbert(wind))*sin(r);  

curr2 = (curr2 - min(curr2))/(max(curr2) - min(curr2))*(max(curr) - min(curr)) + min(curr);  

corr(wave2, curr2) 

corr(wind, curr2) 

 

figure 
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plot(wind, wave2,'.') 

figure 

plot(wave2, curr2,'.') 

 

figure 

subplot(3,1,1) 

plot(wind) 

subplot(3,1,2) 

plot(wave2) 

subplot(3,1,3) 

plot(curr2) 
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CHAPTER 4  

RESILIENCE ASSESSMENT OF OFFSHORE STRUCTURES 

SUBJECTED TO ICE LOAD CONSIDERING COMPLEX 

DEPENDENCIES 
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Abstract 

Offshore structures in arctic and subarctic regions are subjected to various natural hazards. 

These structures need to be designed to withstand these natural hazards and to recover quickly 

after an undesirable event occurs. Ice load is a significant natural hazard for structures in these 

regions. The magnitude of ice load depends on the ice drifting velocity, which is influenced by 

other environmental conditions such as wind speed and wave activity. Most studies in literature 

assume independence among these influencing environmental parameters, although they have 

significant dependence. In addition, there are a limited number of studies focused on analyzing 

the capacities of offshore structures to resist ice loads. This chapter investigates an offshore 

structure’s response to an ice load, using the concept of resilience. Resilience is quantified by 

considering absorptive, adaptive, and restorative capacities. Dependence between wind 

velocity and wave height is considered in the analysis; the Gumbel-Frank Type-1 Copula 

function is used to model relationships between these influencing variables. The study 

highlights that a mono-pile vertical structure shows resilience in terms of absorptive capacity. 

An offshore structure in arctic conditions needs to be designed considering both absorptive and 

adaptive capacities. 

 

Keywords: Offshore structure; resilience assessment; copula functions; iceberg load; 

absorptive capacity; absorptive capacity 

 

4.1 Introduction 

Climate change has made offshore structures suffer more frequently from extreme natural 

hazards. These extreme environmental events can cause catastrophic failures if offshore 

structures are not designed to withstand such events (Stochino et al., 2019). In addition, a 

number of offshore structures in Canada have been built and operated in arctic and sub-arctic 
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regions (Ning et al., 2019). These structures are subject to increased natural hazards, 

particularly from sea ice. Sea ice damage is a significant threat to the safety of offshore 

structures and can cause severe consequences (Xu et al., 2020). In practice, these consequences 

can vary from ice-induced vibration that can lead to fatigue, to bending failures of local 

structural elements, to total structure collapse. These undesired events can cause losses if they 

are not considered as part of both design and operation (Taleb-Berrouane & Khan, 2018; Taleb-

Berrouane & Lounis, 2016; Zarei, Khan, et al., 2021). Thus, considering the effects of natural 

hazards to ensure safety of people and to avoid losses in the offshore industry is important. A 

robust approach is required to design safe structures that are able to resist failures and able to 

recover quickly if unwanted events occur (Deyab et al., 2018; Sarwar et al., 2018; Taleb-

berrouane et al., 2018). 

Modelling sea ice loads has been found to be more complex compared to modelling other 

environmental effects (Ning et al., 2019). This is due to the combined influence of complex 

environmental conditions and sea ice physical properties. The most common ice hazard is 

drifting sea ice. This drifting ice is  influenced by the combination of wind and wave forces 

acting on the ice itself (Sinsabvarodom et al., 2020). Furthermore, there are different ice types 

such as pack ice, bergy bits, and icebergs, classified depending on their shapes, masses and 

dimensions (Colbourne, 2000; Zhou et al., 2019). Despite these general classifications, specific 

data on sea ice parameters are not publicly available; this is another challenge for research 

seeking to quantify ice loads.  

There are two main ice failure mechanisms arising from structural interactions; crushing mode 

and flexural mode (Sinsabvarodom et al., 2020). Crushing mode is dominantly found in 

interactions with vertical structures, while flexural mode is induced in sheet ice by interactions 

with sloping structures. 
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There are several uncertainties that exist when dealing with modelling ice load for offshore 

structures. In practice, engineering models are affected by two types of uncertainties: aleatory 

and epistemic (Cheng et al., 2019; De Michele et al., 2007; McKeand et al., 2021; Reilly et al., 

2021; Tabandeh et al., 2022; Zhang et al., 2018). Aleatory uncertainties are the inherent 

randomness in a system’s properties, while epistemic uncertainties are caused by lack of 

knowledge about a system (Chen et al., 2021). Castaldo et al., (2019) also mention that 

providing better estimation in considering uncertainties can result in a better accuracy in 

estimation of structural behaviors. These two uncertainties usually exist simultaneously in 

engineering applications. Epistemic uncertainties can be reduced by updating and collecting 

more information about a system, while aleatory uncertainties cannot be treated by just 

gathering more information. The epistemic uncertainty that is most commonly neglected is the 

existence of dependence among the investigated variables  (Kiureghian & Ditlevsen, 2009). 

The assumption of independence between environmental conditions has been identified as a 

factor that should be eliminated (Li et al., 2020). As an illustrative example, ice drift is caused 

by both wind and wave load acting on the sea ice. This drifting ice then induces dynamic 

loading on a structure (Shi et al., 2016). The relationship between wind and wave is also 

normally that the wave height is dependent on the wind (Zhang et al., 2018, 2019). In this 

example, assuming independence in load estimation will generally result in less accurate 

predictions of loads experienced in the field.  

In this study two types of dependence, symmetrical and asymmetrical, will be assessed. Copula 

functions are introduced to model both types of dependence. Copula functions are proven to be 

suitable for modelling the effects of natural hazards on infrastructure in both offshore (Dong et 

al., 2017; Ramadhani et al., 2021; Zhang et al., 2015, 2018) and onshore structures (Bai et al., 

2016; Desilver, 2020; Fang et al., 2020; Li et al., 2021; Taleb-Berrouane et al., 2019; Zhang & 

Lam, 2015). 



89 
 

The example interaction scenario used in this research is a single vertical steel pile interacting 

with an iceberg. This provides a relatively simple ice-structure interaction that is used to 

demonstrate the analysis. Mechanical response of the system is usually used as a basis for 

assessing structural safety. Mechanical properties of the selected structure contribute to the 

existence of aleatory uncertainties. Probability theories are usually used to model aleatory 

uncertainties (Zarghami & Dumrak, 2021). To consider the aleatory uncertainties on the 

mechanical properties of the structural system, different safety formats should be investigated 

to estimate the capacities of the system (Castaldo et al., 2019). Different safety formats can 

have different material properties values. Probabilistic methods (PM) should also be considered 

as they are able to capture variations in the mechanical behaviors of the structural system. A 

combination of material properties can be assessed in the model so that aleatory uncertainties 

are taken into account (Castaldo et al., 2019). 

The concept of resilience is introduced, where resilience is the ability of a system to withstand 

the occurrence of unwanted events and the ability to restore the system function (Genest, 

Gendron, et al., 2009; Hashemi et al., 2015; Vanem, 2016; Zarei, Ramavandi, et al., 2021). As 

complex systems operating in harsh environments, offshore structures are vulnerable to various 

hazards and high levels of functional unpredictability during their operation lifetimes (Bucelli 

et al., 2018). To maintain their operability, offshore structures need to maintain high levels of 

structural reliability to withstand hazards that can cause disruption. Resilience in offshore 

safety then plays an important role in avoiding catastrophic outcomes due to both natural and 

man-made extreme events. Resilience also ensures offshore structures maintain their 

performance after a disruptive event. Impact from a drifting iceberg will affect the resilience 

of a structure. There have been several past studies on resilience assessment of structures. 

However, studies on the resilience of structures subjected to ice load have not been publicly 

reported. Most resilience assessment for natural hazards is focused on bridges, houses or 
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commercial buildings under wind, or seismic loads (Xu et al., 2020). Cai et al. (2021) 

developed a novel resilience evaluation methodology that combined a Markov model and 

dynamic Bayesian networks. They concluded that the assessment of a system’s ability to absorb 

external disruptive events was improved. Cheng et al. (2021) and Kammouh et al.  (2020) used 

Bayesian Networks to develop a resilience model. Kammouh et al.  (2020) concluded that a 

Bayesian network can handle both static and dynamic systems and assist in evaluating 

resilience. While Cheng et al. (2021) concluded that the model was effective for multi hazards 

scenario. Francis & Bekera (2014) provided a resilience framework and literature review for 

civil infrastructure. They introduced management activities and socio-ecological aspects in 

their framework. Stochino et al. (2019) assessed resilience of a bridge subject to earthquake 

load. They studied absorptive, restorative and adaptive capacities using structural-based 

approaches and evaluated system performance. Qeshta et al. (2019) provided a resilience 

assessment of bridges under wave forces. They concluded that their existing model for 

assessing resilience can be expanded to account for more hazards. Poulin & Kane (2021) 

developed infrastructure resilience curves by providing a common vocabulary for both 

practitioners and researchers to design and assess infrastructure resilience. Zhang et al. (2021) 

divided resilience evaluation into degradation process and recovery process. The assessment 

methodology for resilience was a combination of a finite element method and a dynamic 

Bayesian network. The quantification of resilience in energy systems was also attempted in 

many recent publications. Examples include Chen et al., (2021); Senkel et al., (2021); Zeng et 

al., (2021). 

Ning et al. (2019) and Xu et al. (2020) developed a matrix-based resilience quantification for 

offshore platforms considering many types of structural failure mechanisms. Resilience 

assessment has also been studied in the nuclear industry. Carvalho et al. (2008) proposed a 

framework to analyze micro incidents during nuclear power plant operations. The framework 
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provides a mechanism for systemic and critical analysis to assess resilience of socio-technical 

critical systems. Kim et al. (2018) proposed a resilience model for nuclear power plant based 

on the Model of Resilience in Situation. Statistical analysis was performed to examine the 

relations in the resilience models and to validate the developed quantitative model. The method 

provided a new approach for safety assessment of nuclear power plants. Bhattacharya & Goda 

(2016) considered the addition of an offshore wind farm to increase seismic resilience of 

nuclear power plants. Based on their brief study, the existence of a wind farm can provide 

emergency backup power to a nuclear power plant so that it can avoid catastrophic 

consequences. For wind power plants, Afgan & Cvetinovic (2010) developed a resilience index 

that can be used as a diagnostic tool to asses potential hazards. Qin & Faber (2019) proposed a 

novel resilience analysis of wind turbine parks to optimize the decisions on asset integrity 

management. Resilience performance characteristics of a wind energy park were quantified to 

help identify priority in the ranking of decision alternatives. Dui et al. (2021) investigated 

resilience of maritime transport systems based on the minimum residual optimization model. 

This model could provide valuable information to guide the recovery process. Hu et al. (2021) 

developed a framework to assess marine LNG offloading systems based on an Infrastructure 

Resilience-oriented Modelling Language (IRML). Abaei et al. (2022) developed a machine 

learning-based model to assess resilience of an unattended machinery plant (UMP). The 

framework provides important information to evaluate uncertainties and predict events that 

cause increased risk in marine engine rooms. 

Zhang et al. (2018) quantified resilience of a large and complex metro network by calculating 

a vulnerability and recovery rate using unifying metrics and model. Yin et al. (2022) developed 

a hybrid knowledge-based and data-driven approach to quantify resilience of urban rail 

systems. This approach was able to prioritize a maintenance task that could eventually improve 

the system’s resilience. Yodo & Wang  (2016) developed a general framework to quantify 
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resilience based on Bayesian Networks (BNs). This framework was implemented for an electric 

motor supply chain system and concluded that the BN (Kabir et al., 2019; Taleb-Berrouane et 

al., 2017; Zarei et al., 2022) contributed to better prediction of the overall resilience of a system. 

Taleb-Berrouane and Khan, 2019 (Dawuda et al., 2021; Taleb-Berrouane, Khan, Eckert, et al., 

2019; Taleb-Berrouane et al., 2021; Taleb-berrrouane, 2019) (Kamil et al., 2019; M. Taleb-

Berrouane, Khan, & Kamil, 2019; Talebberrouane et al., 2016) assessed the resilience of 

pipeline systems against microbiologically-influenced corrosion using Petri-nets. Yang et al. 

(2020) and Taleb-Berrouane et al. (2020) proposed a combination of Petri-nets and Bayesian 

networks present dependencies between influencing factors Joyce et al. (2018) assessed the 

resilience of bridges under combinations of loads caused by flooding. In this work, risk was 

defined as the product of hazard and vulnerability, where vulnerability is defined as the product 

of exposure, sensitivity, and resilience. In addition to this, time-variant reliability of a structure 

is incorporated into the resilience model. Qian et al. (2021) developed a time-variant reliability 

method based on a multiple response Gaussian process and subset simulation for a small failure 

probability problem. This method was effective for both low and high dimensional problems. 

Bhardwaj et al. (2022) used a Bayesian network probabilistic approach to quantify reliability 

of two conceptual subsea processing systems. Yang et al. (2022) developed a novel reliability 

approach based on a Gamma stochastic resistance degradation model. The method combined a 

spatial degradation and a non-stationary degradation process for an aging structure. Cao et al. 

(2022) and Wang et al. (2021) used a single-loop reliability analysis approach based on the 

Kriging model to deal with time-dependent reliability problems. Castaldo et al. (2017) 

implemented a computational probabilistic approach to estimate the time-variant reliability and 

expected lifetime of a deteriorating reinforced concrete bridge subjected to chloride-induced 

corrosion. This approach was able to provide optimal time intervals for maintenance activities 

to extend the bridge’s lifetime. Structural reliability of offshore structures subjected to time 
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varying environments were also studied and the work demonstrated that the time-variant 

reliability approach provided better understanding in capturing the failure probability of the 

structures (Bai et al., 2016; Idris et al., 2017;  Kim et al., 2014; Wang et al., 2022; X.-Y. Zhang 

et al., 2021; Zhang & Lam, 2015; Zuniga et al., 2021). Furthermore, in order to consider 

dependence between variables, (Guo et al., 2019; Joyce et al., 2018; Li & Zhang, 2020; Liu & 

Chen, 2020; Lü et al., 2020; Wang et al., 2018; Yoo & Cho, 2018) incorporated copula 

functions in their resilience quantification. However, the quantification of resilience of an 

offshore structure subjected to ice loading remains a challenging and less explored research 

topic. 

This chapter provides an implementation of a more robust approach to assess resilience of a 

structure subject to an iceberg load. As a data-driven approach, it relies on recorded historical 

data to represent environmental condition from a field (Seghier et al., 2021; Kamil et al., 2021). 

Correlated wind and wave data are generated using copula functions to eliminate the 

independence assumption in the estimate of the drifting velocity of an iceberg.  

The remainder of this chapter is organized as follows. Section 4.2 presents the proposed 

methodology and the basic theories used in developing the methodology. Application of copula 

models is discussed in Section 4.3. Results and discussion from the estimation of iceberg load 

and structural resilience quantification are presented in Section 4.4. The concluding remarks of 

this chapter are presented in Section 4.5. 

4.2 Research Methodology 

The methodology used to assess the resilience of an offshore structure subject to iceberg 

collision is illustrated in Fig. 4.1. Correlated environmental parameters are generated using 

Copula functions. The iceberg collision force is estimated by assuming wind speed and wave 

height are dependent.  
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4.2.1 Copula-based dependence model 

A copula is used to construct multivariate distribution by joining or ‘coupling’ univariate 

marginal distributions. A copula is advantageous as it is possible to construct a multivariate 

distribution from different marginal distributions. The definition of copula was introduced in 

Sklar’s Theorem (Nelsen, 2006). 

Let H be an n-dimensional distribution function with marginal distribution 𝐹1, 𝐹2, … , 𝐹𝑛, then 

there exists a copula C such that. 

𝐻(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹(𝑥2). . . , 𝐹(𝑥𝑛)) (4.1) 

 

Fig. 4.1. General framework for copula-based resilience assessment 
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Based on Sklar’s Theorem, it can be seen that a copula model does not consider the 

characteristic of the univariate marginal distributions in the multivariate model, as the copula 

model is a multivariate model for the original variables, after being transformed into a 

cumulative distribution function with a uniform distribution function (Zhang et al., 2018). A 

marine environment is a complex system with many natural factors arising from the ocean and 

atmosphere. Ocean parameters have uncertainties due to their complex dependencies. One of 

the most challenging tasks when modelling these systems is to understand the nonlinear and 

asymmetric dependencies that exist between ocean parameters. These complex dependencies 

between ocean parameters need to be captured, especially when used to assess the performance 

of an offshore structure.  Zhang et al. (2015) provided a comparison of approaches to 

conditional joint probability to model ocean parameters using the Nataf transformation and 

copula functions. Copula functions were shown to better describe the nonlinear dependencies 

between ocean parameters. Dong et al. (2017) also mentioned that copula functions were able 

to better present a joint design value between two ocean parameters. Considering these 

findings, the use of copula functions to model ocean parameters should provide a better 

approach and interpretation. Copula functions are also able to be incorporated into other 

modelling tools as mentioned in the previous section. 

In this chapter, the Archimedean copula family and asymmetric copula functions were used to 

model the environmental parameters. Ramadhani et al., (2021) discussed the advantages of 

copula functions for modelling environmental parameters and the construction of asymmetric 

copula functions. Asymmetric copulas are constructed by applying the product rule. This rule 

is implemented by introducing individual functions and the selection of base copulas. In this 

work Archimedean copulas are selected, as discussed in our previous work (Ramadhani et al., 

2021). Fig. 4.2 shows the overall framework used to identify a joint probability distribution 
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between two environmental parameters using copula functions. Table 4.1 shows the equations 

needed to perform copula modelling. 
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Table 4.1 Equations used in copula modelling 

Method Equation Parameter description References 

Data transformation 

𝑈𝑖 =
𝑅𝑖

𝑛+1
=

𝑛𝐹𝑖(𝑋𝑖)

𝑛+1
 (4.2) 

 

where, 

𝐹𝑖(𝑡) = ∑
1

𝑛
(𝑋𝑖 ≤ 𝑡)

𝑛
𝑖=1  (4.3) 

 

n : the number of data 

𝑋𝑖: observed data 

𝑅𝑖: ranking of the data 

(Genest, Rémillard, et al., 

2009) 

Dependence measurement 

 

Linear Pearson correlation: 

𝜌(𝑋, 𝑌) =
𝐶𝑜𝑉(𝑋,𝑌)

√𝑉𝑎𝑟(𝑋)√𝑉𝑎𝑟(𝑌)
 (4.4) 

 

Spearman’s rho (𝜌𝑠) 

 (4.5) 

 

Kendall’s tau (𝜏) 

 (4.6) 
 

X,Y: Observed data 

u,v: transformed data in  

copula domain 

(Yi Zhang et al., 2018) 

 

 

 

(Hashemi et al., 2015) 

 

 

 

(Nelsen, 2006) 

Asymmetry test 
 

(4.7) 

 

 
(Bang Huseby et al., 2013; 

Durante & Salvadori, 2009; D. 
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Method Equation Parameter description References 

Zhang et al., 2018; Yi Zhang et 

al., 2019) 

Individual function 𝑔𝑗𝑖(𝑣) = 𝑣
𝜃𝑗𝑖for j = 1,…,k, (4.8) 

 

𝜃𝑗𝑖 ∈ [0,1]  

∑ 𝜃𝑗𝑖 = 1
𝑘
𝑗=1  

(Liebscher, 2008) 

Loglikelihood estimation 

𝐿(𝜃) = ∑ 𝑙𝑛𝑐(𝑢1, 𝑢2; 𝜃)
𝑁
𝑖=1  (4.9) 

𝜃~= 𝑎𝑟𝑔𝑚𝑎𝑥𝐿(𝜃) (4.10) 

 

𝜃~: estimated parameter 

𝐿(𝜃): loglikelihood 

function 

(Lü et al., 2020) 

Akaike Information 

Criterion (AIC) 

 

𝐴𝐼𝐶 = −2𝐿(𝜃~) + 2𝑘 = −2∑𝑙𝑛𝑐(𝑢1𝑖 , 𝑢2𝑖; 𝜃~)

𝑁

𝑖=1

+ 2𝑘 (4.11) 

 

k: the number of 

estimated parameter 

(D. Li & Tang, 2014; Lü et al., 

2020) 
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Fig. 4.2. Framework for copula modelling 
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4.2.2 Iceberg collision force 

Ice load is usually the most significant uncertainty for structural design in arctic regions. The main 

challenge is in identifying appropriate ice conditions such as ice concentration, ice thickness, ice 

drift, ridges, etc. for pack ice or berg occurrence and berg size for icebergs. In either case ice 

strength properties also need to be estimated. Structural performance under ice load is usually 

estimated for several possible ice failure mechanisms such as ice crushing, bending and buckling. 

The interaction between the failing ice and the structure is then analyzed. Modelling the dynamic 

interaction between moving ice and a stationary structure is a complex process. Ice load for 

crushing scenarios is estimated by multiplying a nominal contact area and the nominal ice-induced 

pressure (Thijssen et al., 2014). In this chapter, an iceberg collision leading to a pure ice crushing 

failure scenario is taken as the example case.  

In cases where the ice is a continuous sheet, and the interaction occurs over an extended period of 

time, a fundamental mode of vibration is usually assumed as the basic response of a structure. 

Specifically, there are three different ways for a vertical structure to respond against the advancing 

crushing ice: intermittent crushing, frequency lock-in and continuous brittle crushing (Hoek, 

2021). Intermittent crushing is developed when low ice velocities are present and causes structure 

to possibly vibrate around its equilibrium position. If ice velocities are slightly higher, frequency 

lock-in can be developed that causes structural vibrations limited only by the damping in the 

system. This response can cause structural fatigue due to many repetitions that can occur. 

Continuous brittle crushing is developed under higher ice velocities that can result in induced 

forces on the structure that are relatively low.  
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Since a single-impact iceberg interaction is assumed in this chapter, iceberg drift velocity is 

expected to be low and there is no potential for continuous structural vibration. The ice force acting 

on the structure is assumed to vary linearly and elastically along with the deformation of the ice 

until it stops (Venturella et al., 2011). 

Iceberg load on a structure is estimated using an energy balance where the initial kinetic energy of 

the iceberg is equated to the energy dissipated through ice failure (Foschi et al., 1996). The iceberg 

will stop when its kinetic energy is dissipated through ice crushing and structural deformation. The 

iceberg in this chapter is assumed to be circular in plane and ellipsoidal in elevation as shown in 

Fig. 4.3. Although iceberg shape in real life is complex, iceberg characterization is generally 

represented by the water line length, L. This variable is commonly cited in the literature (Fuglem 

et al., 1996). The offshore structure here is also assumed to have a simple shape, represented by a 

single vertical cylindrical member. 

 The iceberg collision force acting on the structure is estimated by considering the presence of 

wind and waves. The iceberg force on the structure, F(x) can be estimated using a linearized 

equation, assuming iceberg will be stopped at a value of x. 

𝐹(𝑥) = 𝐾𝑥 (4.12) 

Where K is the slope of the force-penetration relationship (Foschi et al., 1996) 
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Fig. 4.3. Sketch of iceberg-structure interaction geometry from (a) top view and (b) side view 
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Fig. 4.4. Sketch of dynamic equilibrium between iceberg and structure induced by wave and 

wind force  

Penetration of the iceberg can be estimated using the dynamic equilibrium of the iceberg as shown 

in Fig. 4.4, where iceberg drift is assumed to be influenced by wave and wind forces (Foschi et al., 

1996). 

𝑀(1 + 𝐶𝑚)�̈� = −𝐹(𝑥) + 𝐹𝐷 + 𝐹𝐴 (4.13) 

 

Where 𝐹𝐴 is the wind force, and M is the mass of the iceberg. Equation 4.13 is set with initial 

conditions when x = 0 and �̇� = 𝑉 at t = 0. V is the drift velocity of the iceberg induced by the wind 

and wave drift forces.  Wave drift force is then estimated using  (Fuglem et al., 1996) 

𝐹𝐷 =
1

2
𝐶𝐷𝜌𝑤𝑔𝐷1𝐻

2 (4.14) 

Where, 

𝐶𝐷 is the wave drift coefficient for the given iceberg shape 

𝜌𝑤 is the density of water (kg/m3) 
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g is the acceleration due to gravity (m/s2) 

𝐷1 is a characteristic dimension of the iceberg (m) 

H is the regular wave height (m) 

 

When applying the wave drift model, a spherical iceberg shape is assumed so 𝐷1 is set to be the 

water line length L.  

Ice drift velocity (V) is affected by the combination of wind, wave and current. First, the combined 

wind and wave force on the iceberg is investigated. Then the velocity of the iceberg relative to the 

current speed is estimated so that the water drag force is in equilibrium with the wind and wave 

drift force. 

To calculate the velocity of water (𝑈𝑤), it assumed that wind drag force (𝐹𝐴) and wave force (𝐹𝐷) 

act in the same direction. The drift velocity of the iceberg is the sum of 𝑈𝑤 and the current velocity 

(𝑈𝐶) 

𝑉𝑖 = 𝑈𝑤 +𝑈𝐶  (4.15) 

𝑈𝑤 can be calculated by setting the water drag force (𝐹𝑤 = 𝐹𝐴 + 𝐹𝐷) (Fuglem et al., 1996)  

 The wind drag force was calculated as  (Fuglem et al., 1996) 

𝐹𝐴 =
1

2
𝐶𝐴𝜌𝐴𝐴𝐴𝑈𝐴

2 (4.16) 

Where, 

𝐶𝐴 is the wind drag coefficient for the given iceberg shape 

𝜌𝐴 is the density of air (kg/m3) 
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𝐴𝐴 is the projected are of the iceberg perpendicular to the wind direction (m2) 

𝑈𝐴 is the wind velocity (m/s) 

𝐴𝐴 can be estimated as the mean above water projected area (0.115 L2); L is the water line length, 

and 𝐶𝐴 can be taken as 1.0. 

The water drag force is calculated using (Fuglem et al., 1996) 

𝐹𝑤 =
1

2
𝐶𝑤𝜌𝑤𝐴𝐵𝑈𝑤

2 (4.17) 

Where, 

𝐶𝑤  is the water drag coefficient for the given iceberg shape (assumed to be 1) 

𝜌𝑤 is the density of water (kg/m3) 

𝐴𝐵 is the below water projected area (m2) of the iceberg perpendicular to its direction of movement 

relative to the water. It is usually taken as 0.612L2 

𝑈𝑤 is the velocity of the water relative to the iceberg (m/s) 

4.2.3 The concept of resilience assessment 

Resilience has been defined in various ways. It is the ability of a system to withstand adverse 

conditions and to recover quickly (Sarwar et al., 2018). (Yodo & Wang, 2016) defined resilience 

as a systems’ ability to autonomously recover from a disruptive event or adjust easily to changes. 

(Aven, 2011; Ayyub, 2015) provided a general definition; resilience is the ability of a system to 

prepare and adapt to changing conditions and to withstand and recover from disruptive events. 

From this definition, (M Taleb-Berrouane & Khan, 2019) then defined resilience of a process 

system as its ability to cope with disruptive events and avoid failures. (Yarveisy et al., 2020) 

concluded resilience is the ability of a system to absorb disruptive events, continue its operation 
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under a degraded state and recover to previous or a new state. From all these definitions, there are 

three main capacities when assessing resilience of a system: 

1. Absorptive capacity: The ability of a system to withstand a given stress or demand through 

adaptive mechanisms. 

2. Adaptive capacity: The effect of control actions that will level off the performance of a 

system and allow restoration process to a new stable level. 

3. Restorative capacity: Corrective actions taken to bring back the system to the previous or 

new states. 

To quantify resilience, the following equation shows the general approach (Ayyub, 2015; 

Bonstrom & Corotis, 2016; M Taleb-Berrouane & Khan, 2019) 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑅) = ∫
𝑄(𝑡)

𝑇𝑅
𝑑𝑡

𝑇𝑅

𝑇0

 (4.18) 

Where Q(t) is the performance of a system, T0 is the time when the disruptive event occurs, and 

TRE is the time to complete restoration of system performance. 

However, to assess resilience of an offshore structure subjected to iceberg load, a more robust 

approach is needed to define system performance on a resilience metric.  

(Yarveisy et al., 2020) developed a simple yet robust approach to assess resilience in term of 

reliability. 
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Fig. 4.5. Resilience metric in term of reliability  

 

Fig. 4.5 shows initial and final reliability denoted by 𝑅0 and 𝑅𝑓 at their respective times 𝑇0 and 𝑇𝑓. 

𝑅𝑙1
′  and 𝑅𝑙2

′  represent the disrupted steady state reliability at times 𝑇𝑙1 and 𝑇𝑙2. While, reliability levels 

in the absence of disruption are denoted by 𝑅𝑙1 and 𝑅𝑙2. (Yarveisy et al., 2020) then developed an 

equation to quantify resilience as follows  

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = 𝐴𝑏 + 𝐴𝑑 ∗ 𝑅𝑒𝑠 − 𝐴𝑏 ∗ 𝐴𝑑 ∗ 𝑅𝑒𝑠 (4.19) 

Where,  

a. The Absorptive Capacity (Ab): Defined as the ratio of residual reliability to the initial 

reliability at the time of the disruptive event (Bougofa et al., 2021; Mohammed Taleb-

Berrouane et al., 2019). It can be estimated as (Yarveisy et al., 2020) 

R
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𝐴𝑏 = (
𝑅𝑙1
′

𝑅0
) ∗ (1 + (

𝑅0 −𝑅𝑙1
𝑅0

)) (4.20) 

Where (1 + (
𝑅0−𝑅𝑙1
𝑅0

)) is applied to account for the aging effect and associated reliability 

loss during the failure phase. 

b. The Adaptive Capacity (Ad): Defined by the ratio of operation duration in the disrupted 

state to the total period from disruption to a new stable state condition. This capacity can 

be estimated using (Yarveisy et al., 2020) 

𝐴𝑑 = 1 − (
𝑇𝑙2 − 𝑇𝑙1
𝑇𝑓 − 𝑇0

) (4.21) 

c. The Restorative Capacity (Res): Defined as the slope of the recovery and estimated using 

(Yarveisy et al., 2020) 

𝑅𝑒𝑠 =

𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑅′𝑓 −𝑅𝑙2

′

(
𝑇𝑓 − 𝑇𝑙2
𝑇𝑓 − 𝑇0

)
]

90
∗ (
𝑅′𝑓
𝑅𝑓
) ∗ (

𝑇𝑙2 − 𝑇0
𝑇𝑓 − 𝑇0

) 

(4.22) 

The main feature of this approach is the estimation of reliability of the structure, which is generally 

assumed to follow a Poisson process (Rózsás & Mogyorósi, 2017). Loads are applied at random 

and thus the number of loads per unit time follows the Poisson process and the probability of n 

loads occurring during time, t, can be estimated using 

𝑃𝑛(𝑡) =
(𝛼𝑡)𝑛𝑒(−𝛼𝑡)

𝑛!
, 𝑛 = 0,1,2,… (4.23) 

Where 𝛼 is the mean number of loads per unit of time. Thus the reliability can be calculated as 

follows (Ebeling, 2004) 

𝑅(𝑡) = 𝑒−(1−𝑅)𝛼𝑡 (4.24) 
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Static reliability (R) can be estimated using a limit state assuming random stress and constant 

strength for the structure. (Ebeling, 2004; X. Li & Zhang, 2020; Wei et al., 2015) 

4.3 Application of the Model 

To demonstrate the estimation of an iceberg collision load, considering correlated wave and wind 

variables, ocean data was retrieved from the Smart Atlantic website (ERDDAP, n.d.). The data 

were collected at the mouth of Placentia Bay, Newfoundland and Labrador (58.4160N 

041.7168W) which has a water depth of 230 m. The data used in this chapter were extracted 

between January 1st 2010 and December, 31st 2020 and were recorded hourly. API 2A-WSD 

specifies that environment data might have a specific type of relationship that should be considered 

(American Petroleum Institute, 2002). According to this standard, the common marine 

environmental variables that have relationships are wind speed/wave height, wave height/wave 

period, wave height/current speed, and wind speed/current speed. Thus, four ocean parameters 

were selected: wave height (meter), wave period (second), wind speed (meter per second), and 

current speed (millimeter per second). Three of these ocean parameters: wave heights, wind speed 

and current speed, also play important roles in estimating the drifting velocity of an iceberg (Foschi 

et al., 1996).    

In order to select representative months including iceberg existence, data recorded by the 

International Ice Patrol (IIP) were also extracted.  The data were extracted from January 2017 to 

December 2020 (International Ice Patrol, 2020) 
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Fig. 4.6. Iceberg sighting (IIP) 

Fig. 4.6 shows that iceberg season is effectively from March to July each year with April or May 

the peak of iceberg sightings. Thus, environmental variables from March to July were used to 

correspond with the iceberg season. Scatter plots for the observed data sets can be seen in Fig. 4.7. 

To model the selected environmental variables using copulas, the dependence between wind speed 

and wave height is investigated. The dependence measurements considered in this chapter include 

the linear Pearson coefficient, Spearman’s rho and Kendall’s tau. A measure of asymmetry is also 

presented in Table 4.2. 
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Fig. 4.7. Scatter plots between wind speed and wave height in (a) copula domain and (b) original 

domain 

 

Table 4.2 Dependence Measurement 

Correlated 

Variables 

Pearson 

coefficient 

Spearman’s 

rho 

Kendall’s tau Measure of 

asymmetry 

Wind speed - 

Wave height 
0.6156 0.5599 0.3994 0.0133 

 

From Table 4.2, wind speed and wave height from the data sets are correlated. Thus, copula 

functions will be advantageous in considering the dependence between these environmental 

variables. 

Before proceeding to copula modelling, the marginal distribution for each ocean parameter is also 

investigated. A group of probability distributions is selected to determine the best-fit model for 

each data stream. These distributions include Weibull, Normal, Lognormal, Rayleigh, Extreme 
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Value, Exponential and Gamma. The Akaike Information Criterion (AIC) is used to select the best-

fitted model. The lowest AIC score indicates the best model. 

Table 4.3 Marginal distributions and statistical parameters for wind speed and wave height 

 Wind Speed Wave Height 
AIC Values 

Weibull Inf Inf 

Normal 104,759 66,681 

Lognormal Inf Inf 

Rayleigh 102,322 61,718 

Extreme Value 112,824 79,873 

Exponential 114,566 70,668 

Gamma 101,831* 58,599* 

Statistical Parameters 
 (m/s) (m) 

Mean 8.3677 2.5274 

Std. Deviation 4.2121 1.4911 

Shape 3.9465** 2.8732** 

Scale 2.1203** 0.8797** 

*Indicates the best-fit marginal distribution 

**Obtained from the best-fit marginal distribution 

 

Table 4.3 shows AIC values for all selected marginal distribution functions for wind speed and 

wave height along with their statistical parameters. Both wind speed and wave height are best fitted 

by the Gamma distribution.  
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4.3.1 Copula modelling 

The parameter estimates for all possible symmetric and asymmetric copulas for correlated wind 

speed and wave height are shown in Table 4.4. The values of the parameter estimates are obtained 

using the Maximum Log-Likelihood Estimation (MLE) 

Table 4.4 Copula parameters estimation 

Copula type Copula function Parameter estimate AIC  

Symmetric copula Clayton 𝜸 = 𝟏. 𝟎𝟎𝟒𝟗 95433 

Gumbel 𝛾 = 1.6254 95903 

Frank 𝛾 = 4.0046 95548 

Asymmetric 

copulas  

Clayton-Gumbel 

Type-I 

𝛾1 = 1.7933  

𝛾2 = 1.4285 

78521 
𝜃11 = 0.9953𝜃12 =

0.8232 

𝜃21 = 0.0047𝜃22 =

0.1768 

Clayton-Frank 

Type-I 

𝛾1 = 9.0047𝛾2 = 8.4484 

78579 

𝜃11 = 0.0470𝜃12 =

0.4790 

𝜃21 = 0.9530𝜃22 =

0.5210 

Gumbel-Frank 

Type-I 

𝜸𝟏 = 𝟏.𝟗𝟖𝟔𝟗𝜸𝟐 =

𝟏𝟗.𝟏𝟗𝟏𝟖 

78504 
𝜽𝟏𝟏 = 𝟎.𝟗𝟕𝟕𝟔𝜽𝟏𝟐 =

𝟎.𝟔𝟐𝟗𝟕 

𝜽𝟐𝟏 = 𝟎.𝟎𝟐𝟐𝟒𝜽𝟐𝟐 =

𝟎.𝟑𝟕𝟎𝟑 

 

Table 4.4 shows that Gumbel-Frank Type-I is the best fitted copula to model wind speed and wave 

height with the lowest AIC score. Thus, in order to estimate the iceberg load on the structure and 
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the resilience, correlated wind and wave data are generated using the Gumbel-Frank Type-I copula 

to best capture the wind-wave dependence. 

4.4 Results and Discussion 

4.4.1 Iceberg force 

A cylindrical structure with diameter of 100 m is used in this example calculation of iceberg force, 

considering a water depth of 200 m. It remains a challenge to know the exact dimension of an 

iceberg. Thus, in this chapter, a key variable for water length line, L, is set to be 100 m with the 

iceberg mass of 1 million tons. The immersed part of the structure is set to be 200 m. Iceberg 

collision force is then calculated using the equations in previous sections. Firstly, drift velocity is 

estimated from the generated correlated wind speed and wave height. Below are the estimated 

values for iceberg drift velocity. 

 

 

Fig. 4.8. Frequency distribution for iceberg drift velocity 
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Fig. 4.8 shows that the estimated drift velocity of the iceberg ranges between 0.3 to 0.35 m/s with 

an average of 0.34 m/s. This result is expected as only smaller bergs may have significant influence 

on their drift velocity induced by wave and wind action. But in larger bergs, high velocity is 

unlikely to be found (Colbourne, 2000). While the iceberg force calculated from these initial values 

as follows 

 

Fig. 4.9. Estimated iceberg force  

 

Fig. 4.9 shows that the estimated iceberg force is increasing with the increase in time. (Foschi et 

al., 1996) states that an iceberg will be stopped after few meters of penetration. Fig. 4.10 shows 

the summary of the calculated time for an iceberg to stop after reaching its maximum penetration. 

It is found that the average time for an iceberg to stop is 38.86 seconds from the generated 

correlated wind speed and wave height.  
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Fig. 4.10. Frequency distribution of time for iceberg to stop at maximum penetration 

4.4.2 Resilience assessment 

As mentioned in the previous section, resilience is assessed in terms of reliability of the structure. 

To calculate reliability, the strength capacity is taken as the yield strength of a steel jacket leg and 

typically assumed to be 700 MPa (Health and Safety Executive UK, 2003). Whereas the demand 

on the structure is taken as a function of the iceberg load. The function of iceberg load is derived 

by considering a 100-year return period of correlated wave height and wind speed data modeled 

using copula functions. From the simulation, the estimated iceberg load follows a general extreme 

value probability distribution as shown in Fig. 4.11 below 
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Fig. 4.11. Probability distribution of estimated iceberg loads with data taken as load in MN 

 

Several scenarios are developed to illustrate the quantification of resilience. Initial reliability 𝑅0 is 

taken as 1, assuming there is no iceberg-structure interaction during the first year. Then, five 

iceberg-structure interactions per year are assumed to simulate the reliability of the structure. Three 

different values for reliability at a disrupted steady state are also selected, 0.99, 0.95 and 0.90. 

Ideal recovered reliability, 𝑅𝑓, is set to be equal to the initial reliability. Different new post-

recovery reliability states (𝑅′𝑓) are also chosen to simulate the impacts on the estimated resilience 

assessment. For recovery period, 𝑇𝑓 − 𝑇𝑙2, the completion of this overall mitigation process is 

assumed to take approximately 1 year. A resilience curve for the reliability level at three different 

disrupted steady states is shown in Fig. 4.12. 
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(a) 

 

(b) 
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(c) 

Fig. 4.12. Resilience curve with Reliability at disrupted steady state (a) 0.99, (b) 0.95, (c) 0.90 

and varied post-recovery reliability states 

The values of Absorptive capacities for different reliability levels at the disrupted event are 

presented in Table 4.5. 

Table 4.5 Absorptive capacity of offshore structure subjected to ice load 

No 𝑅0 𝑅𝑙1 𝑅𝑙1
′  Ab 

1. 1.000 0.999 0.990 0.991 

2. 1.000 0.999 0.950 0.951 

3. 1.000 0.999 0.900 0.901 

 

Where the adaptive capacity values at different reliability levels at the disrupted event are also 

presented in Table 4.6. 
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Table 4.6 Adaptive capacity of offshore structure subjected to ice load 

No 𝑇0  

(year) 

𝑇𝑙2 − 𝑇𝑙1  

(year) 

𝑇𝑓−𝑇𝑙2  

(year) 

Ad 

1. 1.000 1.000 1.000 0.751 

2. 1.000 1.000 1.000 0.918 

3. 1.000 1.000 1.000 0.957 

 

Table 4.7 shows the estimated restorative capacity values for different post-recovery reliability 

target with reliability level at disrupted event equal to 0.9.  

Table 4.7 Restorative capacity of offshore structure subjected to ice load for  

No 𝑅0 𝑅𝑙2
′  𝑅𝑓 𝑅′𝑓 

𝑇0  

(year) 

𝑇𝑙2 

(years) 

𝑇𝑓 

(years) 
Res 

1 1.000 0.900 1.000 1.000 1.000 23.072 24.072 0.013 

2 1.000 0.900 1.000 0.990 1.000 23.072 24.072 0.012 

3 1.000 0.900 1.000 0.980 1.000 23.072 24.072 0.011 

4 1.000 0.900 1.000 0.970 1.000 23.072 24.072 0.011 

5 1.000 0.900 1.000 0.960 1.000 23.072 24.072 0.009 

6 1.000 0.900 1.000 0.950 1.000 23.072 24.072 0.008 

 

Thus, the estimated resilience for different scenarios is presented in Table 4.8. 

Table 4.8 The estimated resilience with varied capacities and post-recovery states 

No 𝑅𝑙1
′  𝑅′𝑓 Ab Ad Res Resilience 

1. 
0.990 

1.000 
0.991 0.751 

0.013 0.991 

2. 0.990 0.012 0.991 

3. 

0.950 

1.000 

0.951 0.918 

0.013 0.952 

4. 0.990 0.012 0.952 

5. 0.980 0.011 0.951 
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6. 0.970 0.011 0.951 

7. 0.960 0.009 0.950 

8. 

0.900 

1.000 

0.901 0.957 

0.013 0.902 

9. 0.990 0.012 0.902 

10. 0.980 0.011 0.902 

11. 0.970 0.011 0.901 

12. 0.960 0.009 0.901 

13. 0.950 0.008 0.901 

 

Fig. 4.13 shows different scenarios to assess resilience of the monopile structure. Three different 

reliability levels at the disrupted steady state are selected. The reliability of the system is restored 

to better steady states, 𝑅𝑓, or at least the same level as their 𝑅′𝑙1 for scenario 0.95 and 0.99. From 

Table 4.5, it is shown that the value of Absorptive capacity is not significantly different from the 

value of reliability at the disrupted steady state 𝑅′𝑙1. During the stable disrupted operation, 𝑅′𝑙2 −

𝑅′𝑙1, the adaptive capacity of the system is higher when 𝑅′𝑙1 gets smaller as seen in Table 4.6.  

Table 4.7 shows that with the same level of 𝑅′𝑙1, the higher target recovered reliability 𝑅𝑓, 

restorative capacity is also higher. For a comparison, with 𝑅𝑓 = 𝑅0 = 1, where the system is 

restored to the initial reliability, the estimated resilience will become higher when the value of 

reliability at the disrupted steady state, 𝑅′𝑙1, is higher. This shows that the resilience metric used 

in this chapter significantly depends on the value of absorptive capacity. To validate this result, 

different recovery times from 2-5 years are selected to illustrate their impact on the resilience 

quantification.  Fig. 4.13 shows resilience curves for different recovery times with the same post-

recovery reliability target and the same reliability level at the disrupted steady state. 
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Fig. 4.13. Resilience curve with varied recovery times and reliability at disrupted steady state 

equal to 0.90 

 

Table 4.9 Resilience assessment with respect to different recovery times (𝑇𝑓 − 𝑇𝑙2) 

No 𝑅𝑙1
′  

𝑇𝑓 − 𝑇𝑙2 

(years) 
Ab Ad Res Resilience 

1. 

0.9000 

2.0000 0.9009 0.9585 

0.0045 

0.9017 

2. 3.0000 0.9009 0.9601 0.9015 

3. 4.0000 0.9009 0.9616 0.9014 

4. 5.0000 0.9009 0.9631 0.9013 

5. 

0.9500 

2.0000 0.9509 0.9246 

0.0012 

0.9511 

6. 3.0000 0.9509 0.9299 0.9510 

7. 4.0000 0.9509 0.9345 0.9510 

8. 5.0000 0.9509 0.9385 0.9510 

9. 

0.9900 

2.0000 0.9910 0.8004 

0.0001 

0.9910 

10. 3.0000 0.9910 0.8336 0.9910 

11. 4.0000 0.9910 0.8573 0.9910 
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12. 5.0000 0.9910 0.8752 0.9910 

 

From Table 4.9 and Fig. 4.13, it is shown that even though different recovery times are selected 

for different reliability levels at the disrupted steady state, the value of resilience does not differ 

significantly from its absorptive capacity. Eq. 4.19 shows that restorative capacity is dependent on 

both absorptive and adaptive capacity. Another comparison is presented with respect to different 

periods during stable disrupted operation, 𝑇𝑙2 − 𝑇𝑙1. 

Table 4.10 Resilience with different periods of stable disrupted operation 

No. 𝑅𝑙1
′  𝑅′𝑓 

𝑇𝑙2 − 𝑇𝑙1 

(year) 
Ad Resilience 

1. 

0.9900 1.0000 

2.0000 0.6008 0.9910 

2. 4.0000 0.4294 0.9910 

3. 6.0000 0.3341 0.9910 

1. 

0.9500 1.0000 

2.0000 0.8492 0.9512 

2. 4.0000 0.7379 0.9512 

3. 6.0000 0.6524 0.9512 

1. 

0.900 1.0000 

2.0000 0.9169 0.9020 

2. 4.0000 0.8466 0.9019 

3. 6.0000 0.7863 0.9019 

 

Table 4.10 shows that the adaptive capacity of the system decreases when the period of disrupted 

operation gets longer. However, this does not impact on the assessment of resilience. Its values do 

not differ significantly from the absorptive capacity. This also validates Eq. 4.19 such that adaptive 

capacity also depends on absorptive capacity. Thus, absorptive capacity in this resilience metric is 

found to be the only independent resilience capacity. This absorptive capacity reflects on the 

inherent design of the system or structure to withstand disruptive events, in this case iceberg load. 
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This capacity is influenced by the safety design and physical characteristics of the structure. If 

reliability at a disrupted steady state can be maintained close to the initial reliability, the ability of 

the system to withstand the disruptive events and restore its functionality will be high too. Higher 

absorptive capacity means less effort and resources are necessary to perform restoration on the 

structure. This finding also supports arguments presented by (Yarveisy et al., 2020).  

4.4.3 Model validation 

The Root-Mean-Square error (RMSE) and the mean absolute error values are used to compare the 

performance of the models based on copula models and the model assuming independent joint 

probability. RMSE calculated between empirical data and the selected distribution functions are 

compared in this work.  

Fig. 4.14 shows that the Gumbel-Frank copula has lower RMSE and mean absolute error compared 

to the independent joint distribution approaches. This validates that the ocean parameters are better 

modeled using the copula functions. Copula functions can capture complex dependencies among 

ocean parameters, and it is reflected in the small error values compared to the independent case. 
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Fig. 4.14.  Empirical data plotted against selected distribution functions for wind speed and wave 

height data 

 

4.5 Conclusion 

This chapter presents an implementation of a robust approach to quantify resilience. A simple 

demonstration case study is selected as an offshore structure subjected to iceberg load. The iceberg 

collision force is influenced by both ice parameters and meteorological factors. From the 

meteorological perspective, wave and wind load influence the drift velocity of the iceberg. These 

ocean parameters are found to be correlated and show a slight asymmetrical dependence. 

Assuming independence in evaluating icebergs, drift velocity is thus not recommended. Copula 

functions were applied to model this dependence between wave and wind data. Out of the 

commonly used copula functions, the Gumbel-Frank Type-I was found to best fit the bivariate 

model.  

Resilience is quantified based on a reliability assessment of the structure subjected to the iceberg 

load. Quantification of resilience was found largely dependent on the absorptive capacity. This is 

the only capacity in the resilience metric that is independent compared to the other two capacities. 

Absorptive capacity is critical in a system as a higher level of residual reliability will result in 

better ability to withstand disruptive events and restore functionality. This capacity is the inherent 

physical characteristic of the structure that enables it to withstand disruptive events. Thus, system 

design plays an important role in achieving a high resilience metric. 

The main challenge in this resilience quantification is the assumption of iceberg parameters 

required to estimate ice load and structural reliability in order to estimate all resilience capacities. 

In addition to this, an acceptable level of reliability at the disrupted steady state should also be 
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better quantified. This identification will require involvement from all stakeholders in an 

organization to provide more practical and realistic assumptions. Future work will involve 

managerial aspects in quantifying the resilience of an offshore structure. In addition, broader 

analysis of multi-hazards acting on a structure should be considered.  
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CHAPTER 5  

A MULTIVARIATE MODEL TO ESTIMATE ENVIRONMENTAL LOAD 

ON AN OFFSHORE STRUCTURE 
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Abstract 

Offshore structures such as oil platforms are subjected to significant environmental loads caused 

by wind, waves, and current. The complexity of offshore environment requires robust and reliable 

models to capture dependencies among environmental variables. A vine copula is a powerful tool 

that can be used to construct multivariate models by decomposing the complex structure into a 

series of simple pair copulas. Previous studies have shown that simple and symmetric copulas can 

be used as building blocks to construct vine copula models. In this study, symmetric and 

asymmetric copula functions are considered building blocks to capture all possible dependency 

structures. The c-vine model is then used to estimate the total environmental load on an offshore 

structure. Estimated loads are compared with those using the traditional independent variable 

approach and a multi-Gaussian distribution function-based method. The results reveal that both 

symmetric and asymmetric copula functions can be fitted to build c-vine copula models for the 

trivariate case. C-vine copulas, constructed using asymmetric copulas, provide a better estimation 

of the total environmental load than the independent and multivariate Gaussian methods. The result 

of this study is useful in probabilistic structural analysis of offshore structures for design and 

resilience analysis. 

Keywords: vine copula, environmental load, complex dependency structure, multivariate analysis 

 

5.1 Introduction 

Offshore structures such as oil platforms, drill-ships, and Floating Production, Storage and 

Offloading systems (FPSO) are designed to operate in harsh marine environments. The design of 

offshore structures requires comprehensive knowledge of environmental variables during their 

construction and lifetime (Fazeres-Ferradosa et al., 2018). These structures also operate for long 
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periods of time and this makes them vulnerable to extreme environmental loads (Zhao and Dong, 

2020) and degradation processes (Taleb-Berrouane et al., 2021), which can cause severe damage 

(Yang et al., 2020).  Failure of offshore structures can also be caused by the occurrence of a 

combination of environmental variables in a single disruptive event (Deyab et al., 2018; Salvadori 

and De Michele, 2010; Shooter et al., 2022).  Environmental loads are estimated based on a 

selection of design criteria; thus, offshore structures' design and operation require a detailed 

analysis of expected environmental parameters. 

Marine environmental variables are interdependent, and their interactions should be included in 

any analysis. A robust and accurate multivariate model can capture the interdependence of the 

marine environmental variables (Ma and Zhang, 2022; Montes-Iturrizaga and Heredia-Zavoni, 

2016; Sadegh et al., 2017). Although the probability of extreme marine events is low, such events 

can cause severe consequences to the structures. In the past, wind and wave loads were assumed 

to be two independent variables and univariate distributions were used (Wei et al., 2021) in their 

analysis. However, this assumption does not reflect real-life conditions. Marine natural hazards 

may involve several environmental variables. Their occurrence is also interdependent. Some 

current codes and standards, such as DNV-RP-C203, API-RP-2FPS and API-RP-2A-WSD, 

require consideration of the combined effects of wind, wave, and current acting on an offshore 

structure (Ma and Zhang, 2022). This simultaneous occurrence of marine environmental variables 

should be considered by obtaining accurate information and developing representative models of 

their interdependent relationship. Thus, a multivariate joint probability distribution should better 

capture the true characteristics of marine environmental variables.  

There have been several studies dealing with the modelling of environmental variables. Modelling 

extreme environmental variables has also attracted much research attention recently (Lin-Ye et al., 
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2017; Mazas, 2019).  Cheng et al. (2019) proposed a long-term joint probability distribution for 

environmental conditions in Norway, which was modeled in terms of wind speed, significant wave 

height and wave period. Sandvik et al. (2019) evaluated three long-term wave models for their 

effects on a ship and marine structures. They showed that the models were able to describe design 

performance but unable to represent the physical process completely. Horn et al. (2018) modeled 

a joint distribution for environmental variables suitable for the long-term probabilistic design of 

offshore wind turbines and other stationary structures. Lian et al. (2013) utilized the Gumbel 

copula to model the joint probability of rainfall and tidal level in regions of China subject to 

typhoons. De Michele et al. (2007) and Zhang et al. (2018) used Copula functions to model 

environmental variables and captured their dependency structures. In the geotechnical area, 

bivariate copulas were used to model the dependence structure of shear strength parameters and to 

evaluate the reliability of geotechnical structures (Li et al., 2015; Wang and Li, 2019; Wu, 2015). 

However, these studies only focused on a bivariate case of environmental variables. In practice, 

an extreme marine weather event involves more than two variables whose occurrences are 

correlated between one another. Failure to capture this dependency may lead to non-conservative 

designs and/or unexpected load events. Traditional copulas are not sufficiently flexible to capture 

complex dependencies in high-dimensional modelling (Li and Zhang, 2020; Xu et al., 2020). In 

addition, previous studies on the impact of multiple loads acting on a structure mainly focus on 

bivariate distribution models (Zhao and Dong, 2020). Currently available standards such as ISO-

19901, DNVGL-RP-C205, DNVGL-RP-C203 and DNVGL-RP-210 do not provide adequate 

information for multivariate models of marine environmental variables (S. Zhang et al., 2019). 

Thus, a joint probability distribution that fits three or more variables is necessary in this area.  
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Several researchers have contributed to multivariate statistical analysis of marine environmental 

conditions. Mackay & Johanning (2018) proposed a multivariate model for ocean parameters using 

a generalized extreme value model. Petrov et al. (2013) compared maximum entropy (MaxEnt) to 

provide a framework for extreme value theory. The model was able to predict extreme values of 

significant wave heights and concluded that MaxEnt was more stable with changes in different 

thresholds. De Leo et al. (2021) developed a multivariate model for sea states based on Non-

stationary Extreme Value Analysis (NEVA) by considering trends in time series data. However, 

the proposed model required an assumption of linearity for the selected variables. Shooter et al. 

(2022) proposed a multivariate model using multivariate spatial conditional extreme (MSCE). This 

model was based on non-linear regression analysis and the marginal distributions were required to 

follow normal distribution. Agarwal et al. (2022) proposed a trivariate model using a cubic spine 

model in time, representing it as a linear combination function. The proposed model was able to 

highlight the non-convex features of the joint distribution. Dong et al. (2015) developed trivariate 

maximum entropy distribution (MED) of significant wave height, wind speed and relative 

direction. The model provided a good fit for available environmental data. However, the model 

was based on the Nataf transformation, and the Nataf transformation is only appropriate for data 

showing linearity and marginal distributions that are assumed to follow Gaussian distribution (Li 

and Zhang, 2020). From these studies, the standard and commonly used joint statistical methods 

to model multivariate data are not generally sufficient for the more complex relationships evident 

in marine environmental variables. Therefore, a more robust and advanced statistical method is 

needed to model multivariate ocean data. Copula theories have gained attention as a means to 

address this issue. Ganguli and Reddy (2013) proposed a copula-based methodology for assessing 

flood risks and evaluated the performance of trivariate copulas in capturing the dependency 
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structure of flood variables. Bezak et al. (2014) studied trivariate frequency analyses of peak 

discharge, hydrocarbon volume and suspended sediment concentration using copula functions and 

concluded that copula functions are a useful mathematical tool. Due to their flexibility in capturing 

dependency structures, copula functions are beneficial in modelling marine environmental 

variables (De Michele et al., 2007; Dong et al., 2017; Ramadhani et al., 2021; Salleh et al., 2016; 

Y. Zhang et al., 2015; Zhang et al., 2018). Copula functions can also be integrated with other 

techniques to build hybrid models, such as the Copula Bayesian Network (CBN) (Elidan, 2010). 

The latter combines the modelling capabilities of  complex dependencies provided by the Copula 

function and the conditional probability distribution provided by Bayesian network (Taleb-

berrouane et al., 2018; Taleb-Berrouane et al., 2017; Taleb Berrouane, 2020). 

To model more than two variables, the vine copula is introduced. This allows much more flexibility 

based on a graphical model used to construct multivariate models from pair copulas (Bedford et 

al., 2016). Wei et al. (2021) used vine copulas to construct a trivariate joint probability model of 

typhoon-induced wind, waves, and the time lag between them. Heredia-Zavoni & Montes-

Iturrizaga (2019) constructed directional environment contours using vine copulas. They noted 

that the vine copula is advantageous in modelling multivariate distributions using bivariate copulas 

that capture pairwise dependencies between environmental parameters. Amini et al. (2021) and 

Tang et al. (2020) utilized vine copulas to estimate the reliability of physical structures. Bai et al. 

(2021) and Heredia-Zavoni & Montes-Iturrizaga (2019) used a vine copula to construct three-

dimensional environmental contours. Dong et al. (2022) and Xu et al. (2020) modeled the 

multivariate analysis of loads on wind turbines using vine copulas. They concluded that vine 

copulas were able to capture the dependency among multiple variables in wind turbine analysis. 

Nagler et al. (2022) investigated vine copulas to determine their ability to capture different types 
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of dependency. It was concluded that copulas were able to capture both cross-sectional and serial 

dependency. Qian and Dong (2022) incorporated copula functions to assess surrogate-assisted 

seismic performance. A vine copula model was able to characterize the complete non-linear 

dependency structure of the investigated variables. Tao et al. (2021) predicted daily water 

temperatures of the Yangtze River using a vine copula model and concluded that the proposed 

model could perform better than a logarithmic model. Zhao et al. (2021) used a Gaussian copula 

model to estimate the characteristics of extreme response for a mooring system in a complex ocean 

environment. Vine copulas were also used in assessing reliability of geotechnical structures. Vine 

copulas were used to model the dependence structure of multiple soil parameters (Lü et al., 2020; 

Tang et al., 2020; Xu and Zhou, 2018; Y. Zhang et al., 2019). Copula functions were found to 

provide better results for reliability-based design of geotechnical structure (Lü et al., 2020). Vine 

copulas are also able to provide more flexible ways for geotechnical practitioners to model the 

cross-correlation among geotechnical random fields (Tang et al., 2020). From these studies, Vine 

copulas are shown to be able to fully define complex dependency structures between many 

observed variables. Vine copulas are also able to model dependency in higher dimensions, which 

traditional copulas cannot do. However, the multivariate copula models used in the vine copulas 

in these studies are mostly based on well-established copula functions. These copula functions are 

usually simple and symmetrical one-parameter copulas such as the Archimedean copula family 

(Jiang et al., 2021; Yang and Qian, 2019).  

This work presents copula-based trivariate environmental load estimation for offshore structures. 

Vine copulas are used to model the multivariate analysis. Symmetric and asymmetric copula 

functions for use within the vine copula structure are compared to identify the best-fitted functions 

in trivariate analysis.  The objectives of this study are as follows: (1) to construct a trivariate joint 
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distribution model of significant wave height, wind speed, and current velocity using symmetrical 

and asymmetrical vine copulas, and (2) to compare the estimated environmental load obtained 

from vine copulas and other traditional methods in a case study.  

The remainder of this chapter is organized as follows. Section 5.2 presents the methodology and 

the basic theories used in developing the multivariate model. The application of the multivariate 

copula models is discussed in Section 5.3. Results and discussions from the estimation of total 

environmental load are presented in Section 5.4. The concluding remarks of this chapter are 

presented in Section 5.5. 

5.2 Proposed Methodology of the Multivariate Model 

The proposed method used to construct the multivariate model of environmental variables is 

illustrated in Fig. 5.1. Environmental variables are collected from a historical data set. Dependency 

measures are carried out to estimate the correlation coefficient between variables. C-vine copula 

with wind speed as the dominating factor is then generated and the best copula function for each 

edge is identified. Environmental variables data are generated using vine copulas constructed from 

different copula functions. Total environmental load is estimated to assess the effectiveness of the 

multivariate model using vine copulas.   

 



144 
 

 

Fig. 5.1. Proposed methodology to develop a multivariate model to estimate the total 

environmental load 

 

 



145 
 

5.2.1 Copula theory 

Copula functions are used here to model multivariate ocean parameters. Uni-variate marginal 

distributions are “coupled” or “joined” to construct multivariate distributions. The formal 

definition of a copula was firstly introduced in Sklar’s Theorem (Nelsen, 2006). Let H be an n-

dimensional distribution function with marginal distribution 𝐹1, 𝐹2, . . . , 𝐹𝑛, then there exists a copula 

C such that. 

𝐻(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹(𝑥2). . . , 𝐹(𝑥𝑛)) 
(5.1) 

Based on this theorem, when used to construct multivariate models, copula models do not consider 

the character of the univariate marginal distributions. Detailed studies on copula functions and 

their application to bivariate cases were carried out previously (Ramadhani et al., 2022, 2021). In 

this chapter, multivariate models constructed using vine copulas are studied. 

5.2.2 Construction of asymmetric copulas 

There are various ways to construct asymmetric copulas, such as 1) asymmetric copulas 

constructed by product, 2) asymmetric copulas constructed by linear convex combination, and 3) 

skewed copulas (Zhang et al., 2018). The construction of asymmetric copulas using by product 

rule was concluded to be the best to represent ocean parameters and more practical for a complex 

engineering system (Zhang et al., 2018). Liebscher (2008) first introduced this by product rule 

through the following theorem 

“Assume that 𝐶1 , . . . , 𝐶𝑘 : are copulas. Let 𝑔𝑗𝑖 : [0,1] → [0,1] for 𝑗 = 1, . . . , 𝑘, 𝑖 = 1, . . . , 𝑑 be functions 

with the property that each of them is strictly increasing or identically equal to 1.” 

Then the general equation to construct asymmetric copulas by product is defined by  



146 
 

�̄�(𝑢1, . . . , 𝑢𝑑) =∏𝐶𝑗 (𝑔𝑗1(𝑢1), . . . , 𝑔𝑗𝑑(𝑢𝑑))       𝑓𝑜𝑟𝑢𝑖 ∈ [0,1]

𝑘

𝑗=1

 (5.2

) 

To satisfy the assumptions of the theorem, the function 𝑔𝑗𝑖should have these following properties 

d) 𝑔𝑗𝑖(1) = 1 and 𝑔𝑗𝑖(0) = 0, 

e) 𝑔𝑗𝑖 is continuous on (0,1], 

f) If there are at least two functions 𝑔𝑗1𝑖 , 𝑔𝑗2𝑖with 1 ≤ 𝑗1, 𝑗2 ≤ 𝑘 which are not identically equal to 

1, then 𝑔𝑗𝑖(𝑥) > 𝑥 holds for 𝑥 ∈ (0,1), 𝑗 = 1, . . . , 𝑘 

 

The function𝑔𝑗𝑖plays a significant role in constructing symmetric copulas into asymmetric copulas. 

In this chapter, Type-1 individual function 𝑔𝑗𝑖 , is used, where 

(IV) 𝑔𝑗𝑖(𝑣) = 𝑣
𝜃𝑗𝑖for j = 1,…,k, where 𝜃𝑗𝑖 ∈ [0,1] and ∑ 𝜃𝑗𝑖 = 1

𝑘
𝑗=1  (5.3

) 

Archimedean copulas are used as the basis copula functions to construct asymmetric copulas. 

5.2.3 Vine copula 

The vine copula is used to model multiple random variables. The idea is to decompose a joint 

probability distribution function of multivariate random variables into a product of its marginal 

distribution, and unconditional pair and a conditional pair. For example, let 𝑋1, 𝑋2, . . . , 𝑋𝑛denote 

random variables with their joint probability density function (PDF) 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛). This joint 

PDF can be decomposed to 

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓𝑛(𝑥𝑛). 𝑓(𝑥𝑛−1 ∨ 𝑥𝑛). 𝑓(𝑥𝑛−2 ∨ 𝑥𝑛−1, 𝑥𝑛). . . 𝑓(𝑥1 ∨ 𝑥2, . . . , 𝑥𝑛) 
(5.4) 

Where the conditional PDF can be expressed by (Tang et al., 2020) 

𝑓(𝑥 ∨ 𝑣) = 𝑐(𝐹(𝑥 ∨ 𝑣−𝑚), 𝐹(𝑣𝑚 ∨ 𝑣−𝑚); 𝜃𝑥,𝑣𝑚∨𝑣−𝑚)𝑓(𝑥 ∨ 𝑣−𝑚) 
(5.5) 
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Where 𝑐(⋅,⋅; 𝜃) is the bivariate copula density function, 𝑣𝑚 is an arbitrarily selected component 

from vector v, and 𝑣−𝑚 is the vector v excluding 𝑣𝑚. 

The conditional cumulative distribution function (CDF) can then be expressed as 

𝐹(𝑥 ∨ 𝑣) =
𝜕𝐶(𝐹(𝑥 ∨ 𝑣−𝑚), 𝐹(𝑣𝑚 ∨ 𝑣−𝑚); 𝜃𝑥,𝑣𝑚∨𝑣−𝑚)

𝜕𝐹(𝑣𝑚 ∨ 𝑣−𝑚)
 

 

(5.6) 

This partial derivative of the copula function is also called the h-function ℎ(𝐹(𝑥 ∨ 𝑣−𝑚), 𝐹(𝑣𝑚 ∨

𝑣−𝑚); 𝜃𝑥,𝑣𝑚∨𝑣−𝑚). 

When modelling multiple random variables using a vine copula, a graphical model is used to help 

with the complexity of modelling in a high-dimensional distribution. This graphical model is called 

a regular vine (Aas et al., 2009). In general, a d-dimensional vine copula is a pair-copula consisting 

of d(d-1)/2 unconditional and conditional bivariate copulas, where the structure can be expressed 

as a set of linked trees 𝑇1 , 𝑇2, . . . , 𝑇𝑑−1 that also satisfies (Kraus and Czado, 2017) 

1. 𝑇1 = (𝑉1, 𝐸1) is Tree 1 with nodes 𝑉1 = {1,2, . . . , 𝑑} and edges 𝐸1. 

2. For 𝑚 = 2, . . . , 𝑑 − 1, tree 𝑇𝑚 has nodes 𝑉𝑚 = 𝐸𝑚−1 and edges 𝐸𝑚. 

3. For 𝑚 = 2, . . . , 𝑑 − 1, two nodes of 𝑇𝑚 can be linked by an edge if these nodes have a 

shared node with the corresponding edges of 𝑇𝑚−1. 

 

Canonical vine (C-vine) and Drawable vine (D-vine) copulas are two additional types of regular 

vine. In C-vine, each node has a unique node connected to other nodes, whereas, in D-vine, each 

node is only connected to one or two other nodes and each tree is a path.  
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Generally, a joint PDF of d-dimensional random variables can be decomposed using a C-vine that 

satisfies the following equation (Czado, 2019) 

𝑓(𝑥1, . . . , 𝑥𝑑) = [∏∏𝑐𝑗,𝑗+𝑖;1,⋅⋅⋅,𝑗−1

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

] × [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] 

 

(5.7) 

While decomposition using a D-vine can be expressed using the equation below (Czado, 2019) 

𝑓(𝑥1, . . . , 𝑥𝑑) = [∏∏𝑐𝑖,(𝑖+𝑗);(𝑖+1),...,(𝑖+𝑗−1)

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

] × [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] 

 

(5.8) 

When there is one variable known to be a dominating factor, the C-vine will be advantageous as 

data interaction is considered. C-vine copulas are thus more suitable for environmental variables 

with one dominating factor. The construction of a C-vine for three variables will be shown in this 

chapter. The bivariate copulas considered in this chapter are Archimedean copulas (Clayton, 

Gumbel and Frank) and the constructed asymmetric copulas (Clayton-Gumbel Type-1, Clayton-

Frank Type-1 and Gumbel-Frank Type-1). Fig. 5.2 shows a graphical model of three variables with 

one dominating factor as follows 
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Fig. 5.2. A graphical model of C-Vine with three variables 

 

Steps to construct C-vine copula for three variables with one dominating factor are as follows (Lü 

et al., 2020) 

1. Determine the marginal PDF of each variable. 

2. Identify the best-fit bivariate copula for Tree 1 

a) Original data are transformed into the copula domain  

 

𝑈𝑖 =
𝑅𝑖

𝑛 + 1
=
𝑛𝐹𝑖(𝑋𝑖)

𝑛 + 1
 

 

(5.9) 

where n is the number of observations and iF̂
 is the empirical cumulative function defined as 

𝐹𝑖(𝑡) =
1

𝑛
∑ 1(𝑋𝑖 ≤ 𝑡)
𝑛
𝑖=1 . 
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b) Copula parameter estimation using Maximum Log-likelihood Estimation (MLE). The 

log-likelihood function 𝐿(𝜃) of a copula function can be expressed as (Lü et al., 2020) 

 

𝐿(𝜃) =∑𝑙𝑛𝑐(𝑢1, 𝑢2; 𝜃)

𝑁

𝑖=1

 

 

(5.10) 

The estimated 𝜃~ using MLE can be obtained by maximizing 𝐿(𝜃) (Lü et al., 2020) 

𝜃~= 𝑎𝑟𝑔𝑚𝑎𝑥𝐿(𝜃) 

 

(5.11) 

c) Select the best-fit copula using AIC scores. (Lü et al., 2020) 

 

𝐴𝐼𝐶 = −2𝐿(𝜃~) + 2𝑘 = −2∑𝑙𝑛𝑐(𝑢1𝑖 , 𝑢2𝑖; 𝜃~)

𝑁

𝑖=1

 

 

(5.12) 

Where k is the unknown parameter estimated using MLE. The best-fit copula is indicated by 

the lowest AIC score. 

2. Identify the best-fit bivariate copula for the next tree (Tree 2) 

Tree 2 consists of 𝑓(𝑥2, 𝑥3 ∨ 𝑥1) = 𝐶2,3∨1(𝐹2∨1(𝑥2 ∨ 𝑥1), 𝐹3∨1(𝑥3 ∨ 𝑥1); 𝜃) 

a) Data {𝐹2(𝑥2𝑖), 𝐹1(𝑥1𝑖), 𝑖 = 1,2, . . . , 𝑁} are transformed into data{𝐹2∨1(𝑥2𝑖 ∨ 𝑥1𝑖), 𝑖 =

1,2, . . . , 𝑁} using h function (a partial derivative of bivariate copula with respect to the 

given variable), where (Lü et al., 2020) 

ℎ(𝑢2 ∨ 𝑢1; 𝜃) =
𝜕𝐶(𝑢1, 𝑢2; 𝜃)

𝜕𝑢1
 

 

(5.13) 
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So, 
{𝐹2∨1(𝑥2𝑖 ∨ 𝑥1𝑖) = ℎ1,2(𝐹2(𝑥2𝑖), 𝐹1(𝑥1𝑖); 𝜃), 𝑖 = 1,2, . . . , 𝑁} 

b) Data {𝐹3(𝑥3𝑖), 𝐹1(𝑥1𝑖), 𝑖 = 1,2, . . . , 𝑁} are also transformed to data {𝐹3∨1(𝑥3𝑖 ∨ 𝑥1𝑖), 𝑖 =

1,2, . . . , 𝑁} using its h function, resulting in {𝐹3∨1(𝑥3𝑖 ∨ 𝑥1𝑖) =

ℎ1,3(𝐹3(𝑥3𝑖), 𝐹1(𝑥1𝑖); 𝜃), 𝑖 = 1,2, . . . , 𝑁} 

c) Based on {𝐹2∨1(𝑥2𝑖 ∨ 𝑥1𝑖), 𝐹3∨1(𝑥3𝑖 ∨ 𝑥1𝑖)}, select the best-fit copula for C2,3|1. 

3. Perform the same procedure if there are more trees 

4. Obtain the joint PDF. For trivariate analysis, the joint PDF will be decomposed as follows 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥1). 𝑓(𝑥2). 𝑓(𝑥3). 𝐶1,2{𝐹(𝑥1), 𝐹(𝑥2)}. 𝐶1,3{𝐹(𝑥1), 𝐹(𝑥3)}. 𝐶2,3∨1{𝐹(𝑥2 ∨ 𝑥1), 𝐹(𝑥3

∨ 𝑥1)} 

5.2.3.1 Data simulation using vine copula 

To generate simulated samples from the constructed probability distribution function (PDF) 

𝑓1,2,…,𝑛(𝑦1, 𝑦2,… , 𝑦𝑛), random sampling can be performed. Let (𝑦1, 𝑦2,… , 𝑦𝑛) denote a simulated data 

sample from 𝑓1,2,…,𝑛(𝑦1, 𝑦2,… , 𝑦𝑛) and (𝑟1, 𝑟2, … , 𝑟𝑛) is a sample independent standard, uniform on 

[0,1]. A Rosenblatt transformation is then used to generate (𝑦1, 𝑦2,… , 𝑦𝑛) based on (𝑟1, 𝑟2, … , 𝑟𝑛) 

(Lü et al., 2020): 

1) Solving 𝑦1. Let 𝑟1 = 𝐹1(𝑦1). Then, 𝑦1 = 𝐹1
−1(𝑟1) is obtained. 

2) Solving 𝑦2. Let 𝑟2 = 𝐹2∨1(𝑦2|𝑦1) = ℎ2,1(𝐹2(𝑦2), 𝐹1(𝑦1); 𝜃). Then, 𝑦2 =

𝐹2
−1 (ℎ2∨1

−1 (𝑟2, 𝐹1(𝑦1); 𝜃)) is obtained. 

3) Solving 𝑦3. Let 𝑟3 = 𝐹3∨1,2(𝑦3|𝑦1, 𝑦2) = ℎ3,1∨2(𝐹3∨2(𝑦3|𝑦2), 𝐹1∨2(𝑦1|𝑦2); 𝜃) =

ℎ3,1∨2(ℎ3∨2(𝐹3(𝑦3), 𝐹2(𝑦2); 𝜃), ℎ1∨2(𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃); 𝜃). Then, 𝑦3 =

𝐹3
−1 (ℎ3,2

−1(ℎ3,1∨2
−1 (𝑟3, ℎ1,2(𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃); 𝜃), 𝐹2(𝑦2); 𝜃)) is obtained. 
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5.2.4 Total environmental load 

The total environmental load acting on a structure is estimated using  

 
(5.14) 

where, 𝜓𝑖 are the factors for load combination (Yu. Shmal et al., 2020). Three environmental loads 

considered here are wind, wave, and current loads 

The wind force on a structural member or surface acting normal to the member axis is calculated 

using  (Jacomet et al., 2021) 

 
(5.15) 

where 

C = shape coefficient 

q = basic wind pressure or suction 

A = projected area of the member normal to the direction of the wind velocity 

α = angle between wind direction and the member axis 

 

Basic wind pressure can be estimated using  

 
(5.16) 

 

where, 𝜌𝑎 is the mass density of air and 𝑈𝑧 is the wind velocity profile estimated using the following 

equation 

 = iiTot FF 

sinCqAFwind =

 
2

1 2

zaUq =
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𝑈𝑧 = 𝑈𝑧0 (
𝑧

𝑧0
)
1 7⁄

 (5.17

) 

where, 

𝑈𝑧0= mean velocity at a reference height (m/s) 

z0 = reference height (m) 

z = height above mean sea level (m) 

 

The total wave force for a suitably slender structure, or element of a structure, is then estimated 

using Morison’s equation  (Jacomet et al., 2021; Zhang et al., 2015) 

 
(5.18) 

 

𝐹𝑇𝑤𝑎𝑣𝑒 =  C𝑀𝜌𝑉�̇� +
1

2
𝐶𝐷𝜌𝐴|𝑢|𝑢 

(5.19) 

where, 

𝐶𝑀  and C𝐷are inertia and drag coefficient 

𝜌 = water density (kg/m3) 

V = volume of the body (m3) 

A = reference area (m2) 

u = water wave particle velocity (m/s) 

�̇�= water wave particle acceleration (m/s2) 

When calculating wave force on an offshore structure, it is also important to select the most 

appropriate wave theory. Water wave particle velocity and acceleration are calculated using these 

wave theories. Wave theories considered in this chapter can be seen in Appendix 5A.  

 FF DI +=
wave

FT
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Current loads are also commonly taken into consideration in designing offshore structures and are 

estimated using  (Yu. Shmal et al., 2020) 

 
(5.20) 

where, 

CD = drag coefficient 

𝜌 = water density  

U = current velocity  (m/s) 

A = reference cross-sectional area 

 

5.3 Application of the Multivariate Model 

Ocean data was collected from the Smart Atlantic website (ERDDAP, 2022). Environmental data 

were collected from the mouth of Placentia Bay in the province of Newfoundland and Labrador 

(58.4160N 041.7168W) – Canada. The data were recorded hourly between January 1st 2010 and 

December, 31st 2020. It consists of wave height, wind speed and current velocity as specified by 

API 2A-WSD (American Petroleum Institute, 2002). According to this standard, the selected three 

ocean variables have a specific type of relationship that should be considered. 

 

  
2

1
UAUCF DCurrent =
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Fig. 5.3. Scatter plots for all environmental variable pairs 

 

Table 5.1 Correlation and asymmetry measures for all pairs of environmental variables 

 
Pearson’s linear 

correlation 
Spearman’s rho Kendall’s tau 

Asymmetry 

Measure 

Wind speed-

Wave height 

0.61 0.55 0.39 0.01 

Wind speed-

Current velocity 

0.18 0.13 0.09 0.23 

Wave height – 

Current velocity 

0.06 0.08 0.06 0.24 

 

Fig. 5.3 illustrates that each pair of ocean parameters has a positive correlation in the scatter plots. 

The value of the correlation for each pair is presented in Table 5.1. From this table, wind speed 

and wave height have a strong correlation, while wind speed - current velocity and wave height – 

current velocity have a weak correlation. However, although their correlations are weak, the 

asymmetry level for these pairs is much higher than wind-wave pair data. In this case, asymmetric 

copulas play an important role in modelling this measure, as pointed out in previous studies 

(Ramadhani et al., 2022, 2021).  
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Before continuing with the multivariate models, marginal distributions for each individual 

environmental variable are identified. The Akaike Information Criterion (AIC) parameter is used 

to select the best-fitted distribution among the possible distributions selected in this chapter. Table 

5.2 shows the AIC values for each distribution, and Table 5.3 shows the parameter statistics for 

the best-fitted distribution for each environmental variable.  

Table 5.2. AIC values for all ocean parameters for environmental variables 

 Weibull Normal Lognormal Rayleigh Extreme 

Value 

Exponential Gamma 

Wind 

speed 
Inf. 104,759 Inf 102,322 112,824 114,566 101,831a 

Wave 

height 
Inf 66,681 Inf 61,718 79,873 70,668 58,599a 

Current 

velocity 
228,042 235,574 227,975 231,076 227,221 232,762 227,183 a 

 

aIndicates the best-fit marginal distribution 

 

Table 5.3. Best fitted distribution parameters statistics 

 Mean Variance Shape Scale 

Wind speed 8.36 m/s 4.21 m/s 3.94 2.12 

Wave height 2.52 m 1.49 m 2.87 0.87 

Current 

velocity 
210.36 mm/s 149.38 mm/s 2.24 93.65 

 

The smallest value of AIC indicates the best distribution model for the data set as illustrated in 

Table 5.2. The Gamma distribution is best fitted to all environmental variables. Kolmogorov-

Smirnov (KS) tests are carried out to examine the goodness of fit of gamma distribution for all 
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environmental variables. The test statistic values from the KS test for wind, wave, and current data 

are 0.0129, 0.0062, and 0.011, respectively. These statistics show that the fitted distribution is 

valid (fail to reject the null hypothesis) at a significance level of 5% (critical value for KS-test is 

0.0135) for each environmental variable. 

 

5.3.1 Vine copula modelling 

As mentioned previously, C-vine copulas for three variables are constructed for this model. Firstly, 

Archimedean family copulas are used to construct vine copulas for three environmental variables. 

Table 5.4 shows the best-fitted copula function for each tree and its parameters.  

Table 5.4. Best fitted symmetric copulas and their parameters for each tree 

Tree Edge Copula 
Copula 

Parameter 

𝐿(𝜃) 

(× 105) 

AIC 

(× 105) 

1 

𝑋1, 𝑋2 

Clayton 𝛾 = 1.0165 -4.7946 9.5891 

Gumbel 𝛾 = 1.6327 -4.7709 9.5417 * 

Frank 𝛾 = 40795 -4.7766 9.5532 

𝑋1, 𝑋3 

Clayton 𝛾 = 1.0115 -4.8418 9.6836 

Gumbel 𝛾 = 1.0810 -4.8094 9.6188 

Frank 𝛾 = 0.8698 -4.8092 9.6184 * 

2 

𝑋2, 𝑋3|𝑋1 

Clayton 𝛾 = 1.0004 -4.8561 9.7122 

Gumbel 𝛾 = 1.0021 -4.8109 9.6218 

Frank 𝛾 = −0.2008 -4.8108 9.6216 * 

*Lowest AIC score indicates the best-fit copula 

The Gumbel copula is best fitted to pair wind and wave data in the first tree, while the Frank copula 

is best fitted to model wind and current data, and the conditional probability, in the second tree. 

Their probability distribution functions are shown in Fig. 5.4. 
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Fig. 5.4. Probability distribution functions for (a) wind and wave data in Tree 1 (Table 5.4), (b) 

wind and current data in Tree 1, and (c) conditional environmental data in Tree 2 (Table 5.4) 

using symmetric copulas 

 

Using asymmetric copulas, the best-fitted copula function for each tree and their parameters are 

shown in Table 5.5. 

Table 5.5. Best fitted asymmetric copulas and their parameters for each tree 

Tree Edge Copula Copula Parameter 
𝐿(𝜃) 
(× 105) 

AIC 
(× 105) 

1 

𝑋1, 𝑋2 

Clayton-

Gumbel Type-

1 

𝛾1 = 1.8032 

𝛾2 = 5.5582 

𝜃11 = 0.8976, 𝜃12 = 0.6996 

𝜃21 = 0.1024, 𝜃22 = 0.3004 

-3.9261 7.8522 * 

Clayton-Frank 𝛾1 = 2.5252 -3.9296 7.8583 
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*Lowest AIC score indicates the best-fit copula 

The Clayton-Gumbel copula is best fitted to pair wind and wave data in the first tree, while the 

Gumbel-Frank copula is best fitted to model wind and current data and the Clayton-Frank copula 

Type-1 𝛾2 = 10.0215 

𝜃11 = 0.1216, 𝜃12 = 0.5965 

𝜃21 = 0.8784, 𝜃22 = 0.4035 

Gumbel-Frank 

Type-1 

𝛾1 = 2.5754 

𝛾2 = 13.5428 

𝜃11 = 0.9478, 𝜃12 = 0.4516 

𝜃21 = 0.0522, 𝜃22 = 0.5484 

-3.9263 7.8527 

𝑋1, 𝑋3 

Clayton-

Gumbel Type-

1 

𝛾1 = 1.5395 

𝛾2 = 1.7458 

𝜃11 = 0.9956, 𝜃12 = 0.1193 

𝜃21 = 0.0044, 𝜃22 = 0.8807 

-3.9625 7.9251  

Clayton-Frank 

Type-1 

𝛾1 = 6.7539 

𝛾2 = −14.7535 

𝜃11 = 0.9545, 𝜃12 = 0.1623 

𝜃21 = 0.0455, 𝜃22 = 0.8377 

-3.9633 7.9267 

Gumbel-Frank 

Type-1 

𝛾1 = 1.5959 

𝛾2 = 0.7605 

𝜃11 = 0.9296, 𝜃12 = 0.2078 

𝜃21 = 0.0704, 𝜃22 = 0.7922 

-3.9625 7.9251 * 

2 

𝑋2, 𝑋3 ∨ 𝑋1 

Clayton-

Gumbel Type-

1 

𝛾1 = 1.1496 

𝛾2 = 5.2962 

𝜃11 = 0.6725, 𝜃12 = 0.5885 

𝜃21 = 0.3275, 𝜃22 = 0.4115 

-3.2710 6.5422 

Clayton-Frank 

Type-1 

𝛾1 = 2.8401 

𝛾2 = −4.3100 

𝜃11 = 0.7521, 𝜃12 = 0.6344 

𝜃21 = 0.2479, 𝜃22 = 0.3656 

-3.2403 6.4807 * 

Gumbel-Frank 

Type-1 

𝛾1 = 1.0833 

𝛾2 = 2.2394 

𝜃11 = 0.2439, 𝜃12 = 0.0118 

𝜃21 = 0.7561, 𝜃22 = 0.9882 

-3.2516 6.5034 
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is best fitted for the conditional probability in the second tree. Their probability distribution 

functions are shown in Fig. 5.5. 

 

Fig. 5.5. Probability distribution functions for (a) wind and wave data in Tree 1 (Table 5.5), (b) 

wind and current data in Tree 1, and (c) conditional environmental data in Tree 2 (Table 5.5) 

using asymmetric copulas 

 

After obtaining the parameters for the best-fitted copulas on each node, correlated data can be 

generated to estimate total environmental variables. 
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5.4 Result and Discussion 

5.4.1 Model verification 

In order to determine if these C-vine copulas are fit to model multivariate data, error values 

between real data and the copula models are calculated. Root mean square error (RMSE) and 

mean absolute errors are used to compare the calculation. 

Table 5.6. Error values for each edge 

Symmetric copulas 

Edge 

Clayton Gumbel Frank 

RMSE 

Mean 

Absolute 

Error 

RMSE 

Mean 

Absolute 

Error 

RMSE 

Mean 

Absolute 

Error 

𝑋1, 𝑋2 0.0189 0.0409 0.0070 0.0248 0.0115 0.0303 

𝑋1, 𝑋3 0.0369 0.0415 0.0091 0.0264 0.0091 0.0261 

𝑋2, 𝑋3|𝑋1 0.1003 0.1676 0.1305 0.1629 0.1334 0.1696 

Asymmetric copulas 

Edge 

Clayton-Gumbel Clayton-Frank Gumbel-Frank 

RMSE 

Mean 

Absolute 

Error 

RMSE 

Mean 

Absolute 

Error 

RMSE 

Mean 

Absolute 

Error 

𝑋1, 𝑋2 0.0069 0.0053 0.0085 0.0061 0.0032 0.0023 

𝑋1, 𝑋3 0.0065 0.0046 0.0060 0.0040 0.0084 0.0064 

𝑋2, 𝑋3|𝑋1 0.1055 0.0798 0.1075 0.0815 0.1089 0.0834 

 

From Table 5.6, C-vine copulas are fitted to model the multivariate data.  It shows that both 

symmetric and asymmetric copulas can model multivariate environmental variables for each edge 

in all trees.  
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The C-vine copula was used to model the dependency structures among marine environmental 

variables and build trivariate joint probability distributions of these variables using bivariate 

copulas as the building blocks. Wind speed was selected as the dominating factor because its 

occurrence influenced the other two variables. Wind speed can influence both wave height and 

current velocity in the ocean. The results obtained in Table 5.6 are also supported by similar results 

in other studies. Bai et al. (2021) mentioned that the joint probability model using the vine copula 

is well suited to build multivariate joint models of ocean environmental parameters. Vine copulas 

were also able to model the statistical characteristics and complex dependency structures in higher 

dimensions. Lin & Dong (2019) also pointed out that their proposed model using a vine copula fits 

the multivariate distribution and can be used to represent wave climate. Thus, the application of 

vine copulas in marine environmental analysis is able to address the issue of interdependent 

relationships between variables in higher dimensions. The multivariate model constructed from 

the vine copula can also be used for further analysis.  

 

5.4.2 Estimation of the total environmental load 

To determine the significance and benefits of vine copula modelling in the multivariate case, a 

case study is presented in this section. A monopile steel structure with a diameter of 8 m is used 

as a simple structural example. The immersed part of this pile is assumed to be 30 m. The wind 

force is calculated at the height of 15 m above the water surface with a drag coefficient of 0.7, 

according to recommended practice for marine operations (Det Norske Veritas, 2011). While for 

wave load, inertia coefficient and drag coefficient are set to be 2 and 1, respectively (Bai, Y & Bai, 

Q, 2005).  
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Fig. 5.6. Simulation flowchart to estimate the total environmental load 

 

To get the total environmental load, Eq. 5.14 is used. The factors for load combination, 𝜓𝑖 , for 

wave, wind and current load are set to be 1.0, 0.9, and 0.9 respectively. Eq. 5.15 is used to calculate 

the total wind forcing acting on a structure. Wind force is assumed to be perpendicular to the 

structure. To get the total wind force, basic wind pressure is estimated using Eq. 5.16 – 5.17, where 

the mass density of air, 𝜌𝑎, is assumed to be 1.226 kg/m3 and the reference height is taken as 10 

m. The total wave force is estimates using Eq. 5.18 – 5.19, where water density, 𝜌, is taken to be 

1025 kg/m3. Water wave particle velocity and acceleration are estimated using the appropriate 

wave theory presented in Appendix 5A. Eq. 5.20 is then used to estimate the current load. 

A simulation is carried out to estimate the total environmental load acting on the structure. In 

addition to the C-vine copula models using symmetric and asymmetric copulas, two other common 

methods are selected for comparison. An independent case is illustrated using marginal distribution 

functions for each environmental variable. The remaining method selected is commonly used for 

multivariate cases, a multi-gaussian distribution function. For each method, n random data are 

generated and iterated i times. After each simulation to generate random data, significant wave 

height, wind speed and current velocity are computed. This data are then used to estimate the total 

estimated environmental load using Eq. 5.14 – 5.20. This process is then repeated 50 times and the 

summary of the simulation is presented in Fig. 5.7. This simulation process is also presented in 

Fig. 5.6.  
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Fig. 5.7. Boxplots for the estimated total environmental loads 

 

Table 5.7. Error values for the Independent and Multivariate Gaussian method 

 RMSE Mean Absolute Error 

Independent method 0.2249 0.1520 

Multivariate Gaussian method 0.2235 0.1505 

 

Fig. 5.7 shows that, on average, multivariate Gaussian models provided a lower median than the 

independent model in estimating total environmental load. While c-vine copula models based on 

symmetry copulas resulted in a slightly lower estimation compared to the independent and 

multivariate Gaussian model. C-vine copula models constructed using asymmetry copulas have 

the lowest median of total environmental load. This low estimation is also a result of the 

characteristic of the Clayton copula used in Tree 2. The conditional distribution function on this 

edge is fitted to Clayton-Frank Type-1. Clayton copulas can characterize data showing strong low 

value dependencies. While in the symmetric case, the Frank copula is best fitted to model the 

conditional distribution function of Tree 2. Frank copulas are appropriate to model data that show 
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weak dependencies in both tails.  This result supports the statement made by  Zhang et al. (2018) 

that a failure to capture the real dependency structure of environmental variables can lead to an 

overestimation of the safety of offshore structures. Vine copula using asymmetric copulas as the 

building blocks have smaller error values compared to the symmetric ones and provide a lower 

estimation of total environmental loads. Table 5.7 also shows that error values when using the 

independent and multivariate gaussian are higher to model the environmental variables compared 

to the asymmetric copula in Table 5.6. Jiang et al. (2021) also showed that their proposed 

multivariate model using vine copulas with asymmetric copulas as the building blocks resulted in 

more realistic values describing the complex dependency structures between ocean variables. Vine 

copulas constructed using asymmetric copulas were also found to be more appropriate for trivariate 

joint probability analysis. Thus, from this study, and supported by the conclusions of other 

research, vine copulas involving pair-copula decomposition are found to be flexible models with 

different copula functions as the building blocks.   

The result obtained from the estimation of total environmental load using trivariate models can be 

used for further analysis. The total environmental load can be used as an input to estimate the 

resilience of an offshore structure (Taleb-Berrouane et al., 2019; Yazdi et al., 2022). Detailed work 

on estimating the resilience of an offshore structure was performed in a previous study (Ramadhani 

et al., 2022) and the bivariate model in the previous study can be replaced by the trivariate model 

developed in this chapter.  

 

5.5 Conclusion 

In this chapter, a vine copula-based framework is proposed to estimate the total environmental 

load on an offshore installation in a higher dimension. Firstly, the correlations between wind speed, 
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wave height and current velocity were investigated. Then, the joint distribution for trivariate 

analysis, with wind speed as the dominating factor, was constructed using the c-vine model. Both 

symmetric and asymmetric copulas were used as building blocks. After fitting the model, a 

simulation to estimate the total environmental load was carried out based on the developed 

multivariate model. These results were compared with the other known methods, independent load 

case and multi-gaussian distribution function.  

The estimation of the total environmental load was found dependent on the copula function fitted 

in the final edge of the tree. The Clayton copula was able to generate data that show strong 

dependency on the lower tail, while the Gumbel copula is appropriate for data having a stronger 

dependency on the higher tail. It is concluded that vine copulas are well suited to model 

multivariate environmental variables and provide more realistic models of interdependent 

environmental effects. The C-vine copula, constructed using asymmetric copulas as the building 

blocks, provided a lower estimation of total environmental load compared to results from the 

calculation of each environmental variable individually. The results obtained from c-vine using 

asymmetric copula are also lower compared to the ones obtained from the multi-gaussian 

distribution function. Error values from fitting the environmental variables to c-vine with 

asymmetric copula are also lower. Marine environmental variables usually show complex 

interdependence structures that a Gaussian distribution is unable to capture. Furthermore, 

identifying wind speed as the dominating variable made it possible to derive and generate 

correlated data of the other two variables.  

This study provides a new perspective on the application of vine copulas to model marine 

environmental variables with complex dependency structures in higher dimensions. The result 

from this study is also potentially useful in further probabilistic structural analysis of offshore 
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structures, such as resilience analysis using the multivariate model. Further studies will focus on a 

more detailed application of the multivariate model for risk and resilience analysis of offshore 

structures. 
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Appendix 5A 

Table 5A.1 shows the condition where each wave theory is applicable. 
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Table 5A.1. The application of wave theories 

Condition Wave Theory 

𝑑

𝐿
≥ 0.2,

𝐻

𝐿
≤ 0.2 Airy wave theory 

0.1 <
𝑑

𝐿
< 0.2,

𝐻

𝐿
≥ 0.2 Stokes wave theory 

0.04 0.05 <
𝑑

𝐿
< 0.1 Solitary wave theory 

 

where, d is water depth, L is wavelength, and H is wave height.  

4. Airy Wave Theory 

In this theory, water particle velocity and acceleration in the horizontal direction can be estimated 

by (Kim, 1999; S. Zhang et al., 2015) 

𝑢𝑥 =
𝐻𝑔𝑘

2𝜔

𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑐𝑜𝑠ℎ( 𝑘𝑑)
𝑐𝑜𝑠( 𝑘𝑥 − 𝜔𝑡)

�̇�𝑥 =
2𝜋2𝐻

𝑇2
𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡)

}
 
 

 
 

    (5A.1) 

g = standard gravity 

H = wave height 

k = wave number that is calculated using this equation 

𝑘 =
2𝜋

𝐿
   (5A.2) 

While in the vertical direction 

𝑢𝑧 =
𝐻𝑔𝑘

2𝜔

𝑠𝑖𝑛ℎ( 𝑘(𝑧 + 𝑑))

𝑐𝑜𝑠ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡)

�̇�𝑧 = −
2𝜋2𝐻

𝑇2
𝑠𝑖𝑛ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑐𝑜𝑠( 𝑘𝑥 − 𝜔𝑡)

}
 
 

 
 

   (5A.3) 
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5. Stokes Wave Theory 

The horizontal water particle velocity and acceleration should satisfy this following equation 

𝑢𝑥 =
𝐻𝜋

𝑇

𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))
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𝑐𝑜𝑠( 𝑘𝑥 − 𝜔𝑡) +

3

4
(
𝐻𝜋

𝑇
) (
𝐻𝜋

𝐿
)
𝑐𝑜𝑠ℎ( 2𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ
4( 𝑘𝑑)

𝑐𝑜𝑠 2 (𝑘𝑥 − 𝜔𝑡)

�̇�𝑥 = 2(
𝜋2𝐻

𝑇2
)
𝑐𝑜𝑠ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡) + 3(

𝐻𝜋2

𝑇2
) (
𝐻𝜋

𝐿
)
𝑐𝑜𝑠ℎ( 2𝑘(𝑧 + 𝑑))
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4( 𝑘𝑑)

𝑠𝑖𝑛 2 (𝑘𝑥 − 𝜔𝑡)
}
 
 

 
 

    

(A4) 

 

While equation 5A.5 is used to estimate water particle velocity and acceleration in the vertical 

direction 

𝑢𝑧 =
𝐻𝜋

𝑇

𝑠𝑖𝑛ℎ( 𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ( 𝑘𝑑)
𝑠𝑖𝑛( 𝑘𝑥 − 𝜔𝑡) +

3

4
(
𝐻𝜋

𝑇
) (
𝐻𝜋

𝐿
)
𝑠𝑖𝑛ℎ( 2𝑘(𝑧 + 𝑑))

𝑠𝑖𝑛ℎ
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�̇�𝑧 = −2(
𝜋2𝐻

𝑇2
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𝐿
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}
 
 

 
 

    

(A5) 

6. Solitary Wave Theory 

Water particle velocity and acceleration can be approached by Equation 5A.6 

𝑢 =
𝐶𝑁 [1 + 𝑐𝑜𝑠 (𝑀 [

𝑧 + 𝑑
𝑑 ]) . 𝑐𝑜𝑠 (𝑀

𝑥
𝑑
)]

{𝑐𝑜𝑠 (𝑀 [
𝑧 + 𝑑
𝑑 ]) + 𝑐𝑜𝑠ℎ (𝑀

𝑥
𝑑
)}
2

�̇� =
𝐶𝑁 [𝑠𝑖𝑛 (𝑀 [

𝑧 + 𝑑
𝑑

]) . 𝑠𝑖𝑛ℎ (𝑀
𝑥
𝑑
)]

{𝑐𝑜𝑠 (𝑀 [
𝑧 + 𝑑
𝑑 ]) + 𝑐𝑜𝑠ℎ (𝑀

𝑥
𝑑
)}
2

}
 
 
 
 

 
 
 
 

   (5A.6) 

 

Where M,N are functions of H/d and 
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C is speed of solitary wave that can be estimated using 

𝐶 = √2𝑔(𝐻 + 𝑑)   (5A.7) 
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CHAPTER 6  

A COPULA-BASED PROBABILISTIC MODEL TO ASSESS THE 

RESILIENCE OF OFFSHORE STRUCTURES SUBJECTED TO 

MULTIPLE ENVIRONMENTAL LOADS 
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Abstract 

Offshore structures are expected to perform safely in specific marine environments. These 

structures are periodically subjected to extreme natural hazards and the complexity of the marine 

environment requires a robust and reliable model to capture dependent relationships among 

environmental variables. Past studies have emphasized linearity and symmetric assumptions to 

define the relationships between environmental variables. Resilience of offshore structures has 

been investigated in the past, but the proposed models were not robust enough. The present study 

introduces C-vine Copulas to model multivariate environmental variables, considering both 

symmetric and asymmetric dependence structures. The results reveal that symmetric and 

asymmetric copula functions can define environmental variables in higher dimensions than 

previously used. Comparison to other methods: independent and multivariate Gaussian analysis 

also confirms that C-vine copulas better represent marine environmental data. This work uses 

example loads calculated using the C-vine Copula model to assess an offshore structure’s response 

and resilience. Resilience is quantified considering absorptive, adaptive, and restorative capacities. 

The study concludes that the proposed model serves as a good tool for offshore structure design.  

Keywords: Resilience assessment; vine copulas; absorptive capacity, offshore structure  

 

6.1 Introduction 

Natural hazards such as hurricanes, earthquakes, tsunamis, and storms significantly impact 

offshore structures. Hurricane Katrina destroyed 44 offshore oil and gas facilities and damaged 

another 21  (Cruz and Krausmann, 2008). Hurricane Rita destroyed 69 offshore facilities while 

damaging another 32 installations (Cruz and Krausmann, 2008). Hurricanes Gustav and Ike, 

destroyed 60 offshore platforms  and damaged 31 facilities (Kaiser and Yu, 2010). Offshore 
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structures such as fixed platforms, and Floating Production, Storage, and Offloading systems 

(FPSO) are designed for those extreme environmental conditions. Offshore structures are exposed 

to marine environmental variables (Zhao and Dong, 2020) and degradation processes (Taleb-

Berrouane et al., 2021) during their design life. Thus, it is crucial to understand and identify the 

combined effects of marine environmental variables on offshore structures in order to better 

understand risks caused by extreme marine events. 

Marine environmental variables possess significant uncertainties. Identifying the dependence 

structures between the environmental variables is a challenge during their modelling. These 

variables generally show some level of interdependency, and predictions and models can be 

improved if these relationships can be captured. Although the probability of extreme marine events 

is very low, the consequences can be severe (Deyab et al., 2018; Shooter et al., 2022). A robust 

and accurate multivariate model is necessary to capture all dependence structures between 

environmental variables (Ma and Zhang, 2022; Sadegh et al., 2017). A combination of 

environmental variables acting on a structure can cause more severe consequences than that 

predicted by estimating each load effect individually (Zhang et al., 2018). Thus, the common 

assumption of linear dependence or even independence among environmental variables is not 

considered the best approach  (Fazeres-Ferradosa et al., 2018; Wei et al., 2021). Codes and 

standards such as DNV-RP-C203, API-RP-2FPS, and API-RP-2A-WSD specify requirements to 

consider the combined effects of wind, wave, and current on an offshore structure while 

performing risk assessment (Ma and Zhang, 2022). A multivariate joint probability distribution of 

marine environmental variables should be constructed to meet this requirement. 

Copula functions have attracted attention in various research disciplines, as a means to deal with 

modelling joint probability distributions between correlated variables. Several past studies that 
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focus on modelling natural hazards on structures are available. Copula functions are shown to be 

powerful in modelling the effects of natural hazards on infrastructures, both offshore (De Michele 

et al., 2007; Dong et al., 2017; Ramadhani et al., 2021; Salvadori and De Michele, 2010; Y. Zhang 

et al., 2015; Zhang et al., 2018) and onshore  (Desilver, 2020; Fang et al., 2020). However, an 

extreme marine event may involve more than two variables with a complex dependence structure. 

Copulas used in past studies do not capture complex dependence in higher dimensions (Li and 

Zhang, 2020; N. Xu et al., 2020). Currently available standards such as ISO-19901, DNVGL-RP-

C205, DNVGL-RP-C203, and DNVGL-RP-210 do not provide guidance on modelling the 

multivariate joint probability distribution of marine environmental variables (Zhang et al., 2019). 

Several previous contributions are focused on multivariate statistical analysis of marine 

environmental variables in higher dimensions. The most commonly used methods to construct 

multivariate models are the maximum entropy and multivariate Gaussian models (Agarwal et al., 

2022; Dong et al., 2015; Mackay and Johanning, 2018; Petrov et al., 2013; Shooter et al., 2022). 

These models were found to be a good fit for marine environmental data. However, linear 

dependence and a specific marginal distribution such as Gaussian or Extreme values are assumed. 

These commonly used methods cannot consider more complex dependence structures between 

environmental variables. Marine environmental variables usually show nonlinear dependence and 

may show asymmetric structures. Thus, a more flexible method is needed. As previously stated, 

Copulas have been proven to be flexible in modelling multivariate variables, but to date the 

application of copula models has been focused on bivariate cases. To use copula models in the 

higher dimensions, the vine copula is introduced. Bedford and Cooke (2002) introduced vine 

copula as the decomposition function of a joint distribution into a series of bivariate copulas. Vine 

copulas were first becoming popular in financial mathematics. However, recently they have 
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attracted much attention in engineering applications. Vine copulas can deal with complex 

dependence structures and tail dependence between variables. In geotechnical analysis, vine 

copulas have been used to model the multivariate distributions of soil parameters (Lü et al., 2020; 

Qian and Dong, 2022; Tang et al., 2020; Xu and Zhou, 2018).  

Based on these studies, vine copulas could provide better results for the reliability-based design of 

geotechnical structures. Vine copulas also provided a more flexible way to model the cross-

correlation of soil parameters. The dependence of multivariate hydrological design  was modelled 

using vine copulas (Jiang et al., 2019). Vine copulas were also used to model the dependence 

structure between flood characteristics (Tosunoglu et al., 2020). The parameters needed to 

construct a rainfall model were also successfully generated using vine copulas (Pham et al., 2018). 

In a similar field, vine copulas were used to construct environmental contours based on the 

multivariate model of marine environmental parameters such as wave height, wave period, and 

wind speed. (Amini et al., 2021; Dong et al., 2022; Heredia-Zavoni and Montes-Iturrizaga, 2019; 

Wei et al., 2021; Q. Xu et al., 2020). These works show that vine copulas are more flexible than 

alternative methods, based on a graphical model of the investigated variables. Vine copulas also 

resulted in a better way to construct multivariate models from the decomposition of pair copulas 

(Bedford et al., 2016). However, in the above mentioned works the multivariate copula models 

were constructed based on the Archimedean copula family. This copula family is best suited for 

model variables that show symmetric dependence. However most environmental variables show 

an asymmetric dependence structure (Zhang et al., 2018). To overcome the limitations of past 

works, this chapter investigates symmetric and asymmetric copulas to model multivariate 

environmental variables in higher dimensions. 
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To further investigate the influence of the copula-based model on the prediction of marine 

environmental loads, the performance of an offshore structure is assessed subjected to the total 

environmental load. A structure’s performance can be evaluated by assessing the reliability of the 

structure. To maintain their operability, offshore structures are required to function at a high 

structural reliability level to withstand any undesirable events that can cause catastrophic 

consequences. Resilience is thus a metric that can help organizations better design and plan their 

offshore safety regime. Resilience is defined as a system's ability to withstand undesirable events 

and recover from them (Vanem, 2016; Zarei et al., 2021). There have been several past studies on 

the assessment of the resilience of engineering systems. Most resilience assessments that involved 

natural hazards focused on their impacts on bridges, houses, or commercial buildings (Cai et al., 

2021; Cheng et al., 2021; Stochino et al., 2019; Q. Xu et al., 2020). In the process industry, pipeline 

systems' resilience against microbiologically-influenced corrosion using Petri-nets was assessed 

(Kamil et al., 2021; Taleb-Berrouane et al., 2020; Taleb Berrouane, 2020).  In the power and 

energy field, a resilience model for a nuclear power plant was proposed. A resilience framework 

in the nuclear industry was also studied to analyze micro incidents during power plant operations. 

For wind power plants, a resilience index was developed as a diagnostic tool to assess potential 

hazards (Afgan and Cvetinovic, 2010). A novel resilience analysis of wind turbines was also 

proposed to optimize decisions on asset integrity management (Qin and Faber, 2019). The 

resilience performance of a wind energy park was evaluated to identify priority in the ranking of 

decision alternatives. Another probabilistic framework for offshore wind farm resilience 

modelling was developed (Liu et al., 2022). The model demonstrated the significance of prevailing 

uncertainties in the context of asset integrity management. Resilience is also popular in the field 

of transportation. The resilience of maritime transport systems was investigated based on the 
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minimum residual optimization model (Dui et al., 2021). A framework to assess marine LNG 

offloading systems was also developed based on the Infrastructure Resilience-oriented Modelling 

Language (IRML) (Hu et al., 2021). For  railway systems, a hybrid knowledge-based and data-

driven approach was proposed to quantify resilience (Yin et al., 2022). The model was able to 

demonstrate the quantitative relationship between railway system resilience and different types of 

events. Resilience of railway networks against simultaneous multiple disruptions was also assessed 

by combining infrastructure restoration and transport management (Bešinović et al., 2022). The 

proposed model was able to help decision-makers quantify the impacts of multiple disruptions. 

Despite the vast body of application of resilience quantification in various fields, studies on the 

resilience of structures subjected to correlated multivariate environmental variables have not been 

reported in the open literature. 

The present study presents multivariate vine copula models for environmental load estimation for 

offshore structures. Symmetric and asymmetric copula functions used within the vine copula 

structure are compared to identify the best-fitted functions in multivariate analysis. Thus, this 

chapter aims to contribute to; 1.)  investigation and construction of multivariate environmental 

models in higher dimension using vine copulas considering both symmetric and asymmetric 

dependence structures, and 2.) the assessment of an offshore structure’s resilience in terms of 

reliability, subjected to a total environmental load, modelled using vine copulas. 

The remainder of this chapter is organized as follows. Section 6.2 presents the methodology and 

the basic theories used in the research. The application of vine copula to model the multivariate 

environmental variables is discussed in Section 6.3. Results and discussions from the estimation 

of total environmental load to the assessment of the structure’s resilience are presented in Section 

6.4. The concluding remarks of this chapter are presented in Section 6.5. 
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6.2 Methodologies 

The methodology used to assess the resilience of an offshore structure subject to the total 

environmental load is illustrated in Fig. 6.1. Correlated environmental parameters are generated 

using vine copula functions. Resilience is evaluated in terms of the reliability of the structure. 

Basic theories and methodologies used to perform the proposed research framework are detailed 

in the next sections.  

6.2.1 Copula theory 

Copula functions are used to model complex dependencies between environmental variables. 

Marginal distribution from each variable is “coupled” or “joined” to construct the multivariate 

models. Copula theories were first introduced in Sklar’s Theorem (Nelsen, 2006). Let H be the n-

dimensional distribution function with marginal distributions 𝐹1, 𝐹2 , 𝐹3, … , 𝐹𝑛, then there is a copula, 

C, such that 

𝐻(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹(𝑥2). . . , 𝐹(𝑥𝑛)) (6.1) 

Based on Sklar’s theorem, copula functions are very flexible in modelling complex dependencies 

between environmental variables. Copula functions do not rely on the character of the univariate 

marginal distributions of the investigated variables. Environmental variables in the original 

domain are transformed into a cumulative distribution function that follows the uniform 

distribution function (Zhang et al., 2018). Thus, the domain and range for an n-dimensional copula 

function can be approached as 𝐶: [0,1]𝑛 → [0,1]. 
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Fig. 6.1. Research framework to quantify structure’s resilience subjected to the total 

environmental load modelled using vine copulas 

 

Due to this flexibility, copula functions are useful for modelling environmental variables with 

complex dependence structures. Detailed investigation of the application of copula functions to 



185 
 

model a bivariate case of environmental variables can be found in  (Ramadhani et al., 2022, 2021). 

In this chapter, multivariate models of environmental variables are constructed. There are two 

dependence structures considered in this chapter: symmetric and asymmetric. Copula functions 

from the Archimedean family are selected to model symmetric dependence structures. Three 

common copulas from the Archimedean family along with their parameters are presented in Table 

6.1 

Table 6.1. Common Archimedean copulas with their parameters 

Copula 𝐶𝛾(𝑢1, 𝑢2) Generating function 𝜙𝛾(𝑡) Interval 

Clayton (𝑢1
−𝛾 + 𝑢2

−𝛾 − 1)
−1
𝛾  

𝛾

𝛾 + 2
 (1.∞) 

Gumbel 𝑒𝑥𝑝 {−[(−𝑙𝑛𝑢1)
𝛾 + (−𝑙𝑛𝑢2)𝛾]

1
𝛾} 1 −

1

𝛾
 [1,∞) 

Frank 
−1

𝛾
𝑙𝑛 (1 +

(𝑒−𝑢1𝛾 − 1)(𝑒−𝑢2𝛾 − 1)

𝑒−𝛾 − 1
) 

1 −
4

𝛾
(1 − 𝐷1(𝛾)) 

Where
 

𝐷1(𝛾) =
1

𝛾
∫

𝑡𝑑𝑡

𝑒𝑥𝑝(𝑡) − 1

∞

0

 

(−∞,∞) 

 

In addition to symmetric dependence, asymmetric dependence is also considered, as most marine 

environmental variables show this type of dependence (Zhang et al., 2018). There are multiple 

ways to construct asymmetric copulas. In this chapter, asymmetric copulas are constructed using 

the product rule, as illustrated in previous studies. The construction of asymmetric copulas using 

this rule was judged to be the best to model marine environmental variables and considered more 

practical for a complex engineering system (Y. Zhang et al., 2019; Zhang et al., 2018). This rule 

was defined through the following theorem (Liebscher, 2008) 

Let 𝐶1 , . . . , 𝐶𝑘 : are copulas. Let 𝑔𝑗𝑖 : [0,1] → [0,1] for 𝑗 = 1, . . . , 𝑘, 𝑖 = 1, . . . , 𝑑 be functions with the 

property that each of them is strictly increasing or identically equal to 1. 
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Then the general equation to construct asymmetric copulas by using the product rule is defined by  

�̄�(𝑢1, . . . , 𝑢𝑑) =∏𝐶𝑗 (𝑔𝑗1(𝑢1), . . . , 𝑔𝑗𝑑(𝑢𝑑))       𝑓𝑜𝑟𝑢𝑖 ∈ [0,1]

𝑘

𝑗=1

 (6.2) 

 

To satisfy the assumptions of the theorem, the function 𝑔𝑗𝑖should have the following properties 

a) 𝑔𝑗𝑖(1) = 1 and 𝑔𝑗𝑖(0) = 0, 

b) 𝑔𝑗𝑖 is continuous on (0,1], 

c) If there are at least two functions 𝑔𝑗1𝑖 , 𝑔𝑗2𝑖with 1 ≤ 𝑗1, 𝑗2 ≤ 𝑘 which are not identically equal to 

1, then 𝑔𝑗𝑖(𝑥) > 𝑥 holds for 𝑥 ∈ (0,1), 𝑗 = 1, . . . , 𝑘 

The function 𝑔𝑗𝑖  plays a significant role in constructing symmetric copulas into asymmetric 

copulas. Type-1 individual function𝑔𝑗𝑖 , is used, where 

 

(I) 𝑔𝑗𝑖(𝑣) = 𝑣
𝜃𝑗𝑖for j = 1,…,k, where 𝜃𝑗𝑖 ∈ [0,1] and ∑ 𝜃𝑗𝑖 = 1

𝑘
𝑗=1  (6.3) 

 

Archimedean copulas are used as the basis copula functions to construct asymmetric copulas. 

Vine copula theories are introduced in the next section to construct the multivariate models for the 

selected environmental variables. 
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6.2.2 Modelling dependence structures using vine copulas 

In this chapter, vine copula based multivariate models of the environmental variables are 

investigated. Vine copulas are known to model multiple random variables considering complex 

dependence structures (Heredia-Zavoni and Montes-Iturrizaga, 2019; Lü et al., 2020; Montes-

Iturrizaga and Heredia-Zavoni, 2016). The main idea of a vine copula is to decompose a joint 

probability distribution function of multivariate random variables into a product of their univariate 

distributions, unconditional and conditional pairs. Let 𝑋1, 𝑋2,… , 𝑋𝑛 denote random variable with 

their joint probability density function (PDF) 𝑓(𝑥1, 𝑥2 , … , 𝑥𝑛). This PDF is then decomposed into 

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓𝑛(𝑥𝑛). 𝑓(𝑥𝑛−1 ∨ 𝑥𝑛). 𝑓(𝑥𝑛−2 ∨ 𝑥𝑛−1, 𝑥𝑛). . . 𝑓(𝑥1 ∨ 𝑥2, . . . , 𝑥𝑛) (6.4) 

Where the conditional PDF can be expressed by (Tang et al., 2020) 

𝑓(𝑥 ∨ 𝑣) = 𝑐(𝐹(𝑥 ∨ 𝑣−𝑚), 𝐹(𝑣𝑚 ∨ 𝑣−𝑚); 𝜃𝑥,𝑣𝑚∨𝑣−𝑚)𝑓(𝑥 ∨ 𝑣−𝑚) (6.5) 

Where 𝑐(⋅,⋅; 𝜃) is the bivariate copula density function, 𝑣𝑚 is an arbitrarily selected component 

from vector v, and 𝑣−𝑚 is the vector v excluding 𝑣𝑚. 

The conditional cumulative distribution function (CDF) can then be expressed as 

𝐹(𝑥 ∨ 𝑣) =
𝜕𝐶(𝐹(𝑥 ∨ 𝑣−𝑚), 𝐹(𝑣𝑚 ∨ 𝑣−𝑚); 𝜃𝑥,𝑣𝑚∨𝑣−𝑚)

𝜕𝐹(𝑣𝑚 ∨ 𝑣−𝑚)
 

 

(6.6) 

This partial derivative of the copula function is also called the h-function, ℎ(𝐹(𝑥 ∨ 𝑣−𝑚), 𝐹(𝑣𝑚 ∨

𝑣−𝑚); 𝜃𝑥,𝑣𝑚∨𝑣−𝑚). 

A graphical model is usually used to help with modelling complexity when using a vine copula. 

Vine copulas are often used to model dependence structures among variables in a high-dimensional 

distribution (Aas et al., 2009; Czado, 2019). A d-dimensional vine copula is a pair-copula with 
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d(d-1)/2 unconditional and conditional bivariate copulas. A set of linked trees also defines the 

structure of vine copulas 𝑇1 , 𝑇2, … , 𝑇𝑑−1 that meets these following criteria (Kraus and Czado, 2017) 

1. 𝑇1 = (𝑉1, 𝐸1) is Tree 1 with nodes 𝑉1 = {1,2, . . . , 𝑑} and edges 𝐸1. 

2. For 𝑚 = 2, . . . , 𝑑 − 1, tree 𝑇𝑚 has nodes 𝑉𝑚 = 𝐸𝑚−1 and edges 𝐸𝑚. 

3. For 𝑚 = 2, . . . , 𝑑 − 1, two nodes of 𝑇𝑚 can be linked by an edge if these nodes have a 

shared node with the corresponding edges of 𝑇𝑚−1. 

There are two common graphical models used to represent vine copulas. Canonical vine (C-vine) 

and Drawable vine (D-vine) copulas. The main difference lies in the characteristic of nodes in the 

two types of regular vine. In the C-vine, each node has a unique node connected to other nodes, 

while in D-vine, each node is only connected to one or two other nodes. The illustration of the C-

vine and D-vine models can be seen in Fig. 6.2 as follows 

 

Fig. 6.2. Graphical model for (a) C-vine, and (b) D-vine Copulas 

 

Generally, a joint PDF of d-dimensional random variables can be decomposed using a C-vine 

copula that satisfies (Czado, 2019) 
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𝑓(𝑥1, . . . , 𝑥𝑑) = [∏∏𝑐𝑗,𝑗+𝑖;1,⋅⋅⋅,𝑗−1

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

] × [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] 

 

(6.7) 

While decomposing a joint PDF of d-dimensional random variables using a D-vine can be 

expressed using the equation below (Czado, 2019) 

𝑓(𝑥1, . . . , 𝑥𝑑) = [∏∏𝑐𝑖,(𝑖+𝑗);(𝑖+1),...,(𝑖+𝑗−1)

𝑑−𝑗

𝑖=1

𝑑−1

𝑗=1

] × [∏𝑓𝑘(𝑥𝑘)

𝑑

𝑘=1

] 

 

(6.8) 

C-vine copulas are found to be more suitable for modelling the marine environmental variables 

where there is usually one dominating factor among the environmental variables (Bedford et al., 

2016; Dong et al., 2022; Nagler et al., 2022). This chapter uses C-vine copulas to model three 

selected environmental variables: wind speed, wave height, and current velocity. The steps to 

construct C-vine copulas for three variables are: 

1. Determine the marginal PDF of each variable. 

2. Identify the best-fit bivariate copula for Tree 1 

a) Original data are transformed into the copula domain  

 

𝑈𝑖 =
𝑅𝑖

𝑛 + 1
=
𝑛𝐹𝑖(𝑋𝑖)

𝑛 + 1
 

 

(6.9) 

where n is the number of observations and 𝐹�̂�(𝑡) is the empirical cumulative function 

defined as 𝐹𝑖(𝑡) =
1

𝑛
∑ 1(𝑋𝑖 ≤ 𝑡)
𝑛
𝑖=1 . 
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b) Copula parameter estimation is performed using Maximum Log-likelihood 

Estimation (MLE). The log-likelihood function 𝐿(𝜃) of a copula function can be 

expressed as (Lü et al., 2020) 

 

𝐿(𝜃) =∑𝑙𝑛𝑐(𝑢1, 𝑢2; 𝜃)

𝑁

𝑖=1

 

 

(6.10) 

The estimated 𝜃~ using MLE can be obtained by maximizing 𝐿(𝜃) (Lü et al., 2020) 

𝜃~= 𝑎𝑟𝑔𝑚𝑎𝑥𝐿(𝜃) 

 

(6.11) 

c) Select the best-fit copula using AIC scores. (Lü et al., 2020) 

 

𝐴𝐼𝐶 = −2𝐿(𝜃~) + 2𝑘 = −2∑𝑙𝑛𝑐(𝑢1𝑖 , 𝑢2𝑖; 𝜃~)

𝑁

𝑖=1

 

 

(6.12) 

Where k is the unknown parameter estimated using MLE, the lowest AIC score 

indicates the best-fit copula. 

3. Identify the best-fit bivariate copula for the next tree (Tree 2) 

Tree 2 consists of 𝑓(𝑥2 , 𝑥3 ∨ 𝑥1) = 𝐶2,3∨1(𝐹2∨1(𝑥2 ∨ 𝑥1), 𝐹3∨1(𝑥3 ∨ 𝑥1); 𝜃) 
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a) Data {𝐹2(𝑥2𝑖), 𝐹1(𝑥1𝑖), 𝑖 = 1,2, . . . , 𝑁} are transformed into data{𝐹2∨1(𝑥2𝑖 ∨ 𝑥1𝑖), 𝑖 =

1,2, . . . , 𝑁} using h function (a partial derivative of bivariate copula with respect 

to the given variable), where (Lü et al., 2020) 

 

ℎ(𝑢2 ∨ 𝑢1; 𝜃) =
𝜕𝐶(𝑢1, 𝑢2; 𝜃)

𝜕𝑢1
 

 

(6.13) 

So,  
𝐹2∨1(𝑥2𝑖 ∨ 𝑥1𝑖) = ℎ1,2(𝐹2(𝑥2𝑖), 𝐹1(𝑥1𝑖); 𝜃), 𝑓𝑜𝑟𝑖 = 1,2, . . . , 𝑁 

b) Data {𝐹3(𝑥3𝑖), 𝐹1(𝑥1𝑖), 𝑖 = 1,2, . . . , 𝑁} are also transformed to data 

{𝐹3∨1(𝑥3𝑖 ∨ 𝑥1𝑖), 𝑖 = 1,2, . . . , 𝑁} using the h function, resulting in 𝐹3∨1(𝑥3𝑖 ∨ 𝑥1𝑖) =

ℎ1,3(𝐹3(𝑥3𝑖), 𝐹1(𝑥1𝑖); 𝜃), 𝑓𝑜𝑟𝑖 = 1,2, . . . , 𝑁 

c) Based on {𝐹2∨1(𝑥2𝑖 ∨ 𝑥1𝑖), 𝐹3∨1(𝑥3𝑖 ∨ 𝑥1𝑖)}, select the best-fit copula for C2,3|1. 

4. Perform the same procedure if there are more trees 

5. Obtain the joint PDF. For trivariate analysis, the joint PDF will be decomposed as 

follows 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥1). 𝑓(𝑥2). 𝑓(𝑥3). 𝐶1,2{𝐹(𝑥1), 𝐹(𝑥2)}. 𝐶1,3{𝐹(𝑥1), 𝐹(𝑥3)}. 𝐶2,3∨1{𝐹(𝑥2 ∨ 𝑥1), 𝐹(𝑥3 ∨ 𝑥1)} 

Random sampling is then performed to generate the simulated samples from the constructed 

probability distribution function (PDF) 𝑓1,2,…,𝑛(𝑦1, 𝑦2, … , 𝑦𝑛). Let (𝑦1, 𝑦2, … , 𝑦𝑛) be a simulated data 

sample from 𝑓1,2,…,𝑛(𝑦1, 𝑦2,… , 𝑦𝑛) and (𝑟1, 𝑟2, … , 𝑟𝑛) is a sample independent standard, uniform on 

[0,1]. A Rosenblatt transformation is then used to generate (𝑦1, 𝑦2,… , 𝑦𝑛) based on (𝑟1, 𝑟2, … , 𝑟𝑛) 

(Lü et al., 2020): 

1) Solving 𝑦1. Let 𝑟1 = 𝐹1(𝑦1). Then, 𝑦1 = 𝐹1
−1(𝑟1) is obtained. 
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2) Solving 𝑦2. Let 𝑟2 = 𝐹2∨1(𝑦2|𝑦1) = ℎ2,1(𝐹2(𝑦2), 𝐹1(𝑦1); 𝜃). Then, 𝑦2 =

𝐹2
−1 (ℎ2∨1

−1 (𝑟2, 𝐹1(𝑦1); 𝜃)) is obtained. 

3) Solving 𝑦3. Let 𝑟3 = 𝐹3∨1,2(𝑦3|𝑦1, 𝑦2) = ℎ3,1∨2(𝐹3∨2(𝑦3|𝑦2), 𝐹1∨2(𝑦1|𝑦2); 𝜃) =

ℎ3,1∨2(ℎ3∨2(𝐹3(𝑦3), 𝐹2(𝑦2); 𝜃), ℎ1∨2(𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃); 𝜃). Then, 𝑦3 =

𝐹3
−1 (ℎ3,2

−1(ℎ3,1∨2
−1 (𝑟3, ℎ1,2(𝐹1(𝑦1), 𝐹2(𝑦2); 𝜃); 𝜃), 𝐹2(𝑦2); 𝜃)) is obtained. 

Finally, environmental data for a certain return period can be obtained using the conditional 

correlation model that has been constructed using the best fitted vine copula models. The 

conditional probability distribution is written as follows (Liu and Zhang, 2016) 

𝐹(𝑦1, 𝑧1|𝑋 = 𝑥1) = 𝐶(𝑉 ≤ 𝑣1,𝑊 ≤ 𝑤1|𝑈 = 𝑢1) =
𝜕𝐶(𝑢1, 𝑣1, 𝑤1)

𝜕𝑢1
 

(6.14) 

And the conditional return period based on a copula function can be estimated using 

𝑇(𝑦1, 𝑧1|𝑋 = 𝑥1) =
1

1 − 𝐹(𝑦1, 𝑧1|𝑋 = 𝑥1)
=

1

1 −
𝜕𝐶(𝑢1, 𝑣1,𝑤1)

𝜕𝑢1

 
(6.15) 

Thus, based on the selected return periods, two environmental variables can be generated based on 

the dominating environmental variable. The estimation of these environmental variables is based 

on the best fitted vine copulas. The estimated environmental variables are then used as the input 

to assess reliability and resilience of the structures. 

 

6.2.3 Resilience assessment 

There are various ways of defining resilience. In general, the word resilience is derived from the 

Latin word “resilire” which means “to bounce back”(Hosseini et al., 2016). It is similarly defined 

as the capability of a system to withstand undesirable events and be able to recover (Sarwar et al., 
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2018; Yodo and Wang, 2016). A more general practical definition states that resilience is the 

ability of a system to prepare for, and adapt to, any undesirable events and to withstand and recover 

from these events (Aven, 2011; Ayyub, 2015). From this definition, the resilience of a process 

system is the ability to cope with disruptive events and avoid failures (Taleb-Berrouane and Khan, 

2019). There are many frameworks to assess the resilience of a system. In this chapter, resilience 

is assessed based on three main capacities: absorptive capacity, adaptive capacity, and restorative 

capacity (Yarveisy et al., 2020). Absorptive capacity is the capability of a system to deal with a 

given stress through adaptive mechanisms. Adaptive capacity is the effect of control actions that 

will make the performance of a system steady and allow the restoration process to a new state. 

Restorative capacity is the necessary action to bring the system back to the previous or new 

operational states. 

A general equation to quantify resilience can be seen in the following equation (Ayyub, 2015; 

Bonstrom and Corotis, 2016) 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑅) = ∫
𝑄(𝑡)

𝑇𝑅
𝑑𝑡

𝑇𝑅

𝑇0

 (6.16) 

 

Where Q(t) is the system’s performance, T0 is the time when the disruptive event starts to occur, 

and TRE is the time to complete restoration of system performance. To assess the resilience of an 

offshore structure, the performance of the system can be investigated using the reliability of the 

offshore structures as the measure of performance. Thus, a simple and robust approach was 

developed to assess resilience in term of reliability (Yarveisy et al., 2020) 
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Fig. 6.3. Resilience metric in terms of reliability 

 

Fig. 6.3 shows 𝑅0 (initial reliability) and 𝑅𝑓 (final reliability) at their respective times 𝑇0 and 𝑇𝑓. 𝑅𝑙1
′  

and 𝑅𝑙2
′  represent the disrupted state reliability at times 𝑇𝑙1 and 𝑇𝑙2. While, reliability levels in the 

absence of disruption are denoted by 𝑅𝑙1 and 𝑅𝑙2. Yarveisy et al. (2020) developed the equation to 

quantify resilience as follows  

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = 𝐴𝑏 + 𝐴𝑑 ∗ 𝑅𝑒𝑠 − 𝐴𝑏 ∗ 𝐴𝑑 ∗ 𝑅𝑒𝑠 
(6.17) 

Where,  

a. The Absorptive Capacity (Ab): the ratio of residual reliability to the initial reliability at 

the time of the disruptive event (Bougofa et al., 2021; Taleb-Berrouane et al., 2019). It 

can be estimated as (Yarveisy et al., 2020) 

R
el

ia
b
il

it
y

Time

Adaptive capacity



195 
 

𝐴𝑏 = (
𝑅𝑙1
′

𝑅0
) ∗ (1+ (

𝑅0 − 𝑅𝑙1
𝑅0

)) 
(6.18) 

b. The Adaptive Capacity (Ad): the ratio of operation duration in the disrupted state to the 

total period from disruption to a new stable state condition.  

𝐴𝑑 = 1 − (
𝑇𝑙2 − 𝑇𝑙1
𝑇𝑓 − 𝑇0

) 
(6.19) 

c. The Restorative Capacity (Res): the slope of the recovery and can be estimated using 

𝑅𝑒𝑠 =

𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑅′𝑓 − 𝑅𝑙2

′

(
𝑇𝑓 − 𝑇𝑙2
𝑇𝑓 − 𝑇0

)
]

90
∗ (
𝑅′𝑓
𝑅𝑓
) ∗ (

𝑇𝑙2 − 𝑇0
𝑇𝑓 − 𝑇0

) 
(6.20) 

 

In this chapter, reliability of the structure is assumed to follow a Poisson process (Rózsás and 

Mogyorósi, 2017). The probability of n number of loads occurring during time, t, can be estimated 

as  

𝑃𝑛(𝑡) =
(𝛼𝑡)𝑛𝑒(−𝛼𝑡)

𝑛!
, 𝑛 = 0,1,2,… (6.21) 

Where 𝛼 is the mean number of loads per unit of time. The reliability can be calculated using the 

following equation  (Ebeling, 2004) 

𝑅(𝑡) = 𝑒−(1−𝑅)𝛼𝑡 
(6.22) 

Static reliability (R) can be estimated using a limit state assuming random stress and constant 

strength for the structure (Ebeling, 2004; Li and Zhang, 2020; Wei et al., 2015).  

𝑔 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑆𝑡𝑟𝑒𝑠𝑠 
(6.23) 

Where, Resilience is the product of the yield strength and the projected area, while stress is taken 

as the base shear force calculated from the total environmental loads (Nizamani, 2014). The 
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reliability is then calculated using the First Order Reliability Method (FORM). The calculation of 

the total environmental loads can be seen in Appendix 6A. 

6.3 Marine environmental data modelling 

Environmental parameters considered in this study are wave height, wind speed, and current 

velocity. These three parameters are mentioned on API 2A-WSD as they have a specific type of 

relationship that should be considered (American Petroleum Institute, 2002). The mouth of 

Placentia Bay in the province of Newfoundland and Labrador was selected as an example location 

from which to collect the environmental data, largely because the data was readily available. Ocean 

data for this location was obtained from the Smart Atlantic website (ERDDAP, 2022).  The data 

used in this chapter were recorded hourly between January 1st 2013 and December 31st. 

 

 

Fig. 6.4. Scatter plots for all environmental variable pairs 
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Table 6.2. Correlation coefficient (Kendall’s tau) between environmental variables 

 Wind speed Wave height Current velocity 

Wind speed 1 0.41 0.21 

Wave height  1 0.14 

Current velocity   1 

 

Table 6.3. Asymmetry measure between environmental variables 

 Wind speed Wave height Current velocity 

Wind speed 0 0.01 0.26 

Wave height  0 0.25 

Current velocity   0 

 

Fig. 6.4 shows that each pair of environmental variables has a positive correlation. The Kendall’s 

tau correlation coefficient for each pair is also presented in Table 6.2. From this table, wind speed 

and wave height show a strong correlation, while all current velocity pairs with other variables 

show weak correlations. Despite this weak correlation, the asymmetry level for current velocity 

pairs is higher than the wind speed and wave height pair data, as seen in Table 6.3. In this case, 

asymmetry copulas play important roles in modelling this dependence structure, as  mentioned in 

previous studies (Ramadhani et al., 2022, 2021).  

Marginal distribution for each environmental variable was first identified. The Akaike Information 

Criterion (AIC) was used to select the best-fitted distribution among all possible marginal 

distributions considered in this chapter. Table 6.4 shows the AIC values for all distributions, while 

Table 6.5 shows the statistical parameters for the best-fitted distribution for each environmental 

variable. 
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Table 6.4 AIC values for all environmental variables 

 Weibull Normal Lognormal Rayleigh Extreme 

Value 

Exponential Gamma 

Wind 

speed 
71,585 73,506 71,732 71,599 71,315 79,637 71,158* 

Wave 

height 
Inf 46,720 Inf 43,219 41,831 49,104 41043* 

Current 

velocity 
152,585 155,372 153,767 153,023 152,765 157,689 152,502* 

 *Indicates the best-fit marginal distribution 

 

Table 6.5 Statistical parameters for the best fitted marginal distribution 

 
Mean 

Standard 

Deviation 

Shape 

Parameter 

Scale 

Parameter 

Wind speed 8.39 4.34 3.71 2.26 

Wave height 2.53 1.52 2.79 0.91 

Current 

velocity 
179.93 108.05 2.63 68.41 

 

The smallest value of AIC indicates the best distribution model for the data set. The Gamma 

distribution is best fitted to all environmental variables. Kolmogorov-Smirnov (KS) tests were 

carried out to examine the goodness of fit of gamma distribution for all environmental variables. 

The test statistic values from the KS test for wind, wave, and current data are 0.0125, 0.0059, and 

0.012, respectively. These statistics show that the fitted distribution is valid (fail to reject the null 

hypothesis) at a significance level of 5% (critical value for KS-test is 0.0135) for each 

environmental variable. 
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After identifying the marginal distribution for each environmental variable, vine copulas were used 

to model the complex dependence structure of the marine environmental variables. Two types of 

dependence structures were selected: symmetric and asymmetric dependence. The Archimedean 

copula family was selected to model the symmetric dependence structure. For the asymmetric 

dependence, asymmetric copulas constructed using the product rule were utilized.  

For the symmetric dependence structure, Clayton copulas, Gumbel copulas, and Frank copulas 

were compared to identify which copula is best fitted in each edge of the dependence structure. 

Table 6.6 shows the best-fitted copula function for each edge and its parameter. 
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Fig. 6.5. Probability distribution functions for (a) wind and wave data in Tree 1 (Table 6.6), (b) 

wind and current data in Tree 1, and (c) conditional environmental data in Tree 2 (Table 6.6) 

using symmetric copulas 

 

Table 6.6 Best fitted symmetric copulas and their parameters for each edge 

Tree Edge Copula Copula Parameter 
𝐿(𝜃) 

(× 105) 

AIC 

(× 105) 

1 

𝑋1, 𝑋2 

Clayton 𝛾 = 1.0049 -3.3290 6.6581 

Gumbel 𝛾 = 1.6352 -3.3127 6.6255* 

Frank 𝛾 = 4.2656 -3.3168 6.6337 

𝑋1, 𝑋3 

Clayton 𝛾 = 1.0007 -3.3527 6.7054 

Gumbel 𝛾 = 1.2598 -3.3327 6.6655* 

Frank 𝛾 = 1.9706 -3.3350 6.6701  

2 

𝑋2, 𝑋3 ∨ 𝑋1 

Clayton 𝛾 = 1.0137 -3.3721 6.7443 

Gumbel 𝛾 = 1.0261 -3.3412 6.6824* 

Frank 𝛾 = −0.0658 -3.3415 6.6829  

*Lowest AIC score indicates the best-fit copula 

 

The Gumbel copula is best fitted to all environmental variable pairs on all the edges of the 

symmetric dependence structure. Their probability distribution functions are shown in Fig. 6.5. 

For the asymmetric dependence structure, the best-fitted copula functions for each edge and their 

parameters are shown in Table 6.7 
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Fig. 6.6. Probability distribution functions for (a) wind and wave data in Tree 1 (Table 6.7), (b) 

wind and current data in Tree 1(Table 6.7), and (c) conditional environmental data in Tree 2 

(Table 6.7) using asymmetric copulas 

 

Table 6.7 Best fitted asymmetric copulas and their parameters for each edge 

Tree Edge Copula Copula Parameter 
𝐿(𝜃) 

(× 105) 

AIC 

(× 105) 

1 

𝑋1, 𝑋2 

Clayton-

Gumbel Type-

𝛾1 = 1.8116 

𝛾2 = 18.2143 

𝜃11 = 0.9857, 𝜃12 = 0.8602 

-2.7257 5.4516  
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*Lowest AIC score indicates the best-fit copula. 

1 𝜃21 = 0.0143, 𝜃22 = 0.1398 

Clayton-Frank 

Type-1 

𝛾1 = 5.3741 

𝛾2 = 7.1045 

𝜃11 = 0.1006, 𝜃12 = 0.5423 

𝜃21 = 0.8994, 𝜃22 = 0.4577 

-2.7289 5.4580 

Gumbel-Frank 

Type-1 

𝛾1 = 1.8264 

𝛾2 = −17.5023 

𝜃11 = 0.9977, 𝜃12 = 0.8076 

𝜃21 = 0.0023, 𝜃22 = 0.1924 

-2.7254 5.4510* 

𝑋1, 𝑋3 

Clayton-

Gumbel Type-

1 

𝛾1 = 1.6183 

𝛾2 = 1.9838 

𝜃11 = 0.8663, 𝜃12 = 0.2116 

𝜃21 = 0.1337, 𝜃22 = 0.7884 

-2.7477 5.4955*  

Clayton-Frank 

Type-1 

𝛾1 = 16.0542 

𝛾2 = 2.0700 

𝜃11 = 0.4564, 𝜃12 = 0.0796 

𝜃21 = 0.5436, 𝜃22 = 0.9204 

-2.7488 5.4977 

Gumbel-Frank 

Type-1 

𝛾1 = 1.2644 

𝛾2 = 11.9340 

𝜃11 = 0.1888, 𝜃12 = 0.8256 

𝜃21 = 0.8112, 𝜃22 = 0.1744 

-2.7478 5.4957 

2 

𝑋2, 𝑋3 ∨ 𝑋1 

Clayton-

Gumbel Type-

1 

𝛾1 = 1.0042 

𝛾2 = 2.0115 

𝜃11 = 0.8642, 𝜃12 = 0.9537 

𝜃21 = 0.1358, 𝜃22 = 0.0463 

-2.2482 4.4966 

Clayton-Frank 

Type-1 

𝛾1 = 3.4989 

𝛾2 = −3.5458 

𝜃11 = 0.3334, 𝜃12 = 0.9039 

𝜃21 = 0.6666, 𝜃22 = 0.0961 

-2.2359 4.4719 * 

Gumbel-Frank 

Type-1 

𝛾1 = 18.7478 

𝛾2 = 1.0101 

𝜃11 = 0.0013, 𝜃12 = 0.0123 

𝜃21 = 0.9987, 𝜃22 = 0.9877 

-2.2374 4.4750 
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The Gumbel-Frank copula is best fitted to pair wind and wave data in the first tree. In contrast, the 

Clayton-Gumbel copula is best fitted to model wind and current data, and the Clayton-Frank 

copula is best fitted for the conditional probability in the second tree. Their probability distribution 

functions are shown in Fig. 6.6. 

6.4 Result and Discussion 

6.4.1 Copula models verification 

Distribution fitting and error value calculations are carried out to see if the vine copula models fit 

the marine environmental data. The real data are compared to the best-fitted copula in each edge 

for both asymmetric and symmetric dependence structures. 

From Fig. 6.7, C-vine copulas are fitted to model the multivariate data. Both asymmetric and 

symmetric copulas are able to model multivariate environmental variables in all trees. In this case, 

the wind speed was selected as the dominating factor. Wind speed influences both wave height 

and current velocity. The results in Fig. 6.7 also agree with the findings from other studies. The 

joint probability distribution constructed using the vine copula is fitted to model the multivariate 

distribution of ocean environmental parameters (Bai et al., 2021). Lin and Dong (2019) mentioned 

that a proposed joint multivariate model using vine copulas could represent the wave climate very 

well. From these findings, the application of vine copulas in marine environmental analysis can 

deal with any types of dependence between variables in a higher dimension. However, Fig. 6.7 

indicates that symmetric copulas performed slightly better in modelling the conditional distribution 

in the second tree. This is also a result of over-parameterization in using asymmetric copulas that 

may cause the conditional distribution of environmental variables to not best fit the real data. 
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Fig. 6.7. Distribution fitting and error value calculations for all edges using the best fitted 

symmetric copulas (top), and asymmetric copulas (bottom) 
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6.4.2 The estimation of the total environmental load 

After fitting the marine environmental variables to the asymmetric and symmetric copulas for all 

edges, a set of random data is generated using the best-fitted copulas. A simulation is then carried 

out to estimate the total environmental load acting on an offshore structure. In addition to the 

copula functions, two other common methods are used to compare the results. An independent 

case generates random data using marginal distributions for each environmental variable. At the 

same time, a multi-Gaussian method is selected to illustrate the most common multivariate model. 

To illustrate the comparison of total environmental load estimated using different models, a simple 

case study is used. A steel XL monopile structure with a diameter of 9.5m and the immersed part 

of the pile at 100m is selected (Whitlock, 2022). The wind force is calculated at the reference 

height of 10m above the mean sea level with a drag coefficient of 0.7 (Det Norske Veritas, 2011). 

In order to calculate wave load, inertia and drag coefficients are set to be 2 and 1, respectively (Bai 

and Bai, 2005). Theories used to estimate the total environmental load are detailed in Appendix 

6A.  
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Fig. 6.8. Boxplots for the estimated total environmental loads predicted using the simulated 

environmental data 

 

Fig. 6.8 shows that the total environmental loads estimated using generated random data from four 

different methods do not differ significantly. The multivariate Gaussian model produced a lower 

median total environmental load compared to the independent model. In contrast, C-vine copulas 

showed different trends. The estimated total environmental loads modelled using symmetric 

copulas resulted in a lower median load compared to both independent and multivariate Gaussian 

models. On the other hand, asymmetric copulas produced higher total environmental load 

compared to the other models. Although the total environmental loads are not significantly 

different, random data generated using symmetric and asymmetric copulas are able to 

accommodate tail dependence which is usually the characteristic of marine environmental 

variables. In the second tree of the C-vine structure used to model the environmental variables, the 
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Gumbel distribution is best fitted for the symmetric model, while the Clayton-Frank Type-I is best 

for the asymmetric model. 

Gumbel copulas have strong high-value dependencies. Thus, from Fig. 6.8, it can be seen that 

more data were generated in the higher values tail. The median value of the total environmental 

load generated using asymmetric copulas is close to the independent models. However, 

asymmetric copulas still consider the tail dependencies and were able to generate an asymmetric 

dependence structure compared to the independent model. In addition to this, Table 6.8 shows 

error values of the real data fitted to the independent and multivariate Gaussian model. It can be 

seen that the error values are much higher compared to the symmetric and asymmetric values 

presented in Fig. 6.8. However, the estimated total environmental loads do not differ significantly, 

and C-vine copulas using both asymmetric and symmetric copulas are best fitted to model the 

multivariate environmental variables. Both copula models are able to capture the real dependence 

structure of environmental variables. Failure to capture these dependence structures will lead to 

misinterpretation of the real dependence type of environmental variables (Zhang et al., 2018).  

(Jiang et al., 2021) also point out that the proposed multivariate model using vine copulas results 

in more realistic values by considering the complex dependence structure between environmental 

variables Thus, from this study, and supported by other research, vine copulas provide more 

flexible and appropriate models for the multivariate distribution of environmental variables when 

compared to the other common methods used in practice.  

Table 6.8 Error values for Independent and Multivariate Gaussian method 

 RMSE Mean Absolute Error 

Independent method 0.2380 0.1630 

Multivariate Gaussian method 0.2351 0.1600 
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The results obtained from this estimation of total environmental load is used in the next section to 

assess the reliability and resilience of an offshore structure.  

6.4.3 Structural reliability evaluation 

After fitting the environmental data to the asymmetric and symmetric C-vine copulas, the 

reliability of the structure is assessed using this loading information. As mentioned in the previous 

section, for simplicity, static reliability (R) can be estimated using a limit state assuming random 

stress and constant strength for the structure. The stress considered in this chapter is the total 

environmental load. In comparison, the resistance is taken as the product between the yield 

strength and the area of the pile. Yield strength is assumed to be 450 MPa. Table 6.9 shows the 

reliability index (𝛽) of the structure estimated using the generated environmental load data from 

both asymmetric and symmetric data. From this table, the reliability index obtained from two 

different dependence structures showed similar results. The probability of failure of the structure 

is in the order of 10-6. This shows that the offshore structure can withstand the random 

environmental load modelled using symmetric and asymmetric copulas. It was also found that 

wave height has the highest sensitivity value compared to the other two environmental variables. 

Thus, the total environmental load largely depends on the wave height. This result also validates a 

finding that  90% of the total environmental load acting on offshore structures comes from the 

wave loads (Henry et al., 2019). 

Table 6.9 Static reliability calculations using environmental variables data modelled with 

asymmetric and symmetric C-vine copulas 

Copulas Variables 
Generated 

Data 

Reliability 

Index 

Failure 

Probability 
Sensitivity 

Asymmetric 
Wind (m/s) 8.46 

4.63 1.78 x 10-6 
42.50% 

Wave (m) 2.56 90.52% 
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Current (mm/s) 180.41 0.01% 

Symmetric 

Wind (m/s) 8.26 

4.59 2.18 x 10-6 

42.50% 

Wave (m) 2.73 90.52% 

Current (mm/s) 155.87 0.01% 

 

In order to assess the reliability of the structure with respect to the selected return periods, wind 

speed is selected as the dominating factor. This variable is then used to estimate the value of the 

other environmental variables with different return periods. Table 6.10 provides the summary of 

the estimation. These values are then used to estimate the reliability of the structure. 

Table 6.10 Estimated wave height (m) and current velocity (mm/s) in various return periods 

(years) 

T 

(years) 

Wind speed (m/s) 

(dominating factor) 

Wave height (m) Current velocity (mm/s) 

Asymmetric Symmetric Asymmetric Symmetric 

10 8.59 7.75 7.91 587.59 562.95 

25 11.35 8.69 8.05 643.59 573.91 

50 15.95 10.55 8.95 764.86 647.64 

75 20.56 11.03 11.03 834.01 683.25 

100 25.16 14.41 14.36 837.56 840.53 
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Fig. 6.9. Probability of failure (left) and reliability index (right) in various return periods 

considering both asymmetric and symmetric C-vine copulas 

 

Fig. 6.9 shows the probability of failure and reliability index of the offshore structure subjected to 

the total environmental load. Environmental data used to estimate the probability of failure are 

modelled using symmetric and asymmetric copulas. Wind speed data is the dominating factor to 

estimate the correlated data of the other two environmental variables in various return periods. The 

figure indicates the same trend as Fig 8, where symmetric and asymmetric C-vine results do not 

differ significantly. The reliability index shows that symmetric C-vine copulas resulted in a slightly 

lower reliability index due to higher probability of failure than the asymmetric C-vine copula 

model. Since the estimations of the probability of failure between symmetric and asymmetric C-

vine copula show the same trend, results obtained using symmetric C-vine copulas are used to 

estimate the resilience of offshore structures in the next section. Symmetric C-vine copulas are 

selected as they are best fitted to all edges in the dependence structure of the environmental 

variables. 
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6.4.4 Resilience assessment 

In this chapter, resilience is assessed in terms of the reliability of the offshore structure. The 

correlated random environmental data used to estimate resilience are derived from the 100-year 

return period modeled using C-vine copulas. Several scenarios are developed to assess the 

resilience of the example offshore structure subjected to the derived multivariate marine 

environmental loads. Initial reliability 𝑅0 is set to be 1, assuming there are no extreme marine 

events during the first year. Three reliability values are selected at a disrupted steady state: 0.99, 

0.95, and 0.90. Ideal recovered reliability, 𝑅𝑓, is set to be equal to the initial reliability. Different 

new post-recovery reliability states (𝑅′𝑓) are selected to simulate their effects on the estimated 

resilience assessment. For recovery period, 𝑇𝑓 − 𝑇𝑙2, the completion of this overall mitigation 

process is assumed to take approximately 1 year (Tolentino and Ruiz, 2013). A resilience curve 

for the reliability level at three different disrupted steady states is shown in Fig. 6.10. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.10. Resilience curves with Reliability at disrupted steady state (a) 0.99, (b) 0.95, (c) 0.90 

and varied post-recovery reliability states 
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Table 6.11 Estimated resilience with varied capacities and post-recovery states 

No 𝑅𝑙1
′  𝑅′𝑓 Ab Ad Res Resilience 

1. 
0.9900 

1.0000 
0.9950 0.7510 

0.013 0.9950 

2. 0.9900 0.012 0.9949 

3. 

0.9500 

1.0000 

0.9550 0.9190 

0.013 0.9550 

4. 0.9900 0.012 0.9549 

5. 0.9800 0.011 0.9548 

6. 0.9700 0.011 0.9548 

7. 0.9600 0.009 0.9547 

8. 

0.9000 

1.0000 

0.9050 0.9570 

0.013 0.9055 

9. 0.9900 0.012 0.9055 

10. 0.9800 0.011 0.9054 

11. 0.9700 0.011 0.9053 

12. 0.9600 0.009 0.9053 

13. 0.9500 0.008 0.9052 

 

Fig. 6.10 shows different scenarios used to assess the resilience of the offshore structure. The 

reliability of the structure is restored to better new steady states, 𝑅𝑓, or at least the same level as 

their 𝑅′𝑙1 for scenarios 0.95 and 0.99. From Table 6.11, the value of resilience is not significantly 

different from the value of reliability at the disrupted steady state 𝑅′𝑙1 and the value of the 

absorptive capacity. This shows that the resilience metric used in this chapter most significantly 

depends on the value of absorptive capacity.  

Table 6.12 Resilience assessment with respect to different recovery times (𝑇𝑓 − 𝑇𝑙2) 

No 𝑅𝑙1
′  

𝑇𝑓 − 𝑇𝑙2 

(years) 
Ab Ad Res Resilience 

1. 0.9000 2.0000 0.9045 0.9585 0.0045 0.9053 
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2. 3.0000 0.9045 0.9601 0.9051 

3. 4.0000 0.9045 0.9616 0.9050 

4. 5.0000 0.9045 0.9631 0.9049 

5. 

0.9500 

2.0000 0.9547 0.9246 

0.0012 

0.9549 

6. 3.0000 0.9547 0.9299 0.9548 

7. 4.0000 0.9546 0.9345 0.9548 

8. 5.0000 0.9545 0.9385 0.9547 

9. 

0.9900 

2.0000 0.9949 0.8004 

0.0001 

0.9950 

10. 3.0000 0.9949 0.8336 0.9950 

11. 4.0000 0.9948 0.8573 0.9949 

12. 5.0000 0.9948 0.8752 0.9949 

 

Table 6.13 Resilience with different periods of stable disrupted operation 

No. 𝑅𝑙1
′  𝑅′𝑓 

𝑇𝑙2 − 𝑇𝑙1 

(year) 
Ad Resilience 

1. 

0.9900 1.0000 

2.0000 0.6008 0.9950 

2. 4.0000 0.4294 0.9950 

3. 6.0000 0.3341 0.9949 

1. 

0.9500 1.0000 

2.0000 0.8492 0.9550 

2. 4.0000 0.7379 0.9549 

3. 6.0000 0.6524 0.9548 

1. 

0.900 1.0000 

2.0000 0.9169 0.9056 

2. 4.0000 0.8466 0.9055 

3. 6.0000 0.7863 0.9055 

 

Table 6.12 shows that with various recovery times for different reliability levels at the disrupted 

steady state, the value of resilience remains essentially equal to its absorptive capacity. Eq. 6.17 

shows that restorative capacity depends on both absorptive and adaptive capacity. Another 

comparison is then illustrated according to various periods during stable disrupted operation, 𝑇𝑙2 −
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𝑇𝑙1. Table 6.13 shows that the adaptive capacity is reduced when the period of disrupted operation 

is expanded. However, this extension has no impact on the assessment of resilience. This also 

validates Eq. 6.17, because adaptive capacity also depends on absorptive capacity. Thus, 

absorptive capacity is the only independent resilience capacity in the applied metric. This 

absorptive capacity refers to the inherent design of the system or structure to withstand extreme 

marine events. This capacity is determined by the offshore structure's safety design and physical 

characteristics. If we suppose reliability at a disrupted steady state can be maintained close to the 

initial reliability, then the ability of the system to withstand the disruptive events and restore its 

functions will be higher too. Higher absorptive capacity means less effort and resources needed to 

carry out restoration attempts on the structure. This finding agrees with previous studies assessing 

the resilience of a system with the same metric (Ramadhani et al., 2022; Yarveisy et al., 2020). 

Table 6.14 Allowable number of extreme events with different environmental variables data for 

various return periods 

Return period 

(years) 
𝛼 

𝑇𝑙2 

(years) 

100 3 23.072 

75 9 25.414 

50 55 25.9457 

 

Finally, a typical offshore structure's life is usually  20 to 30 years, with some exceptions for 

minimal production platforms with a 10-year design lives (Wahab et al., 2020). Table 6.14 shows 

the allowable number of extreme marine events for different environmental return periods. This 

shows that the structure can only withstand three 100-year environmental   events in order to 

survive for the specified design life. If the return period is reduced, the number of extreme events 

allowed to impact the structure increases. This is because lower return period data will result in a 
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smaller probability of failure. Thus, selecting return period data is essential to predict the 

maximum number of extreme events allowed to impact the structure. This can also be valuable 

input for decision makers to specify a high resilience metric. 

6.5 Conclusion 

The proposed methodology is built on vine copulas to construct a multivariate joint distribution of 

marine environmental variables in higher dimensions. The correlation and the degree of 

asymmetry between environmental variables are first investigated. Then, trivariate models for 

environmental variables with wind speed as the dominating factor are constructed using C-vine 

copula models. Asymmetric and symmetric copulas are selected as the building blocks. 

Environmental data are finally generated using the best-fitted copulas in each edge and compared 

to other common multivariate methods. The total environmental loads estimated using all methods 

show similar values, with symmetric C-vine copulas and asymmetric C-vine copulas resulting in 

the lowest and highest median of total environmental load, respectively. Error-values estimated 

for all methods show that both symmetric and asymmetric C-vine copulas fit better to the 

environmental data compared to the other two methods. Symmetric C-vine copulas provide lower 

error in the second tree of the dependence structure than asymmetric C-vine copulas. This shows 

that symmetric C-vine copulas fit better to model the multivariate environmental variables. 

Furthermore, identifying wind speed as the dominating variable made it possible to derive and 

generate correlated data of the other two variables. These data are then used to evaluate the 

reliability of the structure subjected to the total environmental loads. The results show that the 

reliability index using symmetric C-vine copulas resulted in a slightly lower reliability index due 

to a higher probability of failure than the asymmetric C-vine copula model. This reliability value 

is then used to estimate the resilience of the offshore structure.  
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Resilience is quantified based on a reliability assessment of the structure subjected to total 

environmental loads. Quantification of resilience is mainly found to be dependent on the 

absorptive capacity. This is the only capacity in the resilience metric that is independent. 

Absorptive capacity is the critical indicator in a system. A higher level of residual reliability will 

result in a better ability to withstand undesirable events and restore functionality. This capacity is 

translated into the inherent physical characteristic of the structure that enables it to withstand 

disruptive events. Thus, system design plays an essential role in achieving a high resilience metric. 

The main challenge in the resilience quantification in this study is the quality of the environmental 

data collected. Future work will focus on integrating advanced modelling tools such as neural 

networks to enhance the data processing and analysis 
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Appendix 6A 

The total environmental load acting on a structure is estimated using  

 (6A.1) 

 
 

 = iiTot FF 
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where, 𝜓𝑖 are the factors for load combination (Yu. Shmal et al., 2020). Three environmental loads 

considered here are wind, wave, and current loads. 

The wind force on a structural member or surface acting normal to the member axis is calculated 

using  (Jacomet et al., 2021) 

 
(6A.2) 

where 

C = shape coefficient 

q = basic wind pressure or suction 

A = projected area of the member normal to the direction of the wind velocity 

α = angle between wind direction and the member axis 

 

Basic wind pressure can be estimated using (Jacomet et al., 2021) 

 
(6A.3) 

 

where, 𝜌𝑎 is the mass density of air and 𝑈𝑧 is the wind velocity profile estimated using the following 

equation  (Jacomet et al., 2021) 

𝑈𝑧 = 𝑈𝑧0 (
𝑧

𝑧0
)
1 7⁄

 
(6A.4) 

where, 

𝑈𝑧0= mean velocity at a reference height 

z0 = reference height 

z = height above mean sea level 

 

The total wave force for a suitably slender structure, or element of a structure, is then estimated 

using Morison’s equation  (Jacomet et al., 2021; Zhang et al., 2015) 

sinCqAFwind =

 
2

1 2

zaUq =
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(6A.5) 

 

𝐹𝑇𝑤𝑎𝑣𝑒 =  C𝑀𝜌𝑉�̇� +
1

2
𝐶𝐷𝜌𝐴|𝑢|𝑢 

(6A.6) 

where, 

𝐶𝑀  and C𝐷are inertia and drag coefficient, respectively 

𝜌 = water density  

V = volume of the body 

A = reference area 

u = water wave particle velocity 

�̇�= water wave particle acceleration 

When calculating wave force on an offshore structure, it is also important to select the most 

appropriate wave theory. Water wave particle velocity and acceleration are calculated using these 

wave theories. Wave theories considered in this chapter are as follows 

Table A1 shows the condition where each wave theory is applicable. 

Table A1. Application of wave theories 

Condition Wave Theory 

𝑑

𝐿
≥ 0.2,

𝐻

𝐿
≤ 0.2 Airy wave theory 

0.1 <
𝑑

𝐿
< 0.2,

𝐻

𝐿
≥ 0.2 Stokes wave theory 

0.040.05 <
𝑑

𝐿
< 0.1 Solitary wave theory 

 

where, d is water depth, L is wavelength, and H is wave height.  

1. Airy Wave Theory 

In this theory, water particle velocity and acceleration in the horizontal direction can be estimated 

by (Kim, 1999; S. Zhang et al., 2015) 

 FF DI +=
wave

FT
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𝑢𝑥 =
𝐻𝑔𝑘

2𝜔

𝑐𝑜𝑠ℎ(𝑘(𝑧+𝑑))

𝑐𝑜𝑠ℎ(𝑘𝑑)
𝑐𝑜𝑠(𝑘𝑥−𝜔𝑡)

�̇�𝑥 =
2𝜋2𝐻

𝑇2
𝑐𝑜𝑠ℎ(𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ(𝑘𝑑)
𝑠𝑖𝑛(𝑘𝑥 −𝜔𝑡)

 (6A.7) 

 

g = standard gravity 

H = wave height 

k = wave number that is calculated using this equation 

 

𝑘 =
2𝜋

𝐿
 

 

(6A.8) 

While in the vertical direction 

𝑢𝑧 =
𝐻𝑔𝑘

2𝜔

𝑠𝑖𝑛ℎ(𝑘(𝑧+𝑑))

𝑐𝑜𝑠ℎ(𝑘𝑑)
𝑠𝑖𝑛(𝑘𝑥 −𝜔𝑡)

�̇�𝑧 = −
2𝜋2𝐻

𝑇2
𝑠𝑖𝑛ℎ(𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ(𝑘𝑑)
𝑐𝑜𝑠(𝑘𝑥−𝜔𝑡)

 (6A.9) 

 

2. Stokes Wave Theory 

The horizontal water particle velocity and acceleration should satisfy this following equation 

𝑢𝑥 =
𝐻𝜋

𝑇

𝑐𝑜𝑠ℎ(𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ(𝑘𝑑)
𝑐𝑜𝑠(𝑘𝑥−𝜔𝑡) + 3

4
(
𝐻𝜋

𝑇
) (

𝐻𝜋

𝐿
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𝑐𝑜𝑠ℎ(2𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ
4
(𝑘𝑑)

𝑐𝑜𝑠2 (𝑘𝑥−𝜔𝑡)

�̇�𝑥 = 2 (
𝜋2𝐻

𝑇2
)
𝑐𝑜𝑠ℎ(𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ(𝑘𝑑)
𝑠𝑖𝑛(𝑘𝑥−𝜔𝑡) +3 (𝐻𝜋

2

𝑇2
) (

𝐻𝜋

𝐿
)
𝑐𝑜𝑠ℎ(2𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ
4
(𝑘𝑑)

𝑠𝑖𝑛2(𝑘𝑥−𝜔𝑡)

 (6A.10) 

 

While equation A11 is used to estimate water particle velocity and acceleration in the vertical 

direction 
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𝑢𝑧 =
𝐻𝜋

𝑇

𝑠𝑖𝑛ℎ(𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ(𝑘𝑑)
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𝜋2𝐻

𝑇2
)
𝑠𝑖𝑛ℎ(𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ(𝑘𝑑)
𝑐𝑜𝑠(𝑘𝑥−𝜔𝑡) −3 (𝐻𝜋

2

𝑇2
) (

𝐻𝜋

𝐿
)
𝑠𝑖𝑛ℎ(2𝑘(𝑧+𝑑))

𝑠𝑖𝑛ℎ
4
(𝑘𝑑)

𝑐𝑜𝑠2 (𝑘𝑥−𝜔𝑡)
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3. Solitary Wave Theory 

Water particle velocity and acceleration can be approached by Equation A12 

𝑢 =
𝐶𝑁[1+𝑐𝑜𝑠(𝑀[

𝑧+𝑑

𝑑
]).𝑐𝑜𝑠(𝑀

𝑥

𝑑
)]

{𝑐𝑜𝑠(𝑀[
𝑧+𝑑

𝑑
])+𝑐𝑜𝑠ℎ(𝑀

𝑥

𝑑
)}
2

�̇� =
𝐶𝑁[𝑠𝑖𝑛(𝑀[

𝑧+𝑑

𝑑
]).𝑠𝑖𝑛ℎ(𝑀

𝑥

𝑑
)]

{𝑐𝑜𝑠(𝑀[
𝑧+𝑑

𝑑
])+𝑐𝑜𝑠ℎ(𝑀

𝑥

𝑑
)}
2

 (6A.12) 

 

Where M,N are functions of H/d and 

C is speed of solitary wave that can be estimated using 

𝐶 = √2𝑔(𝐻 + 𝑑)    
(6A.13) 

Current loads are also commonly taken into consideration in designing offshore structures and are 

estimated using  (Yu. Shmal et al., 2020) 

 
(6A.14) 

where, 

CD = drag coefficient 

𝜌 = water density  

U = current velocity  

A = reference cross-sectional area 

  

  
2

1
UAUCF DCurrent =
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CHAPTER 7  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

 

7.1 Summary 

The current research focuses on modelling environmental variables to estimate the total 

environmental loads acting on offshore structures. This research also assesses offshore structures’ 

performance in terms of resilience when subjected to environmental loads. After an extensive 

literature review, the existing knowledge gaps are identified. The dependence among the 

investigated variables was identified as a topic requiring research attention. Copula functions are 

used to address the identified challenges in dealing with variable dependencies. The copula-based 

probabilistic models developed here are compared with the existing methods and results suggest 

that the copula-based approach is better suited to model the correlated marine environmental 

variables considering both symmetric and asymmetric dependence structures. 

The first two technical chapters focus on developing bivariate models using copula functions. In 

addition to standard copula family models, asymmetric copulas are studied to provide a more 

comprehensive understanding of dependence structure among environmental variables. The 

correlated environmental data generated from symmetric and asymmetric copula functions 

estimate the total environmental loads acting on an offshore structure. These data are then used to 

assess the performance of the offshore structure in terms of resilience. The proposed methodology 

provides a robust and flexible approach to assess the resilience of a structure subjected to correlated 

marine environmental loads for the bivariate case. 
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The other two technical chapters investigate further the development of multivariate models in 

higher dimensions. Vine copulas are used to model this phenomenon. The modeled data estimate 

the total environmental loads on an offshore structure. These environmental loads are then used as 

input to assess the resilience of offshore structures. 

The use of copula theories is the highlight of this thesis. Novel methodologies are proposed to 

estimate the total environmental loads and a structure’s resilience for both bivariate and 

multivariate cases. In addition, asymmetric copulas are used extensively to model all possible 

dependence structures of marine environmental variables. From this thesis, asymmetric 

dependence between environmental variables is found to be always present. The application of 

asymmetric copulas to perform multivariate analysis for offshore structures provide a better 

approach to capturing all possible dependency levels that ocean parameter data might have. 

7.2 Conclusions 

The work detailed in this thesis demonstrates that the original premise of the study has been 

proven. Copula functions can better model complex and marginal dependencies between 

environmental variables in models of loading on offshore structures. This is particularly valuable 

for harsh environments, in which the dependencies between variables are expected to be more 

influential. Furthermore, the work of developing and evaluating a methodology has provided 

methods and algorithms that make the use of copula functions and the incorporation of complex 

dependencies in environmental variables readily achievable in engineering practice. These are the 

main achievements of this study. Contributing achievements arising from the individual stages of 

the research are listed below. 
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7.2.1 Development of bivariate copula models to estimate the total environmental loads 

This study analyses and interprets the influence of several copula functions used to estimate 

environmental loads on an offshore structure. The Gumbel and Clayton-Gumbel type-1 Copula 

functions, in comparison to the conventional joint distribution function techniques, were found to 

offer lower RMSE values and a higher probability of occurrence. The generated data set had a 

comparatively low asymmetry measurement and was scattered symmetrically in the copula 

domain. A symmetric copula—in this case, the Gumbel copula—was thus best matched to the data 

set to assess the environmental load. The use of asymmetric copulas in multivariate analysis for 

offshore structures is advantageous in capturing all potential dependence structures that marine 

environmental variables might have. 

7.2.2 Development of a novel methodology to assess resilience considering a parametric 

dependence  

This study presents a reliable method for quantifying resilience. A simple demonstration is 

presented to assess the capacities of offshore structures subjected to iceberg load. Both ice 

parameters and meteorological factors influence the iceberg collision force. From the 

meteorological standpoint, waves and wind load determine the drift velocity of the iceberg. It is 

concluded that marine environmental variables are interdependent and exhibit an asymmetric 

dependence structure. Thus, the Gumbel-Frank Type-I is best fitted to model the dependence 

between the environmental variables. Resilience is quantified based on a reliability assessment of 

the structure subjected to the iceberg load. Quantification of resilience was mainly found to be 

dependent on absorptive capacity. It is critical in a system as a higher level of residual reliability 

will result in a better ability to withstand disruptive events and restore functionality. This capacity 

is the inherent physical characteristic of the structure that enables it to withstand disruptive events.  
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7.2.3 Development of multivariate models to estimate total environmental loads using vine copulas 

This study presents a vine copula-based framework to estimate the total environmental load in a 

higher dimension. Joint distributions for trivariate analysis are constructed using the c-vine 

models. Building blocks are constructed using both symmetric and asymmetric copulas. The 

independent load case and multi-Gaussian distribution function were compared with the other 

known methods. Estimating the total environmental load depended on the copula function fitted 

in the final edge of the tree. It is concluded that vine copulas are well suited to model multivariate 

environmental variables and provide more realistic models of interdependent environmental 

effects. The C-vine models constructed using asymmetric copulas as the building blocks provide 

a lower estimation of the total environmental load than the calculation of each environmental 

variable individually. The error results obtained from c-vine using asymmetric copula are also 

lower than those obtained from the multi-Gaussian distribution function. This study provides a 

new perspective on applying vine copulas to model marine environmental variables with complex 

dependency structures in higher dimensions. The result from this study is also potentially valuable 

for further probabilistic structural analysis of offshore structures. 

7.2.4 Development of a novel methodology to assess resilience subjected to multiple 

environmental loads 

This study presents a proposed methodology built on vine copulas to construct a multivariate joint 

distribution of marine environmental variables in higher dimensions. Asymmetric and symmetric 

copulas are selected as the building blocks to construct the C-vine copula models. Environmental 

data are generated using the best-fitted copulas in each edge and compared to other common 

multivariate methods. Error values estimated for all methods show that symmetric and asymmetric 

C-vine copulas fit better to the environmental data. Symmetric C-vine copulas provide a lower 
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error in the second tree of the dependence structure than asymmetric C-vine copulas. This shows 

that symmetric C-vine copulas fit better to model the multivariate environmental variables using 

the collected data set. These correlated data are then used to evaluate the reliability of the structure 

subjected to the total environmental loads. The results show that the symmetric C-vine copula's 

reliability index resulted in a slightly lower reliability index due to a higher probability of failure 

than the asymmetric C-vine copula model. Resilience quantified based on a reliability assessment 

of the structure subjected to total environmental loads shows a similar result. Quantification of 

resilience is mainly found to be dependent on absorptive capacity. Thus, absorptive capacity is the 

critical indicator in a system. 

7.3 Recommendations 

This thesis introduces the concept of copula theories to model the joint distribution of marine 

environmental variables for both bivariate and multivariate cases. The copula models are used to 

generate correlated environmental variables as inputs to assess the resilience of offshore structures 

subjected to environmental loads. However, the scope of the current research can be improved by 

adopting the following recommendations. 

7.3.1 The use of a large met-ocean data set 

The results obtained in this thesis depend mainly on the quality of the selected environmental data. 

Using a large met-ocean data set will help improve the reliability of the environmental load 

estimation for offshore structures. 

7.3.2 Development of a multivariate model for risk analysis of offshore structures 

This thesis assumes a simplified offshore structure to estimate the total environmental loads and 

assess the structure’s resilience. Future works should be able to capture the overall risk profile of 
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offshore structures subjected to all types of loads. The consideration of parametric dependence 

should be highlighted. The fluid-structure interactions should also be captured better in future 

works to assess better the overall performance of offshore structures operating in harsh 

environments. 

7.3.3 Development of resilience assessment methodology considering managerial aspects 

In this thesis, resilience assessment largely depends on the acceptable level of reliability in the 

disrupted state. Identifying this acceptable level will require involvement from all organizational 

stakeholders to provide more reasonable and realistic assumptions. Future work should involve 

managerial aspects in quantifying the resilience of an offshore structure 

7.3.4 Development of more advanced modelling tools using neural networks 

In this thesis, applying copula theories can better capture the dependence structure of marine 

environmental variables. More advanced modelling tools, such as neural networks, will help 

enhance data processing and analysis for future work. 

 


